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QUANTUM AFFINE ALGEBRAS AT ROOTS OF UNITY

VYJAYANTHI CHARI AND ANDREW PRESSLEY

ABSTRACT. Let Ugq(§) be the quantized universal enveloping algebra of the
affine Lie algebra g associated to a finite-dimensional complex simple Lie al-
gebra g, and let U;%(g) be the Clg, g~ 1]-subalgebra of Ug(g) generated by the
g-divided powers of the Chevalley generators. Let U®*(§) be the Hopf alge-
bra obtained from Ug®® () by specialising ¢ to a non-zero complex number €
of odd order. We classify the finite-dimensional irreducible representations of
Ut (g) in terms of highest weights. We also give a “factorisation” theorem
for such representations: namely, any finite-dimensional irreducible represen-
tation of U!®S(§) is isomorphic to a tensor product of two representations,
one factor being the pull-back of a representation of g by Lusztig’s Frobenius
homomorphism Fre : U™S(§) — U(§), the other factor being an irreducible
representation of the Frobenius kernel. Finally, we give a concrete construc-
tion of all of the finite-dimensional irreducible representations of UZ®(sly).
The proofs make use of several interesting new identities in Ugq(g).

0. INTRODUCTION

Let Uy(g) be the Drinfel’d-Jimbo quantum group associated to a symmetrizable
Kac-Moody algebra g. Thus, Uy,(g) is a Hopf algebra over the field C(g) of rational
functions of an indeterminate ¢, and is defined by certain generators and relations
(which are written down in Proposition 1.1 below for the cases of interest in this pa-
per). Roughly speaking, one thinks of U,(g) as a family of Hopf algebras depending
on a “parameter” ¢q. To make this precise, one constructs a “specialisation” U(g)
of Uy(g), for a non-zero complex number ¢, as follows. If € € C is transcendental,
define Uc(g) = Uq(g) ®¢(q) C, via the algebra homomorphism C(g) — C that takes ¢
to e. If, on the other hand, € is algebraic, the latter homomorphism does not exist,
and one proceeds by first constructing a Clq, ¢~ !]-form of U,(g), i.e. a C[g,q™']-
(Hopf) subalgebra U, (g) of U,(g) such that U,(g) = U,(g) ®c[q,-1] C(q). Then one
defines U,(g) = U,(g) ®clg,q-1] C, via the algebra homomorphism Clg,q~'] — C
that takes g to e.

Two such Clg, ¢~ !]-forms have been studied in the literature. They lead to the
same algebra U.(g) when € is not a root of unity, but different algebras, with very
different representation theories, when € is a root of unity.

In the “non-restricted” form, one takes U,(g) to be the C[q, ¢~ ']-subalgebra of
U,(g) generated by the Chevalley generators e;, f; of Uy(g). The finite-dimensional
representations of the non-restricted specialisation U.(g) have been studied by
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De Concini, Kac and Procesi [10], [11], when g is finite-dimensional, and by Beck
and Kac [2], when g is (untwisted) affine.

In the “restricted” form, one takes U, (g) to be the C[g, ¢~ ']-subalgebra of U,(g)
generated by the divided powers e} /[r],! and f7/[r],!, for all » > 0, where [r],! de-
notes a g-factorial. When g is finite-dimensional and € is a root of unity, the struc-
ture and representation theory of the restricted specialisation U(g) was worked
out by Lusztig (see [5], [15] and the references there). It is the purpose of the
present work to study the finite-dimensional representations of Ur*(g) when € is a
root of unity and g is (untwisted) affine.

Part of our work may be regarded as the quantum analogue of Garland’s pa-
per [13]. A crucial role is played in [13] by a certain identity (Lemma 7.5) that
is needed to prove a suitable triangular decomposition of the restricted form of
U(g) (analogous to U;*(g)). The proof of the analogue of Garland’s lemma in
the quantum case (Lemma 5.1) is, however, more difficult than in the classical sit-
uation because the generators of the “positive part” of U!**(g) do not commute,
whereas their classical analogues do commute. Moreover, Garland makes use of a
natural derivation of U(g) which turns out to have no straightforward analogue in
the quantum situation. Lemma 5.1 is one of several interesting new identities in
U,°() that we obtain below. One of these (see (19)) shows an unexpected (and as

yet unexplained) connection between Uées(glg) and Young diagrams. (This relation
is invisible in the classical situation considered by Garland.)

Once the triangular decomposition of Ur®(§) is available, we are able to give,
in Theorem 8.2, an abstract highest weight description of its finite-dimensional
irreducible representations. It turns out that there is a natural one-to-one cor-
respondence between the finite-dimensional irreducible representations of U!®(g)
when € is a root of unity, and those of U.(g) when € is not a root of unity, although
corresponding representations have different dimensions, in general (the represen-
tations of Ue(g) when € is not a root of unity were classified in [4], [5] and [6]).
This is exactly parallel to the situation for U*(g) when dim(g) < oo, where the
finite-dimensional irreducible representations are parametrised by dominant inte-
gral weights whether or not € is a root of unity (see [5], Chapter 11, and [15]).

One of the most important results about the finite-dimensional irreducible repre-
sentations V' of U**(g) when dim(g) < co and € is a root of unity of order ¢ asserts
that V factorises into the tensor product of a representation whose highest weight
is divisible by ¢ and one whose highest weight is “less than ¢”, in the sense that its
value on every simple coroot of g is less than ¢ (see [5] and [15]). In Section 9, we
prove an analogue of this result for U*(g) (Theorem 9.1).

It is well known that there is a close relationship between finite-dimensional
representations of quantum affine algebras and affine Toda theories (see [7] and the
references there). The value of € is determined by the “coupling constant” of the
associated theory. Since the representation theory of Ur°®(§) depends crucially on
whether € is a root of unity or not, one would expect that the structure of affine
Toda theories will be different at certain special values of the coupling constant.
This does indeed appear to be the case (T. J. Hollowood, private communication),
but we shall leave further discussion of this point to another place.
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1. PRELIMINARIES

In this section and the next, we recall certain facts about g and g and their
associated quantum groups that will be needed later. See [1], [5] and [15] for
further details.

Let (ai;)s,jer be the Cartan matrix of the finite-dimensional complex simple Lie
algebra g, let 1 = IT[{0}, and let (aij); jei be the generalised Cartan matrix of
the untwisted affine Lie algebra g of g. Let (d;) ;ei be the coprime positive integers
such that the matrix (d;a;;) ijel is symmetric.

Let P be the lattice over Z with basis (\;)ier, let &; = D icr ajili (j € I), and let
Q = > ,e;r Zdy C P. The root lattice Q = Homgz(P,Z) has basis the simple roots
(a;)ier of g, where a;(\;) = &;;. Similarly, the weight lattice P = Homgz(Q, Z)
has basis the fundamental weights (\;)ier of g, where \;(&;) = 6;;. Let PT =
{fAxeP | XMa)>0foralliecl}, andlet QT =3, Na.

For i € I, define s; : P — P by s;(x) =  — a;(z)d;, and let W be the group of
automorphisms of P generated by the s;. Then, W acts on Q by s;(£) = £ —&(é;)a,
for ¢ € . The root and coroot systems of g are given, respectively, by R =
Uies Wai, R = U;c; Wé. There is a partial order on R such that o < § if and
only if § — « is a linear combination of the «; (i € I) with non-negative integer
coefficients. The correspondence a; < &; extends to a W-invariant correspondence
R « R, written a « &, such that a(@) = 2 for all @ € R. Define s, : P — P by
sa(x) =2 — a(z )&, for all a € R.

Let W = W x P be the semi-direct product group defined using the W action on
P. For s € W write s for (s,0) € W, and for z € P write z for (1,x) € W, where 1
is the identity element of . Let 0 be the highest root of g with respect to <, and
write sq for (sg,0) € W. Let W be the (normal) subgroup of W generated by the
s;foriel,andlet T =W / W. Then, T is a finite group isomorphic to a subgroup
of the group of diagram automorphisms of g, i.e. the bijections 7 : I — I such
that r(i)r(j) = Gij for all 4,5 € I. Moreover, there is an 1som0rphlsm of groups
W = TxW, where the semi-direct product is defined using the action of 7 in W
given by 7.5; = s.(;) (see [1]). If w € W, a reduced expression for w is an expression

W= TS, Siy ... Si, With 7 € T, i1,i9,... i, € I angn minimal.
The unlversal envelopmg algebra U(g) (resp. U(g)) is the associative algebra
over C with generators € e h; for i € I (resp. i € I ) and defining relations

E E Ejﬁi, Eléi — _;tﬁl = :I:aijéi

where i, € I (vesp. i,j € I).
Let ¢ be an indeterminate, let C(q) be the field of rational functions of ¢ with
complex coefficients, and let Clg,¢~'] be the ring of Laurent polynomials. For
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r,n € N, n > r, define

iy = L1
gt
[n]g! = [n]q[n — 1], [2]4[1]g,

) > v -

for all n > 0. Let ¢; = ¢% for i € I.

Proposition 1.1. There is a Hopf algebra Uy(g) over C(q) which is generated as

an algebra by elements eli, kiil (i e f), with the following defining relations:

kit =k e =1, kiky = kjk,

k‘zej:k:l 1 =q aue:l:

7 70
ki — k!
t el =62
[ei ’ej]_(slﬂ Qz‘—qi_l’
1—(11’_7'
r 1_aij +\r_+/ +\1—a;;—r p o .
Z(_l) r (e7) € (i) =0 if i # j.
r=0 qi

The comultiplication of Uy(8) is given on generators by
Alef) = ef @k +1@e, Ale;) =e; @1+ k '®e;, Ak;) = ki®ks,

forie I.
Restricting the indices i,j to I, one obtains a Hopf algebra Uy(g).

Define Uq(g)i (resp. Uy(g)°) to be the C(q)-subalgebra of U,(g) generated by
the e (resp. by the k') for all i € I.

There is a natural injective homomorphism of C(g)-Hopf algebras Uy (g) — Uq(g)
that takes ejt to ejt and k; to k;, for all ¢ € I. In particular, any representation of
U,(§) can be regarded as a representation of U,(g).

It is convenient to use the following notation:
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Let T; (i € I) be the C(g)-algebra automorphisms of U, (§) defined by Lusztig
[15] (our notational conventions differ slightly from his):

Ti(ef) = —e; ki, Tile;) =~k el Ti(ky) =k, “kj,

—aij

Tief) = (1)~ (e )@ Def ()7 if i # j,
r=0
—aij

Tz(ej_) = Z(_1)r—a7:jq;“(ei—)(T)ej—(ei—)(—aij—r) if g 7& j.
r=0

If i € I, T; induces an automorphism of the subalgebra U,(g) of U, (g), also denoted
by T;.

There is, of course, a classical analogue T; of T} for all i € [ , given by the above
formulas with e; replaced by €; and k; replaced by 1, and with T;(h;) = hj — a;;h;.
The T'; are Hopf algebra automorphisms of U(g).

The finite group 7 acts as C(g)-Hopf algebra automorphisms of U, (g) by

T.eli = ef(i), T.ki = kri), forallie I.
Similarly, 7 acts as Hopf algebra automorphisms of U(§) by

T.éii = Ef(i), T.hi = ET(Z-), for all i € 1.

If w € W has a reduced expression w = 7s;, ...S$;, , let T, be the C(g)-algebra
automorphism of Ug,(g) given by To, = 7T;, ... T;,. Then, T, depends only on w,
and not on the choice of its reduced expression [1]. In particular, for any i € I,
we have a well defined C(g)-algebra automorphism T of U,(g). Similarly, one has
Hopf algebra automorphisms T;\i of U(§).

Let U*(g) (resp. Uj*(@)) be the Clg, ¢~ ']-subalgebra of Uy(g) (resp. U,(§))
generated by the k! and the (e)(") for all i € I, r € N (resp. for alli € I, r € N).
Then, U*(g) (resp. Ur*(§)) is a Clg, ¢~ ']-Hopf subalgebra of U,(g) (resp. Uy(§)).
Moreover, U;(g) (resp. U;*(g)) is preserved by the automorphism 7; for all i € I

(vesp. for all i € I). In fact [15], if i,j € I, n € N, then
Ti((e)™) = (—=1)"g; """ V() ™kE, Ti((ef)™) = (—1)"g" "k ()™,

Ti((eH)™) = Y (=1 mmag () Trma =D (ef) M (e it #
r=0
—Nnag;
Ty((e;)™) = > (1) g (e ) ey )™ (e )T it i # .
r=0
The action of 7" obviously preserves U,*(g).
Forre N, n e Z, i€ I, define

n—s+1 —1 —n+s—1
— ki g

ki; - kiqi
-

s=1

@ —q;°

The importance of these elements stems from the identity

min(r,s)
@) D) =S e [FETT e,

t=0
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for all 7,5 € N, i € I. Tt follows from this identity that [ki] € Ur*(g) for all
reNnezZ,iel.

Let qus(g)jE be the subalgebra of U;*(g) generated by the (eX)") for alli € I,
r €N, and let U}**(g)? be the subalgebra generated by the k! and the [*iin], for
allr € N, n € Z, i € I. Multiplication defines an isomorphism of C(g)-vector spaces

res — res 0 res res
UyS(g)” @ U;(9)" @ U (9)" — U;*(9).

The appropriate definitions of U(’;es(@)i and U;es(ﬁ)o will be given at the end of
Section 3.

Let ¢ be an odd integer with ¢ > 3, and assume that ¢ is not divisible by 3 if g
is of type G2. Let € € C be a primitive fth root of unity, and set

U(g) = Uy™(9) ®clqq- C, UZ*(@) = U7 (@) Ocjg,0-1) €,

via the algebra homomorphism C[g, ¢~ '] — C that takes ¢ to e. If z is any element
of Uy**(g) (resp. U;*(g)), we denote the corresponding element of Ur**(g) (resp.
Ures(g)) also by x.

Define U*(g)* and U*(g)° in the obvious way. It is known that U™(g)° is gen-
erated by the kiﬂ and the [kigo}, for ¢ € I. Multiplication defines an isomorphism
of C-vector spaces

Ui=(9)” @ Ur(9)° @ Ur(g) " — U(g).
Let Uf"(g) be the subalgebra of U®(g) generated by the e for i € I and U (g)°.
We shall make use of the characteristic zero Frobenius homomorphisms defined

by Lusztig (see [15], Chapter 35). Namely, there exist homomorphisms of Hopf
algebras

Fro: U(g) = U(g), Fre:U(g) —U(s)

such that, for ¢ € I,

if ¢ divides r,

0 otherwise,

and forief,

. . =t . .
Fr.(k;) = 1, Fre((ezi)(r)) _ {—(,,/Z)! if ¢ divides r,

0 otherwise.

To discuss finite-dimensional representations of U;*(g), or of its specialization
Ur*(g), it is advantageous to use another realization of Uy(§), due to Drinfel’d [12],
Beck [1] and Jing [14].

Theorem 1.2. There is an isomorphism of C(q)-Hopf algebras from Uy(§) to the
algebra with generators a:itr (Gel,re), k' iel), hi, (i €I, reZ\{0}) and
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12 and the following defining relations:
12 gre central,
kiki_l = ki_lki =1, M2 2 = 212 = 1,
kikj = kjki, kihj, = hj ki,
-1 _ :i:a” +
kix; £ k! T3,
1 c—c"
(hi,rs hj,S] = 6r7—s_[7aaij]qqz —1>
(3) 1
+ 7 _ Flr|/2,,.*
[hi,rvxj 3] - i;[?”a”] ; C Irl/ x] r4s7
+ + +a aij + + _ :i:a” + + :|: +
xi,r—i—lxj,s —4q; x] sL, ,r+1 7 q; €T; rxg s+1 j s+1xi,r7
(r—s)/2,,+ r—s)/2
+ — _6"0 /wi,r —C = )/ w1r+s
[xi,r7xj7s] = 0ij )
qi — qi
= + +  + + _ ey
Z Z |: ] Ty Tr) ST xiﬂ”w(k)xjvsxiﬂ“w(k+1) T xi7r7r(7n) =0, ifi#j,
TEX,m k=0 i
for all sequences of integers r1,... ,7m, where m =1 — a;;, Xy, 15 the symmetric

group on m letters, and the wfr are determined by equating powers of u in the
formal power series

o0 o0
Z z/firuir =kl exp <:|:(qi —q b Z hiisuiS) .
r=0 s=1

The isomorphism is given by
vh, = oi) TF (c),

2

where o : I — {1} is a map such that o(i) = —o(j) whenever a;; < 0 (it is clear
that there are exactly two possible choices for o).

The classical analogues of the generators m  and h; , are given by

Tt = o(i)TT;\i (&), EW = [ZF,, %)

i,r
The latter elements, together with a central element ¢, generate U(g) and ‘the

defining relations are obtained from those in 1.2 by interpreting c as ¢°, k; as qf o
;)FT (vesp. ;) as (gi — qi_l)hm if r > 0 (resp. if r < 0), and letting ¢ tend to one.
For each i € I, there is an injective homomorphism of C(g)-algebras ¢; :

U, (sl2) — Uy(@) that takes 7 to xfr and ¢F to wi for all r € Z (as usual,

we drop the (unique) Dynkin diagram subscript when dealing with Uq(SlQ)) (see
[1], Proposition 3.8). It follows immediately from 1.2 that U;fs(glg) is gener-
ated as a Clg, ¢~ ']-algebra by ¢*'/2, k*! and the (z})") for n € Z, r € N (for
e;{ =27 and ej = ¢ 'kaT,). Since the Ty, preserve UL*(g), it is also clear that
(z5,)") € Ures(g) foralli € I, n € Z, r € N. It follows that o; (U (sl2)) € UE(g),
and hence that ¢; induces a C-algebra homomorphism ¢; : Uérfs(slg) — Urs(g).
We have that T fixes ©i(Uy, (sl2)) pointwise if 4,5 € I, i # j ([1], Corollary 3.2).
We denote the obvious classical analogue of ¢; by @, : U(sla) — U(g).
Finally, we shall need the following automorphisms of Uy,(g)
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Proposition 1.3. (a) There exists a C(q)-algebra anti-automorphism @ of U,(g)
such that, for alli e I,r € Z,

(I)(‘:C:t ) = Jf$ (I)(Cl/2) = C_1/2a (I)(U)i:r) = 1/):‘: (I)(hlr) = hi,r-

(b) There exists a C-algebra and coalgebra anti-automorphism Q of U,(g) such
that Q(q) = ¢~ and, for alli € I,r € Z,

Qi) =aF_,, Qi) =9, Qhiy)=hi—r, Q) =c2

Moreover, € and ® each preserve U;CS(Q), commute with T, and we have, for all
iel,
T, =T,Q, oOT, =T,'®, Q=00

Proof. The existence of ® and €2 can be verified directly by using 1.2. It is obvious
that ® and £ commute with 7. The relations between 2, ® and T; are checked by
verifying agreement on the generators ej[, kj»[l (j € I) of U,(d), on which they are
given by

Det) = F, Dlky) = Ky,
Q(eji) =ef, Q)= kj_l.
These formulas obviously imply that ® and §2 preserve U;*(g). The fact that Q

is a coalgebra anti-automorphism can also be checked on the generators ef, k;ﬂ

(G el). O
2. REPRESENTATION THEORY OF U,

A representation V' of U,(g) is said to be of type I if, for all ¢ € I, k; acts
semisimply on V with eigenvalues in ¢#. Any finite-dimensional irreducible repre-
sentation of Uy(g) can be obtained from a type I representation by tensoring with
a one-dimensional representation that takes each e to zero and each k; to 1.

If A € P, the weight space V) of a representation V' of U,(g) is defined by

Vy = {UEV ‘ ki.v:qlmv},
where n; = A(&;). We have
eE VA C Vata,

A vector v in a type I representation V' of U,(g) is said to be a highest weight
vector if there exists A € P such that
+

veVy and efw=0 foralreN,iel.

If, in addition, V' = Uy(g).v, then V is said to be a highest weight representation
with highest weight .

For any A € P, there exists, up to isomorphism, a unique irreducible represen-
tation V/(\) of U,(g) with highest weight A\. We have

V) =PV,
759
Every finite-dimensional irreducible type I representation of U,(g) is isomorphic
to V(X) for some (unique) A € PT. The character of V()\), and in particular its
dimension, is the same as that of the irreducible representation V() of g with the
same highest weight A.
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Turning now to U,(g), we say that a representation V' of Uy(g) is type I if it
is type I as a representation of U,(g) and c'/? acts as one on V. A vector v in
a type I representation V' of U,(g) is said to be a highest weight vector if v is
annihilated by x;fr, and is an eigenvector of 1/)3;, forallt € I,r € Z. If, in addition,
V = U,(§).v, then V is said to be a highest weight representation of U,(g). One
shows by the usual Verma module arguments that, for any set of scalars \I’?,[r such
that \IITO\IJ: o = 1, there is an irreducible highest weight representation V' of Uq,(g)

with highest weight vector v such that z/fr.v = \I/frv for all ¢ € I,r € Z (compare
+
7,77

the proof of 7.3). Moreover, V' is uniquely determined by the scalars ¥
isomorphism.

up to

Theorem 2.1. The irreducible highest weight representation of Uy(g) determined
by the scalars \Ilitr is finite-dimensional if and only if there exist polynomials P; €

C(q)[u], fori € I, such that P;(0) # 0 and

w aer(r) Pilg; *u) <
Ur " = q,e p_ AU 'UJ_T’
;O ,T 3 Pl(u) T;O 1,—T
in the sense that the left- and right-hand sides are the Laurent expansions of the
middle term about u =0 and u = oo, respectively.

This is proved in [4], [5], [6] and [9]. From now on, we denote by II, the set
of polynomials P € C(g)[u] such that P(0) # 0, and by II} the set of I-tuples of
such polynomials. If P = (P;);c; € II!, we denote by V(P) the finite-dimensional
irreducible representation of U,(g) determined by P as in 2.1.

P = (P)icr, Q= (Qi)icr € Hé, define P ® Q = (P,Qi)icr- The following

result is proved in [9] (see 7.4 for the proof of an analogous result):

Proposition 2.2. Let P,Q € II}. If V(P) ® V(Q) is irreducible as a representa-
tion of Ug(8), then it is isomorphic to V(P ® Q).

We shall also need the classical analogue of 2.1. Let II be the set of polynomials
P € C[u] such that P(0) # 0, and let II? be the set of I-tuples of such polynomials.
Then, the classical analogue of 2.1 states that every finite-dimensional irreducible
representation V' of U(g) is generated by a vector v that is annihilated by ¢ and
the 7 . and such that EM.U = H,; ,v, where the scalars H; , € C satisfy

- Pl(u) < _ P/(u)
Hpu' = deg(P) —u"n | S Hy_ou " = uiid),
2, Pl 2 P

for some P = (P;);er € II!. We write V as V(P). The obvious classical analogue
of 2.2 holds.

Finite-dimensional irreducible representations of Uy(g) can be constructed ex-
plicitly when g = sla, by means of the following result. We take I = {0,1} when
g= SZQ.

Proposition 2.3. For any non-zero a € C(q), there is an algebra homomorphism
evq : Ug(sla) — Uy(sla) such that

(4) eva(ed) = ¢TlateT, eva(ko) = k71, eva(ey) = eF, eva(kr) = k.
Moreover, we have, for all v € Z,

(5) eva(x) =q "a"k"e", evy(x)=q "a"e k"
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See [4], Proposition 5.1, for the proof.
If V is a representation of U,(slz), we denote by V, the “evaluation represen-

tation” of U,(slz) obtained by pulling back V by ev,. Let V(n) be the (n 4 1)-
dimensional irreducible type I representation of U,(sls).

Proposition 2.4. Let r,n1,... ,n, € N, and let a1,... ,a, € C(q) be non-zero.
Then, the tensor product

V(nl)al R ® V(nr)ar
is irreducible as a representation of Uq(SAlQ) if and only if, for all 1 < s#t<r,
as/a; # qi("s+"‘_2p) for all 0 < p < min(ng, n¢).

This is proved by exactly the same argument as Theorem 5.8 in [4].
It is easy to compute that V(n), = V(P,,q), where

(6) Pua(u) =[] (1= ag" ")

m=1

(see [4], Corollary 4.2). It follows from 2.2 that, when the conditions in 2.4 are
satisfied,

V(n)a, @ @V (ny)e, 2 V(P),

where P =[[._, P, a.-
The classical analogues of the homomorphisms ev, exist for all g. They are the
homomorphisms &v, : U(g) — U(g), defined for any non-zero a € C, such that

+

Va(er) = a¥ef, wa(ef) =eF, walho) = —0, wa(hs) = hi,

i
for ¢ € I. Here, Eét are root vectors corresponding to 6, normalised so that
[e;,€,] = 0. Evaluation representations V, of U(g) are defined in the obvious way.

Using this construction, one can describe explicitly the representation V (P) for all
P eIl

Theorem 2.5. Let P = (P,);c; € 1Y, and let {a7*,a5",... ,a; '} be the union of
the set of roots of P; for all i € I. Write

T

P;(u) = (const.) H(1 — agu)ms

s=1
for some integers n; s > 0, and let ps = Ziel nisA\i € PT. Then,
V(P) = V(:ul)tn & V(/LZ)aQ R ® V(,ur)ar-

Conversely, if pi, iz, - .. s fir € P+_and ai,as, ... ,a. € C are non-zero, the tensor
product V(u1)a, @ V(1u2)a, ® - @ V(y)a, is irreducible as a representation of § if
and only if ay,as, ... ,a, are distinct.

Proof. By using the methods in [3], one shows that every finite-dimensional irre-
ducible representation of U(g) is isomorphic to a tensor product

V(.Ul)al & V(N2)a2 D V(.Ur)ar
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for some 1, pia, ... , ptr € PT and non-zero ay,as,...,a, € C, and that the con-
dition for irreducibility of such a tensor product is as stated in 2.5. By the clas-
sical analogue of 2.2, it therefore suffices to prove that the I-tuple of polynomi-
als (P;)ier associated to V(js),. is given (up to non-zero constant multiples) by
P;(u) = (1 — asu)™=. This is a straightforward computation. |

3. SOME IDENTITIES

In this section we establish certain identities in Uq(sAlg) that will be needed later.
By applying the homomorphisms ¢; : Uy, (§lg) — Uq4(@) defined in Section 1, one
obtains corresponding identities in Ug(g). As usual, we drop the subscript ¢ € I
when g = sls.

Definition 3.1. Set Py = 1 and define P, € Uq(glg)o by induction on n € N using
the formula

_p-1 2
— +
Po= == D W Pur

r=1
Define P_,, = Q(P,).

Definition 3.1 can be conveniently reformulated by introducing the following
elements of the algebra Ug(sl2)[[u]] of formal power series in an indeterminate u
with coefficients in Ug(slz):

Tt (u) = Z viu®, PEu) = Z Pyu™.
n=0 n=0

Then, 3.1 is equivalent to

P (q™%u)

7 U (u) = K+

@ (u) = k1 T

as one sees in the case of the upper sign by multiplying both sides of (7) by P (u)
and equating coefficients of 4™ (and in the case of the lower sign by applying ).

Lemma 3.2. For all n € N, we have

n

1 '
P=--S Ly

rPn—r~
n- [rlq

Proof. We first prove that

(8) P*(u) = [ exp (_ qm‘”””) .



QUANTUM AFFINE ALGEBRAS AT ROOTS OF UNITY 291

For this, it suffices to prove that if we substitute this formula for Pt into the
right-hand side of (7), then (7) is satisfied:

P e ()
o ()
q
=/€eXp<q—q Zhnu )

o'} “"hau™
P ) kH":1eXp(‘q )

which equals ¥ (u) by 1.2.
Differentiating both sides of the equation

log Pt (u i qnh"u

with respect to u now gives

(P _ 5 ndho

YPrw) &= T

Multiplying both sides of this equation by P*(u) and then equating coefficients of
u” gives the identity in 3.2. O

Remark. The identity (8) is equivalent to

k}17k12,k3...
rk,=n

for n > 0.
We now study certain commutation formulas between the P, and the x;-.
Lemma 3.3. Letn € N, r € Z. We have
Poxf = 2t Py — (¢ + D) Pt + P2 o Pas
(if n = 1, the last term on the right-hand side is omitted).
Remark. One can obtain a similar formula for n < 0 by applying €2 to both sides.

Proof of 3.3. We proceed by induction on n. If n = 0, there is nothing to prove,
and if n = 1, the identity follows from

Pl == _qh17 [h’lv ] [2]413:_4-1
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Assume then that n > 2 and that the result is known for smaller values of n.
Then we have, by 3.2,

3
L
3

SRS
B
S| 3

[Pna (E;j—] [hmPn—m7 l':_]

3 3
Ll
3

q
m]q

[2 ]Q+ P

r+m

[
|
3=
(]
SE

3 3
Il
[S—

h { q+1 r+1Pﬂm1+qxr+2Pn m—Z}

MH

]

by the induction hypothesis. So

m=1

n—1

m 2m +
[Pn,ili Z q r+mP
12 [2m]
- Z " [m]qq {@ + D21 Paomet = @0 Paom—2}
+ X 2+1)n_1 M4 b P
—\q r midn—m-—1
n el [m]q i
n—1
1 mqm+2
- — hon P
n [m]q ez ?

If m > 3, the expression which right-multiplies z;" +m On the right-hand side of the
last equation is

1 m%_ m—1/ 2 [2m_2]¢1 m[2m_4]q _
A = R T LS

while the expression which right-multiplies ;v;"ﬂ is, by 3.2,

n

n—m-—1

(n—l)

, .
——(¢* + 1) Po- 1+ (¢°+1) Z

1
=@+ )P - (¢ + Py = —(¢* +1)Poy,

and the expression which right-multiplies x:' Lo ls

n—2
1, [4]q 1 mg™t? L5 2
——q _Pn—2__ h an2+ (q +1)Pn—2
n- (2 n mZ::l [mlq
2 n—2
= ﬁqun_2 + _( )qun—Q = q2Pn—2'
This completes the inductive step, and the proof of 3.3. O

Lemma 3.4. Let r € Z, n € N. We have

n
P, = Z q"m 4 1 Poemz, .
m=0
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The proof is similar to that of 3.3. We omit the details.
We shall also need the following result, which is easily deduced from the r» = 0
case of 3.4:

Lemma 3.5. Let n,r € N. Then,

(@) P =3 g™ttt gy 1] fma + 1],

+ .t +
My 4 1]q Py —mo— o —m, Lo Ty - Ty,
where the sum is over those non-negative integers mi, mo, ... ,m, such that my +

mo+---+mp <n.

Let U2**(g)* be the C[g, ¢~']-subalgebras of U,(g) generated by the (x?;)(") for
all i € I, r € Z, n € N, and let U}**(§)° be the C[g, ¢ ']-subalgebra of U,(d)
generated by U}*(g)° and the P;, = ¢;(P,) for all i € I, r € Z. Note that, by (9),
Urs(g)? is also generated by Ur**(g)? and the hy,/[r]q, for all i € I, r € Z\{0}.
Since, by 1.2, (z7 )(") is equal, up to a sign, to a power of T  applied to (e £y,
it is obvious that Urs(g)* c Urs(g). That Ur*(g)° C U;es( ) will be proved in
Section 5 (see 5.2).

4. MORE IDENTITIES

Let & be an indeterminate, and form the polynomial algebra C(q)[¢] over C(q).
Define the following elements of the algebra Uy (sl2)[[u]]:

T(u) = fo{u", X (u) = Zx;+lu”.
n=0 n=0
Let
D*(u) : C(q)[€] — Uy(sl2)|[ul]
be the unique homomorphisms of C(g)-algebras such that

D*(u)(€) = X* (u).
Writing

o0
E(u) = Z DEun,
n=0

the homomorphism property of D* (u) is equivalent to

Di(fg) =Y Di(f)Di_.(9)

m=0

for all f,g € C(¢)[¢]. The C(q)-linear maps DE : C(q)[¢] — U,(sl2)* are uniquely
determined by this relation, together with

‘DTJ;,_(&-) = sz_a Dr: (5) - xn+17 D%(l) = 6n,0~

Proposition 4.1. Let r,n € N. Writing £ for €7 /[r],!, we have:

(a) ¢+, Zq )
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(b) (n+7]gDy (€7 = g7 n —t+1],D; (€7 )2,y
t=0

Let T' be the C(g)-algebra automorphism 75, of U,(sla) defined in Section 1; we
have

T(xrjlt) = _xrjz::FD T('@[Jrjf) = ?1[7 T(Cl/2) =cl/?

for all n € N.

Proposition 4.2. Let r,n > 1. Then,
r—1

DF(EM) =Y (-1 @) D (€0 )) + ¢ TVTDE L (€),

s=1
the last term being present if and only if r < n.
The main tool for proving these identities is the next lemma. Let Uq(§12)++ be

the C(q)-subalgebra of U,(sly) generated by the 7t for all n > 0. It follows from
the Poincaré-Birkhoff-Witt basis of U, (sly) given in [1], Proposition 6.1, that

{(@) ()™ (@)™ (20) ™ b 20,50,81 5018020

is a C(q)-basis of Uy(sly)tT. An element x € U, (slo)* is said to have degree r > 1
if 7 is a linear combination of monomials (x;})% (zf_,)*n=1 ... (21)* (zg)% with
So+...+t8, =T

Lemma 4 3. Letr > 1 andletx € Uq(512)++ have degree r. Suppose that x acts as
zero on v € V(1) @V (1), ® - @V (1),, for all non-zero ay, as, ... ,a, € C(q).
Then, z = 0.

Proof of 4.3. We proceed by induction on r. If r = 1, then

oo
T = E Azt
n=0

with all but finitely many coefficients A,, € C(¢) being zero. Using the formulas in
Section 2 we have, in V(1),,

T.0] = (i )\na"> V)
n=0

This can vanish for all non-zero a € C(q) only if A\, = 0 for all n.
Now assume the result for € U,(sl2)™" of degree < r, and consider

(10) sz)\(so,sl,... ysn) (D)o (e ),

where the sum is over those sg, s1,... > 0 such that )" s, = r, and all but finitely
many A(sg, $1,...) € C(q) are zero. Let N be the maximum value of n that occurs
n (10), i.e

N = max{n | there exists sq,..., S, with X(so,...,s,) # 0},

and consider the action of  on V(1),, ® V, where V.= V(1)g, ® -+ @ V(1),,..
Clearly,

Xr __ R
zvy" =F(a1,a2,...,a:)v5 ",
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where F(aj,az,...,a,) is a polynomial in aq,as,... ,a, with coefficients in C(q)
whose degree in a; is < N. We are going to identify the terms in F'(a1,aq,... ,a,)
that involve alY. Since  acts as zero on v{", the coefficient of a) must actually be
zZero.

Let X* be the linear subspace of U, (sly) spanned (over C(g)) by the z for all
n € Z. By Proposition 5.4 in [4], if n > 0, we have

Alh) =Y ah oyl +1ez] modulo Uy(sle)(X1)? @ Uy(sla) X~
m=0

Since (XT)? annihilates V(1),, for all ay, it follows that z; acts on V(1),, ® V as
S xh@W_ +1@a;. Tt is now clear that terms involving af in z.(v; ®vP" ™)

can arise only from the part

(11) > A0, SN)A@R) N A((@h )N () ™)

505-3SN

of A(x), and in (11) only from the terms in which z}; occurs in the first factor in
the tensor product (note that if a square or higher power of x} occurs in the first
factor of the tensor product, the corresponding term acts as zero on v; ® U?T_l).
Since

) hekriee =Y a0 |} @hre @
=0 q
the coefficient of af¥ in z.v{" is therefore
Z M50, -+ SN)EN Hsnlgg 2N T o @ (2 ) N T @ ) ()00 P
805--4SN
=q"v ® Z GV [sN]gA(80, - - sn) (@) T e )t (ad ) P
S04+++ SN

Thus, if = acts as zero on v{", this last expression must vanish, so by the induction
hypothesis,

Do a [swleMso, o sn) @)Y T @k ) ) =0,
805--- SN

By [1], Proposition 6.1, this forces all the coefficients A(sg, ... ,sn) to vanish. But

this contradicts the assumption that zx does occur on the right-hand side of (10).
O

We shall also need the computations contained in the next two lemmas.

Lemma 4.4. Let r > s > 1, and let a1,...,a, € C(q) be non-zero. Then, in

V(1)a, ® - @V (1)g,, we have

(13) () (X ()T 0f" = fo (a1, ... anu)odT,

where

fs,r(alv cee sy Qg U)

1 . r—t
= (—1)* [ } ¢TE (ar,. .. an)ul
(I —awu)--- (1 —aru) = s—t,
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and E(ay, ... ,a,) is the tt" elementary symmetric function of ay, ... ,a,, i.e.

Ei(ay, ... a.) = Z Ay Ay« Oy -

1<ri<re<---<r{<r

Proof. Tt is clear that (13) holds with some scalars f, (a1, ... ,ar; u) that are formal
power series in v with coefficients in C(q). We can derive an inductive formula for
them as follows.

Working in V(1)g, ® V(1)g, ® - - ® V(1),, we have, by (12) and the fact that
V(1),, is annihilated by (X*)2,

() DX+ (W) f = (1@ () +¢" 1 ® (@) CTIRAT () (01 @ oY),

Arguing as in the proof of 4.3, we see that X (u) acts on V (1), @ V as X*(u) @
Ut (u)+1® XT(u). Hence,

(:E(—Ji-)(s)X-i- (u)r—s'v@)r

(14) =xt (u).wg @ ( (s) <Z X+ X+( )r—s—t—1> wi@)r—l
+ ¢ e @ k(zd) STV T (u) S0P
=A+ B,
say. Clearly,
B=q" " fs1,-1(az,...,ar;u)vd".

To evaluate A, we first show that, for r > 1,

(15)
ZX+ (w) Xt (u)"~
=q"[r+ 1),k X (W) — (¢ — ¢ Vg X (w)™ modulo U, (sla)X ~[[u]].

The proof is by induction on r. If r = 1, we have

Ut(y 1
2 )] =
SO
UH ()Xt (u) = (¢ — ¢ )X (wag XF(u) = (¢ — ¢ ag XF () + k71X (u)
o _ Ut (u) — k=t
— (0o ) (A - )
—(g—q Hrg XT(w)?* + k71X ().

Hence,

U ()X (u) + X ()T (u)
= 2k X () = (¢ — ¢ Nag X (w)? + (¢ — ¢~ )X (u)’ag
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proving (15) when r = 1. Assume now that (15) is known for some r > 1. Then,
r+1

Zx+ X+( )T—t+1

Z X+( )r—t + \I/+(u)X+(u)T+1
=0
= X" (u) qr[r + 1)k X (W) — (g — ¢ Hag X (w)™h)
+ Ut ()Xt (w) T modulo U, (sla)X ~[[u]]
= ¢ 2+ kT X (W) = (g —q7Hag XF(u) + U (w) — k7 H AT (u)
+ Ut (w)XF (w)F modulo U, (sla)X ~[[u]]
=q" T r+ 27X (W)™ — (¢ — ¢y X (w)" T modulo Uq(sAlg)X_[[u]],

completing the inductive step.
Thus,

A=XT(u)
® () (¢ r = slgk T AT ()T = (g — g g A () 0)0f
Now, by the formulas in 2.3, we have, in V (1),,,

Zu ot = Zalu 0=
Moreover, an easy mductlon on s shows that
(¢ —a (@), 25] = (¢ — ¢ k) (af) .

Using these results, we get

(1 _ alu)A =0 ® (qr—s—1+2(r—s—1)—2(r—l)[T _ S]q($3_)(s)-)(+ (u)r—s—l
_(q—s+1+r—1 _ qs—l—r+1)(x8-)(s—l)X+(u)r—s—l) 'Ui@r_l
— (qs[r — 8lgfsr—1(az, ... ar;u) = (¢"° —q¢ ") fom1r—1(ag, ... ,ar; u)) ’Ugbr.

Inserting these values of A and B into (14) gives

q—r—i-s _ qr—salu
for(ar, ... ap;u) = ( fsm1r—1(az, ... ar;u)

1—aiu

(16)
+ qs[r - S]qfs,r—l(a% ce ,CLT;’U,).
This identity clearly determines the fs,, by induction on 7, in terms of fy; and
f1,1. It therefore suffices to prove that the formula for f,, in the statement of the
lemma satisfies (16) and is correct when r = 1.
Correctness for r = 1 is trivially checked. To verify (16), we must show that
S

S 72 ot - Z e an
q

t=0

|
—

S

—r—+s T—S8 r—s - t - 1
= (¢ — ¢"Paiu) (—l)tqt( ) [; e 1] Eilag, ... a.)u’.
t q

i
=]
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Thus, equating coefficients of u’, we are reduced to proving that

—t st |T—t—1
{Z_t]q&(al,...,ar)—q t[rs_t Lgt(ag,...,ar)

Cras|T—t—1 r—t
=q + |: :l St(a2,...,ar)+[s_t} Cngt_l(aQ,...
q

Since

Eilar, ... ar) =a1&—1(ag, ... ,a.) + E(az, ... ,a.),

r—t st |rT—t—=1|  _is|r—t—1
[s—t} q [ s—t } =4 [s—t—l} ‘
q q q

This identity is easily checked.

this reduces to

|

Lemma 4.5. Let r > 1 and let aq, ... ,a,. € C(q) be non-zero. Then, in V (1), ®

@V (1),,, we have
T(D*F(u)(€™) " =ay...a, DH(EM) P
Proof. Assume that, for all 1 < s #t <r, as/a; ¢ ¢*. Then,
V=V1)s ® -0V(1)a,

is an irreducible highest weight representation of Uy (sl3) (see [9]). Let p : Uy(sly) —
End(V') denote the action. Then, p o T is another irreducible representation of
U, (sl2), and since T takes U,(sla)™ to itself and fixes Uq(é‘:lg)o pointwise, po T is
highest weight with the same highest weight as p. Hence, p o T' is equivalent to p,

i.e. there exists F' € GL(V') such that
F(zw) =T(z).F(v) forall z € Uy(sly), veV.
We might as well assume that F(vy") = v§". Then,
F(f") = cvf”

for some non-zero ¢ € C(q). We proceed to compute c.
Using (12), we have
() 0P = (o @k +1@xd) 0F"
=" r]g(2g @ (xg) " k). (v @ 0" T)
= [rlgu1 ® (a§) " Hof T,
and hence by iteration,
(2g) ) f" = 0"

Similarly,
(25) ") 0" = v,
Hence,
o = ()" = T(ap) O F (") = F((a7) ).
Obviously,

(a1)g" = o,
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for some ¢’ € C(g). To compute ¢, apply (7)) to both sides of the last equation
and use Proposition 3.5 in [4]:

& = (=1)"q"" Pk g
= (=1)" x (coefficient of u" in (1 —ayu)... (1 — a,u))vy"
=(ay... ar)vgbr,
where the second equality used (6). Hence, ¢ =a; ...a, and
v = (ay...a,)F(0P") = (a1 ...a.)cvd",
soc=(ay...a;)" L.
Finally,

But Dt (u)(¢0)).0" is obviously a scalar multiple of v§", and so is fixed by F.
Hence,

T(D* (u)(€M))-0f" = (a1 ar) D () (€70,

as claimed.

Although we have proved this relation only under the assumption that a,/a; ¢ ¢*
for all s # t, it is clear that both sides are polynomials in aq,... ,a,, so it must
hold identically. |

We are finally in a position to prove 4.1 and 4.2.

Proof of 4.1. By equating coefficients of 4™ on both sides, the identity in part (a)
is easily seen to be equivalent to

[r]g(XF (¢*u) — XF (u) D (u) (€)= ¢~ HDF (¢*u)(€") — D (u)(€7)),
or, since DV (u)(€7) = X+ (u)", to
(17) [l (W)X (u)" ™ — g7 r = X ()" = ¢ 71X (¢%u)".

Now (17) holds trivially if » = 1, and we claim that it follows for all r if it holds for
r = 2. Indeed, assuming that r > 3 and that the result is known for r — 1, we get
¢ AT (Pu)" = X (Pu)([r = X ()X (u) 7 = g r = 20X ()7
= qr — Yo XF (¢*u)?XF (u)" 72 = [r — 2] X" (¢*u) X F (u)

= [r = g (21X ()X (u) — g~ X (w)) AT ()2
= [r = 20X ()X (u) !
= [rgX T (Pw) X (w) ™ — g7 r = 1 X (u)",

where the penultimate equality is from the r = 2 case.
Thus, it suffices to prove that

(18) 20X (Pu)X T (u) — ¢ AT (u)? = ¢ X (¢Pu)’.
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By 4.3, it is enough to prove that both sides of (18) act in the same way on
v1®v1 € V(1)q,®V (1)4,, for all non-zero a1, as € C(g). Recalling that

A(XF () = XF ()20 (u) + 10X T (u) modulo (U (sla)(XT)2@U,(sl2) X 7)[[u]],
and noting that, in V'(1),,

1 —qg lau — qau
vo, U (u).wy = 4—q au g  —qgqau
1—au

X+ (u).vl =
by the formulas in 2.3, we have
[2]qX+(q2U)X+(U)-(U1®Ul)
2] (X+ qQU) © UH(*u) X (u) + X (u)@X ™ (¢Pu) ¥ (u)) (11@01)

q — qasu 1 1 g ' — qasu 1
+ 3 V1 X1
1—qa1u1—qa2u1—a2u 1l—asu 1—asu 1-—g%asu
gt
( 1 —q2ayu)( 1 — q2agu) + (1—aju)(1— agu)> V11,

g "X (u)? (v1001)

AT ()T T (w) X (u) + X (w)@X T ()T (u)) . (v1®v1)

1

1 —qglasu 1 1 1 1 — qasu
_ q—l q—dq 2 i q qasz 01®0;
l—aiu 1—asu 1—asu 1—ajul—asu 1—asu

_ q 2],
(1= au)(1 — azu)
and hence

V1801,

q[2]q
(1= ¢*a1u)(1 — ¢*azu)
It is now clear that the two sides of (18) agree in their action on v1®u1, for all
a1, az. This proves part (a).
The identity in part (b) can be converted into an equivalent identity for D by
using

g X (Pu)?.(v1®@v1) = v1QU].

D, =-To®oD},

and this identity can then be proved by an argument similar to that used for part
(a). We omit the details. |

Proof of 4.2. Multiplying both sides by v™ and summing from n = 0 to co, we see
that the identity to be proved is equivalent to

r—1

() = 31D @) (@) = (@) )

s=1
DT @) 0) + ()
As in the proof of 4.1, we compute the action of both sides on

0" €V(1)g,® - @V (1)a,,
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for arbitrary non-zero aq,...,a, € C(q). Using 4.4 and 4.5, we see that it suffices
to prove that

1
(1-au)...(1 —aru)

r—1 s

M

s+t+l s(r 1)+t(r—s)
s —

—t
Ea, ..., a.)ut
(1 B alu) (1 —aru) = t:O t] a '

r(r—1) T
q ai ...apu
+ s s(r 1) |: :| + +1,
Z s], (1—au)...(1-au)
ie., after using the identity (1),
0=¢""Vay...a,u" — (-1)¢" " V(1 —au)...(1 —a,u) — 1

r—1 s

s sr r—s r—t
+ZZ +t+1 1)+t(r—s) [S—t] Eas, ... 7ar)ut.
q

s=1t=0

The constant term on the right-hand side vanishes by identity (1) again, and the
coefficient of u” obviously vanishes. If 0 < t < r, the coefficient of u! on the
right-hand side is

r—1
T r(r— S S T— T—S t
<(_1) HALr(r=1) +Z(_1) 41 s(r—1)+t(r—s) [S _4 >Et(a,1,... Q)
s=t q

r—t
3 o [r—t

= (_1)Pqp(r 1) |:Tp :| (‘:t(al,... 7ar)7
p=0 q

which vanishes by identity (1) once again. |
The following corollary of 4.2 will be needed later.
Corollary 4.6. Let r,n > 1. Then,

D (M) Zu (50,51, ) (@) ()0

where the sum is over those mon-negative integers sg, s1,... such that Zt St =71
and Y, ts; = n, and the coefficients p(so, s1,...) € Clg, ¢ ). In particular, the
coefficient of (x;7)") in D} (€M) is g (=1,

Proof. The first part is immediate from 4.2. The second part follows by induction
on 7, noting that the term involving (7)) can arise only from the second term
on the right-hand side of the formula for Dj, (£€(") given in 4.2. O

Remark. Tt is possible to deduce an exact formula for D; (¢€(7)) from 4.2, namely

(19)  DHED) = g3 f @I (@) ) (o )0 ()2

Here, the sum is over all sequences 7 : r1, 72, ... of non-negative integers such that
1+ 2ro4+3rs+---=nand ry + 12+ --- < r. To such a sequence we associate
a Young diagram which has r; rows of length 1, ro rows of length 2, etc., so that
l(m) =71+ 72+ - is the total number of rows, and define f(m) to be the sum of
the products of the lengths of adjacent columns. For example, if 7 is the sequence
2,1,3,1,0,0,..., the associated Young diagram has columns of length 7, 5, 4 and
1,sothat () =7, f(r) =7x5+5x4+4x1=59.
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To prove the formula (19), one observes that 4.2 clearly determines D;f (¢(")), by
induction on n for fixed r, and then by induction on r. Thus, it suffices to prove
that (19) is correct when r = 1, which is clear, and that if we define D; (£(") by
the right-hand side of (19), then the identity in 4.2 is satisfied. We omit the details
as we shall not make use of (19) in the sequel.

We conclude this section with the following result, which will be needed in Section
6.

Proposition 4.7. For all r € N,n € Z, we have

1 r r— r res( .
(e ) e e ol ) € U )
q

Proof. For r € N,n € Z, define elements A, , € Uq(glz) inductively by
(20) AO,TL = (E+ Ar,n = Ar—l,nxg_ - qZTxE)FAr—Lna

n?

and let
By = Z(xg')szz:j{ (zg)r_s-
We shall prove the following identities:

A - By s
21 (AL —1)8 r(r—s+1)(,.+ (s)T r—s,n—r—1
( ) [T’+1] | g( ) q (‘T’l ) [T—S+1]q! )

(22)

r—s)(s r—s Asn
r+1 Zq ) )[

s+ 1],!

The statement in the proposition for n > 0 follows from these identities by induction
on n. Indeed, the result is trivial if n = 0, since B,.o/[r41],! = (z§)" ™. Assuming
that B, ,,/[r + 1]4! € U;I“’S(SAIZ)"r for all » € N, m < n, it follows from (21) that
Arn/lr+1]4! € U;es(§12)+ for all r € N, and then from (22) that B, /[r + 1], €
Uies(slz)*.

Note that (21) can be written in the form

r
Arn =Y ersl@f )zl (@),
s=0

where

S

_ et [T
e =3 (-1 [t -

t=0

Comparing coefficients of (z7 )%z}, (z])"~* on both sides of the second equation

n (20), we see using (3) that (21) follows from
Cr,s = q2rcr—1,s —Cr—1,5—1-

This is an easy consequence of the identity

r+1| _ 4|r t—rt1 r
SRR R
q q q
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To prove (22), we proceed by induction on r. If r = 0, the result is trivial.
Assume now that (22) holds for all smaller values of r and all n. Then,

Brn _ (zg) 2} + Bro1nwg
[r+ 14! o [r+1]4!

r—1
_ 1 +\7r, .+ | (r—s—1)(s+1) (. +\(r—s—1) AS," +
B [T‘ + 1]q! <(x0 ) ot [T]q' (;q ($0 ) [S + 1]q! o

r—1
1 A
— +\7r, .+ ! (r—s—1)(s+1)+2s+2 .+ (,.+\(r—s—1) s,
[T‘ + 1]q' <($O ) xn + [T]q SZ:(:JQ x() ('T’O ) [S + 1]q'

r—1
Ast
+[r! (r—s—1)(s+1) ot (r—s—1) “s+1,n ’
Hq ;Jq (O) [S+1]q'
using the inductive relation
As,nxg_ - q2s+2$3_As,n = As+1,n-

(r—s)

Comparing coefficients of ()
show that

q(r—s)(s-i—l)[,r, + 1]q — q(r—s—l)(s+l)+2s+2[r _ S]q + q(r—s)s[s + 1]q

%, we see that to prove (22) it is enough to
o

This identity is easily checked.
This completes the proof of 4.7 for n > 0. The statement for n < 0 follows from
this by applying ®€. O

5. THE BASIC LEMMA

In this section, we prove the following result which is central to the whole paper.
We work in Uy (sl2).
If z € Uy(sly), let L, : Uy(sly) — U,(sla) be left multiplication by 2. Define

D, =Lp, D +Lp, ,Df +---+ Lp,D;.

Lemma 5.1. Let r,s € N. The following identity holds in Uq(sAlg):

min(r,s)
(@)@ = Y > (D' TIDL (ECT)R D, (€07Y).
t=0 m+n=t
m,n>0
Remarks. 1. By applying © and/or powers of T' to both sides, analogous identities
can be obtained for (z;)") (z;)®) whenever m 4+n = +1. (The case m +n = 0
can be deduced similarly from equation (2).)

2. Lemma 5.1 is the quantum analogue of Lemma 7.5 in [9]. The classical result
is much easier, however, because there the x;7 commute among themselves, as do
the z,, . In addition, one has the relation
(D))"

n!

Dy =
classically, whereas in the quantum case this equation does not even make sense.
Before proving 5.1, we note the following important corollary.

Corollary 5.2. For alln € N,
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(i)n DE(EM) € Urs(sly) for all 7 € N;
(il)n P € UIS(sls).
Of course, it follows from part (ii), 1.3 and 3.1 that P, € U;CS(SAZQ) for all n < 0.

Proof. We prove both statements simultaneously by induction on n, according to

the following scheme:
O = ({H)" = 0",

where (i)" is the statement that (i),, holds for all m < n, and similarly for (ii)".
Assume that (i)" holds. Applying 5.1, we see that

—\(n n_—n%1n
(@)™ (@)™ = (=1)"¢ " K" Py +y,

where y is a sum of terms already known to belong to U;CS(SAZQ) by the induction
hypothesis (i)” and (i) "
Now assume that (ii)"” holds. Applying 5.1 again, we get

(a) " (@)™ = (=1)g IR DY (X)) + 2,
where z is a sum of terms which are already known to belong to Uées(glg) by the

induction hypothesis (i)" and (ii)". Hence, D; (£")) € Ur*(sls) for all 7 € N. The
result for D follows, since

D, =-Todo D:,
and T and ® preserve U;CS(§ZQ). |

Lemma 5.1 is a consequence of the next lemma.

Lemma 5.3. Let n,r € N. The following identity holds in Uq(SAZQ).'

n+1
Dn(g(r))xl_ =—¢ """ [n+1]gkDpys (g(r_l)) + Z qm_l[m]qx;Dn—m-H(g(r))'

m=1

We complete the proof of 5.1, assuming 5.3. We proceed by induction on s, the
case s = 0 being trivial. By the induction hypothesis and 5.3, we have

[+ g () (a1) o+ = Y (DD (TR DET )y

— (_l)tq—t(r-i-s—t)D;L({(s—t))kt

"+ 1]gkDy (€07Y)

X
—N—

=1

n+1
+> ql_l[l]qwz—Dn—Hl(i(r_“)}
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Looking at the expression which left-multiplies Dn(f(T_t)), we see that we are re-
duced to proving that

[S-i— 1]th__n(€(S+l_t))q_t(r+s+1_t) — D~ (f(s+1_t))q_(t_l)(r+s+1_t)_n_r+t[’n]q

t—mn

=+ ZD;(é-(S_t))[t —v—n+ 1] —Hrte—t)—t—v= ";th_ v—n+1
or, on simplifying, that
[S—TL-’-l]th_ S+l t Zq_vt_v_n+1]D (5( ))xt v—n+1-*

After suitably re-labelling the indices, one sees that this is equivalent to the identity
in 4.1(b).
To complete the proof of 5.1, we are thus reduced to giving the

Proof of 5.3. We proceed by induction on r. When r = 0, the identity becomes
n+1

Pray = Z g™ g, Paoma.

This follows from 2.4 (take r = 1 in 3.4 and apply ® to both sides, noting that
®(P,) = P, for all n € Z).
Assuming the result for r, we have

(23)
[r+ 1D (€7 )y = Z Lp, Dy 667y
= Z mel n—m—l(g(T))xl_
m+Ii<n
m,1>0

o [ParfIDY L, () > @ Dy (€7

m+Ii<n =0
m,1>0
= Z (q2$l—:-2pm—2 - (q2 + 1)xﬁ1Pm—l)D:—m—l(f(r))$1_
m+Ii>n
m,1>0

+D i { — " — L+ 1]k Dy 141 (€77Y)
=0
n—I+1

+ Z qs_l[S]qxs_Dn—l—s+l(§(T))}a

s=1
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on using 3.3 and the induction hypothesis. The first term on the right-hand side of
(23) is equal to

n—2 n—1
¢ o Daia(€)ar — (@@ + 1) Dy D (€7)ay
=0 =0

n—2
=" i { — g ] 1] kD (60Y)
=0

n—l—1

+_Zq qunlml(é-()}

m=

—

n—1
— @+ 7, { — g7 = kD, (€0Y)
=0
n—l1
+> qm-l[m]qun_l_m@“w} 7
m=1

on using the induction hypothesis again.
We now distinguish two types of term on the right-hand side of (23):

(a) The term involving x} kDy,_pmy1(€07~1), which is left-multiplied by

— q_"_r"’m_z[n -—m+1], — g "M —m 1],

g T+ D= m 1] =0,

except that if m = 0 only the first term appears, and if m = 1 only the first
and last terms appear. Hence, the contribution of this type of term is

T gk Da(E ) = ¢+ gk D (€07),
(b) The term involving w7 x; Dy —pm—141(£), which is left-multiplied by
¢l +d* Mg — ¢ + Dy =0,
except if m = 0 or 1, so the net contribution of this type of term is
¢ owd oy Dnia (€7) = ¢ gz o D (67)-
Hence,

[+ 1D (€0 )y

— ¢~ et Da(€7Y) = 72+ 1k Do (€Y)
n+1

+qu il qu(J)rfCl n—1+1( 5( qu ql'll'l n—l(f(T))-
=1

=1
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On the other hand, we are trying to show that

[r + 1]gDp (€ )ay

= _q_n_r_l[n + 1](1[7" + 1]qun+l(§(T))
n+1
I+ 1g Y g™ g Dasna (€7HD)
m=1

= _q_n_T_l[n + 1]q[7" + 1]qun+1 (g(r))

n+1 n—m-+1
+zqm—1[m1qx:n{ S D (€0
m=1 =0

+ Z (qzx;‘ZPl_z - (qQ + 1)x:+lpl—1)Dn—m—l—s+l (é—(r))},
l+s%n—m+1
,520

by repeating the argument leading to equation (23), which is equal to

— g " A+ gl + 1gkDa (€7 + > ¢ mlgmn ) Da o (67)

m+Ii<n+1
120,m=>1
i m il 2 (2ot o Pos — (@ + 1)z 1) D (5(7“))
q MigTy (@ Tsyoli—2 — (g Ts11-1)"n1—m—s+1 :
s+l+m<n+1
1>0,m>1

As above, one sees that the term x;lxl"’, withl >0, m>1andl+m < n+1,
survives in the sum of the last two terms only if [ = 0 or 1, giving

[r + 1D (€7 D)zy
n+1
= _q_n_r_l[n + 1g[r + 1gkDyp 41 (g(r)) + Z qm_l[m]qxr_nxg—ﬂ)n—m+l(g(r))
m=1

n

=3 g et Dy (€).

m=1

So we must prove that

q_n_T-H [n]qufﬂ)n (g(r_l)) - q_n_r_2[n + 1]qk$a’_Dn+l (g(r_l))
+q T 4 g+ 1gkDnga (60)

n+1 ¢+

+ Z qm_l[m]q m_an—m+1(§(T))
el q9—q

=Y " m) D, (67 = 0.

q9—4q

m=1
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The sum of the last two terms is equal to

- :_1+1 (r) 7/’;;+1 + (r)
Zq_q Dy (€)= ) - L D, (60

l+m<n
I,m>0
—ZZ nstp L pE(e0)
s=0 m= O
3 s kP DY (€0,
s=0

by 3.1. So we are reduced to proving that

qln) gk Dy (677 = ¢ [n + 1 ghad Do (€77Y)
+ q_l[T + 1gln + 1]qun+l(§(T))

(24) i

=" Y ¢ s + kP DY (67).
s=0

Now,

n+1
D€ ) = 3 PaDL i (€7)
n+l m
- Z me lajl q l+ 1] n— m+1(§(r_1))a

m=0 [=0

by 3.4, which is equal to

Z-Pm Z qt[t+1]qxt Dn m— t+1(£(r_l))'

m=0 t=0
Similarly,
D, =3 Y 't + 1y Prszfy D), (E07Y)
m=0 t=0
n+1 n—m
= Pm q t+1qxt+an t— m(g(r_l))'
m=0 t=0

Inserting these results in (24), and equating coefficients of kP,, on both sides, we
see that it suffices to prove that

Z [t+1 q$t+lDr47,_ t— m(f(r_l)) + q_l[T + 1g[n + 1], Dn m+1(§(T )
t=0
n—m-+1
- q—2[n +1]q Z q'ft + 1]qa% Dn t—m+1 (g(r_l)) = qn+r_m[m]qD:—m+1(§(r))-
t=0
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The sum of the first and third terms is equal to

n—m-1
[n]q Z qt [t]qijI—t—m-i-l(g(r_l))
t=0
n—m-41
- q_Q[n +1]q Z 1+ th[t])ij:—t—m-H(g(r_l))
t=0
= —¢ [+ 1glrlg Dy pia (€7)
n—m-+1
+ Z (qt[t]q[n]q - qt_l[t]q[n + 1]q)$jD:—t—m+1(f(T_l))
t=0
n—m-+1
=—q’[n+ 1]q[r]qD:—m+1(§(T)) —q ! Z qt[t]qsz:—t—m-H(f(r_l))-
t=0

Thus, we are reduced to proving that

(¢ r + Ugln + g — ¢ " [my — ¢+ 1glrlg) Dy (€7)

n—m-+1
=q¢ ! Z qt[t]qff?_D:—t—m+1(f(r_l))u
t=0
i.e. that
n—m-+1

Z qt[t]qij:—t—m-H({(T_l)) =¢"" " —m+ 1]qD:—m+1(§(r))-

t=0
This is the statement of 4.1(a) (with n replaced by n —m + 1). O

6. A TRIANGULAR DECOMPOSITION

The following result is central to the construction of highest weight representa-
tions of U,**(g) in Sections 7 and 8.

Proposition 6.1. We have
res/ 2\ __ res/ A\ — res/2\0 res/2\+

Proof. Let U” denote the right-hand side of the equation in 6.1. Following the
strategy in [13], Section 5, define the degree of the generators of U;**(g) as follows:

deg((z£,)") =1, deg(kE!) = deg ({kn’"D —0, deg ([Z]:) — |n|.

Further, call a monomial a finite product of the form

(product of (x;n)(r)/s)

hin ! 4

— 5) x (product of (z,)" s),
(1], '

and define its degree to be the sum of the degrees of the factors. Finally, any
element of U that is a C[g, ¢~ ']-linear combination of monomials of degree d is
said to have degree d. It follows from Proposition 6.1 in [1] that the degree is well
defined. Note that, by (9), deg(P;,) = |n|. Finally, for n € N, let U2 be the
subspace of U2 consisting of the elements of degree < n. Proceeding by an evident

/
X (product of kiﬂ/s, [ki;q s, and
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induction on the degree, and using the analogue of 6.1 for U;*(g) (see Section 1),
it suffices to prove the following, for all r,s e N, m,n € Z, i,j € I:

Rjn r

(a) |:[”]qj ) (xj_m)( ):| UTA-HTL| 1
h'n

(b) |:[n]]q] ) (xz m)( )} € U r+|n|— 1

(C) [(x:_m)(T)7( g,n)(S)] € U r+s—1»

where [a, b] denotes ab — ba.
We consider only the case n > 0; the case n < 0 is similar. By applying 77", it

suffices to prove (a) when m = 0. Note also that (b) follows from (a) by applying

Q. To prove (a) and (b), it therefore suffices to prove that [hn]]q" , (x;fo)(’”)} cUA”

for all 2,5 € I, n,r > 0. Now,

hj)” +\r| _ 1 [na’ﬂ] a + \s—1 _+ 4+ \r—s
{[n]qj » (270) ] [l Z 1(331‘70) i (T70)
Our assertion follows, since it is clear that [na [ ]]1]” € Clg,q~ ], and by 4.7 we have

T 'Z s 1 + ;i:o)r—s c Uées(@)-{-'
qit g=1

To prove (c), we can of course assume that i = j, so we might as well work in
the case g = sly and drop the subscripts i, j as usual. We first show that

(25) () WD; () e UA  forallr,seN.

We proceed by induction on n, the statement being obvious when n = 0. Assuming
the result for n, we consider

K n — n—-+s n+r+1 n—+r n—-+s
(26)  (a) () (o) D = [ , } () D () (D),
q

By 5.1 and 5.2, the right-hand side of (26) is in U?, and by 5.1 the left-hand side
equals

(Qfar)(T)D;H(f(s)) +w
where w belongs to U” by the induction hypothesis and part (a). So

(=) Dy (€) e U2,

and (25) is proved for n + 1.
We now prove (c) by induction on s. As above, it suffices to prove that

(27) ()", ()] e US.

We need only consider the case m +n > 0. For, the case m +n < 0 is similar, and
the case m + n = 0 can be reduced to the case m = n = 0 by applying 7™, and
that case is contained in (2). If s = 1, then by applying 7™, we are reduced to
proving that (zg)z; € U2 for all 7,n > 0. This follows by taking s = 1 in (25).
Assume then that s > 2 and that (27) holds for smaller values of s. By 4.6,

Djp 1), (€)= DD () 4 2,
where z is a linear combination of products

(mgl)(81)($’r_7,2)(82) crt



QUANTUM AFFINE ALGEBRAS AT ROOTS OF UNITY 311

where ni,n9,... and si,s2,... are positive integers such that si,s2,... < s and
n181 + noss + - - - = ns. Hence,

(@5 (@)@ = gm0 (@) DG, (€)= [(@if) ), 21).

The first term on the right-hand side belongs to U2 by (25), and the second term
belongs to U by the induction hypothesis.
This completes the proof of 6.1. O

Remark. The arguments above actually prove the following statement: if r, s € N,
m,n € Z, m +n > 0, then (z})")(z;)® is a linear combination of products
XXX+, where X* € Ul*(sly)* and X° lies in the subalgebra of U*(sly)°

generated by k*!, the k;u forallu € Z, v € N, and the Py for N > 0. Analogous

statements in U;°*(g) can be obtained by applying ¢;.

7. REPRESENTATION THEORY OF U[®®

We first recall some facts about the representation theory of U*(g) (see [5] and
[15]).

A representation V' of U!*(g) is said to be of type I if, for all i € I, k; acts
semisimply on V with eigenvalues in €2 (¢; = €%). Any finite-dimensional irre-
ducible representation of U(g) can be obtained from a type I representation by
tensoring with a one-dimensional representation on which the e act as zero and
the k; act as £1.

If A € P, the weight space V) of a representation V' of Ur**(g) is defined by

Vi = {U eV |kiv= 6?81}, {kiljo] = niv} )
where n; = M(&;), n = n® + nt, 0 < n® < £. We have
(28) (eit)(T)V)\ c V)xirocm dlm(Vw(A)) = dlm(V)\),
forallie I, re N, we W.

A vector v in a type I representation V' of U!*%(g) is said to be a highest weight
vector if there exists A € P such that

veVy and (¢f)M.w=0 forallr>0,iel.

If, in addition, V' = U!*(g).v, then V is said to be a highest weight representation
with highest weight .

For any A € P, there exists, up to isomorphism, a unique irreducible represen-
tation V' (\) of U!*(g) with highest weight \. We have

VI =PV,
759

Every finite-dimensional irreducible type I representation of U!®*(g) is isomorphic
to V(X) for some (unique) A € P+.

The following result of Lusztig [15] gives the structure of V(\) for arbitrary
A€ P+,
Theorem 7.1. Let A € P+.

(a) If Mcy) < £ for all i € I, then V(\) is irreducible as a representation of
Ui (g)-
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(b) If X is divisible by £, say X\ = ¢\', then V()\) is isomorphic to the pull-back
of V(AY) by Fr. : Ur(g) — U(g). In particular, the weight space V(\), # 0
only if X\ — u € LQT and (hence) the e act as zero on V/(\) for all i € I.

(c) In general, write X\ = X° + (XY, where 0 < \°(¢&;) < € for all i € I. Then, as
representations of Ur*(g),

VA 2V @ V(eAh).

We now give the analogous definitions for U(g). Let U*5(g)* be the subalge-
bras of U!**(§) generated by (xfn)(r) foralli € I,n € Z, r € N, and let U*(g)° be
the subalgebra generated by the kl-il, [kie;o} and P; , for alli € I,n € Z.

Definition 7.2. A representation V of U!*(g) is said to be of type Iif V' is of type
I as a representation of U'(g) and if ¢!/? acts as 1 on V.

If V is a type I representation of U!®(g), a vector v € V is said to be a highest
weight vector if there exists a homomorphism of algebras A : U*(g)? — C such
that

(:cfn)(r).vz() forallie I,n € Z,r € N,
and
zw=A(x)v for all z € U*(g)".

If, in addition, V' = U!*(g).v, then V is said to be a highest weight representation
with highest weight A.

Remarks. 1. Since a U!*(g)-highest weight vector v € V is, in particular, a U (g)-
highest weight vector, there exists A € PT such that

Alk;) = e??, A ({klé0}> = n},

where n; = A(&;), n; = nY + ¢n}, 0 < nd < £. The highest weight A is determined
by the n; and the complex numbers {A(P; ;) }ierrez (with A(P; o) =1).
2. By the relations in 1.2 (and the fact that ¢'/2 acts as 1 on V), we have

(29) (x?,[n)(r)'vu C Vitras U:CS(@)O'VM =V,
for all p € P.

Proposition 7.3. For any algebra homomorphism A : U (§)? — C, there exists
an irreducible representation V(A) of UL*(§) with highest weight A. Moreover,
V(A) is unique up to isomorphism.

Proof. Let M(A) be the quotient of U*(g) by the left ideal generated by the
(I,:T)(n) foralli € I, r € Z, n € N, together with the elements z — A(z)1 for all
x € Urs(g)Y. It is obvious that M(A) is a highest weight representation of U5(g),
with highest weight vector ma (say) which is the image of 1 in M(A). By 6.1,
my is, up to scalar multiples, the unique vector of maximal weight for Ur*s(g). It
now follows by the usual arguments that M (A) has a unique irreducible quotient
representation V' (A), and that V(A) is, up to isomorphism, the unique irreducible
representation of Ur®(g) with highest weight A. |

The following multiplicative property of highest weights of representations of
Ur*(g) will be of crucial importance later.
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Proposition 7.4. Let V', V" be type I representations of Ur(g) and let v’ € V/,
"€ V" be highest weight vectors. Then, v'@v" is a highest weight vector in V'QV"
and

(30) Pi( ).(v'@") = Pi( ) ®Pi( )

For the proofZ we shall need the following lemma. Recall the algebra homomor-
phisms ¢; : Uy(sle) — U,(8) (¢ € I) and define A; to be the composite homomor-
phism

Uy (sla) 2 Uy (sl2) @ Uy (sla) 2225 U, (8) © Uy (a),

where the first map is the comultiplication of U,(sl3). Since @i(U;CS(s:ZQ)) C U;*(9)
and since U}**(g) is a Clg, ¢~ ']-Hopf subalgebra of U,(g), it follows that

Ai(Uy(sl2)) € Uy™(8) © U;(8)-
Let X) be the Clq, ¢~ ']-span of {(:z:;fm)(s) | jel,meZ,s e N}
Lemma 7.5. Foralli eI, r €N,
A((a;)") = Ai((27) ™) € U@ X © Up=(8) + U;(8) ® U;*(8)X .
Assuming this lemma for the moment, we give the
Proof of 7.4. By 5.1,if r > 0 and v = v, v" or v'®@v",
(@) (@) v = 6K Py .
Now, using 1.1 and the isomorphism in 1.2, one finds that
Ai(zd) = ;v;f()@ki + 1oz, Ai(zy)=2;,01+ ki@ ).

From this, one easily deduces (by induction on r) that

T

Ai((@f)?) =32l Dea,) IR,
s=0

Az((xl_)(T)) = Z Ef(T_S) k:_s(xz_l)(S)@(xl_l)(r_s) i

s=0

From 7.5, and the obvious fact that U**(g) X (P @ Uk (g) + U () @ Uk (g) X ),
specialised to ¢ = €, annihilates v’ ® v”, it follows that

(1) K P (0 80") = A((wF) " (7)) (0 @ ")

= (AT @ ) Ok (@) O @ ) R ()
s,t=0

Now, by (29),
(x0) ) (z7, )(t).v' =0 if s>t

/L7

(x;to)(“s)(x; )(T D" =0 if r—s>r—t



314 VYJAYANTHI CHARI AND ANDREW PRESSLEY

So, by 5.1 again,
(1)K Pip.(v'@0")

" 2
_ Z 6;2S(T_S)+T kZ—S(x;i-O)(s) (xz_l)(S) .’U/®kf (x(—Ji-)(r—s) (xi_,l)(T_S) 2"

_ Z E;ZS(T_S)+T2 (_1)56;52 kiTPLS'v/®(_1)r—s€_—(r—5)2k;lrlji)r_s"UN'

2

Hence,
ks
/ " / "
P ,.(vev") = g P s 0'®P; p_s0".
s=0

This proves relation (30) for P;". The proof for P; is similar.

2

The fact that v'®v” is a highest weight vector now follows from (29). O
Proof of 7.5. In [8], we showed that
(31) Alzy) = Ailwy) € Ug(@) X @ Uyg(8) + Uy(8) @ Uyg(9) X,
where X" is the C(g)-span of {xjm | m e Z,j €I,j#i}. We claim that this
implies that
(32) Afw;y)" = Ai(ay)" € Ug(§)X;" ® Uy(8) + Uy(8) ® Uy (8) X"
for all » > 1. The proof is by induction on r. For the inductive step, we have

Alziy)™ = Alagy) Alziy)

€ (Ai(z7)" + Ug(8) X, @ Ug(@) + Uy(9) ® Uy(8)X,1)
X (w1 @ L4k @2y + Ug(8)X;" ® Uy(8) + Ug(8) ® Ug(8) X7) -
Thus, to prove (32), it is enough to show that
(Uq(@)X;_ ®Uq(9) + Uq(g) @ Uq(@)X;_)( T ®1+ ki ® x; 1)
C U)X ® Ug(8) + Uq(8) @ Uyg(8) X
But this is clear, since by the relations in 1.2,
Xfar, CUMXS, Xk C U,@)X;
Now, since U}*(g) is a C|g, ¢~ ']-Hopf subalgebra of Uq(g), it is clear that
A((a;) ") = Ai((21)™) € Up™(§) © Up*()-
On the other hand, by 6.1,
U;CS( ) UrCS( ) UrCS( ) UI‘CS( )X(—i-)
Thus, by (32), to prove the lemma, it is enough to show that
(Ures( ) Ures( ) Ures( ) Ures( ) )
N (Ug(@)X " @ Uy(8) + Uy(8) ® Ug(8)XT) =0,

where X T is the C(g)-span of {xjm | 7 €I,m e Z}. But (33) is a straightforward
consequence of the Poincaré-Birkhoff-Witt basis of U,(§) given in [1], Proposition
6.1. O

(33)

The following lemma will be needed in Section 8.
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Lemma 7.6. Leti € I and let A : U'(g)° — C be an algebra homomorphism such
that V(A) is finite-dimensional. Then, @;(UI*(sl2)).vx C V(A) is an irreducible
representation of U;CS(SAZQ) isomorphic to V(A;), where A; = Ao ;.

Proof. Let W be a proper irreducible U, rCS(s:lg)—subrepresemtation of (U, (sl2)).va.
Let A € PT be such that A(k;) = ¢ M) Let w e W obe any non-zero vector of
maximal weight for Ur®(sly) (the subalgebra of U®(sly) generated by k*!, [kéo]
and the (z3)() for all » € N. Then, by (29),

(x;fn)(r).w =0 forallneZ, r>1

But since the weight space Wi _,, is zero unless n € QT is a multiple of «;, we also
have

(wjn)(T)w—O foralneZ,r>1, j #i.
The space of vectors in W annihilated by ( ) foralln € Z, r > 1, j € T is thus
non-zero, and since it is clearly preserved by U res(g)0, it contains a Ur®(g)-highest

weight vector. Since V(A) is irreducible as a representation of U!*(g), this vector
must be a multiple of vy. Hence, vy € W, giving the desired contradiction. O

We now give an explicit construction of some highest weight representations of
Ul (sls).
Proposition 7.7. For any non-zero a € C(q), there is an algebra homomorphism
evq : Ug(sle) — Uy(sla) such that
(34) eva(ed) = ¢TlaeT, evy(ko) = k71, eva(er) = eF, evy(k1) = k.
Moreover, we have, for all n € Z,
(35) eva(z)) = g "a"k"et, ev(x,) = q "a"e k"

See [4], Proposition 5.1, for the proof.

It is obvious that, if a € C, ev,(U;*(sl2)) € U;*(sl2), and hence that ev,

induces a homomorphism of algebras ev, : UrS(sly) — U(sly). From (34) we

deduce that
(36) eva((@)™) = " a" k" ()0,
eva(( )(r)) rzanr(e—)(r)knr.

If V is a representation of U**(sl2), we denote by V, the representation of U:f(glg)
obtained by pulling back V' by ev,. If V is of type I, then so is V,. If V is a
representation of U(sls), we define V', similarly.

Proposition 7.8. Let a € C be non-zero, and let n € N. If v is a highest weight
vector in V(n), the (n+1)-dimensional irreducible type I representation of UI*%(slz),
then V(n), is a highest weight representation of U®(sls) with highest weight A

given by
= s ()=,

A(Er)

(37)

I
—
I
—
S~—
5
ﬁ
e
= S
—_
[0}

In particular, P..v =0 if |r| > n.
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Proof. Let 0 # v € V(n), be a Ur*(sl2)-highest weight vector. By (29),
(z5)Dw =0 forall s e N, m e Z
To prove the proposition, it therefore suffices to prove that

P.v=(-1)"a" L:J v forall r € Z.

Assume that r > 0. Proceeding as in the proof of 7.4,
(=) "k Pow = (27) (7).
=) (e) D (by (36))

—T‘2 nr_n k‘.;O
e [0 by @)
— —r2+nr r |:7’L 0.
r €

Hence,

Finally, applying €2 to both sides of the identity in 5.1 (working in UECS(SAZQ) and
then specialising), we obtain
(=) kP = (7)) (x5) ) v,
Repeating the argument in the preceding paragraph, one finds that

P,v=(-1)"a"" [:L] v. O
Remark. From equation (37), it is easy to show that
APEw)) = [](1 = e 72aH u).

s=1
8. CLASSIFICATION

We begin the classification of the finite-dimensional irreducible representations
of U (g) with

Proposition 8.1. Every finite-dimensional irreducible type I representation of
Ur®s(g) is highest weight.

Proof. Let V be a finite-dimensional irreducible type I representation of U!(g).
Since dim(V) < oo, there exists a common eigenvector 0 # v € V for the action
of Ur*(g)°, which acts by commuting operators on V. In particular, there exists
A € P such that v € V). It follows that

V=V,
nepr

since the right-hand side is non-zero and preserved by U!*5(g). Again since dim(V)
< 00, there exists a maximal p € P, say po, such that V, # 0. The action of
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Ures(§)° preserves V,,, so there exists 0 # v’ € V,,, that is a common eigenvector
for Urs(g)°. Then, v’ is a Ur(g)-highest weight vector. O

In view of this result, the following theorem completes the classification of the
finite-dimensional irreducible type I representations of Ur**(g).

Theorem 8.2. The irreducible representation V(A) of U(g) is finite-dimensional
if and only if there exists an I-tuple P = (P;);cr € 1! such that

Ak = ) Qkié OD _ [degéﬂ)} g

A(P () =

(38)

where Q;(u) = udes) p;(y~1).

Remarks. 1. We shall often abuse notation by denoting the representation V' (A)
determined by P as in the theorem by V(P).

2. Tt is clear that V(P) = V(P’) as representations of Ur*(g) if and only if P/
is a (non-zero) multiple of P;, for all 4 € I.

Proof of 8.2. Assume first that dim(V(A)) < oo. Let vp be a U (g)-highest weight
vector in V' (A). Since V(A) is, in particular, a finite-dimensional type I represen-
tation of U (g), there exist n; € N such that

se=at A([f7]) =

where n; = nY + ¢n}, 0 < nY < . Now, there is a C(g)-algebra homomorphism
Uy (sle) — Uy(§) that takes et to x:_l, e~ to z;,, and k to ck; (this is easily
checked using 1.2). This map clearly takes U;(sl2) to U;**(g) and so induces a
C-algebra homomorphism U!*(sly) — U?**(g). By considering V(A) as a represen-
tation of Ul*(sly) via this homomorphism, we deduce that

(xi_)l)(T).vA =0 ifr>mn;
and that (x;l)("i).v/\ is a non-zero multiple of (:r;o)("i).vA (for s;(A) = A — n;a;

and by (28) the dimensions of the weight spaces for the action of Ur®(sls) are
preserved by the action of the Weyl group). This implies that

i {20 400
By 5.1, it follows that
Peo {20 Wi
and hence that
P (u).vp = Pi(u)vp

for some polynomial P; € C[u] of degree n;.
It remains to prove that

(39) AP} (w) =
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We show first that A(P;” (u)) is uniquely determined by P;(u). By repeating ver-
batim the proof of Theorem 3.4 in [4] (with ¢ replaced by ¢;), it follows that P;(u)
determines A(wfn) for all n € Z according to the formula

+  tdeg(py) Pi(e] )
AV (u) =€ P
By 3.1, it suffices to prove that P; determines A(P; _,¢) for all n > 0. We can
assume that nf < n;, otherwise A(P; _n¢) = 0 (this follows by an argument similar
to that used in the previous paragraph).
Consider the vectors ()™ .vp for m € Z. These vectors are all non-zero, by
equation (2) (and an application of T5,), we get

— n ki;O nl
(x:_m)("é)($i7m)( Z).UA = { iy ] U = < )UA # 0.

%
n

Since dim(V'(A)) < oo, there exists a linear relation

M

Z am(xi_)m)("e).v/\ =0,

m=M
for certain scalars a,,. We can assume that ap; = —1. Then, we have

M
(40) @) ™o = > am(zy,,) " a.
m=M-+1

Applying (z;,,)™ to both sides of (40) for m = —M,~M +1,...,—M’+1 and

using 5.1 and the remark at the end of Section 6, we get a system of M’ — M linear
equations for the a,, with coefficients of the form A(P; ) for r > 0. It follows that
the a,, are given by certain rational functions of the coefficients of P;. Applying
(x:_M_l)(”g) to both sides of (40) now shows that A(P; _,) is given by a rational
function of the coefficients of P;.

By (7.5), it suffices to prove (39) when g = slo. Dropping the subscript ¢ and
recalling that A(P~(u)) is uniquely determined by P(u), it suffices to verify it in
any one irreducible representation V(A) with A(P*(u)) = P(u). Further, since
both sides of (39) are multiplicative on tensor products by 7.4, we can assume that
deg(P) =1. If P =1 — au, where a € C*, then by 7.8 we can take V(A) = V (1),

and we have
AP~ (u)=1—a tu.
Since Q(u) = uP(u™!) = u — a, we get

as required.

Turning now to the converse, we must show that, if P = (P;);c; € II’, and if
A is determined by P as in the statement of 8.2, the representation V' (A) is finite-
dimensional. By 2.1, there exists a finite-dimensional representation V,(A) of U,(g)
over C(g), with highest weight vector va, such that vy has weight >°._, deg(P;)\;
for U,(g) and

icl
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Further, since each P; has coefficients in C, it follows that
Ur(g)%oa = Clg, ¢ Jva.
By 6.1,
Wo(A) = U™(@)" va
is preserved by the action of U;*(g); in fact, W, (A) = U;*(g).va. We shall prove
that W, (A) is a C[g, ¢~ ']-lattice in V,(A), i.e. that the natural map
Wq(A) ®ciq,q-1) Cla) = Vo(A)

is a C(q)-vector space isomorphism.
For this, we note that W;(A) is the direct sum of its weight spaces for U;*(g):

Wq(A) = @ Wq(A)u-
neP

Choose a basis of W, (A), as a C[g, ¢ !]-module for each 1 € P, and let B be the
union of these bases. It is clear that B is linearly independent over C(q) (take a
linear relation and clear denominators), and it is also clear that it spans V;(A) over
C(q) (because U;*(g) spans Uy(g) over C(q)). This proves our assertion.
Finally, define
W(A) = Wy(A) ®cg,q-11 C,

via the homomorphism C[g,q!] — C that takes q to €, and denote by w, the
image of vy € W,(A) in W(A). Obviously, W(A) = Ur*(g).wa and W(A) is finite-
dimensional (though not necessarily irreducible). Let M be a maximal proper
U (g)-subrepresentation of W(A), and set V=W (A)/M. Clearly, wp has weight
> icrdeg(P)N; for Ur(g), so the first two equations in the statement of (8.2)
hold, and the third holds because it holds in V4 (A). The last equation is proved
by the argument used earlier in the proof. Hence, V' = V(A), and so V(A) is
finite-dimensional. |

The following result is an immediate consequence of 7.4.

Proposition 8.3. Let P,P’ € TI{, and assume that V(P) @ V(P') is irreducible
as a representation of Ur*(g). Then,

VIP) VP 2VPeP).
Corollary 8.4. Let V,V' be finite-dimensional irreducible type I representations

of Ur5(g), and assume that V @ V' is irreducible. Then, V@ V' 2 V' @V as
representations of Ur*(g).

Proof. This follows from 8.1, 8.2 and 8.3. O

9. A FACTORIZATION THEOREM

In this section, we prove an analogue for U!*3(g) of the factorization theorem 7.1
for finite-dimensional irreducible representations of Ur(g).
If Pell, let
p=popt
be a factorisation such that

(i) P°(u) is not divisible by 1 — au® for any non-zero a € C;
(ii) P(u) = R(u") for some R € II.
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Such a factorisation obviously exists and is unique up to constant multiples. If
P= (Pi)iel S HI, let PO = (P-O)ie], P! = (Pil)ieL

Theorem 9.1. For any P = (P;);er € 1Y, we have
V(P) = V(P o V(P
as representations of Ur(g).

To prove this theorem, we shall need the following results describing the structure
of the factors V(P?) and V (P!). Let Uf"(g) be the subalgebra of U(§) generated
by Urs(g)° and the xfr forallie I, r € Z.

Theorem 9.2. Let P = (P;);cr € 1! be such that each P; is not divisible by 1—au®
for any non-zero a € C. Then, V(P) is irreducible as a representation of U (g).

Theorem 9.3. Let P = (P;)icr € I/, where Pi(u) = R;(u’) for some R =
(Ri)ie] S . Then,

V(P) = Fr (V(R)),

the pull-back of the irreducible representation V(R) of @ by the Frobenius homo-
morphism Fr. : U™(g) — U(g).

Remark. The representations V(R) were all described explicitly in 2.5, so 9.1 and
9.3 reduce the study of V(P) for all P € II! to the case P = P° to which 9.2
applies. For the latter case, we have an explicit description of V(P) only when
g = sly. This is given below (see 9.6).

Proof of 9.2. We first prove the theorem when g = sls. For this, we need O

Proposition 9.4. Letr € N, let mq, ... ,m, be positive integers < £, let ay, ... ,a,
€ C be non-zero, and let

V= V(ml)al (ORI V(mr)aT'

Then, V is irreducible as a representation of Ujes(glg) if and only if, for all 1 <
s#t<r,
(41)

a
= £ eE(matme—2p) for all 0 < p < min(ms, my).
a

Moreover, in this case, V is irreducible as a representation of U8 (sly).

Proof. We proceed by induction on r, beginning with the case r = 2 for which we
change notation and consider V(m), ® V(n)p. Assume that m < n (by 8.4, this
is without loss of generality). The proof here is essentially the same as that in [4],
Section 4.8. The crucial point is that, if m < ¢, the structure of V(m) at an ¢t}
root of unity is the “same” as its structure for generic q. Namely, V(m) has a basis
{vo,v1,...,vn} and action of U!*(slz) given by
kv, = €™ v, eTw,=[m—r+1]w,_1, e v =[r+ 11,

with (e*)©® acting as zero (and v, 41 = v_; = 0). As in [4], one checks that the
only U!®(slz)-highest weight vectors in V(m) ® V(n) are (scalar multiples of) the

vectors
p

wy = Z(_l)rer(n—r+1)[m —p+rldn —rldvp—r @ vy,
r=0
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for 0 < p < m, and that, if p > 0, w, is an eigenvector for U (sl5)? and is
annihilated by z for all r € Z if and only if

(42) é _ €m+n—2p+2'

a
Note that (2;7)®.w, = 0 for all r € Z, since this vector has weight m +n — 2p -+ 2¢,
which is > m + n. It follows that, if (42) holds for some 0 < p < m, then w,
generates a proper U (sly)-subrepresentation of V(m), ® V(n),. The duality
argument used in [4] then shows that, if

(43) —(m+n—2p+2)

b
- =c
a
for some 0 < p < m, then V(m),®V (n), contains a proper U (sly)-subrepresenta-
tion containing vy ® vg.

Conversely, if neither (42) nor (43) holds for any 0 < p < m, the above argument
shows that V(m), ® V(n), is irreducible even under the subalgebra Uf(sly) of
Ures(sly), for neither it nor its dual representation contains a non-zero eigenvector
of Ur®(sl3)° that is annihilated by z; for all r € Z.

The proof for r > 2 given in [4], Section 4.8, can now be repeated verbatim (with
q replaced by €) to show that V is irreducible under Uf" (sl,) if condition (41) holds.
The converse follows from 8.4 and the r = 2 case. |

To see that the sls case of 9.2 follows from 9.4, define an e-segment of length m,
where 0 < m < £, to be a set of the form

Spm(a) = {ae™ ae™ 3, ... Jae" ™Y,

for some non-zero a € C. Say that two e-segments are in special position if their
union is an e-segment longer than both the given segments, and in general position
otherwise. It is easy to see that two e-segments S,,, (as) and S,,, (a;) are in general
position if and only if (41) holds. Moreover, as in [4], Proposition 4.7, one shows
that, if P € II satisfies the conditions in 9.2, the set of roots of P, regarded as a
set with multiplicities, can be written uniquely as a union of e-segments in general
position. It follows that P can be factorized uniquely as

r Mg
Pu) = H H(l — ageMe TP,
s=1p=1
for some r,m1,...,m, € N and non-zero ay,...,a, € C. Hence, by 7.6 (and the

remark which follows its proof), 8.3 and 9.4,
V(P)=ZV(mi)e, @ - @ V(m)a,.

By 9.4 again, V(P) is irreducible under U (sly).
Returning now to the case of arbitrary g, we prove Theorem 9.2 in two steps:

Step 1. If P is as in the statement of 9.2, then V(P) = US™(§).vp, where vp is a
UL (g)-highest weight vector in V(P).
For this, regard V(P) as a representation of U!*(g) and let

V(P)= P V(P

neQT
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be its weight decomposition, where A = 3, deg(P;)\; € P is the Ur*(g)-weight
of vp. Note that V(P), = Cvp. We show, by induction on 7, that
(44) V(P)roy C US(g).0p.

We claim that this follows from the identities

n

(45) Z (_1)m6i—m(n+aij—1) (:Ei_,r)(n_m)z;s (zzr)(m) =0
m=0

in Ur*%(g), where n > 1 —a;j, r,s € Z, and i # j.
Indeed, (44) is obvious when = 0. Assuming that (44) is proved for all n <
n € Q*, we prove it for ’. By 6.1,

VP = 3 a7, VP ypar + 327, ) OV (Pt
Hence, it suffices to prove that
(xi_,r)(e)~V(P)>\—n’+€m - Ueﬁn(ﬁ)-vP

for all : € I, r € Z. There is nothing to prove unless ' > Loy, and if ' > fo; we
have

V(P)r—y +a; = Z 25 V(P)a—y ttaita;
7,8

by the induction hypothesis again. But then, by (45),
(7). V(P te
= Z(zi_,r)(z)zj_,s-V(P)A—n’+lai+aj C zi_,r-V(P)A—n’+ai + x;s-V(P)A—n’+a]~v
7,8

and this is contained in UM (g) by the induction hypothesis once again.
We are thus reduced to proving that

(z;,)" .vp € U™ (g).vp

for all 4, r. But this is clear, since by (7.6) and the sly case of 9.2 already proved,
we have

(a:;r)(g).vp € @i(UE;n(glg)).vp - Ufn(@).vp.

To complete Step I, we must therefore prove the identities (45). We work in
U,*(g) and then specialise.

We proceed by induction on n. If n = 1 — a;;, (45) is a special case of one
of the defining relations in 1.2. Assuming that (45) holds for n, we multiply
both sides of (45) on the left by x; and subtract ¢; 75 fimes the identity
obtained by multiplying both sides of (45) on the right by z; .. The coefficient of
(xi_)r)("‘*l_m)xj_)s(x;)(m) on the left-hand side of the resulting identity is

m —m(n—1+4a;; —2n—a;j—(m—1)(n—1+a;;
(=1 {g; ™" —m 1]y, + g (et ), |

A i

= (~1)g; " [0 4 1],

2

After cancelling the factor [n + 1],,, we thus have the identity (45) for n + 1.
This completes Step 1.
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Step 1I. Let P be as in the statement of 9.2, and let v € V(P) be annihilated by
xi‘r forallie I, reZ. Then, v is a multiple of vp.

Note that we have already proved this when g = sl (in the course of proving 9.2
itself when g = sl3). From now on let g be arbitrary and suppose for a contradiction
that v € V(P) is annihilated by z; for alli € I, r € Z and is not a multiple of vp.
We can assume that v is a welght vector for U (g) and that, among vectors with
these properties, v has maximal weight for Uf*(g). By the analogue of (45) with
x replacing = (and with n = £), we have

xg s(xz r)(é) v=_0

for all ¢ j € I, r;s € Z. The maximal property of v implies that, for each 1€ 1,
r ez, (zF )(2) v is a multiple of vp (possibly zero). We cannot have (z;)?.v =0
for all i € I, r € Z, otherwise v would be a multiple of vp by the 1rreduc1b1hty
of V(P). Hence, there is a unique index i € I, say ig, such that (z},)®.v is a
non-zero multiple of vp for some r € Z. It follows that v has welght )\ — by, for
Ur(g), where A = Y. _;deg(P;)\;. By 6.1, v belongs to gplO(U”’h(slg)).vp, which

is isomorphic as a representation of U;?OS(SZQ) to V(P,,) by 7.6. By the sly-case of
Step II, v is a multiple of vp. This contradiction completes Step II.

icl

We can now complete the proof of 9.2. If V(P) is reducible under Uf"(g), it
has an irreducible US"(g)-subrepresentation W, say. Any non-zero vector v € W
of maximal weight for U!**(g) is obviously annihilated by x+ foralli e I, r € Z.
By Step II, v is a multiple of vp. This contradicts Step I.

We turn now to the proof of 9.3. We shall need the following lemma.

Lemma 9.5. Letie€ I, r € Z, n € N. Then,
(Tiir)n/[ . o
PA‘rE((xi )(n)) _ ) mor if £ divides n,
“r 0 otherwise.
Proof. Tt suffices to prove that the following diagram commutes for all ¢ € I:
(9)
(46) 7| |7

Urs(g) —— U()
Fr.

Ures(§) ——

<

Indeed, if T; and T; are replaced by an automorphism 7 € 7, the corresponding
diagram obviously commutes. It follows that, if (46) commutes, then
PA‘rE o T;\i = T& o ﬁre

for all ¢ € I. This clearly implies the lemma, in view of the isomorphism in 1.2.
To prove that the diagram (46) commutes, it suffices to prove that the homo-
morphisms Fr. o T; and T; o Fr,. agree on the generators kil and (e; )" of Ures(g),

for all j € I, n. > 1. This is easy for kil For (e; M) we have (see Section 1)

—Nagj

(47) Ti((e)™) = D (=) e ()T ()™ ()

r=0
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if i # j (the proof when ¢ = j is similar but easier). Applying Fr. to the r*® term
in the sum gives zero unless n and r are both divisible by ¢, say r = £r', n = ¢n'.
Hence, Fr, (ﬂ(ej)(")) = 0 unless n is divisible by ¢, and

—nlaij —\—nta;i—rt =+ \nt (z1 rt
Fr (L)) = 3 (c1)fr et ot @10 (€1 (6)

— (—nta;; —rH)! ntl il

—nlai]‘ (__-,’_)_nlaij_rl (€+)n1 (éj)rl

1 1 e
— _1 TN G4y 3
Z( ) (—nta;; —rH! ntl L7

rl=0

since £ is odd and ¢/ = 1. By the classical analogue of (47), this last sum is equal

to
Ti <(€j—)n ) :TZ oﬁre((ej)(enl)).

nl!
The proof for (ej_)(”) is similar. |
We can now give the

Proof of 9.3. We note first that it suffices to prove the theorem when g = sis.
Indeed, this follows from 7.6 and its classical analogue, and the fact that

Fre(pi (UL (s12))) = 2:(U(sl2)),

which follows from 9.5.
We take g = sls in the remainder of the proof. By 2.5, if R € II has factorisation

R(u) = [J(1 = @),

t

where the a; are distinct and the r; are > 1, we have

V(R) = @V (),

Since Fr, is a homomorphism of Hopf algebras, the pull-back
(48) Fr, (V(R)) = @ Fr. (V(ri)a,)-
t
We claim next that the diagram
Ures(sly) _Fre Ul(sly)

(49) cvbJ/ lwb[
Ures(sly) ——— U(sly)

Fr.

commutes. To prove this, it suffices to check that evye o Fr. and Fr. o ev, agree
on the generators (i) and k; of Ur®(sly), for all » € N, i = 0,1. This is clear
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except for (eX)("). We have

3 + vy (@) if £ divides r
evye (Fre((ef) ™)) = . /0! ;

otherwise,

- { pEr D £ divides 1,

0 otherwise,
whereas
Fre(evy((eg) ™)) = Fre(e b7 (7))
_ { etrpEr (f/)e)/, if ¢ divides 7,
0 otherwise.
Since " = 1 if ¢ divides 7, the commutativity of the diagram is proved.

It follows from (48), the commutativity of the diagram (49), and 7.1(b) that

R)) =) V(o) e,
t
1/¢

where a,’" is any ¢! root of a; (the argument shows that the isomorphism class
of V(€ry) 1/¢ is independent of which ¢*" root is chosen). By (7.8), the polynomial
t

associated to V(Ert)al/z is
t

lry 0
H(l . 6ht+1_25ai/éu) _ H(l . 61—2sai/€u)rt _ (1 _ atué)rt
s=1 s=1
By 7.4, Fr. (V(R)) = V(P), where P(u) = R(u"). O

Proof of 9.1. We show first that, for alli € I, n € Z,
(a) :Uitn acts on V(PY)@V (P?) as ;vitn ®1;
(b) (z;,)® acts on V(PY)@V (P!) as (a7 Y0 ®1+1@ ()0,
For this, we recall the information about the comultiplication A of Uy(§) contained
n [1], Proposition 5.3.
For i € I, r € N, define

Niw = (—1)7q 2 g — g g A = a2 T s — a7 g

and
R; = Z)\”T )" @ Ti(e Z)\ @ (e;)™.

(We have taken into account the fact that our comultiplication in Uy(g) is opposite
to that used in [1].) Note that, since each term in the above sums belongs to
U,(8), Ri and R} can be specialised. If w € W, choose a reduced decomposition

W =TS8 .- Sins
and set
(50) Ry =7((T,, T, ... Tiy )% (Riy) ... T2 (Riy) Ry ),
(51) Ry = (T, 't T P2 (RE) (T )RR, )R-

TN —1 TN -1
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Then, we have [1], for all i € I, n > 0,
(52) Alr;,) =R | (v, @1+ "k ' @, )R,5,,
(53) Az, _,) = (R;Xi)—l(x;_n @14+c "kt ® x;_n)R;M

and the formulas for A(z;,,,) can be obtained from (52) and (53) by using
Uz 4,) = a::in, AoQ=0%20 A°P,

where A°P is the opposite comultiplication of U (g).

We claim that R, 5 and R'; act as the identity on V(P?)@V(P!) for all
n € Z. This clearly implies (a) and (b). Indeed, using 9.3 and setting ¢\l =
i deg(Pl)X;, the weight space V(P!),\i_,, is non-zero only if n € Q% is divis-
ible by ¢, so (x;,,)") acts as zero on V(P') unless r is divisible by £. We deduce
from (52) and (53) that z;,, acts on V(P°)®@V(P') as z;,, ® 1, and from the ana-
logue of (11) for 2~ that (z;, ® 1+ kit @x; ) acts as (x;n)(é) @1+1®@(z;,) .
The case of x}, is similar. / /

As for the claim, it is easy to see from (50) that R, 5, is a finite product of
expressions of the form

(54) T®2 Z Aiyr(Til Ez s TiMf1)(ez—'i_M)(r) ® (THTZ s TiMfl)(ei_M)(r)'
r=0

NOW, T84, 8iy - - - Siry_y (i, ) 18 a Teal Toot of g, so for any n € £Q™T,
T®2 (T;1T;2 e 'TiMf1)(ei_M)(r) (V(Pl)f)\l—n) - V(Pl)f)\l—n—i-ron

for some root a € Q. By 9.3, the right-hand side is zero unless r is divisible by ¢.
Hence, all the terms in the sum (54) in which r is not divisible by ¢ are zero. But
clearly A;, = 0 if r is strictly positive and divisible by ¢, so only the » = 0 term in
(54) survives. The argument for Ry s similar.

With (a) and (b) proved, we can now show that, if vpo € V(P°) and vp: € V(P?!)
are UI°(g)-highest weight vectors, we have

V(P) =U:*(g)-(vpo ® vp).
Since V (PY) is irreducible under UM (g) by 9.3, any w° € V(PY) is a linear combi-

nation of vectors of the form

T3 maTigms -+ - Tiy oy -UPO
with t € N, 41,40,... ,49: € I, my,ma,... ,ms € Z. By (a),
T3 ma Ty my -+ - Ty, -(VPO @ Up1) = (25 0 T Ty, UPO) ® UPT,

hence w® @ vp1 € Ur(g).(vpo @ vp1). It follows that
U:es(ﬁ).(’l}po & ’Upl) ) V(PO) X vp1.

On the other hand, by 6.1 and the fact that z; , acts as zero on V(P foralli € I,
n € Z, any vector w! € V(P1) is a linear combination of vectors of the form

(;vj_l)m)(é) (xj;nz)(z) - (l';u7nu)(€).vpl,
withu € N, j1,72,... ,Ju € I, n1,n2,... ,ny € Z. We prove by induction on u that
Urs(§).(vpo @ vp1) D2 V(PY) @ (x5, YOz, )0 .. (x5, ) D .vp1.

J1,m1 J2,n2 Ju M
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If u = 0, there is nothing to prove. Assume the result for u— 1, and let 2° € V(P?).
By (b),
R G L) i (OB

Ji,ma1 J2,n2 ju,nu)

=(z7 )9 (xj;nz)(e) (2 )P opr)

Ji,m1 Ju M
— ((xj_hnl)(e).zo) ® (33]727,12)(2) o (ZEj_u7nu)(e).’UP1.

By the induction hypothesis, both terms on the right-hand side of this equation
belong to U*%(g).(vpo ® vp1), hence so does the left-hand side, completing the
inductive step.

We have now proved that V(P) is generated by vpo ® vp: as a representation
of Ur*(g). If V(P) is reducible, it contains a proper irreducible subrepresentation
W, say, and hence, by 8.1, a Ur*(g)-highest weight vector v # 0. We can write

_2:0 1
V= ’Up®’Up,
P

where v) € V(P°), v} € V(P') and the v} are linearly independent. By (a), for all
n € 7,

© Up1

0=xav= Z(x:{.vg) ® vy,
P

so z;}.v) = 0 for all p. Since V/(P?) is irreducible as a representation of Ufin(g) by
9.3, this implies that each vg is a scalar multiple of vpo. (For, the space of vectors
in V(P?) annihilated by xjn for all i € I, n € Z is preserved by Ur(g)°, hence
contains a Ur(g)%-eigenvector.) So
V= Upo @ 2t
for some z! € V(P!). By (b), for alli € I, n € Z,
0= (a:;-fn)(e).v = vpo ® (x:n)(g).zl,
SO (a:;fn)(e).zl = 0. Since xfn acts as zero on V(P?!) for all i € I, n € Z, this forces

2! to be a multiple of vp:. But then vpo @ vpr € W. In view of the first part of
the proof, this contradicts the fact that W is a proper subrepresentation. O

We conclude by giving an explicit realization of all the finite-dimensional irre-
ducible type I representations of U (slz):

Theorem 9.6. Every finite-dimensional irreducible type I representation of
Ul (sly) is isomorphic to a tensor product

(55) V(mi)e, @ @V (my)a, @ V{lni)p, @+ @ V(lng),,
where r,8,0 < my,...,my < €,ny,...,ns € N and ay,...,a,,b1,...,bs € C are
non-zero. Two such irreducible tensor products, with parameters r,s,my,... , My,
/ / li i li i li i
N1, ove 3Ny Q1 ve ,Gpy b1, .00 bs and 1/ 8", mi, ... ,my,ny, ... ,n,,a],... 4.,
..., b, respectively, are isomorphic if and only if

(i) r=7"and s=s" and
(i) there are permutations p of {1,2,...,r} and o of {1,2,...,s} such that

My =My, G = Apt), N = No(), (v)" = bg(t) for all t.
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Conversely, a tensor product (55), where r,$,0 < my,... ,m, < ¥, ny,... ,ng €
N and a1,...,ar,b1,...,bs € C are non-zero, is irreducible if and only if
(i) foralll<t#u<r,
Z—t + eE(metmu—2p) for all 0 < p < min(my, my,), and
u
(ii) %,..., b are distinct.
Proof. This is a straightforward consequence of 8.2 and 9.1-9.4. O
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