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ORBITS IN THE FLAG VARIETY AND IMAGES

OF THE MOMENT MAP FOR CLASSICAL GROUPS I

ATSUKO YAMAMOTO

Abstract. We propose algorithms to get representatives and the images of
the moment map of conormal bundles of GL(p,C)×GL(q,C)-orbits in the flag
variety of GL(p+q,C), and GL(p+q,C)-orbits and Sp(p,C)×Sp(q,C)-orbits
in the flag variety of Sp(p+ q,C) and their signed Young diagrams.
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1. Introduction

For an admissible representation of a real semisimple Lie group, the associated
variety is one of the most important invariants of representations. Borho-Brylinski
[1] clarify the relation between representations in a D-module picture and their
associated varieties. The associated variety of a representation (Harish-Chandra
module) is exactly the image of the moment map of the characteristic variety of the
D-module corresponding to the representation. In particular, the associated variety
of a discrete series representation is nothing but the image of the moment map of
the conormal bundle of the corresponding closed orbit in the flag variety. Motivated
by these facts, it seems to be useful to determine the image of the moment map of
the conormal bundle of various orbits in the flag variety. In this paper, for indefinite
unitary groups, real symplectic groups, and indefinite symplectic groups, we will
determine the image as explicitly as possible. Garfinkle gave another algorithm in
[3]. By her algorithm we can also get signed Young diagrams from parameters of
K-orbits in the flag variety. It remains to examine how the two algorithms agree.

In order to describe the results in this paper, we introduce the following notation.
Let GR be a real classical group. Let K be the complexification of a maximal
compact subgroup of GR. The image of the moment map on a conormal bundle of
a K-orbit in the flag variety is known to contain a (unique) dense nilpotent K-orbit
in the orthogonal subspace p of the Lie algebra k of K in the Lie algebra g of G
(see [1], [2]). What we want to write down is the map from a K-orbit in the flag
variety to a nilpotent K-orbit in p. For a K-orbit Q in the flag variety X , the
image of the moment map µ of the conormal bundle T ∗QX is a K-saturation of the

image of a fiber (T ∗QX)x at a point x ∈ Q. Then the nilpotent K-orbit O in p is a

K-saturation of the subspace µ((T ∗QX)x) in p. The K-orbits in p are parametrized
by symbols called signed Young diagrams from which we can read off corresponding
orbits (see [2]). Similarly, Matsuki and Rossmann [5], [8], [9] classified K-orbits in
the flag variety, and moreover, for classical groups, Matsuki and Oshima introduce
symbols (called clans) parametrizing these orbits [6]. Hence the map of K-orbits
in the flag variety into nilpotent K-orbits in p defined above can be expressed in
terms of the map of clans into signed Young diagrams.

In this paper, we give the subspaces µ((T ∗QX)x) ⊂ p directly from the clan which
parametrizes the corresponding K-orbit in the flag variety. We can determine the
corresponding signed Young diagram from a generic point of this space.

In this paper we treat the cases GR = U(p, q), Sp(n,R), and Sp(p, q). The same
argument can be applied to groups which have a compact Cartan subgroup. The
precise results will appear elsewhere.

We give a brief organization of this paper.
In Section 2, we treat the case of indefinite unitary groups U(p, q). After we

recall a standard notation of U(p, q), we treat K-orbit (GL(p,C)×GL(q,C)-orbit)
decomposition in the flag variety X in Section 2.1.

In Section 2.2, we recall a symbolic parametrization (called clan) of K-orbits in
the flag variety in terms of clans along [6]. Since no proofs are given in [6], we give
proofs for completeness. We give representatives of K-orbits for clans also.

In Section 2.3, we give a dimension formula of K-orbits for clans, and in Sec-
tion 2.4 a graph (called M-O graph) which has clans for vertices. The graph shows
closure relations between K-orbits.
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In Section 2.5, after we recall the moment map, we give images of the moment
map of the conormal bundles of K-orbits for clans.

In Section 2.6, we recall the parametrization of nilpotent K-orbits in p by signed
Young diagrams. Although we partly follow the treatment of [2], we do not use the
Kostant-Sekiguchi correspondence. Our method stands on the following observa-
tion: for an element X of a K-orbit in p, if we can compute the dimension of the
kernel of X i for all 1 ≤ i ≤ n, then we can obtain the signed Young diagram of the
orbit using such information. We write down tables of signed Young diagrams for
clans for U(1, 1), U(2, 1), U(2, 2), and U(p, 2) by way of examples.

In Section 3 (resp. in Section 4), we treat the case of real symplectic group
Sp(n,R) (resp. indefinite symplectic group Sp(p, q)). For applying the case of
U(2p, 2q) to the case of Sp(p, q), we use another realization of U(2p, 2q) in Sec-
tion 4).

In Section 3.2-1 (resp. in Section 4.3-1), we define a symbolic parametrization
(called generalized clan) of K-orbits (GL(n,C)-orbits (resp. Sp(p,C) × Sp(q,C)-
orbits)) in the flag variety in the same way as in the case of U(n, n) (resp. U(2p, 2q)).
Generalized clans for Sp(n,R) (resp. Sp(p, q)) are given as elements of a subset
of clans for U(n, n) (resp. U(2p, 2q)) satisfying some conditions. The notion of
generalized clans is an improvement of the notion of clans in [6].

In Section 3.2-2 (resp. in Section 4.3-2), we give representatives of K-orbits for
generalized clans.

In Section 3.3 (resp. in Section 4.4), we give a graph (called M-O graph) in terms
of [6]. Instead of clans, the graph has generalized clans for vertices.

In Section 3.4 (resp. in Section 4.5), we give a dimension formula of K-orbits for
generalized clans.

In Section 3.5 (resp. in Section 4.6), we give images of the moment map of the
conormal bundle of K-orbits for generalized clans.

In Section 3.6 (resp. in Section 4.7), we recall the parametrization of nilpotent K-
orbits in p by signed Young diagrams. Lastly, we write down tables of signed Young
diagrams for clans for Sp(1,R), Sp(2,R), and Sp(3,R) (resp. Sp(1, 1), Sp(2, 1), and
Sp(2, 2)) by way of examples.

Notation 1.0.1. Let N denote the set of positive integers; N = {1, 2, . . .}. For
n ∈ N, let an n× n matrix Eij (1 ≤ i, j ≤ n) denote the matrix unit which has 1
for the (i, j)-entry and 0 for other entries. Let an n-column vector ei be the vector
which has 1 for the i-th entry and 0 for other entries. For a matrix A, let Ast

be the (s, t)-entry of A. Let Mat(m,n) be the set of m × n-matrices over C. Let
In ∈ Mat(n, n) be the identity matrix, Jn ∈ Mat(n, n) satisfy (Jn)st = δs+t,n+1:

Jn =


0 · · · 0 1
0 · · · 1 0

0 · · · ··
·

··
·

1 · · · 0 0

 .

Let diag(a1, . . . , an) ∈ Mat(n, n) be a diagonal matrix

diag(a1, . . . , an) =


a1 0 · · · 0
0 a2 · · · 0

··
·

··
· · · · ··

·
0 0 · · · an

 .
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For a matrix A ∈ Mat(n, n) and a subset {i(1), i(2), . . . , i(m)} of {1, . . . , n}, we
denote by A(i(1),i(2),... ,i(m)) an m×m-matrix whose (s, t)-entry is Ai(s)i(t). Let #S
denote cardinality of a finite set S. For m vectors {g1, . . . , gm | gi ∈ Cn} (m < n)
let 〈g1, . . . , gm〉 be vector space spanned by {g1, . . . , gm}. Let Sn be the set of
permutations of {1, . . . , n}.

2. The case of U(p, q)

In this section we treat GR = U(p, q), i.e., GL(p,C) × GL(q,C)-orbits in the
flag variety of GL(n,C) for n = p + q. Although we restrict ourselves to the case
GR = U(p, q), Sp(n,R), and Sp(p, q) in the main body of the paper, a preliminary
discussion holds for an arbitrary linear connected reductive Lie group GR.

Let GR be a real classical Lie group with Lie algebra gR, G the complexification
of GR, θ a Cartan involution of gR. Let gR = kR+pR be the Cartan decomposition
corresponding to θ, k the complexification of kR, K the analytic subgroup of G for
k, and B a Borel subgroup of G.

We realize the indefinite unitary group GR = U(p, q) as a group of matrices
g in GL(n,C) which leave invariant a Hermitian form of the signature (p, q) in
G = GL(n,C)

x1x1 + · · ·+ xpxp − xp+1xp+1 − · · · − xnxn,

i.e.,

U(p, q) =

{
g ∈ GL(n,C)

∣∣∣∣ tg( Ip 0
0 −Iq

)
ḡ =

(
Ip 0
0 −Iq

)}
.

We fix a Cartan involution θ of GR as follows:

θ : g 7→
(
Ip 0
0 −Iq

)
g

(
Ip 0
0 −Iq

)
.

Then we have

k =

{(
K11 0
0 K22

) ∣∣∣∣∣ K11 ∈ Mat(p, p)

K22 ∈ Mat(q, q)

}
,(1)

K =

{(
K11 0
0 K22

) ∣∣∣∣∣ K11 ∈ GL(p,C)

K22 ∈ GL(q,C)

}
,(2)

' GL(p,C)×GL(q,C),

and

p =

{(
0 P12

P21 0

) ∣∣∣∣∣ P12 ∈ Mat(p, q)

P21 ∈ Mat(q, p)

}
.(3)

Let a be a Cartan subalgebra of g consisting of all diagonal matrices of g, b a Borel
subalgebra consisting of all upper triangular matrices. This choice corresponds to
the choice of simple root system Ψ:

Ψ := {α1, α2, . . . , αn−1} ⊂ a∗

where αi ∈ a∗ satisfies αi(Ejj) = δij − δi+1,j .
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2.1. GL(p,C)×GL(q,C)-orbits in the flag variety of GL(n,C). In this section
we treat orbit decomposition in a flag variety.

Definition 2.1.1. A flag x of GL(n,C) is a sequence of n+ 1 vector spaces

x = (V0, V1, V2, . . . , Vn),

satisfying the following two conditions.

1. dim Vi = i for all 0 ≤ i ≤ n.
2. {0} = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = Cn.

We denote the set of flags by X . We call X a flag variety of GL(n,C).

Remark 2.1.2. We fix a G-equivariant natural isomorphism between X and G/B.
A left coset gB ∈ G/B of an element g = (g1 . . . gn) ∈ G (here gi (1 ≤ i ≤ n) are
elements of Cn) can be identified with a flag x = (V0, V1, . . . , Vn) in the following
manner:
V0 = {0}. Vi is spanned by i-vectors g1, g2, . . . , gi−1, and gi, i.e.,

Vi = 〈g1, . . . , gi〉
for all 1 ≤ i ≤ n.

Notation 2.1.3. Let V := Cn and let θ be an involution of V such that

θ : v 7→
(
Ip 0
0 −Iq

)
v.

Let V+ and V− be the eigenspaces in V under θ for eigenvalues +1 and −1, respec-
tively:

V+ := 〈e1, . . . , ep〉 and V− := 〈ep+1, . . . , en〉.
Remark 2.1.4. This gives a decomposition into a direct sum

V = V+ ⊕ V−.(4)

Notation 2.1.5. Let π+ be the first projection and π− the second projection with
respect to the decomposition (4). Let Vi,+, Vi,− be subspaces of Vi such that

Vi,+ := Vi ∩ V+ and Vi,− := Vi ∩ V−.
We have

π−(Vi) + Vj = π+(Vi) + Vj = (Vi + V−) ∩ V+ + Vj

for i < j. Because K = {g ∈ GL(n,C) | gV+ = V+, gV− = V−}, we have

dim(kVi ∩ V+) = dim(Vi ∩ k−1V+) = dim(Vi ∩ V+)

for all k ∈ K, and so on. Therefore we have the following proposition.

Proposition 2.1.6. For a flag x = (V0, V1, . . . , Vn) ∈ X, dimVi,+, dim Vi,−, and
dim(π+(Vi) + Vj) for 0 ≤ i ≤ j ≤ n are invariant under the actions of K.

Definition 2.1.7. For a flag x = (V0, V1, . . . , Vn) ∈ X , 0 ≤ i ≤ n, and i < j, we
put

(i; +) := dimVi,+,

(i;−) := dimVi,−,
(i;N) := i− (i; +)− (i;−), and

(i; j ) := dim(π+(Vi) + Vj).
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Remark 2.1.8. We have dimπ+(Vi) = (i; +) + (i;N) and dimπ−(Vi) = (i;−) +
(i;N).

2.2. A symbolic parametrization of GL(p,C)×GL(q,C)-orbits. In this sec-
tion we recall a symbolic parametrization of K-orbits in X and give representatives
of K-orbits for the parameters.

2.2-1. Clans for U(p, q). We give a set consisting of sequences of n symbols in the
following definition. This set will parametrize K-orbits in the flag variety X .

Definition 2.2.1 (Clan). (See [6].) An indication for U(p, q) is an ordered set
(c1 · · · cn) of n symbols satisfying the following four conditions.

1. A symbol ci is +, −, or an element of N for 1 ≤ i ≤ n.
2. If ci ∈ N, then there exists a unique j 6= i with cj = ci, i.e.,

#{ i | ci = a } = 0 or 2 for any a ∈ N.

3. The difference between numbers of + and − in indications (c1 · · · cn) co-
incides with the difference of signatures of the Hermitian form defining the
group GR:

#{ i | ci = +} −#{ i | ci = −} = p− q.

4. If ci ∈ N, a ∈ N, and a < ci, then there exist some j such that cj = a.

We define an equivalence relation between two indications as follows. Two indica-
tions (c1 · · · cn) and (c′1 · · · c′n) are regarded as equivalent if and only if there
exists a permutation σ ∈ Sm with m := max{c′i ∈ N} such that

ci =

 σ(c′i) if c′i ∈ N,
+ if c′i = +,
− if c′i = −,

for 1 ≤ i ≤ n. A clan is an equivalence class of the indications with respect to the
equivalence relation. For example, (2 2 1 + 1 −) = (1 1 2 + 2 −) as a clan. We
denote the set of clans for U(p, q) by C(U(p, q)). By abuse of notation sometimes
we represent a clan γ by an indication belonging to the clan γ.

Definition 2.2.2 (Standard indication). If an indication (c1 · · · cn) of a clan sat-
isfies the following condition, we call it standard.

If ci = cj = a ∈ N for i < j, cs = ct = b ∈ N for s < t, and i < s, then
a < b.

Obviously, every clan has a unique standard indication.

Example 2.2.3. The set C(U(2, 1)) consists of six clans:

C(U(2, 1)) =

{
+ + − , + − + , − + +
+ 1 1 , 1 1 + , 1 + 1

}
.

Here (+ + − ), for example, is denoted by + + −, for simplicity.

Example 2.2.4. The set C(U(2, 2)) consists of 21 clans:
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C(U(2, 2))

=



+ + − − , + − + − , + − − + , − + + −
− + − + , − − + + , 1 1 + − , 1 1 − +
+ 1 1 − , − 1 1 + , + − 1 1 , − + 1 1
1 + 1 − , 1 − 1 + , + 1 − 1 , − 1 + 1
1 + − 1 , 1 − + 1 , 1 1 2 2 , 1 2 1 2
1 2 2 1


.

Proposition 2.2.5. For a clan (c1 · · · cn), suppose ci = cj ∈ N and i < j. If
m = j, then

#{ a ∈ N | cs = ct = a for s ≤ i < m < t }
= #{ a ∈ N | cs = ct = a for s ≤ i− 1 < m < t }.

If m < j, then

#{ a ∈ N | cs = ct = a for s ≤ i < m < t }
= #{ a ∈ N | cs = ct = a for s ≤ i− 1 < m < t }+ 1.

Proposition 2.2.6. For an x = (V0, V1, . . . , Vn) ∈ X, there exists a clan γ =
(c1 · · · cn) ∈ C(U(p, q)) satisfying the following conditions.

(i;N) = #{ a ∈ N | cs = ct = a for s ≤ i < t },(5)

(i; +) = #{ l | cl = + for l ≤ i }+ #{ a ∈ N | cs = ct = a for s < t ≤ i },(6)

(i;−) = #{ l | cl = − for l ≤ i }+ #{ a ∈ N | cs = ct = a for s < t ≤ i },(7)

(i; j ) = j + #{ a ∈ N | cs = ct = a for s ≤ i < j < t }(8)

for all 1 ≤ i ≤ n and i < j. Such a clan γ is determined uniquely by the flag x.
We call γ the clan of x.

Proof. For a flag x = (V0, V1, . . . , Vn) ∈ X , such a clan will be given inductively by
the following procedure.

1. First of all, we remark that one of (1; +), (1;−), and (1;N) is 1, and others
are 0.
(a) If (1; +) = 1, then we set c1 = +.
(b) If (1;−) = 1, then we set c1 = −.
(c) If (1;N) = 1, then we set c1 = 1.

2. Suppose we have already obtained (c1 . . . ci−1). We remark that

(i;N)− (i − 1;N) = 1, 0, or − 1.

(a) If (i;N)− (i − 1;N) = 1, then we set ci = a. Here,

a = 1 + max{ b ∈ N | cj = b, j < i }.
(b) If (i;N)− (i − 1;N) = 0, then we have either (i; +)− (i− 1; +) = 1 or

(i;−)− (i − 1;−) = 1.

(b-i) If (i; +)− (i − 1; +) = 1, then we set ci = +.
(b-ii) If (i;−)− (i − 1;−) = 1, then we set ci = −.

(c) If (i;N)− (i − 1;N) = −1, then we have

(i; +)− (i− 1; +) = 1 and(9)

(i;−)− (i− 1;−) = 1.(10)
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We will choose a j < i and put ci = cj ∈ N as follows. It follows from (9)
and (10), we have a nonzero v+ ∈ π+(Vi−1) and a nonzero v− ∈ π−(Vi−1)
such that v+ 6∈ Vi−1, v− 6∈ Vi−1 and

Vi = Vi−1 + 〈v+, v−〉.
We have a unique j ≤ i− 1 such that

v+ ∈ π+(Vj) + Vi−1 and v+ 6∈ π+(Vj−1) + Vi−1.

We set ci = cj . We will show that (c1c2 . . . cn) is a clan and satisfies the
conditions of Proposition 2.2.6.
Let v+ = v′+ + v′′+, such that v′+ ∈ π+(Vj) and v′′+ ∈ Vi−1. Then v′+ 6∈
π+(Vj−1) and v′+ ∈ Vi. Because of v′+ 6∈ Vi′ for all j < i′ < i,

(j; i′) = dim(π+(Vj) + Vi′ )

= dim(π+(Vj−1) + Vi′ + 〈 v′+ 〉 )
= dim(π+(Vj−1) + Vi′ ) + 1

= (j − 1; i′) + 1.

Thus, if i′ < i, then cj = ct ∈ N for some i′ < t. So, cj = ct for
some i ≤ t.
On the other hand, we have Vj = Vj−1 + 〈v′+ + v′−〉 for some nonzero
v′− ∈ V−. Then

(j; i ) = dim(π+(Vj) + Vi)

= dim(π+(Vj−1 + 〈v′+ + v′−〉) + Vi)

= dim(π+(Vj−1) + Vi + 〈v′+〉)
= dim(π+(Vj−1) + Vi)

= (j − 1; i ).

Thus, cj 6= ct for i < t. This means that cj = ci.

By induction, we have constructed a clan γ = (c1 . . . cn) of x.

Proposition 2.2.7. Conversely, for any clan γ ∈ C(U(p, q)), there exists a flag
x ∈ X such that γ is the clan of x.

Proof. For a clan γ = (c1 · · · cn) ∈ C(U(p, q)), such a flag will be given inductively
as follows. For 1 ≤ i ≤ n we will choose a nonzero vi ∈ V such that Vi =
〈v1, . . . , vi〉.

1. Let V0 = {0}.
2. Suppose we have already obtained (V0, V1, . . . , Vi−1).

(a) If ci = +, then we set vi = es ∈ V+ for

s = min{ l | 1 ≤ l ≤ p and el 6∈ π+(Vi−1) }.(11)

(b) If ci = −, then we set vi = et ∈ V− for

t = min{ l | p < l ≤ n and el 6∈ π−(Vi−1) }.(12)

(c) If ci = cj ∈ N for some i < j, then we set vi = es + et for an s satisfying
(11) and a t satisfying (12).

(d) If ci = cj ∈ N for j < i, then we set vi = θ(vj).
3. Let Vi = Vi−1 ⊕ 〈vi〉.

We have constructed a flag x = (V0, V1, . . . , Vn) ∈ X such that γ is a clan of x.
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For {v1, . . . , vn} given in previous proof, let g = (v1 · · · vn) ∈ G. Since all
flags in X corresponding to the clan γ ∈ C(U(p, q)) belong to the K-orbit KgB =
{ kgb | k ∈ K, b ∈ B }, we have the following theorem.

Theorem 2.2.8. Clans in C(U(p, q)) parametrize K-orbits in the flag variety X
via the correspondence in Proposition 2.2.6.

2.2-2. Representatives of GL(p,C) × GL(q,C)-orbits in GL(n,C)/B. For a clan
γ, we will give an element g ∈ G such that γ is a clan of the flag x = gB.

Definition 2.2.9 (Signed clan). A signed clan of a clan γ = (c1 · · · cn) is an
ordered set (d1 . . . dn) of n symbols +, −, a+ and a− for some a ∈ N satisfying
the following two conditions.

1. If ci = +, then di = +. If ci = −, then di = −.
2. If ci = cj = a for some a ∈ N, then (di, dj) = (a+, a−) or (a−, a+).

Example 2.2.10. There are four signed clans of ( 1 1 2 2 ):

(1+ 1− 2+ 2− ), ( 1+ 1− 2− 2+ ), ( 1− 1+ 2+ 2− ), and ( 1− 1+ 2− 2+ ).

Remark 2.2.11. As is seen above, there are several choices of signatures for a clan.
We can always adapt the special choice such that (di, dj) = (a+, a−) for i < j, which
causes no problem for U(p, q). However, other choices of signature are appropriate
for other classical groups, hence we admit an ambiguity of signatures.

Definition 2.2.12. For a signed clan δ = (d1 . . . dn), we say a signature of di is
plus if di = + or a+, minus if di = − or a−.

Notation 2.2.13. For each clan γ, let Qγ be a K-orbit in the flag variety X corre-
sponding to γ via the parametrization of Theorem 2.2.8, i.e.,

Qγ = KgB.

Although we already have representatives g ∈ G of K-orbits for clans in the
proof of Proposition 2.2.7, we give representatives in the following theorem.

Theorem 2.2.14. For a clan γ ∈ C(U(p, q)) and a signed clan δ = (d1 . . . dn) of
γ, fix a permutation σ ∈ Sn satisfying the following condition.

1 ≤ σ(i) ≤ p if the signature of di is plus,

p+ 1 ≤ σ(i) ≤ n if the signature of di is minus.
(13)

Then the representative g(δ) := g(δ, σ) = (g1 . . . gn) is a representative of Qγ,
i.e., Qγ = Kg(δ)B. Here gi ∈ V are the column vectors defined as follows:

• If di = ±, then gi = eσ(i).
• If di = a+, dj = a−, then

gi =
1√
2
( eσ(i) + eσ(j) ) and gj =

1√
2
(−eσ(i) + eσ(j) ).

Remark 2.2.15. The representative g(δ) ∈ GL(n,C) given in Theorem 2.2.14 is real
and orthogonal:

g(δ)−1 = tg(δ).



338 ATSUKO YAMAMOTO

Example 2.2.16. For a signed clan δ =
(

+ 1+ − 2+ 1− 2−
)
, if we

choose a permutation

σ =

(
1 2 3 4 5 6
1 3 5 2 6 4

)
,

we get a representative

g =



1 0 0 0 0 0
0 0 0 1√

2
0 −1√

2

0 1√
2

0 0 −1√
2

0

0 0 0 1√
2

0 1√
2

0 0 1 0 0 0
0 1√

2
0 0 1√

2
0


.

Here σ =

(
1 2 . . .
i1 i2 . . .

)
means σ(1) = i1, σ(2) = i2, and so on.

2.3. Dimensions of GL(p,C) × GL(q,C)-orbits in GL(n,C)/B. In this sec-
tion we will give a dimension formula of K-orbits for clans. For calculation of a
dimension, we need some preparations.

Notation 2.3.1. Suppose x = (V1, . . . , Vn) be a flag. We take a complementary
subspace Wi,+ of π+(Vi) in V+ (resp. Wi,− of π−(Vi) in V−):

V+ = π+(Vi)⊕Wi,+ (resp. V− = π−(Vi)⊕Wi,−).

We also take a complementary subspace W ′
i of Vi in π+(Vi)⊕ π−(Vi):

π+(Vi)⊕ π−(Vi) = Vi ⊕W ′
i .(14)

We have

V = Vi ⊕Wi,+ ⊕Wi,− ⊕W ′
i and dimW ′

i = (i;N).

Remark 2.3.2. If v ∈ Vi, then π+(v) ∈ π+(Vi). If v ∈ Wi,+ and v 6= 0, then
π+(v) = v 6∈ π+(Vi). If v ∈W ′

i , then π+(v) ∈ π+(Vi).

Proposition 2.3.3. Let (c1 · · · cn) be the clan of a flag x = (V0, · · · , Vn). If

v = v′ + w+ + w− + w′,

v′ ∈ Vi, w+ ∈ Wi,+, w− ∈ Wi,−, w′ ∈W ′
i , and

Vi+1 = Vi + 〈v〉,
then ci+1 is as follows:

1. If w+ 6= 0 and w− = 0, then we have ci+1 = +.
2. If w+ = 0 and w− 6= 0, then we have ci+1 = −.
3. If w+ 6= 0 and w− 6= 0, then we have

ci+1 = 1 + max{ cs | cs ∈ N and 1 ≤ s ≤ i }.
4. If w+ = 0 and w− = 0, then we have a unique j such that

v ∈ π+(Vj) + Vi and v 6∈ π+(Vj−1) + Vi.

Then we have ci+1 = cj ∈ N.
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Proof. 1. If w+ 6= 0 and w− = 0, then

π+(Vi+1) = π+(Vi) + 〈π+(v′) + w+ + π+(w′)〉
= π+(Vi)⊕ 〈w+〉

and π−(Vi+1) = π−(Vi) by Remark 2.3.2. Then,

dimπ+(Vi+1) = dimπ+(Vi) + 1 and dimπ−(Vi+1) = dimπ−(Vi).

Thus,

dimW ′
i+1 = dimπ+(Vi+1) + dimπ−(Vi+1)− dimVi+1

= dimπ+(Vi) + 1 + dimπ−(Vi)− (i + 1)
= dimπ+(Vi) + dimπ−(Vi)− dim Vi
= dimW ′

i

by equation (14). So (i + 1;N) = (i;N). On the other hand,

(i+ 1; +) = dimπ+(Vi+1)− (i+ 1;N)
= dimπ+(Vi) + 1− (i;N) = (i; +) + 1

by Remark 2.1.8. Therefore ci+1 = +.
2. If w+ = 0 and w− 6= 0, then ci+1 = − by the same argument of 1.
3. If w+ 6= 0 and w− 6= 0, then

dimπ+(Vi+1) = dimπ+(Vi) + 1 and dimπ−(Vi+1) = dimπ−(Vi) + 1.

Thus, (i+ 1;N) = (i;N) + 1 by the same argument of 1. Therefore,

ci+1 = 1 + max{ cs | cs ∈ N and 1 ≤ s ≤ i }.
4. By the end of the proof of Proposition 2.2.6, it is clear for w+ = 0 and w− = 0.

Corollary 2.3.4. For a flag x = (V0, . . . , Vn) and a clan (c1 · · · cn) of x, if
ci = cj ∈ N for i < j, then there exist v+ ∈ V+ and v− ∈ V− such that

Vi = Vi−1 + 〈v+ + v−〉 and Vj = Vj−1 + 〈v+, v−〉.
Proof. By the proof of Proposition 2.3.3, there exist vi ∈ V such that

π+(vi) ∈ V+ − π+(Vi−1), π−(vi) ∈ V− − π−(Vi−1),

Vi = Vi−1 + 〈vi〉,
and vj ∈ Vj−1 ⊕W ′

j−1 such that

vj ∈ π+(Vi) + Vj−1 and vj 6∈ π+(Vi−1) + Vj−1.

Since

vj ∈ π+(Vi) + π−(Vi) + Vj−1 and vj 6∈ π+(Vi−1) + π−(Vi−1) + Vj−1,

there exist v′+ ∈ π+(Vi), v
′− ∈ π−(Vi) and vj−1 ∈ Vj−1 such that

vj = v′+ + v′− + vj−1.

So, we have

Vj = Vj−1 + 〈 v′+ + v′− 〉.
Since there exist vs ∈ Vi−1 (1 ≤ s ≤ i− 1) with vi span Vi;

Vi = 〈 vs | 1 ≤ s ≤ i 〉,
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We have

π+(Vi) = 〈π+(vs) | 1 ≤ s ≤ i 〉, and π−(Vi) = 〈π−(vs) | 1 ≤ s ≤ i 〉.
Thus, there exist as, bs ∈ C for 1 ≤ s ≤ i such that

v′i =

i∑
s=1

asπ+(vs) and v′− =

i∑
s=1

bsπ−(vs).

Here, ai 6= bi. We have

Vj = Vj−1 + 〈
i∑

s=1

(asπ+(vs) + bsπ−(vs)) 〉.

By simple calculations, we have

Vi = Vi−1 + 〈
i∑

s=1

(as − bs)vs 〉

Vj = Vj−1 + 〈
i∑

s=1

(−as − bs)vs + 2

i∑
s=1

(asπ+(vs) + bsπ−(vs)) 〉

= Vj−1 + 〈
i∑

s=1

(as − bs)(π+(vs)− π−(vs)) 〉

= Vj−1 + 〈
i∑

s=1

(as − bs)π+(vs),

i∑
s=1

(as − bs)π−(vs) 〉

The two vectors

v+ =

i∑
s=1

(as − bs)π+(vs) and v− =

i∑
s=1

(as − bs)π−(vs)

satisfy the conditions of the corollary.

Proposition 2.3.5. For a clan γ ∈ C(U(p, q)), we have the following equation.∑
ci=+

(p−#{ l | cl = + for l ≤ i }

−#{ a ∈ N | cs = ct = a for s < t ≤ i })
+
∑
ci=−

(q −#{ l | cl = − for l ≤ i }

−#{ a ∈ N | cs = ct = a for s < t ≤ i })
+

∑
ci=cj∈N

j<i

(n−#{l | cl = + or − for l ≤ i}

− 2#{a ∈ N | cs = ct = a for s < t ≤ i})
=

1

2
(p(p− 1) + q(q − 1)).

(15)
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Proof. The left hand side of the equation is

∑
ci=+

(p−#{l | cl = + for l ≤ i} −#{a ∈ N | cs = ct = a for s < t ≤ i })

+
∑

ci=cj∈N
j<i

(p−#{ l | cl = + for l ≤ i } −#{ a ∈ N | cs = ct = a for s < t ≤ i })

+
∑
ci=−

(q −#{ l | cl = − for l ≤ i } −#{ a ∈ N | cs = ct = a for s < t ≤ i })

+
∑

ci=cj∈N
j<i

(q −#{ l | cl = − for l ≤ i } −#{ a ∈ N | cs = ct = a for s < t ≤ i })

=

p∑
i=1

(p− i) +

q∑
i=1

(q − i) =
1

2
(p(p− 1) + q(q − 1)).

Proposition 2.3.6. For a clan γ ∈ C(U(p, q)), we have the following equation.∑
ci=cj∈N

i<j

(j − i−#{ c̃t ∈ N | i < t < j and c̃t < c̃i })

=
∑

ci=cj∈N
i<j

(j − i−#{ a ∈ N | cs = ct = a for s < i < t < j }),
(16)

where, (c̃1 · · · c̃n) is the standard indication.

Proof. A clan (c1 · · · cn) and its standard indication (c̃1 · · · c̃n) satisfy∑
ci=cj∈N, i<j

#{ c̃t ∈ N | i < t < j and c̃t < c̃i }

=
∑

ci=cj∈N, i<j

#{ a ∈ N | cs = ct = a for s < i < t < j }.

Definition 2.3.7. We define a length `(γ) of a clan γ = (c1 · · · cn) ∈ C(U(p, q))
by the value in the previous proposition:

`(γ) :=
∑

ci=cj∈N
i<j

(j − i−#{ c̃t ∈ N | i < t < j and c̃i > c̃t })

=
∑

ci=cj∈N
i<j

(j − i−#{ a ∈ N | cs = ct = a for s < i < t < j }),

where, (c̃1 · · · c̃n) is the standard indication of γ.

Proposition 2.3.8. For γ ∈ C(U(p, q)), we have the dimension and the codimen-
sion of Qγ = Kg(δ)B:

dimQγ = `(γ) + 1
2 (p(p− 1) + q(q − 1)),

codimQγ = pq − `(γ).
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Proof. By Proposition 2.3.3, flags (V1, . . . , Vn) in Qγ satisfy the following condi-
tions.

1. If ci = +, then

Vi/Vi−1 ⊂ (Vi−1 ⊕Wi−1,+ ⊕W ′
i−1)/Vi−1.

2. If ci = −, then

Vi/Vi−1 ⊂ (Vi−1 ⊕Wi−1,− ⊕W ′
i−1)/Vi−1.

3. If ci = cj ∈ N for i < j, then

Vi/Vi−1 ⊂ V/Vi−1,

Vj/Vj−1 ⊂ (Vj−1 + π+(Vi−1))/Vj−1.

The dimension of K-orbit Qγ is the sum of the following four values.∑
ci=+

(dim(Vi−1 ⊕Wi−1,+ ⊕W ′
i−1)− dimVi−1 − 1),(17) ∑

ci=−
(dim(Vi−1 ⊕Wi−1,− ⊕W ′

i−1)− dimVi−1 − 1),(18) ∑
ci=cj∈N

i<j

(dimV − dimVi−1 − 1),(19)

∑
ci=cj∈N

i<j

(dim(Vj−1 + π+(Vi−1))− dimVj−1 − 1) :(20)

dimQγ = (17) + (18) + (19) + (20).

Four equations

(17) =
∑
ci=+

(p−#{l | cl = + for l ≤ i} −#{a ∈ N | cs = ct = a for s < t ≤ i}),

(18) =
∑
ci=−

(q −#{l | cl = − for l ≤ i} −#{a ∈ N | cs = ct = a for s < t ≤ i}),

(19) =
∑

ci=cj∈N
i<j

(n− i),

and

(20) =
∑

ci=cj∈N
i<j

#{ a ∈ N | cs = ct = a for s < i < j < t },

and Proposition 2.3.5, lead

(17) + (18) +
∑

ci=cj∈N
i<j

(n−#{l | cl = + or − for l ≤ j}

− 2#{ a ∈ N | cs = ct = a for s < t ≤ j })

=
1

2
(p(p− 1) + q(q − 1))
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and

(19) + (20)−
∑

ci=cj∈N
i<j

(n−#{l | cl = + or − for l ≤ j}

− 2#{ a ∈ N | cs = ct = a for s < t ≤ j })
=

∑
ci=cj∈N

i<j

(−i+ #{l | cl = + or − for l ≤ j}+ #{l | cl ∈ N for l ≤ j}

−#{s | cs = ct ∈ N for i < s < j < t})
=

∑
ci=cj∈N

i<j

(−i+ #{l | l ≤ j} −#{cs ∈ N | cs = ct ∈ N for i < s < j < t})

=
∑

ci=cj∈N
i<j

(−i+ j −#{ a ∈ N | cs = ct = a for i < s < j < t })

=
∑

ci=cj∈N
i<j

(−i+ j −#{ a ∈ N | cs = ct = a for s < i < t < j })

= `(γ).

Therefore,

dimQγ = (17) + (18) + (19) + (20)

=
1

2
(p(p− 1) + q(q − 1)) + `(γ).

Since dim(G/B) = 1
2n(n− 1), the codimension of Qγ is

codim(Qγ) = pq − `(γ).

2.4. M-O graph of U(p, q). We define an oriented graph from which we can read
off closure relations between K-orbits. The graph has clans as vertices in which an
edge is labeled by i for some 1 ≤ i ≤ n− 1.

Definition 2.4.1. Let Γ′(U(p, q)) be the set of all triples (γ, γ′, i), with γ, γ′ ∈
C(U(p, q)), 1 ≤ i ≤ n− 1, satisfying the following conditions. Let γ = (c1 · · · cn)
and γ′ = (c′1 · · · c′n).

1. ci 6= ci+1.
2. If (ci, ci+1) = (+,−) or (−,+), then c′i = c′i+1 ∈ N and c′j = cj otherwise:

γ′ =
(
c1 · · · ci−1 a a ci+2 · · · cn

)
for a = 1 + max{ b ∈ N | cj = b for 1 ≤ j ≤ n }.

3. If (ci, ci+1) 6= (+,−) or (−,+), then (c′i, c
′
i+1) = (ci+1, ci) and c′j = cj other-

wise:

γ′ =
(
c1 · · · ci−1 ci+1 ci ci+2 · · · cn

)
.
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Example 2.4.2.

Γ′(U(2, 1))

=


((+ − +), (1 1 +), 1), ((1 1 +), (1 + 1), 2)
((+ − +), (+ 1 1), 2), ((1 + 1), (1 1 +), 2)
((+ + −), (+ 1 1), 2), ((+ 1 1), (1 + 1), 1)
((− + +), (1 1 +), 1), ((1 + 1), (+ 1 1), 1)

 .

Remark 2.4.3. If (γ, γ′, i) ∈ Γ′(U(p, q)), γ = (c1 · · · cn) and (ci, ci+1) 6= (+,−)
or (−,+), then (γ′, γ, i) is also an element of Γ′(U(p, q)).

Proposition 2.4.4. If (γ, γ′, i) ∈ Γ′(U(p, q)), then

dimQγ′ − dimQγ = ±1.

Proof. We will prove `(γ′) − `(γ) = ±1. Suppose (γ, γ′, i) ∈ Γ′(U(p, q)) and γ =
(c1 . . . cn). Then the clans γ and γ′ are

γ′ = (c1 · · · ci−1 c
′
i c

′
i+1 ci+2 · · · cn)

and

(ci, ci+1; c
′
i, c

′
i+1) = (±,∓ ; a, a), (a,± ;±, a), (±, a ; a,±), or (a, b ; b, a)

for some a, b ∈ N. We can take (c1 · · · cn) to be the standard indication.

1. If (ci, ci+1) = (±,∓), then c′i = c′i+1 = a for some a ∈ N. Then we have∑
c′i=c′j∈N,i<j

(j − i−#{ a′ ∈ N | c′s = c′t = a′ for s < i < t < j })

−
∑

ci=cj∈N,i<j

(j − i−#{ a′ ∈ N | cs = ct = a′ for s < i < t < j })

= (i+ 1)− i−#{ a′ ∈ N | c′s = c′t = a′ for s < i < t < i+ 1 } = 1.

Thus, `(γ′)− `(γ) = 1.
2. If (ci, ci+1) = (a,±) or (±, a) for some a ∈ N, the second case follows the first

case by Remark 2.4.3. We prove that for the case of (ci, ci+1) = (a,±).
If (ci, ci+1) = (a,±), there exist j 6= i, i+ 1 such that cj = a.

(a) If i+ 1 < j, then

(j − (i + 1)−#{ a′ ∈ N | c′s = c′t = a′ for s < i+ 1 < t < j })
−(j − i−#{ a′ ∈ N | cs = ct = a′ for s < i < t < j })

= (j − (i + 1)−#{ a′ ∈ N | cs = ct = a′ for s < i < t < j })
−(j − i−#{ a′ ∈ N | cs = ct = a′ for s < i < t < j })

= (j − (i + 1))− (j − i) = −1.

There is no difference in other terms. So, `(γ′)− `(γ) = −1.
(b) If j < i, then

((i+ 1)− j −#{ a′ ∈ N | c′s = c′t = a′ for s < j < t < i+ 1 })
−(i− j −#{ a′ ∈ N | cs = ct = a′ for s < j < t < i })

= ((i + 1)− j −#{ a′ ∈ N | cs = ct = a′ for s < j < t < i })
−(i− j −#{ a′ ∈ N | cs = ct = a′ for s < j < t < i })

= ((i + 1)− j)− (i− j) = 1.

There is no difference in other terms. Therefore, `(γ′)− `(γ) = 1.
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3. If (ci, ci+1) = (a, b) for some a, b ∈ N there exist j, j′ 6∈ {i, i + 1} such that
cj = a and cj′ = b.
(a) For i+ 1 < j < j′ or i+ 1 < j′ < j, the second case follows the first case

by Remark 2.4.3.
If i+ 1 < j < j′, then we have

(j − (i + 1)−#{ a′ ∈ N | c′s = c′t = a′, s < i+ 1 < t < j }
+j′ − i−#{ b′ ∈ N | c′s = c′t = b′, s < i < t < j′ })
−(j − i−#{ a′ ∈ N | cs = ct = a′, s < i < t < j }

+j′ − (i+ 1)−#{ b′ ∈ N | cs = ct = b′, s < i+ 1 < t < j′ })
= (j − (i+ 1)−#{ a′ ∈ N | cs = ct = a′, s < i < t < j }

+j′ − i−#{ b′ ∈ N | cs = ct = b′, s < i+ 1 < t < j′ } −#{ a })
−(j − i−#{ a′ ∈ N | cs = ct = a′, s < i < t < j }

+j′ − (i+ 1)−#{ b′ ∈ N | cs = ct = b′, s < i+ 1 < t < j′ })
= (j − (i+ 1) + j′ − i− (−1))− (j − i+ j′ − (i+ 1)) = 1.

There is no difference in other terms. Hence, `(γ′)− `(γ) = 1.
(b) For j < i < i+ 1 < j′ or j′ < i < i+ 1 < j, the second case follows the

first case by Remark 2.4.3.
If j < i < i+ 1 < j′, then

((i + 1)− j −#{ a′ ∈ N | c′s = c′t = a′, s < j < t < i+ 1 }
+j′ − i−#{ b′ ∈ N | c′s = c′t = b′, s < i < t < j′ })
−(i− j −#{ a′ ∈ N | cs = ct = a′, s < j < t < i }

+j′ − (i+ 1)−#{ b′ ∈ N | cs = ct = b′, s < i+ 1 < t < j′ })
= ((i + 1)− j −#{ a′ ∈ N | cs = ct = a′, s < j < t < i }

+j′ − i− (#{ b′ ∈ N | cs = ct = b′, s < i+ 1 < t < j′ }+ #{ a }))
−(i− j −#{ a′ ∈ N | cs = ct = a′, s < j < t < i }

+j′ − (i+ 1)−#{ b′ ∈ N | cs = ct = b′, s < i+ 1 < t < j′ })
= ((i + 1)− j + j′ − i− 1)− (i − j + j′ − (i+ 1)) = 1.

There is no difference in other terms. Thus, `(γ′)− `(γ) = 1.
(c) For j < j′ < i or j′ < j < i, the second case follows the first case by

Remark 2.4.3.
If j < j′ < i, then

((i + 1)− j −#{ a′ ∈ N | c′s = c′t = a′, s < j < t < i+ 1 }
+i− j′ −#{ b′ ∈ N | c′s = c′t = b′, s < j′ < t < i })
−(i− j −#{ a′ ∈ N | cs = ct = a′, s < j < t < i }

+(i+ 1)− j′ −#{ b′ ∈ N | cs = ct = b′, s < j′ < t < i+ 1 })
= ((i + 1)− j −#{ a′ ∈ N | cs = ct = a′, s < j < t < i }

+i− j′ − (#{ b′ ∈ N | cs = ct = b′, s < j′ < t < i + 1 } −#{ a }))
−(i− j −#{ a′ ∈ N | cs = ct = a′, s < j < t < i }

+(i+ 1)− j′ −#{ b′ ∈ N | cs = ct = b′, s < j′ < t < i+ 1 })
= ((i + 1)− j + i− j′ − (−1))− (i− j + (i + 1)− j′) = 1.

Therefore we have `(γ′)− `(γ) = ±1 for all (γ, γ′, i) ∈ Γ′(U(p, q)).
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We define subsets of C(U(p, q)) of which, elements have the same length.

Definition 2.4.5. Let Cm(U(p, q)) be the set of clans of the length m:

Cm(U(p, q)) := { γ ∈ C(U(p, q)) | `(γ) = m }.
Then we have

C(U(p, q)) =
⊔
m≥0

Cm(U(p, q)).(21)

Remark 2.4.6. If γ ∈ C0(U(p, q)), i.e., `(γ) = 0, then Qγ is a closed orbit.

Proposition 2.4.7. If (c1 . . . cn) ∈ C0(U(p, q)), then ci = + or − for all i, i.e.,

C0(U(p, q)) = { (c1 . . . cn) ∈ C(U(p, q)) | ci 6∈ N for all 1 ≤ i ≤ n }.
Proof. For γ = (c1 . . . cn) ∈ C(U(p, q)), if ci = cj ∈ N for some i < j,

j − i−#{ a ∈ N | cs = ct = a, s < i < t < j } > 0.

Therefore if ci = cj ∈ N, then `(γ) > 0, and if ci 6∈ N for all 1 ≤ i ≤ n, then
`(γ) = 0.

Notation 2.4.8. We denote by Bi the parabolic subgroup of G for the root −αi and
all positive roots:

Bi = {X ∈ GL(n,C) | Xst = 0 if s > t and (s, t) 6= (i + 1, i)}.
Let

πi : G/B → G/Bi

be the canonical projection.

Remark 2.4.9. The projection πi sends (V0, . . . , Vn) ∈ G/B to

(V0, . . . , Vi−1, Vi+1, . . . , Vn).

For (γ, γ′, i) ∈ Γ′(U(p, q)), there are two flags

(V0, . . . , Vi−1, Vi, Vi+1, . . . , Vn)

having the clan γ and

(V0, . . . , Vi−1, V
′
i , Vi+1, . . . , Vn)

having the clan γ′, by Theorem 2.2.14. Therefore we have the following proposition.

Proposition 2.4.10. If (γ, γ′, i) ∈ Γ′(U(p, q)), then

πi(Qγ) = πi(Q
′
γ).

By following [6], we introduce an oriented graph.

Definition 2.4.11 (M-O graph of U(p, q)). We give subsets Γm(U(p, q)) of
Γ′(U(p, q)) for m ≥ 1 as follows:

Γm(U(p, q)) := { (γ, γ′, i) ∈ Γ′(U(p, q)) | γ ∈ Cm−1(U(p, q)), γ′ ∈ Cm(U(p, q)) }.
The M-O graph of U(p, q) is a finite oriented graph whose vertices are C(U(p, q))
and whose oriented edges are Γ(U(p, q)) :=

⋃
m∈N Γm(U(p, q)) .
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Example 2.4.12.

Γ1(U(2, 1)) =

{
((−+ +), (1 1 +), 1), ((+ −+), (1 1 +), 1),
((+ +−), (+ 1 1), 2), ((+ −+), (+ 1 1), 2)

}
Γ2(U(2, 1)) =

{
((1 1 +), (1 + 1), 2), ((+ 1 1), (1 + 1), 1)

}
Γ(U(2, 1)) = Γ1(U(2, 1)) ∪ Γ2(U(2, 1)).

If we denote (γ, γ′, i) by γ -i γ′, the M-O graph of U(2, 1) is as in Figure 1.

Remark 2.4.13. If (γ, γ′, i) ∈ Γ(U(p, q)), then

dimQγ + 1 = dimQγ′ and πi(Qγ) = πi(Qγ′).(22)

2.5. Images of the moment map. In this section we give the image of the
moment map of a fiber of the conormal bundle of the K-orbit for each clan.

For each point x ∈ X the morphism G → X sending g ∈ G to gx gives rise to
a linear map g → Tx(X), the tangent-map at x, and to a dual map T ∗x (X) → g∗

from the cotangent bundle into the dual of the Lie algebra, the cotangent-map for
x ∈ X at x. The collection of tangent-maps g → Tx(X) at the various points x ∈ X
gives rise to an algebraic map g×X → T (X), compatible with the projections to
the base space X . Composing the cotangent-map with the map forgetting the base
point in X , we obtain a canonical map T ∗(X) → g∗ from the cotangent-bundle
into the dual of the Lie algebra, denoted by µ. We call it the moment map of the
G-space X . (for example [1].)

Let ϕ be the morphism G→ X sending g ∈ G to gx for x ∈ X . Then we obtain
a linear map dϕ : g = TeG→ Tx(X) and a dual map (dϕ)∗ : T ∗x (X) → T ∗eG = g∗.

Let Gx be the stabilizer of x in G and gx its Lie algebra. Since the kernel of dϕ
is gx, the image of (dϕ)∗ is (gx)

⊥. Here

(gx)
⊥ := { ξ ∈ g∗ | 〈ξ, a〉 = 0 for all a ∈ gx }(23)

and 〈 · , · 〉 : g∗ × g → C.
Let ψ be the morphism K → X sending k ∈ K to kx. Then we have ψ = ϕ|K

and dψ = dϕ|k. The image of ψ is the K-orbit Q of x in X : Q = {kx | k ∈ K}.
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The fiber (T ∗QX)x of conormal bundle T ∗QX at x is

(T ∗QX)x = { η ∈ (T ∗X)x | 〈η, u〉 = 0 for all u ∈ TxQ }
= { η ∈ (T ∗X)x | 〈η, dψ(a)〉 = 0 for all a ∈ k }
= { η ∈ (T ∗X)x | 〈η, dϕ(a)〉 = 0 for all a ∈ k }
= { η ∈ (T ∗X)x | 〈(dϕ)∗(η), a〉 = 0 for all a ∈ k }
= { η ∈ T ∗QX | (dϕ)∗(η) ∈ k⊥ }.

(24)

By (23) and (24) we have

(dϕ)∗((T ∗QX)x) = (gx)
⊥ ∩ k⊥.

Hence, the image of the moment map µ((T ∗QX)x) is (gx)
⊥ ∩ k⊥, where

(gx)
⊥ = { ξ ∈ g∗ | 〈ξ, a〉 = 0 for all a ∈ gx },

k⊥ = { ξ ∈ g∗ | 〈ξ, a〉 = 0 for all a ∈ k }.
For a representative g′ ∈ G with x = g′B, we have Gx = g′ · B · g′−1

and gx =
Ad(g′)b. Thus, we have

(gx)
⊥ ∩ k⊥ = (Ad∗(g′)b)⊥ ∩ k⊥.

By identifying g∗ with the dual of g by means of a nondegenerate symmetric invari-
ant bilinear form on g, the image of the moment map is identified with the vector

subspace (Ad(tg′−1
)b⊥)∩ p of g. Here b⊥ is a subalgebra of g that is orthogonal to

b:

b⊥ = { b ∈ g | β(b, b′) = 0 for all b′ ∈ b },
= { b ∈ g | bij = 0 if i ≤ j }.

where β(x, y) is the trace of txy on g:

β(x, y) = tr txy for x, y ∈ g.

For a clan γ = (c1 . . . cn) ∈ C(U(p, q)), fix a signed clan δ of γ. Let g(δ) be a
representative given as in Theorem 2.2.14. Then tg(δ)−1 = g(σ). We will describe
the image of the moment map µ((T ∗Qγ

X)x) = (Ad(g(δ))b⊥) ∩ p for x = g(δ)B.

We regard Sp ×Sq as a subgroup of Sn as follows:

Sp ×Sq ⊂ Sn

(σ1, σ2) = σ′ ; σ′(i) =

{
σ1(i) if 1 ≤ i ≤ p,

σ2(i− p) + p if p+ 1 ≤ i ≤ n.

We regard σ ∈ Sn as an element of GL(n,C) such that σ(ei) = eσ(i) for all
1 ≤ i ≤ n, i.e.,

σ =
(
eσ(1) · · · eσ(n)

) ∈ GL(n,C).

Then Sp×Sq is a subgroup of K. The theorem following the next definition gives
the image of the moment map.

Definition 2.5.1 (Driving space for U(p, q)). For a signed clan δ = (d1 . . . dn) of
a clan γ, we give the following vector subspace Dri(δ) of g and call it driving space
of δ (for U(p, q)).

Dri(δ) := { Y ∈ g | Y satisfies the following conditions }.
1. If di and dj have the same signature, then Yij = Yji = 0.
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2. If ci = cj ∈ N, then Yij = Yji = 0.
3. Let di = a+, dj = a−, ds = b+, dt = b−, dl = +, dm = −.

(a) Ymin(l,m),max(l,m) = 0.
(b) If min(i, j) < l < max(i, j), then Yjl = Ylj = 0.
(c) If min(i, j) < m < max(i, j), then Yim = Ymi = 0.
(d) If l < min(i, j), then Ylj = 0.
(e) If m < min(i, j), then Ymi = 0.
(f) If max(i, j) < l, then Yjl = 0.
(g) If max(i, j) < m, then Yim = 0.
(h) If max(i, j) < min(s, t), then Yit = Yjs = 0.
(i) If min(i, j) < min(s, t) < max(i, j) < max(s, t), then

• Yit = Yjs = 0, Yti = Ysj if the signature of dmin(i,j) is equal to the
signature of dmin(s,t).

• Yit = Yjs = 0, Yti + Ysj = 0 if the signature of dmin(i,j) is not equal
to the signature of dmin(s,t).

(j) If min(i, j) < min(s, t) < max(s, t) < max(i, j), then Yit = Yti = Yjs =
Ysj = 0.

Proposition 2.5.2. For a clan γ = (c1 · · · cn) ∈ C(U(p, q)), fix a signed clan δ =
(d1 · · · dn) of γ. Let the representative g := g(δ, σ) be given as in Theorem 2.2.14
and x = gB ∈ Qγ. We can read off µ(T ∗Qγ

X)x from Dri(δ) as follows:

µ
(
(T ∗Qγ

X)x

)
= { Y(σ−1(1),... ,σ−1(n)) | Y ∈ Dri(δ)}.

Proposition 2.5.2 means

µ
(
(T ∗Qγ

X)x

)
= (Ad(g)b⊥) ∩ p = { Y(σ−1(1),... ,σ−1(n)) | Y ∈ Dri(δ)}

= {σY σ−1 |Y ∈ Dri(δ)}
= Ad(σ)Dri(δ).

Corollary 2.5.3. For a representative g = g(δ, σ) of Qγ given in Theorem 2.2.14
and x = gB, the driving space is the following space.

Dri(δ) = Ad(σ−1)µ
(
(T ∗Qγ

X)x

)
= {A(σ(1),... ,σ(n)) | A ∈ µ

(
(T ∗Qγ

X)x

)
}.

Proof of Proposition 2.5.2. For two representatives g(δ, σ) and g(δ, σ′) there exists
σ′′ ∈ Sp ×Sq ⊂ Sn such that σ′ = σ′′σ. Then

g(δ, σ′) = σ′′g(δ, σ).

Suppose Proposition 2.5.2 is true for g(δ, σ), i.e.,

(Ad(g(δ, σ))b⊥) ∩ p = Ad(σ)Dri(δ).

Then

(Ad(g(δ, σ′)) · b⊥) ∩ p = (Ad(σ′′ · g(δ, σ)) · b⊥) ∩ p

= Ad(σ′′)((Ad(g(δ, σ)) · b⊥) ∩ p)

= Ad(σ′′)Ad(σ)Dri(δ)

= Ad(σ′′σ)Dri(δ)

= Ad(σ′)Dri(δ).
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Thus, Proposition 2.5.2 is also true for g(δ, σ′). So, we prove Proposition 2.5.2 for
one case.

We calculate each element of gb⊥g−1 ∩ p.
Let b ∈ b⊥. We have

(gbg−1)st =
∑n

i=1

∑n
j=1 gsi bij gtj

=
∑

i,j∈{1,... ,n},i>j gsi bij gtj .
(25)

1. If (di, dj) = (+,+) or (−,−) for i < j, then we may assume σ(i) < σ(j).
Since

{A′(σ(i),σ(j)) | A′ ∈ p } =

{(
0 0
0 0

)}
,

we have

{A(σ(i),σ(j)) | A ∈ (Ad(g)b⊥) ∩ p } =

{(
0 0
0 0

)}
= {Y(i,j) | Y ∈ Dri(δ)}.

2. If (di, dj) = (a+, a−), then σ(i) ≤ p < σ(j). Let i′ = min(i, j) and j′ =
max(i, j). We have

{ (Ad(g)b)(σ(i),σ(j)) | b ∈ b⊥ } =

{
g′
(

0 0
bj′i′ 0

)
tg′
}

=

{(
y ±y
∓y −y

)}
and

{A′(σ(i),σ(j)) | A′ ∈ p } =

{(
0 zσ(i)σ(j)

zσ(j)σ(i) 0

)}
,

where g′ = g̃ or kg̃ for

g̃ :=

(
1√
2

− 1√
2

1√
2

1√
2

)
and k :=

( −1 0
0 1

)
∈ GL(1,C)×GL(1,C) ↪→ K.

So,

{A(σ(i),σ(j)) | A ∈ (Ad(g)b⊥) ∩ p } =

{(
0 0
0 0

)}
= {Y(i,j) | Y ∈ Dri(δ)}.

3. If (dl, dm) = (+,−) for l < m, then σ(l) ≤ p < σ(m). We have

{ (Ad(g)b)(σ(l),σ(m)) | b ∈ b⊥ } =

{(
1 0
0 1

)(
0 0
bml 0

)(
1 0
0 1

)}
and

{A′(σ(l),σ(m)) | A′ ∈ p } =

{(
0 zσ(l)σ(m)

zσ(m)σ(l) 0

)}
.

Therefore,

{A(σ(l),σ(m)) | A ∈ (Ad(g)b⊥) ∩ p } =

{(
0 0
yml 0

)}
= { Y(l,m) | Y ∈ Dri(δ) }.
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4. If (dm, dl) = (−,+) for m < l, then σ(l) ≤ p < σ(m). By the same argument
of 3, we have

{A(σ(l),σ(m)) | A ∈ (Ad(g)b⊥) ∩ p }

=

{(
0 1
1 0

)(
0 0
blm 0

)(
0 1
1 0

)}
∩
{(

0 zσ(l)σ(m)

zσ(m)σ(l) 0

)}
=

{(
0 ylm
0 0

)}
= { Y(l,m) | Y ∈ Dri(δ) }.

5. If (di, dj) = (a+, a−) and dl = + for min(i, j) < l < max(i, j), then we may
assume σ(i) < σ(l) ≤ p < σ(j). Let i′, j′, l′ ∈ N satisfy

{i′, j′, l′} = {i, j, l} and i′ < j′ < l′.(26)

We have

{ (gbg−1)(σ(i),σ(l),σ(j)) | b ∈ b⊥ } =

g′
 0 0 0

bj′i′ 0 0
bl′i′ bl′j′ 0

 tg′

(27)

and

{A′(σ(i),σ(l),σ(j)) | A′ ∈ p } =


 0 0 zσ(i)σ(j)

0 0 zσ(l)σ(j)

zσ(j)σ(i) zσ(j)σ(l) 0

(28)

for g′ = g̃ or kg̃. Here,

g̃ :=

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2


and

k :=

 −1 0 0
0 1 0
0 0 1

 ∈ GL(2,C)×GL(1,C) ↪→ K.(29)

Therefore,

{A(σ(i),σ(l),σ(j)) | A ∈ (Ad(g)b⊥) ∩ p } =


0 0 0

0 0 0
0 0 0


= {Y(i,l,j) | Y ∈ Dri(δ)}.

6. If (di, dj) = (a+, a−) and dm = − for min(i, j) < m < max(i, j), then we may
assume σ(i) ≤ p < σ(m) < σ(j). Let i′, j′,m′ ∈ N satisfy

{ i′, j′,m′ } = { i, j,m } and i′ < j′ < m′.(30)

We have

{ (gbg−1
)
(σ(i),σ(m),σ(j))

| b ∈ b⊥ } =

g′
 0 0 0

bj′i′ 0 0
bm′i′ bm′j′ 0

 tg′

(31)

and

{A′(σ(i),σ(m),σ(j)) | A′ ∈ p } =


 0 zσ(i)σ(m) zσ(i)σ(j)

zσ(m)σ(i) 0 0
zσ(j)σ(i) 0 0

(32)
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for g′ = g̃ or kg̃. Here,

g̃ :=

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2


and

k :=

−1 0 0
0 1 0
0 0 1

 ∈ GL(1,C)×GL(2,C) ↪→ K.(33)

Hence,

{A(σ(i),σ(m),σ(j)) | A ∈ (Ad(g)b⊥) ∩ p} =


0 0 0

0 0 0
0 0 0


= {Y(i,m,j) | Y ∈ Dri(δ)}.

7. If (di, dj) = (a+, a−) and dl = + for l < min(i, j), then we may assume
σ(i) < σ(l) ≤ p < σ(j). Let i′, j′, l′ ∈ N satisfy (26). We have (27) and
(28), where g′ = g̃ or kg̃ for

g̃ :=

 0 1√
2

− 1√
2

1 0 0
0 1√

2
1√
2


and k is as in (29). Hence,

{A(σ(i),σ(l),σ(j)) | (Ad(g)b⊥) ∩ p } =


 0 0 0

0 0 0
0 yjl 0


= { Y(i,l,j) | Y ∈ Dri(δ) }.

8. If (di, dj) = (a+, a−) and dm = − for m < min(i, j), then we may assume
σ(i) ≤ p < σ(m) < σ(j). Let i′, j′,m′ ∈ N satisfy (30). We have (31) and
(32), where g′ = g̃ or kg̃ for

g̃ :=

 0 1√
2

− 1√
2

1 0 0
0 1√

2
1√
2


and k is as in (33). Thus,

{A(σ(i),σ(m),σ(j)) | A ∈ (Ad(g)b⊥) ∩ p } =


 0 yim 0

0 0 0
0 0 0


= { Y(i,m,j) | Y ∈ Dri(δ) }.

9. If (di, dj) = (a+, a−) and dl = + for max(i, j) < l, then we may assume
σ(i) < σ(l) ≤ p < σ(j). Let i′, j′, l′ ∈ N satisfy (26). We have (27) and (28),
where g′ = g̃ or kg̃ for

g̃ :=

 1√
2

− 1√
2

0

0 0 1
1√
2

1√
2

0
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and k is as (29). So,

{A(σ(i),σ(l),σ(j)) | A ∈ (Ad(g)b⊥) ∩ p } =


 0 0 0

0 0 ylj
0 0 0


= { Y(i,l,j) | Y ∈ Dri(δ) }.

10. If (di, dj) = (a+, a−) and dm = − for max(i, j) < m, then we may assume
σ(i) ≤ p < σ(m) < σ(j). Let i′, j′,m′ ∈ N satisfy (30). We have (31) and
(32), where g′ = g̃ or kg̃ for

g̃ :=

 1√
2

− 1√
2

0

0 0 1
1√
2

1√
2

0


and k is as in (33). Therefore,

{A(σ(i),σ(m),σ(j)) | A ∈ (Ad(g)b⊥) ∩ p} =


 0 0 0
ymi 0 0
0 0 0


= {Y(i,m,j) | Y ∈ Dri(δ)}.

11. If (di, dj) = (a+, a−) and (ds, dt) = (b+, b−) for max(i, j) < min(t, s), then
we may assume σ(i) < σ(s) ≤ p < σ(j) < σ(t). Let i′, j′, s′, t′ ∈ N satisfy

{i′, j′, s′, t′} = {i, j, s, t} and i′ < j′ < s′ < t′.(34)

We have

{ (gbg−1
)
(σ(i),σ(s),σ(j),σ(t))

| b ∈ b⊥ } =

g


0 0 0 0
bj′i′ 0 0 0
bs′i′ bs′j′ 0 0
bt′i′ bt′j′ bt′s′ 0

 tg


(35)

and

{A(σ(i),σ(s),σ(j),σ(t)) | A ∈ p } =




0 0 zσ(i)σ(j) zσ(i)σ(t)

0 0 zσ(s)σ(j) zσ(s)σ(t)

zσ(j)σ(i) zσ(j)σ(s) 0 0
zσ(t)σ(i) zσ(t)σ(s) 0 0




(36)

for g′ = g̃, k1g̃, k2g̃ or k1k2g̃. Here,

g̃ :=


1√
2

− 1√
2

0 0

0 0 1√
2

− 1√
2

1√
2

1√
2

0 0

0 0 1√
2

1√
2


and k1, k2 ∈ K are

k1 :=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∈ GL(2,C)×GL(2,C) ↪→ K(37)
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and

k2 :=


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ∈ GL(2,C)×GL(2,C) ↪→ K.(38)

Hence,

{A(σ(i),σ(s),σ(j),σ(t)) | A ∈ (Ad(g)b⊥) ∩ p } =




0 0 0 0
0 0 ysj 0
0 0 0 0
yti 0 0 0




= { Y(i,s,j,t) | Y ∈ Dri(δ) }.
12. If (di, dj) = (a+, a−) and (ds, dt) = (b+, b−) for min(i, j) < min(t, s) <

max(i, j) < max(t, s), then we may assume σ(i) < σ(s) ≤ p < σ(j) < σ(t).
Let i′, j′, s′, t′ ∈ N satisfy (34). We have (36) and (35) for g′ = g̃, k1g̃, k2g̃
or k1k2g̃. Here,

g̃ :=


1√
2

0 − 1√
2

0

0 1√
2

0 − 1√
2

1√
2

0 1√
2

0

0 1√
2

0 1√
2


and k1, k2 are as (37) and (38). Thus,

{A(σ(i),σ(s),σ(j),σ(t)) | A ∈ (Ad(g)b⊥) ∩ p }

=






0 0 0 0
0 0 yti 0
0 0 0 0
yti 0 0 0


 if g′ = g̃ or k1k2g̃,




0 0 0 0
0 0 −yti 0
0 0 0 0
yti 0 0 0


 if g′ = k1g̃ or k2g̃.

So,

{A(σ(i),σ(s),σ(j),σ(t)) | A ∈ (Ad(g)b⊥) ∩ p } = { Y(i,s,j,t) | Y ∈ Dri(δ) }.
13. If (di, dj) = (a+, a−), (ds, dt) = (b+, b−) for min(i, j)<min(s, t) <max(s, t) <

max(i, j), then we may assume σ(i) < σ(s) ≤ p < σ(j) < σ(t). Let
i′, j′, s′, t′ ∈ N satisfy (34). We have (36) and (35) for g′ = g̃, k1g̃, k2g̃,
or k1k2g̃. Here,

g̃ :=


1√
2

0 0 − 1√
2

0 1√
2

− 1√
2

0
1√
2

0 0 1√
2

0 1√
2

1√
2

0

 ,
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and k1 and k2 are as (37) and (38). Thus,

{A(σ(i),σ(s),σ(j),σ(t)) | A ∈ (Ad(g)b⊥) ∩ p } =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




= { Y(i,s,j,t) | Y ∈ Dri(δ) }.
We have finished proving Proposition 2.5.2 for all the elements.

Since g(δ) = (eσ(1) . . . eσ(n)) = σ, if a clan γ corresponds to a closed orbit, we have
the following lemma.

Lemma 2.5.4. If a clan γ is an element of C0(U(p, q)), then

Dri(δ) = b⊥ ∩ (tg(δ) p g(δ)).

Definition 2.5.5 (Driving matrix for U(p, q)). Let δ = (d1 . . . dn) be a signed clan
of γ = (c1 . . . cn) satisfying the following condition.

If ci = cj = a ∈ N for i < j, then (di, dj) = (a+, a−).(39)

Let F be a field C( yst | 1 ≤ s, t ≤ n ) generated by algebraically independents yst
for 1 ≤ s, t ≤ n. Let Y (γ) and Y (γ,m), 1 ≤ m ≤ 6 be elements of F ⊗C Mat(n, n)
satisfying the following conditions.

1. Y (γ, 1)ij =

{
1 if i > j,
0 if i ≤ j.

2. Y (γ, 2)ij =

{
0 if (di, dj) = (+,+) or (−,−),
Y (γ, 1)ij otherwise.

3. If (ds, dt) = (a+, a−) for some a ∈ N, then

• Y (γ, 3)s,k1 = 0 if 1 ≤ k1 ≤ s,

• Y (γ, 3)k2,s = Y (γ, 3)t,k2 = 0 if s < k2 ≤ t,

• Y (γ, 3)k3,t = 0 if t < k3 ≤ n,

and Y (γ, 3)ij = Y (γ, 2)ij otherwise.

Remark 2.5.6. If Y (γ, 3)ij = 1, then the following conditions are satisfied.

(a) j < i.
(b) (di, dj) = (a−, b+), (a−,+), (a−,−), (+, a+), (−, a+), (+,−), or (−,+)

for some a, b ∈ N, a 6= b.
(c) If di = a− for some a ∈ N, then we have dk = a+ for some j < k < i.
(d) If dj = a+ for some a ∈ N, then we have dk = a− for some j < k < i.

4. If Y (γ, 3)ij = 1, (di, dj) = (a−, b+) and (dk, dl) = (a+, b−) for some a, b ∈ N,
then

Y (γ, 4)ij = yij ,

Y (γ, 4)kl =

{
yij if j < k < l < i,
ykl if j < l < k < i,

and Y (γ, 4)i′j′ = Y (γ, 3)i′j′ otherwise.
5. If Y (γ, 4)ij = 1, (di, dj) = (a−,−), and dk = a+ for some a ∈ N, then

Y (γ, 5)ij = 0, Y (γ, 5)kj = ykj ,

and Y (γ, 5)i′j′ = Y (γ, 4)i′j′ otherwise.
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Table 1

1+ + 2+1−3+ + 3−2−

1+

+

2+

1−
3+

+

3−
2−

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1+ + 2+1−3+ + 3−2−

1+

+

2+

1−
3+

+

3−
2−

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1+ + 2+1−3+ + 3−2−

1+

+

2+

1−
3+

+

3−
2−

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0

Figure for Y (γ, 1) Figure for Y (γ, 2) Figure for Y (γ, 3)

1+ + 2+1−3+ + 3−2−

1+

+

2+

1−
3+

+

3−
2−

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 y81 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 y54 0 0 0 0

1 0 0 0 0 0 0 0
y71 1 0 0 0 0 0 0
y81 1 0 0 0 0 0 0

1+ + 2+1−3+ + 3−2−

1+

+

2+

1−
3+

+

3−
2−

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 y81 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 y54 0 0 0 0

0 0 0 y64 0 0 0 0
y71 1 0 0 0 0 0 0
y81 1 0 0 0 0 0 0

1+ + 2+1−3+ + 3−2−

1+

+

2+

1−
3+

+

3−
2−

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 y81 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 y54 0 0 0 0

0 0 0 y64 0 0 0 0
y71y72 0 0 0 0 0 0
y81y82 0 0 0 0 0 0

Figure for Y (γ, 4) Figure for Y (γ, 6) Figure for Y (γ)

6. If Y (γ, 5)ij = 1, (di, dj) = (+, a+), and dk = a− for some a ∈ N, then

Y (γ, 6)ij = 0, Y (γ, 6)ik = yik,

and Y (γ, 6)i′j′ = Y (γ, 5)i′j′ otherwise.

7. Y (γ)ij =

yij if Y (γ, 6)ij = 1,

Y (γ, 6)ij otherwise.

We call Y (γ) the driving matrix of γ (for U(p, q)).

Example 2.5.7. For a clan γ = (1 + 2 1 3 + 3 2), the signed clan of γ is δ =
(1+ + 2+ 1− 3+ + 3− 2−). We give figures for Y (γ,m), 1 ≤ m ≤ 6 and Y (γ) in
Table 1. In these figures, the entry which is in the same row of ci and the same
column of cj is the (i, j)-entry of the matrix. Therefore the driving matrix Y (γ) is
as follows:

Y (γ) =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 y81 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 y54 0 0 0 0

0 0 0 y64 0 0 0 0

y71 y72 0 0 0 0 0 0

y81 y82 0 0 0 0 0 0


.

We can read off Dri(δ) from Y (γ).
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Proposition 2.5.8. Let δ be the signed clan satisfying condition (39) of a clan γ,
then

Dri(δ) = { Y (γ) | yij ∈ C for 1 ≤ i, j ≤ n }.
Proof. Let δ be the signed clan of γ satisfying condition (39). We compare Y (γ)
and Y ∈ Dri(δ).

1. If (di, dj) = (+,+) or (−,−) for i < j, then

Y (γ)(i,j) =

(
0 0
0 0

)
and Y(i,j) =

(
0 0
0 0

)
.

2. If (di, dj) = (a+, a−), then i < j and

Y (γ)(i,j) =

(
0 0
0 0

)
and Y(i,j) =

(
0 0
0 0

)
.

3. If (di, dj) = (+,−) or (−,+), and i < j, then

Y (γ)(i,j) =

(
0 0
yji 0

)
and Y(i,j) =

(
0 0
xji 0

)
for some xji ∈ C.

4. If (di, dl, dj) = (a+,+, a−) and i < l < j, then

Y (γ)(i,l,j) =

 0 0 0
0 0 0
0 0 0

 and Y(i,l,j) =

 0 0 0
0 0 0
0 0 0

 .

5. If (di, dm, dj) = (a+,−, a−) and i < m < j, then

Y (γ)(i,m,j) =

 0 0 0
0 0 0
0 0 0

 and Y(i,m,j) =

 0 0 0
0 0 0
0 0 0

 .

6. If (dl, di, dj) = (+, a+, a−) and l < i < j, then

Y (γ)(l,i,j) =

 0 0 0
0 0 0
yjl 0 0

 and Y(l,i,j) =

 0 0 0
0 0 0
xjl 0 0


for some xjl ∈ C.

7. If (dm, di, dj) = (−, a+, a−) and m < i < j, then

Y (γ)(m,i,j) =

 0 0 0
yim 0 0
0 0 0

 and Y(m,i,j) =

 0 0 0
xim 0 0
0 0 0


for some xim ∈ C.

8. If (di, dj , dl) = (a+, a−,+) and i < j < l, then

Y (γ)(i,j,l) =

 0 0 0
0 0 0
0 ylj 0

 and Y(i,j,l) =

 0 0 0
0 0 0
0 xlj 0


for some xlj ∈ C.
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9. If (di, dj , dm) = (a+, a−,−) and i < j < m, then

Y (γ)(i,j,m) =

 0 0 0
0 0 0
ymi 0 0

 and Y(i,j,m) =

 0 0 0
0 0 0
xmi 0 0



for some xmi ∈ C.
10. If (di, dj , ds, dt) = (a+, a−, b+, b−) and i < j < s < t, then

Y (γ)(i,j,s,t) =


0 0 0 0
0 0 0 0
0 ysj 0 0
yti 0 0 0

 and Y(i,j,s,t) =


0 0 0 0
0 0 0 0
0 xsj 0 0
xti 0 0 0



for some xsj , xti ∈ C.
11. If (di, ds, dj , dt) = (a+, b+, a−, b−) and i < s < j < t, then

Y (γ)(i,s,j,t) =


0 0 0 0
0 0 yti 0
0 0 0 0
yti 0 0 0

 and Y(i,s,j,t) =


0 0 0 0
0 0 xti 0
0 0 0 0
xti 0 0 0



for some xti ∈ C.
12. If (di, ds, dt, dj) = (a+, b+, b−, a−) and i < s < t < j, then

Y (γ)(i,s,t,j) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and Y(i,s,t,j) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

We got Dri(δ) = { Y (γ) | yij ∈ C for 1 ≤ i, j ≤ n }.

Example 2.5.9. For γ = (− + +), we have

Dri(δ) =


 0 0 0

y21 0 0
y31 0 0

 ∣∣∣∣∣∣ yij ∈ C

 .
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By Proposition 2.5.2 and Proposition 2.5.8, we get the following theorem.

Theorem 2.5.10. For a clan γ ∈ C(U(p, q)), fix a signed clan δ of γ. Let the
representative g := g(δ, σ) be given as in Theorem 2.2.14 and x = gB ∈ Qγ. We

can read off µ
(
(T ∗Qγ

X)x

)
from the driving matrix Y (γ) for U(p, q) as follows:(

µ(T ∗Qγ
X)x

)
= { Y (γ)(σ−1(1),... ,σ−1(n)) | yij ∈ C for 1 ≤ i, j ≤ n }.

Definition 2.5.11 (Generic element). We call A in µ(T ∗Qγ
X) a generic element if

A satisfies

dim(kerAi) = min{ dim(ker(A′)i) | A′ ∈ µ
(
(T ∗Qγ

X)x

)
}

for all 1 ≤ i ≤ n. Similarly, for a signed clan δ, we call Y in Dri(δ) a generic
element if Y satisfies

dim(kerY i) = min{ dim(ker(Y ′)i) | Y ′ ∈ Dri(δ) }
for all 1 ≤ i ≤ n.

2.6. Signed Young diagrams. In this section we give tables of signed Young
diagrams for clans of U(1, 1), U(2, 1), U(2, 2) and U(p, 2) by way of examples.

A signed Young diagram is a Young diagram in which every box is labeled with
a + or − sign in such a way that signs alternate across rows and they need not
alternate down columns. Two signed Young diagrams are regarded as equal if
and only if one can be obtained from the other by interchanging rows of equal
length. The signature of a signed Young diagram is the ordered pair (i, j) where
i is the number of boxes labeled + and j is the number of boxes labeled −. For
GR = U(p, q), nilpotent K-orbits in p are parametrized by signed Young diagrams
of signature (p, q) (see [2]).

An element A of p satisfies

A · V+ ⊂ V− and A · V− ⊂ V+.

Definition 2.6.1. The signed Young diagram of a nilpotent orbit is defined as
follows. We remark that a signed Young diagram is determined by the number
of boxes labeled + and the number of boxes labeled − in each column. Let Di,+

be the number of boxes labeled + in i-column and Di,− be the number of boxes
labeled − in i-column.

For an element A of an orbit, the signed Young diagram of the orbit satisfies

i∑
j=1

Dj,+ = dim(ker(Ai|V+)) and

i∑
j=1

Dj,− = dim(ker(Ai|V−)).

So, we have

Di,+ = dim(ker(Ai|V+))− dim(ker(Ai−1|V+))

and

Di,− = dim(ker(Ai|V−))− dim(ker(Ai−1|V−)).

Proposition 2.6.2. Under the conditions of Theorem 2.2.14, we put

V ′+ := σ−1V+ = (eσ−1(1) . . . eσ−1(n))V+ = 〈eσ−1(1), . . . , eσ−1(p)〉,
V ′− := σ−1V− = (eσ−1(1) . . . eσ−1(n))V− = 〈eσ−1(p+1), . . . , eσ−1(n)〉.
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Then, we have

dim(ker(Y i|V ′+)) = dim(ker(Ai|V+)),

dim(ker(Y i|V ′−)) = dim(ker(Ai|V−))

for a generic element Y in Dri(δ) and A in µ(T ∗Qγ
X).

We consider linear equations

Y (γ)i~a = ~0 for ~a ∈ F ⊗C V ′+.(40)

The set of solutions of (40) is an F -subspace of F ⊗C V ′+. Because

dimF {~a ∈ F ⊗C V ′+ | Y (γ)i~a = ~0 } = dimC(ker(Y i|V ′+))

for a generic element Y ∈ Dri(γ), we have the following proposition

Proposition 2.6.3. Let Y (γ)0 = In. We have the following equations.

Di,+ = dimF {~a ∈ F ⊗C V ′+ | Y (γ)i~a = ~0} − dimF {~a ∈ F ⊗C V ′+ | Y (γ)i−1~a = ~0},
Di,− = dimF {~b ∈ F ⊗C V ′− | Y (γ)i~b = ~0} − dimF {~b ∈ F ⊗C V ′− | Y (γ)i−1~b = ~0}.
Example 2.6.4. For a clan γ = (+ 1 1−+ ), and a signed clan δ = (+ 1+ 1−−+ ).

We get a permutation, a driving matrix Y (γ), and two vectors ~a and~b are as follows:

σ =

(
1 2 3 4 5
1 2 4 5 3

)
=


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

 ,

Y (γ) =


0 0 0 0 0
0 0 0 0 0
y31 0 0 0 0
y41 y42 0 0 0
0 0 y53 y54 0

 , ~a =


a1

a2

0
0
a5

 , and ~b =


0
0
b3
b4
0

 .

We can calculate Y (γ)~a+ Y (γ)~b as follows:

Y (γ)~a+ Y (γ)~b = Y (γ)


a1

a2

b3
b4
a5

 =


0
0

y31a1

y41a1 + y42a2

y53b3 + y54b4

 .

The equations Y (γ)~a = ~0 and Y (γ)~b = ~0 lead

{
a1 = 0, a2 = 0,
x53b3 + x54b4 = 0.

So, we have

(D1,+ , D1,− ) = ( 1− 0 , 1− 0 ) = ( 1 , 1 ).
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−
+

Figure A

−+
+−

Figure B

−+
+−+

Figure C

Thus, the first column of the signed Young diagram of γ is as Figure A.

We can calculate Y (γ)2~a+ Y (γ)2~b as follows:

Y (γ)2~a+ Y (γ)2~b = Y (γ)(Y (γ)~a+ Y (γ)~b)

= Y (γ)


0
0

y31a1

y41a1 + y42a2

y53b3 + y54b4

 =


0
0
0
0

(y53y31 + y54y41)a1 + y54y42a2

 .

The equations Y (γ)2~a = ~0 and Y (γ)2~b = ~0 lead (y53y31 + y54y41)a1 + y54y42a2 = 0.
Therefore, we have

(D2,+ , D2,− ) = ( 2− 1 , 2− 1 ) = ( 1 , 1 ).

Thus, the first and second columns of the signed Young diagram of γ is as Figure
B.

We can calculate Y (γ)3~a+ Y (γ)3~b as follows:

Y (γ)3~a+ Y (γ)3~b = Y (γ)(Y (γ)2~a+ Y (γ)2~b)

= Y (γ)


0
0
0
0

(y53y31 + y54y41)a1 + y54y42a2

 =


0
0
0
0
0

 .

By the equations Y (γ)3~a = ~0 and Y (γ)3~b = ~0, we have

(D3,+ , D3,− ) = ( 3− 2 , 2− 2 ) = ( 1 , 0 ).

Therefore, the signed Young diagram for the clan γ is as Figure C. We give tables
of signed Young diagrams for clans by way of examples.
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Example 2.6.5. This is the table of the case of GR = U(1, 1).

clan γ
a representative
g(γ) of K-orbit

driving matrix
Y (γ)

signed Young diagram

+−
(

1 0

0 1

) (
0 0

y21 0

)
−+

−+

(
0 1

1 0

) (
0 0

y21 0

)
+−

1 1

( 1√
2

−1√
2

1√
2

1√
2

) (
0 0

0 0

)
+
−

Example 2.6.6. This is the table of the case of GR = U(2, 1).

clan γ a representative driving matrix Y (γ) signed Young diagram

+−+

 1 0 0

0 0 1

0 1 0

  0 0 0

y21 0 0

0 y32 0

 +−+

+ +−
 1 0 0

0 1 0

0 0 1

  0 0 0

0 0 0

y31 y32 0


−+
+

+ 1 1

 1 0 0

0
1√
2

−1√
2

0
1√
2

1√
2

  0 0 0

0 0 0

y31 0 0


−+ +

 0 1 0

0 0 1

1 0 0

  0 0 0

y21 0 0

y31 0 0


+−
+

1 1 +

 1√
2

−1√
2 0

1√
2

1√
2 0

0 0 1

  0 0 0

0 0 0

0 y32 0


1 + 1

 1√
2 0

−1√
2

0 1 0

1√
2 0

1√
2

  0 0 0

0 0 0

0 0 0

 +
+
−
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Example 2.6.7. This is the table of the case of GR = U(2, 2).

clan γ a representative driving matrix Y (γ) signed Young diagram

+−+−


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




0 0 0 0

y21 0 0 0

0 y32 0 0

y41 0 y43 0

 −+−+

−+−+


0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0




0 0 0 0

y21 0 0 0

0 y32 0 0

y41 0 y43 0

 +−+−

+−−+


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0




0 0 0 0

y21 0 0 0

y31 0 0 0

0 y42 y43 0



+− 1 1


1 0 0 0

0 0
1√
2

−1√
2

0 1 0 0

0 0
1√
2

1√
2




0 0 0 0

y21 0 0 0

0 y32 0 0

y41 0 0 0

 +−+
−

1 1 −+


1√
2

−1√
2

0 0

0 0 0 1

1√
2

1√
2 0 0

0 0 1 0




0 0 0 0

0 0 0 0

y31 0 0 0

0 y42 y43 0



−+ +−


0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1




0 0 0 0

y21 0 0 0

y31 0 0 0

0 y42 y43 0



−+ 1 1


0 1 0 0

0 0
1√
2

−1√
2

1 0 0 0

0 0
1√
2

1√
2




0 0 0 0

y21 0 0 0

y31 0 0 0

0 y42 0 0

 −+−
+

1 1 +−


1√
2

−1√
2

0 0

0 0 1 0

1√
2

1√
2 0 0

0 0 0 1




0 0 0 0

0 0 0 0

0 y32 0 0

y41 0 y43 0



+ +−−


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




0 0 0 0

0 0 0 0

y31 y32 0 0

y41 y42 0 0


−+
−+

+ 1 1 −


1 0 0 0

0
1√
2

−1√
2 0

0
1√
2

1√
2 0

0 0 0 1




0 0 0 0

0 0 0 0

y31 0 0 0

y41 y42 0 0
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clan γ a representative driving matrix Y (γ) signed Young diagram

−−+ +


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




0 0 0 0

0 0 0 0

y31 y32 0 0

y41 y42 0 0


−+
−+

− 1 1 +


0 0 0 1

0
1√
2

−1√
2 0

0
1√
2

1√
2 0

1 0 0 0




0 0 0 0

y21 0 0 0

0 0 0 0

y41 0 y43 0



1 + 1 −


1√
2 0

−1√
2 0

0 1 0 0

1√
2 0

1√
2 0

0 0 0 1




0 0 0 0

0 0 0 0

0 0 0 0

y41 y42 0 0


−+
+
−

+ 1 − 1


1 0 0 0

0
1√
2 0

−1√
2

0 0 1 0

0
1√
2

0
1√
2




0 0 0 0

0 0 0 0

y31 0 0 0

y41 0 0 0



1 +− 1


1√
2

0 0 −1√
2

0 1 0 0

1√
2 0 0

1√
2

0 0 1 0




0 0 0 0

0 0 0 0

0 y32 0 0

0 0 0 0



1 − 1 +


1√
2

0 −1√
2

0

0 0 0 1

1√
2 0

1√
2 0

0 1 0 0




0 0 0 0

0 0 0 0

0 0 0 0

0 y42 y43 0


+−
+
−

− 1 + 1


0 0 1 0

0
1√
2 0

−1√
2

1 0 0 0

0
1√
2 0

1√
2




0 0 0 0

y21 0 0 0

y31 0 0 0

0 0 0 0



1 −+ 1


1√
2

0 0 −1√
2

0 0 1 0

1√
2 0 0

1√
2

0 1 0 0




0 0 0 0

0 0 0 0

0 y32 0 0

0 0 0 0



1 1 2 2


1√
2

−1√
2

0 0

0 0
1√
2

−1√
2

1√
2

1√
2 0 0

0 0
1√
2

1√
2




0 0 0 0

0 0 0 0

0 y32 0 0

y41 0 0 0


+−
−+

1 2 1 2


1√
2

0 −1√
2

0

0
1√
2 0

−1√
2

1√
2 0

1√
2 0

0
1√
2 0

1√
2




0 0 0 0

0 0 y41 0

0 0 0 0

y41 0 0 0
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clan γ a representative driving matrix Y (γ) signed Young diagram

1 2 2 1


1√
2

0 0 −1√
2

0
1√
2

−1√
2 0

1√
2 0 0

1√
2

0
1√
2

1√
2 0




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


+
+
−
−
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Example 2.6.8. This is the table for the case of GR = U(p, 2).

signed
Young

diagram

clan

(i, j, k, l ≥ 1, a, b, c ≥ 0)

+−+−+
+···
}
p−3

+

+−+−+
i j k

+ 1 + 1 +−+
i a j k

+−+ 1 + 1 +
i j a k

+ 1 + 1 + 2 + 2 +
i a j b k

+− +−
+···
}
p−2

+

−+−+
i j

1 + 1 +−+
a i j

−+ 1 + 1 +
i a j

1 + 1 + 2 + 2 +
a i b j

−+ −+
+···
}
p−2

+

+−+−
i j

+−+ 1 + 1
i j a

+ 1 + 1 +−
i a j

+ 1 + 1 + 2 + 2
i a j b

+−+
+−+
+···
}
p−4

+

+ +−−+ +
i j k l

+ 1 + 1 −+ +
i a j k

+ +− 1 + 1 +
i j a k

+ 1 +−+ 1 +
i a b j

(i + a ≥ 2, j + b ≥ 2)

+ 1 + 1 2 + 2 +
i a b j

+ 1 + 2 + 1 + 2 +
i a b c j

+ 1 + 2 + 2 + 1 +
i a b c j

(i+ a ≥ 2, j + c ≥ 2)

signed
Young

diagram

clan

(i, j, k ≥ 1, a, b, c ≥ 0)

+− +
+−
+···
}
p−3

+

+−−+ +
i j

+− 1 + 1 +
a i

1 + 1 −+ +
a i j

+ 1 −+ 1 +
a i

(i + a ≥ 2)

1 +−+ 1 +
i a j

(j + a ≥ 2)

1 + 1 2 + 2 +
a b i

1 + 2 + 1 + 2 +
a b c i

+ 1 2 + 2 + 1 +
a b i

(i+ b ≥ 2)

1 + 2 + 2 + 1 +
i a b j

(j + b ≥ 2)

+− +
−+
+···
}
p−3

+

+ +−−+
i j

+ 1 + 1 −+
i a

+ +− 1 + 1
i j a

+ 1 +− 1 +
i a

(i + a ≥ 2)

+ 1 +−+ 1
i a j

(i + a ≥ 2)

+ 1 + 1 2 + 2
i a b

+ 1 + 2 + 1 + 2
i a b c

+ 1 + 2 + 2 1 +
i a b

(i + a ≥ 2)

+ 1 + 2 + 2 + 1
i a b j

(i + a ≥ 2)
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signed
Young

diagram

clan

(i, j ≥ 1, a, b ≥ 0)

−+−
+···
}
p−1

+

−+ +−
i j

1 + 1 +−
a i

−+ 1 + 1
i a

1 + 1 + 2 + 2
a i b

+−+
−
+···
}
p−2

+

1 + 1 −+
i

+− 1 + 1
i

+ 1 − 1 +
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3. The case of Sp(n,R)

In this section, we treat the case of GR = Sp(n,R), i.e., we treat GL(n,C)-
orbits in the flag variety of Sp(n,C). We will apply the case of U(n, n) to the case
of Sp(n,R).

Definition 3.0.9. For a clan γ = (c1 · · · cn) ∈ C(U(p, q)), transpose tγ, of γ is a
clan in C(U(p, q)) such that

tγ = (cn · · · c1)
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and minus −γ = (c′1 · · · c′n) is a clan in C(U(q, p)) such that

c′i =


− if ci = +,

+ if ci = −,
ci if ci ∈ N.

We call a clan γ symmetric if the transpose of γ is equal to γ as a clan, i.e.,

tγ = γ.

We call a clan γ skew symmetric if the transpose of γ is equal to minus of γ as a
clan, i.e.,

tγ = −γ.
Example 3.0.10. A clan γ1 =

(
+ 1 − 2 1 − 2 +

)
is symmetric be-

cause
tγ1 =

(
+ 2 − 1 2 − 1 +

)
=
(

+ 1 − 2 1 − 2 +
)

= γ1.

A clan γ2 =
(

+ 1 − 2 1 + 2 − )
is skew symmetric because

tγ2 =
( − 2 + 1 2 − 1 +

)
= − ( + 1 − 2 1 − 2 +

)
= −γ2.

From now on, we denote G, B, K, g, b, k, and p for GR = U(p′, q′) by GAIII,
BAIII, KAIII, gAIII, bAIII, kAIII, and pAIII. Let U(p′, q′) = U(n, n). We denote U(n, n)
by GRAIII.

3.1. Flags of Sp(n,C). In this section, after realizing a real form Sp(n,R) of
Sp(n,C), we recall flags of Sp(n,C). We realize a complex symplectic group
Sp(n,C) as a group of matrices g in GL(2n,C) which leave invariant an exterior
form

x1 ∧ x2n + x2 ∧ x2n−1 + · · ·+ xn ∧ xn+1,

i.e.,

Sp(n,C) =

{
g ∈ GL(2n,C)

∣∣∣∣ tg( 0 Jn
−Jn 0

)
g =

(
0 Jn

−Jn 0

) }
.(41)

By this realization, a Borel subgroup can be upper triangular.
We realize a real symplectic group GR = Sp(n,R) as a group of matrices g in

Sp(n,C) which leave invariant a Hermitian form of the signature (n, n)

x1x1 + · · ·+ xnxn − xn+1xn+1 − · · · − x2nx2n,

i.e.,

Sp(n,R) =

{
g ∈ Sp(n,C)

∣∣∣∣ tg( In 0
0 −In

)
g =

(
In 0
0 −In

)}
.(42)

By this realization of the real form, a compact Cartan subgroup can be diagonal.
This realization is not only the author’s taste but also corresponds to U(n, n). (See
(43).)
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Remark 3.1.1. The group (42) and a group

Sp(n,C) ∩GL(2n,R)

are conjugate by a matrix

1√
2

(
In Jn
−iJn iIn

)
.

We fix a Cartan involution θ of GR:

θ : g 7→
(
In 0
0 −In

)
g

(
In 0
0 −In

)
.

Then we have

k = g ∩ kAIII, p = g ∩ pAIII, b = g ∩ bAIII.(43)

and

K =

{(
K ′ 0

0 Jn
tK ′−1

Jn

)∣∣∣∣ K ′ ∈ GL(n,C)

}
' GL(n,C).

Notation 3.1.2. Let V = C2n and θ be an involution of V such that

θ : v 7→
(
In 0
0 −In

)
v.

Let V+ and V− be the eigenspaces in V under θ for eigenvalues +1 and −1, respec-
tively:

V+ := 〈e1, . . . , en〉, and V− := 〈en+1, . . . , e2n〉.
Let a be a Cartan subalgebra of g consisting of all diagonal matrices of g =

sp(n,C), b a Borel subalgebra consisting of all upper triangular matrices of g. This
choice corresponds to the choice of simple root system Ψ:

Ψ := {α1, α2, . . . , αn} ⊂ a∗;

where αi ∈ a∗ satisfies

αi(Ejj − E2n+1−j,2n+1−j) =

{
δij − δi+1,j if 1 ≤ i ≤ n− 1,

2δnj if i = n.

Let ω be a nondegenerate skew-symmetric bilinear form on V = C2n such that

ω(v, w) = tv

(
0 Jn

−Jn 0

)
w.

If W is a subspace of V , we write

W⊥ = { v ∈ V | ω(v, w) = 0 for all w ∈W }.
This is the orthogonal subspace of W , relative to ω. We say that W is isotropic if
W ⊂W⊥.

Remark 3.1.3. The orthogonal subspace of V+ and V− are V+ and V− respectively:

(V+)⊥ = V+ and (V−)⊥ = V−.

Remark 3.1.4. A flag x of Sp(n,C) is a sequence of 2n+ 1 vector spaces

x = (V0, V1, V2, . . . , V2n),

satisfying the following three conditions.
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1. dim Vi = i for all 0 ≤ i ≤ 2n.
2. {0} = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ V2n = C2n.
3. For 0 ≤ i ≤ 2n, V2n−i is the orthogonal subspace of Vi:

V2n−i = V ⊥i ,

i.e., for 1 ≤ i ≤ n, Vi are isotropic subspaces.

We denote the set of flags by X .

Remark 3.1.5. We fix a G-equivariant natural isomorphism between X and G/B
via the manner in Remark 2.1.2.

3.2. A symbolic parametrization of GL(n,C)-orbits in Sp(n,C)/B. In this
section we give a symbolic parametrization ofK-orbits in the flag varietyX and give
representatives ofK-orbits for the parameters. Our parameters are an improvement
of the Matsuki-Oshima’s parameters [6]. The set of parameters of the K-orbits in
the flag variety X is a subset of C(U(n, n)). The parameter we give for a K-orbit
Q in the flag variety for GR = Sp(n,R) coincides with a clan in C(U(n, n)) which
includes Q.

3.2-1. Generalized clans for Sp(n,R). We give a subset of C(U(n, n)). The subset
parametrizes K-orbits in the flag variety X .

Proposition 3.2.1. For a flag x = (V0, V1, . . . , V2n) ∈ X, there exists a clan
γ = (c1 · · · c2n) ∈ C(U(n, n)) via the conditions in Proposition 2.2.6.

Proposition 3.2.2. Let x ∈ X and γ = (c1 · · · c2n) ∈ C(U(n, n)) be the clan of
x. Then the clan is skew symmetric, i.e., tγ = −γ.
Proof. We remark that

V2n−i,± = V2n−i ∩ V± = (Vi)
⊥ ∩ (V±)⊥

= (Vi + V±)⊥ = (π∓(Vi)⊕ V±)⊥.

1. If ci = +, then there exists a vector v+ in V+ such that v+ 6∈ π+(Vi−1) and
Vi = Vi−1 ⊕ 〈 v+ 〉. Since

V2n−i+1,+ = (π−(Vi−1)⊕ V+)⊥, and

V2n−i,+ = (π−(Vi)⊕ V+)⊥ = (π−(Vi−1)⊕ V+)⊥,

we have

(2n− i+ 1; +)− (2n− i; +) = 0.

Since

V2n−i+1,− = (π+(Vi−1)⊕ V−)⊥ and

V2n−i,− = (π+(Vi)⊕ V−)⊥ = (π+(Vi−1)⊕ 〈 v+ 〉 ⊕ V−)⊥,

we have

(2n− i+ 1;−)− (2n− i;−) = 1.

Thus, we have c2n+1−i = −.
2. If ci = −, then we have c2n+1−i = + by the same argument of 1.
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3. We will prove that c2n+1−i = ci′ ∈ N for some i′ < 2n+ 1 − i if ci ∈ N and
ci 6= cj for all j < i. If ci ∈ N and ci 6= cj for all j < i, then there exists a

vi ∈ C2n such that π+(vi) 6∈ π+(Vi−1), π−(vi) 6∈ π−(Vi−1), and

Vi = Vi−1 ⊕ 〈 vi 〉.
Since

V2n−i+1,± = (π∓(Vi−1)⊕ V±)⊥ and

V2n−i,± = (π∓(Vi)⊕ V±)⊥ = (π∓(Vi−1)⊕ 〈π∓(vi) 〉 ⊕ V±)⊥,

we have

(2n− i+ 1,±)− (2n− i,±) = 1.

Therefore, c2n+1−i = ci′ ∈ N for some i′ < 2n+ 1− i.
4. We will prove that c2n+1−j ∈ N and cj′ 6= c2n+1−j for all j′ < 2n+ 1 − j if

ci = cj ∈ N for i < j. Then there exists a vi ∈ C2n such that π+(vi) 6∈
π+(Vi−1), π−(vi) 6∈ π−(Vi−1), and

Vi = Vi−1 ⊕ 〈 vi 〉 ⊂ Vj = Vj−1 ⊕ 〈π+(vi) 〉.
Since π±(vi) ∈ π±(Vi) ⊂ π±(Vj−1), we have

V2n−j,± = (π∓(Vj)⊕ V±)⊥

= ((π∓(Vj−1) + 〈π∓(vi) 〉)⊕ V±)⊥

= (π∓(Vj−1)⊕ V±)⊥ = V2n−j+1,±.

Thus,

(2n− j + 1,±)− (2n− j,±) = 0.

Therefore c2n+1−j ∈ N and c2n+1−j 6= cj′ for all j′ < 2n+ 1− j.
5. It is enough to prove that ci = cj ∈ N if c2n+1−i = c2n+1−j ∈ N for 2n+ 1
− i ≤ j < i. Let 2n+ 1− i ≤ j < i.

We prove that by induction on i. Suppose that if ck = cl ∈ N for
2n+ 1− i < k < l < i, then c2n+1−k = c2n+1−l ∈ N.
(a) We assume now ci = cs ∈ N for s < j hoping to show a contradiction.

Then there exist vi, vs ∈ C2n, such that

V2n+1−i = V2n−i ⊕ 〈 vi 〉 ⊂ V2n+1−j = V2n−j ⊕ 〈π+(vi) 〉
and

Vs = Vs−1 ⊕ 〈 vs 〉 ⊂ Vj−1 ⊂ Vi = Vi−1 ⊕ 〈π−(vs) 〉.
Thus,

V2n−i = V ⊥i ⊂ 〈π−(vs) 〉⊥.(44)

Since

vs ∈ Vs ⊂ Vj−1 = V ⊥2n−j+1 = V ⊥2n−j ∩ 〈π+(vi) 〉⊥ ⊂ 〈π+(vi) 〉⊥,
we have

ω(π−(vs), vi) = ω(π−(vs), π+(vi)) = ω(vs, π+(vi)) = 0.

So

〈 vi 〉 ⊂ 〈π−(vs) 〉⊥.(45)
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On the other hand,

V2n−i = V ⊥i = V ⊥i−1 ∩ 〈π−(vs) 〉⊥
= V2n−i+1 ∩ 〈π−(vs) 〉⊥ = (V2n−i ⊕ 〈 vi 〉) ∩ 〈π−(vs) 〉⊥
= V2n−i ⊕ 〈 vi 〉 = V2n−i+1

by (44) and (45). That contradicts V2n−i 6= V2n−i+1. We have proved
ci 6= cs for all s < j.

(b) We will assume that ci = cs for j < s < i and see what happens. Then
c2n+1−s ∈ N and there exists 1 ≤ t < 2n+ 1− s such that ct = c2n+1−s.
By assumptions, t satisfies 1 ≤ t < 2n + 1 − i. Then there exist vt,
vs ∈ Cn satisfying

Vt−1 ⊕ 〈 vt 〉 ⊂ V2n−i ⊂ V2n−s+1 = V2n−s ⊕ 〈π+(vt) 〉
and

Vs = Vs−1 ⊕ 〈 vs 〉 ⊂ Vi = Vi−1 ⊕ 〈π−(vs) 〉.
Thus,

V2n−s = V ⊥s ⊂ 〈 vs 〉⊥.(46)

Since

vt ∈ V2n−i = V ⊥i = V ⊥i−1 ∩ 〈π−(vs) 〉⊥ ⊂ 〈π−(vs) 〉⊥,
we have

ω(π+(vt), vs) = ω(π+(vt), π−(vs))

= ω(vt, π−(vs)) = 0.

So

〈π+(vt) 〉 ⊂ 〈 vs 〉⊥.(47)

On the other hand

V2n−s = V ⊥s = V ⊥s−1 ∩ 〈 vs 〉⊥
= V2n−s+1 ∩ 〈 vs 〉⊥
= (V2n−s ⊕ 〈π+(vt) 〉) ∩ 〈 vs 〉⊥
= V2n−s ⊕ 〈π+(vt) 〉 = V2n−s+1

by (46) and (47). That contradicts V2n−s 6= V2n−s+1.
Therefore c2n+1−j = c2n+1−i ∈ N if ci = cj ∈ N by induction.

Definition 3.2.3 (Generalized clan). We call a clan satisfying the condition in
Proposition 3.2.2 a generalized clan for Sp(n,R). We denote the set of generalized
clans for Sp(n,R) by C(Sp(n,R)):

C(Sp(n,R)) =
{
γ ∈ C(U(n, n))

∣∣ tγ = −γ } .
Example 3.2.4. The set C(Sp(2,R)) consists of 11 generalized clans:

+ + − − , + − + − , − + − + , − − + +
+ 1 1 − , − 1 1 + , 1 + − 1 , 1 − + 1
1 1 2 2 , 1 2 1 2 , 1 2 2 1

 .
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We recall the notion of clans in [6] in order to compare our notion of generalized
clans.

Definition 3.2.5. [6] A clan for Sp(n,R) is an equivalence class of ordered sets
(c1 · · · cn) of n symbols satisfying the following five conditions.

1. For 1 ≤ i ≤ n, A symbol ci is +, −, 0, a, or a for a ∈ N.
2. If ci = a ∈ N, then there exists a unique j 6= i with cj = a and ct 6= a for

all t.
3. If ci = a for a ∈ N, then there exists a unique j 6= i with cj = a and ct 6= a

for all t.
4. If ci = a or a for a ∈ N, b ∈ N and b < a, then there exists some j such

that cj = b or b.
5. Two ordered sets (c1 · · · cn) and (c′1 · · · c′n) are regarded as equivalent if

and only if there exists a permutation σ ∈ Sm for

m := max{ b ∈ N | b or b for some i }
such that

ci =



σ(a) if c′i = a ∈ N,

+ if c′i = +,

− if c′i = −,
0 if c′i = 0,

σ(a) if c′i = a (a ∈ N)

for 1 ≤ i ≤ n.

For example, (2 1 1 + 2 −) = (1 2 2 + 1 −) as a clan.

The following one-to-one correspondence exists between clans for Sp(n,R) and
generalized clans for Sp(n,R).

A clan (c′1 · · · c′n) corresponds to a generalized clan (c1 · · · c2n) satis-
fying the following five conditions for 1 ≤ i, j ≤ n:
1. If c′i = +, then (ci, c2n+1−i) = (+,−).
2. If c′i = −, then (ci, c2n+1−i) = (−,+).
3. If c′i = c′j ∈ N, then ci = cj ∈ N and c2n+1−i = c2n+1−j ∈ N.

4. If c′i = c′j = a, then ci = c2n+1−j ∈ N and c2n+1−i = cj ∈ N.
5. If ci = 0, then ci = c2n+1−i ∈ N.

For example, a clan (1 2 2 + 0 1) corresponds to a generalized clan

(1 2 2 + 3 4 1 3 − 5 5 4).

Therefore C(Sp(n,R)) is a parametrization of K-orbits in X by [6, Theorem 4.1].

Corollary 3.2.6. Generalized clans in C(Sp(n,R)) parametrize K-orbits in the
flag variety X via the correspondence in Proposition 2.2.6.

Notation 3.2.7. For each generalized clan γ, let Qγ be theK-orbit in the flag variety
X corresponding to γ via the parametrization of Corollary 3.2.6.

3.2-2. Representatives of GL(n,C)-orbits in Sp(n,C)/B. We will give an element
g ∈ G such that the flag x = gB in X = Sp(n,C)/B corresponds to a generalized
clan γ ∈ C(Sp(n,R)) and the flag x = gBAIII in GL(2n,C)/BAIII corresponds to
the clan γ ∈ C(U(n, n)).
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Definition 3.2.8 (Skew symmetric signed clan). A skew symmetric signed clan γ−
= (d1 · · · dm) of a generalized clan γ = (c1 · · · cm) is a signed clan (in Defini-
tion 2.2.9) of the clan γ satisfying the following condition.

If ci = cj = a ∈ N for i < j, then (di, dj) = (a+, a−).(48)

Example 3.2.9. The skew symmetric signed clan of γ = (1 2 1 − 3 2 + 4 3 4) is

γ− =
(

1+ 2+ 1− − 3+ 2− + 4+ 3− 4−
)
.

Corollary 3.2.10. In a skew symmetric signed clan (d1 · · · dm), the signature of
di is not equal to the signature of dm+1−i for 1 ≤ i ≤ m.

In this section, we call a skew symmetric signed clan just a signed clan.
We will give a representative g ∈ G of Qγ = K · g · B.

Theorem 3.2.11. For γ ∈ C(Sp(n,R)) and the signed clan γ− = (d1 · · · d2n) of
γ, fix a permutation σ′′ ∈ Sn and a permutation σ′ ∈ S2n satisfying the following
condition.

For i ≤ n,

σ′(i) = σ′′(i) and σ′(2n+ 1− i) = 2n+ 1− σ′′(i)
if the signature of di is plus,

σ′(i) = 2n+ 1− σ′′(i) and σ′(2n+ 1− i) = σ′′(i)
if the signature of di is minus.

The matrix g(γ) = (g1 g2 · · · g2n) ∈ Mat(2n, 2n) is a representative of Qγ, i.e.,
Qγ = Kg(γ)B. Here gi ∈ V are column vectors defined as follows:

• If di = −, then gi = eσ′(i).
• If di = +, then

gi =

{
eσ′(i) if i ≤ n,

−eσ′(i) if n < i.

• If (di, dj) = (a+, a−) for some a ∈ N, then

gi =

{
1√
2
(eσ′(i) + eσ′(j)) if i ≤ n,

− 1√
2
(eσ′(i) + eσ′(j)) if n < i,

and

gj =
1√
2
(−eσ′(i) + eσ′(j)).

Proof. The permutation σ′ satisfies the conditions (13) of σ in Theorem 2.2.14
for U(n, n). Thus, g(γ) is a representative of KAIII-orbit QγAIII, i.e., QγAIII =
KAIII · g(γ) ·BAIII, and g(γ) ∈ G. Therefore, we have

Qγ = Kg(γ)B.

Example 3.2.12. For a signed clan γ− = ( 1+ 2+ − 1− + 3+ 2− + 4+ − 3− 4− ),
for example, if we choose an identity permutation as σ′′;

σ′′ =

(
1 2 3 4 5 6
1 2 3 4 5 6

)
,



ORBITS IN THE FLAG VARIETY AND MOMENT MAP 375

then σ′ is as follows:

σ′ =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 2 10 9 5 6 7 8 4 3 11 12

)
.

Remark 3.2.13. The representative g(γ) is real and orthogonal:

g(γ)−1 = tg(γ).

3.3. M-O graph for Sp(n,R). We define an oriented graph which has generalized
clans as vertices and in which an edge is labeled by i for some 1 ≤ i ≤ n. We can
read off closure relations in the graph.

Definition 3.3.1. Let Γ(Sp(n,R)) be the set of all triples (γ, γ′, i) with γ, γ′ ∈
C(Sp(n,R)) and 1 ≤ i ≤ n, satisfying one of the following two conditions.

1. (γ, γ′, i) ∈ Γ(U(n, n)). (This case happens only if i = n or i 6= n and
(ci, ci+1) = (c2n−i, c2n+1−i) = (a, b) for a, b ∈ N.)

2. There exists a clan γ′′ ∈ C(U(n, n)) such that

{(γ, γ′′, i), (γ′′, γ′, 2n− i)} ⊂ Γ(U(n, n)).

Example 3.3.2. Since (+ − +−), (+ 1 1−) ∈ C(Sp(2,R)), and

((+ − +−), (+ 1 1−), 2) ∈ Γ(U(2, 2)),

((+ − +−), (+ 1 1−), 2) ∈ Γ(Sp(2,R)).

Since (1 2 1 2), (1 2 2 1) ∈ C(Sp(2,R)), and ((1 2 1 2), (1 2 2 1), 1) ∈ Γ(U(2, 2)),

((1 2 1 2), (1 2 2 1), 1) ∈ Γ(Sp(2,R)).

Since (+ − +−), (1 1 2 2) ∈ C(Sp(2,R)), (1 1 + −) ∈ C(U(2, 2)), and

{((+ − +−), (1 1 + −), 1), ((1 1 + −), (1 1 2 2), 3)} ∈ Γ(U(2, 2)),

((+ − +−), (1 1 2 2), 1) ∈ Γ(Sp(2,R)).

Notation 3.3.3. We denote by BiAIII the parabolic subgroup of GAIII in Nota-
tion 2.4.8. We denote by Bi the parabolic subgroup of G for the root −αi and
all positive roots:

Bi = (BiAIIIB2n−iAIII) ∩G.
Let

πi : G/B → G/Bi

be the canonical projection.

Remark 3.3.4. The projection πi sends (V0, . . . , V2n) ∈ G/B to{
(V0, . . . , Vi−1, Vi+1, . . . , V2n−i−1, V2n−i+1, . . . , V2n) if 1 ≤ i < n,

(V0, . . . , Vn−1, Vn+1, . . . , V2n) if i = n.

By Theorem 2.2.14 and Remark 3.3.4, we have the following proposition.

Proposition 3.3.5. If (γ, γ′, i) ∈ Γ(Sp(n,R)), then

πi(Qγ) = πi(Qγ′).
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Proposition 3.3.6. If (γ, γ′, i) ∈ Γ(Sp(n,R)), then

dimQγ = dimQγ′ − 1

and

Kg(γ)B ⊂ Kg(γ′)B.

Proof. By [6], if (γ, γ′, i) ∈ Γ(Sp(n,R)), then we have

dimQγ = dimQγ′ ± 1

and

Kg(γ)B ⊂ Kg(γ′)B, or Kg(γ′)B ⊂ Kg(γ)B.

If i = n, then (γ, γ′, n) ∈ Γ(U(n, n)). Therefore

KAIIIg(γ)BAIII ⊂ KAIIIg(γ′)BAIII.

Thus, we have Kg(γ)B ⊂ Kg(γ′)B.
If i 6= n and both of (γ, γ′′, i) and (γ′′, γ′, 2n− i) are elements of Γ(U(n, n)) for

some γ′′ ∈ C(U(n, n)), then we have Kg(γ)B ⊂ Kg(γ′)B by the same argument
of the case of i = n. Similarly, if (γ, γ′, i) ∈ Γ(U(n, n)), then we have Kg(γ)B ⊂
Kg(γ′)B. Therefore dimQγ = dimQγ′ − 1 for all (γ, γ′, i) ∈ Γ(Sp(n,R)).

Although the definition of the following graph follows [6], we use generalized clans
instead of clans as vertices.

Definition 3.3.7 (M-O graph of Sp(n,R)). Let C0(Sp(n,R)) = C(Sp(n,R)) ∩
C0(U(n, n)):

C0(Sp(n,R)) = { (c1 · · · cn) ∈ C(Sp(n,R)) | ci 6∈ N for all 1 ≤ i ≤ n }.
We give subsets Γm(Sp(n,R)) of Γ(Sp(n,R)) and subsets Cm(Sp(n,R)) of
C(Sp(n,R)) for m ≥ 1 by induction as follows:

Γm(Sp(n,R)) := {(γ′, γ, i) ∈ Γ′(Sp(n,R))| γ′ ∈ Cm−1(Sp(n,R))},
Cm(Sp(n,R)) := {γ ∈ C(Sp(n,R))| (γ′, γ, i) ∈ Γm(Sp(n,R))}.

The M-O graph with generalized clans of Sp(n,R) is a finite oriented graph whose
vertices are generalized clans in C(Sp(n,R)) and whose oriented edges are
Γ(Sp(n,R)) =

⋃
m∈N Γm(Sp(n,R)) .

Example 3.3.8. The Γ(Sp(2,R)) is as Figure 2.

Remark 3.3.9. If (γ, γ′, i) ∈ Γ(Sp(n,R)), then

πi(Qγ) = πi(Qγ′) and dimQγ + 1 = dimQγ′.

3.4. Dimensions of GL(n,C)-orbits in Sp(n,C)/B. In this section we will give
a dimension formula of K-orbits for generalized clans.

Definition 3.4.1. We define the length `C(γ) of a generalized clan γ = (c1 · · · c2n)∈
C(Sp(n,R)) such that

`C(γ) =
1

2
( `(γ) + #{t ∈ N | cs = ct ∈ N and s ≤ n < t ≤ 2n+ 1− s}) .(49)

Where `(γ) is the length of the clan γ which is given in Definition 2.3.7.

Proposition 3.4.2. If γ ∈ Cm(Sp(n,R)), then `C(γ) = m.

Proof. We prove the proposition by induction on m. Let γ = (c1 · · · c2n).
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Γ(Sp(2,R))

Figure 2

1. If γ ∈ C0(Sp(n,R)), then `C(γ) = 0.
2. Suppose `C(γ′) = j, if γ′ ∈ Cj(Sp(n,R)). For γ ∈ Cj+1(Sp(n,R)), there

exists γ′ = (c′1 · · · c′2n) ∈ Cj(Sp(n,R)) such that (γ′, γ, i) ∈ Γ(Sp(n,R)).
(a) If i = n, then `(γ) = `(γ′) + 1 and

#{t ∈ N | cs = ct ∈ N and s ≤ n < t ≤ 2n+ 1− s} −#{n+ 1 }
= #{t ∈ N | c′s = c′t ∈ N and s ≤ n < t ≤ 2n+ 1− s}.

So, `C(γ′) = j + 1.
(b) If i 6= n and (ci, ci+1) = (c2n−i, c2n−i+1) = (a, b) for some a ∈ N and

b ∈ N, then

`(γ) = `(γ′) + 1

and

#{t ∈ N | cs = ct ∈ N and s ≤ n < t ≤ 2n+ 1− s} −#{ 2n+ 1− i }
= #{t ∈ N | c′s = c′t ∈ N and s ≤ n < t ≤ 2n+ 1− s}

(c) If i 6= n and not (ci, ci+1) = (c2n−i, c2n−i+1) = (a, b), then there exists
a clan γ′′ ∈ C(U(n, n)) such that (γ′, γ′′, i), (γ′′, γ, 2n− i) ∈ Γ(U(n, n)).
So, we have

`(γ) = `(γ′′) + 1 = `(γ′) + 2

and

#{t ∈ N | cs = ct ∈ N and s ≤ n < t ≤ 2n+ 1− s}
= #{t ∈ N | c′s = c′t ∈ N and s ≤ n < t ≤ 2n+ 1− s}.

Therefore `C(γ) = j + 1.
So, `C(γ) = m if γ ∈ Cm(Sp(n,R)) for all m ∈ N.

A generalized clan

γ = ( 1 2 · · · n n · · · 2 1 )
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corresponds to the open orbit and

`C(γ) =
1

2
n(n+ 1).

Since the dimension of a closed orbit is 1
2n(n− 1), we have the following dimension

formulas.

Proposition 3.4.3. For γ ∈ C(Sp(n,R)), we have the dimension and the codi-
mension of Qγ = Kg(δ)B ⊂ X:

dimQγ = `C(γ) + 1
2n(n− 1),

codimQγ = 1
2n(n+ 1)− `C(γ).

3.5. Images of the moment map. We denote (bAIII)
⊥ by b⊥AIII. We have

(Ad(g)b⊥) ∩ p = (Ad(g) · b⊥AIII ∩ g) ∩ (pAIII ∩ g)

= ((Ad(g) · b⊥AIII) ∩ pAIII) ∩ g,

and elements X in p satisfy

Xij = X2n+1−j,2n+1−i.

Since we gave the image (Ad(g) · b⊥AIII)∩ pAIII of the moment map µ in Proposi-
tion 2.5.2 and σ := σ′ in Theorem 3.2.11, we get the following proposition.

Proposition 3.5.1. For a generalized clan γ = (c1 · · · c2n) ∈ C(Sp(n,R)), fix a
permutation σ′ ∈ S2n as in Theorem 3.2.11. Let the representative g := g(γ) be
given as in Theorem 3.2.11, and x = gB ∈ Qγ . We can read off µ(T ∗Qγ

X)x from a

vector subspace Dri(γ) of g.

µ(T ∗Qγ
X)x = { Y(σ′−1(1),... ,σ′−1(2n)) | Y ∈ Dri(γ)}.

Here, Dri(γ) is the subspace of Dri(γ−), the driving space of the signed clan γ− for
U(n, n) in Definition 2.5.1, is defined as follows:

Dri(γ) := Dri(γ−) ∩ Ad(σ′−1
) · g

= { Y ∈ Dri(γ−) | Yij = Y2n+1−j,2n+1−i }.
We call the space Dri(γ) the driving space of the generalized clan γ (for Sp(n,R)).

Proof. For the signed clan γ− = (d1 · · · d2n) and the permutation σ′ in Theo-
rem 3.2.11 and a representative gAIII(γ−, σ′) in Theorem 2.2.14, we have

g = g(γ−, σ′) diag(ε1, . . . , ε2n).

Here,

εi =

{
−1 if n < i and the signature of di is plus,

1 otherwise.

So,

(Ad(g)b⊥AIII) ∩ pAIII

= (Ad(g(γ−, σ′))(Ad(diag(ε1, . . . , ε2n)) · b⊥AIII) ∩ pAIII

= (Ad(g(γ−, σ′)) · b⊥AIII) ∩ pAIII = Ad(σ′) · Dri(γ−)
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Therefore,

µ(T ∗Qγ
X)x = (Ad(σ′) · Dri(γ−)) ∩ g

= Ad(σ′) · (Dri(γ−) ∩ Ad(σ′−1
)g)

= Ad(σ′) ·Dri(γ).

is as stated in the proposition.

Corollary 3.5.2. For the representative g := g(γ) of Qγ given as in Theorem
3.2.11, we have the following equation.

Dri(γ) = Ad(σ′−1
)((Ad(g)b⊥) ∩ p)

= {A(σ′(1),... ,σ′(2n)) | A ∈ (Ad(g)b⊥) ∩ p }.
Since g(γ) = (eσ′(1) · · · eσ′(2n)) = σ′ if a generalized clan γ corresponds to a

closed orbit, we have the following lemma.

Lemma 3.5.3. If a generalized clan γ is an element of C0(Sp(n,R)), then

Dri(γ) = b⊥ ∩ (Ad(g(γ)−1) · p).

Definition 3.5.4 (Driving matrix). For a generalized clan γ ∈ C(Sp(n,R)), let
Y (γ) and Y (γ,m), 1 ≤ m ≤ 8 be elements of F ⊗C Mat(2n, 2n) satisfying the
following conditions. Let γ− = (d1 · · · d2n).

1. Y (γ, 1)ij =

{
1 if j < i ≤ 2n+ 1− j,

0 otherwise.

2. Y (γ, 2)ij =

{
0 if (di, dj) = (+,+) or (−,−),

Y (γ, 1)ij otherwise.

3. If (di, dj) = (a+, a−), then

• Y (γ, 3)i,k1 = 0 if 1 ≤ k1 ≤ i,

• Y (γ, 3)k2,i = Y (γ, 3)j,k2 = 0 if i < k2 ≤ j,

• Y (γ, 3)k3,j = 0 if j < k3 ≤ 2n,

for all a ∈ N and Y (γ, 3)i′j′ = Y (γ, 2)i′j′ otherwise.

Remark 3.5.5. If Y (γ, 3)ij = 1, then the following conditions are satisfied.

(a) j < i ≤ 2n+ 1− j (so j ≤ n).
(b) (di, dj) = (a−, b+), (a−,+), (a−,−), (+, a+), (−, a+), (+,−), or (−,+)

for some a, b ∈ N, a 6= b.
(c) If di = a− for some a ∈ N, then we have dk = a+ for some j < k < i.
(d) If dj = a+ for some a ∈ N, then we have dk = a− for some j < k < i.

4. If Y (γ, 3)ij = 1, (di, dj) = (a−, b+) and (dk, dl) = (a+, b−) for some a, b ∈ N,
then

Y (γ, 4)ij = Y (γ, 4)2n+1−j,2n+1−i = yij ,

Y (γ, 4)kl = Y (γ, 4)2n+1−l,2n+1−k =

{
yij if j < k < l < i

ykl if j < l < k < i

for all a, b ∈ N, and Y (γ, 4)i′j′ = Y (γ, 3)i′j′ otherwise.
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5. If Y (γ, 4)ij = 1, (di, dj) = (a−,−), and dk = a+ for a ∈ N, then

Y (γ, 5)ij = 0 and

Y (γ, 5)kj = Y (γ, 5)2n+1−j,2n+1−k = ykj ,

and Y (γ, 5)i′j′ = Y (γ, 4)i′j′ otherwise.
6. If Y (γ, 5)ij = 1, (di, dj) = (+, a+), and dk = a− for a ∈ N, then

Y (γ, 6)ij = 0 and

Y (γ, 6)ik = Y (γ, 6)2n+1−k,2n+1−i = yik,

and Y (γ, 6)i′j′ = Y (γ, 5)i′j′ otherwise.

7. Y (γ)ij = Y (γ)2n+1−j,2n+1−i =

{
yij if Y (γ, 6)ij = 1,

Y (γ, 6)ij otherwise.

We call Y (γ) the driving matrix of γ (for Sp(n,R)).
By the same arguments of Proposition 2.5.8, we get the following proposition.

Proposition 3.5.6. For a generalized clan γ ∈ C(Sp(n,R)), the Driving space
Dri(γ) for Sp(n,R) and the Driving matrix Y (γ) of γ for Sp(n,R) satisfy the
following condition.

Dri(γ) = { Y (γ) | yij ∈ C, for 1 ≤ i, j ≤ 2n }.
By Proposition 3.5.1 and Proposition 3.5.6, we got the following theorem which

means we can read off µ(T ∗Qγ
X)x from the driving matrix Y (γ).

Theorem 3.5.7. For a generalized clan γ ∈ C(Sp(n,R)), fix a permutation σ′ ∈
S2n in Theorem 3.2.11. Let the representative g := g(γ) be given as in Theo-
rem 3.2.11, and x = gB ∈ Qγ. We can read off µ(T ∗Qγ

X)x from the driving matrix

Y (γ) for Sp(n,R) as follows:

µ(T ∗Qγ
X)x = { Y (γ)(σ′−1(1),... ,σ′−1(2n)) | yij ∈ C for 1 ≤ i, j ≤ 2n }.

3.6. Signed Young diagrams. In this section, after we recall a parametrization
of nilpotent K-orbits in p, we give tables of signed Young diagrams for the clans of
Sp(1,R), Sp(2,R), and Sp(3,R) by way of examples.

Nilpotent K-orbits in p are parametrized by signed Young diagrams of signature
(n, n) satisfying the following conditions.

If m ∈ N is odd, then the number of rows of which the length are m and
which are labeled + in the first column is equal to the number of rows
of which the length are m and which are labeled − in the first column.

For an element A of an orbit, the signed Young diagram of the orbit satisfies

i∑
j=1

Dj,+ = dim(ker(Ai|V+)) and

i∑
j=1

Dj,− = dim(ker(Ai|V−)).

Proposition 3.6.1. Under the conditions of Theorem 3.2.11, we put

V ′+ := σ′−1
V+ = (eσ′−1(1) · · · eσ′−1(2n))V+

= 〈eσ′−1(1), · · · , eσ′−1(n)〉,
V ′− := σ′−1

V− = (eσ′−1(1) · · · eσ′−1(2n))V−

= 〈eσ′−1(n+1), . . . , eσ′−1(2n)〉.
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By the same argument of the case of U(n, n), we have the following proposition.

Proposition 3.6.2. Let Y (γ)0 = In. We have the following equations:

Di,+ = dimF {~a ∈ F ⊗C V ′+ | Y (γ)i~a = ~0 } − dimF {~a ∈ F ⊗C V ′+ | Y (γ)i−1~a = ~0 },
Di,− = dimF {~b ∈ F ⊗C V ′− | Y (γ)i~b = ~0 } − dimF {~b ∈ F ⊗C V ′− | Y (γ)i−1~b = ~0 }.

At last we give tables of signed Young diagrams for the clans of Sp(1,R) in
Example 3.6.3, Sp(2,R) in Example 3.6.4, and Sp(2,R) in Example 3.6.5.

Example 3.6.3. This is the table of the case of GR = Sp(1,R).

clan γ
a representative g(γ)

of K-orbit

driving matrix
Y (γ)

signed Young
diagram

+−
(

1 0

0 1

) (
0 0

y21 0

)
−+

−+

(
0 −1

1 0

) (
0 0

y21 0

)
+−

1 1

( 1√
2

−1√
2

1√
2

1√
2

) (
0 0

0 0

)
+
−
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Example 3.6.4. This is the table of the case of GR = Sp(2,R).

clan γ
a representative g(γ)

of K-orbit

driving matrix
Y (γ)

signed Young
diagram

+−+−


1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1




0 0 0 0

y21 0 0 0

0 y32 0 0

y41 0 y21 0

 −+−+

−+−+


0 1 0 0

0 0 0 −1

1 0 0 0

0 0 1 0




0 0 0 0

y21 0 0 0

0 y32 0 0

y41 0 y21 0

 +−+−

+ +−−


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




0 0 0 0

0 0 0 0

y31 y32 0 0

y41 y31 0 0


−+
−+

+ 1 1 −


1 0 0 0

0
1√
2

−1√
2 0

0
1√
2

1√
2 0

0 0 0 1




0 0 0 0

0 0 0 0

y31 0 0 0

y41 y31 0 0



−−+ +


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




0 0 0 0

0 0 0 0

y31 y32 0 0

y41 y31 0 0


+−
+−

− 1 1 +


0 0 0 1

0
1√
2

−1√
2 0

0
1√
2

1√
2 0

1 0 0 0




0 0 0 0

0 0 0 0

y31 0 0 0

y41 y31 0 0



1 1 2 2


1√
2

−1√
2 0 0

0 0
−1√

2

−1√
2

1√
2

1√
2 0 0

0 0
−1√

2
1√
2




0 0 0 0

0 0 0 0

0 y32 0 0

y41 0 0 0


+−
−+

1 2 1 2


1√
2 0

−1√
2 0

0
1√
2 0

−1√
2

1√
2 0

1√
2 0

0
1√
2 0

1√
2




0 0 0 0

0 0 y41 0

0 0 0 0

y41 0 0 0
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clan γ a representative g(γ)
of K-orbit

driving matrix
Y (γ)

signed Young
diagram

1 +− 1


1√
2 0 0

−1√
2

0 1 0 0

1√
2 0 0

1√
2

0 0 1 0




0 0 0 0

0 0 0 0

0 y32 0 0

0 0 0 0

 −+
+
−

1 −+ 1


1√
2 0 0

−1√
2

0 0 1 0

1√
2 0 0

1√
2

0 1 0 0




0 0 0 0

0 0 0 0

0 y32 0 0

0 0 0 0

 +−
+
−

1 2 2 1


1√
2 0 0

−1√
2

0
1√
2

−1√
2 0

1√
2 0 0

1√
2

0
1√
2

1√
2 0




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


+
+
−
−
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Example 3.6.5. This is the table of the case of GR = Sp(3,R).

clan γ signed Young diagram clan γ signed Young diagram

+−+−+− −+−+ −+ 1 + 1 2 − 2
+−
−+
−+

−+−+−+ +−+− +− 1 + 2 1 − 2

+−−++−
−+− +
+−

1 2 +− 1 2

+− 1 1 +− 1 − 1 2 + 2
+−
+−
−+

1 1 −+ 2 2 1 − 2 1 + 2

−++−−+

+−+ −
−+

1 2 −+ 1 2

−+ 1 1 −+ 1 ++−− 1 −+
−+
+
−

1 1 +− 2 2 + 1 2 2 1 −
+−−++−

−+− +
−+

1 + 2 2 − 1

+ 1 1 2 2 − 1 −−+ + 1 +−
+−
+
−

+ 1 2 1 2 − − 1 2 2 1 +

−−+−++
+−+ −
+−

1 − 2 2 + 1

− 1 1 2 2 + 1 2 2 3 3 1 +−
−+
+
−

− 1 2 1 2 + 1 2 3 3 1 2

1 1 2 2 3 3

+−+
−+−

1 2 3 2 3 1

1 2 1 3 2 3 −+
+
+
−
−

1 2 3 1 2 3
1 2 +− 2 1

+ 1 −+ 1 − −+− +
+
−1 +−+− 1

+−
+
+
−
−

− 1 +− 1 + +−+ −
+
−

1 2 −+ 2 1
1 −+−+ 1

+++−−− −+
−+
−+

+
+
+
−
−
−

++ 1 1 −−

1 2 3 3 2 1

+ 1 +− 1 −
−−−+++

+−
+−
+−

−− 1 1 ++

− 1 −+ 1 +
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4. The case of Sp(p, q)

In this section, we treat the case of GR = Sp(p, q), i.e., Sp(p,C)×Sp(q,C)-orbits
in the flag variety of Sp(n,C). Here, n = p+ q. We will apply the case of U(2p, 2q)
to the case of Sp(p, q). For this, we change the realization of U(2p, 2q). We denote
U(2p, 2q) by GRAIII.

4.1. Changing the realization of U(2p, 2q). From now on, we use the following
realization of U(2p, 2q).

We realize GRAIII = U(2p, 2q) as the group of matrices g in GL(2n,C) which
leave invariant the Hermitian form of the signature (2p, 2q)

x1x1 + · · ·+ xpxp − xp+1xp+1 − · · · − xp+2qxp+2q

+ xp+2q+1xp+2q+1 + · · ·+ x2nx2n,
(50)

i.e.,

U(2p, 2q) =

g ∈ GL(2n,C)

∣∣∣∣∣∣tg
 Ip 0 0

0 −I2q 0
0 0 Ip

ḡ =

 Ip 0 0
0 −I2q 0
0 0 Ip

 .

We fix a Cartan involution θ of GRAIII as follows:

θ : g 7→
Ip 0 0

0 −I2q 0
0 0 Ip

 · g ·
Ip 0 0

0 −I2q 0
0 0 Ip


for g ∈ GRAIII. Then we have

kAIII =


 K11 0 K13

0 K22 0
K31 0 K33

∣∣∣∣∣∣ K11, K13, K31, K33 ∈ Mat(p, p)

K22 ∈ Mat(2q, 2q)

 ,

KAIII =


 K11 0 K13

0 K22 0
K31 0 K33


∣∣∣∣∣∣∣∣
K11, K13, K31, K33 ∈ Mat(p, p)(
K11 K13

K31 K33

)
∈ GL(2p,C)

K22 ∈ GL(2q,C)

 ,(51)

and

pAIII =


 0 P12 0

P21 0 P23

0 P32 0

∣∣∣∣∣∣ P12, P32 ∈ Mat(p, 2q)

P21, P23 ∈ Mat(2q, p)

 .

Notation 4.1.1. Let V = C2n and θ be an involution of V such that

θ : v 7→
 Ip 0 0

0 −I2q 0
0 0 Ip

v.
Let V+ and V− be the eigenspaces in V under θ for eigenvalues +1 and −1 respec-
tively:

V+ := 〈e1, . . . , ep, ep+2q+1, . . . , e2n〉,
V− := 〈ep+1, . . . , ep+2q〉.

Under this realization, Theorem 2.2.14 changes into the following proposition.



386 ATSUKO YAMAMOTO

Proposition 4.1.2. For γ ∈ C(U(2p, 2q)) and a signed clan δ = (d1 . . . d2n) of
γ, fix a permutation σ ∈ S2n satisfying the following condition.

1 ≤ σ(i) ≤ p or p+ 2q + 1 ≤ σ(i) ≤ 2n if the signature of di is plus,

p+ 1 ≤ σ(i) ≤ p+ 2q if the signature of di is minus.
(52)

Then the matrix gAIII(δ) := gAIII(δ, σ) = (g1 g2 . . . gn) is a representative of Qγ.
Here gi ∈ V are the column vectors defined as follows :

• If ci = ±, then gi = eσ(i).
• If ci = a+, cj = a−, then

gi =
1√
2
( eσ(i) + eσ(j) ) and gj =

1√
2
(−eσ(i) + eσ(j) ).

4.2. The case of Sp(p, q). We use the realization of Sp(n,C) as (41) in Section 3.
We realize an indefinite symplectic group GR = Sp(p, q) as a group of matrices g
in Sp(n,C) which leave invariant the Hermitian form (50) of the signature (2p, 2q),
i.e.,

Sp(p, q) =

g ∈ Sp(n,C)

∣∣∣∣∣∣ tg
 Ip 0 0

0 −I2q 0
0 0 Ip

ḡ =

 Ip 0 0
0 −I2q 0
0 0 Ip

 .

We fix a Cartan involution θ of GR as follows:

θ : g 7→
 Ip 0 0

0 −I2q 0
0 0 Ip

g
 Ip 0 0

0 −I2q 0
0 0 Ip

.
Then we have

k = g ∩ kAIII, p = g ∩ pAIII, b = g ∩ bAIII,

and

K =


 K11 0 K13

0 K22 0
K31 0 K33


∣∣∣∣∣∣∣∣
K11, K13, K31, K33 ∈ Mat(p, p)(
K11 K13

K31 K33

)
∈ Sp(p,C)

K22 ∈ Sp(q,C)


' Sp(p,C)× Sp(q,C).

Remark 4.2.1. We have (V+)⊥ = V− and (V−)⊥ = V+.

Remark 4.2.2. We fix a G-equivariant natural isomorphism between X and G/B
via the manner in Remark 2.1.2.

4.3. A symbolic parametrization of Sp(p,C)×Sp(q,C)-orbits. In this section
we give a symbolic parametrization of K-orbits in X and give representatives of
K-orbits for the parameters. Our parameters are an improvement of the Matsuki-
Oshima’s parameters [6]. The set of parameters for GR = Sp(p, q) is a subset
of C(U(2p, 2q)). The parameter we give for a K-orbit Q in the flag variety for
GR = Sp(p, q) coincides with a clan in C(U(2p, 2q)) which includes Q.
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4.3-1. Generalized clans for Sp(p, q). We give a subset of C(U(2p, 2q)). The subset
parametrizes K-orbits in the flag variety X .

Proposition 4.3.1. For a flag x = (V0, V1, . . . , V2n) ∈ X, there exists a clan
γ = (c1 · · · c2n) ∈ C(U(2p, 2q)) via the conditions in Proposition 2.2.6.

Proposition 4.3.2. Let x ∈ X and γ = (c1 · · · c2n) ∈ C(U(2p, 2q)) be the clan of
x. Then the clan γ is symmetric, i.e., tγ = γ and i+ j 6= 2n+ 1 if ci = cj ∈ N.

Proof. We remark that

V2n−i,± = V2n−i ∩ V± = (Vi)
⊥ ∩ (V∓)⊥

= (Vi + V∓)⊥ = (π±(Vi)⊕ V∓)⊥.

1. If ci = +, then there exists a vector v+ in V+ such that v+ 6∈ π+(Vi−1) and
Vi = Vi−1 ⊕ 〈 v+ 〉. Since

V2n−i+1,+ = (π+(Vi−1)⊕ V−)⊥, and

V2n−i,+ = (π+(Vi)⊕ V−)⊥,

= (π+(Vi−1)⊕ 〈 v+ 〉 ⊕ V−)⊥,

we have

(2n− i+ 1; +)− (2n− i; +) = 1.

Since

V2n−i+1,− = (π−(Vi−1)⊕ V+)⊥ and

V2n−i,− = (π−(Vi)⊕ V+)⊥

= (π−(Vi−1)⊕ V+)⊥,

we have

(2n− i+ 1;−)− (2n− i;−) = 0.

Thus, we have c2n+1−i = +.
2. If ci = −, then we have c2n+1−i = − by the same argument of 1.
3. We prove (ci, c2n+1−i) 6= (a, a) for any a ∈ N. Suppose ci = c2n+1−i ∈ N

and 1 ≤ i ≤ n, then there exists a vector vi in C2n such that

Vi = Vi−1 ⊕ 〈 vi 〉 ⊂ V2n−i+1 = V2n−i ⊕ 〈π+(vi) 〉.
Then we have

vi 6∈ Vi−1 = V ⊥2n−i+1

= (V2n−i ⊕ 〈π+(vi) 〉)⊥
= V ⊥2n−i ∩ 〈π+(vi) 〉⊥.

That contradicts

vi ∈ Vi = V ⊥2n−i and vi ∈ 〈π+(vi) 〉⊥.
So, we got (ci, cj) 6= (a, a) for any a ∈ N.



388 ATSUKO YAMAMOTO

4. We will prove that c2n+1−i = ci′ ∈ N for some i′ < 2n+ 1− i if ci ∈ N and
ci 6= cj for all j < i. If ci ∈ N and ci 6= cj for all j < i, then there exists a

vi ∈ C2n such that π+(vi) 6∈ π+(Vi−1), π−(vi) 6∈ π−(Vi−1), and

Vi = Vi−1 ⊕ 〈 vi 〉.
Since

V2n−i+1,± = (π±(Vi−1)⊕ V∓)⊥ and

V2n−i,± = (π±(Vi)⊕ V∓)⊥ = (π±(Vi−1)⊕ 〈π±(vi) 〉 ⊕ V∓)⊥

we have

(2n− i+ 1,±)− (2n− i,±) = 1.

Therefore, c2n+1−i = ci′ ∈ N for some i′ < 2n+ 1− i.
5. We will prove that c2n+1−j ∈ N and cj′ 6= c2n+1−j for all j′ < 2n+ 1 − j if

ci = cj ∈ N for i < j. Then there exists a vi ∈ C2n such that π+(vi) 6∈
π+(Vi−1), π−(vi) 6∈ π−(Vi−1), and

Vi = Vi−1 ⊕ 〈 vi 〉 ⊂ Vj = Vj−1 ⊕ 〈π+(vi) 〉.
Since π±(vi) ∈ π±(Vi) ⊂ π±(Vj−1), we have

V2n−j,± = (π±(Vj)⊕ V∓)⊥

= ((π±(Vj−1) + 〈π±(vi) 〉)⊕ V∓)⊥

= (π±(Vj−1)⊕ V∓)⊥ = V2n−j+1,±.

Thus,

(2n− j + 1,±)− (2n− j,±) = 0.

Therefore c2n+1−j ∈ N and c2n+1−j 6= cj′ for all j′ < 2n+ 1− j.
6. It is enough to prove that ci = cj ∈ N if c2n+1−i = c2n+1−j ∈ N for

2n+ 1− i ≤ j < i. Let 2n+ 1− i ≤ j < i.
We prove that by induction on i. We suppose that if ck = cl ∈ N for

2n+ 1− i < k < l < i, then c2n+1−k = c2n+1−l ∈ N.
(a) We assume now ci = cs ∈ N for s < j hoping to show a contradiction.

Then there exist vi, vs ∈ C2n, such that

V2n+1−i = V2n−i ⊕ 〈 vi 〉 ⊂ V2n+1−j = V2n−j ⊕ 〈π+(vi) 〉 and

Vs = Vs−1 ⊕ 〈 vs 〉 ⊂ Vj−1 ⊂ Vi = Vi−1 ⊕ 〈π+(vs) 〉.
Thus,

V2n−i = V ⊥i ⊂ 〈π+(vs) 〉⊥.(53)

Since

vs ∈ Vs ⊂ Vj−1 = V ⊥2n−j+1 = V ⊥2n−j ∩ 〈π+(vi) 〉⊥ ⊂ 〈π+(vi) 〉⊥,
we have

ω(π+(vs), vi) = ω(π+(vs), π+(vi)) = ω(vs, π+(vi)) = 0.

So

〈 vi 〉 ⊂ 〈π+(vs) 〉⊥.(54)
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On the other hand,

V2n−i = V ⊥i = V ⊥i−1 ∩ 〈π+(vs) 〉⊥
= V2n−i+1 ∩ 〈π+(vs) 〉⊥ = (V2n−i ⊕ 〈 vi 〉) ∩ 〈π+(vs) 〉⊥
= V2n−i ⊕ 〈 vi 〉 = V2n−i+1

by (44) and (45). That contradicts V2n−i 6= V2n−i+1. We have proved
ci 6= cs for all s < j.

(b) We will assume that ci = cs for j < s < i and see what happens. Then
c2n+1−s ∈ N and there exists 1 ≤ t < 2n+ 1− s such that ct = c2n+1−s.
By assumptions, t satisfies 1 ≤ t < 2n + 1 − i. Then there exist vt,
vs ∈ Cn satisfying

Vt−1 ⊕ 〈 vt 〉 ⊂ V2n−i ⊂ V2n−s+1 = V2n−s ⊕ 〈π+(vt) 〉
and

Vs = Vs−1 ⊕ 〈 vs 〉 ⊂ Vi = Vi−1 ⊕ 〈π+(vs) 〉.
Thus,

V2n−s = V ⊥s ⊂ 〈 vs 〉⊥.(55)

Since

vt ∈ V2n−i = V ⊥i = V ⊥i−1 ∩ 〈π+(vs) 〉⊥ ⊂ 〈π+(vs) 〉⊥,
we have

ω(π+(vt), vs) = ω(π+(vt), π+(vs))

= ω(vt, π+(vs)) = 0.

So

〈π+(vt) 〉 ⊂ 〈 vs 〉⊥.(56)

On the other hand

V2n−s = V ⊥s = V ⊥s−1 ∩ 〈 vs 〉⊥
= V2n−s+1 ∩ 〈 vs 〉⊥
= (V2n−s ⊕ 〈π+(vt) 〉) ∩ 〈 vs 〉⊥
= V2n−s ⊕ 〈π+(vt) 〉 = V2n−s+1

by (46) and (47). That contradicts V2n−s 6= V2n−s+1.
Therefore c2n+1−j = c2n+1−i ∈ N if ci = cj ∈ N by induction.

Definition 4.3.3 (Generalized clan). We call a clan satisfying the condition in
Proposition 4.3.2 a generalized clan for Sp(p, q). We denote the set of generalized
clans for Sp(p, q) by C(Sp(p, q)):

C(Sp(p, q)) =

{
γ ∈ C(U(2p, 2q))

∣∣∣∣∣ tγ = γ and i + j 6= 2n+ 1

if ci = cj 6∈ N

}
.

Example 4.3.4. The set C(Sp(1, 1)) consists of four generalized clans:{
+ − − + , − + + −
1 1 2 2 , 1 2 1 2

}
.
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Example 4.3.5. The set C(Sp(2, 1)) consists of nine generalized clans:
+ + − − + + , + − + + − + , − + + + + −
+ 1 1 2 2 + , 1 + 1 2 + 2 , 1 1 + + 2 2
+ 1 2 1 2 + , 1 + 2 1 + 2 , 1 2 + + 1 2

 .

We recall the definition of clans in [6] in order to compare our notion of gener-
alized clans.

Definition 4.3.6. [6] A clan for Sp(p, q) is an equivalence class of ordered sets
(c1 · · · cn) of n symbols satisfying the following six conditions.

1. For 1 ≤ i ≤ n, a symbol ci is +, −, a, or a for a ∈ N.
2. If ci = a ∈ N, then there exists a unique j 6= i with cj = a and ct 6= a for

all t.
3. If ci = a for a ∈ N, then there exists a unique j 6= i with cj = a and ct 6= a

for all t.
4. The difference between numbers of + and − in clans (c1 · · · cn) coincides

with half of the difference of signatures of the Hermitian form defining the
group GR:

#{ i | ci = +} −#{ i | ci = −} = p− q.

5. If ci = a or a for a > 1, then there exist some j such that cj = a − 1 or
a− 1.

6. Two ordered sets (c1 · · · cn) and (c′1 · · · c′n) are regarded as equivalent if
and only if there exists a permutation σ ∈ Sm with m := max{ c′i ∈ N } such
that

ci =


σ(a) if c′i = a ∈ N
+ if c′i = +
− if c′i = −
σ(a) if c′i = a (a ∈ N)

for 1 ≤ i ≤ n.

For example, (2 1 1 + 2 −) = (1 2 2 + 1 −) as a clan.

The following one-to-one correspondence exists between clans for Sp(p, q) and
generalized clans for Sp(p, q). A clan (c′1 · · · c′n) corresponds to a generalized clan
(c1 · · · c2n) satisfying the following four conditions for 1 ≤ i, j ≤ n:

1. If c′i = +, then (ci, c2n+1−i) = (+,+).
2. If c′i = −, then (ci, c2n+1−i) = (−,−).
3. If c′i = c′j ∈ N, then ci = cj ∈ N and c2n+1−i = c2n+1−j ∈ N.
4. If c′i = c′j = a, then ci = c2n+1−j ∈ N and cj = c2n+1−i ∈ N.

For example, a clan (1 2 2 + 1) corresponds to a generalized clan

(1 2 2 + 3 1 + 4 4 3).

Therefore C(Sp(p, q)) is a parametrization of K-orbits in X by [6, Theorem 4.1].

Corollary 4.3.7. Generalized clans in C(Sp(p, q)) parametrize K-orbits in the flag
variety X via the correspondence in Proposition 2.2.6.

Notation 4.3.8. For each generalized clan γ, let Qγ be theK-orbit in the flag variety
X corresponding to γ via the parametrization of Corollary 4.3.7.
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4.3-2. Representatives of Sp(p,C) × Sp(q,C)-orbits in Sp(n,C)/B. We will give
an element g ∈ G such that the flag x = gB corresponds to a generalized clan γ ∈
C(Sp(p, q)) and the flag x = gBAIII in X corresponds to the clan γ ∈ C(U(2p, 2q)).

Definition 4.3.9 (Symmetric signed clan). A symmetric signed clan γ+ =
(d1 · · · d2n) of a generalized clan γ = (c1 · · · c2n) is a signed clan (in Defini-
tion 2.2.9) of the clan γ satisfying the following condition. If ci = cj = a ∈ N,
then we have c2n+1−j = c2n+1−i = b ∈ N. We can assume min(i, 2n + 1 − i) <
min(j, 2n+ 1− j). Then

(di, dj) = (a+, a−) and (d2n+1−j , d2n+1−i) = (b−, b+).(57)

Example 4.3.10. The symmetric signed clan of γ = (1 2 1 + 3 2 + 4 3 4) is

γ+ = (1+ 2+ 1− + 3− 2− + 4− 3+ 4+).

Corollary 4.3.11. In a symmetric signed clan γ+ = (d1 · · · d2n), the signature
of di is equal to the signature of d2n+1−i for 1 ≤ i ≤ 2n.

In this section, we call a skew symmetric signed clan just a clan.
We give a representative g ∈ G of Qγ .

Theorem 4.3.12. For γ ∈ C(Sp(p, q)) and the signed clan γ+ = (d1 · · · d2n) of
γ, fix two permutations σ′′ ∈ Sn such that

1 ≤ σ′′(i) ≤ p if the signature of di is plus,

p+ 1 ≤ σ′′(i) ≤ n if the signature of di is minus,

and σ′ ∈ S2n such that

if the signature of di is plus or di = −, then

σ′(i) =

{
σ′′(i) if i ≤ n,

2n+ 1− σ′′(i) if n < i,

and if di = a− and dj = a+ for some a ∈ N, then

σ′(i) =

{
σ′′(i) if j ≤ n,

2n+ 1− σ′′(i) if n < j.

The matrix g(γ) = (g1 g2 · · · g2n) ∈ Mat(2n, 2n) is a representative of Qγ, i.e.,
Qγ = Kg(γ)B. Here gi ∈ V are column vectors defined as follows:

• If ci = ±, then gi = eσ′(i).
• If (ci, cj) = (a+, a−) for some a ∈ N, then

gi =
1√
2
(eσ′(i) + eσ′(j)) and gj =

{
− 1√

2
(−eσ′(i) + eσ′(j)) if j ≤ n < i,

1√
2
(−eσ′(i) + eσ′(j)) otherwise.

Proof. The permutation σ′ satisfies the conditions (52) of σ in Proposition 4.1.2.
Thus, g(γ) is a representative of KAIII-orbit QγAIII, i.e., QγAIII = KAIIIg(γ)BAIII,
and g(γ) ∈ G. Therefore, we have

Qγ = Kg(γ)B.
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Example 4.3.13. For a signed clan

γ+ = (1+ 2+ − 1− + 3− 2− + 4− − 3+ 4+),

for example, if we choose

σ′′ =

(
1 2 3 4 5 6
1 2 6 4 3 5

)
,

then σ′ is

σ′ =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 2 6 4 3 8 5 10 9 7 11 12

)
.

Remark 4.3.14. The representation g(γ) is real and orthogonal:

g(γ)−1 = tg(γ).

4.4. M-O graph of Sp(p, q). We define an oriented graph which has generalized
clans as vertices and in which an edge is labeled by i for some 1 ≤ i ≤ n. We can
read off closure relations from the graph.

Definition 4.4.1. Let Γ(Sp(p, q)) be the set of all triples (γ, γ′, i) with γ, γ′ ∈
C(Sp(p, q)) and 1 ≤ i ≤ n, satisfying one of the following two conditions.

1. (γ, γ′, i) ∈ Γ(U(2p, 2q)). (This case happens only if i = n.)
2. There exists a clan γ′′ ∈ C(U(2p, 2q)) such that

{(γ, γ′′, i), (γ′′, γ′, 2n− i)} ⊂ Γ(U(2p, 2q)).

By Theorem 2.2.14 and Remark 3.3.4, we have the following proposition.

Proposition 4.4.2. If (γ, γ′, i) ∈ Γ(Sp(p, q)), then

πi(Qγ) = πi(Qγ′).

Proposition 4.4.3. If (γ, γ′, i) ∈ Γ(Sp(p, q)), then

dimQγ = dimQγ′ − 1

and

Kg(γ)B ⊂ Kg(γ′)B.

Proof. By [6], if (γ, γ′, i) ∈ Γ(Sp(p, q)), then we have

dimQγ = dimQγ′ ± 1

and

Kg(γ)B ⊂ Kg(γ′)B, or Kg(γ′)B ⊂ Kg(γ)B.

If i = n, then (γ, γ′, n) ∈ Γ(U(2p, 2q)). Therefore

KAIIIg(γ)BAIII ⊂ KAIIIg(γ′)BAIII and KAIIIg(γ
′)BAIII 6⊂ KAIIIg(γ)BAIII.

Thus, we have Kg(γ)B ⊂ Kg(γ′)B.
If i 6= n, then both of (γ, γ′′, i) and (γ′′, γ′, 2n− i) are elements of Γ(U(2p, 2q))

for some γ′′ ∈ C(U(2p, 2q)). By the same argument of the case of i = n, Kg(γ)B ⊂
Kg(γ′)B. Therefore dimQγ = dimQγ′ − 1 for all (γ, γ′, i) ∈ Γ(Sp(p, q)).

Although the definition of the following graph follows [6], we use generalized clans
instead of clans as vertices.
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Figure 3

Definition 4.4.4 (M-O graph of Sp(p, q)). Let

C0(Sp(p, q)) = C(Sp(p, q)) ∩ C0(U(2p, 2q)) :

C0(Sp(p, q)) = { (c1 . . . cn) ∈ C(Sp(p, q)) | ci 6∈ N for all 1 ≤ i ≤ n }.
We give subsets Γm(Sp(p, q)) of Γ(Sp(p, q)) and subsets Cm(Sp(p, q)) of C(Sp(p, q))
for m ≥ 1 by induction as follows:

Γm(Sp(p, q)) := { (γ′, γ, i) ∈ Γ′(Sp(p, q)) | γ ∈ Cm−1(Sp(p, q)) } ,
Cm(Sp(p, q)) := { γ ∈ C(Sp(p, q)) | (γ′, γ, i) ∈ Γm(Sp(p, q)) } .

The M-O graph with generalized clans of Sp(p, q) is a finite oriented graph whose
vertices are generalized clans in C(Sp(p, q)) and whose oriented edges are

Γ(Sp(p, q)) =
⋃

m∈N

Γm(Sp(p, q)) .

Example 4.4.5. The Γ(Sp(2, 1)) is as Figure 3.

Remark 4.4.6. If (γ, γ′, i) ∈ Γ(Sp(p, q)), then

πi(Qγ) = πi(Qγ′) and dimQγ + 1 = dimQγ′.

4.5. Dimensions of Sp(p,C) × Sp(q,C)-orbits in Sp(n,C). In this section we
will give a dimension formula of K-orbits for generalized clans. We defined the
length `C(γ) of a generalized clan in Definition 3.4.1

`C(γ) =
1

2
( `(γ) + #{t ∈ N | cs = ct ∈ N and s ≤ n < t ≤ 2n+ 1− s}) .

Proposition 4.5.1. If γ ∈ Cm(Sp(p, q)), then `C(γ) = m.

Proof. We prove the proposition by induction on m. Let γ = (c1 . . . c2n).

1. If γ ∈ C0(Sp(p, q)), then `C(γ) = 0.
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2. Suppose `C(γ′) = j, if γ′ ∈ Cj(Sp(p, q)). For γ ∈ Cj+1(Sp(p, q)), there
exists γ′ = (c′1 . . . c′2n) ∈ Cj(Sp(p, q)) such that (γ′, γ, i) ∈ Γ(Sp(p, q)) for
some i.
(a) If i = n, then `(γ) = `(γ′) + 1, and

#{t ∈ N | cs = ct ∈ N and s ≤ n < t ≤ 2n+ 1− s} −#{n+ 1 }
= #{t ∈ N | c′s = c′t ∈ N and s ≤ n < t ≤ 2n+ 1− s}.

So, `C(γ′) = j + 1.
(b) If i 6= n, then there exists a clan γ′′ ∈ C(U(2p, 2q)) such that

(γ′, γ′′, i), (γ′′, γ, 2n− i) ∈ Γ(U(2p, 2q)).

So, we have

`(γ) = `(γ′′) + 1 = `(γ′) + 2

and

#{t ∈ N | cs = ct ∈ N and s ≤ n < t ≤ 2n+ 1− s}
= #{t ∈ N | c′s = c′t ∈ N and s ≤ n < t ≤ 2n+ 1− s}.

Therefore `C(γ) = j + 1.
So, `C(γ) = m if γ ∈ Cm(Sp(p, q)) for all m ∈ N.

A generalized clan

γ = ( 1 2 · · · (2p)︸ ︷︷ ︸
2p

− · · · −︸ ︷︷ ︸
2n−4p

(2p− 1) (2p) · · · 5 6 3 4 1 2︸ ︷︷ ︸
2p

)

corresponds to the open orbit and

`C(γ) = 2pq.

Since the dimension of a closed orbit is p2 + q2, we have the following dimension
formulas.

Proposition 4.5.2. For γ ∈ C(Sp(p, q)), we have the dimension and the codimen-
sion of Qγ = Kg(δ)B ⊂ X:

dimQγ = `C(γ) + p2 + q2,
codimQγ = 2pq − `C(γ).

4.6. Images of the moment map. We have

(Ad(g(γ))b⊥) ∩ p = (Ad(g(γ)) · (b⊥AIII ∩ g)) ∩ (pAIII ∩ g)

= (Ad(g(γ)) · b⊥AIII) ∩ pAIII) ∩ g,

and elements X in g satisfy

Xij =

 −X2n+1−j,2n+1−i if 1 ≤ i, j ≤ n or n+ 1 ≤ i, j ≤ 2n,

X2n+1−j,2n+1−i if i ≤ n < j or j ≤ n < i,
.

Since we gave the image (Ad(g) · b⊥AIII) ∩ pAIII of the moment map µ in Propo-
sition 2.5.2 with g := gAIII(γ) in Proposition 4.1.2 and σ := σ′ in Theorem 4.3.12,
we get the following proposition.
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Proposition 4.6.1. For a generalized clan γ = (c1 · · · c2n) ∈ C(Sp(p, q)), fix a
σ′ ∈ S2n given as in Theorem 4.3.12. Let the representative g := g(γ) be given as
in Theorem 4.3.12, and x = gB ∈ Qγ. We can read off µ(T ∗Qγ

X)x from a vector

subspace Dri(δ) of g.

µ(T ∗Qγ
X)x = Ad(σ′) · Dri(γ)

= {σ′Y tσ′ |Y ∈ Dri(γ)}
= { Y(σ′−1(1),... ,σ′−1(n)) | Y ∈ Dri(γ)}.

Here, Dri(γ) is the subspace of Dri(γ+), the driving space of the signed clan γ+ for
U(2p, 2q) in Definition 2.5.1, defined as follows:

Dri(γ) := Dri(γ+) ∩Ad(σ′−1
) · g

= { Y ∈ Dri(γ+) | Y satisfies the following two conditions }.

1. If 1 ≤ σ′(i), σ′(j),≤ n or n+ 1 ≤ σ′(i), σ′(j) ≤ 2n, then

Yi,j = −Y2n+1−j,2n+1−i.

2. If σ′(i) ≤ n < σ′(j) or σ′(j) ≤ n < σ′(i), then

Yi,j = Y2n+1−j,2n+1−i.

We call the space Dri(γ) the driving space of the generalized clan γ ∈ C(Sp(p, q)).

Proof. For the signed clan γ+ = (d1 · · · d2n) and the permutation σ′ in Theo-
rem 4.3.12 and a representative gAIII(γ+, σ

′) in Proposition 4.1.2, we have

g = g(γ+, σ
′) · diag(ε1 · · · ε2n).

Here,

εi =

{
−1 if (di, dj) = (a−, a+) for i ≤ n < j,

1 otherwise.

So,

(Ad(g)b⊥AIII) ∩ pAIII

= (Ad(g(γ+, σ
′))(Ad(diag(ε1 . . . ε2n)) · b⊥AIII) ∩ pAIII

= (Ad(g(γ+, σ
′)) · b⊥AIII) ∩ pAIII.

Therefore, µ(T ∗Qγ
X)x = Ad(σ′) · Dri(γ) is as above.

Corollary 4.6.2. For the representative g(γ) of Qγ given as in Theorem 4.3.12,
we have the following equation.

Dri(γ) = Ad(σ′−1
)(Ad(g(γ)) · b⊥) ∩ p

= {A(σ′(1),... ,σ′(2n)) | A ∈ (Ad(g(γ)) · b⊥) ∩ p }.
Since g(γ) = (eσ′(1) . . . eσ′(2n)) = σ′ if a generalized clan γ corresponds to a

closed orbit, we have the following lemma.

Lemma 4.6.3. If a generalized clan γ is an element of C0(Sp(p, q)), then

Dri(γ) = b⊥ ∩ (Ad(g(γ)−1) · p).

Definition 4.6.4 (Driving matrix). For a generalized clan γ ∈ C(Sp(p, q)), let
Y (γ) and Y (γ,m), 1 ≤ m ≤ 8 be elements of F ⊗C Mat(2n, 2n) satisfying the
following conditions. Let γ+ = (d1 · · · d2n).
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1. Y (γ, 1)ij =

{
1 if j < i ≤ 2n+ 1− j

0 otherwise.

2. Y (γ, 2)ij =

{
0 if (di, dj) = (+,+) or (−,−),

Y (γ, 1)ij otherwise.

3. If (ds, dt) = (a+, a−) or (a−, a+) for s < t, then

• Y (γ, 3)s,k1 = 0 if 1 ≤ k1 ≤ s,

• Y (γ, 3)k2,s = Y (γ, 3)t,k2 = 0 if s ≤ k2 ≤ t,

• Y (γ, 3)k3,t = 0 if t ≤ k3 ≤ 2n,

for all a ∈ N and Y (γ, 3)ij = Y (γ, 2)ij otherwise.

Remark 4.6.5. If Y (γ, 3)ij = 1, then the following conditions are satisfied.

(a) j < i ≤ 2n+ 1− j (so j ≤ n).
(b) (di, dj) = (a+, b+), (a−, b+), (a+,+), (a+,−), (a−,+), (a−,−), (+, a+),

(−, a+), (+,−), or (−,+) for some a, b ∈ N, a 6= b.
(c) If i+ j = 2n+ 1, then (di, dj) = (a+, b+) for some a, b ∈ N, a 6= b.
(d) If di = + or −, then σ′(i) ≤ n if i ≤ n, σ′(i) > n if i > n.
(e) If di = a+, then dk = a− for some j < k < i, Then n < σ′(k) < σ′(i).
(f) If di = a−, then dk = a+ for some j < k < i. Then σ′(k) < σ′(i) ≤ n.
(g) If dj = + or −, then σ′(j) < n.
(h) If dj = a+, then dk = a− for j < k < i. Then σ′(j), σ′(k) ≤ n.

4. If Y (γ, 3)i,2n+1−i = 1, (di, d2n+1−i) = (a+, b+), and (dj , d2n+1−j) = (a−, b−),
for some a, b ∈ N, then Y (γ, 4)i,2n+1−i = 0,

( Y (γ, 4)i,2n+1−j , Y (γ, 4)j,2n+1−i )

=

{
(yi,2n+1−j , yi,2n+1−j) if 2n+ 1− j < j,

(0, 0) if j < 2n+ 1− j,

and Y (γ, 4)i′j′ = Y (γ, 3)i′j′ otherwise (i′, j′).
5. If Y (γ, 4)ij = 1, i+ j 6= 2n+ 1, (di, dj) = (a+, b+), and (dk, dl) = (a−, b−) for

some a, b ∈ N, then Y (γ, 5)ij = 0,

( Y (γ, 5)il, Y (γ, 5)2n+1−l,2n+1−i ) = (yil, yil),

and

( Y (γ, 5)kj , Y (γ, 5)2n+1−j,2n+1−j ) =

{
(−yil,−yil) if k < l,

(ykj , ykj) if l < k,

and Y (γ, 5)i′j′ = Y (γ, 4)i′j′ otherwise.
6. If Y (γ, 5)ij = 1, (di, dj) = (a−, b+) and (dk, dl) = (a+, b−) for some a, b ∈ N,

then

( Y (γ, 6)ij , Y (γ, 6)2n+1−j,2n+1−i ) = (yij ,−yij),

( Y (γ, 6)kl, Y (γ, 6)2n+1−l,2n+1−k ) =

{
(−yij , yij) if k < l,

(ykl,−ykl) if l < k,

and Y (γ, 6)i′j′ = Y (γ, 5)i′j′ otherwise.
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7. If Y (γ, 6)ij = 1, (di, dj) = (a+,+) or (di, dj) = (a−,−), dk = a− or dk = a+,
for some a ∈ N, then Y (γ, 7)ij = 0,

( Y (γ, 7)kj , Y (γ, 7)2n+1−j,2n+1−k ) =

{
(ykj ,−ykj) if σ′(k) ≤ n,

(ykj , ykj) if σ′(k) > n,

and Y (γ, 7)i′j′ = Y (γ, 6)i′j′ otherwise.
8. If Y (γ, 7)ij = 1, (di, dj) = (+, a+), and dk = a− for some a ∈ N, then
Y (γ, 8)ij = 0,

( Y (γ, 8)ik, Y (γ, 8)2n+1−k,2n+1−i ) =

{
(yik,−yik) if σ′(i) ≤ n,

(yik, yik) if σ′(i) > n,

and Y (γ, 8)i′j′ = Y (γ, 7)i′j′ otherwise.
9. If Y (γ, 8)ij = 1, then

( Y (γ)ij , Y (γ)2n+1−j,2n+1−i ) =

{
(yij ,−yij) if σ′(i) ≤ n,

(yij , yij) if σ′(i) > n,

and Y (γ)i′j′ = Y (γ, 8)i′j′ for other (i′, j′).

We call Y (γ) the driving matrix of γ (for Sp(p, q)).
By the same arguments of Proposition 2.5.8, we get the following proposition.

Proposition 4.6.6. For a generalized clan γ ∈ C(Sp(p, q)), the driving space
Dri(γ) for Sp(p, q) and the driving matrix Y (γ) of γ for Sp(p, q) satisfy the fol-
lowing condition.

Dri(γ) = { Y (γ) | yij ∈ C for 1 ≤ i, j ≤ 2n }.

By Proposition 4.6.1 and Proposition 4.6.6, we got the following theorem which
means we can read off µ(T ∗Qγ

X)x from the driving matrix Y (γ).

Theorem 4.6.7. For a generalized clan γ ∈ C(Sp(p, q)), fix a σ′ ∈ S2n given as
in Theorem 4.3.12. Let the representative g := g(γ) be given as in Theorem 4.3.12,
and x = gB ∈ Qγ . We can read off µ(T ∗Qγ

X)x from the driving matrix Y (γ) for

Sp(p, q) as follows:

µ(T ∗Qγ
X)x = { Y (γ)(σ′−1(1),... ,σ′−1(2n)) | yij ∈ C for 1 ≤ i, j ≤ 2n }.

4.7. Signed Young diagrams. In this section, after we recall a parametrization
of nilpotent K-orbits in p, we give tables of signed Young diagrams for the clans of
Sp(1, 1), Sp(2, 1), and Sp(2, 2) by way of examples.

Nilpotent K-orbits in p are parametrized by signed Young diagrams of signature
(2p, 2q) satisfying the following conditions.

1. If m ∈ N is even, then the number of rows of which the length are m and
which are labeled + in the first column is equal to the number of rows of
which the length are m and which are labeled − in the first column.
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2. If m ∈ N is odd, the number of rows of which the length are m and which
are labeled + in the first column is even.

3. If m ∈ N is odd, the number of rows of which the length are m and which
are labeled − in the first column is even.

For an element A of an orbit, the signed Young diagram of the orbit satisfies

i∑
j=1

Dj,+ = dim(ker(Ai|V+)) and

i∑
j=1

Dj,− = dim(ker(Ai|V−)).

Proposition 4.7.1. Under the conditions of Theorem 4.3.12, we put

V ′+ := σ′−1
V+ = (eσ′−1(1) . . . eσ′−1(2n))V+

= 〈eσ′−1(1), . . . , eσ′−1(p)〉 ⊕ 〈eσ′−1(p+2q+1), . . . , eσ′−1(2n)〉,
V ′− := σ′−1

V− = (eσ′−1(1) . . . eσ′−1(2n))V−
= 〈eσ′−1(p+1), . . . , eσ′−1(p+2q)〉.

By the same argument of the case of U(2p, 2q), we have the following proposition.

Proposition 4.7.2. Let Y (γ)0 = In. We have the following equations:

Di,+ = dimF {~a ∈ F ⊗C V ′+ | Y (γ)i~a = ~0 } − dimF {~a ∈ F ⊗C V ′+ | Y (γ)i−1~a = ~0 },
Di,− = dimF {~b ∈ F ⊗C V ′− | Y (γ)i~b = ~0 } − dimF {~b ∈ F ⊗C V ′− | Y (γ)i−1~b = ~0 }.

At last we give tables of signed Young diagrams for the clans of Sp(1, 1) in
Example 4.7.3, Sp(2, 1) in Example 4.7.4, Sp(2, 2) in Example 4.7.5, and a subgraph
of Γ(Sp(2, 2)) in Figure 4 (which has edges (γ, γ′, i) such that the first signature of
the clan γ = (c1 . . . c8) is plus, i.e., cm = + for

m = min{ j | cj = + or −}
and the corresponding signed Young diagrams). In Figure 4, clans and signed
Young diagrams are separated by dots. A clan and its signed Young diagram are
in the same component. In Figure 4,

( +−−+ +−−+ ) -1 ( 1 1 +−−+ 2 2 )

instead of

( +−−+ +−−+ ) -1 ( 1 1 −+ +− 2 2 ) ∈ Γ(Sp(2, 2)).
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Example 4.7.3. This is the table of the case of GR = Sp(1, 1).

clan γ a representative g(γ)
of K-orbit

driving matrix
Y (γ)

signed Young
diagram

+−−+


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




0 0 0 0

y21 0 0 0

y31 0 0 0

0 y31−y21 0



+−
−+

−+ +−


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




0 0 0 0

y21 0 0 0

y31 0 0 0

0 y31−y21 0



1 1 2 2


1√
2

−1√
2 0 0

1√
2

1√
2 0 0

0 0
1√
2

1√
2

0 0
−1√

2
1√
2




0 0 0 0

0 0 0 0

y42 0 0 0

0 y42 0 0



1 2 1 2


1√
2 0

−1√
2 0

1√
2 0

1√
2 0

0
−1√

2 0
1√
2

0
1√
2 0

1√
2




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


+
+
−
−
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Example 4.7.4. This is the table of the case of GR = Sp(2, 1).

clan γ
a representative g(γ)

of K-orbit

driving matrix
Y (γ)

signed
Young

diagram

+ +−−+ +



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





0 0 0 0 0 0

0 0 0 0 0 0

y31 y32 0 0 0 0

y41 y42 0 0 0 0

0 0 y42−y32 0 0

0 0 y41−y31 0 0



+−+
+−+

+−+ +−+



1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1





0 0 0 0 0 0

y21 0 0 0 0 0

0 y32 0 0 0 0

0 y42 0 0 0 0

y51 0 y42−y32 0 0

0 y51 0 0 −y21 0



+ 1 1 2 2 +



1 0 0 0 0 0

0
1√
2

−1√
2 0 0 0

0
1√
2

1√
2 0 0 0

0 0 0
1√
2

1√
2 0

0 0 0
−1√

2
1√
2 0

0 0 0 0 0 1





0 0 0 0 0 0

0 0 0 0 0 0

y31 0 0 0 0 0

y41 y53 0 0 0 0

0 0 y53 0 0 0

0 0 y41−y31 0 0



−+ + + +−


0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0





0 0 0 0 0 0

y21 0 0 0 0 0

y31 0 0 0 0 0

y41 0 0 0 0 0

y51 0 0 0 0 0

0 y51 y41−y31−y21 0


+−
−+
+
+

1 1 + + 2 2



1√
2

−1√
2 0 0 0 0

0 0 1 0 0 0

1√
2

1√
2 0 0 0 0

0 0 0 0
1√
2

1√
2

0 0 0 1 0 0

0 0 0 0
−1√

2

1√
2





0 0 0 0 0 0

0 0 0 0 0 0

0 y32 0 0 0 0

0 y42 0 0 0 0

y62 0 y42−y32 0 0

0 y62 0 0 0 0
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clan γ
a representative g(γ)

of K-orbit

driving matrix
Y (γ)

signed
Young

diagram

+ 1 2 1 2 +



1 0 0 0 0 0

0
1√
2 0

−1√
2 0 0

0
1√
2 0

1√
2 0 0

0 0
−1√

2 0
1√
2 0

0 0
1√
2 0

1√
2 0

0 0 0 0 0 1





0 0 0 0 0 0

0 0 0 0 0 0

y31 0 0 0 0 0

y41 0 0 0 0 0

0 0 0 0 0 0

0 0 −y41 y31 0 0


+−
−+
+
+

1 + 1 2 + 2



1√
2 0

−1√
2 0 0 0

0 1 0 0 0 0

1√
2 0

1√
2 0 0 0

0 0 0
1√
2 0

1√
2

0 0 0 0 1 0

0 0 0
−1√

2 0
1√
2





0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

y63 y53 0 0 0 0

0 0 y53 0 0 0

0 0 y63 0 0 0



1 + 2 1 + 2



1√
2 0 0

−1√
2 0 0

0 1 0 0 0 0

1√
2 0 0

1√
2 0 0

0 0
−1√

2 0 0
1√
2

0 0 0 0 1 0

0 0
1√
2 0 0

1√
2





0 0 0 0 0 0

0 0 0 0 0 0

0 y54 0 0 0 0

0 0 0 0 0 0

0 0 0 y54 0 0

0 0 0 0 0 0



1 2 + + 1 2



1√
2 0 0 0

−1√
2 0

0 0 1 0 0 0

1√
2 0 0 0

1√
2 0

0
−1√

2 0 0 0
1√
2

0 0 0 1 0 0

0
1√
2 0 0 0

1√
2





0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



+
+
+
+
−
−
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Example 4.7.5. This is the table of GR = Sp(2, 2).

clan γ
signed Young

diagram
clan γ

signed Young
diagram

+−+−− +−+

+−+−
−+−+

1 1 2 3 2 3 4 4

+−
+−
−+
−+

−+−+ + −+− 1 2 2 1 3 4 4 3

+−−+ + −−+ 1 2 1 3 2 4 3 4

−+ +−− + +− 1 2 2 3 1 4 4 3

1 1 +−− + 2 2 1 2 3 1 4 2 3 4

1 1 −+ + − 2 2 1 2 3 2 4 1 4 3

+− 1 1 2 2 −+ 1 2 3 4 1 2 3 4

−+ 1 1 2 2 +− 1 2 3 4 2 1 4 3

1 1 2 2 3 3 4 4 + 1 2 −− 1 2 +

1 2 1 2 3 4 3 4 − 1 2 + + 1 2 −
+−
−+
+
+
−
−

+ +−−− −+ +

+−+
+−+
−
−

1 − 2 + + 1 − 2

+ 1 1 −− 2 2 + 1 + 2 −− 1 + 2

1 + 1 −− 2 + 2 1 2 +−−+ 1 2

+ 1 − 1 2 − 2 + 1 2 −+ +− 1 2

+− 1 2 1 2 −+ 1 2 3 3 4 4 1 2

1 +− 1 2 −+ 2

+ 1 − 2 1 − 2 +

1 +− 2 1 −+ 2

−−+ + + +−−

−+−
−+−
+
+

1 2 3 4 3 4 1 2

+
+
+
+
−
−
−
−

− 1 1 + + 2 2 −
1 − 1 + + 2 − 2

− 1 + 1 2 + 2 −
−+ 1 2 1 2 +−
1 −+ 1 2 +− 2

− 1 + 2 1 + 2 −
1 −+ 2 1 +− 2
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