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ORBITS IN THE FLAG VARIETY AND IMAGES
OF THE MOMENT MAP FOR CLASSICAL GROUPS I

ATSUKO YAMAMOTO

ABSTRACT. We propose algorithms to get representatives and the images of
the moment map of conormal bundles of GL(p, C) X GL(gq, C)-orbits in the flag
variety of GL(p+¢q, C), and GL(p+ ¢, C)-orbits and Sp(p, C) x Sp(g, C)-orbits
in the flag variety of Sp(p + ¢, C) and their signed Young diagrams.
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1. INTRODUCTION

For an admissible representation of a real semisimple Lie group, the associated
variety is one of the most important invariants of representations. Borho-Brylinski
[1] clarify the relation between representations in a D-module picture and their
associated varieties. The associated variety of a representation (Harish-Chandra
module) is exactly the image of the moment map of the characteristic variety of the
D-module corresponding to the representation. In particular, the associated variety
of a discrete series representation is nothing but the image of the moment map of
the conormal bundle of the corresponding closed orbit in the flag variety. Motivated
by these facts, it seems to be useful to determine the image of the moment map of
the conormal bundle of various orbits in the flag variety. In this paper, for indefinite
unitary groups, real symplectic groups, and indefinite symplectic groups, we will
determine the image as explicitly as possible. Garfinkle gave another algorithm in
[3]. By her algorithm we can also get signed Young diagrams from parameters of
K-orbits in the flag variety. It remains to examine how the two algorithms agree.

In order to describe the results in this paper, we introduce the following notation.
Let Gr be a real classical group. Let K be the complexification of a maximal
compact subgroup of Ggr. The image of the moment map on a conormal bundle of
a K-orbit in the flag variety is known to contain a (unique) dense nilpotent K-orbit
in the orthogonal subspace p of the Lie algebra ¢ of K in the Lie algebra g of G
(see [1], [2]). What we want to write down is the map from a K-orbit in the flag
variety to a nilpotent K-orbit in p. For a K-orbit @) in the flag variety X, the
image of the moment map u of the conormal bundle T5X is a K-saturation of the
image of a fiber (T5X), at a point x € Q. Then the nilpotent K-orbit O in p is a
K-saturation of the subspace ;i((7¢X)z) in p. The K-orbits in p are parametrized
by symbols called signed Young diagrams from which we can read off corresponding
orbits (see [2]). Similarly, Matsuki and Rossmann [5], [8], [9] classified K-orbits in
the flag variety, and moreover, for classical groups, Matsuki and Oshima introduce
symbols (called clans) parametrizing these orbits [6]. Hence the map of K-orbits
in the flag variety into nilpotent K-orbits in p defined above can be expressed in
terms of the map of clans into signed Young diagrams.

In this paper, we give the subspaces u((T5 X)) C p directly from the clan which
parametrizes the corresponding K-orbit in the flag variety. We can determine the
corresponding signed Young diagram from a generic point of this space.

In this paper we treat the cases Gr = U(p, q), Sp(n,R), and Sp(p, ¢). The same
argument can be applied to groups which have a compact Cartan subgroup. The
precise results will appear elsewhere.

We give a brief organization of this paper.

In Section 2, we treat the case of indefinite unitary groups U(p,q). After we
recall a standard notation of U(p, q), we treat K-orbit (GL(p, C) x GL(q, C)-orbit)
decomposition in the flag variety X in Section 2.1.

In Section 2.2, we recall a symbolic parametrization (called clan) of K-orbits in
the flag variety in terms of clans along [6]. Since no proofs are given in [6], we give
proofs for completeness. We give representatives of K-orbits for clans also.

In Section 2.3, we give a dimension formula of K-orbits for clans, and in Sec-
tion 2.4 a graph (called M-O graph) which has clans for vertices. The graph shows
closure relations between K-orbits.
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In Section 2.5, after we recall the moment map, we give images of the moment
map of the conormal bundles of K-orbits for clans.

In Section 2.6, we recall the parametrization of nilpotent K-orbits in p by signed
Young diagrams. Although we partly follow the treatment of [2], we do not use the
Kostant-Sekiguchi correspondence. Our method stands on the following observa-
tion: for an element X of a K-orbit in p, if we can compute the dimension of the
kernel of X for all 1 <4 < n, then we can obtain the signed Young diagram of the
orbit using such information. We write down tables of signed Young diagrams for
clans for U(1,1), U(2,1), U(2,2), and U(p,2) by way of examples.

In Section 3 (resp. in Section 4), we treat the case of real symplectic group
Sp(n,R) (resp. indefinite symplectic group Sp(p,q)). For applying the case of
U(2p,2q) to the case of Sp(p,q), we use another realization of U(2p,2q) in Sec-
tion 4).

In Section 3.2-1 (resp. in Section 4.3-1), we define a symbolic parametrization
(called generalized clan) of K-orbits (GL(n,C)-orbits (resp. Sp(p, C) x Sp(g, C)-
orbits)) in the flag variety in the same way as in the case of U(n, n) (resp. U(2p, 2q)).
Generalized clans for Sp(n,R) (resp. Sp(p,q)) are given as elements of a subset
of clans for U(n,n) (resp. U(2p,2q)) satisfying some conditions. The notion of
generalized clans is an improvement of the notion of clans in [6].

In Section 3.2-2 (resp. in Section 4.3-2), we give representatives of K-orbits for
generalized clans.

In Section 3.3 (resp. in Section 4.4), we give a graph (called M-O graph) in terms
of [6]. Instead of clans, the graph has generalized clans for vertices.

In Section 3.4 (resp. in Section 4.5), we give a dimension formula of K-orbits for
generalized clans.

In Section 3.5 (resp. in Section 4.6), we give images of the moment map of the
conormal bundle of K-orbits for generalized clans.

In Section 3.6 (resp. in Section 4.7), we recall the parametrization of nilpotent K-
orbits in p by signed Young diagrams. Lastly, we write down tables of signed Young
diagrams for clans for Sp(1,R), Sp(2,R), and Sp(3,R) (resp. Sp(1,1), Sp(2,1), and
Sp(2,2)) by way of examples.

Notation 1.0.1. Let N denote the set of positive integers; N = {1,2,...}. For
n € N, let an n x n matrix E;; (1 <4,j < n) denote the matrix unit which has 1
for the (i, j)-entry and O for other entries. Let an n-column vector e; be the vector
which has 1 for the i-th entry and 0 for other entries. For a matrix A, let Ay
be the (s,t)-entry of A. Let Mat(m,n) be the set of m x n-matrices over C. Let
I, € Mat(n,n) be the identity matrix, J, € Mat(n,n) satisfy (J,)st = Ss4t.n+1:

0 --- 0 1
0 1 0
J, = S
0 S
1 0 0
Let diag(as,... ,an) € Mat(n,n) be a diagonal matrix
ag 0 --- 0

0 0
diag(al, e ,an) = : 0?2 . :

0 0 - a,
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For a matrix A € Mat(n,n) and a subset {i(1),4(2),...,i(m)} of {1,...,n}, we
denote by A(;(1),i(2),... ,i(m)) an m x m-matrix whose (s, t)-entry is A;5)i¢). Let #S
denote cardinality of a finite set S. For m vectors {g1,... ,9m | gi € C"} (m < n)
let {(g1,...,9m) be vector space spanned by {gi1,...,gm}. Let &, be the set of
permutations of {1,... ,n}.

2. THE CASE OF U(p,q)

In this section we treat Gr = U(p,q), i.e., GL(p, C) x GL(gq, C)-orbits in the
flag variety of GL(n,C) for n = p + ¢. Although we restrict ourselves to the case
Gr =U(p,q), Sp(n,R), and Sp(p, ¢) in the main body of the paper, a preliminary
discussion holds for an arbitrary linear connected reductive Lie group Ggr.

Let Gr be a real classical Lie group with Lie algebra gr, G the complexification
of Gr, 0 a Cartan involution of gr. Let gr = tr +pr be the Cartan decomposition
corresponding to 6, € the complexification of g, K the analytic subgroup of G for
¢, and B a Borel subgroup of G.

We realize the indefinite unitary group Gr = U(p,q) as a group of matrices
g in GL(n,C) which leave invariant a Hermitian form of the signature (p,q) in
G =GL(n,C)

T1T1 + -+ XpTp — Tp1Tptr1 — *+° — Tplnp,
ie.,
_ ‘ I, 0 _ (I, 0
U(p, Q) - {g € GL(TL, C) g ( 0 _Iq g = 0 _Iq .
We fix a Cartan involution 8 of Gr as follows:
I 0 I 0
o (505 )o(8 )
0 -1 0 -1
Then we have
(1) ¢ = Kll 0 Kll € Mat(pvp)
B 0 Koy Ksy € Mat(q,q) |’
K11 € GL(p,C
(2) K = Kll 0 11 (p ) 7
0 Koo Ky € GL((], C)

~ GL(p,C) x GL(q,C),

®) p:{(;; )

Let a be a Cartan subalgebra of g consisting of all diagonal matrices of g, b a Borel
subalgebra consisting of all upper triangular matrices. This choice corresponds to
the choice of simple root system W:

Py1 € Mat(q, p)

P15 € Mat(p, q) }

U:={aj,az,... ,an_1}+ Ca”

where «; € a* satisfies Oéi(Ejj) = 6ij — 61'4_1,]‘.
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2.1. GL(p,C) xGL(g, C)-orbits in the flag variety of GL(n,C). In this section
we treat orbit decomposition in a flag variety.

Definition 2.1.1. A flag = of GL(n, C) is a sequence of n + 1 vector spaces
x= Vo, V1, Va,..., Vo),
satisfying the following two conditions.
1. dimV; =14 forall 0<i<n.
2 {0}=VycWVhcWcC...CcV,=C".
We denote the set of flags by X. We call X a flag variety of GL(n, C).

Remark 2.1.2. We fix a G-equivariant natural isomorphism between X and G/B.
A left coset gB € G/B of an element g = (g1...9,) € G (here g; (1 < i < n) are
elements of C™) can be identified with a flag x = (Vo, V4,...,V,) in the following
manner:

Vo = {0}. V; is spanned by i-vectors g1, go, ... ,gi—1, and g;, i.e.,

‘/'i:<glv"' 1g'L>
forall 1 <i<n.

Notation 2.1.3. Let V := C" and let 0 be an involution of V such that

0:v— ( 167 _(}q )v.
Let Vi and V_ be the eigenspaces in V under 0 for eigenvalues +1 and —1, respec-
tively:
Vi = {(e1,...,ep) and V_:=(ept1,...,€n).
Remark 2.1.4. This gives a decomposition into a direct sum
4) V=VieV_.
Notation 2.1.5. Let m4 be the first projection and m_ the second projection with
respect to the decomposition (4). Let V; 4, Vi — be subspaces of V; such that
Vie = V;NnVy and V;_ = V;NV_.
We have

T (Vi)+Vi=n,(Vi) +V; =(Vi+ V)NV +V;
for i < j. Because K = {g € GL(n,C) | gV4 =V,, gV_ =V_}, we have

dim(kV; NVy) = dim(V; N k7', ) = dim(V; N V)
for all k € K, and so on. Therefore we have the following proposition.

Proposition 2.1.6. For a flag x = (Vo,V1,...,V,) € X, dimV, o, dimV; _, and
dim(my (Vi) + V) for 0 <i < j <n are invariant under the actions of K.

Definition 2.1.7. For a flag 2 = (Vp,Vi,...,V,) € X, 0< i < n, and i < j, we
put

(4 +) dimV; 4,

(i;—) = dimV;_,

(i;N) = i—(i;+)— (4;—), and
(47) = dim(r(V;) +V;).
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Remark 2.1.8. We have dim74(V;) = (i;4+) + (4;N) and dim7_(V;) = (i;—) +
(i N).
2.2. A symbolic parametrization of GL(p, C) x GL(g, C)-orbits. In this sec-

tion we recall a symbolic parametrization of K-orbits in X and give representatives
of K-orbits for the parameters.

2.2-1. Clans for U(p,q). We give a set consisting of sequences of n symbols in the
following definition. This set will parametrize K-orbits in the flag variety X.

Definition 2.2.1 (Clan). (See [6].) An indication for U(p,q) is an ordered set
(c1 -+ ¢n) of n symbols satisfying the following four conditions.

1. A symbol ¢; is +, —, or an element of N for 1 < i < n.

2. If ¢; € N, then there exists a unique j # ¢ with ¢; = ¢;, i.e.,

#{ilci=a}=0o0r2 forany ac N.

3. The difference between numbers of + and — in indications (¢; -+ ¢,) co-
incides with the difference of signatures of the Hermitian form defining the
group GRr:

#{ilci=+}-#{ila=-}=p—q
4. If c; € N, a € N, and a < ¢;, then there exist some j such that ¢; = a.

We define an equivalence relation between two indications as follows. Two indica-
tions (¢; -+ ¢n) and (¢) --- ¢,) are regarded as equivalent if and only if there

exists a permutation o € &,, with m := max{c, € N} such that

o(c) if ¢, €N,
=< + if ¢ =+,
- if ¢ =-—

7 )

for 1 <i<mn. A clan is an equivalence class of the indications with respect to the
equivalence relation. For example, (221 + 1 —)= (112 + 2 —) as a clan. We
denote the set of clans for U(p, q) by C(U(p,q)). By abuse of notation sometimes
we represent a clan v by an indication belonging to the clan ~.

Definition 2.2.2 (Standard indication). If an indication (¢ --- ¢,) of a clan sat-
isfies the following condition, we call it standard.

Ifci=cij=aeNfori<j,cs=c,=beNfors <t andi < s, then
a <b.

Obviously, every clan has a unique standard indication.
Example 2.2.3. The set C(U(2,1)) consists of six clans:

I e e S s
C(U(2’1))_{+1 I, 1.1 4+, 1+1}

Here (+ + —), for example, is denoted by + + —, for simplicity.

Example 2.2.4. The set C(U(2,2)) consists of 21 clans:
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C(U(2,2))
b — o o,
— -+, - -+, 11+ - 11—
) S T N T R L DU I |
"Y1 +1 -, 1 -1+, 41 -1, — 1+ 1
1+ -1, 1 —+1, 1122, 1212
1 2 2
Proposition 2.2.5. For a clan (c¢1 --- ¢), suppose ¢; =c¢; € N and i < j. If

m =j, then

#{aeN|cs=ci=a for s<i<m<t}
=#{aeNl|cs=c=a for s<i—-1l<m<t}

If m < j, then

#{aeN|cs=c,=a for s<i<m<t}
=#{aeN|cs=c,=a for s<i—1l<m<t}+1.

Proposition 2.2.6. For an v = (Vp,V1,...,V,) € X, there exists a clan v =

(c1 -+ ¢n) €C(U(p,q)) satisfying the following conditions.

(5) (N)=#{aeNles=c,=a fors<i<t},

6) (G+)=#{l|la=4+fori<i}t+#{aeN|cs=cr=a fors<t<i},
(M) (G—)=#{l|la=—forl<i}+#{aeN|cs=cr=a fors<t<i},
8) (;j)=j+#{aeN|cs=c=afors<i<j<t}

forall1 <i<mnandi < j. Such a clan 7 is determined uniquely by the flag x.
We call v the clan of x.

Proof. For a flag x = (V,V4,...,V,) € X, such a clan will be given inductively by
the following procedure.

1. First of all, we remark that one of (1;+), (1;—), and (1;IN) is 1, and others
are 0.
(a) If (1;4) = 1, then we set ¢ = +.
(b) If (1;—) =1, then we set ¢; = —.
(c) If (1;N) =1, then we set ¢; = 1.
2. Suppose we have already obtained (cg ...c;—1). We remark that

(i;N)— (i—1;N) =1, 0, or — 1.
(a) If (4;N) — (¢ — 1;N) = 1, then we set ¢; = a. Here,
a=14+max{beN|¢;=0b, j<i}.

(b) If (4;N) — (i — 1;N) = 0, then we have either (i;+) — (i —1;+) =1 or
(=) —(—-1—-)=1

(b-i) If (i54) — (1 — 1;4) = 1, then we set ¢; = +.
(b-ii) If (i;—) — (i — 1;—) = 1, then we set ¢; = —.
(¢c) If (4;N) — (i — 1;N) = —1, then we have

(9) (;+)—(i—1;4)=1 and
(10) (5-)—(—-1L—-)=1
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We will choose a j < i and put ¢; = ¢; € N as follows. It follows from (9)
and (10), we have a nonzero v € m4(V;_1) and a nonzero v— € m_(V;_1)
such that vy € V;_1, v_ € V;_1 and

‘/;i = V;—l + <’U+,’U_>.
We have a unique j < ¢ — 1 such that
vy €my(Vy)+Vier and vy & 1 (Vie) 4+ Ve

We set ¢; = ¢;. We will show that (cica. .. ¢n) is a clan and satisfies the
conditions of Proposition 2.2.6.

Let vy = v/, + 9/, such that v/, € 7. (V}) and v/{ € V;_;. Then ¢/, ¢
74 (Vj—1) and v, € V;. Because of v/, & Vi for all j < i’ <,

(s #) = dim(my (V) + Vi)
=dim(my (Vj_1) + Vi + (V)
=dim(my (Vj_1) + Vi) +1

=G -1+ 1
Thus, if i <, then ¢; = ¢ € N for some ¢ <t. So, ¢; =¢ for
some ¢ < t.
On the other hand, we have V; = V;_; + (v/. + v_) for some nonzero
v” € V_. Then
(45 @) = dim(my (V) + Vi)

— dim(r (Vs + (e +0)) + V)

=dim(r(Vj_1) + Vi + (v]}))

— dim(ms (V1) + V)

=(-11)

Thus, c¢; # ¢; for ¢ < t. This means that ¢; = ¢;.

By induction, we have constructed a clan v = (c1...¢,) of z. O

Proposition 2.2.7. Conversely, for any clan v € C(U(p,q)), there exists a flag
x € X such that v is the clan of x.

Proof. Foraclany = (¢1 -+ ¢,) € C(U(p,q)), such a flag will be given inductively
as follows. For 1 < ¢ < n we will choose a nonzero v; € V such that V; =
<’Ul, N ,Ui>.
1. Let Vp = {0}.
2. Suppose we have already obtained (Vp, Vi,...,Vi_1).
(a) If ¢; = +, then we set v; = es € V; for

(11) s=min{l|1<I<p and ¢ & 7+ (Vi_1) }.
(b) If ¢; = —, then we set v; = e; € V_ for
(12) t=min{l|p<i<n and e &n_(Vi1)}.

(c) If ¢; = ¢; € N for some ¢ < j, then we set v; = e + e; for an s satisfying
(11) and a t satisfying (12).
(d) If ¢; = ¢; € N for j < 4, then we set v; = 6(v;).
3. Let ‘/; = Vvi_l &) <’U1>

We have constructed a flag x = (Vp, V1,...,V,,) € X such that yisaclanof z. O
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For {v1,...,v,} given in previous proof, let ¢ = (v1 --- v,) € G. Since all
flags in X corresponding to the clan v € C(U(p, ¢)) belong to the K-orbit KgB =
{kgb| k € K, b€ B}, we have the following theorem.

Theorem 2.2.8. Clans in C(U(p,q)) parametrize K-orbits in the flag variety X
via the correspondence in Proposition 2.2.6.

2.2-2. Representatives of GL(p,C) x GL(q, C)-orbits in GL(n,C)/B. For a clan
v, we will give an element g € G such that 7 is a clan of the flag x = gB.

Definition 2.2.9 (Signed clan). A signed clan of a clan v = (¢; -+ ¢,) is an
ordered set (dy ... dy) of n symbols 4+, —, a4 and a_ for some a € N satisfying
the following two conditions.

1. If ¢; = +, then d; = +. If ¢; = —, then d; = —.

2. If ¢; = ¢; = a for some a € N, then (d;,d;) = (at,a_) or (a_,ay).
Example 2.2.10. There are four signed clans of (1122):
(1+ 1_2_;,_2_), (1+1_ 2_2_;,_), (1_ 1+2+2_), and (1_ 1+2_2+).

Remark 2.2.11. As is seen above, there are several choices of signatures for a clan.
We can always adapt the special choice such that (d;, d;) = (a4, a—) for ¢ < j, which
causes no problem for U(p, ¢). However, other choices of signature are appropriate
for other classical groups, hence we admit an ambiguity of signatures.

Definition 2.2.12. For a signed clan 6 = (d; ...d,), we say a signature of d; is
plus if d; = 4 or a4, minusif d; = — or a_.

Notation 2.2.13. For each clan v, let ), be a K-orbit in the flag variety X corre-
sponding to v via the parametrization of Theorem 2.2.8, i.e.,

Qy=KgB.

Although we already have representatives g € G of K-orbits for clans in the
proof of Proposition 2.2.7, we give representatives in the following theorem.

Theorem 2.2.14. For a clan v € C(U(p,q)) and a signed clan 6 = (dy ... dy) of

v, fix a permutation o € S, satisfying the following condition.

(13) 1 < o) < p if the signature of d; is plus,
p+1 <

o(i) < n if the signature of d; is minus.

Then the representative ¢(6) := g(6,0) = (g1 ... gn) is a representative of Q,
i.e., Qv = Kg(6)B. Here g; € V are the column vectors defined as follows:

o Ifd; ==, then gi = es;)-
o Ifdi=a4,dj =a—, then

»—L(e-—i—e h)  and <—L(—e-+e ")
9i V2 o (i) a(4) 9j V2 o (i) @) /-

Remark 2.2.15. The representative g(6) € GL(n, C) given in Theorem 2.2.14 is real
and orthogonal:
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Example 2.2.16. For a signed clan 6 = ( + 1y - 24 1_ 2_ ), if we
choose a permutation
( 1
g =

)_.
w
oo
RS
S Ot
= o
~——

we get a representative

1 0 0 0 0 0
1 -1
000355 0 %
B 0 7 0 0 7 0
9710 0 0o L 0o L
V2 V2
0O 0 1 o0 0 0
1 1

0 7 0 0 7 0

1 2 ... . .

Here U_<i ; )meansa(l):zl,a(2)=zz,andsoon.
1 %2 .

2.3. Dimensions of GL(p,C) x GL(gq,C)-orbits in GL(n,C)/B. In this sec-
tion we will give a dimension formula of K-orbits for clans. For calculation of a
dimension, we need some preparations.

Notation 2.3.1. Suppose z = (Vi,...,V,) be a flag. We take a complementary
subspace W; 4 of my(V;) in Vi (resp. W; — of m_(V;) in V_):

Vi=m (Vi)® Wit (resp. Vo =7_(V;)dW;_).
We also take a complementary subspace W/ of V; in 7y (Vi) & n—(V;):
(14) (Vi) @n_(Vi) =V, @ W,.
We have
V=V,aW.,eW,_ &W and dimW =@N).

Remark 2.3.2. If v € V;, then n4(v) € np(V;). If v € W; 4 and v # 0, then
7r(v) =v € ny(V;). If v e W/, then my(v) € 74 (V;).

Proposition 2.3.3. Let (¢; -+ ¢,) be the clan of a flagx = (Vo,--- , Vo). If
v=2v" 4wy +w_ +u,

VeV, wy e W, wo €W, _, w' € W/, and

‘/i-‘rl = V; + <U>7
then c;y1 is as follows:

1. If wy # 0 and w— =0, then we have ¢;y1 = +.
2. If wy =0 and w_ # 0, then we have ¢;41 = —.
3. If wy #0 and w— # 0, then we have

civ1=14+max{cs|cs €N and 1 <s<i}.
4. If wy =0 and w— = 0, then we have a unique j such that
very(Vy))+Vi and vegni (Vo) + Vi

Then we have c;11 = ¢; € N.
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Proof. 1. If wy # 0 and w_ = 0, then

T+ (Visr) = 71 (Vi) + (me (V) + wg + 7y (w'))
(Vi) © (wy)

and 7_(Vi41) = 7—(V;) by Remark 2.3.2. Then,
dim7y (Vigq) =dima (V;)+1 and dimnw_(Viy1) =dim7_(V;).

Thus,
dim Wi/+l = dimﬂ+(%+1) + dim7_ (‘/i-i-l) — dim ‘/H-l
= dimmy(V;)+1+dimn_(V;) — (i +1)
= dim7y(V;) +dimn_(V;) — dim V;
= dimW/
by equation (14). So (i + 1;N) = (¢; N). On the other hand,
(i+1;4) = dimmy(Vigr) = (i + 1L N)

= dimm (V) +1-(GN) = (i54) +1
by Remark 2.1.8. Therefore ¢;41 = +.

2. If wy =0 and w_ # 0, then ¢;41 = — by the same argument of 1.
3. fwy # 0 and w_ # 0, then

dim7y (Viz1) =dimn (V;)+1 and dimnw_ (V1) =dim7_(V;) + 1.
Thus, (i + 1;N) = (i;N) + 1 by the same argument of 1. Therefore,
Civ1 =1+ max{cs |cs €N and 1 <s<i}.

4. By the end of the proof of Proposition 2.2.6, it is clear for wy = 0 and w_ = 0.
|

Corollary 2.3.4. For a flag = = (Vo,..., V) and a clan (c1 -+ ¢n) of x, if
ci =c; € N fori < j, then there exist vy € Vi and v— € V_ such that

Vi=Vici+ vy +v_) and V;=Vj_1 4+ (vg, vo).
Proof. By the proof of Proposition 2.3.3, there exist v; € V' such that
T (vi) € Vi —my(Vicr),  m-(v;) € Vo = (Vioa),

Vi = Vi + (ui),
and v; € V;_1 @ W/_, such that
vy ey (Vi) +Vio1 and vj € m4(Vicr) + V1.
Since
vy €mp (Vi) + (Vi) + Vi and vy g (Vier) + 71— (Vier) + Vi1,

there exist v/, € 7 (V;), v € 7_(V;) and v;_; € V;_;1 such that

v; = vl + v+
So, we have

Vi =V + (v} +ol).

Since there exist vs € V;—1 (1 < s <i—1) with v; span V;;

Viz(0s]1<5 <),
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We have
(V) = (mp(0) [ 1< s <), and 7_(V;) = (m_(u,) | 1< s <),

Thus, there exist as, by € C for 1 < s < ¢ such that

vl = Zasw+(vs) and v = stﬂ— (vs).
s=1 s=1

Here, a; # b;. We have

Vi=Via+ <Z(asﬂ'+(”5) + s (vs)) ).

s=1
By simple calculations, we have

Vvi = V;—l + <Z(as - bs)vs>
s=1

Vi=Vj1+ <Z(_as = bs)us + 2Z(as77+(”5) + bsm—(vs)))

s=1 s=1
= Vi + (D _(as = ) (my(vs) = 7 (v)))

7 7

=Vj1+ <Z(as - b5)77+(”5)7 Z(as - bS)ﬂ'— (”5)>

s=1 s=1
The two vectors
vp =Y (@ = b)me(v) and vo = (ay —b)m-(v,)

s=1 s=1

satisfy the conditions of the corollary.

Proposition 2.3.5. For a clan v € C(U(p, q)), we have the following equation.

Z(p—#{l|cl=+ for 1<i}

ci=+
—#{aeN|cs=c=a for s<t<i})
+Z(q—#{l|cz=— for 1<i}
(15) 7’ —#{aeNlcs=cr=a for s<t<i})
+ Z (n—=#{llc=+ or — forl<i}
ci,:‘leEN
1<t

—2#{aeN|cs=c=a for s <t <i})

= %(p(p —1)+q(qg—1)).
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Proof. The left hand side of the equation is

Z(p—#{l|cl:+f0rl§i}—#{a€N|cszct:a for s<t<i})
ci=+

+ Z p—#{llag=+ for I<i}—#{aeN|cs=c=a for s<t<i})

Cri:CjEN
§<i
+ Z(q—#{ﬂcl:— for 1<i}—#{aeN|cs=c=a for s<t<i})
+ Z (g—#{llag=— for I<i}—#{aeN|cs=c,=a for s<t<i})
Ci:CjGN
§<i
P q 1
= —4) + —i) == —-1)+4q(g—-1)). O
;(p ) ;(q )=5@p-1)+al¢-1)

Proposition 2.3.6. For a clan v € C(U(p,q)), we have the following equation.
Y (-i-#{aeNli<t<j and & <&})

Ci:.CjEN
(16) 1<]
= Z (j—i—#{aeN|cs=c,=a for s<i<t<j}),
ci=CcCj eN
i<j
where, (¢1 -+ &,) is the standard indication.
Proof. A clan (¢; --- ¢,) and its standard indication (¢; --- &,) satisfy

> #{aeNli<t<j and & <&}
ci=c;EN, i<y
= Z #{aeN|cs=¢=a for s<i<t<j}. 0O

ci=c;EN, i<y

Definition 2.3.7. We define a length £(y) of a clan v = (¢1 --- ¢,) € C(U(p,q))
by the value in the previous proposition:

()= > (-i—-#{aeNli<t<j and &>}
ci=c;EN
i<j

= Y (-i-#{aeN[es=c,=a for s<i<t<j}),

ci=CcCj eN
i<j

where, (¢ -+ ¢&,) is the standard indication of ~.

Proposition 2.3.8. For v € C(U(p,q)), we have the dimension and the codimen-
sion of Q, = Kg(6)B:

dim@Q, = £(7)+ 3@ -1)+qlq—1)),
codim@~, = pg—{(y).
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Proof. By Proposition 2.3.3, flags (Vi,...,V,) in @, satisfy the following condi-
tions.

1. If ¢; = +, then
Vi/Vier C (Vicr @ Wi+ @ W/_1)/Vizy.
2. If ¢; = —, then
Vi/Vier C (Vica @ Wimq,— @ W/_ )/ Vi1,
3. If ¢; =¢; € N for i < j, then
Vi/Vier C V[V,
Vi/Vi-1 € (Vim1 + 74 (Vie1))/ Vi1

The dimension of K-orbit @), is the sum of the following four values.

(17) > (dim(Viey @ Wisy y @ W/_y) —dim V;_y — 1),

ci=+
(18) > (dim(Viey © Wisy — @ W/_)) — dim Vi_y — 1),
(19) > (dimV —dimV;_; — 1),

Ci:C]‘GN
1<J

(20) > (@m(Vjoy + 7y (Viey)) —dim Vg — 1) :

Cri;ngN

1<J

dim Q, = (17) + (18) + (19) + (20).
Four equations
(17) = Z(p—#{l|cl:+forlSi}—#{aEN|03:ct:af0rs<t§i}),
ci=+
(18) =Y (g—#{l|a=—for1<i} —#{a € N|cs=c; =afor s <t <i}),

Ci=—

(19)=">_ (n—i),
c7:c<]J€N

and

(20) = Z #{aeN|cs=cr=a for s<i<j<t},

ci=Ccj eN
i<j

and Proposition 2.3.5, lead
(17) + (18) + Z (n—#{l|ag=+or — forl <j}

ci=CcCj eN
i<j

—2#{aeNlecs=ct=a fors<t<j})

= %(p(p —1)+q(qg—1))
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and
(19) + (20) — Z m—#{l|a=4or — forl<j}
Ci:C]‘GN
i<j
—2#{a€eN|cs=c,=a fors<t<j})
= > (mi+#{lla=+or — for I <j}+#{l|c €N forl<j}
C'i:_CjEN
1<J
—#{s|cs=cteNfori<s<j<t})
= > (—i+#{[1<j}—#{cs ENJea=c, e Nfori<s<j<t})
C'i:.CjeN
1<]
= Z (—i+j—#{aeNl|cs=ci=a for i<s<j<t})
Ci:CjGN
i<j
= Z (—mi+j—F#{aeN|cs=c,=a for s<i<t<j})
C'i:.CjeN
1<J
={(7)-
Therefore,

dim Q. = (17) + (18) + (19) + (20)
1

=5l —1) +qlg —1)) +£(v).

Since dim(G/B) = 5n(n — 1), the codimension of Q) is

codim(Q+) = pg — {(y). O

1
2

2.4. M-O graph of U(p,q). We define an oriented graph from which we can read
off closure relations between K-orbits. The graph has clans as vertices in which an
edge is labeled by i for some 1 <i<n — 1.

Definition 2.4.1. Let IV(U(p,q)) be the set of all triples (v,~/,1), with v,7" €
C(U(p,q), 1 <i<mn—1, satistying the following conditions. Let v = (¢1 -+ ¢;)

and v = (¢} --- ).

1. C; 7é Cit1-
2. If (¢iy ¢iy1) = (4, =) or (=, +), then ¢} = ¢;; € N and ¢} = ¢; otherwise:

rYI:(Cl Ci—1 a a Ci+2 CTL)

fora=14+max{beN| ¢ =b for 1
3. If (¢i, ¢it1) # (4, —) or (—,+), then (c
wise:

<j<n}
i Cir1) = (cit1,¢i) and ¢} = ¢; other-

/
Y=(e -+ i1 Cip1 ¢ Ciga o ).
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Example 2.4.2.

o)

(+ — +), @ 1 +), 1, (0 1 +), O + 1, 2
)+ =), (+1 1,2, (0 + 1), @ 1 +) 2
Y (+ + 2), (+1 1), 2), (+ 1 1), 1 + 1), 1)

(- + +), 0 1 +), 1, (0 + 1, (+ 1 1), 1)

1
Remark 2.4.3. 1f (’777/37:) € FI(U(pv Q))a Y= (Cl T Cn) and (Ciaci-i-l) 7é (+7 _)
or (—,4), then (¢/,v,1) is also an element of V(U (p, q)).
Proposition 2.4.4. If (v,7,i) e TV(U(p, q)), then
dim @, — dim Q, = £1.
Proof. We will prove £(y') — £(y) = £1. Suppose (v,7,i) € T'(U(p,q)) and v =
(c1...¢pn). Then the clans v and v’ are

/ )
v =(c1--cim1 ¢ iy Cigae o Cn)

and
Cis Cit1;Cyy Cinq) = (£, F;a,a), (a, £+, a aja or (a,b;b,a
( s Cit 1, ;7 ;+1) (:l:a s Uy )7( 7:|:7:l:a )7(i7 ’ 7:|:)7 (ababa )
for some a,b € N. We can take (¢; --- ¢,) to be the standard indication.
1. If (ci, ciy1) = (£, F), then ¢ = ¢} | = a for some a € N. Then we have
Z (j—i—#{d eEN|c,=c,=d for s<i<t<j})
ci=c;eNi<j
- Z (j—i—#{d €N|cs=c,=a for s<i<t<j})
ci=c;ENi<j
=@{+1)—i—#{d eN|d,=c,=d for s<i<t<i+1l}=1.
Thus, ¢(y") — £(y) = 1.
2. If (¢i, cit1) = (a, ) or (£, a) for some a € N, the second case follows the first
case by Remark 2.4.3. We prove that for the case of (¢;, ¢;i+1) = (a, £).
If (¢;, civ1) = (a, £), there exist j # ¢,7 + 1 such that ¢; = a.
(a) If i+ 1 < 4, then
(G—(E+1)—#{d eN|d, =ci=d for s<i+l<t<j})
—(j—t1—#{d ENl|cs=c,=d for s<i<t<j})
=(—(G+1)—#{d eENlcs=c,=d for s<i<t<j})
—(j—i—#{d eNles=cr=d for s<i<t<j})
=@ -0+1)-0—-i)=-1L
There is no difference in other terms. So, £(v") — £(y) = —1.
(b) If j < i, then
((i+1)—j—#{d eN|c,=c,=d for s<j<t<i+1})
—(i—j—#{d eN|cs=c,=d for s<j<t<i})
=((i+1)—j—#{d eN|cs=c,=0a for s<j<t<i})
—(t—j—#{d ENlcs=c,=a for s<j<t<i})
=((+1) =g —-(i-j)=1
There is no difference in other terms. Therefore, £(7) — £(y) = 1.
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3. If (¢, ¢ci+1) = (a,b) for some a,b € N there exist j,j" & {i,i + 1} such that
¢j = a and cjr = b.
(a) Fori+1<j<j ori+1<j <j,the second case follows the first case
by Remark 2.4.3.
Ifi+1<j<j’, then we have

(G—(E+1)—#{d eN|d, =ci=d,s<i+l<t<j}
+j—i—#{V eN|d, =c=V,s<i<t<j})
—(j—i—#{d eNl|cs=c;=d,s<i<t<j}
+i =i+ 1) —#{V EN|cs=c; =b,s<i+1<t<j'})
=({-(G+1)—#{d eN|cs=c,=d,s<i<t<j}
+j —i—#{V eEN|cs=a=V,s<i+l<t<j}—#{a})
—(j—i—#{d eNl|cs=c;=d,s<i<t<j}
+7 —(+1)—#{V eEN|cs=c,=b,s<i+1<t<j})
=(@-(+D+j —i= (=) -G —i+j —(+1)=1
There is no difference in other terms. Hence, ¢(v") — £(y) = 1.
(b) For j<i<i4+1l<j or j'<i<i+1<j,the second case follows the
first case by Remark 2.4.3.
Ifj<i<i+ 1<y, then
((i+1)—j—#{d eN|d,=c,=d,s<j<t<i+1}
+j —i—#{VeN|d=c=Vs<i<t<j})
—(i—j—#{d eN|es=c,=d,s<j<t<i}
+i —(G+1)—#{V eN|cs=c=b,s<i+1<t<j'})
=((i+1)—j—#{d eN|ecs=cr=d,s<j<t<i}
4+ —i—(#H{VEN|cs ==V, s<i+1l<t<j}+#{a}))
—(i—j—#{d eNjes=¢=d,s<j<t<i}
+i =G+ 1) —#{V eEN|cs=cr=b,s<i+1<t<j'})
=((i+1)—j+j—-i—-1)—(i—j+5—-(G+1)=1
There is no difference in other terms. Thus, £(y") — £(v) = 1.
(c) For j < j' < iorj < j < i, the second case follows the first case by
Remark 2.4.3.
If j < j' < i, then
(t+1)—j—#{d eN|d,=c,=d,s<j<t<i+1}
+i—j —H#{VeN|d,=c=V,s<j <t<i})
—(i—j—#{d eN|es=c,=d,s<j<t<i}
+(i+1)—j —#{V eN|es,=c,=b,s<j <t<i+1l})
=((i+1)—j—#{d eN|ecs=cr=d,s<j<t<i}
+i—j —(#{V eN|cs=c,=V,s<j <t<i+1l}—#{a}))
—(i—j—#{d eN|es=c=d,s<j<t<i}
+i+1) = —#{V eN|cs=c,=b,s<j <t<i+1})
() =i~ ()= =+ 1)~ ) =1,
Therefore we have £(7') — £(y) = %1 for all (v,',i) € I'(U(p, q)). O
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We define subsets of C(U(p, ¢q)) of which, elements have the same length.
Definition 2.4.5. Let C,,(U(p,q)) be the set of clans of the length m:
Cn(U(p,q) :={r €CU(p,q)) [£(y) =m}.
Then we have

(21) CUp. )= || CnU(p,q)).

m>0
Remark 2.4.6. If v € Co(U(p,q)), ie., £(v) =0, then @, is a closed orbit.
Proposition 2.4.7. If (c¢1...¢cn) € Co(U(p,q)), then ¢; =+ or — for all 1, i.c.,
Co(U(p,q)) ={(c1...cn) €CUP,q)|c; €N foralll1<i<n}.
Proof. For v = (c1...¢,) € C(U(p,q)), if ¢; = ¢; € N for some i < j,
j—i—#{aeN|cs=c,=a, s<i<t<j}>0.

Therefore if ¢; = ¢; € N, then ¢(y) > 0, and if ¢; € N for all 1 < i < n, then
L() =0. |

Notation 2.4.8. We denote by B; the parabolic subgroup of G for the root —«; and
all positive roots:

B, ={Xe€GL(n,C)| Xs =0 if s>t and (s,t) # (i +1,7)}.
Let
m:G/B — G/B;
be the canonical projection.
Remark 2.4.9. The projection 7; sends (Vp, ... ,V,) € G/B to
Vo, , Vi1, Vigt, oo, Va).
For (v,~',i) € I'(U(p, q)), there are two flags
Vos-vs \Vie1, Vis Vst oo Vi)
having the clan v and
Vo, oo Viet, Vi Viga, oo, Vi)
having the clan «’, by Theorem 2.2.14. Therefore we have the following proposition.
Proposition 2.4.10. If (y,v',i) € T/(U(p,q)), then
Ti(Qy) = mi(QY).
By following [6], we introduce an oriented graph.

Definition 2.4.11 (M-O graph of U(p,q)). We give subsets I',,(U(p,q)) of
I"(U(p,q)) for m > 1 as follows:

LU, q)) :=={ (7,79 € T'"(U(p, @) | ¥ € Cum1(U(p,0)), " € Cn(U(p,q)) }-

The M-O graph of U(p,q) is a finite oriented graph whose vertices are C(U(p, q))
and whose oriented edges are I'(U(p,q)) = U,,eNT'm(U(P,q)) -
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t+- -+ —++
v/ N/ e

+11 11+ LU (2,1))

\ 7 Iy (U(2,1))

1+1

FIGURE 1

Example 2.4.12.

+4),(114), 1), (+—=+),(114), U,}
=), (+11), 2), ((+—+4),(+11), 2)

nwewy-{ (1
LUR,1)={ (114),(1+1), 2), ((+11),1+1), 1)}

L(U(2,1)) =T1(U(2,1)) UT2(U(2,1)).
If we denote (v,7',4) by v —» 7/, the M-O graph of U(2,1) is as in Figure 1.
Remark 2.4.13. If (v,~',1) € T(U(p,q)), then
(22) dimQ@Qy+1=dimQ, and m(Q) =m(Qy).

2.5. Images of the moment map. In this section we give the image of the
moment map of a fiber of the conormal bundle of the K-orbit for each clan.

For each point z € X the morphism G — X sending g € G to gx gives rise to
a linear map g — T,(X), the tangent-map at z, and to a dual map T;(X) — g*
from the cotangent bundle into the dual of the Lie algebra, the cotangent-map for
x € X at z. The collection of tangent-maps g — T, (X) at the various points z € X
gives rise to an algebraic map g x X — T(X), compatible with the projections to
the base space X. Composing the cotangent-map with the map forgetting the base
point in X, we obtain a canonical map T*(X) — g* from the cotangent-bundle
into the dual of the Lie algebra, denoted by p. We call it the moment map of the
G-space X. (for example [1].)

Let ¢ be the morphism G — X sending g € G to gx for x € X. Then we obtain
a linear map dp : g = T.G — T,(X) and a dual map (do)* : T (X) — TXG = g*.

Let G be the stabilizer of x in G and g, its Lie algebra. Since the kernel of dp
is g., the image of (dp)* is (g,)*. Here

(23) (g.)t ={¢ecg"| (& a)=0 forall acg,}

and (-, -):g" xg— C.
Let ¢ be the morphism K — X sending k € K to kx. Then we have ¥ = ¢|x
and dip = dple. The image of ¢ is the K-orbit @ of z in X: Q = {kx | k € K}.
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The fiber (T5X), of conormal bundle 75X at = is
(THX)e ={n € (T*X)s | (n,u) =0 forall ueT,Q}
={ne (T X)), | (n,d(a)) =0 forall act}
(24) ={ne(T*X), | (n,dp(a)) =0 forall act}
={ne (T X)), | {(dp)*(n),a) =0 forall a€ct}
={neT5X | (dp)"(n) € " }.
By (23) and (24) we have
(de)* (T§X)z) = (ga) " NE-.
Hence, the image of the moment map u((75X).) is (g:)t NeL, where

(0)7 = {€€g"|(&a)=0 foral a€g,},
et = {¢eg | ({&a)=0 forall act}.

For a representative ¢’ € G with z = ¢'B, we have G, = ¢ - B-¢'~ ' and g, =
Ad(g')b. Thus, we have
(g2)" NE- = (Ad"(¢")b) NEt.

By identifying g* with the dual of g by means of a nondegenerate symmetric invari-
ant bilinear form on g, the image of the moment map is identified with the vector
subspace (Ad(tg’fl)bJ-) Np of g. Here b is a subalgebra of g that is orthogonal to
b:

bt {beg]|B(b,b)=0 forall b €b},
= {b€g|bij=0 if ZS_]}

where 3(x,y) is the trace of 'y on g:

B(x,y) = trizy for z,y € g.

For a clan v = (c1...¢,) € C(U(p,q)), fix a signed clan 6 of . Let g(6) be a
representative given as in Theorem 2.2.14. Then !g(6)~! = g(o). We will describe
the image of the moment map u((T¢) X)z) = (Ad(g(8))b*) Ny for z = g(6)B.

We regard 6, x &, as a subgroup of &,, as follows:

S, x6,C 6,
(or02) =o' o) = 11V L=
’ ’ oa(i—p)+p ifp+1<i<n.

We regard o € &, as an element of GL(n,C) such that o(e;) = ey for all
1 <7< n,ie,

o=y ' €om )EGL(n,C).

Then &, x &, is a subgroup of K. The theorem following the next definition gives
the image of the moment map.

Definition 2.5.1 (Driving space for U(p, ¢)). For a signed clan § = (d; ...d,,) of
a clan v, we give the following vector subspace Dri(é) of g and call it driving space
of é (for U(p,q)).

Dri(6) :=={Y € g | Y satisfies the following conditions }.
1. If d; and d; have the same signature, then Y;; =Y;; =0.
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o

If ¢; =cj €N, then Y;; =Y =0.
3. Let di:a’"’"dj:a“—ﬂdS:b+7dt:b_,dl:+7dm_—
(a) Ymin(l,m),max(l,m) =0.

(b) If min(,j) <! < max(i,j), then Yj; =Y;; =0.

(¢) If min(Z,j) < m < max(i,j), then Y, =Y, =0.
(d) If ! < min(s,yj), then Y;; = 0.

(e) If m < min(s,j), then Y, =0.

(f) If max(i,j) <, then Yj; =0.

(g) If max(z,j) < m, then Y, =0.

(h) If max(i,j) < min(s,t), then Y =Y,s =0.

(i) If min(%,j) < min(s,t) < max(i,j) < max(s,t), then

o Vi =Y, =0, Yy =Y, if the signature of dmin(i7j) is equal to the
signature of dpin(s,¢)-
o Vit =Y, =0, Yy +Y; = 0if the signature of dyin(;,5) is not equal
to the signature of dpin(s,i)-
(j) If min(¢, j) < min(s,t) < max(s,t) < max(z,j), then Yy =Yy =Y, =
Y,; =0.
Proposition 2.5.2. Fora clany = (c1 --- ¢,) € C(U(p,q)), fix a signed clan 6 =

(di -+ dn) of v. Let the representative g := g(6,0) be given as in Theorem 2.2.14
and x = gB € Q. We can read off ,u(TéwX)z from Dri(6) as follows:

1 ((T@X)m) = (Y1 o-1ny | Y € Dri(8)}.
Proposition 2.5.2 means
i ((T5,X)2) = (Ad(9)*) NP = {Yio11), 010y | ¥ € Dri(®)}
= {oYo™!'|Y € Dri(6)}
= Ad(c)Dri(s).

Corollary 2.5.3. For a representative g = g(6,0) of QQ, given in Theorem 2.2.14
and © = gB, the driving space is the following space.

Dri(6) = Ad(o ) ((Tg, X))
= {4, om) A€ R ((TéWX)m) }

Proof of Proposition 2.5.2. For two representatives g(6,0) and g(é, ") there exists
o’ € 6, x &4 C 6, such that ¢/ = ¢”¢. Then
9(6,0") = 0" g(é,0).
Suppose Proposition 2.5.2 is true for ¢(6,0), i.e
(Ad(g(8,0))b") Np = Ad(c) Dri().
Then
(Ad(g(8,0")) - 05) Np = (Ad(0” - g(6,0)) - b=) N p

= Ad(0”)((Ad(g(6,0)) - o) Np)
= Ad(¢") Ad(c) Dri(6)

= Ad(c” o) Dri(6)

= Ad(o") Dri(6).
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Thus, Proposition 2.5.2 is also true for ¢g(é,c’). So, we prove Proposition 2.5.2 for
one case.

We calculate each element of gb~g~' Np.

Let b € b+. We have

(gbg™")st = Doy D1 9si bij 91

(25)
= Zi,je{l,...,n},i>jgsibijgtj~

1. If (di,dj) = (+,+) or (—,—) for ¢ < j, then we may assume o(i) < o(j).

Since
0 0
{A.oon A €pt = {( 0 0 )}
we have

{ Aot | A€ (Ad(g)b™ B ( >}
={Y; | Y € Dri(6)}.

2. If (d;,d;) = (a4+,a—), then o(i) < p < o(j). Let ¢/ = min(¢,j) and j/' =
max(i, 7). We have

(oo evty={o (00 )]

jlll

{5 =)}

0 2 (s .
(Al oty |A'€p}:{< a(z)om)}’
(7o) OO

where ¢’ = g or kg for

.

So,

and

S8

1 B
ﬁ) and k::( L O)eGL(1,C)xGL(1,C)<—>K
7 0 1

(oo 1 4 ey ned = { (§ 0)]
={Yu J) | Y € Dri(6)}.
3. If (di,dm) = (+,—) for I < m, then o(I) < p < o(m). We have

p
meases {3 (2 2 D)

and
0 z
P Nept o) (m) )}
{ (o(1),0(m)) | P} {( Zg(m)o(l) 0
Therefore,
i 0 O
{AG),om) | A€ (Ad(g)b-)Np} = {( Ymi 0 )}

={Yym | Y €Dri(o) }.



(28)

ORBITS IN THE FLAG VARIETY AND MOMENT MAP 351

I (d, di) = (—,+) for m <1, then o(l) < p < o(m). By the same argument

of 3, we have
{ A@,omy | A € (Ad(g)bT) Np}

100) G o) (Vo) ™5 )}

~{(§ % )} = Vim ¥ D))

. If (d;,d;j) = (ay,a-) and d; = + for min(z’ J) <1 < max(i,7), then we may

assume o0(i) < o(l) <p < o(j). Let ¢,5',I' € N satisty
{9,y ={i, 4,1} and i <j' <.

‘We have
0 0 0
{959 oo oy 1bEOTY = g | by 0 0 |1
bl”i’ bl’j’ 0
and
, ) 0 0 Ze(iet)
{ Ay omomy A €p} = 0 0 Zo@o()
Zo(j)o(i)  Zo()o(l) 0

for ¢ = g or kg. Here,

1 0 -1
V2 V2
g::( 0 1 0 )
1 09 L
V2 V2
and
-1 0 0
k= 0 1 0 |eGL(2,C)xGL(1,C)— K
0 0 1
Therefore,
0 0O
0 0O
0 0O

(1,5 | Y € Dri(6)}.

If (di, d;) = (a4,a-) and d,,, = — for min(s, j) < m < max(i, j), then we may
assume o(i) < p < a(m) < o(j). Let 7, j',m' € N satisfy

{Aw(i)ow) o) | A€ (Ad(g)bT)Np} = {
={Y{
)

{i',j",m'} ={i,jym} and i <j <m'.

We have
0 0 0
-1 1 _ / ., t ./
{9297 oy otmy oy [0 €0TT = 9| bpw 00 Jig
bm’i’ bm’j’ 0
and

, 0 Zo@om) Zo()o())
{ Alotiy,omyoin | A €ERY = Zo(m)o(i) 0 0
Zo(j)a(i) 0 0
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for ¢’ = g or kg. Here,

1 0 -1
V2 V2
g=10 1 0
1 9 L
V2 V2
and
-1 0 0
k=10 1 0] €e€GL(1,C)xGL(2,C)— K
0 0 1
Hence,

0O 0 0
{A@),0(m) o)) | A € (Ad(g)bH) Np} = { 0 0 0 }
0O 0 O

t (di,d;) = (a4,a-) and d; = + for | < min(s,5), then we may assume
o(i) <o) <p<o(j). Let 7,5,I' € N satisfy (26). We have (27) and
(28), where ¢’ = g or kg for

0O 0 O
{ Ao .oy | (Ad(9)bH)Np} = 0 0 0
0 yjl 0

= {}/(i,l,j) | Y S Drl(é) }
If (di,d;) = (a+,a—) and dy, = — for m < min(é,j), then we may assume
o(i) <p< o( ) < o(j). Let i',j’,m' € N satisfy (30). We have (31) and
(32), where ¢’ = g or kg for

Nl
Il
—
o= o
S5
|
S oy

and k is as in (29). Hence,

o L L1

V2 V2

g:= 1 0 0
o L i

V2 V2

and k is as in (33). Thus,

0 ym
{ Ao(i),om)o() | A € (Ad(g)bt) Np} {

Y(zm;) | Y € Dr1(6)}

If (d;,dj) = (a4,a-) and d; = + for max(i,j) < [, then we may assume
o(i) <o(l) <p<o(j). Let i/, 5,1' € N satisfy (26). Wehave( 7) and (28),
where ¢’ = g or kg for

1 _1 9
V2 V2

g = 0 0 1
N )
V2 V2



10.

11.

(34)

(35)

0
0
—1 i _
{9297 oy otonomromy [DEETY = Y0 o 4 g o |19
0

(36)
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and k is as (29). So,

00 0
{ Aw(iyow oty | A€ (Ad(g)bt)Np} = 0 0 wy
00 0

= {Yr(i)ld‘) |Y S DI‘I((S) }

If (d;,d;) = (ay,a—) and dy, = — for max(i, j) < m, then we may assume
o(i) <p <o(m) < o(j). Lot i',7',m € N satisfy (30) We have (31) and
(32), where ¢’ = g or kg for

0
g:i= 1
0

Shogh
S °§|H

and k is as in (33). Therefore,

0 0
{AG @) ,0(m) o)) | A € (Ad(g)b) Np} = ymz 0 0
0 0

=1{Y{

(i,;m.j) | Y € Dri(6)}.

If (d;,d;) = (ay,a—) and (ds,d¢) = (by,b-) for max(z ]) < min(¢, s), then
we may assume o(i) < o(s) < p < o(j) <o(t). Let ,5 5, € N satisfy

{75, 'y ={i,j,s,t} and ' <j <s <t.
We have

0 0 0
bj/i/ 0 0
bt/i/ bt'j’ bt/sl

and

0 Zo(i)o(j) Ro(i)o(t)

0
_ 0 0 Zo(s)o(j)  Zo(s)o(t)
{ Aw().o(s)0G)om) | AEP}= )

(37)

Zo(j)oli)  Zols)
Zo(t)o(i) Zo(t)o(s ) 0 0
for g’ = g, k19, ka2g or k1k2g. Here,

1 _ 1
V2

o
Il

0
L
V2

0

o4 o8

and ki, ko € K are

-1

ey o= € GL(2,C) x GL(2,C) — K

o O O

oo = O
o= OO
_— o O o
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and
1 0 0 0
0 -1 0 O
k=0 o 1 o | €GLRC)xGLEO) =K
0 0 0 1
Hence,
0 0 0 O
0 0 i 0
{A@)ots)0G)ow) | A€ (Adg)bT) Np} = o o0 C o
¥y 0 0 O

= { Y 0 | Y €Dri(6) }.

If (di,d;) = (ay,a-) and (ds,di) = (by,b-) for min(é,j) < min(t,s) <
max(7,j) < max(t, s), then we may assume o(i) < o(s) < p < o(j) < o(t).
Let #,5',s',t' € N satisfy (34). We have (36) and (35) for ¢’ = g, k1g, kg
or ki1kog. Here,

1 1

s 0 s 0

0o L 0 _1

P V2 V2

g=1 L H L 0
V2 V2

0 1 0 1

V2 V2

and ki, ko are as (37) and (38). Thus,

{ A(i)0(s).0()ot)) | A € (Ad(g)bT) Np}

0 0 0 O
8 8 yéi 8 if ¢ =g or kikag,
yi 00 0
- 00 0 0
yi 00 0

So,
{ Ao(i)o(s)0G)0t) | A€ (Ad(Q)b) NP} ={ V(550 | Y €Dri(6) }.

If (di,d;) = (a4, a-), (ds,ds) = (by,b_) for min(4, j) < min(s,t) < max(s,t) <
max(i,j), then we may assume o(i) < o(s) < p < o(j) < o(t). Let
i',j',s',t' € N satisfy (34). We have (36) and (35) for ¢’ = §, k1§, k24,
or ki1kog. Here,

N}
i
otk =8

S oSk e
|

S S

o8- o
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and k1 and ko are as (37) and (38). Thus,

0 00O
n 0 00O
{A(U(i)70'(8),0'(j),0'(t)) | Ae (Ad(g)b ) N p} = 00 0 0
0 00O
={Ysjn | Y €Dri(6) }.
We have finished proving Proposition 2.5.2 for all the elements. |

Since g(6) = (€x(1) - - - €o(n)) = 0, if a clan y corresponds to a closed orbit, we have
the following lemma.

Lemma 2.5.4. If a clan + is an element of Co(U(p,q)), then
Dri(§) = b= N ("g(6) p 9(6))-
Definition 2.5.5 (Driving matrix for U(p, q)). Let § = (d; ...d,) be a signed clan
of v = (e1 ...cy,) satisfying the following condition.
(39) If ¢;=cj=a€N for i<j, then (d;,d;) = (as,a_).
Let F be a field C(ys | 1 < s,t < n) generated by algebraically independents ys;

for 1 < s,t <n. Let Y(v) and Y(y,m), 1 < m < 6 be elements of F'®c Mat(n,n)
satisfying the following conditions.

1 if Q> g,
{0 if (di,dj) = (+,4) or (=,-),
2 Y(7.2)i = { Y (v,1) otherwise.
3. If (ds,d) = (a4,a_) for some a € N, then
[ Y(”Y,?’)s,kl =0 if 1 S kl S S,
b Y(’y’g)kg,s = Y(’%?’)t,kg =0 if s< k? < t,
o Y(7,3)kt=0 if t<ks<mn,

and Y(’}/, 3)13 = Y(
Remark 2.5.6. If Y (v,3);; = 1, then the following conditions are satisfied.
(a) j<i.
(b) (diﬂdj) = (a—vb-i-)v (a—7+)7 (a—v_)v (+7a+)7 (_7a+)7 (+7_)7 or (_7+)
for some a, b € N, a # b.

(¢) If d; = a_ for some a € N, then we have dj, = a4 for some j < k < i.
(d) If d; = a4 for some a € N, then we have d = a_ for some j < k < 1.

4. It Y (v,3)i; =1, (di,d;) = (a—, by ) and (dk,d;) = (a4, b-) for some a,b € N,
then

7v,2);; otherwise.

Y(%4)ij = Yij

B Yij ifj<]€<l<7;7
Y(v.4u = {ym if j<l<k<i,

and Y (v,4)i 5 = Y (v,3)s; otherwise.
5. If Y(v,4)i; =1, (d;,d;j) = (a—,—), and dj, = a4 for some a € N, then

Y(’Y7 5)1] = 07 Y(’)/u 5)k] = Ykj,
and Y (v,5)y 5 = Y (7,4)y; otherwise.
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TABLE 1

14 424134 +3-2_ 14 +241_34 4+3-2_ 14 +241_34 +3_-2_
1. 0000O0O0O0O 1. 0000O0O0OO0O 1. o0000O0O0OO
+ 1 000O0O0O0O + 1 0000O0O0O0 + 000O0O0O0O0O
2y 11000000 2y 11000000 2y 0000O0O0O0OO
- 11100000 - 11100000 1 000000O0O0O0
3+ 11110000 3+ 11110000 3t 0000O0O0O0O
+ 11111000 + 10111000 + 1 000O0O0O0O
3- 11111100 3- 11111100 311000000
2. 11111110 2. 11111110 2.11000000

Figure for Y (v,1)

Figure for Y (v,2)

Figure for Y (v, 3)

1

4+ 424134 +3-2_
14 0000O0O0O0O
+ 000000O0O0
24 0 0 0¥Ys10 0 0 O
1- 00000000
34 00 0¥Y40 0 0 0
+ 10000000
3- Y711 00 0 0 0O
2. Y811 0 000 0O

Figure for Y (v,4)

1

++241_34 +3_2_
14 0000O0O0O0O
+ 0000000O0O
24 0 0 0¥Ys10 0 0 O
1- 00000000
31 00 0Y40 0 0 0
+ 00 0Y40 0 0 O
3. Y711 00 0 0 0 O
2. ys11 0 00 0 0 O

Figure for Y (v,6)

1y

24
1_

34

3_
2_

1

+

o © o o o

0

+2,1.3, +3_2_

0
0
0
0
0

0

000
000
0Ys10
000
0Ys54 0
0 Y64 0

Y71y720 0 O
Ys1ys20 0 O

0
0
0
0
0
0
0
0

S O OO oo oo

Figure for Y (v)

[=leleleNolololNe)

6. IfY(v,5)i; =1, (di,dj) = (+,a4), and di, = a_ for some a € N, then

Y (v,6)i; =0, Y (7,6)ix = ik,

and Y (,6)y 5y = Y (v,5)y; otherwise.

Yij

7Y (7)i = Y(4.6)
Y5 0)ij

if Y(v,6)i =1,

otherwise.

We call Y () the driving matriz of v (for U(p, q)).

Example 2.5.7. For a clan v = (1 + 213 + 32), the signed clan of v is § =
(14 + 24134 4+ 3-2_). We give figures for Y(y,m), 1 < m < 6 and Y () in
Table 1. In these figures, the entry which is in the same row of ¢; and the same
column of ¢; is the (z, j)-entry of the matrix.
as follows:

We can read off Dri(6) from Y (7).

0 0 0O
0 0 0O
0 0 0 ¥Ys1
0 0 0O
0 0 0 Ysa
0 0 0 Yes
Yyriyr2 0 0
Ys1yYs2 0 O

Therefore the driving matrix Y (vy) is

0
0
0
0
0
0
0
0

O O O O O o o o
O O O O O o o o
O O O O O o o o
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Proposition 2.5.8. Let § be the signed clan satisfying condition (39) of a clan 7,

then

Dri(6) ={Y(v) |ys;; € C for 1<i,j<n}.

Proof. Let 6 be the signed clan of v satisfying condition (39). We compare Y ()

and Y € Dri(6).

1. If (d;,d;) = (+,4) or (—,—) for i < j, then

0 0 0 0
Y(Py)(i,j):<0 0) and Y(i,j):<0 0)'

2. If (d;,d;) = (a4,a—), then i < j and

0 0 0 0
Y(V)(i,j):<0 0) and Y(i,j):<0 0)'

3. If (d;,dj) = (+,—) or (—,+), and ¢ < j, then

0 0 0 0
Y% = ( v 0 ) and Y, 5) = ( 2 0 )

for some z;; € C.

4. If (di, dy,d;) = (a4, +,a-) and i <[ < j, then
0 0 O 0 0
Y(/y)(z,l,j) = O 0 0 and }/('L',l,j) = O 0
0 0 O 0 0
5. If (di,dm,d;) = (a4+,—,a—) and i < m < j, then
0 0 O 0 0
Y(’Y)(i,mhj) = 0 0 O and Yr(i)mhj) = 0 0
0 0 O 0
6. If (di,di,d;) = (+,a4,a-) and | <i < j, then
0 0 O 0 0
Y(rY)(l,L]) = 0 0 0 and }/(l,i7j) = 0 0
yjl 0 0 CL‘jl 0
for some z; € C.
7. If (dm,di,dj) = (—,a4,a—) and m < i < j, then
0 00 0
Y(’Y)(m,i,j) = Yim 0 0 and Y(m,i,j) = Tim
0 0 0 0
for some x;,, € C.
8. If (d;,dj,di) = (a4,a—,+) and i < j <, then
0 0 O 0 0
Y(’Y)(L],l) = 0 0 0 and }/(i,jJ) = 0 0
0 w; O 0 @y

for some z;; € C.

o O O

o o O

o o

o

o
s}
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9. If (d;,dj,dm) = (a4,a—,—) and i < j < m, then

Y(’Y)(l}j,m) = 0
Ymi

for some x,,; € C.

o O O

o O O

and

Yiijm) =

Tmi

10. If (d;,dj,ds,di) = (a4,a—,by,b_) and i < j < s < ¢, then

0 0
0 0
Y(’Y)(i,j,si) = O ys_]
yii O

for some x,;, x4+ € C.

o O OO

o o oo

and

Yiijs.t) =

11. If (d;, ds,dj,di) = (a4,by,a—,b_) and i < s < j < ¢, then

Y(V)(i,shj,t) =

= oo o
cooco

for some x4; € C.

0
Yti
0
0

o o oo

and

Yiis,.t) =

S O o o

12. If (d;,ds,dy, dj) = (a4,by,b_,a_) and i < s <t < j, then

Y(V)(i,si,j) =

o o oo
o o oo

OO OO

OO OO

and

Yiis.t.5) =

We got Dri(6) ={Y(7) [y;; € C for 1<4,j<n}

Example 2.5.9. For v = (— + +), we have

yij € C

OO OO

o o oo

o O O

Tsj

o o oo

OO OO

o O O

8o
=

o o

OO OO

o O OO

o O OO

o o oo
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By Proposition 2.5.2 and Proposition 2.5.8, we get the following theorem.
Theorem 2.5.10. For a clan v € C(U(p,q)), fix a signed clan § of . Let the
representative g := g(6,0) be given as in Theorem 2.2.14 and x = gB € Q. We
can read off 1 ((T&X)z) from the driving matriz Y (v) for U(p,q) as follows:

(M(T&X)m) ={Y("V)(e-101),...0-1(n)) | i €EC for 1<4,j<n}.

Definition 2.5.11 (Generic element). We call A in pi(T¢) X) a generic element if
A satisfies

dim(ker A") = min{ dim(ker(A)}) | A’ € u ((TéwX)m) }

for all 1 < ¢ < n. Similarly, for a signed clan 8, we call Y in Dri(é) a generic
element if Y satisfies

dim(ker Y*) = min{ dim(ker(Y")?) | Y’ € Dri(6) }
forall 1 <i<n.

2.6. Signed Young diagrams. In this section we give tables of signed Young
diagrams for clans of U(1,1), U(2,1), U(2,2) and U(p,2) by way of examples.

A signed Young diagram is a Young diagram in which every box is labeled with
a + or — sign in such a way that signs alternate across rows and they need not
alternate down columns. Two signed Young diagrams are regarded as equal if
and only if one can be obtained from the other by interchanging rows of equal
length. The signature of a signed Young diagram is the ordered pair (i,j) where
i is the number of boxes labeled + and j is the number of boxes labeled —. For
Gr = U(p, q), nilpotent K-orbits in p are parametrized by signed Young diagrams
of signature (p, q) (see [2]).

An element A of p satisfies

A'V+CV_ and A'V_CV+.

Definition 2.6.1. The signed Young diagram of a nilpotent orbit is defined as
follows. We remark that a signed Young diagram is determined by the number
of boxes labeled + and the number of boxes labeled — in each column. Let D; 4
be the number of boxes labeled + in ¢-column and D; _ be the number of boxes
labeled — in i-column.

For an element A of an orbit, the signed Young diagram of the orbit satisfies

ZDJ»)Jr = dim(ker(4'|y,)) and ZDj>_ = dim(ker(A’|y.)).
j=1 j=1

So, we have
D; ;. = dim(ker(A’|v, )) — dim(ker(A"!}y,))
and
D; _ = dim(ker(A|y._)) — dim(ker(A"!]y.)).
Proposition 2.6.2. Under the conditions of Theorem 2.2.14, we put
Vi = o07'WVi=(eo1(1)--Co1(m)Vi = (€o-1(1)s -+ €o-1(p))s

Vi = U_lv_ = (60—1(1) S erl(n))v_ = <6071(p+1), s ,6071(n)>.



360 ATSUKO YAMAMOTO

Then, we have

dim(ker(YﬂVi)) = dim(ker(A4'|v, ),

dim(ker(Y?|y+ ) = dim(ker(A’|y.))
for a generic element Y in Dri(6) and A in p(T X).

We consider linear equations
(40) Y(7)'@a=0 for deF®cV].
The set of solutions of (40) is an F-subspace of F' ®c V. Because
dimp{d € FocVL|Y(7)'d=0}= dimg(ker(Y'y;))

for a generic element Y € Dri(7y), we have the following proposition
Proposition 2.6.3. Let Y (v)° = I,. We have the following equations.
0} —dimp{@ € Foc V] |Y(y)'a =0},
0} —dimp{be Foc V' | Y(y)"'b =0}

D; 4 =dimp{d € Foc V] |Y(y)'a=
D;_ =dimp{be Foc V' |Y(y)b=

Example 2.6.4. Foraclany=(+11—+),and asignedcland = (+141_ —+).
We get a permutation, a driving matrix Y (y), and two vectors @ and b are as follows:

1 0 0 0 O
123 45 01000
=1 2453)7| 000011
0 01 0O
0 0010
0 0 0 0 0 @ 0
0 0 0 0 O as . 0
Yy)=| v 0 0 0 0 |,d@=]| 0 |, and b=| b
ya ya2 0 0 O 0 by
0 0 wys3 wysa O as 0
We can calculate Y (7)@ + Y (7)b as follows:
a1 0
R a3 0
Y(V)a+Y)b=Y()| b3 | = ys1a1
bs Y4101 + Y4202
as Y533 + Ys4ba

a1:0, CLQ:O,

ssbs 4 waabs — 0. So, we have

The equations Y (7)@ = 0 and Y ()b = 0 lead {

(D14+,D1,-)=(1-0,1-0) =(1,1).
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il =[]
=] —|+ —|+
FIGURE A FIGURE B Ficure C

Thus, the first column of the signed Young diagram of 7 is as Figure A.
We can calculate Y (v)2@ + Y ()b as follows:

I;:

Y () v)a+Y(y
Ys1a1
Y4101 + Y4202
Y5303 + Ysaby (Y53Y31 + Ys54Ya1)a1 + YsaYa2as

‘,

The equations Y (v)%d = 0 and Y (v)2b = 0 lead (yssys1 + ysaya1)a1 + ysayazas = 0.
Therefore, we have

OO OO

Thus, the first and second columns of the signed Young diagram of ~ is as Figure
B.
We can calculate Y (7)3@ + Y (7)3b as follows:

I
cococoo

(y53Y31 + Ys5aya1)@1 + YsaYa2as

—

By the equations Y ()?@ = 0 and Y ()36 = 0, we have

Therefore, the signed Young diagram for the clan « is as Figure C. We give tables
of signed Young diagrams for clans by way of examples.



362 ATSUKO YAMAMOTO

Example 2.6.5. This is the table of the case of Gr = U(1,1).

a representative driving matrix | . .
) of K-orbit Y (v) signed Young diagram

SRS =z
- o) | G =

(o)

clan y

[}

11

—
S sk
Sk S
N

Example 2.6.6. This is the table of the case of Gr = U(2,1).

clan ~ a representative | driving matrix Y (y) | signed Young diagram
1 0 0 0 0 0
+ -+ 0 0 1 Y21 0 0 [+]—[+]
0 1 0 0 Y32 0
1 0 0 0 0 0
++ - 0 1 0 0 0 0
0 0 1 Y31 Ys2 0 —|+]
1 0 0 0 0 o0 s
+11 0 7 7 0 0 0
0 ﬁ \/Lg Yt 0 O
0 1 0 0 0 0
—++ 0 0 1 Y21 0 0
1 0 0 ysi 0 0 +[-]
% Lo 0 0 0 sl
11+ %7 0 0 0 0
0o 0 1 0 Y32 0
5 0 75 0 0 0
1+1 0 1 0 0 0 0
5 0 U 0 0 0 =
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Example 2.6.7. This is the table of the case of Gr = U(2,2).

363

clan v a representative | driving matrix Y () | signed Young diagram
1 0 0 0 0 0 0 0
0 0 1 0 Y21 0 0 0
+-+- —[+H=[+]
0 1 0 O 0 ¥32 0 O
o 0 O 1 Y41 0 Y43 0O
0 1 0 0 0 0 0 0
0 0 0 1 Y21 0 0 0
-+t [+ [+
1 0 0 0 0 Y2 0 0
0 0 1 0 Yar 0 Y43 0
1 0 0 0 0 0 0 0
0 0 0 1 y21 0 0 0O
+ - =+
0 1 0 O ¥Yst 0 0 0
1 0 0 Y42 Y43
0 0 o0 0 0 o0
1 —1
0 0 5 7 Y21 0 0 O —+[— |+
0 1 0 O 0 ¥32 0 O —
00 5 ya 0 0 0
% ;—% 0 0 0 0 0 0
0 0 0 1 0 0 0 0
11—+
5 5 0 0 yai 0 0 O
0 0 1 0 0 Y42 Ya3 0
0 1 0 0 0 0 0 0
0 0 1 0 Y21 0 0 0O
1 0O 0 O Yt 0 O O
o 0 O 1 0 Y42 Y43
0 0 0 0 0 o0
00 5 s Y21 0 0 0 —[+=]
-+11 T
1 0O 0 O Ys3r 0 0O O —
00 5 0 a2 0 0
1 —1
7 A 0 0 0 0 0 0
0 0 1 0 0 0 0 0
11+-—
% ﬁ 0 0 0 Y2 0 0
0 0 Ya1 0 Y43
1 0 0 0 0 0 o0
0 1 0 0 0 0 0 0
++—-—
0o 0 1 0 Y31 Yz2 0 O
0 0 0 1 Ya1 Ya2 0 0 —|+
1 0 0 O 0 0 0 0 —|+
0 o5 =% 0 0 0 0 0
+11-— Ve
0 NS 0 Yt 0 O O
0 0 0 1 Ya1 Yaz 0 0




signed Young diagram

__;’_|

+[+ +[1] +[1] 1
—
Nl
~—
mYOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO © o o olo o o o
o]
m.m0000000MOOOOOOOOOOOOOOOMOOOOOOO OOOOOMOO
% <
MmOOWW,,HOOOOOOOW,,HDOOOOOWOOOOMOOOOOOMu OOWOOOOO
S |w I - - - .- . - - -
Hle © 8 Jle § © Il © © Flo © & |l © © oo © © oo & & o|lo o o © o o F|le o o %
2 >
X o
m o
< o
.LWO - o ol o o oo o o =l 8 o f58 e f§ ol = o ol 8 o 8 o -8 o 8 o A§le 78 = -8
Elw o o oo T8 o8 © 4§ ol o = co|lo o o ~|78 o 8 o]« © o o|o ~ o o 48 o 8 o 4§ o
]
MO o o e 85 ol = o olo S o ffle = o oo o o ~|lo 5 o e o o Mo 5 ol 5 = -8
oY
Plo o = oo o o = o 8 o o o oS o A8 o[ o 4§ o|lc o ~ o8 o f§ A8 e S oHS = 4§ o
o]
= —+ —+ | — — =+ — — [\l [\l
o + — — I _ — + + N —
= _ — + — + _ — | — ™
© | — —+ — — | — — —
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clan v a representative | driving matrix Y () | signed Young diagram

%= 0 0 = 0 0 0 0

V2 V2

0 o5 = 0 0 0 0 0
1221 vz Ve

% 0 0 75 0 0 0 0 E

1
0 775 0 0 0 0 0
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Example 2.6.8. This is the table for the case of Gr = U(p, 2).
signed clan signed clan
Young . Young .
diagram (17.77]671 2 17 a7b7020) diagram (Zajukz 17 G/,b,CZO)
+—+—+ +-——++
i J k i J
H-FH=H| +1+1+—+ +-1+1+
4 a 7 k a i
I}V3 +-+1+1+ 1+1—++
i i i a k a i J
+1+1+2+2+ +1-+1+
i a J b k a [
I (i+a=>2)
i g i—+| 1+—+1+
— — — [ a J
:t =] | 11—+ + . (j4+a>2)
I}p_z T ri41+ 112+ +
- i a g au a i
1+14+2+2+ l+2+1+2+
a i b ] a b e i
+—+- +12+2+1+
i a t
" [ F-+1+1 (+b6>2)
Em i a 1+2+24+1+
Hpda +1+1+-— e b
i} i a g (J+b>2)
FIE14242 tt-—+
i a  j b iJ
++——++ +1+1—+
i J ko1 ¢ e
I B o141
J k iJ
++-1+1+ +1+-1+
i a k @
[+ ’ (i+a>2)
+[=+ +1+ +1+ +[=]+
an a b g —IF +14+-—+1
T}%4 (ita=2 j+b=>2) || [H] L (i+a>2)
[+ Tlr12+24 ;}V3 =
- i a ; ¥ +1+12+2
T i a b

+1+2+1

[ a b c

2+

BN

F14+2+2+1+
[ a b c J
(i+a>2, j+ec>2)

+1+2+1+2
% b c

a

+1+2+21+
i b

a

(i+a>2)

+1+2+2+1
b J

7 a

(i+a>2)
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signed signed

v clan v clan
oung . oung o
diagram (Z7j Z 17 CL,b =z 0) diagram (7/7] > 17 a7b,c > O)
-+ t+- +4 - -
1] i J
—[+-] 1+1+- —TF +14+1—
i a g —r i a
;_}P—l —+1+1 ¥ +1+-1
i i a : p—2 7 a )
1+1+2+2 - (ita>2)
@ v b +14+2+21
_ [3 a b
1—1!—1 i (it+a>2)
Toltl +[= 14+12+2
_+ a b
+1—-1+ T
_— _}WQ1+2+1+2
1+—1+ = IR
-1 +1-+1 -1+
E8 ‘ |
_}%2 1+—+1 = 1_T1
N v E8
- +12+21+ ;}%112j2*1
a i 1
1+2+21+ 12421+
+12+2+1 1f1_
a 7 _+
1+2+2+1 _| 1+-1
7 a J 1 7
-4+ T}P—l 1+2+21
i J 1 i a
= -1+1+ o +12+21
+- M
+ 1—+1+
T}p—2 a
[+ (i+a=>2) 12421
12+24+1+ a
a b 7
(t+b>2)

3. THE CASE OF Sp(n,R)

In this section, we treat the case of Gr = Sp(n,R), i.e., we treat GL(n, C)-
orbits in the flag variety of Sp(n, C). We will apply the case of U(n,n) to the case
of Sp(n,R).

Definition 3.0.9. For a clan v = (¢; --- ¢,) € C(U(p,q)), transpose "y, of v is a
clan in C(U(p, q)) such that
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and minus —y = (¢| ---¢),) is a clan in C(U(q,p)) such that

— ifci:—i—,
=<+ ife=—,
¢; 1if ¢; € N.

We call a clan v symmetric if the transpose of v is equal to =y as a clan, i.e.,

o=

We call a clan v skew symmetric if the transpose of « is equal to minus of v as a
clan, i.e.,

Y= =
Example 3.0.10. A clan vy, = ( + 1 - 21 - 2 + ) is symmetric be-
cause
m=(+ 2 — 1 2 — 1 +)
=(+1 - 21 - 2 +)
=1.
Aclany,=(+ 1 — 2 1 + 2 — ) is skew symmetric because
o=(- 2 4+ 1 2 — 1 +)
=—(+ 1 — 21 — 2 +)
= —"2-

From now on, we denote G, B, K, g, b, ¢, and p for Gr = U(p',¢') by Gamn,
Ban, Kamt, gan, bar, €arr, and parr. Let U(p', ¢') = U(n,n). We denote U(n,n)
by Gramr.

3.1. Flags of Sp(n,C). In this section, after realizing a real form Sp(n,R) of
Sp(n,C), we recall flags of Sp(n,C). We realize a complex symplectic group
Sp(n,C) as a group of matrices g in GL(2n,C) which leave invariant an exterior
form

1 N Top + T2 ANTop_1+ -+, /\$n+1,

. 0 J.\ [ 0 J,
I\ —g, 0 )97\ —J, 0 :

By this realization, a Borel subgroup can be upper triangular.
We realize a real symplectic group Gr = Sp(n,R) as a group of matrices g in
Sp(n, C) which leave invariant a Hermitian form of the signature (n, n)

i.e.,

(41)  Sp(n,C) = {g € GL(2n,C)

T1T1 + -+ + TpTp — Tpt1Tntl — °°° — T2nT2n,

o6 5 )= (5 5 ))

By this realization of the real form, a compact Cartan subgroup can be diagonal.
This realization is not only the author’s taste but also corresponds to U(n,n). (See

(43).)

ie.,

(12)  Sp(m.R) = {g € Sp(n, ©)
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Remark 3.1.1. The group (42) and a group
Sp(n,C)NGL(2n,R)

R
2\ —id, i, )

We fix a Cartan involution 8 of GRr:
T

b0 (T 0 I, 0
-9 o -1, )9\ 0o -1, )

are conjugate by a matrix

Then we have

(43) €= gneam, p=gNPpamr, b=gNbam.
and
K’ 0
_ K €GL(n,C) | ~
K { ( 0 J, UKL, )} (n, C) } ~ GL(n,C).

Notation 3.1.2. Let V = C?" and 6 be an involution of V such that

0:v— ( 161 _Ojn )v.
Let V1 and V_ be the eigenspaces in V' under 6 for eigenvalues +1 and —1, respec-
tively:
Vi:i=A(e1,...,en), and V_:={eni1,...,€2,).

Let a be a Cartan subalgebra of g consisting of all diagonal matrices of g =
sp(n, C), b a Borel subalgebra consisting of all upper triangular matrices of g. This
choice corresponds to the choice of simple root system W:

U= {aj,as,...,a,} Ca¥;
where «; € a* satisfies
61'3‘—61'4_1)]' iflgign—l,
i (Ejj — Eang1—j2n+1-5) = .
20n; ifi=n.

Let w be a nondegenerate skew-symmetric bilinear form on V = C?" such that

o= G 4 )

If W is a subspace of V', we write
Wt ={veV|wkw) =0 forall weW}.

This is the orthogonal subspace of W, relative to w. We say that W is isotropic if
W Ccwt.

Remark 3.1.3. The orthogonal subspace of Vi and V_ are V; and V_ respectively:
Votr=v, and (V)P =V_.
Remark 3.1.4. A flag x of Sp(n, C) is a sequence of 2n + 1 vector spaces
x=Vo,V1,Va, ..., Vap),

satisfying the following three conditions.
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1. dimV; =4 for all 0<i<2n.
2. {0} =VocViCVaC...CVy, =C"
3. For 0 <17 <2n, Va,_; is the orthogonal subspace of V;:

Von—i = VLv

K3
i.e., for 1 <i <mn, V; are isotropic subspaces.
We denote the set of flags by X.

Remark 3.1.5. We fix a G-equivariant natural isomorphism between X and G/B
via the manner in Remark 2.1.2.

3.2. A symbolic parametrization of GL(n,C)-orbits in Sp(n,C)/B. In this
section we give a symbolic parametrization of K-orbits in the flag variety X and give
representatives of K-orbits for the parameters. Our parameters are an improvement
of the Matsuki-Oshima’s parameters [6]. The set of parameters of the K-orbits in
the flag variety X is a subset of C(U(n,n)). The parameter we give for a K-orbit
@ in the flag variety for Gr = Sp(n, R) coincides with a clan in C(U(n,n)) which
includes Q.

3.2-1. Generalized clans for Sp(n,R). We give a subset of C(U(n,n)). The subset
parametrizes K-orbits in the flag variety X.

Proposition 3.2.1. For a flag v = (Vp,V1,...,Van) € X, there exists a clan
vy=1(c1 -+ can) € C(U(n,n)) via the conditions in Proposition 2.2.6.

Proposition 3.2.2. Let x € X and v = (¢1 -+ can) € C(U(n,n)) be the clan of
x. Then the clan is skew symmetric, i.e., "y = —~.

Proof. We remark that
Vv2n—i7i = ‘/2n—i N Vi = (‘/;)J_ N (Vi)J_
= (Vi+ V)t = (me(Vi) @ Vi)*.

1. If ¢; = +, then there exists a vector v4 in Vi such that vy & 71 (V;—1) and
Vi =Vi—1 ® (w4 ). Since

Vanip14 = (m- (Vi) @ V', and
Van—ivr = (1= (Vi) @ V)" = (- (Vier) @ Vi),

we have

@2n—i+1;4)—(2n—1i;+) =0.
Since

Von—it1,— = (m4 (Vi) @ Vo)t and
Van—i— = (me (V) @ Vo)t = (me (Vier) © (v ) @ V),

we have

2n—i+1;—)—(2n—i4;—) =1.

Thus, we have cop41-; = —.
2. If ¢; = —, then we have ¢y, 41—; = + by the same argument of 1.
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3. We will prove that copy1-—; = ¢ € N for some ¢/ < 2n+1—1i if ¢; € N and
ci #c¢jforall j <i. If ¢; € N and ¢; # ¢ for all j < 4, then there exists a
v; € C* such that 74 (v;) € 7y (Vie1), 7—(v;) € m_(Vi1), and

Vi=Vie1 @ (v).
Since
Von—it1,+ = (me(Vic1) @ Vi)t and
Von—iz = (m2(Vi) ® Va)t = (2 (Vie1) © (75 (vi) ) © Vi),
we have
(n—i+1,4)— (2n—i,+)=1.
Therefore, coni1_; = ¢y € N for some i’ < 2n+1 —i.

4. We will prove that copt1—; € N and ¢jr # copy1—; for all j/ < 2n+1—j if
¢i = ¢j € N for i < j. Then there exists a v; € C?" such that w4 (v;) &
Ty (Vie1), m—(v;) € m—(Vi-1), and

Vi=Vica @ (vi) C V=V & (my(vi)).
Since 74 (vi) € m+(V;) C mx(V;-1), we have
Vonejx = (g (Vj) @ Ve)*

= ((mx(Vim1) + (mx(v:) ) @ Vi) *

= (mz(Vi-1) @ Ve)t = Vapojirs.
Thus,

(2n—j+1,%)— (2n—j,+) =0.

Therefore copt1—5 € N and copq1—5 # ¢y forall j/ <2n+1—j.

5. It is enough to prove that ¢; = ¢; € N if copt1-i = cant1—5 € N for 2n 41
—i<j<i Let2n+1l—i<j<i.

We prove that by induction on i. Suppose that if ¢z = ¢ € N for
2n+1—i< k<l <i,then copy1—x = contr1-1 € N.

(a) We assume now ¢; = ¢, € N for s < j hoping to show a contradiction.
Then there exist v;, vs € C?", such that

Vang1—i = Van—i ® (v; ) C Vont1—5 = Van—j @ (me(vi))

and
Vs=Vio1®(vs) C Vici C Vi=V,1 ® (m_(vs)).
Thus,
(44) Vo = Vi € (m_(vs))*
Since
ve € Vi C Vit = Vi = Vabh 0 (e () C (i ()
we have

W(m— (0,),05) = W(r— (v), T4 (07)) = W(vs w4 (07)) = 0.
So
(45) (vi) C (7 (v5))"



372

(47)

ATSUKO YAMAMOTO

On the other hand,
Vouoi = Vi- = Vit N (m—(vs) )

= Vanoip1 N (1= (vs) )" = (Van—i ® (vi)) N {m—(vs) )+

= Voni®(v;i) = Vap—it1
by (44) and (45). That contradicts Va,—; # Vaop—it+1. We have proved
¢; # ¢ for all s < j.
We will assume that ¢; = ¢, for j < s < ¢ and see what happens. Then
can+1—s € N and there exists 1 <t < 2n+ 1 — s such that ¢; = copy1—s.

By assumptions, t satisfies 1 < ¢t < 2n + 1 — 4. Then there exist vy,
vs € C" satisfying

Vici @ <Ut> C Vop—; C ‘/2n—s+l =Von—s @ <7T+(vt)>

and
V=V ®<vs> c Vi=Vi @<7T_(’U3)>.
Thus,
Von—s = ‘/SJ_ C <’U3>L'
Since

v € Vapoi = Vit = Vii (- (v5))* C (- (vs))",

we have
w(my(ve),vs) = w(ms(ve), m—(vs))
w(vg, m—(vs)) = 0.

So

(me(ve)) C (ws) ™

On the other hand
Von—s = Vi = Vi 0 (vg)*
= Van—st1 N {05 )"
= (Van—s ® (m4(06) ) N (05 )~
=Van—s ® (74 (v1)) = Van—st1
by (46) and (47). That contradicts Van—s # Van—si1.

Therefore copy1—j = cant1—i € N if ¢; = ¢; € N by induction. O

Definition 3.2.3 (Generalized clan). We call a clan satisfying the condition in
Proposition 3.2.2 a generalized clan for Sp(n, R). We denote the set of generalized
clans for Sp(n,R) by C(Sp(n,R)):

C(Sp(n,R)) = {yeC(U(n,n)) |'v=—~}.

Example 3.2.4. The set C(Sp(2,R)) consists of 11 generalized clans:
4+ - = -+ =, =+ =+, = =+ +
+11 -, -11+, 1+ -1, 1 -+ 1
1122, 1212 1221

) )
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We recall the notion of clans in [6] in order to compare our notion of generalized
clans.

Definition 3.2.5. [6] A clan for Sp(n,R) is an equivalence class of ordered sets

(c1 -+ ¢p) of n symbols satisfying the following five conditions.
1. For 1 <i<mn, Asymbol ¢; is +, —, 0, a, or @ for a € N.
2. If ¢; = a € N, then there exists a unique j # ¢ with ¢; =a and ¢ #a for
all t¢.
3. If ¢; =@ for a € N, then there exists a unique j # ¢ with ¢; =a and ¢ #a
for all t¢.

4. If ¢; =a or a for a € N, b€ N and b < a, then there exists some j such
that ¢; = b or b.

5. Two ordered sets (¢; -+ ¢,) and (¢) --- ¢,) are regarded as equivalent if
and only if there exists a permutation o € &,, for

m:=max{b€ N |bor b for some i}

such that
o(a) ifc,=a€N,
+ if ¢ =+,
ci =< — if ¢ = —,
0 ifc =0,
o(a) ifd,=a (aeN)
forl1 <i<n.

For example, (211 + 2 )= (122 + 1 -) as a clan.

The following one-to-one correspondence exists between clans for Sp(n, R) and
generalized clans for Sp(n, R).

A clan (¢} --- ¢},) corresponds to a generalized clan (¢; --- ca,) satis-
fying the following five conditions for 1 <i,5 < n:

1. If ¢ =+, then (ci,cont1-i) = (+,—).
If ¢ = -, then (Ci,62n+1_i) = (—, +).
If ¢ = c} €N, then ¢;=c¢; € N and copq1—i = cont1—; € N.
If ¢ = c;- =1, then ¢; =cony1—; € N and copt1—s =c¢; € N.

LI e = 0, then ¢; = Copt1—i € N.

N SN SUN S

TU oo 1o

For example, a clan (1 22 + 0 1) corresponds to a generalized clan
(122 + 3413 — 554).
Therefore C(Sp(n, R)) is a parametrization of K-orbits in X by [6, Theorem 4.1].

Corollary 3.2.6. Generalized clans in C(Sp(n,R)) parametrize K-orbits in the
flag variety X wvia the correspondence in Proposition 2.2.6.

Notation 3.2.7. For each generalized clan v, let ) be the K-orbit in the flag variety
X corresponding to y via the parametrization of Corollary 3.2.6.

3.2-2. Representatives of GL(n, C)-orbits in Sp(n,C)/B. We will give an element
g € G such that the flag x = ¢B in X = Sp(n, C)/B corresponds to a generalized
clan v € C(Sp(n,R)) and the flag © = gBam in GL(2n,C)/Ban corresponds to
the clan v € C(U(n,n)).
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Definition 3.2.8 (Skew symmetric signed clan). A skew symmetric signed clan y_

= (dy -~ dmm) of a generalized clan v = (¢1 -+ ¢,) is a signed clan (in Defini-
tion 2.2.9) of the clan v satisfying the following condition.
(48) If ¢;=cj=a€N for i<j, then (d;,d;) = (as,a_).

Example 3.2.9. The skew symmetric signed clan of vy = (121 — 32 4+ 434) is
’Y_ = ( 1+ 2_;,_ 1_ — 3_;,_ 2_ + 4+ 3_ 4_ )

Corollary 3.2.10. In a skew symmetric signed clan (dy ---dy,), the signature of
d; is not equal to the signature of dpy1—; for 1 <i < m.

In this section, we call a skew symmetric signed clan just a signed clan.
We will give a representative g € G of Q, = K - ¢g- B.

Theorem 3.2.11. For v € C(Sp(n,R)) and the signed clan v— = (dy -+ day) of
v, fix a permutation o € &, and a permutation o' € S, satisfying the following
condition.

Fori <n,
o'(i)=0"(i) and o'2n+1—4)=2n+1-0"(i)
if the signature of d; is plus,
d@)=2n+1-0"(i) and o'2n+1—-14)=0"(i)
if the signature of d; is minus.
The matriz g(y) = (g1 g2 -+ g2n) € Mat(2n,2n) is a representative of Q~, i.e.,
Q- = Kg(v)B. Here g; € V are column vectors defined as follows:
o If dz = -y then gi = €51(3)-
o Ifd; =+, then

_Jeorw if i <n,
9= —eg/(i) Zf n < 1.
e If(d;,dj) = (at,a_) for some a € N, then
0= %(80/(7;) + eal(j)) Zfl < n,
—\%(egl(i) + eg/(j)) if n <1,
and
1
9= ﬁ(_ev’@') +€o1(5))-

Proof. The permutation o’ satisfies the conditions (13) of ¢ in Theorem 2.2.14
for U(n,n). Thus, g(v) is a representative of Kamr-orbit Qami, ie., Qyam =
Kair - g(7) - Bamr, and g(y) € G. Therefore, we have

Qy=Kg(v)B. O

Example 3.2.12. Forasignedclany_ = (14 2y —1_ +3,2_ +4, —3_4_),
for example, if we choose an identity permutation as o”;

s (123 456
= \1 2345 6)
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then o’ is as follows:
, (1 2 3 45 6 7 8 9 10 11 12
~=\1210 956784 3 11 12 )
Remark 3.2.13. The representative g(v) is real and orthogonal:

t

gt ="g(v).

3.3. M-O graph for Sp(n,R). We define an oriented graph which has generalized
clans as vertices and in which an edge is labeled by i for some 1 < i < n. We can
read off closure relations in the graph.

Definition 3.3.1. Let I'(Sp(n,R)) be the set of all triples (v,~',4) with v, €
C(Sp(n,R)) and 1 < i < n, satisfying one of the following two conditions.

1. (v,v',4) € T'(U(n,n)). (This case happens only if i = n or i # n and

(cisciv1) = (c2n—i; C2nt1-i) = (a,b) for a,b € N.)
2. There exists a clan v € C(U(n,n)) such that

{(777//7i)7 (7//57/5 2n — Z)} C F(U(nvn))
Example 3.3.2. Since (+ — +—), (+11-) € C(Sp(2,R)), and
(+—=4+-),(+11-),2) eT(U(2,2)),

(+ — +-),(+11-),2) e T'(Sp(2,R)).
Since (1212), (1221) € C(Sp(2,R)), and ((1212),(1221),1) € T(U(2,2)),
(1212),(1221),1) € [(Sp(2, R)).
Since (+ — +—), (1122) e C(Sp(2,R)), (11 + —) € C(U(2,2)), and
{(+ = +-),0A1 4+ =),1), (11 + —),(1122),3)} e T(U(2,2)),

(+—-4+-),(1122),1) e I'(Sp(2,R)).

Notation 3.3.3. We denote by B;air the parabolic subgroup of G in Nota-
tion 2.4.8. We denote by B; the parabolic subgroup of G for the root —a; and
all positive roots:

B; = (BiamBan—iam) NG.

Let

m:G/B — G/B;
be the canonical projection.
Remark 3.3.4. The projection 7; sends (Vp, ..., Va,) € G/B to

(Vor e e Vi, Vists oo s Voneict, Vanigts oo s Vo) if 1<i<n,
{ (Vou- s s Vet Vierts e+ s Van) it i=n.
By Theorem 2.2.14 and Remark 3.3.4, we have the following proposition.

Proposition 3.3.5. If (v,7/,i) € T(Sp(n,R)), then

Ti(Qy) = mi(Qy).
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Proposition 3.3.6. If (v,7,7) € I'(Sp(n,R)), then
dim @, =dim @, —1

and

Kg(v)B C Kg(y')B.
Proof. By [6], if (v,v',i) € I'(Sp(n,R)), then we have
dim @, =dimQ +1
and
Kg(v)B C Kg(v')B, or Kg(y')B C Kg(7)B.
If i = n, then (v,7',n) € T'(U(n,n)). Therefore

Kamg(y)Bam C Kamg(y')Barr.

Thus, we have Kg(v)B C Kg(v')B.
If i # n and both of (y,v”,i) and (v”,~,2n — i) are elements of T'(U(n,n)) for

some v € C(U(n,n)), then we have Kg(v)B C Kg(y')B by the same argument
of the case of ¢ = n. Similarly, if (,~',7) € T(U(n,n)), then we have Kg(y)B C

Kg(y")B. Therefore dim @, = dim Q. — 1 for all (v,~',7) € T'(Sp(n, R)). O

Although the definition of the following graph follows [6], we use generalized clans
instead of clans as vertices.

Definition 3.3.7 (M-O graph of Sp(n,R)). Let Co(Sp(n,R)) = C(Sp(n,R)) N
Co(U(n,n)):

Co(Sp(n,R)) ={(c1-+-cn) €C(Sp(n,R))|c; N foralll <i<n}.

We give subsets T',,,(Sp(n,R)) of T'(Sp(n,R)) and subsets C,,(Sp(n,R)) of
C(Sp(n,R)) for m > 1 by induction as follows:

L (Sp(n,R)) == {(7',7,7) € T'(Sp(n, R))| 7' € Crn1(Sp(n, R))},
Cm(Sp(n, R)) := {y € C(Sp(n, R))| (v, 7,1) € T'n(Sp(n, R))}.

The M-O graph with generalized clans of Sp(n, R) is a finite oriented graph whose
vertices are generalized clans in C(Sp(n,R)) and whose oriented edges are

L(Sp(n,R)) = UpeN Tm(Sp(n, R)) -
Example 3.3.8. The I'(Sp(2,R)) is as Figure 2.
Remark 3.3.9. If (v,',i) € I'(Sp(n,R)), then
mi(Qy) = m(Qy) and dimQ@Q,+1 = dimQ+.

3.4. Dimensions of GL(n,C)-orbits in Sp(n, C)/B. In this section we will give
a dimension formula of K-orbits for generalized clans.

Definition 3.4.1. We define the length £c(7) of a generalized clany = (¢ - - - cap) €
C(Sp(n,R)) such that

1
(49) Lo(y) = 5(6(7)+#{tEN|cS=ctEN and s<n<t<2n+1-s}).
Where £(v) is the length of the clan v which is given in Definition 2.3.7.
Proposition 3.4.2. If v € C,,(Sp(n,R)), then Lc(y) =m.

Proof. We prove the proposition by induction on m. Let v = (¢1 - - - cap).
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++—— +—+— -+  ——++

N7 /N } Ly (Sp(2. R))
+11- 1122 114
11 12 11 } I'2(Sp(2,R)) T(Sp(2, R)
1+-1 1212 1—+1
X l / Iy(Sp(2, R))
1221
FIGURE 2

1. If v € Co(Sp(n,R)), then Lc(y) =0.

2. Suppose lc(v') =j, if v €C;j(Sp(n,R)). For v € C;+1(Sp(n,R)), there
exists 7' = (c| -+ ¢&,) €C;(Sp(n,R)) such that (v',v,7) € I'(Sp(n,R)).
(a) If i =n, then £(y)=£(y)+1 and

#{teN|cs=c, €N and s<n<t<2n+1l-s}—#{n+1}
=#{teN|d,=c,eN and s<n<t<2n+1-s}.
So, le(v') =j+ 1.

(b) If i # n and (¢;,¢iv1) = (Can—i, C2n—i+1) = (a,b) for some a € N and
b € N, then

and
#{teNljecs=ct €N and s<n<t<2n+1-s}—#{2n+1-1i}
=#{teN|d,=c, €N and s<n<t<2n+1-s}
(¢) If i # n and not (¢;, ciy1) = (Can—i, Con—i+1) = (a,b), then there exists

a clan v/ € C(U(n,n)) such that (v',7",7), (v",7,2n — i) € T'(U(n,n)).
So, we have

() =e(y")+1=1L(") +2
and
#{teN|cs=¢ €N and s<n<t<2n+1-s}
=#{teN|d,=c,eN and s<n<t<2n+1-s}.

Therefore {c(y) = j + 1.
So, la(y) =m if v € Cn(Sp(n,R)) for all m € N. O

A generalized clan
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corresponds to the open orbit and

lo(y) = %n(m 1),

Since the dimension of a closed orbit is 2n(n — 1), we have the following dimension
formulas.

Proposition 3.4.3. For v € C(Sp(n,R)), we have the dimension and the codi-
mension of Q= Kg(6)B C X:

GmQ, = fo(y)+ Ln(n—1),
codim@, = In(n—+1)—"Lla(y).
3.5. Images of the moment map. We denote (bair)* by bxp. We have
(Ad(g)b) Np = (Ad(g) - bar N g) N (pamm Ng)
((Ad(g) - bamr) N par) N g,

and elements X in p satisfy
Xij = Xont1-j2n+1-3-

Since we gave the image (Ad(g)-bxy;) Nparr of the moment map 4 in Proposi-
tion 2.5.2 and ¢ := ¢’ in Theorem 3.2.11, we get the following proposition.

Proposition 3.5.1. For a generalized clan v = (¢1 -+ c2,) € C(Sp(n,R)), fix a
permutation o’ € Gap as in Theorem 3.2.11. Let the representative g := g(y) be
given as in Theorem 3.2.11, and x = gB € Q. We can read off u(TévX)m from a
vector subspace Dri(vy) of g.

w15, X)z = {Yr10),....00-1(2ny | Y € Dri(y)}.

Here, Dri(vy) is the subspace of Dri(y-), the driving space of the signed clan vy_ for
U(n,n) in Definition 2.5.1, is defined as follows:

Dri(y) = Dri(y.)nAd(e"™) g
= {Y eDri(y-) | Yij = Yant1-j2n+1-i }-
We call the space Dri(7y) the driving space of the generalized clan v (for Sp(n,R)).
Proof. For the signed clan v— = (d;---ds,) and the permutation ¢’ in Theo-

rem 3.2.11 and a representative gamr(v—,o’) in Theorem 2.2.14, we have
g9 =9g(y-,0")diag(e1, ... ;em).

Here,

o {—1 if n < ¢ and the signature of d; is plus,

1 otherwise.
So,
(Ad(g)bxyp) N pa
Ad(g(y-,0"))(Ad(diag(er, . .. ,€20)) - bazyy) N parr

= (
= (Ad(g(y=,0")) - bxipy) N pa = Ad(o”) - Dri(y-)
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Therefore,
w(TH X)e = (Ad(e’)-Dri(y-))Ng
—  Ad(o") - (Dri(y-) N Ad(o’ " V)g)
= Ad(¢’) - Dri(n).
is as stated in the proposition. O

Corollary 3.5.2. For the representative g = g(v) of Q given as in Theorem
3.2.11, we have the following equation.

Dri(y) = Ad(c’”")((Ad(g)bL) Np)
= {Aw@),..orn) | A€ (Ad(g)b)Np}.

.....

Since g(v) = (eor(1) - €4(2n)) = 0’ if a generalized clan 7 corresponds to a
closed orbit, we have the following lemma.

Lemma 3.5.3. If a generalized clan ~ is an element of Co(Sp(n,R)), then
Dri(y) = b= N (Ad(g(7)™") - p)-

Definition 3.5.4 (Driving matrix). For a generalized clan v € C(Sp(n,R)), let
Y(v) and Y(y,m), 1 < m < 8 be elements of FF @ Mat(2n,2n) satisfying the
following conditions. Let yv— = (d1 - -+ dan).

1 ifj<i<2n+1-j
1. Y(v,1);; = <
1 Dy {0 otherwise.
0 if (di,d;) = (+,+) or (—,—),
2. Y(7,2)is = (diyd;) = (+,+) or (=,-)
Y(v,1)i; otherwise.
3. If (di, dj) = (a4, a-), then
o Y(7,3)ik = if 1<k <i,
o Y(7,3)ksi —Y(% 3)jke =0 if i < ky <j,
o Y(7,3)ks,; =0 if j < ks <2n,

for all a € N and Y (7, 3)s;+ = Y (v,2)srj otherwise.

Remark 3.5.5. If Y (v,3);; =1, then the following conditions are satisfied.
(a) j<i<2n+1—j (soj<n).
(b) (dladj) = (a—vb-i-)a (a—7+)7 (a—v_)v (+aa+)7 (—,CL+), (+a_)a or (_7+)
for some a, b € N, a # b.
(¢) If d; = a— for some a € N, then we have di = a4 for some j < k < i.
(d) If dj = a4 for some a € N, then we have dj, = a_ for some j < k < i.

4. ItY(v,3)i; =1, (di,d;j) = (a—,by) and (dg,d;) = (a4, b-) for some a, b € N,
then
Y (v,4)i; =Y (v, 4)2nt1—j,2n+1—i = Yijs
yi; fj<k<l<i

Y(v, i =Y (v, 2nt1-1,2n41-k = o ‘
Yy M j<l<k<i

for all @, b € N, and Y (,4)y;; = Y (7, 3)sj otherwise.
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5. f Y (v,4)i; =1, (d;,dj) = (a—,—), and di, = a4 for a € N, then
Y (v,5);; =0 and
Y(7,5)k; = Y (7, 5)2nt+1-j2n41-k = Ykj>

and Y (v,5)i 5y = Y (v,4)y; otherwise.
6. fY(7,5)i; =1, (di,dj) = (+,a4), and d, = a_ for a € N, then

Y (v,6);; =0 and

Y (7,6)ik = Y (7, 6)2n+1-k2n+1-i = Yik,
and Y (v,6)iy 5y = Y (v,5)y; otherwise.
Yij if Y (7,6)i; =1,
Y (v,6);; otherwise.

We call Y () the driving matriz of v (for Sp(n,R)).
By the same arguments of Proposition 2.5.8, we get the following proposition.

7. Y()ij =Y (Y)2nt1-j2n+1-i =

Proposition 3.5.6. For a generalized clan v € C(Sp(n,R)), the Driving space
Dri(y) for Sp(n,R) and the Driving matriz Y (v) of v for Sp(n,R) satisfy the
following condition.

Dri(y) ={Y(7) | yi; € C, for 1<4,j<2n}.

By Proposition 3.5.1 and Proposition 3.5.6, we got the following theorem which
means we can read off u(T¢ X), from the driving matrix Y (7).

Theorem 3.5.7. For a generalized clan v € C(Sp(n,R)), fix a permutation o’ €
Say, in Theorem 3.2.11. Let the representative g := g(vy) be given as in Theo-
rem 3.2.11, and v = gB € Q). We can read off M(T&X)w from the driving matriz
Y (y) for Sp(n,R) as follows:

T, Xz = {Y (V) (o-1(1),....001(2n)) | Y15 €C for 1 <i,j <2n}.

3.6. Signed Young diagrams. In this section, after we recall a parametrization
of nilpotent K-orbits in p, we give tables of signed Young diagrams for the clans of
Sp(1,R), Sp(2,R), and Sp(3,R) by way of examples.
Nilpotent K-orbits in p are parametrized by signed Young diagrams of signature
(n,n) satisfying the following conditions.
If m € N is odd, then the number of rows of which the length are m and
which are labeled + in the first column is equal to the number of rows
of which the length are m and which are labeled — in the first column.

For an element A of an orbit, the signed Young diagram of the orbit satisfies

> Dj; =dim(ker(A’ly,)) and Y D;_ = dim(ker(A’|y.)).

j=1 j=1

Proposition 3.6.1. Under the conditions of Theorem 3.2.11, we put

—1
V_{_ = CT/ V+ = (60/71(1) tee 60/71(2,1))‘/_,_
= <€U/—1(1),"' 760’_1(n)>7
VI = o TV = (o) o om )V

= <ea/_1(n+1)7"' 760/—1(271)>.
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By the same argument of the case of U(n, n), we have the following proposition.
Proposition 3.6.2. Let Y (v)? = I,,. We have the following equations:
Diy =dimp{@dc FRc V. |Y(y)a=0}—dimp{dc FRc V. |Y(y)''a=0},
D;_ =dimp{be FocV' |Y(y)b=0}—dimp{be Foc V' |Y(y) 'b=0}.

At last we give tables of signed Young diagrams for the clans of Sp(1,R) in
Example 3.6.3, Sp(2, R) in Example 3.6.4, and Sp(2,R) in Example 3.6.5.

Example 3.6.3. This is the table of the case of Gr = Sp(1,R).

a representative g(v) driving matrix signed Young
clan y ' )
of K-orbit Y(v) diagram

10 0o 0
+- —[+]

0 1 Y21 0

0o -1 0o 0
-t [+

1 0 Y21 0

Bl

(o)

Sk S
Sk Sl
N
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Example 3.6.4. This is the table of the case of Gr = Sp(2,R).

clan ~ a representative g(7) driving matrix signed Young
of K-orbit Y(v) diagram
1 0 0 0 o0 0 o0 0
o 0o -1 o0 y21 0 0 0
P e
o 1 0 o 0 w2 0 0
0 0 0 1 Ya1 0 Y21 0
o 1 0 o 0o 0 o0 0
o o o -1 yv21 0 0 0
. -
1 0 0 0 0 Y32 0 0
o o0 1 o0 yar 0 Y2 0
1 0 0 0 o0 0 0 o0
o 1 0 o0 0 0 0 o0
+4——
0 0 1 0 Y31 Y32 0 0
0 0 0 1 Y41 Y31 0 0 —[+
1 0 0 0 0 0 0 o0 —|+
a0 -1
- 0 5 5 0 o0 0 o0 o0
0 5 U3 O yaa 0 0 O
o o0 o0 1 Yar ¥s1 0 0
o o0 1 o0 o0 0 0 o0
o o0 o0 1 0o 0 o0 0
——++
1 0 0 0 Y31 Y32 0 0
o 1 0 o0 yar ys1 0 0 =
0o o0 o0 1 0 0 0 0 +l=
1 -1
T 0 % 5 O 0o 0 o0 0
0 %5 5 O ys1 0 0 0
1 0 0 0 Ya1 Y31 0 0
1 —1
7% s 0 0 0o 0 o0 0
—1 —1
0 0 = == o0 0 0 o0
1122 vzoov2
% 5 0 o0 0 vz 0 0
0 0 T 7 Yo 0 0 0 =
7% 0 A 0 0o 0 0 o0 —I+
1 —1
0 &% o0 == 0 0 wya1 0
1212 vz V2
% 0 U5 O 0 0 o0 o0
0 U 0 U5 yar 0 0 0
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a representative g(v)

driving matrix

signed Young
clan ~ : .
of K-orbit Y () diagram

5 0 0 % 0o 0 0 o0

o 1 0 0 o 0 0 o0 —|+]
1+-1 +

7% 0 0 U5 0 w2 0 0 =

0 0 1 0 0 0 0 o0

a -1

% 0 0 5 0 0 0 0

0 0 1 0 0 0 0 0 +[-]
1—+1 T

% 0 0 5 0 ¥z 0 0 =

0 1 0 0 0 0 0 0

5 0 0 = 0 0 0 0

e 73

1 =1

1221 0 5 7 O 0 0 0 o0

% 0 0 U5 0 0 0 0 E

0 %5 U O o 0 0 o0
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Example 3.6.5. This is the table of the case of Gr = Sp(3,R).

clan v signed Young diagram clan v signed Young diagram
Ft EEE e 1+12-2 —
—+—+-+ [H= =] 1+21-2 —i
+——++- 12+—-12
+—11+— —HH 1-12+2
+|— T -
11—+422 1-21+2 o
—|+
—++-——+ 12—+12
—F11-+ R 1++-—1 ——
—|+
11+-22 +1221- -
==+t 1+22-1 —
+1122- ii_Hl 1——++1 =
+1212- -1221+ o
——F—++ 1-22+1 —
H=+=
-1122+ - - 122331 -
—1212+ 123312 o
112233 123231 —
=+
121323
123123 sl
12+-21 |+
+1-41- —[+I=1+] —
I+ —]
1+—+-1 =] —
—-1+-1+ B e
] -]
1—+—+1 — I+
— 12—-+21 ]
++4+——- —
++11—-— —|+
—|+
+14+-1- 7]
o ]
T = 123321 I+
——11++ +|= =
= =
—1-+1+ =
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4. THE CASE OF Sp(p,q)

In this section, we treat the case of Gr = Sp(p, ¢), i.e., Sp(p, C) x Sp(q, C)-orbits
in the flag variety of Sp(n, C). Here, n = p+q. We will apply the case of U(2p, 2¢)
to the case of Sp(p, q). For this, we change the realization of U(2p, 2q). We denote
U(2p,2q) by Grau-

4.1. Changing the realization of U(2p,2q). From now on, we use the following
realization of U(2p, 2q).

We realize Grammr = U(2p,2q) as the group of matrices g in GL(2n, C) which
leave invariant the Hermitian form of the signature (2p, 2q)

(50) 171+ + TpTp — Tp+1Tp+1 — ° ~ Tp+2¢Tp+2q
+ xp+2q+1 xp+2q+1 +-- 4+ x?nma
ie.,
1, 0 0 1, 0 0
U2p,29) =< g€ GL(2n,C)|'gl 0 —Iy 0 |g=| 0 —I, 0
0 0 1, 0 0 1,
We fix a Cartan involution 8 of Ggrar as follows:
I, 0 0 I, 0 0
0:9g — 0 —Iyy O0)-g-|0 —Iy O
0 0 I, 0 0 I,

for g € Grar- Then we have
K1 0 Kis
Earrr = 0 Ky O
K31 0 Kss

K11, K13, K31, K33 € Mat(p,p)
Koo € Mat(2q, 2q)

K1, Kis, Ks1, K33 € Mat(p,p)

Ky 0 K )

(51)  Kam = 0 K»n O B K ) € GL(2p,C) :
K3 0 Ks3 K1 Kss
Ky € GL(Qq, C)
and
0 P2 0 P2, Ps> € Mat(p, 29)
parr = Py 0 P
0 Py O Py1, Pr3 € Mat(2q, p)
Notation 4.1.1. Let V = C?" and 6 be an involution of V such that
I, 0 0
0:v— 0 —Izy 0 |o.
0 0 I

Let V4 and V_ be the eigenspaces in V' under € for eigenvalues +1 and —1 respec-
tively:

V+ = <€1,... ,ep,6p+2q+1,... ,62n>,

V_ = <€p+1, PN ;ep+2q>-

Under this realization, Theorem 2.2.14 changes into the following proposition.
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Proposition 4.1.2. For v € C(U(2p,2q)) and a signed clan 6 = (dy ... d2y) of
v, fir a permutation o € Ga, satisfying the following condition.

1<o(@)<p or p+2q+1<0(i) <2n if the signature of d; is plus,
p+1<o(i)<p+2q if the signature of d; is minus.

(52)

Then the matriz gami(6) := gai(6,0) = (g1 92 .. gn) is a representative of Q.
Here g; € V are the column vectors defined as follows:

o If ¢; ==, then g; = ey()-

o If ¢, =a4, cj=a_, then

»—L(e-—i—e h)  and <—i(—e-+e ")
9i V2 o (i) a(4) 9j NG o (i) @) /-

4.2. The case of Sp(p,q). We use the realization of Sp(n, C) as (41) in Section 3.
We realize an indefinite symplectic group Gr = Sp(p, ¢) as a group of matrices g
in Sp(n, C) which leave invariant the Hermitian form (50) of the signature (2p, 2¢),
ie.,

I, 0 0 L, 0 0
Sp(p,q) = { g € Sp(n,C) |'g| 0 I, 0 |g= 0 —Iy O
0 0 I 0 0 I

We fix a Cartan involution 8 of Gr as follows:

I, 0 0 I, 0 0
0:9 — 0 —Iy 0 |g|l O —Iyy O
0o 0 I o 0 I
Then we have
€= g N eam, p=gNpaur, b= gnNbaui,

and
K11, K13, K31, K33 € Mat(p,p
K1 0 Kis (7. )

K = 0 Koo 0 < K Kis > c Sp(p7 C)
Ks 0 Kas K3 Kss
Koo € Sp(q, C)

12

Sp(p, C) x 5p(q, C).
Remark 4.2.1. We have (V,)t =V_ and (V_)! =V,.

Remark 4.2.2. We fix a G-equivariant natural isomorphism between X and G/B
via the manner in Remark 2.1.2.

4.3. A symbolic parametrization of Sp(p, C) x Sp(gq, C)-orbits. In this section
we give a symbolic parametrization of K-orbits in X and give representatives of
K-orbits for the parameters. Our parameters are an improvement of the Matsuki-
Oshima’s parameters [6]. The set of parameters for Gr = Sp(p,q) is a subset
of C(U(2p,2q)). The parameter we give for a K-orbit @ in the flag variety for
Gr = Sp(p, q) coincides with a clan in C(U(2p, 2q)) which includes Q.
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4.3-1. Generalized clans for Sp(p,q). We give a subset of C(U(2p,2q)). The subset

parametrizes K-orbits in the flag variety X.

Proposition 4.3.1. For a flag x = (Vp,V1,...,Van) € X, there exists a clan
vy=(c1 -+ can) € C(U(2p,2q)) via the conditions in Proposition 2.2.6.

Proposition 4.3.2. Let z € X and y= (c1 -+ c2,) € C(U(2p,2q)) be the clan of
x. Then the clan vy is symmetric, i.e., 'y =~ and i+ j #2n+1 if ¢; = ¢; € N.

Proof. We remark that
‘/Qn—i,:l: = VopiNVy = (‘/l)l N (‘/ZF)l
= VitV = (ma(V) @ V)L

1. If ¢; = +, then there exists a vector v4 in Vi such that vy & 7 (V;—1) and
Vi =Vi_1 @ (v ). Since

Von—it1,4 = (me(Vic) ® Vo))", and

we have
2n—i+1;4+)—2n—1i;4+) = 1.
Since
Von—it1,— = (m— (Vi) @ Vi)+  and
Vanoie = (m_(V)) @ V3 )+
= (m-(Vi-1) @ Vi)™,
we have

2n—i+1;—)—(2n—1i;—) =0.

Thus, we have cop41-; = +.

2. If ¢; = —, then we have ¢y, 11—; = — by the same argument of 1.

3. We prove (¢;,cant1—i) # (a,a) for any a € N. Suppose ¢; = copy1—i € N
and 1 < i < n, then there exists a vector v; in C?" such that

Vi=Vici®(vi) C Vap—ip1 = Vopi @ (my(v3)).
Then we have
v; € Vie1 = Van_ia

= (Van—i ® (74 (v;) >)L
= Vin_i N {7y (v5) )

That contradicts
_ L 1
v, €Vi=Vs,_, and wv; € (mi(v;))

So, we got (¢;,¢;) # (a,a) for any a € N.



388 ATSUKO YAMAMOTO

4. We will prove that copy1—; = ¢y € N for some i’ < 2n+1—14 if ¢; € N and
ci #c¢jforall j <i. If ¢; € N and ¢; # ¢; for all j < 4, then there exists a
v; € C* such that 74 (v;) € 7y (Vi1), 7—(v;) € m_(Vi1), and

Vi=Vii1 @ (vs).
Since
Von—it1+ = (mx(Vio1) © VE)T  and
Van—ix = (mx(Vi) @ Ve)t = (me(Vie1) @ (s (vi) ) © Vo) &
we have
2n—i+1,4)— (2n—i£)=1.

Therefore, copi1—; = ¢y € N for some i/ < 2n+ 1 — .

5. We will prove that cont1—; € N and ¢jr # cony1—; for all j/ < 2n+1—j if
c¢i = c¢; € N for i < j. Then there exists a v; € C?" such that m+(vi) &
T4+ (Vie1), m—(vi) € m—(Vi—1), and

Vi=Vici®(v) C V;=Vim1 & (mp(vi)).
Since 74 (vi) € m+(V;) C mx(V;-1), we have
Von—jr = (ma(Vj) @ Ve)t
= ((me(Vim1) + (72 (vi))) ® Vo)
= (me(Vim1) @ Ve)t = Vonojirs.
Thus,
Cn—j+1,£)—(2n—j,£)=0.

Therefore copt1—5 € N and copq1—5 # ¢y for all j/ <2n+1—j.
6. It is enough to prove that ¢; = ¢; € N if copp1—5 = conp1—; € N for
2n+1—i<j<i. Let2n+1—-i<j <.
We prove that by induction on i. We suppose that if ¢z = ¢ € N for
2n+1—i <k <l<i,then copy1—k = contr1-1 € N.
(a) We assume now ¢; = ¢, € N for s < j hoping to show a contradiction.
Then there exist v;, vs € C?", such that

Vonti—i = Van—i @ (vi) C Vapt1—j = Von—; ® (74 (v;)) and
Vs=Veu1®(vs) C Vi1 C Vi=Vim1 & (i (vs)).

Thus,

(53) Van—i = Vi C (my(vs)) ™.
Since
by € Vo C Viyy = Vi = Vi 0 {my (0 © (e (o)),

we have

w(m(vs),vi) = w(my (vs), 74 (v5)) = w(vs, 74 () = 0.

So
(54) (vi) C (mp(vs))
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On the other hand,
Von—i = Vit = Vi n{my(ve))*

= Van—iy1 N {74 (0s))" = (Van—i ® (i) N (m4(v5)) "
= Vop—i ®(vi) = Van—it1
by (44) and (45). That contradicts Va,—; # Vapn—ir1. We have proved
c; # ¢s for all s < j.
(b) We will assume that ¢; = ¢5 for j < s < i and see what happens. Then
Con+1—s € N and there exists 1 <t < 2n+ 1 — s such that ¢; = copy1—s-

By assumptions, t satisfies 1 < t < 2n + 1 — 4. Then there exist wy,
vs € C" satisfying

Vici @ <Ut> C Vap—i C V2n—s+1 =Vop_s® <7T+(vt)>

and
Ve=Vio1®(vs) C Vi=Vio1 @ (m4(vs)).
Thus,
(55) Van—s = Vi C (vs)™
Since

v € Vapoi = Vim = Vi N (e (05))F C (e (0s))7,

K2

we have
w(my(ve),vs) = w(mg(ve), 74 (vs))
= w(v,my(vs)) = 0.
So
(56) (7 (00)) C (vs)™
On the other hand

Vonos = ‘/SJ_ :V;Jll ﬁ<’U5 >J—
= ‘/2n—s+l N <Us >J_
= (Van—s ® (s (ve)) N (w5 )+
= ‘/277,—5 SY <7T+(Ut)> = ‘/2n—s+l
by (46) and (47). That contradicts Vap—s # Van—si1.
Therefore cgn11—j = cant1—i € N if ¢; = ¢; € N by induction. O

Definition 4.3.3 (Generalized clan). We call a clan satisfying the condition in
Proposition 4.3.2 a generalized clan for Sp(p,q). We denote the set of generalized
clans for Sp(p, q) by C(Sp(p,q)):

C(Sp(p,q)) = {7 € C(U(2p,2q))

iy=~and i+j#2n+1
lf CiZngN '

Example 4.3.4. The set C

—~

Sp(1,1)) consists of four generalized clans:

+ - -+, -+ + -
1122, 1212/
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Example 4.3.5. The set C(Sp(2,1)) consists of nine generalized clans:

+ 4+ - — 4, -+ -+, -+ 4 -
+ 11224+, 1 +12+2, 11+4+ 22
+ 12124+, 1 +21+2, 12+4+12

We recall the definition of clans in [6] in order to compare our notion of gener-
alized clans.

Definition 4.3.6. [6] A clan for Sp(p,q) is an equivalence class of ordered sets

(c1 -+ ¢p) of n symbols satisfying the following six conditions.

1. For 1 <4 <n, asymbol ¢ is +, —, a, or @ for a € N.

2. If ¢; = a € N, then there exists a unique j # ¢ with ¢; =a and ¢ #a for
all .

3. If ¢; =@ for a € N, then there exists a unique j # 7 with ¢; =a and ¢ #a
for all t¢.

4. The difference between numbers of + and — in clans (¢; -+ ¢,) coincides
with half of the difference of signatures of the Hermitian form defining the
group Gr:

#ilc=+t—##{ilca=-}t=p-q

5. If ¢ =a or @ for a > 1, then there exist some j such that ¢; =a —1 or

a—1.

6. Two ordered sets (¢; -+- ¢,) and (¢] --- ¢,) are regarded as equivalent if
and only if there exists a permutation o € &,, with m := max{ ¢} € N } such
that

o(a) ifc,=a€N
)+ if ¢ = +
‘=Y - if ¢ = —
o(a) if ¢, =a (a €N)
forl1 <i<n.

For example, (211 + 2—-)=(122 4+ 1 —) as a clan.

The following one-to-one correspondence exists between clans for Sp(p,q) and
generalized clans for Sp(p,q). A clan (¢} --- ¢,,) corresponds to a generalized clan
(c1 -+ c2,) satisfying the following four conditions for 1 <1i,j < n:

If ¢, = +, then (¢, cany1-4) = (+,+).
If Cé = —, then (Ci702n+1_i) = (—, —)
If ¢, = c} € N, then ¢; = ¢; € N and ¢op41-i = cant1—-j € N.

4. If ¢ = c} =, then ¢; = cont1—; € N and ¢; = cap41—5 € N.

For example, a clan (1 2 2 + 1) corresponds to a generalized clan

(122 4+ 31 + 443).

W N =

Therefore C(Sp(p, q)) is a parametrization of K-orbits in X by [6, Theorem 4.1].

Corollary 4.3.7. Generalized clans in C(Sp(p, q)) parametrize K -orbits in the flag
variety X wvia the correspondence in Proposition 2.2.6.

Notation 4.3.8. For each generalized clan v, let @), be the K-orbit in the flag variety
X corresponding to v via the parametrization of Corollary 4.3.7.
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4.3-2. Representatives of Sp(p, C) x Sp(q, C)-orbits in Sp(n,C)/B. We will give
an element g € G such that the flag x = gB corresponds to a generalized clan v €
C(Sp(p,q)) and the flag © = gBam in X corresponds to the clan v € C(U(2p, 2q)).

Definition 4.3.9 (Symmetric signed clan). A symmetric signed clan v4 =
(di -+ dan) of a generalized clan v = (¢1 --- cay) is a signed clan (in Defini-
tion 2.2.9) of the clan v satisfying the following condition. If ¢; = ¢; = a € N,
then we have copq1—j = cony1—i = b € N. We can assume min(4,2n+1—1) <
min(j,2n + 1 — 7). Then

(57) (di;dj) = (ay,a-) and (dant1—j; dons1-i) = (b—,b4).
Example 4.3.10. The symmetric signed clan of y= (121 4+ 32 + 43 4)is
’}/+ = (1+ 2+ 1_ + 3_ 2_ + 4_ 3+ 4+)

Corollary 4.3.11. In a symmetric signed clan v+ = (d1 -+ dan), the signature
of d; is equal to the signature of dopt1—; for 1 <i < 2n.

In this section, we call a skew symmetric signed clan just a clan.
We give a representative g € G of Q.

Theorem 4.3.12. For v € C(Sp(p,q)) and the signed clan v+ = (d1 -+ dan) of
v, fiz two permutations o € &, such that

1<d"(i) <p if the signature of d; is plus,
p+1<0"() <n if the signature of d; is minus,
and o' € Gy, such that

if the signature of d; is plus or d; = —, then
2n+1—-0"(1) if n<i,

and if d; = a— and dj = ay for some a € N, then

o) = {a”(z‘) if j<n,

2n+1—-0"(1) if n<j.

The matriz g(v) = (g1 g2 -+ g2n) € Mat(2n,2n) is a representative of @, i.e.,
Q= Kg(v)B. Here g; € V are column vectors defined as follows:

o If C; = :|:, then gi = €57(3)-

o If (¢i,cj) = (ay,a—) for some a € N, then

1 ——=(—€or(i) + €or(y) i J<n<i,
gi = —=(ex(i) T €or(jy) and gj = 1\/5 )

V2 E(—eal(i) + €51 (5)) otherwise.
Proof. The permutation o’ satisfies the conditions (52) of ¢ in Proposition 4.1.2.
Thus, g(7) is a representative of Karr-orbit Q~arir, i.e., Qyarir = Karg(y)Bar,
and g(v) € G. Therefore, we have

Qy=Kg(v)B. O
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Example 4.3.13. For a signed clan
’y+:(1+2+—1_ + 3_ 2_ + 4_ —3+4+),

for example, if we choose

then o' is

LENN

, (123
T=\1 2 6 10 9 7 11 12

Remark 4.3.14. The representation g(v) is real and orthogonal:

5 6 7 8 9 10 11 12
3 8 5 '

g~ ="g(~).

4.4. M-O graph of Sp(p,q). We define an oriented graph which has generalized
clans as vertices and in which an edge is labeled by i for some 1 < i < n. We can
read off closure relations from the graph.

Definition 4.4.1. Let T'(Sp(p, ¢)) be the set of all triples (v,7',i) with v,7" €
C(Sp(p,q)) and 1 < i < n, satisfying one of the following two conditions.

1. (v,v,4) € T'(U(2p,2q)). (This case happens only if i = n.)

2. There exists a clan v € C(U(2p, 2q)) such that

{(,"9), (v",7,2n —4)} CT(U(2p,20)).

By Theorem 2.2.14 and Remark 3.3.4, we have the following proposition.

Proposition 4.4.2. If (v,~,i) € T'(Sp(p,q)), then
Ti(Qy) = mi(Qy).
Proposition 4.4.3. If (v,',1) € T(Sp(p,q)), then
dim@Qy =dim@, —1

and

Kg(v)B C Kg(y')B.
Proof. By [6], if (v,7',1) € T'(Sp(p, q)), then we have
dim @, =dim Q@ +1

and

Kg(y)B C Kg(y')B, or Kg(v)B C Kg(v)B.
If i = n, then (v,v',n) € T(U(2p, 2q)). Therefore

Kamg(v)Bam C Kamg(y)Bamn and Kang(y)Baim ¢ K aig(v) Bai-

Thus, we have Kg(v)B C Kg(v')B.
If ¢ # n, then both of (v,7”,i) and (v”,7,2n — i) are elements of I'(U(2p, 2q))
for some v € C(U(2p,2q)). By the same argument of the case of i =n, Kg(y)B C

Kg(y")B. Therefore dim @, = dim Q- — 1 for all (v,~',%) € T'(Sp(p, q)). O

Although the definition of the following graph follows [6], we use generalized clans
instead of clans as vertices.
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+H——++ +—t+—+ —++++—
NN Y } Dy (Sp(2, 1)
+1122+ 11++22
YN } La(Sp(2, 1)
+1212+ 1+12+2 I'(Sp(2,1))
N } a(Sp(2, 1))
1+21+2
| } Pu(Sp(2,1)
124++12
FIGURE 3

Definition 4.4.4 (M-O graph of Sp(p,q)). Let
Co(Sp(p, q)) = C(Sp(p,q)) N Co(U(2p,2q)) :

Co(Sp(p,q)) ={(c1...cn) €C(Sp(p,q))|ci ¢ Nforall 1 <i<n}.

We give subsets I, (Sp(p, q)) of T'(Sp(p, ¢)) and subsets C,,(Sp(p, q)) of C(Sp(p,q))
for m > 1 by induction as follows:

Lo (Sp(p, @) == { (v',7,1) € T'(Sp(p, @) |7 € Cona1(Sp(p; ) },
Cm(Sp(p,q)) :=={~v € C(Sp(p,q)) | (', 7,1) € T (Sp(p,q)) } -

The M-O graph with generalized clans of Sp(p,q) is a finite oriented graph whose
vertices are generalized clans in C(Sp(p, q)) and whose oriented edges are

T(Sp(p, ) = |J Tw(Sp(p,9)) -
meN

Example 4.4.5. The I'(Sp(2,1)) is as Figure 3.
Remark 4.4.6. If (v,~',7) € T'(Sp(p, q)), then
71'1'(627) = Wi(Q'y’) and dlInQV +1 = dimQV/.

4.5. Dimensions of Sp(p,C) x Sp(¢, C)-orbits in Sp(n, C). In this section we
will give a dimension formula of K-orbits for generalized clans. We defined the
length £c(v) of a generalized clan in Definition 3.4.1

1
éc(v):5(((7)+#{t€N|cS:ct€N and s<n<t<2n+1-s}).

Proposition 4.5.1. If v € Cp(Sp(p,q)), then Lc(y) =m.

Proof. We prove the proposition by induction on m. Let v = (¢1 ... cap).
L If v € Co(Sp(p,q)), then Lc(y) = 0.
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2. Suppose (c(y') = j, if + € C;j(Sp(p,q)). For v € Cj+1(Sp(p,q)), there
exists 7' = (¢} ...c5,) € C;j(Sp(p,q)) such that (v',v,4) € I'(Sp(p,q)) for
some 1.

(a) If i=mn, then £(y)=4(y)+1, and

#{teNjes=¢, €N and s<n<t<2n+1l-s}—#{n+1}
=#{teN|c,=c,e N and s<n<t<2n+1-s}
So, le(v') =j+ 1.
(b) If i # n, then there exists a clan v” € C(U(2p, 2q)) such that
(7", 1), (7", 7,2n — i) e T(U(2p, 29)).

So, we have

and
#{teN|cs=¢ €N and s<n<t<2n+1-s}
=#{teN|cd,=c,eN and s<n<t<2n+1-s}

Therefore {c(y) = j + 1.
So, lc(y) =m if v € Cpn(Sp(p,q)) for all m € N. O

A generalized clan
=(12 --- (2 — - = 2p—=1) (2 -+ 563412
7= (2p) (2p—1) (2p) )

2p 2n—4p 2p

corresponds to the open orbit and

to(v) = 2pq.
Since the dimension of a closed orbit is p? + g2, we have the following dimension
formulas.

Proposition 4.5.2. For v € C(Sp(p,q)), we have the dimension and the codimen-
sion of Q= Kg(6)B C X:

dim@Q, = flo(v)+p*+¢,
codim@, = 2pg—~Lc(y).
4.6. Images of the moment map. We have
(Ad(g(M)e™)Np = (Ad(g(7)) - (bxir N 9)) N (parr N g)
= (Ad(g(7)) - bain) Npam) N g,

and elements X in g satisfy

—Xont1—j2n+1-i if 1<i,j<mn or n+1<i,j<2n,

" Xont1—j,2n+1—4 if i<n<j or j<n<i,

Since we gave the image (Ad(g) - baj;) N pamr of the moment map y in Propo-
sition 2.5.2 with g := gami(7y) in Proposition 4.1.2 and ¢ := ¢’ in Theorem 4.3.12,
we get the following proposition.
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Proposition 4.6.1. For a generalized clan v = (c1 -+ capn) € C(Sp(p,q)), fix a
o’ € Ga, given as in Theorem 4.3.12. Let the representative g := g(v) be given as
in Theorem 4.3.12, and v = gB € Q. We can read off u(TéwX)m from a vector
subspace Dri(8) of g.

(TS, X ). = Ad(”) - Dri(y)
={0'Y'%'|Y € Dri(y)}
={Yo11),...00-1(n) | Y € Dri(7)}.

Here, Dri(7) is the subspace of Dri(vy.), the driving space of the signed clan v for
U(2p,2q) in Definition 2.5.1, defined as follows:

Dri(y) := Dri(y4)NAd(e’ ™) g
= {Y €Dri(v4+) | Y satisfies the following two conditions }.

1. If 1<0'(i),0'(j),<nor n+1<0'(i),0'(j) < 2n, then
Yii=—Yont1j2ntr1-
2. If /(i) <n<d'(j) or o'(j) <n<d'(i), then
Yii=Yont1—jont1-i-
We call the space Dri(vy) the driving space of the generalized clan v € C(Sp(p, q)).

Proof. For the signed clan vy = (dy --- day) and the permutation ¢’ in Theo-
rem 4.3.12 and a representative gami(v+,0’) in Proposition 4.1.2, we have

g=g(vy,0") - diag(er --- e2n).

Here,
o -1 if (d;,dj) = (a—,ay) for i <n <y,

)1 otherwise.

So,
(Ad(9)bagy) Npam

= (Ad(g(v+,0"))(Ad(diag(e1 .. . €24)) - bxypr) N pa

= (Ad(g(7+,0")) - b)) N P
Therefore, pu(T¢y X)z = Ad(o”) - Dri(y) is as above. O

Corollary 4.6.2. For the representative g(7y) of Q~ given as in Theorem 4.3.12,
we have the following equation.
Dri(y) = Ad(o’"")(Ad(g(7))-b)Np
= { A ),....orn) | A € (Ad(g(y)) - b)) Np ).

Since g(7v) = (exr(1)---€or(2n)) = 0’ if a generalized clan vy corresponds to a
closed orbit, we have the following lemma.

Lemma 4.6.3. If a generalized clan ~ is an element of Co(Sp(p,q)), then
Dri(y) = b4 N (Ad(g(7) ™) - p)-

Definition 4.6.4 (Driving matrix). For a generalized clan v € C(Sp(p,q)), let
Y(v) and Y(y,m), 1 < m < 8 be elements of FF @ Mat(2n,2n) satisfying the
following conditions. Let v+ = (d1 - day).
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1 if j<i<2n+1-—j
0 otherwise.
0 if (di,d;) = (+,+) or (—,—),
Y (v,1)i; otherwise.
3. If (ds,d) = (ag,a_) or (a—,ay) for s < t, then
o Y(7,3)sr, =0 if 1<k <s,
Y (7, 3)kays = Y (7,310, =0 if s < ko <t
o YV(7,3)kst =0 if t<ks<2n,

L. Y('% 1)ij = {

2. Y(7,2)i5 =

for all @ € N and Y (7, 3);; = Y (v, 2),; otherwise.

Remark 4.6.5. If Y (v,3);; =1, then the following conditions are satisfied.
(a) j<i<2n+1—j (soj<n).
(b) (diﬂdj) = (a+,b+), (a—7b+)7 (a+7+)7 (a+,—), (a—7+)7 (a_,—), (+7a+)7
(—,a4), (+,-), or (—,+) for some a, b € N, a #b.
(¢) If i+ j =2n+1, then (di,d;) = (a4,bs) for some a, b € N, a # b.
(d) If d; =+ or —, then ¢/(i) < nif i <n, o'(i) >nif i>n.
(e) If d; = a4, then di, = a_ for some j < k < 4, Then n < o’(k) < o' (7).
(f) If d; = a—, then dy = a4 for some j < k < i. Then o’(k) < o’ (i) < n.
(g) If dj = + or —, then ¢/(j) < n.
(h) If d; = ay, then di, = a_ for j < k < i. Then o'(j), o'(k) < n.

4. I8Y (7, 3)i2ns1-i = 1, (dis dont1-i) = (a4, by), and (dj, dont1—5) = (a—,b-),
for some a, be 1\I7 then Y(774)i72n+1—i = 0,

(Y(v,4)iznt1-j, Y7 4)j2n41-3 )

(Yi2nt1—jsYiznt1—5) if 2n41—75 <,
0,0) if j<2m41—

and Y(’}/,4)i/j/ = Y(’}/, 3)1'/3‘/ otherwise (i/,j/).
5 Y (y,4)i; =1,1+7 # 2n+1, (d;,d;) = (a4,b4), and (dy, d;) = (a—,b_) for
some a, b € N, then Y (v,5);; =0,
(Y(,5)a, Y(7,5)2nt1-12n41-i ) = (Wi, var),
and
(=ya, —ya) if k<,
Y (,5)k, Y(,5)2n+1-j2n+1—j ) = .
(Y(7,5)ki> Y (7,5)2n+1—j.2n41-5 ) Wengns) 1<k,

and Y (v,5)ijy = Y (v,4)y; otherwise.
6. IfY(v,5)i; =1, (di,d;j) = (a—,by) and (dg,d;) = (a4, b-) for some a, b € N,
then

( Y(%G)ip Y(7a6)2n+1—j,2n+1—i ) = (yijv_yij)a

Y (7, 6)s Y (7, 6)oms1tome1 i ) = .
(Y (%, 6)rt, Y(7,6)2nt1-1.2n41-k ) {(ym,—ym) i<k,

and Y (v,6)y 57 = Y (7,5)y; otherwise.
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7. 1Y (y,6)i; =1, (di, dj) = (a4, +) or (d;,d;) = (a—,—), di, = a— or d, = a4,
for some a € N, then Y(v,7);; =0,

(ykja _ykj) if U/(k) S n,
(Y (%, Drgs Y0, Dant1-j2nt1-k ) = :
: T (vrj i) 10 (k) >,
and Y (v, 7)yj = Y (7,6)y; otherwise.
8. If Y(v,7)i; = 1, (di,d;) = (+,a4), and di = a— for some a € N, then
Y(7,8)i =0,

(Yik, —yir) if o’ (i) < m,
Y 78 1k Y ,8 nt+1— ntl—i ) = ) ]
(Y(7,8)ik (7, 8)2n+1-k2n+1-i ) {(yikayik) if o' (i) >,

and Y (v, 8)ij =Y (v, 7)y; otherwise.
9. If Y(v,8);; =1, then

(yij, —vi5) ifo'(3) <mn,
(Y(V)ijs Y(V2nt1-j2n+1-i ) = e
J I (Yij» Yij) if o’(i) > n,

and Y (v)yj = Y (v,8)ir; for other (¢, j).

We call Y () the driving matriz of v (for Sp(p, q)).
By the same arguments of Proposition 2.5.8, we get the following proposition.

Proposition 4.6.6. For a generalized clan v € C(Sp(p,q)), the driving space
Dri(vy) for Sp(p,q) and the driving matriz Y (y) of v for Sp(p,q) satisfy the fol-
lowing condition.

Dri(y) ={Y(7) [yi; € C for 1<i,j<2nj}.

By Proposition 4.6.1 and Proposition 4.6.6, we got the following theorem which
means we can read off u(7¢ X), from the driving matrix Y (7).

Theorem 4.6.7. For a generalized clan v € C(Sp(p,q)), fix a ¢/ € Gay, given as
in Theorem 4.8.12. Let the representative g := g(vy) be given as in Theorem 4.3.12,
and x = gB € Q. We can read off u(TéwX)z from the driving matriz Y (vy) for
Sp(p, q) as follows:

T, X)ze = {Y (V) (o-1(1).....002(2n)) | Y15 €C for 1<i,j<2n}.

4.7. Signed Young diagrams. In this section, after we recall a parametrization
of nilpotent K-orbits in p, we give tables of signed Young diagrams for the clans of
Sp(1,1), Sp(2,1), and Sp(2,2) by way of examples.

Nilpotent K-orbits in p are parametrized by signed Young diagrams of signature
(2p, 2q) satistying the following conditions.

1. If m € N is even, then the number of rows of which the length are m and
which are labeled 4 in the first column is equal to the number of rows of
which the length are m and which are labeled — in the first column.
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2. If m € N is odd, the number of rows of which the length are m and which
are labeled + in the first column is even.

3. If m € N is odd, the number of rows of which the length are m and which
are labeled — in the first column is even.

For an element A of an orbit, the signed Young diagram of the orbit satisfies

ZDJ»)Jr = dim(ker(A4’|y,)) and ZDj>_ = dim(ker(A%|y.)).
j=1 j=1

Proposition 4.7.1. Under the conditions of Theorem 4.5.12, we put

—1
_:_ = O'I V+ = (60/—1(1) .. .601—1(271))‘/4_

= (€or-1(1)1-+ 1 €or=1(p) B (€or—1(pr2g1)r -+ > €071 (2n))>
V=0 TV = (egri1) - Cor1(am)) Ve
= (eor-1pr1) s €01 (pr2g))-
By the same argument of the case of U(2p, 2¢), we have the following proposition.
Proposition 4.7.2. Let Y (v)? = I,,. We have the following equations:
Dy =dimp{@d€ FRcV,.|Y(y)a=0}—-dimp{dc Foc V. |Y(y)'ta=0},
D;_ =dimp{be Foc V' |Y(7)b=0}—dimp{be Foc V' |Y(y) 'b=0}.
At last we give tables of signed Young diagrams for the clans of Sp(1,1) in
Example 4.7.3, Sp(2, 1) in Example 4.7.4, Sp(2,2) in Example 4.7.5, and a subgraph

of T'(Sp(2,2)) in Figure 4 (which has edges (v,~',¢) such that the first signature of
the clan v = (¢y ... cs) is plus, i.e., ¢, = + for

m=min{j|c; =+ or —}

and the corresponding signed Young diagrams). In Figure 4, clans and signed
Young diagrams are separated by dots. A clan and its signed Young diagram are
in the same component. In Figure 4,

(+——++——+) - (114+-——+22)
instead of

(+——++——+) L~ (11-++-22) €T(Sp(2,2)).
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FIGURE 4
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Example 4.7.3. This is the table of the case of Gr = Sp(1,1).

clan a representative g(7) driving matrix sign.ed Young
of K-orbit Y(v) diagram
1 0 0 0 0 0 0 0
4+ — —+ 0 1 0 0 Y21 0 0 O
0 0 1 0 Y31 0 0 0
0 0 0 1 0 Y31—y21 0
0 1 0 0 0 0 0 0
- 1 0 0 0 Y21 0 0 0 =
0 0 0 1 ¥st 0 0 O —|+
0 0 1 0 0 Y31—y21 0
% B 0 0 0 0 0 O
1122 Vs 00 0 0 0 0
0 0 \/LE \/LE Ya2 0 0 O
0 0 7575 0 Y42 0 0O
75 0 j/—% 0 0 0 0 0
1212 % 0 7 O 00 0 0
0 ;—% 0 \/% 0 0 0 O =
0 5 0 U5 0 0 0 0 s
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Example 4.7.4. This is the table of the case of Gr = Sp(2,1).

. . . signed
clan a representatlYe g(v) driving matrix Young
of K-orbit Y(7) diagram
1 0 0 0 0 0 00 0 0 0 0
++-——++ 01 0 0 0 0 00 0 0 0 0
00 1 0 0 0 Ysiys2 0 0 0 0
00 0 1 0 0 Yarga2 0 0 0 0
00 0 0 1 0 0 0 Yi2—ys2 0 O
00 0 0 0 1 0 0 Yii—ys1 0 0O
1 0 0 0 0 0 00 0 0 0 0
+—-++—+ 00 1 0 0 0 2.0 0 0 0 0
o 1 0 0 0 ©0 0 Y2 0 0 0 O +|—[+
0 0 0 0 1 0 0 ¥a2 0 0 0 0 il ol
00 0 1 0 0 Ys1 0 Ya2—ys2 0 O
00 0 0 0 1 0 ¥51 0 0 —y21 0
1 0 0 0 0 0 00 0 0 0 0
+1122+ 0 %525 0 0 0 00 0 0 0 0
0 %5 0 0 0 ¥aa 0 0 0 0 O
0 0 0 77 O Yo Yss 0 0 0 0
0 0 0 7375 O 0 0 %3 0 0 0
00 0 0 0 1 0 0 Yai—ys1 0 O
01 0 0 0 0 00 0 0 0 0
— 4+ ++- 00 1 0 0 0 Y21. 0 0 0 0 0
1 0 0 0 0 0 Y310 0 0 0 0
00 0 0 0 1 a1 0 0 0 0 0
00 0 1 0 0 Y51 0 0 0 0 0
00 0 0 1 0 0 Vsl Ya1—yzi—y21 O +|=
—+
+
75 A 0 0 0 0 00 0 0 0 0 EN
11++22 00 1 0 0 0 00 0 0 0 0
% 7 0 0 0 0 0 ¥32 0 0 0 O
00 0 0 U5 U5 0 v42 0 0 0 0
0O 0 0O 1 0 O Y62 0 Ya2—y32 0 O
0 0 0 755 0 ¥2 0 0 0 0
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Example 4.7.5. This is the table of Gr = Sp(2,2).

403

clan s1gn§d Young clan s1gnf3d Young
diagram diagram
+-—+-——+—-+ 11232344
—+—++-—+- 12213443
+-—++-——+ 12132434
—tt——t+- 12231443 i_
11+-——+22 R 12314234 :i
11—++-22 —|+=l+ 12324143
+-1122—+ 12341234
—+1122+- 12342143
11223344 +12--12+
12123434 —124++12-
- - ==+ 1—2++1-2 +;
+11--22+ 142—-—-1+2 +
_|_
1+41-—2+2 12+——+12 =
+1-12-2+ i 12—++-12 —
=+
+-1212—+ = 12334412
1+-12-+2 -
+1-21-2+ ]
+
1+-21-+2 -+
bttt 12343412 +
-114++22- -
1—1++2-2 =
—1+12+2- =
— _|_ —
-—+1212+- |+
_|_
1—+12+-2 -
—1+21+4+2-
1—-+21+-2
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