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THE ENVELOPING ALGEBRA OF THE LIE

SUPERALGEBRA osp(1, 2r)

IAN M. MUSSON

Abstract. Let g be the Lie superalgebra osp(1, 2r) and U(g) the enveloping
algebra of g.

In this paper we obtain a description of the set of primitive ideals PrimU(g)
as an ordered set. We also obtain the multiplicities of composition factors of
Verma modules over U(g), and of simple highest weight modules forU(g) when
regarded as a U(g0)-module by restriction.

0.1. Let g = g0 ⊕ g1 be a finite dimensional complex classical simple Lie super-
algebra. In [M1] we showed that any primitive ideal in U(g) is the annihilator of

a simple highest weight module L̃(λ), (see 0.2–0.5 for notation). To complete the
description of the set of primitive ideals PrimU(g), it is necessary to say when two

modules L̃(λ), L̃(µ) have the same annihilator. For Lie superalgebras of Type I,
this was done in [L2] using a bijection between PrimU(g0) and PrimU(g). However
this bijection does not preserve inclusions.

In this paper we study the case where g = osp(1, 2r) and obtain a description
of Prim U(g) as an ordered set. We also obtain the multiplicities of composition

factor of Verma modules over U(g), and of L̃(λ) when regarded as a U(g0)-module
by restriction.

The orthosymplectic Lie superalgebra osp(V, β) may be defined as the Lie super-
algebra of all linear operators on a Z2-graded vector space V preserving a nonde-
generate even bilinear supersymmetric form β. We refer to [K1, 2.1.2] or [Sch, II.
4.3.A, page 129] for more details. In [M3] we give an alternative construction for
g = osp(1, 2r) using the rth Weyl algebra. This leads to a construction of an analog
of the Joseph ideal in U(g).

There are several related reasons why we might expect U(g) to be structurally
similar to U(g0) when g = osp(1, 2r). For example the Harish-Chandra map yields
an isomorphism Z(g) ' S(h)W , all weights in h∗ are typical, and all finite dimen-
sional modules are completely reducible. The results of this paper tend to confirm
this expectation.

Some of the proofs in this paper work for Lie superalgebras other than osp(1, 2r).
For example most results hold for typical representations of s`(r, 1). In order to
state our results in greater detail, we introduce some notation.
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0.2. Weights and Roots. Basic classical simple Lie superalgebras are defined
in [K2, Section 1]. In [K1, 2.5] these algebras are called contragredient Lie su-
peralgebras. Let g = g0 ⊕ g1, be a basic classical simple Lie superalgebra, and
h a Cartan subalgebra of g. We denote the set of roots of gi with respect to
h by ∆i for i = 0, 1. Let α1, . . . , αn be a basis of simple roots for g and set
Q =

∑n
i=1 Zαi, Q+ =

∑n
i=1 Nαi and ∆+

i = ∆i ∩ Q+ for i = 0, 1. Also set

∆
+

0 = {α ∈ ∆+
0 |α/2 6∈ ∆+

1 }, and ∆
+

1 = {α ∈ ∆+
1 |2α 6∈ ∆+

0 }. If α, β ∈ h∗, we write
α ≤ β if β − α ∈ Q+.

We fix an even nondegenerate g-invariant bilinear form ( , ) on g. As in [Sch,
II.3.2], the restriction of ( , ) to h is nondegenerate. Thus for λ ∈ h∗, there exists
a unique element hλ ∈ h such that λ(h) = (hλ, h) for all h ∈ h. If λ, µ ∈ h∗, we set
(λ, µ) = (hλ, hµ).

Let h′ be a Cartan subalgebra of the semisimple Lie algebra [g0, g0] and β1, . . . , βr
the unique basis of simple roots of [g0, g0] contained in ∆+

0 . We set

Q0 =

r∑
i=1

Zβi, Q+
0 =

r∑
i=1

Nβi.

Let ω1, . . . , ωr ∈ (h′)∗ be the fundamental dominant weights defined by (ωi, β
v
j )

= δij . If g0 is semisimple we set

P0 =

r∑
i=1

Zωi, P+
0 =

r∑
i=1

Nωi.

Otherwise h = (h′) ⊕ Cz where Cz is the center of g0 and we identify (h′)∗ with
(Cz)⊥. There is a nonzero element α ∈ h∗, unique up to scalar, such that (α, βi) = 0
for i = 1, . . . , r. In this case we set

P0 = Cα+

r∑
i=1

Zωi, P+
0 = Cα+

r∑
i=1

Nωi.

In addition P0 = {λ ∈ h∗|(λ, βvi ) ∈ Z for i = 1, . . . , r}. If M is a U(g)-module,
and α ∈ h∗, we set

Mα = {m ∈M |hm = α(h)m for all h ∈ h}.

0.3. Verma Modules and Primitive Ideals. The choice of a basis of simple
roots determines a triangular decomposition g = n− ⊕ h ⊕ n+, [M1, Lemma 1.4].

Set b = h ⊕ n+. For all λ ∈ h∗ the Verma modules M̃(λ),M(λ) are defined as

in [M1, 1.1]. These modules have unique graded simple factor modules L̃(λ) and

L(λ). We set J(λ) = annU(g) L̃(λ) and I(λ) = annU(g0) L(λ). Note that L(λ) is

finite dimensional if and only if λ ∈ P+
0 .

In the study of Verma modules for U(g0) it is convenient to consider the category

O of modules defined in [J1, 1.10]. As in [M1, 1.1] we also consider the category Õ
of graded U(g)-modules which belong to the category O when regarded as U(g0)-
modules by restriction. The Grothendieck groups of these categories are denoted

by C(O) and C(Õ). If M is an object of O, we denote the character of M by chM ,
see [J1, 1.11].



THE ENVELOPING ALGEBRA OF THE LIE SUPERALGEBRA osp(1, 2r) 407

0.4. Centers. The centers of U(g) and U(g0) are denoted by Z(g) and Z(g0)

respectively. The action of Z(g) on M̃(λ) determines the central character χλ and
we set mλ = kerχλ. We define the central character χ0

λ of Z(g0) in a similar way,
and set m0

λ = kerχ0
λ.

For λ ∈ h∗ and M a g0-module, we set

M〈λ〉 = {v ∈M | for all z ∈ Z(g0), (z − χ0
λ(z))nv = 0, for n� 0}.

Similarly if M is a g-module, we set

M(λ) = {v ∈M | for all z ∈ Z(g), (z − χλ(z))nv = 0, for n� 0},
and let Õλ be the full subcategory of the category Õ consisting of modules M such
that M = M(λ).

0.5. The Weyl Group. Set ρ0 = 1
2

∑
β∈∆+

0
β, ρ1 = 1

2

∑
β∈∆+

1
β and ρ = ρ0 − ρ1.

We say that λ ∈ h∗ is typical if (λ + ρ, α) 6= 0 for all α ∈ ∆
+

1 , g-regular if
(λ + ρ, α) 6= 0 for all α ∈ ∆+

0 and g0-regular if (λ + ρ0, α) 6= 0 for all α ∈ ∆+
0 . If

α ∈ ∆+
0 ∪ (∆+

1 \∆
+

1 ), we set αv = α/(α, α), and write sα for the reflection in the
hyperplane orthogonal to α.

We define translated actions of the Weyl group W on h∗ by

w . λ = w(λ + ρ)− ρ

w ◦ λ = w(λ+ ρ0)− ρ0

for w ∈ W and λ ∈ h∗.
By [M2, Lemma 2.3] W acts on the set Γ of sums of distinct odd positive roots

by the rule
w ∗ γ = ρ1 + wγ − wρ1.

These actions are related by

w ◦ (λ− γ) = w.λ − w ∗ γ
and

w.(λ + γ) = w ◦ λ+ w ∗ γ.
For λ ∈ h∗, let ∆(λ) be the subroot system of ∆0 given by

∆(λ) = {α ∈ ∆0|(λ, αv) ∈ Z}
and set Wλ = {w ∈W |wλ− λ ∈ Q0} the Weyl group of ∆(λ).

There is a unique basis Bλ of ∆(λ) contained in Q+
0 . The sets ∆(λ),Wλ and Bλ

depend only on the coset Λ = λ + P0 and we denote them also by ∆(Λ),WΛ, BΛ.
For a coset Λ ∈ h∗/P0 we set

Λ+ = {λ ∈ Λ|(λ+ ρ, αv) ≥ 0 for all α ∈ BΛ}
and

Λ++ = {λ ∈ Λ|(λ+ ρ, αv) > 0 for all α ∈ BΛ}.
In addition Λ+

0 and Λ++
0 are defined in the same way by replacing ρ with ρ0. We

define
Xλ = {J(w.λ)|w ∈ Wλ}

and
X 0
λ = {I(w ◦ λ)|w ∈Wλ}.

For λ ∈ h∗, we set B0
λ = {α ∈ Bλ|(λ+ρ0, α) = 0}, B̃0

λ = {α ∈ Bλ|(λ+ρ, α) = 0}
and W 0

λ = {w ∈ Wλ|w.λ = λ}. For w ∈W we define τΛ(w) = {α ∈ BΛ|wα < 0}.
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0.6. The main results of this paper are as follows

Theorem A. Let g = osp(1, 2r). If λ ∈ Λ++, µ ∈ Λ++
0 and w1, w2,∈Wλ, then

|M̃(w1.λ) : L̃(w2.λ)| = |M(w1 ◦ µ) : L(w2 ◦ µ)|.
Theorem B. With the same hypotheses as in Theorem A

J(w1.λ) ⊆ J(w2.λ)

if and only if

I(w1 ◦ µ) ⊆ I(w2 ◦ µ).

A consideration of central characters shows that if J(λ) ⊆ J(µ), then λ ∈ W.µ.
Therefore to describe PrimU(g) as a poset we have to describe combinatorically
the relation between elements w1, w2 of the Weyl group determined by the inclusion
J(w1.λ) ⊆ J(w2.λ) for all λ ∈ Λ+. Theorem 4.3 allows us to assume that w1, w2 ∈
WΛ. For regular λ, the resulting relation on Weyl group elements is given by
Theorem B, since the structure of the poset PrimU(g0) is known.

For g arbitrary classical simple, there is a version of the translation princi-
ple which implies that in order to describe the poset Xλ and the multiplicities

|M̃(w1.λ) : L̃(w2.λ)| for λ regular and typical, we can assume that λ is sufficiently
far from the walls of the Weyl chamber. To make this precise we say that a state-
ment depending on λ ∈ h∗ holds for all λ sufficiently far from the walls if there is
a positive constant c, such that the statement is true for all λ with |(λ, βi)| > c for
i = 1, . . . r.

By some ring theoretic arguments given in 4.1, in order to relate PrimU(g0) to
PrimU(g), it is enough to study the effect of restriction and induction on simple
highest weight modules. When the highest weight is sufficiently far from the walls,
the structure of these modules is particularly simple (see Lemmas 3.4 and 3.6).

In addition the description of Xλ in the singular case can be obtained from
the description in the regular case using the translation principle. The proof of the
translation principle is an easy adaptation of the corresponding result for semisimple
Lie algebras. Brief details are given in Section 1.

We note that although Theorem B suggests a strong resemblance between
PrimU(g0) and PrimU(g), there are significant differences in the singular cases.
To illustrate these we describe PrimU(g) in detail when g = osp(1, 4).

To show that Theorem A gives the multiplicities of all composition factors of

Verma modules in the regular case, we must show that |M̃(λ) : L̃(µ)| 6= 0 implies
µ ∈ Wλ.λ (see Corollary 2.8). This is done using the Jantzen filtration on Verma
modules. The multiplicities in the singular case can then be obtained from the
translation principle. In addition we describe all homomorphisms between Verma
modules.

0.7. When g = osp(1, 2r), the main differences with the Lie algebra case are
consequences of the following result.

Lemma. If λ ∈ h∗ and α ∈ B̃0
λ, then α/2 is not a root.

Proof. The hypotheses mean that (λ, αv) ∈ Z and (λ + ρ, αv) = 0. However using
[M2, 0.3], it is easy to see that if α/2 is a root, then (ρ, αv) ∈ (1/2) + Z.
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1. The Translation Principle

1.1. Necessary and sufficient conditions for L̃(λ) to be finite dimensional are given

in [K1, Theorem 8]. Note that if L̃(λ) is finite dimensional, then so too is L(λ)

and hence λ ∈ P+
0 . However if λ ∈ P+

0 , then L̃(λ) is finite dimensional if and only
if some additional conditions hold. An examination of these conditions, stated in
[K1, Theorem 8], shows that they are automatically satisfied if λ is sufficiently far
from the walls. Hence we deduce the following result.

Lemma. There exists a nonempty W -invariant open subset U of h∗ such that λ is

typical and L̃(λ) is finite dimensional if and only if λ ∈ P+
0 ∩ U .

If λ ∈ P0 ∩ U , we denote by V (λ) the unique finite dimensional simple module
with highest weight contained in W (P+

0 ∩ U).

1.2. Suppose λ, µ ∈ h∗ are typical and λ−µ ∈ P ∩U . We define T µ
λ : Õλ :−→ Õµ

to be the exact functor given by T µ
λ (M) = (M ⊗ V (µ− λ))(µ).

Since T µ
λ is exact, it induces a homomorphism from C(Õλ) to C(Õµ), also denoted

by T µ
λ .

We can use the following lemma to weaken the condition on λ − µ in the last
definition.

Lemma. If λ ∈ Λ++ and µ ∈ Λ+, then there exists ν ∈ Λ++ such that λ − ν and
ν − µ belong to P0 ∩ U .

Proof. Since U is a nonempty open set, and µ+ P0 is Zariski dense, we have

(µ+ P0) ∩ (µ+ U) ∩ (λ− U) 6= ∅.

Thus there exists x ∈ P0 ∩ U such that ν = µ + x satisfies the conditions of the
lemma.

In the situation of the lemma we define T µ
λ : C(Õλ) −→ C(Õµ) and T λ

µ :

C(Õµ) −→ C(Õλ) by T µ
λ = T µ

ν T
ν
λ and T λ

µ = T λ
ν T

ν
µ . As in [J1, Theorem 2.10],

we can show these maps are well defined.

1.3. The main results on the functors T µ
λ now follow with the same proofs as [J1]

and [J2].

Theorem. If λ ∈ Λ++, µ ∈ Λ+ and λ, µ are typical, then for all w ∈Wλ, we have

(1) T µ
λ M̃(w.λ) ∼= M̃(w.µ),

(2) T µ
λ L̃(w.λ) ∼=

{
L̃(w.µ) if B̃0

µ ⊆ τΛ(w)
0 otherwise,

(3) chT λ
µ M̃(w.µ) =

∑
w1∈W 0

µ

chM̃(ww1.λ).

Proof. This follows as in [J1, 2.10, 2.11 and 2.17], see also [J2, 4.12 (2), (3) and
4.13 (1)].

1.4. For λ ∈ h∗ typical, we set X̂λ = {AnnM |M ∈ Õλ}. If T µ
λ is defined, there

is a map T µ
λ : X̂λ −→ X̂µ given by T µ

λ (AnnM) = Ann T µ
λM (see [J2, Lemma 5.4]).

Fix Λ ∈ h∗/P and λ ∈ Λ++. As in [J2, Satz 5.7] there is a well defined map τΛ
from Xλ onto the power set of BΛ such that τΛ(J(w.λ)) = τΛ(w).
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Theorem. Let Λ ∈ h∗/P , and suppose λ ∈ Λ++ and µ ∈ Λ+ are typical. Then
there is an isomorphism of ordered sets

φ : {I ∈ Xλ|B̃0
µ ⊆ τΛ(I)} g−→ Xµ.

If w ∈Wλ and if B̃0
µ ⊆ τΛ(w), then φ(J(w.λ)) = J(w.µ).

Proof. By Lemma 1.2, there exists ν ∈ Λ++ such that the functors T ν
λ and T µ

ν are
defined. The proof of [J2, Theorem 5.8] then shows that the map I −→ T µ

ν T
ν
λ I is an

isomorphism between the ordered sets. The last statement follows from Theorem
1.3(2).

2. The Structure of Verma Modules

2.1. If g is a semisimple Lie algebra, several important properties of the Verma
modules M(λ) depend on the fact that U(n−) is a domain. For classical Lie su-
peralgebras the analog of this result is false in general. However it remains true
for g = osp(1, 2r). In fact it follows from [AL] that U(g) is a domain in this case.
We provide another proof that U(n−) is a domain for g = osp(1, 2r), which gives
additional information.

Theorem. If g = osp(1, 2r), then U(n−) is an iterated Ore extension.

Proof. For each β ∈ ∆+, let e−β span the one-dimensional vector space g−β. Let
α1, . . . , αr be the basis for the positive roots given in [M2, 0.3]. If α =

∑
kiαi ∈ ∆+

set ht(α) =
∑
ki. Next if α ∈ ∆+

0 , set h(α) = ht(α) and if α ∈ ∆+
1 , h(α) = h(2α).

Note that if α, β are distinct odd roots, then h(α) 6= h(β). It follows that if α, β
and α+ β ∈ ∆+ with α 6= β, then

h(α+ β) > min{h(α), h(β)}.
Now order the roots in ∆

+

0 ∪∆+
1 as β1, . . . , βs in such a way that i ≤ j implies that

h(βi) ≥ h(βj). For 1 ≤ i ≤ s set

ni = span{e−βj |j ≤ i, βj ∈ ∆
+

0 }
∪ {e−βj , e−2βj |j ≤ i, βj ∈ ∆+

1 }.
We claim that each ni is a subalgebra of n and that ni−1 is an ideal in ni. To see
this, suppose that α and β are roots such that e−α ∈ ni−1 and e−β ∈ ni. Then
h(α) = h(βj), h(β) = h(βk), where j ≤ i − 1, k ≤ i. Hence

min{h(α), h(β)} ≥ h(βi).

It follows that if α + β is a root, then h(α + β) = h(βl) with l ≤ i − 1 and hence
[e−α, e−β] ∈ ni−1. This shows that [ni−1, ni] ⊆ ni−1 and a similar argument shows
that [ni, ni] ⊆ ni. There are now two cases depending on whether βi is even or odd.

If βi is odd, we have e2−βi = e−2βi up to a nonzero scalar multiple. Also if x is a

homogeneous element of U(ni−1), we have

e−βix = σ(x)e−βi + δ(x)

where σ(x) = (−1)degxx and δ = ade−βi . By the PBW theorem, monomials in
e−βi are linearly independent over U(ni−1) and hence U(ni) is an Ore extension of

U(ni−1). The case where βi ∈ ∆
+

0 is easier and left to the reader.
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2.2. For the remainder of this section we assume that g = osp(1, 2r).

Corollary. For λ, µ ∈ h∗

a) M̃(λ) has a unique minimal nonzero submodule.

b) Homg(M̃(µ), M̃(λ)) has dimension ≤ 1 over C.

c) Every nonzero element of Homg(M̃(µ), M̃(λ)) is injective.

Proof. Since U(n−) is a domain, the same proofs as in [D, 7.6.3 and 7.6.6] work.

2.3. It follows from Corollary 2.2 that if Homg(M̃(µ), M̃(λ)) 6= 0, then M̃(µ) is

uniquely embedded in M̃(λ) up to scalar. As in [D, 7.6.7] we write M̃(µ) ⊆ M̃(λ) in

this situation. When this occurs M̃(µ) and M̃(λ) have the same central character,
so we have µ = w.λ for some w ∈W .

2.4. Let ζ : U(g) −→ U(h) be the projection relative to the decomposition U(g) =
U(h)⊕ (n−U(g)+U(g)n+). Let x −→ tx be the antiautomorphism of U(g) defined
in [M1, 3.2]. We consider the bilinear form F on U(n−) given by

F (x, y) = ζ(txy) for x, y ∈ U(g).

Let Fη denote the restriction of F to a bilinear form on U(n−)−η. We view
U(h) as the algebra of polynomial functions on h∗. Then for λ ∈ h∗, Fη(λ) can be

interpreted as the bilinear form on M̃(λ)λ−η given by

Fη(λ)(xvλ, yvλ) = ζ(txy)(λ)

for x, y ∈ U(n−)−η.
Now let T be an indeterminate and consider the Verma module M̃(λ̃) over g⊗C

C[T ] with highest weight λ̃ = λ + Tρ. We obtain as above a C[T ]-valued bilinear

form Fη(λ̃) on the C[T ]-weight spaces M̃(λ̃)λ−η. Then we set

M̃n(λ̃) = {u ∈ M̃(λ̃)|Fη(λ̃)(u, M̃(λ̃)) ⊆ (T n)}
and let M̃n(λ) be the image of M̃n(λ̃) obtained by reducing mod T . Note that as

in [J1, Satz 5.2], M̃1(λ) is the unique maximal proper submodule of M̃(λ).
As usual, if η ∈ Q+, a partition of η is a map π : ∆+ → N such that π(α) = 0

or 1 for all α ∈ ∆+
1 and ∑

α∈∆+

π(α)α = η.

We denote by P(η) the set of partitions of η, and for α ∈ ∆+
1 we define

Pα(η) = {π ∈ P(η)|π(α) = 0}.
Set p(η) = |P(η)| and pα(η) = |Pα(η)|. Fix an ordering on the set |∆+|, and for
π ∈ P(η), let e−π =

∏
−α∈∆+ eα, the product being taken with respect to this

order.

Theorem. Up to a nonzero constant factor

detFη =
∏

α∈∆
+
0

∞∏
r=1

(hα + ρ(hα)− r
(α, α)

2
)p(η−rα)

∏
α∈∆+

1

∞∏
r=1

r odd

(hα + ρ(hα)− r
(α, α)

2
)p(η−rα).
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2.5. Theorem 2.4 is stated incorrectly in [K2] and [Jak, Theorem 2.4]. For this
reason we make some brief comments on the proof. The only place where the proof
differs significantly from the proof of [KK, Theorem 1] is in the computation of the
leading term. We remark that the correct formula for all basic classical simple Lie
superalgebras is stated in [K3].

Lemma. Up to a nonzero constant factor, the leading term of detFη is∏
α∈∆

+
0

∞∏
r=1

hp(η−rα)
α

∏
α∈∆+

1

∞∏
r=1

r odd

hp(η−rη)α .

Proof. U(n−)−η has basis {e−π|π ∈ P(η)}, and as in [S, Lemma 4] the leading term
is ∏

π∈P(η)

∏
α∈∆+

hπ(α)
α .

If α ∈ ∆
+

0 , it follows, as in [S, Lemma 4] again, that the multiplicity of hα is∑∞
r=1 p(η − rα). If α ∈ ∆+

1 , then β = 2α ∈ ∆+
0 , and the multiplicity of hα is∑

π∈P(η)

π(α) + π(β) =
∑

π∈Pα(η)

π(β) +
∑

π∈Pα(η−α)

(1 + π(β)).

The first sum here is equal to

∞∑
r=1

r(pα(η − rβ) − pα(η − (r + 1)β)) =

∞∑
r=1

pα(η − rβ).

The second term equals

pα(η − α) +

∞∑
r=1

pα(η − α− rβ).

Using the fact that

p(η) = pα(η) + pα(η − α)

this shows that the multiplicity of hα in the leading term of detFη is

∞∑
r=1

pα(η − rα) =

∞∑
r=1

r odd

p(η − rα).

2.6. Theorem. For all λ ∈ h∗∑
n>0

chM̃n(λ) =
∑

α∈∆
+
0 (λ)

chM̃(sα.λ) +
∑

α∈∆+
1 (λ)

chM̃(sα.λ)

where

∆
+

0 (λ) = {α ∈ ∆
+

0 |(λ+ ρ, αv) ∈ N\{0}},
∆+

1 (λ) = {α ∈ ∆+
1 |(λ+ ρ, αv) ∈ 1 + 2N}.

Proof. By [J1, Lemma 5.1]∑
n>0

dim M̃n(λ)λ−η = vT (detFη(λ̃))
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where vT denotes the T -adic valuation. Note that

vT (hα + ρ(hα)− r(α, α)/2)(λ̃) =

{
1 if (λ + ρ, αv) = r,
0 otherwise.

Hence∑
n>0

chM̃n(λ) =
∑
n>0

∑
η

dim M̃n(λ)eλ−η

=
∑

α∈∆
+
0 (λ)

p(η + sα.λ− λ)eλ−η +
∑

α∈∆+
1 (λ)

p(η + sα.λ− λ)eλ−η

=
∑

α∈∆
+
0 (λ)

p(η)esα.λ−η +
∑

α∈∆+
1 (λ)

p(η)esα.λ−η

=
∑

α∈∆
0
+(λ)

chM̃(sα.λ) +
∑

α∈∆1
+(λ)

chM̃(sα.λ).

2.7. Theorem 2.6 motivates the following definitions, c.f. [J1, 2.19]. Suppose that

λ, µ ∈ h∗. We write µ ↑′ λ to mean that µ = sα.λ for some α ∈ ∆
+

0 (λ) ∪ ∆+
1 (λ)

and µ ↑ λ if there exist µ0, µ1, . . . , µt such that µi−1 ↑′ µi for i = 1, . . . , t;µ0 = µ
and µt = λ.

Theorem. For λ, µ ∈ h∗, the following are equivalent.

(1) Homg(M̃(µ), M̃(λ)) 6= 0,

(2) |M̃(λ) : L̃(µ)| 6= 0,
(3) µ ↑ λ.

Proof. The implication (1) ⇒ (2) is clear and (2) ⇒ (3) follows as in [J1, 5.3] using
Theorem 2.6. Finally (3) ⇒ (1) follows as in [D, Lemma 7.6.13].

2.8. Corollary. If |M̃(λ) : L̃(µ)| 6= 0, then µ ∈Wλ.λ.

Proof. We can assume that µ = sα.λ where α ∈ ∆
+

0 (λ) or α ∈ ∆+
1 (λ). In the first

case (ρ, αv) ∈ Z and hence (λ, αv) ∈ Z, while in the second case (ρ, αv) ∈ 1 + 2N
and again (λ, αv) ∈ Z. Thus in both cases sα ∈Wλ.

3. Restriction and Induction

3.1. Set R = U(g0) and S = U(g). In order to relate PrimR and PrimS, we study
the behaviour of highest weight modules under restriction and induction. It is

shown in [M2, Theorem 3.2] that if g is classical simple, then as an R-module M̃(λ)
has a finite filtration whose factors are Verma modules M(λ− γ), with γ ∈ Γ. For
the induced module we have a slightly weaker result. For γ ∈ Γ, we define K(γ) ∈ N
through ∏

β∈∆+
1

(1 + eβ) =
∑
γ∈Γ

K(γ)eγ .

Lemma. There is an equality of characters

ch(S ⊗RM(λ)) =
∑
γ∈Γ

K(γ)chM̃(λ+ γ).
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Proof. We have

S ⊗R M(λ) ∼= Λg1 ⊗CM(λ)

as g0-modules, where g0 acts on Λg1 by the adjoint representation. Since

chM(λ) = eλ
∏

α∈∆+
0

(1− e−α)−1

it follows that

ch(S ⊗R M(λ)) =
∏

β∈∆+
1

(1 + eβ)(1 + e−β)chM(λ)

=
∑
γ∈Γ

K(γ)eλ+γ
∏

β∈∆+
1

(1 + e−β)
∏

α∈∆+
0

(1− e−α)−1

=
∑
γ∈Γ

K(γ)chM̃(λ+ γ).

3.2. Let g = osp(1, 2r). In this case S ⊗R M(λ) is very often a direct sum of
Verma modules. To show this we need a preliminary result.

Lemma. Let g = osp(1, 2r). If I is any nonzero left ideal of U(n−), then I ∩
U(n−0 ) 6= 0.

Proof. Let C be the set of nonzero elements of U(n−0 ). Since U(n−) is a domain,
elements of C are nonzero-divisors in U(n−). By the proof of [B, Theorem 1, page
20] C is an Ore set in U(n−) and D = U(n−)C is artinian. It follows that D is a
division ring. Since IC−1 is a left ideal of D, the result follows.

It is shown in [M2, Theorem 3.6], that if λ ∈ h∗ and all the central characters

χ0
λ−γ , γ ∈ Γ are distinct, then as an R-module M̃(λ) = ⊕γ∈ΓM(λ − γ). We next

prove a companion result for induced Verma modules.

Proposition. If the central characters χλ+γ , γ ∈ Γ are distinct, then

S ⊗RM(λ) ∼=
⊕
γ∈Γ

M̃(λ + γ).

Proof. If Mγ = (S ⊗R M(λ))(λ+γ), then by hypothesis and Lemma 3.1,

(S ⊗RM(λ)) ∼=
⊕

Mγ and chMγ = chM̃(λ+ γ).

Thus Mγ contains a highest weight vector v of weight λ + γ and there is a homo-

morphism of U(g)-modules φ : M̃(λ + γ) −→ U(g)v ⊆ Mγ . We can identify Kerφ
with a left ideal I of U(n−). If I 6= 0, then by the above lemma, I ∩ U(n−0 ) 6= 0,
and then v would be a torsion element of Mγ as a left U(n−0 )-module. However by
[J1, Satz 2.2], S⊗RM(λ) has a finite series of U(g0)-submodules whose factors are
Verma modules, so S ⊗RM(λ) is torsion free as a U(n−0 )-module. This shows that
Kerφ = 0, and the equality of characters implies that φ has image Mγ .
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3.3. Let g = osp(1, 2r). It is shown in [M2, Theorem 3.6] that if λ ∈ h∗, then λ
is g-regular if and only if the central characters χ0

λ+γ , with γ ∈ Γ are all distinct.
There is a corresponding result for g0-regularity.

Lemma. If λ ∈ h∗, then λ is g0-regular if and only if the central characters χλ+γ ,
with γ ∈ Γ are all distinct.

Proof. Recall that the central characters χλ are related to the Harish Chandra map
ψ : Z(g) −→ S(h)W by the equation

χλ(z) = ψ(z)(λ+ ρ)

for z ∈ Z(g) and λ ∈ h∗.
Suppose first that (λ+ ρ0, α) = 0, for some α ∈ ∆+

0 . By [M2, Lemma 3.8], there
exist distinct elements γ, γ′ of Γ such that sα ∗ γ = γ′. As in [M2, Proposition 3.9],
it follows that

χλ+γ(z) = ψ(z)(λ+ γ + ρ)

= ψ(z)(sα(λ+ γ + ρ))

= ψ(z)(λ+ γ′ + ρ)

= χλ+γ′(z).

Thus χλ+γ = χλ+γ′ .
Conversely, suppose that γ and γ′ are distinct elements of Γ such that χλ+γ =

χλ+γ′ . Then w(λ + ρ + γ) = λ + ρ + γ′ for some w ∈ W . If µ = −(λ + ρ), then
w(µ−γ) = µ−γ′, so by [M2, Lemma 3.10], (µ−ρ1, α) = 0 for some α ∈ ∆0. Hence
(λ+ ρ0, α) = 0, so λ is not g0-regular.

Remark. If g = s`(r, 1) and λ is such that λ + γ is typical for all γ ∈ Γ, then λ
is g0-regular if and only if all the central characters χλ+γ are distinct. The proof
is the same as Lemma 3.3, except that we use [M2, Remark 3.11] in place of [M2,
Lemma 3.10].

3.4. To make further progress, we need to make additional hypotheses. For the
remainder of Section 3 we assume that g = osp(1, 2r) or s`(r, 1). Note that this
implies that K(γ) = 1 for all γ ∈ Γ.

Lemma. Suppose that λ is typical and sufficiently far from the walls, then as a
U(g0)-module

L̃(λ) =
⊕
γ∈Γ

L(λ− γ).

Proof. We may assume that (λ + ρ, α) 6= 0 for all α ∈ ∆+
0 . Then by [M2, Lemma

3.7 and Corollary 3.11]

M̃(λ) =
⊕
γ∈Γ

M(λ− γ)

as a U(g0)-module.

Thus L̃(λ) =
⊕

γ∈Γ L̃(λ)〈λ−γ〉 and L̃(λ)〈λ−γ〉 is a factor module of M(λ − γ).

On the other hand we may construct a nondegenerate contravariant form ( , ) on

L̃(λ) as in [J1, Satz 1.6]. By [J1, Satz 1.13e)] L̃(λ)〈λ−γ〉 is orthogonal to L̃(λ)〈λ−γ′〉
if γ 6= γ′. It follows that the restriction of ( , ) to the U(g0)-module L̃(λ)〈λ−γ〉
is nondegenerate. Thus L̃(λ)〈λ−γ〉 is either zero or isomorphic to L(λ − γ) by [J1,
Satz 1.6].
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If L̃(λ)〈λ−γ〉 = 0, then the highest weight vector for the U(g0)-submodule

M(λ − γ) of M̃(λ) must belong to M̃1(λ). By Theorem 2.6, this implies that
λ− γ ≤ sα.λ for some α, and hence γ ≥ (λ+ ρ, αv)α, and this is not possible for λ
sufficiently far from the walls.

3.5. We require some properties of the Grothendieck group C(Õλ) which are en-
tirely analogous to those of the Lie algebra case. For λ g-regular, the group

C(Õλ) is free abelian on the classes of the modules M̃(w.λ) for w ∈ W . Since

|M̃(λ) : L̃(µ)| 6= 0 implies that µ ≤ λ, and |M̃(λ) : L̃(λ)| = 1 it follows that the

classes of the modules L̃(w.λ) also form a basis for C(Õλ). If M ∈ Õλ, and if in

C(Õλ) we have

M =
∑
w∈W

bwL̃(w.λ)

with bw ∈ Z, then we set

(L̃(w.λ) : M) = bw.

The matrix (L̃(w.λ) : M̃(y.λ)) is clearly the inverse of the matrix

|M̃(y.λ) : L̃(w.λ)|.
Lemma. Assume that λ is typical and sufficiently far from the walls. Then

|M̃(y.λ) : L̃(w.λ)| = |M(y ◦ λ) : L(w ◦ λ)|
and

(L̃(y.λ) : M̃(w.λ)) = (L(y ◦ λ) : M(w ◦ λ))
for all y, w ∈ W .

Proof. In the Grothendieck group C(Õλ) we can write

M̃(y.λ) =
∑

by,wL̃(w.λ).

Note that w ◦ λ = w.λ − w ∗ 0. Thus

L̃(w.λ)〈λ〉 = L̃(w.λ)〈w◦λ〉
= L(w.λ − w ∗ 0)

= L(w ◦ λ)
where the second equality follows from Lemma 3.4. Similarly M̃(y.λ)〈λ〉 =
M(y ◦ λ). Therefore

M(y ◦ λ) =
∑

by,wL(w ◦ λ).
This proves the first statement, and the second now follows easily.

3.6. Lemma. Assume that λ is typical and sufficiently far from the walls. Then

(S ⊗R L(λ)) ∼=
⊕
γ∈Γ

L̃(λ+ γ).

Proof. In the group C(Oλ) we can write

L(λ) =
∑
w

bwM(w ◦ λ).

Hence

(S ⊗R L(λ)) =
⊕

(S ⊗R L(λ))(λ+γ)
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where by Lemma 3.1

(S ⊗R L(λ))(λ+γ) =
∑
w

bw(S ⊗R M(w ◦ λ))(λ+γ)

=
∑
w,γ′

bwM̃(w ◦ λ+ w ∗ γ′)(λ+γ)

=
∑
w

bwM̃(w.(λ + γ)).

However bw = (L̃(λ) : M̃(w.λ)) = (L̃(λ + γ) : M̃(w.(λ + γ)) using Lemma 3.5 for
the first equality, and Theorem 1.3 for the second.

Thus in C(Õλ+γ), we have

(S ⊗R L(λ))(λ+γ) = L̃(λ+ γ).

Since L̃(λ + γ) is irreducible, it follows that (S ⊗R L(λ))(λ+γ) and L̃(λ + γ) are
isomorphic.

3.7. Theorem A follows easily by combining Lemma 3.5 with the translation prin-
ciples for U(g) and U(g0). Suppose that λ ∈ Λ++, µ ∈ Λ++

0 , and that ν ∈ Λ++ is
sufficiently far from the walls. Then

|M̃(w1.λ) : L̃(w2.λ)| = |M̃(w1.ν) : L̃(w2.ν)|
= |M(w1 ◦ ν) : L(w2 ◦ ν)|
= |M(w1 ◦ µ) : L(w2 ◦ µ)|.

3.8. Suppose that Λ ∈ h∗/P and µ ∈ Λ++
0 . Define matrices (aw,y), (by,w) by

M(y ◦ µ) =
∑

w∈WΛ

by,wL(w ◦ µ),

L(w ◦ µ) =
∑

w∈WΛ

aw,yM(y ◦ µ).

By [BB] or [BK], the multiplicities by,w are given by the Kazhdan-Lusztig con-
jecture. From [J1, 2.10a), 2.11], we have for ν ∈ Λ+

0

M(y ◦ ν) =
∑

B0
ν⊆τΛ(w)

by,wL(w ◦ ν).

In addition if λ ∈ Λ+, and B̃0
λ ⊆ τΛ(w), then it follows from Theorem 1.3 and

Theorem A that

L̃(w.λ) =
∑
y∈WΛ

aw,yM̃(y.λ).

We now combine these results to obtain a formula for the restriction of L̃(w.λ)

to U(g0) for w ∈ Wλ. Note that by [J2, 2.7] the set {w ∈WΛ|B̃0
λ ⊆ τΛ(w)} is a left

transversal to W 0
λ in WΛ. Therefore there is no loss of generality in assuming that

B̃0
λ ⊆ τΛ(w). Every element ν ∈ Λ is conjugate under WΛ to a unique element ν of

Λ+
0 . Choose wν ∈WΛ such that

w−1
ν ◦ ν = ν.
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Theorem. If λ ∈ Λ+ and B̃0
λ ⊆ τΛ(w), then in the Grothendieck group C(O), we

have

L̃(w.λ) =
∑
γ∈Γ

∑
aw,ybywλ−γ ,vL(v ◦ (λ− γ))

where the inner sum is taken over all y, v ∈WΛ such that B0
λ−γ ⊆ τΛ(v).

Proof. Working in C(O), we have by the foregoing remarks and [M2, Theorem 3.2]

L̃(w.λ) =
∑
y∈W

aw,yM̃(y.λ)

=
∑

y∈W,γ∈Γ

aw,yM(y ◦ (λ− γ))

=
∑

y∈W,γ∈Γ

aw,yM(ywλ−γ ◦ (λ − γ))

=
∑

aw,ybywλ−γ ,vL(v ◦ (λ− γ)).

In certain circumstances the above formula can be simplified considerably.

Corollary. a) If γ ∈ Γ, and λ−γ ∈ Λ+
0 , then the term in Theorem 3.8 correspond-

ing to γ is equal to

L(w ◦ (λ − γ)) if B0
λ−γ ⊆ τΛ(w),

0 otherwise.

b) Assume that λ− γ ∈ Λ+
0 for all γ ∈ Γ, then

L̃(w.λ) =
∑

L(w ◦ (λ− γ))

where the sum is over all γ ∈ Γ such that B0
λ−γ ⊆ τΛ(w).

Proof. a) In this case we can take wλ−γ = 1.
b) This follows from a).

3.9. We show the condition in the previous corollary is satisfied for
λ ∈ Λ++.

Lemma. Suppose that α is an even root and γ ∈ Γ.

a) If α/2 is a root, then (ρ1 − γ, αv) = ±(1
2 ).

b) If α/2 is not a root, then (ρ1 − γ, αv) = ±1 or 0.

Proof. This is an easy calculation which we leave to the reader. Use the notation
of [M2, 0.3] or [K1, 2.5.4].

Corollary. If λ ∈ Λ++, then λ− γ ∈ Λ+
0 for all γ ∈ Γ.

Proof. By assumption a = (λ + ρ, αv) > 0 for all α ∈ BΛ. We must show that
b = (λ− γ + ρ0, α

v) ≥ 0. Note that b− a = (ρ1 − γ, αv). Also if α/2 is not a root,
then (ρ, αv) ∈ Z and so a ∈ Z, while if α/2 is a root, then (ρ, αv) ∈ 1

2 + Z and

a ∈ 1
2 + Z. Thus the result follows from the lemma.
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3.10. Finally we investigate the case where λ ∈ Λ+, and λ− γ 6∈ Λ+
0 .

Lemma. Suppose that λ ∈ Λ+, γ ∈ Γ, α ∈ BΛ and (λ − γ + ρ0, α
v) < 0. Then

(λ+ρ, α) = 0, (λ−γ+ρ0, α
v) = −1 and sα ◦ (λ−γ) = λ−γ′ where γ′ = γ−α ∈ Γ.

Proof. By assumption a = (λ + ρ, αv) ≥ 0 and b = (λ − γ + ρ0, α
v) < 0. As in

Corollary 3.9, this gives a = 0 and b = −1. (Note that α/2 is not a root by Lemma
0.7.) Now sα ◦ (λ − γ) = sα.λ − sα ∗ γ = λ − sα ∗ γ, and we get sα ∗ γ = γ − α,
since b = −1.

Corollary. In Theorem 3.8 we have λ− γ = λ− γ′ for some γ′ ∈ Γ.

Proof. Suppose that λ ∈ Λ+, γ ∈ Γ and choose w ∈ W such that w◦(λ−γ) = λ−γ′
with γ′ ∈ Γ, and (γ′, ρ0) minimal. We claim that λ − γ′ ∈ Λ+

0 . This follows from
the lemma, since for α ∈ BΛ, we have (γ′ − α, ρ0) < (γ′, ρ0).

4. Primitive Ideals

4.1. To describe PrimU(g), we need to relate it to PrimU(g0). To do this we
need some ring theoretic background. Suppose that R ⊆ S are Noetherian rings
such that S is free as a right R-module.

For Q ∈ SpecR we set XQ = {P ∈ SpecS|P is minimal over annS(S/SQ)}.
Note that, SQ 6= S since S is a free right R-module. Also if Q = annR L, then
annS(S/SQ) = annS(S⊗RL), by [M1, Lemma 2.5]. Finally observe that if Q,Q′ ∈
SpecR such that Q ⊆ Q′, and P ′ ∈ XQ′ , then P ⊆ P ′ for some P ∈ XQ.

Now suppose that P ∈ SpecS, and set

YP = {Q ∈ SpecR|Q is minimal over P ∩R}.
Clearly if P, P ′ ∈ SpecS are such that P ⊆ P ′ and Q′ ∈ YP ′ , then Q ⊆ Q′ for some
Q ∈ YP .

Remark. The setsXQ were introduced in [L1], where it is shown that, under suitable
hypotheses on R and S we have PrimS =

⋃
Q∈PrimRXQ. This result was crucial

in the proof of the main result of [M1], but we shall not need it in this paper.

4.2. Proof of Theorem B. Let S = U(g) and R = U(g0). We may assume that
λ ∈ Λ++ and µ ∈ Λ++

0 are sufficiently far from the walls. In particular we assume
that all the central characters χµ+γ , γ ∈ Γ are distinct, as are all the χ0

λ−γ .
Suppose first that P1 = J(w1.λ) ⊆ P2 = J(w2.λ). By Lemma 3.4 we have as

R-modules

L̃(wi.λ) =
⊕
γ∈Γ

L(wi ◦ (λ− γ)),

for i = 1, 2; and hence

YPi = {I(wi ◦ (λ − γ))|γ ∈ Γ}.
Therefore by the remarks in 4.1, I(w1 ◦ (λ − γ)) ⊆ I(w2 ◦ λ), for some γ ∈ Γ,

and a consideration of central characters forces γ to be zero. Hence by [J2, Satz
5.8], I(w1 ◦ µ) ⊆ I(w2 ◦ µ).

Conversely suppose that Q1 = I(w1 ◦ µ) ⊆ Q2 = I(w2 ◦ µ). By Lemma 3.6 we
have as S-modules

S ⊗R L(wi ◦ µ) =
⊕
γ∈Γ

L̃(wi.(µ+ γ)).
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Figure 1

Figure 2

Thus

XQi = {J(wi.(µ+ γ))|γ ∈ Γ}.
Hence by the remarks in 4.1 and consideration of central characters we obtain
J(w1.µ) ⊆ J(w2.µ). Therefore by Theorem 1.4, J(w1.λ) ⊆ J(w2.λ).

4.3. Fix Λ ∈ h∗/P0 and λ ∈ Λ++. Theorem B and Theorem 1.4 allow us to
determine when J(w1.λ) ⊆ J(w2.λ) for all w1, w2 ∈ WΛ. The next result enables
us to say when J(w1.λ) ⊆ J(w2.λ) for all w1, w2 ∈ W and to show that Xλ = Xw.λ
for all w ∈ W . As noted in [J2, 2.8], the set WΛ = {w ∈ W |w(BΛ) ⊆ R+} is a set
of left coset representatives for WΛ in W .

Theorem. For all λ ∈ Λ and all w ∈WΛ, we have J(λ) = J(w.λ).

Proof. This is shown in the same way as [J2, Satz 5.16].

5. The case where g = osp(1, 4)

5.1. If g = osp(1, 2), the description of PrimU(g) as a partially ordered set is given
in [P]. We illustrate our results in the smallest new case; that of g = osp(1, 4). An
interesting feature is that there are fewer singular cases than for g0 = sp(4). As in
[M2, 0.3] we may identify h∗ with C2 and ( , ) with the usual inner product. Then
we can take α = (0, 1) and β = (1,−1) as simple roots. We have

∆+
0 = {2α, β, 2α+ β, 2(α+ β)}

and

∆+
1 = {α, α+ β}.

In addition ρ0 = (2, 1), ρ = (1
2 )(3, 1), P = Z2 and P+ = N(1, 1) + N(1, 0). If

λ = (a, b) we have

(λ+ ρ, (2α)v) = b+ (1
2 ), (λ+ ρ, βv) = a− b+ 1

(λ+ ρ, (2α+ β)v) = a+ b+ 2, (λ+ ρ, (2α+ 2β)v) = a+ (3
2 ).

Fix Λ ∈ h∗/P . If ∆(Λ) has rank 2 and λ ∈ Λ++
0 , then by [J2, Satz 5.7 and

Anhang 5A.2] the Hasse diagram for X 0
λ is as in Figure 1.

If rank∆(Λ) ≤ 1, then X 0
λ either is a singleton or has Hasse diagram as in Figure

2.
Now suppose λ ∈ Λ+. If |Xλ| > 1, the Hasse diagram of Xλ will be as in Figure

1 or Figure 2. In each case we describe the partition of W into the subsets

Wi = {w ∈W |Pi = J(w.λ)}.
The longest element sαsβsαsβ of W is denoted by v.
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Case 1. If Λ = Z2, then BΛ = {2α, β}. For λ = (a, b) ∈ Z2, we have λ ∈ Λ++ if
and only if a− b+ 1 > 0 and b+ (1

2 ) > 0. If λ ∈ Λ++, then by Theorem B, Xλ has
Hasse diagram as in Figure 1 with

W1 = {1}, W2 = {sα, sβsα, s2α+β}
W3 = {sβ, sαsβ, sα+β}, W4 = {v}.

If λ ∈ Λ+\Λ++ then we must have B̃0
λ = {β}. This contrasts with the Lie algebra

case where we have

Λ+
0 \Λ++

0 = {λ ∈ Λ+
0 |B0

λ contains β or 2α}.
If λ ∈ Λ+\Λ++, then by Theorem 1.4, the Hasse diagram of Xλ is as in Figure 2
with W2 = {v, vsβ = s2α+β} and W1 = W\W2.

Case 2. If Λ = (1/2, 1/2)+Z2, then BΛ = {β, 2α+β}. For λ = (a, b) ∈ Λ, we have
λ ∈ Λ++ if and only if a + b + 2 > 0 and a − b + 1 > 0. We have WΛ = {1, sα}.
Therefore if λ ∈ Λ++, Theorem B and Theorem 4.3 imply that Xλ has Hasse
diagram as in Figure 1 with

W1 = WΛ, W2 = WΛsβ , W3 = WΛs2α+β , W4 = WΛv.

Now λ ∈ Λ+\Λ++ if and only if λ ∈ Λ+ and B̃0
λ contains β or 2α+β. If B̃0

λ = {γ}
with γ = β or 2α+ β, then Xλ has Hasse diagram as in Figure 2 with

W1 = WΛ{1, sγ}, W2 = WΛ{v, vsγ}.
Finally if B̃0

λ = BΛ, then λ = −ρ and hence Xλ = {J(λ)}.
Observe that Cases 1 and 2 cover all cases where ∆(Λ) has rank two.

Case 3. If ∆(Λ) has rank 1, then ∆(Λ) = {±γ} where γ ∈ ∆+
0 . For λ ∈ Λ++,Xλ

has Hasse diagram as in Figure 2 with W1 = WΛ and W2 = WΛsγ . If B̃0
λ = {γ},

then Xλ = {J(λ)}.
Case 4. Finally if ∆(Λ) = 0, then Xλ = {J(λ)}.
5.2. Let g = osp(1, 4) and retain the notation of 5.1. We describe the multiplicities

of the composition factors of L̃(w.λ) for all λ ∈ Λ+, w ∈ W . By Corollary 3.9 and

[J2, 2.7] we may assume that λ ∈ Λ+\Λ++, and B̃0
λ ⊆ τΛ(w). Let ≤ denote the

Bruhat order on WΛ. From [J1, 3.6] we can deduce that

by,w =

{
1 if y ≤ w,

0 otherwise

and

aw,y =

{
(−1)`(w)+`(y) if y ≤ w,

0 otherwise.

Case 1. If Λ = Z2 and λ ∈ Λ+\Λ++, then B̃0
λ = {β}. Set W1 = {w ∈ W |wβ < 0}

= {sβ, sαsβ , sα+β , v}. It suffices to describe L̃(w.λ) for all w ∈ W1. Now if γ ∈ Γ,
then λ − γ ∈ Λ+

0 unless γ = α + β. Also sβ ◦ (λ − (α + β)) = λ − α ∈ Λ+
0 . Hence

from 3.8–3.10 we obtain in the group C(O),

L̃(w.λ) =
∑

γ∈Γ,γ 6=α+β

B0
λ−γ⊆τΛ(w)

L(w ◦ (λ− γ)) +
∑

y,u∈WΛ

aw,ybysβ ,uL(u ◦ (λ − α)).
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We call the terms in the second sum, the extra terms. These may be found by
computing

∑
y,u∈WΛ

aw,ybysβ ,uu inside the group algebra of WΛ. Set µ = λ − α.
We find that if w = sα+β or v, the extra terms are

L(w ◦ µ) + L(wsβ ◦ µ),

while if w = sαsβ or sβ , the extra terms are

L(w ◦ µ) + L(wsβ ◦ µ) + L(wsα ◦ µ).

Case 2. If Λ = (1/2, 1/2) + Z2, we describe L̃(w.λ) for all λ ∈ Λ+, and w ∈ WΛ

such that B̃0
λ ⊆ τΛ(w). If γ ∈ Γ is such that λ− γ ∈ Λ+

0 , then the term in Theorem
3.8 corresponding to γ can be simplified using a) of Corollary 3.8. Now assume

that λ 6= −ρ. If (λ− γ+ ρ0, η
v) = 0 for η ∈ BΛ, then η ∈ B̃0

λ by Lemma 3.10, so as
λ 6= −ρ this can only happen for one such η. Also in this case sη ◦(λ−γ) = λ−sη ∗γ
and again, since λ 6= −ρ we have λ − sη ∗ γ ∈ Λ+

0 . After some computations we
find that the term in Theorem 3.8 corresponding to γ is equal to

L(w ◦ (λ− sη ∗ γ)) + L(wsη ◦ (λ− sη ∗ γ)).
Finally assume that λ = −ρ. For γ = 0 or α we have λ − γ ∈ Λ+

0 , if while
γ = α+ β, sβ ◦ (λ− γ) = λ−α ∈ Λ+

0 and if γ = 2α+ β, s2α+β ◦ (λ− γ) = λ. Using
Theorem 3.8 with w = v we obtain

L̃(λ) = L̃(v.λ) = L(λ) + L(λ− α) + 2L(λ− α− β) + 2L(λ− 2α− β).

We leave it to the reader to find formulas for L̃(w.λ) when ∆(Λ) has rank less
than two.
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