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SPHERICAL REPRESENTATIONS

AND MIXED SYMMETRIC SPACES

BERNHARD KRÖTZ, KARL-HERMANN NEEB, AND GESTUR ÓLAFSSON

Abstract. Let G/H be a symmetric space admitting a G-invariant hyper-
bolic cone field. For each such cone field we construct a local tube domain
Ξ containing G/H as a boundary component. The domain Ξ is an orbit of
an Ol’shanskii type semi group Γ. We describe the structure of the group G
and the domain Ξ. Furthermore we explore the correspondence between Γ-
modules of holomorphic sections of line bundles over Ξ and spherical highest
weight modules.

Introduction

Let (g, τ) be a real symmetric Lie algebra and g = h + q the corresponding
eigenspace decomposition for τ . We call an elementX ∈ q hyperbolic if the operator
adX is diagonalizable over R. The existence of “enough” hyperbolic elements
in q is important in many contexts. For Cartan decompositions it is crucial for
the restricted root decomposition of semisimple real Lie algebras, and hence for
the whole structure theory of these algebras. If (g, τ) is a non-compactly causal

symmetric (NCC) Lie algebra in the sense of [HÓ96], then q contains open convex
cones which are invariant under the group Inng(h) of inner automorphisms of g

generated by eadh and which consist entirely of hyperbolic elements. In the last
years this class of reductive symmetric Lie algebras and the associated symmetric
spaces have become a topic of very active research spreading in more and more
areas. For a survey of the state of the art we refer to [HÓ96] and the literature
cited there.

On the other hand there have been attempts to push this theory further to sym-
metric Lie algebras which are not necessarily semisimple or reductive. The simplest
type (called the complex type) is where g = hC is a complexification and τ is a com-
plex conjugation. Among these symmetric Lie algebras those for which h contains
an open invariant convex cone W consisting of elliptic elements play a crucial role
(cf. [Ne94a], [Ne96a], [Ne96b]). Then iW ⊆ q = ih is an open cone consisting of
hyperbolic elements so that, in the special case of reductive Lie algebras, we obtain
on the one hand the non-compactly causal spaces of complex type and, if we allow
W = h, also the Riemannian symmetric spaces coming from Cartan involutions of
complex semisimple Lie algebras. For the associated symmetric spaces of complex
type and the reductive spaces mentioned above one nowadays has a well developed
picture of the harmonic analysis (holomorphic representations: [Ne94b], [Ne95];
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spherical functions [FHÓ94], [HiNe96]; Hardy spaces [HÓØ91], [Kr97]) and the in-
variant complex analysis (invariant Stein domains and plurisubharmonic functions
[Ne96b]).

The first step in this program, i.e., the description of an appropriate class of
not necessarily reductive symmetric Lie algebras which is general enough to incor-
porate all the cases mentioned above such as the mixed complex type case, the
non-compactly causal spaces, and also the Riemannian symmetric spaces has been
carried out in [KN96], which we will use as a reference for the basic structure theory
and convex geometry of mixed, i.e., non-reductive, symmetric Lie algebras.

The next step that we carry out in this paper is the description of the structure
of the associated global objects such as complex domains which are curved analogs
of tube domains over convex cones. Furthermore we investigate the general repre-
sentation theory and explain how certain representations can be realized in spaces
of holomorphic functions on the aforementioned domains.

In Section I we collect the notation and the facts from [KN96] that we shall need
throughout this paper. In Section II we then turn to product decompositions of
the corresponding groups. These decompositions have various applications such as
integration formulas and trivializations of certain holomorphic vector bundles. In
this section many proofs consist in reducing everything to the case of reductive or

simple Lie algebras which is completely discussed in [HÓ96]. As a first application
of the decomposition theorems we explain how one can construct on certain domains
acted on by H holomorphic vector valued functions which are H-eigenfunctions for
a prescribed character. These functions play a key role in the realization theory of
spherical representations.

Section III contains the description of various semigroups related to symmet-
ric spaces. Basically these semigroups are of the type ΓH(C) = H exp(C), where
G/H is a symmetric space, and C ⊆ q is a weakly hyperbolic H-invariant cone.
Such semigroups arise naturally if G/H carries an invariant non-compactly causal

structure ([HÓ96]). On the other hand the polar decomposition of ΓH(C) is quite
similar to the Cartan decomposition of a real semisimple Lie group. We also de-
scribe a complex version of these semigroups and how they fit into the product
decompositions discussed in Section II.

To each semigroup ΓH(C) we can associate the domain Exp(C) ⊆ G/H which
should be thought of as the future of the base point. In Section IV we construct a
complex domain Ξ(C) which is the curved analog of a tube domain over the cone
C. It contains the dual symmetric space Gc/H in its boundary (it is sort of a
Shilov boundary for Ξ(C)). On the other hand it has the structure of an associated
bundle of the type Gc×H C. The key point in Section IV is to clarify the interplay
between the complex analysis of Ξ(C) and its bundle structure which is not in any
obvious way related to its complex geometry.

In Section V we explain which Hilbert spaces carrying representation of ΓH(C)
can be realized in an equivariant way as spaces of holomorphic functions on Ξ(C)
and that the corresponding representations can be characterized as spherical rep-
resentations of some sort. An important tool for these realizations is a result de-
scribing holomorphic functions on Ξ(C) as the set of all holomorphic functions on
a complex semigroup which are invariant under the group H .

In the last section we turn to irreducible spherical representations. We explain
in which sense they are highest weight representations of the dual Lie algebra
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gc = h+iq and give a necessary condition for a unitary highest weight representation
to correspond to a spherical representation.

One of the next steps in the investigation of spherical representations of mixed
symmetric spaces is to classify all irreducible spherical unitary highest weight rep-
resentations. Since this involves quite a detailed analysis of certain singular highest
weight representations and it is not even carried out for irreducible spaces, the
solution to this problem seems to be quite complicated.

Another project building on this paper will be the construction of Hardy spaces
on the domains Ξ(C) for general groups. For non-reductive groups this construction
is more involved because the symmetric space Gc/H does not always possess a Gc-
invariant measure. Nevertheless it seems possible to construct analogs of Hardy
spaces on Ξ(C).

We would like to express our gratitude to the Mittag-Leffler Institute in Djur-
sholm, Sweden for the hospitality and pleasant working atmosphere during our stay
in spring 1996 where we started working on the present paper.

I. Basic facts and definitions

In this first section we collect some material concerning symmetric Lie algebras.
Let g denote a finite dimensional real Lie algebra. An element X ∈ g is called hy-
perbolic if adX is diagonalizable over R. A convex subset C ⊆ g is called hyperbolic
if all its relative interior points are hyperbolic.

Definition I.1. (a) A symmetric Lie algebra (g, τ) is a pair consisting of a finite
dimensional Lie algebra g and an involutive automorphism τ of g. We put h :=
{X ∈ g : τ.X = X} and q := {X ∈ g : τ.X = −X}, and note that g = h⊕ q.

(b) An abelian subspace a ⊆ q is called abelian maximal hyperbolic if a consists
of hyperbolic elements and is maximal w.r.t. this property.

A subspace l ⊆ q is called a Lie triple system if [l, [l, l]] ⊆ l. This means that the
space lL := l⊕ [l, l] is a subalgebra of g. Recall that all abelian maximal hyperbolic
subspaces as well as all maximal hyperbolic Lie triple systems in q are conjugate
under Inng(h) (cf. [KN96, Cor. II.9, Th. III.3]).

(c) Let r denote the radical of g and let r = rh + rq be its τ -eigenspace decom-
position. In the following subscripts indicate intersections, for example rh := r ∩ h
etc. According to [KN96, Prop. III.5], there exists a τ -invariant Levi complement
s ⊆ g with the following properties. There exists a maximal hyperbolic Lie triple
system p ⊆ q such that p = pr ⊕ ps, where ps ⊆ sq is a maximal hyperbolic Lie
triple system in sq and [pr, s] = {0}. Then each maximal abelian subspace a ⊆ p
is of the form a = pr ⊕ as, and [pL, s] ⊆ s, where pL = p ⊕ [p, p] (cf. part (b)).
Furthermore there exists a Cartan involution θ on s commuting with ad[p, p] and
τ |s (cf. [KN96, Prop. I.5]). The corresponding Cartan decomposition is denoted
by s = sk ⊕ sp. The largest ideal of s contained in sh is denoted by siso. So the
semisimple symmetric Lie algebra (s, τ |s) decomposes as

(s, τ |s) = (siso, τ |siso)⊕
n⊕
i=1

(si, τ |si)

with (si, τ |si ) irreducible and effective.
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(d) Let a ⊆ q be an abelian maximal hyperbolic subspace. For every subalgebra
b ⊆ g we set b0 := zb(a). For α ∈ a∗ we define

gα := {X ∈ g : (∀Y ∈ a)[Y,X ] = α(Y )X}
and write ∆ := {α ∈ a∗\{0} : gα 6= {0}} for the set of roots. Then we get the root
space decomposition g = g0 ⊕⊕α∈∆ gα. For each α ∈ ∆ we put mα := dim gα.

We call a root α ∈ ∆ semisimple, resp. solvable, if sα := gα ∩ s 6= {0}, resp.
gα ⊆ r. The set of all semisimple, resp. solvable, roots is denoted by ∆s, resp. ∆r.
Note that ∆ = ∆r∪̇∆s (cf. [KN96, Lemma IV.5(i)]).

A root α ∈ ∆ is called compact if pαL 6= {0} and non-compact otherwise. We
write ∆k, ∆n, resp. ∆p, for the set of all compact, non-compact, resp. non-compact
semisimple roots. Note that ∆k is independent of the choice of p ⊇ a (cf. [KN96,
Def. V.1]) and that ∆ = ∆k∪̇∆n holds by definition.

(e) The Weyl group Wa of (g, τ) w.r.t. a is defined by

Wa := NInng(h)(a)/ZInng(h)(a).

Call X0 ∈ a regular if α(X0) 6= 0 for all α ∈ ∆. We call ∆+ ⊆ ∆ a positive system
if there exists X0 ∈ a regular such that ∆+ = {α ∈ ∆: α(X0) > 0}. A positive
system is called p-adapted if the set ∆+

n := ∆n ∩∆+ of positive non-compact roots
is invariant under the Weyl group.

(f) The symmetric Lie algebra (g, τ) is called quasihermitian if zq(z(p)) = p. In
this case a is maximal abelian in q and there exists a p-adapted positive system
∆+ (cf. [KN96, Prop. V. 10]). An irreducible effective quasihermitian symmetric
Lie algebra (g, τ) is called non-compactly Riemannian (NCR), resp. non-compactly
causal (NCC), if z(p) = {0}, resp. z(p) 6= {0}. The property of being quasihermitian
is inherited by s. This means that the irreducible constituents (si, τ |si) of s are
either (NCR) or (NCC) (cf. [KN96, Prop. V.9(v)]).

(g) Let V be a finite dimensional real vector space and V ∗ its dual. For a subset
E ⊆ V the dual cone is defined by E? := {ω ∈ V ∗ : (∀x ∈ E)ω(x) ≥ 0}. A cone
C ⊆ V is called generating if V = C − C and pointed if C ∩−C = {0}.

We associate to a positive system of non-compact roots ∆+
n the convex cones

Cmin := cone
({[Xα, τ(Xα)] : Xα ∈ gα, α ∈ ∆+

n }
)
,

Cmax := (∆+
n )? = {X ∈ a : (∀α ∈ ∆+

n )α(X) ≥ 0} and Cmax,s := (∆+
p )? ∩ as. �

Definition I.2. (a) Let (g, τ) be a symmetric Lie algebra and gC be the complex-
ification of g. We extend τ to a complex linear involution τ of gC. The c-dual
(gc, τc) of (g, τ) is defined by gc := h⊕ iq and τc := τ |gc . The complex conjugation
in gC w.r.t. the real form gc is called τ̂ . Thus the inclusion map (g, τ) ↪→ (gC, τ̂ ) is
an embedding of symmetric Lie algebras. We call (gC, τ̂) the canonical extension

of (g, τ) and write ĥ := gc and q̂ := igc for the eigenspaces of τ̂ .
(b) A finite dimensional real Lie algebra gc is called quasihermitian if (gcC, σ) is

quasihermitian, where σ denotes the complex conjugation on gC w.r.t. gc. We note
that the symmetric Lie algebra (gC, τ̂ ) considered in (a) is quasihermitian if and
only if the Lie algebra gc is quasihermitian. �

II. Product decompositions

In this section we describe certain product decompositions of open domains in
groups associated to a symmetric Lie algebra. Most of these results generalize
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decompositions which are known for the reductive case (cf. [HÓ96]). We begin
with some useful lemmas which give an idea of how to obtain certain product
decompositions of open subsets of groups.

Lemma II.1. Let n be a nilpotent Lie algebra and N be a corresponding connected
Lie group. Suppose that n = a + b for subalgebras a and b.

(i) If A and B are the analytic subgroups of N corresponding to a and b, then
N = AB.

(ii) If, in addition, b = c n d and C, D are the corresponding analytic subgroups
of N , then N = ACD.

Proof. (i) We prove the assertion by induction. For dim n = 0 there is nothing to
prove. Suppose that n 6= {0}. Then z := z(n) 6= {0}, we can apply induction to

Ñ := N/Z and obtain Ñ = ÃB̃, where Ã := AZ/Z and B̃ := BZ/Z. From this we
get N = AZBZ = AZB. Since A and B are subgroups, the lemma will follow if we
can show that Z ⊆ AB. To see this, let z ∈ Z and choose X ∈ z with z = exp(X).
Write X = X1 + X2, where X1 ∈ a and X2 ∈ b. Then [X1, X2] = [X1, X ] = 0
implies that z = exp(X) = exp(X1) exp(X2) ∈ AB.

(ii) As B = CD, this follows from (i). �

Lemma II.2. Let G be a connected Lie group with Lie algebra g and n ⊆ g be
a subalgebra for which g is a nilpotent module under the adjoint representation.
Assume further that n ∩ z(g) = {0} and put N = exp(n). Then N is closed, simply
connected and isomorphic to n under the exponential mapping.

Proof. According to our assumptions, the mapping ϕ : n → Ad(N), X 7→ eadX is
a homeomorphism. As ϕ = Ad ◦ exp |n and n is nilpotent, exp |n : n → N is a
homeomorphism onto a locally compact, hence closed subgroup of G. This proves
the lemma. �

Lemma II.3. Let G be a Lie group whose Lie algebra g can be written as the sum
of subalgebras g = a + b + c, where b normalizes c. Denote by A, B and C the
analytic subgroups corresponding to a, b and c and consider the mapping

Φ: A×B × C → G, (a, b, c) 7→ abc.

(i) The mapping Φ is a submersion; in particular, the image ABC of Φ is open
in G.

(ii) If g = a⊕ b⊕ c is a direct sum, then dΦ is everywhere bijective.

Proof. (i) Since Φ is leftA and rightC-equivariant, it suffices to prove that dΦ(1, b,1)
is surjective. For every g ∈ G we denote by λg, resp. ρg, the left, resp. right, trans-
lation by g, i.e., λg(x) = gx, resp. ρg(x) = xg, for all x ∈ G. Then the differential
is computed to

dΦ(1, b,1)(X, dλb(1).Y, Z) = dρb(1).
(
X + Ad(b).Y + Ad(b).Z

)
.

As Ad(b).b = b and Ad(b).c = c, we conclude from g = a + b + c that dΦ(1, b,1) is
surjective.

(ii) This follows from (i) by dimension counting. �
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The HAN-decomposition. Let (g, τ) be a symmetric Lie algebra. For the re-
mainder of this section we assume that the abelian maximal hyperbolic subspace
a ⊆ q is also maximal abelian in q and not only in p. For a positive system ∆+ we
define the subalgebras

n :=
∑
α∈∆+

gα and n :=
∑
α∈∆−

gα.

Then g0 = zg(a) = a⊕h0 (cf. Definition I.1(d)), so that g = h⊕a⊕n follows from the
observation that eachX ∈ g−α, α ∈ ∆+ can be written asX =

(
X+τ(X)

)−τ(X) ∈
h + n.

If not otherwise stated G denotes a simply connected Lie group with Lie algebra
g. Then τ integrates to an involution on G which is also denoted by τ . We write H
for the fixed point group of τ and recall from [Lo69, Th. 3.4] that H is connected.
Further we define A, H , H0, N , N , R and S as the analytic subgroups of G
corresponding to a, h, h0, n, n, r and s. By subscripts we indicate intersections, for
instance HR = H ∩R, NS = N ∩ S etc.

Proposition II.4 (The HAN -decomposition). For a simply connected symmetric
Lie group (G, τ) associated to (g, τ) the following assertions hold:

(i) The groups A, resp. N , are closed, simply connected and diffeomorphic to a,
resp. n, under the exponential mapping. Moreover A ∩N = {1}.

(ii) The map

Φ: H ×A×N → G, (h, a, n) 7→ han

is a diffeomorphism onto its open image.
(iii) The multiplication mapping ΦR : HR ×AR ×NR → R is a diffeomorphism.
(iv) The set HAN is R-saturated, i.e., left and right R-invariant.

Proof. (i) Since g is a nilpotent n-module and n ∩ z(g) = {0}, the statement con-
cerning N follows from Lemma II.2. For the assertion about A we choose a vector
space complement a1 in a to a0 := a ∩ z(g). Since G is simply connected, Z(G)0 is
a vector group and hence a0

∼= A0. Moreover the hyperbolicity of a together with
a1 ∩ z(g) = {0} imply that a1

∼= Ad(A1) and hence a1
∼= A1. As A = A0A1 and

A0 ∩A1 ⊆ A1 ∩ kerAd = {1} we see that A = A0 ×A1. Hence A ∼= a proving our
assertion about A.

It remains to show that A∩N = {1}. Let x ∈ A∩N and choose an appropriate
basis adapted to the root decomposition of g w.r.t. a and therefore to g = n⊕ a⊕
h0 ⊕ n. Then, since x ∈ A, Ad(x) is represented by a diagonal matrix and, since
x ∈ N , also by a unipotent matrix. Hence Ad(x) = 1 and Ad(N) ∼= n implies that
x = 1.

(ii) As the assumptions of Lemma II.3 are satisfied, dΦ is everywhere bijective
and HAN is open in G. So it remains to check that Φ is injective, which, according
to (i), will follow from H ∩AN = {1}.

Let x ∈ H ∩AN and write x = an with a ∈ A and n ∈ N . Then x ∈ H entails
that

τ(n) = τ(a−1)τ(x) = ax = a2n.

Take an element X ∈ a in the interior of the positive Weyl chamber and set at =
exp(tX) for all t ∈ R. Note that limt→∞ a−1

t nat = 1 and, moreover, since N is
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closed, if τ(n) 6= 1, then a−1
t τ(n)at leaves every compact subset of G if t tends to

infinity. So

a2 = lim
t→∞ a−1

t a2nat = lim
t→∞ a−1

t τ(n)at

entails a2 = τ(n) = 1. Finally, in view of (i), we have a = 1 and hence the assertion.
(iii) In accordance with Lemma II.3 and (ii), we only have to prove that ΦR is

onto. Let u be the nilradical of r and note that nr := n ∩ r ⊆ [a, r] ⊆ u. Since
u is τ -invariant, we get a decomposition u = hu ⊕ au ⊕ nr, where hu = h ∩ u and
au = a∩u. Thus the assumptions of Lemma II.1(ii) are satisfied, so U = HUAUNR
and finally r = r0 ⊕ [a, r] = ar + h0

r + u gives

R = UARH
0
R = HUAUNRARH

0
R ⊆ HUH

0
RARNR ⊆ HRARNR.

(iv) We only have to prove the right R-invariance of HAN because then the left
R-invariance follows from the normality of R.

In view of (iii), it suffices to show that ANHR ⊆ HAN . Let b ∈ AN and
r ∈ HR. Since brb−1 ∈ R it follows from (iii) that brb−1 = h′b′ with h′ ∈ HR and
b′ ∈ ARNR. Now the assertion follows from br = brb−1b = h′b′b ∈ HAN . �

The P+Kc
1,CP

−-decomposition. Let (g, τ) be a quasihermitian symmetric Lie
algebra, p a maximal hyperbolic Lie triple system in q, a ⊆ p a maximal abelian
subspace, and ∆+ ⊆ a∗ a p-adapted positive system of roots. We assume that
h0 = zh(a) is compactly embedded in g and recall from [KN96, Th. VIII.1(ii)] that
this implies that kc := ip+[p, p]+h0 is a maximal compactly embedded subalgebra
of gc. Further we define subalgebras of gC by

p± :=
∑
α∈∆±n

gαC, p±r :=
∑
α∈∆±r

gαC and p±s :=
∑
α∈∆±p

gαC,

and note that [kc, p±] ⊆ p± (cf. [KN96, Prop. V.4]). Thus p0 := kcC n p− is a
subalgebra of gC and we obtain a triangular decomposition gC = p+ ⊕ kcC ⊕ p−.

Let Gc be a simply connected group with Lie algebra gc, H := (Gc)τ be the
connected group of τ -fixed points in Gc, and GC ∼= (Gc)C be a simply connected
complex group with Lie algebra gC. Further we have the maximal compactly em-
bedded subgroup Kc ⊆ Gc, and the corresponding universal complexifications
cKc : Kc → Kc

C and cH : H → HC. Note that since Kc has a compact Lie al-
gebra, we can identify Kc with a subgroup of its complexification Kc

C and thus
surpress cKc . Moreover the simple connectedness of Gc implies that Kc and there-
fore also Kc

C are simply connected. Further we have the corresponding subgroups
Gc1, K

c
1, H1, K

c
1,C, H1,C ⊆ GC which are the images of the canonical morphisms

ηH : H → GC, ηHC : HC → GC, ηGc : Gc → GC, and ηK : Kc
C → GC.

The involutions τ̂ and τ integrate to involutions on GC denoted by the same
letters. As GC is simply connected, the fixed point groups Gc1 = (GC)τ̂ , H1,C =

(GC)τ , and G1 := (GC)τ̂τ are connected (cf. [Lo69, Th. 3.4]). The corresponding
Lie algebras are given by gc, hC and g. We write P0, P

±, P±R , RC and SC for the
analytic subgroups of GC associated to p0, p±, p±r , rC and sC.

Proposition II.5 (The P+Kc
1,CP

−-decomposition).

(i) The groups Kc
1,C and P± are closed subgroups of GC and P± is diffeomorphic

to p± via the exponential mapping.



SPHERICAL REPRESENTATIONS AND MIXED SYMMETRIC SPACES 431

(ii) The mapping

Ω: P+ ×Kc
1,C × P− → GC, (p+, k, p−) 7→ p+kp−

is a biholomorphic diffeomorphism onto its open image.
(iii) The multiplication mapping ΩR : P+

R × (Kc
1,C ∩ RC) × P−R → RC is a biholo-

morphism.
(iv) The image P+Kc

1,CP
− of Ω is RC-saturated.

(v) Gc1 ⊆ P+Kc
1,CP

−.

Proof. (i) First we prove that Kc
1,C is closed. Let tC ⊆ g0

C ⊆ kcC be a Cartan

subalgebra of gC containing aC. Then [Bou90, Ch. 7, §2, no. 1, Cor. 4] implies that
the corresponding analytic subgroup Kc

1,C is closed.

Since gC is a nilpotent p±-module and p± ∩ z(gC) = {0}, the assertion about P±

follows from Lemma II.2.
(ii) As the assumptions of Lemma II.3 are satisfied, the differential of Ω is ev-

erywhere bijective and the image P+Kc
1,CP

− is open. So it remains to establish

the injectivity of Ω. This means that P+ ∩ P0 = {1}, and that Kc
1,C ∩ P− = {1}.

Let X0 ∈ z(p) such that ∆+
n = {α ∈ ∆n : α(X0) > 0} (cf. [KN96, Prop. V.4]) and

define at := exp(tX0) for t ∈ R. Since X0 ∈ z(p) ⊆ a, it centralizes kcC. Furthermore

we have limt→∞ a−1
t p+at = 1 for all p+ ∈ P+ and a−1

t p−at eventually leaves every
compact set of G if p− ∈ P− \ {1} and t tends to infinity. From that we see that
P+ ∩ P0 = {1} and Kc

1,C ∩ P− = {1}.
(iii) In view of Lemma II.3 and (ii), it remains to check surjectivity. Let uC be

the nilradical of rC. Then uC = p+
r ⊕ (kcC ∩ uC) ⊕ p−r and Lemma II.1(ii) applies.

We obtain that UC = P+
R (Kc

C ∩UC)P−R and finally rC = r0C⊕ [a, rC] = (kcC ∩ rC)+ uC
yields

RC = (Kc
1,C ∩RC)UC = (Kc

1,C ∩RC)P+
R (Kc

1,C ∩ UC)P−R = P+
R (Kc

1,C ∩RC)P−R .

(iv) This follows from (iii) as in the proof of Proposition II.4(iv).
(v) In view of (iv), we may assume that (g, τ) is simple and quasihermitian. In

the case where (g, τ) is (NCR), we have P+Kc
1,CP

− = Kc
1,C = GC and we are done.

If (g, τ) is (NCC), then the assertions follow from [Hel78, p.399]. �

The H1,CKc
1,CP

−-decomposition. We keep the setup of the preceding subsection.

The direct product group HC × (P− oKc
C) acts naturally on GC by

(h, p, k).x := ηH(h)xηK(k)−1p−1

and the orbit of 1 coincides with the set H1,CKc
1,CP

−. We write

K1 := {(h, p, k) : ηH(h) = pηK(k)},
for the stabilizer of 1.

Proposition II.6 (The H1,CKc
1,CP

−-decomposition).

(i) The orbit map HC × (P− oKc
C) → GC of 1 factors to a biholomorphic map

Ψ:
(
HC × (P− oKc

C,1)
)
/K1 → H1,CK

c
1,CP

− ⊆ GC

with open and dense range H1,CKc
1,CP

−.

(ii) K1 = {(h,1, k) : ηH(h) = ηK(k)} and its Lie algebra is given by

{(X,X) : X ∈ hC ∩ kcC} ∼= (h ∩ kc)C.
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(iii) The multiplication mapping ΨR : (H1,C ∩RC)× (P0 ∩RC) → RC is surjective.
(iv) The set H1,CKc

1,CP
+ is RC-saturated.

Proof. (i) The mapping Ψ is obtained by factorization of the orbit map HC
× (P− o Kc

C,1) → GC. Thus it follows from gC = hC + kC + p− and Lemma

II.3(i) that Ψ is everywhere submersive, hence a biholomorphic map of the com-
plex homogeneous space

(
HC × (P− oKc

C,1)
)
/K1 onto an open subset of GC. The

density of the image will be proved below.
(ii) From hC∩(kC+p−) = hC∩kcC we further conclude that the Lie algebra ofK1 is

given by {(X,X) : X ∈ hC∩kcC} ∼= (h∩kc)C. We claim that H1,C∩(Kc
1,CP

−) ⊆ Kc
1,C.

Let x ∈ H1,C ∩ (Kc
1,CP

−) and write x = kp with k ∈ Kc
1,C and p ∈ P−. Then

x ∈ H1,C implies

1 = τ(x)−1x = τ(p)−1τ(k)−1kp.

Now, as τ(p)−1 ∈ P+, the uniqueness of the P+Kc
1,CP

−-decomposition entails that

p = 1 and so x = k ∈ Kc
1,C. This proves that (h, p, k) ∈ K1 implies that p = 1 and

completes the proof of (ii).
(iii) Since uC = (hC ∩ uC) + (p0 ∩ uC), Lemma II.1(ii) implies that UC =

(H1,C ∩ UC)(P0 ∩ UC). Hence the assertion follows from

RC = (H0
1,C ∩RC)UC(AC ∩RC) ⊆ (H0

1,C ∩RC)(H1,C ∩ UC)(P0 ∩ UC)(AC ∩RC)

⊆ (H1,C ∩RC)(P0 ∩RC).

(iv) This is done in the same way as the proof of Proposition II.4(iv).
It remains to prove the density of im Ψ. In view of (iv), we may assume that

(g, τ) is simple and quasihermitian. In the case where (g, τ) is (NCR), we have
H1,CKc

1,CP
+ = Kc

1,C = GC and we are done. If (g, τ) is (NCC), then the assertions

follow from [ÓØ88, Th. 2.4]. �

Constructing holomorphic H-eigenfunctions. We recall from Proposition
II.5(v) that Gc1 ⊆ P+Kc

1,CP
−. We define the domain D ⊆ p+ by exp(D)Kc

1,CP
− =

Gc1K
c
1,CP

−. Then we obtain an action of Gc on D which is given by exp(g.z) =

ζ
(
ηG(g) exp z

)
, where ζ : P+Kc

1,CP
− → P+ denotes the projection onto the first

factor. We write κ : P+Kc
1,CP

− → Kc
1,C for the projection onto the middle factor.

According to [Ne98, Prop. VIII.1.9], the stabilizer of 0 in Gc coincides with Kc,
so that D = Gc.0 ∼= Gc/Kc. This realization of Gc/Kc as an open domain in p+ is
called the generalized Harish-Chandra embedding. It clearly exhibits the complex
manifold structure on Gc/Kc.

Let us briefly recall how this is related to the symmetric Lie algebra (g, τ).
We assume that (g, τ) is a quasihermitian symmetric Lie algebra and that h0 is
compactly embedded. Then [KN96, Th. VIII.1] implies the existence of an element

X0 ∈ z(p) ⊆ z(p̂) such that α(X0) > 0 for all α ∈ ∆̂+
n . Let σ := τ τ̂ denote the

antilinear involution of gC whose fixed point set coincides with the real subalgebra
g. Then σ(X0) = X0, kc = zgc(X0) and p+ =

∑
α∈∆̂+

n
gαC imply that

σ(kcC) = kcC and σ(p±) = p±.

We conclude in particular that

g = (p+ ∩ g)⊕ (kcC ∩ g)⊕ (p− ∩ g),

where these three subspaces are real forms of p+, kcC, resp. p−.
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Our next objective is to show that the subgroup H ⊆ Gc acts transitively on
DR := D ∩ g. The following lemma prepares the proof of this fact. If ρ : h → gl(V )
is a representation of the Lie algebra h, then a subalgebra e ⊆ h is said to be

ρ-compactly embedded if the group 〈eρ(e)〉 ⊆ GL(V ) is compact.

Lemma II.7. Let ρ : h → gl(gc), X 7→ adgc X. If (g, τ) is quasihermitian and h0

is compactly embedded, then the subalgebra kc ∩h is maximal ρ-compactly embedded
in h.

Proof. First we note that the lemma is equivalent to the statement that h ∩ kc is
maximal as a compactly embedded subalgebra of g which is contained in h.

To prove this statement we first observe that if κ(X,Y ) = tr(adX adY ) denotes
the Cartan-Killing form of g, then κ is negative semidefinite on each compactly
embedded subalgebra b, and that the isotropic part of b is central in g. In fact, if
X ∈ g is elliptic, then the operator (adX)2 has non-positive real eigenvalues, hence
tr(adX)2 ≤ 0 and tr(adX)2 = 0 is equivalent to adX = 0.

In terms of the root decomposition with respect to a ⊆ p, we have

h = h0 +
∑
α∈∆+

(1 + τ).gα and pL = p0
L ⊕

∑
α∈∆k

gα.

Further our special construction of kc gives kc = h0 + [p, p] + ip, and therefore
h ∩ kc = h0 + [p, p] (cf. [KN96, Prop. V.9(iii)]). From that we obtain

h ∩ kc = h0 + [p, p] = h0 +
∑
α∈∆+

k

(1 + τ).gα.

The fact that h ∩ kc is compactly embedded in g implies that κ is negative semi-
definite on this subspace. We will show that κ is positive semidefinite on the
complementary space

h1 :=
∑
α∈∆+

n

(1 + τ).gα.

This implies the lemma because it shows that each X ∈ h1 which is a compact
element of g must be central, hence contained in h0, and therefore X = 0.

From τ(gα) = g−α and the fact that τ preserves the Killing form, it follows that
κ(gα, gβ) vanishes if α+ β 6= 0. Hence it suffices to show that

κ
(
(1 + τ).X, (1 + τ).X

) ≥ 0

for X ∈ gα, α ∈ ∆+
n . Using the fact that the spaces g±α are isotropic for κ, this

expression can be evaluated to

κ
(
(1 + τ).X, (1 + τ).X

)
= 2κ(τ.X,X)

which, in view of [KN96, Prop. IV.7], is non-negative. This proves the lemma. �

Lemma II.8. For g ∈ Gc and z ∈ D we have σ(g.z) = τ(g).σ(z). In particular σ
induces an antiholomorphic involution of the domain D ∼= Gc/Kc.

Proof. Since σ preserves all factors in the P+Kc
1,CP

−-decomposition, it follows that

σ(g.z) = log ζ
(
σ(ηG(g)) expσ(z)

)
= log ζ

(
ηG(τ.g) expσ(z)

)
= τ(g).σ(z). �
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Theorem II.9. DR = H.0.

Proof. From Lemma II.8 we conclude in particular that

H.0 ⊆ DR = {z ∈ D : σ(z) = z}.
To see that we even have equality, let z ∈ DR. Then z ∈ D ∼= Gc/Kc shows
that the isotropy group Gcz ⊆ Gc is conjugate to Kc, hence that gcz is compactly
embedded. Moreover, the fact that σ(z) = z and Lemma II.8 imply that gcz is
τ -invariant. Therefore hz = gcz ∩h is compactly embedded in gc. In view of Lemma
II.7 and [Ne98, Th. V.1.4], there exists γ ∈ Inngc(h) with γ.(gc ∩ h) ⊆ kc ∩ h = h0.
We conclude in particular that dim hz ≤ dim h0. Hence dim(H.z) ≥ dim(H.0) =
dim(p+ ∩ g) implies that H.z is open in DR. On the other hand the convexity of D
([Ne98, Lemma VIII.1.10]) implies that DR is convex, hence that DR is connected.
Therefore the partition of DR into H-orbits must be trivial, i.e., H acts transitively
on DR. �

Let

J : Gc ×D → Kc
1,C (g, z) 7→ κ

(
ηGc(g) exp(z)

)
and recall that J is a (Gc,D, Kc

1,C)-cocycle (cf. [Ne98, Lemma VIII.1.7]). Since
Gc ×D is simply connected, we obtain a lift

J̃ : Gc ×D → Kc
C

which is uniquely determined by ηK◦J̃ = J and J̃(1, 0) = 1. Further the uniqueness

of lifts implies that J̃ is a (Gc,D, Kc
C)-cocycle (cf. [Ne98, Lemma VIII.1.7]).

The direct product group HC × (P− oKc
C) acts naturally on GC by

(h, p, k).x := ηHC(h)xηK(k)−1p−1

and the open orbit of 1 coincides with the set H1,CKc
1,CP

−. According to Propo-

sition II.6(ii), the stabilizer of 1 is given by the complex group

K1 = {(h,1, k) : ηHC(h) = ηK(k)},
whose Lie algebra is isomorphic to (h ∩ kc)C. Thus

H1,CK
c
1,CP

− ∼= (HC × (P− oKc
C)
)
/K1 ∼= ((HC ×Kc

C)/K1
)× P−.

Since K1 is a complex subgroup of HC × Kc
C, we obtain complex homogeneous

spaces L := (HC ×Kc
C)/K1, L̃ := (HC ×Kc

C)/K1
0 , and H1,CKc

1,CP
− ∼= L× P− (cf.

Proposition II.6(i)), where L̃ → L, xK1
0 7→ xK1 is a covering of complex homoge-

neous spaces. We have a natural map

q : L̃→ H1,CK
c
1,C ⊆ GC, (h, k)K1

0 7→ ηHC(h)ηK(k)−1.

According to Proposition II.5.(v), Gc1 ⊆ H1,CKc
1,CP

−, and therefore

exp(D) ⊆ Gc1K
c
1,CP

− ⊆ H1,CK
c
1,CP

− ∼= L× P−.

If we assign to z ∈ D with exp(z) = ηHC(h)ηK(k)−1p and h ∈ HC, k ∈ Kc
C and p ∈

P− the element (h, k)K1 ∈ L, we thus obtain a holomorphic map γ : D → L. Since
D is convex and therefore simply connected, this map lifts to a unique holomorphic

map γ̃ : D → L̃ with γ̃(0) = [1,1].
For the following lemma we recall the homomorphism cH : H → HC.

Lemma II.10. For h ∈ H and z ∈ D we have γ̃(h.z) =
(
cH(h), J̃(h, z)

)
.γ̃(z).
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Proof. Write γ(z) = (h1, k1)K
1 with h1 ∈ HC and k1 ∈ Kc

C. We further put
h0 := ηH(h) = ηHC

(
cH(h)

)
. Then exp z ∈ ηHC(h1)ηK(k1)

−1P− shows that

exp(h.z)J(h0, z)P
− = exp(h.z)κ(h0 exp z)P− = exp(h0.z)κ(h0 exp z)P−

= ζ(h0 exp z)κ(h0 exp z)P− = h0 exp zP−

= ηHC

(
cH(h)h1

)
ηK(k1)

−1P−

and hence

exp(h.z)P− = ηHC

(
cH(h)h1

)
ηK(k1)

−1J(h0, z)
−1P−

= ηHC

(
cH(h)h1

)
ηK
(
k−1
1 J̃(h, z)−1

)
P−.

Thus

γ(h.z) =
(
cH(h)h1, J̃(h, z)k1

)
K1 =

(
cH(h), J̃(h, z)

)
(h1, k1)K

1

=
(
cH(h), J̃(h, z)

)
.γ(z).

Since the lemma holds trivially for h = 1, the connectedness of H and the unique-
ness of liftings eventually proves the assertion of the lemma. �

Let (ρ, V ) be a finite dimensional unitary representation of the group Kc which
we extend to a holomorphic representation ρ : Kc

C → GL(V ). We consider the
action of the simply connected group Gc on Hol(D, V ) given by

(g.f)(z) = Jρ(g
−1, z)−1.f(g−1.z), where Jρ := ρ ◦ J̃ .(2.1)

We are interested in a description of the space of H-eigenfunctions with respect
to this action. So we consider a continuous homomorphism χ : H → C∗ and its
holomorphic “extension” χC : HC → C∗ which is uniquely determined by χC ◦ cH =
χ. In the following theorem we will obtain a description of the eigenspace

Hol(D, V )H,χ := {f ∈ Hol(D, V ) : (∀h ∈ H)h.f = χ(h)f}
corresponding to the character χ of H . We put HK := 〈expH h ∩ kc〉.
Theorem II.11. The evaluation map

Φ: Hol(D, V )H,χ → V HK ,χ|HK , f 7→ f(0)

is a bijection.

Proof. We consider the evaluation map

Φ: Hol(D, V )H,χ → V, f 7→ f(0).

The semi-invariance of f under H with respect to the character χ means that

Jρ(h
−1, z)−1.f(h−1.z) = χ(h)f(z)

for all z ∈ D and h ∈ H which can also be written as

f(h.z) = χ(h)−1Jρ(h, z).f(z).(2.2)

For h ∈ HK this implies in particular that

f(h.z) = χ(h)−1ρ(h).f(z),(2.3)

i.e., that f : D → V is an equivariant map with respect to the action of HK on V
given by h ∗ v := χ(h)−1ρ(h).v. Thus the fact that HK fixes the origin implies that

ρ(h).f(0) = χ(h)f(0) for all h ∈ HK , hence that im Φ ⊆ Vχ := V HK ,χ|HK .
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We claim that Φ is injective. If Φ(f) = f(0) = 0, then (2.2) implies that f
vanishes on H.0 = D∩ g (cf. Theorem II.9) which, in view of p+ ∼= (p+ ∩ g)C, is the
intersection of D with a real form of p+. This shows that f vanishes, hence that Φ
is injective.

We define a holomorphic representation (ρe, V ) of the direct product group HC×
Kc

C on V by ρe(h, k) := χC(h)−1ρ(k). We consider the holomorphic orbit map

δ : HC ×Kc
C → V, (h, k) 7→ χC(h)−1ρ(k).v0

of an element v0 ∈ Vχ. Then the stabilizer of v0 is a closed complex subgroup of
HC ×Kc

C whose Lie algebra is given by

d := {(X,Y ) ∈ hC × kcC : dρ(Y ).v0 = dχC(X) · v0}.
IfX ∈ hC∩kcC, then the definition of the space Vχ implies that dρ(X).v0 = dχ(X)·v0,
hence that (X,X) ∈ d. This shows that d contains the Lie algebra of K1, so that
K1

0 is contained in the stabilizer of v0. Hence the orbit map of v0 factors to a
holomorphic (HC ×Kc

C)-equivariant map

δ̃ : L̃→ V, (h, k)K1
0 7→ χC(h)−1ρ(k).v0.

Now we obtain a holomorphic map

f : D → V, z 7→ δ̃
(
γ̃(z)

)
with f(0) = v0.

It remains to show that f ∈ Hol(D,V )H,χ. In view of Lemma II.10, we have

f(h.z) = δ̃
(
γ̃(h.z)

)
= δ̃
((
cH(h), J̃(h, z)

)
.γ̃(z)

)
= χ(h)−1Jρ(h, z).δ̃

(
γ̃(z)

)
= χ(h)−1Jρ(h, z).f(z).

This completes the proof. �

III. Ol’shanskĭı semigroups

In this section we describe certain semigroups which are naturally associated to
quasihermitian symmetric Lie algebras.

To understand the construction of these semigroups, we first have to make some
remarks on symmetric spaces locally isomorphic to a given one.

Remark III.1. (a) LetM = G/H be a symmetric space, where (G, τ) is a symmetric

Lie group and H ⊆ Gτ an open subgroup. Further let q : G̃ → G denote the
universal covering homomorphism and note that there exists a unique involution τ̃

on G̃ with q ◦ τ̃ = τ ◦ q.
Let H̃ := q−1(H) ⊆ G̃. The action of G̃ on M is transitive and therefore

M ∼= G̃/H̃. For g ∈ G̃ we put g] := τ̃(g)−1 and similarly g] = τ(g)−1 for g ∈ G. Let

Γ := {g ∈ G̃ : gg] ∈ ker q}. Then Gτ = {g ∈ G : gg] = 1} and q(g]) = q(g)] implies

that Γ = q−1(Gτ ) is a subgroup of G̃ containing H̃, but in general G̃τ = Γ0 6= Γ

(cf. [Lo69, Th. 3.4]). So the only symmetric space of G̃ associated to τ̃ is the simply

connected covering space M̃ := G̃/G̃τ of M .
(b) Suppose, conversely, that (G, τ) is a simply connected symmetric Lie group.

We want to determine all those symmetric spaces which are locally isomorphic to
G/Gτ , i.e., which are symmetric spaces of groups locally isomorphic to G.
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Put Γ := {g ∈ G̃ : gg] ∈ Z(G)}. Then one easily checks that Γ is a closed
subgroup of G and that γ : Γ → Z(G), g 7→ gg] is a group homomorphism whose
kernel coincides with Gτ = Γ0. In fact, we have

γ(ab) = abb]a] = aa]bb] = γ(a)γ(b)

for a, b ∈ Γ. If D ⊆ G is a discrete central subgroup which is τ -invariant, then G/D
is a symmetric Lie group and for any open subgroup H ⊆ (G/D)τ we have seen in

(a) that H̃ := q−1(H) ⊆ γ−1(D) ⊆ Γ.

If, conversely, H̃ ⊆ Γ is a τ -invariant subgroup for which D := γ(H̃) ⊆ H̃ is

discrete in Z(G), then G/D is a symmetric Lie group, H := H̃/D ⊆ (G/D)τ is

an open subgroup, and (G/D)/H ∼= G/H̃ is a symmetric space of G/D locally
isomorphic to the simply connected symmetric space G/H of G. �

Definition III.2. An involutive semigroup (S,∗ ) is a semigroup S together with
an involutive antiautomorphism ∗ : S → S, i.e., (s∗)∗ = s and (st)∗ = t∗s∗ holds for
s, t ∈ S. If, in addition, there is a second involutive antiautomorphism ] : S → S
commuting with ∗, then we call (S,∗ ,] ) bi-involutive. �

Definition III.3. (a) Let g be a real Lie algebra. A subset W ⊆ g is called weakly
hyperbolic if Spec(adX) ⊆ R holds for all X ∈ W . Note that closures of weakly
hyperbolic subsets are also weakly hyperbolic.

(b) Let (g, τ) be a symmetric Lie algebra and W ⊆ q be a weakly hyperbolic
Inn(h)-invariant closed convex cone. Further letH , resp.G, be simply connected Lie
groups with Lie algebra h, resp. g. We write τ for the involution on G obtained by
integrating τ . Let η : H → G be the natural homomorphism for which dη(1) : h → g
is the canonical embedding and put H1 := η(H). Then the subset ΓH1(W ) :=
H1 exp(W ) ⊆ G is a closed subsemigroup of G and the polar map

H1 ×W → ΓH1(W ), (h,X) 7→ h expX

is a homeomorphism. All of that follows from Lawson’s Theorem ([La94, Cor. 3.2]).
The assumptions of Lawson’s Theorem are satisfied because exp z(g) ⊆ Z(G)0, and
the latter group is a vector group because G is simply connected.

Now the universal covering semigroup ΓH(W ) := Γ̃H1(W ) has a similar struc-
ture. We can lift the exponential function exp: W → ΓH1(W ) to an exponential
function Exp: W → ΓH(W ) with Exp(0) = 1 and thus obtain a polar map

H ×W → ΓH(W ), (h,X) 7→ hExpX

which is a homeomorphism.
If D ⊆ H is a discrete central subgroup acting trivially on q, then D ⊆ ΓH(W )

is a discrete central subgroup, and we obtain a covering homomorphism

ΓH(W ) → ΓH/D(W ) := ΓH(W )/D, s 7→ sD

(cf. [HiNe93, Ch. 3]). It is easy to see that ΓH/D(W ) also has a polar map which
is a homeomorphism. Note that for D = ker η we have H/D ∼= H1 and ΓH1(W ) ∼=
ΓH/D(W ).

The semigroups of the type ΓH/D(W ) are called real Ol’shanskĭı semigroups. If

W 0 6= ∅ then the subset Γ0
H/D(W ) := (H/D) Exp(W 0) is an open subsemigroup

which is a manifold with an analytic semigroup multiplication. If W is an open
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cone, then we also write ΓH/D(W ) for H Exp(W ) and put ΓH/D(W ) := ΓH/D(W ).
We note that the involution

s = hExpX 7→ s] := (ExpX)h−1 = h−1 Exp
(
Ad(h).X

)
turns ΓH/D(W ) into an involutive semigroup. �

From now on we assume that (g, τ) is quasihermitian and that ∆+ is p-adapted
(cf. Definition I.1(f)).

Definition III.4. Let Wmax,s ⊆ sq denote the uniquely determined hyperbolic
closed convex cone with Wmax,s ∩ as = (∆+

n,s)
? (cf. [KN96, Cor. IX.7]). Assume

that G is simply connected and that H = Gτ . Then

Smax,s := Ro ΓSH (Wmax,s) ⊆ G

is a closed subsemigroup of G which is invariant under the involution g 7→ g] :=
τ(g)−1 turning (Smax,s, ]) into an involutive semigroup. �

Lemma III.5. With the notation of Definition III.4 we have Smax,s ⊆ HAN ∩
NAH.

Proof. Since Smax,s is ]-invariant and (HAN)] = NAH , it suffices to show that
Smax,s ⊆ HAN . As both HAN and Smax,s are R-saturated (Proposition II.4(iv)),
left H-invariant and adapted to the product decomposition G = R×Siso×

∏n
j=1 Sj

(cf. Definition I.1(c)), we may assume that G is quasihermitian and simple. If (g, τ)
is (NCR), then HAN = G is the Iwasawa decomposition and we are done. If (g, τ)

is (NCC), then the assertion follows from [HÓ96, Th. 5.4.7]. �

Definition III.6. Let GC be the simply connected Lie group with Lie algebra gC
and Ŝmax,s ⊆ GC denote the subsemigroup defined in Definition III.4 for the quasi-

hermitian symmetric Lie algebra (gC, τ̂ ) (cf. [KN96, Th. VIII.1]). Then Ŝmax,s
∼=

RC o ΓSc1 (Ŵmax,s). Note that the interior of Ŝmax,s is a complex manifold on
which the semigroup multiplication is holomorphic. Moreover it is invariant under
the holomorphic involution g] := τ(g)−1 and under the antiholomorphic involu-

tion g∗ := τ̂ (g)−1. Thus (Ŝmax,s,
∗ ,] ) is a bi-involutive semigroup in the sense of

Definition III.2. �

Lemma III.7. With the notation of Definition III.6 we have

Ŝmax,s ⊆ P+Kc
1,CP

− and Ŝmax,s ⊆ H1,CK
c
1,CP

+.

Proof. To prove these inclusions, we first note that since the sets Ŝmax,s, P
+Kc

1,CP
−,

and H1,CKc
1,CP

− are RC-invariant (Propositions II.5(iv) and II.6(iv)), we may

w.l.o.g. assume that (g, τ) is simple and quasihermitian. If (g, τ) is (NCR), we
are done, since GC = (Kc

1)C in this case. If (g, τ) is (NCC), then the first assertion

follows from [HiNe95, Prop. II.7] and the second inclusion follows from [ÓØ88, Th.
2.4]. �

IV. The domains Ξ(C)

Let (g, τ) be a symmetric Lie algebra and (gC, τ̂ ) its canonical extension. We
write GC for a simply connected Lie group with Lie algebra gC and, as before,
denote by H1,C, G1 and Gc1 the fixed point groups corresponding to the involutions

τ , τ τ̂ and τ̂ . Further we define H1 := (Gc1)
τ = G1 ∩ Gc1 = (GC)τ ∩ (GC)τ̂ , denote
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by Gc a simply connected Lie group associated to gc, and set H := (Gc)τ . Note
that in general H1 is not connected.

We fix an {InngC(ĥ),−τ}-invariant weakly hyperbolic convex cone Ĉ ⊆ q̂ such

that C := Ĉ ∩ q is an open cone in q. Note that we do not assume that Ĉ is
generating in q̂ = igc.

Lemma IV.1. The cone C is H1-invariant.

Proof. Since H1 commutes with τ , the groupH1 leaves q invariant. As Ad(Gc1).Ĉ =

Ĉ, we have Ad(H1).Ĉ = Ĉ. Hence Ad(H1).C = Ad(H1).(q ∩ Ĉ) = q ∩ Ĉ = C. �

Definition IV.2. (a) In view of Lemma IV.1, the subsemigroup ΓGτ0 (C) of G1

is invariant under multiplication with elements of H1, and so we obtain an open
subsemigroup ΓH1(C) := H1ΓGτ0 (C) = H1 exp(C). Moreover, Lawson’s Theorem
([La94, Th. 3.1]) even shows that the polar map H1×C → ΓH1(C) is a homeomor-
phism (cf. Definition III.3, where we have discussed the case of a connected group
H1).

(b) If Gc2 = Gc/D is a connected Lie group locally isomorphic to Gc, then
D ⊆ Z(Gc), so that D acts trivially on gc and hence on q̂. Thus we obtain the

complex Ol’shanskĭı semigroup ΓGc1(Ĉ) (cf. Definition III.3(b)). The semigroup

ΓGc(Ĉ) is the universal covering semigroup of ΓGc2(Ĉ). If, in addition, Ĉ is open

in q̂, then the semigroup ΓGc2(Ĉ) carries a natural complex structure such that the
semigroup multiplication is holomorphic (cf. [HiNe93, Th. 9.15]). In addition to
the natural involution s 7→ s∗ which is given by s = gExpX 7→ (ExpX)g−1 we
have a second involution s = g ExpX 7→ s] := Exp(−τ.X)g]. These involutions

yield on ΓGc2(Ĉ) the structure of a bi-involutive semigroup. If, in addition, Ĉ is

open in q̂, then ] is holomorphic and ∗ is antiholomorphic w.r.t. the underlying
complex structures.

(c) If H2 := (Gc2)0, then we have a natural embedding ΓH2(C) ↪→ ΓGc2(Ĉ) and
it follows from the polar decomposition that ΓH2(C) is a connected component of

the fixed point set of the antiholomorphic involution s 7→ (s∗)] of ΓGc(Ĉ). If Ĉ
is open, then we may consider the real Ol’shanskĭı semigroup ΓH2(C) as a “real
form” of the complex one. Note that both involutions s 7→ s∗ and s 7→ s] coincide
on ΓH2(C). �

We consider the connected component Q := {g ∈ GC : g] = g}0 of the set of
symmetric elements of GC containing the identity and recall from [Lo69, Prop. 4.4]
that the quadratic representation

q : GC/H1,C → Q, gH1,C 7→ gg]

which is equivariant with respect to the GC action on GC given by g.x := gxg]

is a homeomorphism. It follows in particular that Q carries a complex manifold
structure inherited from the complex symmetric space GC/H1,C. We define

Q(Ĉ) := {ss] : s ∈ ΓGc1(Ĉ)} ⊆ Q ∩ ΓGc1(Ĉ)

and note that under the quadratic representation this set is the orbit of the base

point in GC/H1,C under the action of the complex semigroup ΓGc(Ĉ).

To analyze the structure of the domains Q(Ĉ), the following point of view will
be quite enlightening. We consider the left action of H1 on Gc1 × C given by
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h.(g,X) := (gh−1,Ad(h).X) and write

Ξ1(C) := Gc1 ×H1 C : = (Gc1 × C)/H1

for the quotient space. We write [g,X ] := H1.(g,X). Similarly one defines Ξ(C) :=
Gc ×H C and Ξ1(C) := Gc1 ×H1 C. Then Ξ1(C) is an open dense subset of Ξ1(C).

Theorem IV.3. If C is open, then the following assertions hold:

(i) The set Q(Ĉ) coincides with the connected component of the set

{s ∈ ΓGc1(Ĉ) : s] = s}
containing exp(C) and it can also be written as

Q(Ĉ) = Gc1. exp(C) = {g exp(X)g] : g ∈ Gc1, X ∈ C}.
(ii) The set Q(Ĉ) is an open submanifold of Q and the mapping

ψ : Ξ1(C) → Q(Ĉ), [g,X ] 7→ g exp(2X)g]

is a diffeomorphism. In particular Ξ1(C) carries the structure of a complex
manifold.

(iii) There is a natural left action of ΓGc1(Ĉ) on Q(Ĉ) ∼= Ξ1(C) given by s.x = sxs].

If Ĉ ⊆ q̂ is open, then the corresponding action map σ1 is holomorphic on the
open semigroup.

Proof. (i) The chain of inclusions

{g exp(X)g] : g ∈ Gc1, X ∈ C} ⊆ Q(Ĉ) ⊆ {s ∈ ΓGc1(Ĉ) : s] = s}0(4.1)

is clear. Thus we have to show that the right hand side of (4.1) is contained in
the left hand side. Take an arbitary element from the right hand side and write

s = g exp(X), where g ∈ Gc1, X ∈ Ĉ. Then s] = s entails that

g] exp(Ad(g])−1.X]) = exp(X])g] = s] = s = g exp(X),

and so g = g] by the uniqueness of the polar decomposition of ΓGc1(Ĉ). Since the
projection of the right hand side of (4.1) onto Gc1 obtained by the polar map is

connected, we see that g ∈ {g1 ∈ Gc1 : g]1 = g1}0. Therefore [Lo69, Prop. 4.4]

implies the existence of an element g1 ∈ Gc1 such that g = g1g
]
1 and thus

s = g1g
]
1 exp(X) = g1 exp(Ad(g]1).X)g]1 = g1 exp(Y )g]1,(4.2)

where Y := Ad(g]1).X . So s] = s together with (4.2) yields

exp(Y ) = g−1
1 s(g−1

1 )] = g−1
1 s](g−1

1 )] = (g−1
1 s(g−1

1 )])] = exp(Y )] = exp(−τ(Y )),

so Y = −τ(Y ) and thus Y ∈ Ĉ ∩ q = C. Now the assertion follows from (4.2).
(ii) First we show that ψ is bijective. According to (i), it suffices to check

injectivity. Assume that ψ(g1, X1) = ψ(g2, X2) for g1, g2 ∈ Gc1 and X1, X2 ∈ C.
This means that

g1g
]
1 exp(Ad(g]1)

−1.2X1) = g2g
]
2 exp(Ad(g]2)

−1.2X2).

Hence the uniqueness of the polar decomposition entails g1g
]
1 = g2g

]
2, i.e., h :=

g−1
1 g2 ∈ H1 = (Gc1)

τ . Thus X2 = Ad(g]2g
−]
1 ).X1 = Ad(h]).X1 = Ad(h−1).X1 and

so [g1, X1] = [g2, X2].

Next we show that dψ is everywhere regular. We realize Q(Ĉ) inside of GC/H1,C
via the inverse of the quadratic representation. Then the mapping ψ is given by
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ψ([g,X ]) = g exp(X)H1,C. Denote by m the map Gc1×C → GC, (g,X) 7→ g exp(X)
and by p and π the projections p : Gc1 × C → Ξ1(C) and π : GC → GC/H1,C. We
obtain a commutative diagram

Gc1 × C
m−−−−→ GCyp yπ

Ξ1(C)
ψ−−−−→ GC/H1,C

Since ψ ◦ p = π ◦m and all maps involved are Gc1-equivariant, we only have to
check that d(π ◦m)(1, X) is onto for all X ∈ C. Denote by λg, resp. µg, the left
translation by g ∈ GC in GC, resp. GC/H1,C. Then the differential is given by

d(π ◦m)(1, X)(Y, Z) =
d

dt

∣∣∣
t=0

π
(
exp(tY ) exp(X + tZ)

)
= dπ(exp(X)).dλexp(X)(1).

(
e− ad(X).Y +

1− e− ad(X)

ad(X)
.Z
)

= dµexp(X)(π(1)).dπ(1).
(
e− ad(X).Y +

1− e− ad(X)

ad(X)
.Z
)
.

We claim that

pqC

(
e− ad(X).gc +

1− e− ad(X)

ad(X)
.q
)

= qC,(4.3)

where pqC : gC → qC denotes the projection of gC onto qC along hC. We establish
(4.3) in two steps.

Step 1. pqC

(
e− ad(X).iq

)
⊇ iq. Since Spec(ad(X)) ⊆ R, the Spectral Mapping

Theorem implies that cosh(ad(X)) : q → q is an isomorphism. Thus Step 1 follows
from

pqC(e− ad(X).iq) = cosh(ad(X)).iq = iq.

Step 2. pqC

(
1−e− ad(X)

ad(X) .q
)
⊇ q. Again by the Spectral Mapping Theorem, the map

sinh(ad(X))
ad(X) : q → q is an isomorphism. So Step 2 follows from

pqC

(1− e− ad(X)

ad(X)
.q
)

=
sinh(ad(X))

adX
.q = q.

Step 1 and 2 imply (4.3), i.e., ψ is a submersion. Finally, dim Ξ1(C) = dimGC/
H1,C implies that dψ is everywhere regular.

(iii) Using ψ, we realize Ξ1(C) as Q(Ĉ) ⊆ ΓGc1(Ĉ) and by the quadratic repre-

sentation as the orbit of the base point in GC/H1,C under the action of ΓGc1(Ĉ).

Then it is clear how ΓGc1(Ĉ) acts on this space and that this action is holomorphic

whenever Ĉ is open in q̂. �

Since, according to Theorem IV.3, the manifoldQ(Ĉ) only depends on C = Ĉ∩q,

we also write Q(C) instead of Q(Ĉ).

Proposition IV.4. Let (Gc2, τ) be a connected symmetric Lie group with Lie alge-
bra (gc, τ) and H2 ⊆ (Gc2)

τ an open subgroup such that H2 leaves the open cone C
invariant. Put Ξ2(C) := Gc2 ×H2 C.



442 B. KRÖTZ, K.-H. NEEB, AND G. ÓLAFSSON

(i) The inclusion mappings Gc2/H2 → Ξ2(C) and Ξ2(C) → Ξ2(C) induce iso-
morphisms of homotopy groups

π1(Ξ2(C)) ∼= π1(Ξ2(C)) ∼= π1(G
c
2/H2).

(ii) If H2 = (Gc2)
τ , then the mapping

Ξ2(C) → Q2(C) := Gc2.Exp(C) ⊆ ΓGc2(Ĉ), [g,X ] 7→ g.ExpX

is a Gc2-equivariant diffeomorphism and thus Ξ2(C) inherits the structure of
a complex manifold. Furthermore Q2(C) is invariant under the action of

ΓGc2(Ĉ) on Q2(C) given by s.x = sxs] which therefore gives rise to an action

of ΓGc2(Ĉ) on Ξ2(C) by holomorphic mappings. If Ĉ is open, then this action
is holomorphic. Moreover it extends to a continuous action on the closures.

(iii) If H2 ⊆ (Gc2)
τ is an open subgroup, then the domain Ξ2(C) = Gc2 ×H2 C

inherits a complex manifold structure via the natural covering map Ξ2(C) →
Ξ′2(C) := Gc2 ×(Gc2)

τ C. In this case the action of the semigroup ΓGc2(Ĉ) on
Ξ′2(C) lifts to an action on Ξ2(C) with similar properties.

Proof. (i) The homogeneous space Gc2/H2 is a deformation retract of Ξ2(C) via the
homotopy

f : [0, 1]× Ξ2(C) → Ξ2(C), f(t, [g,X ]) := [g, (1− t)X ].

Hence the inclusion Gc2/H2 → Ξ(C) induces an isomorphism π1(Ξ2(C)) ∼=
π1(G

c
2/H2).

It remains to prove the corresponding statement for the inclusion Ξ2(C) →
Ξ2(C). Let x0 ∈ Ξ2(C) and denote by Ω(Ξ2(C), x0), resp. Ω(Ξ2(C), x0), the
homotopy classes of paths γ : [0, 1] → Ξ2(C), resp. γ : [0, 1] → Ξ2(C), with γ(0) =
γ(0) = γ(1) = γ(1) = x0. Identify π1(Ξ2(C)), resp. π1(Ξ2(C)), with Ω(Ξ2(C), x0),

resp. Ω(Ξ2(C), x0). Denote by [γ], resp. [γ] the homotopy class of γ, resp. [γ], and
let X ∈ C. We claim that the mapping

Ω(Ξ2(C), x0) → Ω(Ξ2(C), x0), [γ] 7→ [γ]

is an isomorphism. To establish surjectivity, we have to show that each path γ in
Ξ2(C) is homotopic to a path in Ξ2(C). The map H(s, t) := Exp(s(1 − t)X).γ(t)
provides a homotopy transforming γ into a path in Ξ2(C).

Finally injectivity will follow if we can show that [γ] = [γx0 ] implies [γ] = [γx0 ],
where γx0 is the constant path in x0. Let H be a homotopy in Ξ2(C) transform-
ing γ into γx0 . Then H(s, t) := Exp(s(1 − t)X).H(t, s) is a homotopy in Ξ2(C)
transforming γ into γx0 .

(ii) Let q : ΓGc(Ĉ) → ΓGc1(Ĉ) ⊆ GC denote the universal covering homomorphism

and put Q̃(C) := Gc.Exp(C) ⊆ ΓGc(Ĉ). Then q
(
Q̃(C)

)
= Gc1.Exp(C) = Q(C) is

a submanifold of GC. If D := ker q ∼= π1(G
c
1) is the kernel of q, then this implies

that q−1
(
Q(C)

)
= DQ̃(C). If d1g1.ExpX1 = d1g1 ExpX1g

]
1 = d2g2 ExpX2g

]
2 with

Xj ∈ C, dj ∈ D, and gj ∈ Gc, then the uniqueness of the polar decomposition

shows that d1g1g
]
1 = d2g2g

]
2, i.e., d−1

1 d2 = gg] for g = g−1
2 g1.

From gg] ∈ D we further conclude that AdGc(g) ∈ AdGc1(H1), hence that Ad(g)
commutes with τ and leaves C ⊆ q invariant (Lemma IV.1). This means that

d2g2.ExpX2 = d1gg
]g2(ExpX2)g

]
2 = d1g2gg

](ExpX2)g
]
2

= d1g2g
(
ExpAd(g]).X2

)
g]g]2 ∈ d1G

c.Exp(C).
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So d1G
c.Exp(C) intersects d2G

c.Exp(C) if and only if the two sets coincide. This

shows that the sets dQ̃(C), d ∈ D, are the connected components of the submanifold

q−1
(
Q(C)

)
of ΓGc(Ĉ) and in particular complex manifolds.

We consider the natural map

ψ̃ : Ξ(C) = Gc ×H C → Q̃(C), [g,X ] 7→ gExp 2Xg].

We note that it is surjective and well defined because h ∈ H implies that h] = h−1

so that h−1
(
Exp2 Ad(h).X

)
(h−1)] = h−1

(
Exp2 Ad(h).X

)
h = Exp2X . Further-

more, (ii) implies that q ◦ ψ̃ : Ξ(C) → Q(C) is a submersion because it factors over
the covering map Ξ(C) → Ξ1(C). To see that it is injective, we note that the

injectivity of ψ shows that ψ̃([g1, X1]) = ψ̃([g2, X2]) implies that X1 = X2 and
q(g1) = q(g2), i.e., g2 ∈ g1 ker q. From that we conclude Ad(g1) = Ad(g2) and thus

ψ̃([g1, X1]) = g1(Exp2X1)g
]
1 = g1g

]
1 Exp

(
2 Ad(g]1)

−1.X1

)
= g1g

]
1 Exp

(
2 Ad(g]2)

−1.X2

)
implies that g1g

]
1 = g2g

]
2. Hence d := g−1

1 g2 satisfies dd] = 1, i.e., d ∈ H . So ψ̃ is
injective and hence a diffeomorphism.

Let D ⊆ Gc be a discrete central τ -invariant subgroup with Gc2
∼= Gc/D and

H2 = (Gc2)
τ . Further let ΓGc2(Ĉ) be the corresponding complex Ol’shanskĭı semi-

group and put Q2(C) := Gc2.Exp(C) ⊆ ΓGc2(Ĉ). Then we have the universal

covering map q2 : ΓGc(Ĉ) → ΓGc2(Ĉ) satisfying q2
(
Q̃(C)

)
= Gc2.ExpC = Q2(C).

Furthermore the following diagram commutes:

Ξ(C)
ψ̃−−−−→ Q̃(C)y yq2

Ξ2(C)
ψ2−−−−→ Q2(C)

This shows that ψ2 is a surjective submersion. If ψ2([q2(g1), X1]) = ψ2([q(g2), X2]),
then q2(g1.ExpX1) = q2(g2.ExpX2) implies that there exists d ∈ D with
dg1.ExpX1 = g2.ExpX2. Then the uniqueness of the polar decomposition yields

Ad(g]1)
−1.X1 = Ad(g]2)

−1.X2 and dg1g
]
1 = g2g

]
2. This means that g := g−1

1 g2 sat-
isfies gg] ∈ D, i.e., q2(g) ∈ (Gc2)

τ = H2, so that [q(g1), X2] = [q(g2), X2] holds in
Ξ2(C).

(iii) Let Ξ′2(C) := Gc2 ×(Gc2)
τ C and note that the natural map Ξ2(C) → Ξ′2(C)

given by [g,X ] 7→ [g,X ] is a covering map whose group of deck transformations is
given by (Gc2)

τ/H2. Thus Ξ2(C) carries a unique complex structure for which this
covering map is holomorphic.

We write q̂2 : ΓGc(Ĉ) → ΓGc2(Ĉ) for the universal covering map. In (ii) we have

seen that we have a natural action of ΓGc(Ĉ) on Q̃(C) ∼= Ξ(C) by holomorphic
mappings. Furthermore we have the covering map q2 : Ξ(C) → Ξ2(C) whose group

of deck transformations is given by H̃2/H ∼= π0(H̃2) for H̃2 := q̂−1
2 (H2). So it

suffices to show that the action of ΓGc(Ĉ) on Ξ(C) factors over q̂2 to an action of
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ΓGc2(Ĉ) on Ξ2(C), i.e., we want the following commutative diagram:

ΓGc(Ĉ)× Ξ(C)
σ−−−−→ Ξ(C)yq̂2×q2 yq2

ΓGc2(Ĉ)× Ξ2(C) −−−−→ Ξ2(C)

So let g0 ∈ ker q̂2. Then g0 ∈ H̃2 ∩ Z(Gc) and for [g,X ] ∈ Ξ(C) we then have
g0.[g,X ] = [g0g,X ] = [gg0, X ], i.e., g0 acts on Ξ(C) as an element of π1

(
Ξ2(C)

) ∼=
H̃2/H . This shows that g0 induces the identity on Ξ2(C), hence that the action of

ΓGc(Ĉ) on Ξ(C) factors to an action of ΓGc2(Ĉ) on Ξ2(C). �

V. Spherical representations of real Ol’shanskĭı semigroups

Throughout this section (Gc, τ) denotes a simply connected Lie group with Lie
algebra (gc, τ) and C ⊆ q an open convex hyperbolic Inng(h)-invariant convex cone.
Note that the existence of such a cone implies that (g, τ) is quasihermitian, that
Cmin ⊆ Cmax holds for a positive p-adapted system ∆+ (cf. [KN96, Th. VI.6]), and
that C ⊆Wmax (cf. [KN96, Th. X.2]).

In this section we investigate general properties of spherical representations of
the group Gc which are related to representations of the semigroup ΓH(C). In
particular we will see that the existence of such representations with discrete kernel
has consequences for the structure of the group Gc and that such representations
can always be realized in certain spaces of holomorphic functions on the domain
Ξ(C). The main result describing this realization is Theorem V.8.

Definition V.1. Let H be a Hilbert space.
(a) A representation (π,H) of ΓH(C) is a weakly continuous semigroup homo-

morphism π : ΓH(C) → B(H) satisfying π(s]) = π(s)∗ for all s ∈ ΓH(C). We
always assume that (π,H) is non-degenerate, i.e., span{π(ΓH(C)).H} is dense in

H. If Ĉ ⊆ q̂ is an open convex hyperbolic InngC(ĥ)-invariant cone, then a holomor-

phic representation (π̂,H) of ΓGc(Ĉ) is a holomorphic semigroup homomorphism

π̂ : ΓGc(Ĉ) → B(H) satisfying π(s∗) = π(s)∗ for all s ∈ ΓGc(Ĉ).
(b) Let (π,H) be a representation of ΓH(C). The Lüscher-Mack Theorem (cf.

[HiNe96, Th. 3.1]) provides a unique unitary representation πc : Gc → U(H) satis-
fying dπc|h = dπ|h and dπc(iX) = idπ(X) for all X ∈ C. We say that πc extends
to π if πc is obtained from π via the Lüscher-Mack Theorem. The analytic vectors
Hω of (π,H) are defined as the analytic vectors of (πc,H).

If Ĉ is open and ΓGc(Ĉ) also acts on H, then π(s).H ⊆ Hω holds for all s ∈
ΓH(C) (cf. Proposition A.5). We endow Hω with the finest locally convex topology,
making all the maps π(s) : H → Hω, s ∈ ΓH(C) continuous. If this condition is
not satisfied, then one can also define a natural topology on Hω which in general
is more complicated to describe (cf. Appendix). We write H−ω for the space of
continuous antilinear functionals Hω → C and endow H−ω with the strong dual
topology. Then there is a natural chain of continuous inclusions

Hω ↪→ H ↪→ H−ω.(5.1)

An element of H−ω is called a hyperfunction vector of (π,H). The representation
(π,H) of ΓH(C) naturally extends to a representation (π−ω ,H−ω) of ΓH(C) by
setting (π−ω(s).ν)(v) := ν(π(s]).v) for all s ∈ ΓH(C), ν ∈ H−ω and v ∈ H.
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(c) Let (π,H) be a representation of ΓH(C) and χ : H → C∗ a character of
H . We write (H−ω)(H,χ) for the set of all ν ∈ H−ω satisfying π−ω(h).ν = χ(h).ν
for all h ∈ H . A representation (π,H) is called (H,χ)-spherical if there exists a
cyclic vector in ν ∈ (H−ω)(H,χ). If χ = 1 is the trivial character, then (π,H) is
called spherical. Since the orbit maps H → Hω are continuous with respect to the
topology on Hω (cf. Lemma A.4), each character χ of H for which (H−ω)(H,χ) is
non-zero is continuous. �

For the proof of the following lemma we recall the definition of the following
cones, resp. vector spaces, associated to a convex set C in a real vector space:

lim(C) := {v ∈ V : v + C ⊆ C}
and

H(C) := {v ∈ V : v + C = C} = lim(C) ∩ − lim(C).

We call a symmetric Lie algebra (g, τ) admissible if q contains an open convex
hyperbolic Inng(h)-invariant subset which does not contain any affine subspace.

Lemma V.2. Let (π,H) be an (H,χ)-spherical representation of ΓH(C). If we
define an action of H on the function space CC by (h.f)(X) := χ∗(h)f

(
Ad(h)−1.X

)
for X ∈ C, h ∈ H, where χ∗(h) := χ(h−1), then the following assertions hold:

(i) To each cyclic ν ∈ (H−ω)(H,χ) corresponds an H-equivariant injective linear
map

lν : Hω → CC , v 7→ (
X 7→ 〈ν, π(ExpX).v〉).

(ii) Denote by hiso = zh(q) the maximal ideal of g contained in h. If, in addition,
(π,H) has discrete kernel, then
(a) (g, τ) is admissible, and
(b) if, moreover, π is irreducible, then the isotropy algebra hiso is a central,

at most one-dimensional direct factor of g.

Proof. (i) The linearity of lν is obvious and injectivity follows from the cyclicity of
ν. Let X ∈ C, h ∈ H and v ∈ H. Then the H-equivariance follows from

lν(π(h).v) = ν(π(Exp(X))π(h).v)

= ν(π(h)π(Exp(Ad(h)−1.X)).v) = (π−ω(h−1).ν)(π(Exp(Ad(h)−1.X).v))

= χ∗(h)ν(π(Exp(Ad(h)−1.X).v)) = (h.lν(v))(X).

(ii) Let Iq
π ⊆ q∗ denote the convex moment set of the representation π, i.e., the

closed convex hull of the set of all linear functionals of the form X 7→ 〈dπ(X).v, v〉,
where v ∈ H∞ is a unit vector. Now the boundedness of the operator π(ExpX),
X ∈ C, implies that C ⊆ −B(Iq

π) := {X ∈ q : sup〈Iq
π, X〉 < ∞}. If Iπ ⊆ q̂∗ is

the corresponding moment set of gc and pq : q̂ → q the projection along ih, then

Iq
π = pq(Iπ), and so

(Iq
π)⊥ ∩ q = I⊥π ∩ q = ker dπ ∩ q = {0}

([Ne98, Prop. VI.1.8]).
Hence Iq

π ⊆ q∗ is a generating convex subset. Furthermore the assumption that
C has interior points implies that B(Iq

π) is generating, i.e., that Iq
π contains no

affine lines.
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For X ∈ C let s(X) := sup〈Iq
π , X〉. Then [Ne98, Prop. III.5.10(ii)] shows that

C =
⋃
m∈R

Cm, where Cm = {X ∈ C : s(X) ≤ m}0.

It is clear that limCm = limCm ⊆ (Iq
π)?, hence that H(Cm) ⊆ (Iq

π)⊥ = {0}.
Thus Cm is an Inng(h)-invariant open convex subset which in addition satisfies

H(Cm) = {0}, and so [KN96, Th. VI.6(iii)] implies that the symmetric Lie algebra
(g, τ) has strong cone potential and is admissible (cf. [KN96, Def. VI.4(b)]).

Denote by Hiso the analytic subgroup of Gc corresponding to hiso. Then (i)
implies that πc|Hiso = χ|Hiso · idH. Since kerπ is discrete, it follows that hiso is at
most one-dimensional and hiso ⊆ z(h). Thus hiso ⊆ z(g) and it remains to show
that hiso is a direct factor. If g is reductive, then this is obvious. Otherwise the
nilradical u of g is non-central. From the fact that (g, τ) has strong cone potential,
we get that z(g) ∩ q = z(g) ∩ a 6= {0} (cf. [KN96, Def. V.1]). If, in addition, (π,H)
is irreducible with discrete kernel, then Schur’s Lemma implies that z(g) is at most
one-dimensional, hence contained in q. Therefore hiso = {0} proves (b). �

Remark V.3. In the setting of Lemma V.2(ii) we have seen that (g, τ) is admissible,
so that [KN96, Th. VI.6] implies in particular that (g, τ) is quasihermitian. Since
it is also effective up to a direct central factor in h, it follows from [KN96, Th.
VI.6, Prop. VII.2] that h0 is compactly embedded in g. Now the assumptions of
[KN96, Th. X.7] are satisfied, thus (gC, τ̂ ) is quasihermitian and C extends to a

convex hyperbolic {InngC(ĥ),−τ}-invariant hyperbolic open cone Ĉ in q̂ satisfying

Ĉ ∩ q = C.
In particular there exists a maximal hyperbolic Lie triple system p̂ ⊆ q̂ extending

p, a maximal hyperbolic subspace â ⊆ p̂ extending a, and a p̂-adapted positive

system ∆̂+
n such that ∆̂+

n |a = ∆+
n (cf. [KN96, Prop. VII.12, Th. VIII.1]) and Cmin ⊆

C∩q ⊆ Cmax. Furthermore, there exists a unique closed convex hyperbolic invariant

cone Ŵmax ⊆ q̂ which is (−τ)-invariant and satisfies Ŵmax∩q = Wmax. In particular

we have Ĉ ⊆ Ŵmax. �

Proposition V.4. Let (π,H) be an irreducible representation of ΓH(C). We as-

sume that either π is (H,χ)-spherical with discrete kernel or that C ⊆ Ŵ 0
max. Then

the following assertions hold:

(i) The representation (π,H) extends to a holomorphic representation (π̂,H) of

ΓGc(Ŵ
0
max).

(ii) The analytic vectors are given by Hω = π̂(ΓGc(Ŵ
0
max)).H.

Proof. We have seen in Remark V.3 the assumption that π is (H,χ)-spherical with

discrete kernel implies that gc is quasihermitian and that C ⊆ Ŵ 0
max holds for a

suitable k-adapted positive system ∆̂+.

(i) The inclusion C ⊆ Ŵ 0
max means in particular that iC lies in the interior

of the set of elliptic elements of gc. In view of this and Lemma V.2(ii)(b), the
assumptions of [HiNe96, Th. 3.6] are satisfied and (i) follows from [HiNe96, Th.
3.6, Th. B] because the discrete kernel assumption made in [HiNe96, Th. B] is only
used to ensure that the cone B(Iπ) is weakly elliptic.

(ii) This follows from Proposition A.5. �
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According to Proposition IV.4, there exists a holomorphic ΓGc1(Ŵ
0
max)-equivariant

submersive map p1 : ΓGc1(Ŵ
0
max) → Ξ1(W

0
max). By the simple connectedness of

ΓGc(Ŵ
0
max) and Ξ(W 0

max) this mapping lifts to a map p : ΓGc(Ŵmax) → Ξ(Wmax)
with the same properties. Thus we obtain a commutative diagram:

ΓGc(Ŵmax)
p−−−−→ Ξ(Wmax)yq̂ yq

ΓGc1(Ŵmax)
p1−−−−→ Ξ1(Wmax)

(5.2)

Note that, since p is submersive, the fibers p−1([g,X ]) are complex submanifolds

of ΓGc(Ŵ
0
max).

Let M,N be complex manifolds. Denote by Hol(N,M) the space of all holo-
morphic maps f : N →M . Suppose that a group G acts by holomorphic mappings
on N and M . Then G acts on Hol(N,M) via (g.f)(n) := g.f(g−1.n) for g ∈ G,
n ∈ N . We write Hol(N,M)G for the set of G-invariant elements in Hol(M,N),
i.e., for the G-equivariant maps N →M .

Lemma V.5. Let M be a complex manifold, U ⊆ Ξ(W 0
max) be an open subset, and

let V ⊆ ΓGc(Ŵ
0
max) be an open set invariant under the right H-action, such that

p(V ) = U . Let H act trivially on U . Realize U inside Q(W 0
max) (cf. Proposition

IV.4(ii)). Then the push down mapping

(p|V )∗ : Hol(V,M)H → Hol(U,M)H , f 7→ f̃ : g Exp(2X)g] 7→ f(gExp(X))

is well defined and bijective. Its inverse is given by the pull back (p|V )∗ of p|V : V →
U . In particular, we have Hol(ΓGc(Ŵ

0
max),M)H ∼= Hol(Ξ(W 0

max),M).

Proof. Since f is H-fixed, the map f̃ is well defined. We claim that f̃ is holomor-
phic (cf. Theorem IV.3(ii)). As the assertion is purely local, we may assume that

ΓGc(Ŵ
0
max) ⊆ GC. Fix g0 Exp(2X0)g

]
0 ∈ U and g0 Exp(X0) ∈ V . As p|V : V → U

is a holomorphic submersion, p|V admits local trivializations. In particular, we
find open connected neighborhoods U1 ⊆ U and V1 := (p|V )−1(U1) ⊆ V of

g0 Exp(2X0)g
]
0, resp. g0 Exp(X0), such that V1 is biholomorphically equivalent to

U1×W , where W ⊆ Cm is an open set, and p|V1 : U1×W → U1 is given by the pro-
jection onto the first factor. We define a holomorphic map f1 on V1 by f1(x,w) :=

f(x,w0), where w0 ∈W is defined by g0 Exp(X0) = (g0 Exp(2X)g]0, w0). We claim
that f |V1 = f1. Let B be a convex open neighborhood of 0 in h. Then we find open

connected neighborhoods U2 ⊆ U1, resp. B1 ⊆ B, of g0 Exp(2X0)g
]
0, resp. 0, such

that

V2 := (U1 × {w0}).ExpH1,C(B + iB) = U1 ×
(
w0.ExpH1,C(B + iB)

) ⊆ V1.

Note that V2 is connected, has non-empty interior and contains g0 Exp(X0). Let
x ∈ U2 and h ∈ ExpH1,C(B) ⊆ H . Then the right H-invariance of f and (x,w0).h =

(x,w′) imply that

f((x,w0).h) = f(x,w0) = f1(x,w0) = f1((x,w0).h).

Thus f1 and f coincide on the neighborhood (U2 × {w0}).ExpH1,C(B) ⊆ V1 of

g0 Exp(X0). As f and f1 are holomorphic on V1, the Identity Theorem for Holo-
morphic Functions implies that f |V1 = f1. Thus f |V1 is independent of the second
variable.
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By construction, we have g0 ExpX0 ∈ V1 ∩ Gc Exp(W 0
max). As V1 is open, we

find an open neighborhood U3 ⊆ U1 of g0 Exp(2X0)g
]
0 and a mapping γ : U3 → W

such that (x, γ(x)) ∈ Gc Exp(W 0
max) for all x ∈ U3. By the definition of f̃ , we have

f̃(x) = f(x, γ(x)) = f(x,w0)(5.3)

for x ∈ U3. Hence f̃ is holomorphic on U3 ⊆ U1, and therefore holomorphic as

g0 Exp(2X0)g
]
0 was arbitrary.

It follows from (5.3) that f = 0 if and only if f̃ = 0, hence (p|V )∗ is injective.
As the pull back of a holomorphic function on U is clearly holomorphic on V , the
lemma follows. �

Lemma V.6. Let (π̂,H) be a holomorphic representation of ΓGc(Ŵ
0
max) and con-

sider the ΓGc(Ŵ
0
max)×ΓGc(Ŵ

0
max)-action on Hol(ΓGc(Ŵ

0
max)) given by

(
(s1, s2).f

)
(s)

:= f(s∗2ss1). Then all hyperfunction matrix coefficients are holomorphic and the
sesquilinear map

H−ω ×H−ω → Hol(ΓGc(Ŵ
0
max)), (λ, µ) 7→ πλ,µ : s 7→ 〈λ, π̂−ω(s∗).µ〉

is ΓGc(Ŵ
0
max)× ΓGc(Ŵ

0
max)-equivariant.

Proof. Since π̂−ω(ΓGc(Ŵ
0
max)).H−ω ⊆ Hω (cf. Definition V.1(b)), the functions

π̂λ,µ are defined. Next we show the ΓGc(Ŵ
0
max) × ΓGc(Ŵ

0
max)-equivariance. Let

s, s1, s2 ∈ ΓGc(Ŵ
0
max) and λ, µ ∈ H−ω. Then the equivariance follows from

ππ̂−ω(s1).λ,π̂−ω(s2).µ(s) = 〈π̂−ω(s1).λ, π̂
−ω(s∗)π̂−ω(s2).µ〉

= 〈λ, π̂(s∗1)π̂
−ω(s∗)π̂−ω(s2).µ〉

= 〈λ, π̂−ω(s∗1s
∗s2).µ〉 =

(
(s1, s2).πλ,µ

)
(s).

It remains to show that all πλ,µ, λ, µ ∈ H−ω, are holomorphic. Fix s0 ∈ ΓGc(Ŵ
0
max).

According to [HiNe93, Th. 3.20], we find an open neighborhood U ⊆ ΓGc(Ŵ
0
max)

of s0, an open set V ⊆ ΓGc(Ŵ
0
max), and elements s1, s2 ∈ U such that ϕ : U → V ,

s 7→ s1ss2 is biholomorphic. Then for all s ∈ U the ΓGc(Ŵ
0
max) × ΓGc(Ŵ

0
max)-

equivariance implies that

πλ,µ
(
ϕ(s)

)
= πλ,µ(s1ss2) = ππ̂−ω(s2).λ,π̂−ω(s∗1).µ(s).

Now π̂−ω(s2).λ, π̂
−ω(s∗1).µ ∈ H, the holomorphy of (π̂,H), and the holomorphy of

ϕ−1 imply the assertion. �

Fix a continuous character χ : H → C∗ and consider the left action of H on (Gc×
W 0

max)×C, resp. ΓGc(Ŵ
0
max)×C, given by h.(g,X, z) := (gh−1,Ad(h).X, χ(h)−1.z),

resp. h.(s, z) = (sh−1, χ(h)−1.z). Denote by (G×W 0
max)×HC, resp. ΓGc(Ŵ

0
max)×H
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C, the corresponding quotient spaces. Then we obtain a commutative diagram

(Gc ×W 0
max)×H C −−−−→ ΓGc(Ŵ

0
max)×H Cyα yα̂

Ξ(W 0
max) −−−−→ ΓGc(Ŵ

0
max)/H,

[g,X, z] −−−−→ [g Exp(X), z]y y
[g,X ] −−−−→ g Exp(X)H

(5.4)

Lemma V.7. Let (π,H) be an irreducible (H,χ)-spherical representation of ΓH(C)
with discrete kernel.

(i) To each 0 6= ν ∈ (H−ω)(H,χ) corresponds an analytic line bundle struc-

ture for α̂ : ΓGc(Ŵ
0
max) ×H C → ΓGc(Ŵ

0
max)/H such that the restriction α :

(Gc × W 0
max) ×H C → Ξ(W 0

max) is a holomorphic line bundle with respect

to an appropriate complex structure. Here H acts on ΓGc(Ŵ
0
max) × C by

h.(s, z) =
(
sh−1, χ(h)−1.z

)
.

(ii) The holomorphic sections

Γh(Ξ(W 0
max), χ)

:= {s : Ξ(W 0
max) → (Gc ×W 0

max)×H C : s holomorphic, α ◦ s = idΞ(W 0
max)}

of α are in one-to-one correspondence with the (H,χ)-semi-invariant holo-
morphic functions

Hol(ΓGc(Ŵ
0
max))

(H,χ)

:= {f ∈ Hol(ΓGc(Ŵ
0
max)) : (∀s ∈ ΓGc(Ŵ

0
max))(∀h ∈ H)f(sh) = χ(h)f(s)}.

The correspondence is given by

Hol(ΓGc(Ŵ
0
max))

(H,χ) → Γh(Ξ(W 0
max), χ), f 7→ sf : [g,X ] 7→ [g,X, f(gExp(X))].

Proof. (i) According to Proposition V.4(i), (π,H) extends to a holomorphic repre-

sentation (π̂,H) of ΓGc(Ŵ
0
max). Fix 0 6= ν ∈ (H−ω)(H,χ). For each v ∈ H we define

an element σv ∈ Hol(ΓGc(Ŵ
0
max))

(H,χ) by σv(s) := ν(π̂(s)∗.v). As every operator

π̂(s), s ∈ ΓGc(Ŵ
0
max), is injective and has dense range, the family {σv : v ∈ H} has

no common zeros on on ΓGc(Ŵ
0
max).

First we show that α̂ is an analytic line bundle. Fix s0 ∈ ΓGc(Ŵ
0
max)/H . Since

{σv : v ∈ H} has no common zeros and consists of χ-semi-invariant functions,
we find v ∈ H and an open neighborhood V of s0 such that σv|Ṽ has no zeros,

where Ṽ denotes the inverse image of V under the quotient map ΓGc(Ŵ
0
max) →

ΓGc(Ŵ
0
max)/H . The mapping

ϕV : α̂−1(V ) → V × C, [s, z] 7→ (sH, σv(s)
−1.z)

yields a trivialization of α̂−1(V ). We claim that the ϕV give rise to an analytic line

bundle structure. Let U, V ⊆ ΓGc(Ŵ
0
max)/H be open subsets with U ∩ V 6= ∅ and
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u, v ∈ H such that σu|Ũ , σv|Ṽ have no zeros. Then the corresponding transition
function is given by

ϕU ◦ ϕ−1
V : (U ∩ V )× C → (U ∩ V )× C, (sH, z) 7→

(
sH,

σv(s)

σu(s)
.z
)
.

Since

U ∩ V → GL(1,C) ∼= C∗, sH 7→ σv(s)

σu(s)
(5.5)

is analytic, the claim follows.
Finally, Lemma V.5 and (5.5) show that the restricted line bundle α is holomor-

phic.
(ii) This follows from Lemma V.5 and the line bundle structure given in (i). �

According to Lemma V.7(ii), we can define a ΓGc(Ŵ
0
max)-left action on

Γh(Ξ(W 0
max), χ) by

(s.sf )([g,X ]) := [g,X, f(s∗gExp(X))].

We equip Hol(ΓGc(Ŵ
0
max))

(H,χ) with the topology of compact convergence and
transfer this topology via the correspondence of Lemma V.7(ii) to Γh(Ξ(W 0

max), χ).

Theorem V.8. Let (π,H) be an irreducible representation of ΓH(C) and suppose

that C ⊆ Ŵ 0
max. Then the following statements are equivalent:

(1) (π,H) is (H,χ)-spherical.
(2) The representation (π,H) extends to a holomorphic representation of

ΓGc(Ŵ
0
max) and there exists a continuous ΓGc(Ŵ

0
max)-equivariant injective lin-

ear map r : H → Γh(Ξ(W 0
max), χ).

Proof. (1) ⇒ (2): First we note that, in view of our assumptions, Proposition V.4(i)

implies that (π,H) extends to a holomorphic representation (π̂,H) of ΓGc(Ŵ
0
max).

Let 0 6= ν ∈ (H−ω)(H,χ) be a cyclic element and consider the mapping

r : H → Hol(ΓGc(Ŵ
0
max))

(H,χ), v 7→ (
s 7→ ν(π̂(s)∗.v)

)
.

In view of Lemma V.6, this map is well defined. It is clear that r is injective,

ΓGc(Ŵ
0
max)-equivariant and linear. We show that it is continuous. Let vn → v in

H and r(vn) → f in Hol(ΓGc(Ŵ
0
max))

(H,χ). As r(vn) → r(v) pointwise, we have
r(v) = f . Hence continuity follows from the Closed Graph Theorem. In view of
Lemma V.7(ii), this proves the assertion.

(2) ⇒ (1): Let r : H → Γh(Ξ(W 0
max), χ) be as stated in (2), and v ∈ Hω. In

view of Lemma V.7(ii), we may identify Γh(Ξ(W 0
max), χ) with Hol(ΓGc(Ŵ

0
max))

(H,χ).

According to Proposition V.4(ii), there are elements s0 ∈ ΓGc(Ŵ
0
max) and w ∈ H

with v = π̂(s0).w. By [HiNe93, Th. 3.20] we find s1, s2 ∈ ΓGc(Ŵ
0
max) such that

s0 = s1s2. Then

r(v)(s) = r(π̂(s0).w)(s) = r(π̂(s1).(π̂(s2).w))(s)

=
(
s1.r(π̂(s2).w)

)
(s) = r(π̂(s2).w)(s∗1s)

entails that r(v) extends to a continuous function r(v) on ΓGc(Ŵ
0
max) satisfying

r(v)(1) = r(π̂(s2).w)(s∗1). Now the prescription ν(v) := r(v)(1) defines an element
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of H−ω. Moreover the equality(
π−ω(h).ν

)
(v) = ν(π(h)−1.v) = r(π(h)−1.v)(1)

=
(
h−1.r(v)

)
(1) = r(v)(h) = χ(h)r(v)(1) = (χ(h).ν)(v)

for v ∈ Hω, h ∈ H , shows that ν ∈ (H−ω)(H,χ). As ν is the evaluation in 1,
injectivity and equivariance of r show that ν is cyclic. �

VI. Spherical highest weight representations

Definitions and elementary properties. The following lemma is crucial. The
assumption on (g, τ) stated there will be assumed for the whole section. Also
we will assume from now on that (g, τ) is effective. The following lemma should
be compared with Remark V.3 which discusses the structural consequences of the
existence of an irreducible spherical representation with discrete kernel.

Lemma VI.1. Let (g, τ) be a symmetric Lie algebra and p ⊆ q a maximal hy-
perbolic Lie triple system. Let kc ⊇ ip + [p, p] be a maximal compactly embedded
subalgebra of gc. Assume that there exists an element X0 ∈ iz(kc) ∩ q such that
zgc(iX0) = kc. Then the following assertions hold:

(i) (gC, τ̂) is quasihermitian.
(ii) (g, τ) is quasihermitian.
(iii) Let a ⊆ p be a maximal abelian subspace containing X0. Then there exists a

compactly embedded Cartan subalgebra tc of gc such that ia ⊆ tc ⊆ kc.

(iv) Let ∆̂ := ∆̂(tcC, gC), ∆ := ∆(a, g), and ∆̂+ be any positive system such that

∆̂+
n := {α ∈ ∆̂n : α(X0) > 0}.

Then ∆̂+ is kc-adapted and ∆+ := (∆̂+|a)\{0} is a p-adapted positive system
of roots.

Proof. (i) This follows from kc ⊆ zgc(z(k
c)) ⊆ zgc(iX0) = kc, in view of Definition

I.2(b).
(ii) First we note that kc is τ -invariant because τ(X0) = −X0, and hence that

kc can be written as a direct Lie algebra sum kc = kc1 ⊕ (ip + [p, p]), where kc1 ⊆ h
because ikc∩q is a hyperbolic Lie triple system in q containing p, and hence coincides
with p. From the maximality of p we conclude in particular that X0 ∈ p and that
iz(p) ⊆ z(kc). Now the assertion follows from

ip ⊆ ziq(iz(p)) ⊆ zgc(X0) ∩ iq = kc ∩ iq = ip.

(iii), (iv) This is an immediate consequence of (i) and (ii) and Definition I.1(d)-
(f). �

Remark VI.2. Even though it might seem to be quite restrictive, the assumption
of Lemma V.1 is quite natural. For instance let (g, τ) be a symmetric Lie algebra,
C ⊆ q an open hyperbolic cone, and ΓH(C) the corresponding real Ol’shanskĭı
semigroup. If ΓH(C) admits an irreducible (H,χ)-spherical unitary representation
with discrete kernel, then Lemma V.2(ii) together with [KN96, Th. VIII.1] implies
that the condition of Lemma VI.1 holds for any X0 ∈ C0

max ∩ z(p). �

Definition VI.3. Let (g, τ) be a symmetric Lie algebra and kc, a, tc , ∆̂+ and ∆+

as in Lemma VI.1.
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(a) For a gC-module V and β ∈ (tcC)∗ we write

V β := {v ∈ V : (∀X ∈ tcC)X.v = β(X)v}
for the weight space of weight β and PV = {β : V β 6= {0}} for the set of weights of
V .

(b) Let V be a gC-module and v ∈ V λ a tcC-weight vector. We say that v is a

primitive element of V (with respect to ∆̂+) if gαC.v = {0} holds for all α ∈ ∆̂+.
(c) A gC-module V is called a highest weight module with highest weight λ (with

respect to ∆̂+) if it is generated by a primitive element of weight λ.

(d) Let λ ∈ itc∗ be dominant integral w.r.t. ∆̂+
k and F (λ) the corresponding

irreducible kcC-module of highest weight λ. We define the generalized Verma module
by

N(λ) := U(gC)⊗U(kcC+p+) F (λ).

Note that N(λ) is a highest weight module for U(gC) with highest weight λ. We
denote by L(λ) the unique irreducible quotient of N(λ).

(e) Let Gc be a connected Lie group with Lie algebra gc. We write Kc for the
analytic subgroup of Gc corresponding to kc. Let (πc,H) be a unitary representation
of Gc. A vector v ∈ H is called Kc-finite if it is contained in a finite dimensional
Kc-invariant subspace. We write HKc,ω for the space of analytic Kc-finite vectors.

(f) An irreducible unitary representation (πc,H) of Gc is called a highest weight

representation w.r.t. ∆̂+ with highest weight λ ∈ itc∗ if HKc,ω is a highest weight

module for gC w.r.t. ∆̂+ and highest weight λ. We write F (λ) for the lowest Kc-
type, i.e., the Kc-submodule generated by a highest weight vector. Assume that Gc

is simply connected. We then say that the irreducible highest weight module L(λ)
is unitarizable if there exists a unitary highest weight representation (πcλ,Hλ) of Gc

with HKc,ω
λ

∼= L(λ) as gC-modules.
(g) If L(λ) is unitarizable, then the corresponding unitary representation of

(πcλ,Hλ) of Gc is called singular if the natural map N(λ) → L(λ) has a non-trivial
kernel and non-singular otherwise. �

As before Gc denotes a simply connected Lie group with Lie algebra gc and
H = (Gc)τ is the fixed point group of τ in Gc.

The following lemma furnishes a bridge between semigroup representations and
highest weight representations. We recall the Lüscher-Mack correspondence π 7→ πc

from Definition V.1.

Proposition VI.4. Let ∅ 6= C ⊆ q be an Inng(h)-invariant open convex cone

and ∆̂+ be a positive kc-adapted system such that C ⊆ Ŵ 0
max. Then the mapping

π 7→ πc provides a bijection between the irreducible (H,χ)-spherical representations

of ΓH(C) and the (H,χ)-spherical highest weight representations of Gc w.r.t. ∆̂+.

Proof. Let (π,H) be an irreducible (H,χ)-spherical representation of ΓH(C). Ac-
cording to Proposition V.4(i), the representation π extends to a holomorphic repe-

sentation π̂ of the complex Ol’shanskĭı semigroup ΓGc(Ŵ
0
max). Since Ŵmax ⊆ q̂ is a

hyperbolic cone and all the operators dπ(X), X ∈ Ŵmax, are bounded from above,
[HiNe96, Th. 3.4] shows that (πc,H) is a highest weight representation of Gc w.r.t.

∆̂+. Obviously, (πc,H) is (H,χ)-spherical.
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Conversely, let (πc,H) be a unitary highest weight representation of Gc w.r.t.

∆̂+ and note that

Ŵ 0
max ⊆ {X ∈ q̂ : dπc(X) bounded from above}

(cf. [HiNe96, Th. 3.6(ii)]). According to [HiNe96, Th. B], (πc,H) extends to a

holomorphic representation (π̂,H) of ΓGc(Ŵ
0
max). Hence π := π̂|ΓH(C) is an (H,χ)-

spherical representation of ΓH(C). �

For the following proposition we recall the definition of the group HK :=
exp(h ∩ kc) ⊆ Gc.

Proposition VI.5. Let (πcλ,Hλ) be an (H,χ)-spherical highest weight representa-
tion of Gc. Then the following assertions hold:

(i) dim(H−ωλ )(H,χ) = dimF (λ)(HK ,χ
∗| HK ) = 1.

(ii) The restriction mapping

(H−ωλ )(H,χ) → F (λ)(HK ,χ
∗| HK ), ν 7→ ν|F (λ)

is a linear bijection.

Proof. (i) In view of Lemma III.5, we have ΓH1(Wmax) ⊆ H1AN ⊆ G1. Hence the
same argument as in the proof of [HiNe96, Lemma 4.6] implies that each primitive
element vλ ∈ Hλ is cyclic with respect to the action of the group H . From that it
follows directly that the map

(H−ωλ )(H,χ) → C, ν 7→ ν(vλ)

is injective. Using that
(
πcλ|Kc , F (λ)

)
is a highest weight representation of Kc, one

similarly shows that the mapping

F (λ)(H∩K
c,χ∗| H∩Kc ) → C, ν 7→ ν(vλ)

is injective. This proves (i).
(ii) This is a direct consequence of the proof of (i). �

It is interesting to see how the conclusion of the preceding proposition is related
to Theorem II.11. To explain this connection, let ρ = πKλ : Kc

C → B
(
F (λ)

)
be

the irreducible holomorphic representation of Kc
C defined by the dominant integral

weight λ and consider the corresponding smooth action of Gc on Hol
(D, F (λ)

)
given by (2.1): (

π(g).f
)
(z) = Jρ(g

−1, z)−1.f(g−1.z).

Differentiating this action leads to an action of the Lie algebra gC on the same
space. It turns out that the subspace of the constant functions is isomorphic to
F (λ) as a kcC-module, and that it generates a gC-submodule isomorphic to L(λ), the
irreducible highest weight module with highest weight λ. If, in addition, L(λ) is
unitarizable, then we even obtain a Gc-equivariant embeddingHλ ↪→ Hol

(D, F (λ)
)
.

We have already seen in Theorem II.11 that theH-eigenfunctions in Hol
(D, F (λ)

)
can be classified by the HK-eigenvectors in F (λ) which reduces the classification
problem on the level of holomorphic functions to the representation theory of the
compact Lie algebra kc.

Let Kz : Hλ → F (λ), f 7→ f(z) denote the point evaluation in z ∈ D. Then
the mapping Φ: D → B

(Hλ, F (λ)
)
, z 7→ K∗

z is holomorphic (cf. [Ne98, Lemma
A.III.11]) and therefore for each v ∈ F (λ) the mapping D → Hλ, z 7→ K∗

z .v is
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antiholomorphic. From that we conclude that K∗
z .v ∈ Hω

λ for all z ∈ D, v ∈ F (λ).

Now let ν ∈ H−ωλ . Then we define

fν : D → F (λ) by 〈fν(z), v〉 = 〈ν,K∗
z .v〉

for all v ∈ F (λ). For each s ∈ S := ΓGc(Ŵ
0
max) we then have

〈fν(s.z), v〉 = 〈ν,K∗
s.z.v〉.

Since the semigroup S acts also on D by

s.z := log
(
κ(η(s) exp z)

)
,

where η : S → GC is the natural homomorphism, we obtain a holomorphic extension

of the cocycle J̃ : Gc × D → Kc
C to J̃ : S × D → Kc

C, and hence an action of S on
Hol

(D, F (λ)
)

is given by

(s.f)(z) = Jρ(s
∗, z)−1.f(s∗.z).

Furthermore the semigroup S acts by bounded operators π̂λ(s) on the Hilbert space
Hλ and we have

Kz ◦ π̂λ(s) = Jρ(s
∗, z)−1 ◦Ks∗.z,

i.e., Ks.z = Jρ(s, z)Kz ◦ π̂λ(s∗). Therefore

〈fν(s.z), v〉 = 〈ν,K∗
s.z.v〉 = 〈ν, (Jρ(s, z)Kz ◦ π̂λ(s∗)

)∗
.v〉

= 〈ν, π̂λ(s)K∗
zJρ(s, z)

∗.v〉 = 〈ν ◦ π̂λ(s), K∗
zJρ(s, z)

∗.v〉
= 〈Jρ(s, z)Kz.

(
ν ◦ π̂λ(s)

)
, v〉.

Hence the holomorphy of the mappings z 7→ Jρ(s, z) and z 7→ Kz implies that this
expression depends holomorphically on z, hence that fν is holomorphic. Further-
more

〈fs.ν(z), v〉 = 〈s.ν,K∗
z .v〉 = 〈ν, π̂λ(s∗)K∗

z .v〉
= 〈ν,K∗

s∗.zJρ(s
∗, z)−∗.v〉 = 〈Jρ(s∗, z)−1.fν(s

∗.z), v〉
= 〈(s.fν)(z), v〉,

i.e., ν 7→ fν is S-equivariant. So we obtain an S-equivariant embedding

H−ωλ → Hol
(D, F (λ)

)
, ν 7→ fν .

Using this embedding, it is clear that the conclusion of Proposition VI.5 follows from
Theorem II.11. The interesting point in the preceding construction is that Theorem
II.11 always guarantees the existence of H-invariant holomorphic functions when-
ever F (λ) is a spherical Kc-module. For singular highest weight representations
(πλ,Hλ) it is not true in general that Hλ is spherical whenever F (λ) is. In terms of
the picture explained above, the correspondingH-invariant holomorphic function is
not contained in the closure of the Hilbert space when it is realized by holomorphic
functions on D. For more details on these problems for the special type of Cayley
type spaces we refer to [HiNe97].

Proposition VI.6. Let (πcλ,Hλ) be an (H,χ)-spherical highest weight represen-
tation of Gc. Then (πcλ|Kc , F (λ)) is (HK , χ

∗|HK )-spherical and λ|tch = dχ∗|tch .

Moreover χ∗|HK is unitary, hence coincides with χ|HK .
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Proof. The first assertion follows from Lemma VI.5(i). For the second one let

0 6= ν ∈ F (λ)(HK ,χ
∗| HK ). Then we obtain for all X ∈ tch that

〈χ(exp(X)).ν, vλ〉 = 〈(πcλ)−ω(expX).ν, vλ〉 = 〈ν, πcλ(exp−X).vλ〉
= ν(e−λ(X).vλ) = eλ(X).ν(vλ).

In view of ν(vλ) 6= 0, this proves the assertion. Finally the unitarity of χ∗|HK follows
from the fact that Kc acts unitarily on F (λ) and that F (λ) is χ∗|HK -spherical. �

Appendix. Analytic vectors and semigroups

In this appendix (π,H) denotes a continuous unitary representation of the Lie
group G with Lie algebra g on the Hilbert space H. We write Hω ⊆ H for the space
of analytic vectors, i.e., v ∈ Hω means that the orbit map G → H, g 7→ π(g).v is
real analytic. It is clear that Hω ⊆ H∞.

In this section we discuss a natural topology on the space Hω and some of its
properties.

If v ∈ Hω, then there exists an open connected 0-neighborhood U ⊆ gC and a
holomorphic map γv,U : U → H with γv,U (0) = v and γv,U (X) = π(expX).v for
X ∈ U ∩g. Let HU ⊆ H denote the subspace of all elements v for which γv,U exists.
Then we have a natural linear embedding

ηU : HU → Hol(U,H), v 7→ γv,U .

Lemma A.1. If we endow the space Hol(U,H) with the topology of uniform con-
vergence on compact subsets of U , then the image ηU (HU ) ⊆ Hol(U,H) is a closed
subspace of the Fréchet space Hol(U,H), hence inherits the structure of a Fréchet
space.

Proof. First we note that the topology of uniform convergence turns Hol(U,H) into
a Fréchet space. Since U can be covered by countably many compact subsets, it is
clear that the topology on Hol(U,H) is defined by a countable family of seminorms,
hence locally convex and metrizable. To see that it is complete, we first observe
that every Cauchy sequence (fn)n∈N in Hol(U,H) converges uniformly on compact
subsets of U to a continuous function f : U → H. Then f is weakly holomorphic
and locally bounded, hence holomorphic. This proves that Hol(U,H) is complete,
i.e., a Fréchet space.

To see that ηU (HU ) is a closed subspace, let γvn,U → f hold in Hol(U,H). Then
γvn,U (0) = vn → v := f(0) and hence

f(X) = lim
n→∞ γvn,U (X) = lim

n→∞π(expX).vn = π(expX).v

for all X ∈ U ∩ g. This means that f = γv,U = ηU (v). Thus ηU has a closed
image. �

In view of Lemma A.1, we obtain on each of the spaces HU a Fréchet space
structure. If U1 ⊆ U2, then HU2 ↪→ HU1 . That this inclusion is continuous fol-
lows from the fact that locally uniform convergence on U2 implies locally uniform
convergence on the smaller domain U1.

Since Hω is the union of the subspaces HU , we can endow it with the finest
locally convex topology which makes all the maps HU → Hω continuous.
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Lemma A.2. A linear mapping A : Hω → V into a locally convex space V is
continuous if and only if it is continuous on all the subspaces HU with respect to
their Fréchet space topology.

Proof. This is an immediate consequence of the definition of the topology on Hω.
�

We write H−ω for the space of antilinear continuous functionals on Hω, i.e.,
those functions on Hω which are continuous on each space HU with respect to its
Fréchet topology. Since all the inclusions HU ↪→ H are continuous, Lemma A.2
shows that the inclusion Hω → H is continuous. Its adjoint yields a continuous
map H ↪→ H−ω which is injective because Hω is dense in H. Thus we have natural
inclusions

Hω ↪→ H ↪→ H−ω

which are equivariant with respect to the natural actions of G and gC.

Proposition A.3. Let X ∈ g be such that Spec
(
i · dπ(X)

)
is bounded from above.

Then the subspaces H∞ and Hω are invariant under the hermitian operator eidπ(X)

which induces a continuous mapping on these spaces.

Proof. First we prove the invariance of H∞. In view of [Ne98, Th. II.4.38], we only
have to show that if we realize H as a reproducing kernel Hilbert space HK in CM
for M = H∞, then

D.
(
π(ExpX).v

) ∈ H
holds for all D ∈ U(gC) and v ∈ H∞.

Since for X ∈ gC the operator adX : D 7→ [X,D] on U(gC) is locally finite, it
makes sense to consider ei adX as an operator on U(gC). We claim that

D.
(
eiπ(X).v

)
= eidπ(X)

(
e−i adX .D

)
.v(A.1)

holds for v ∈ H∞ and D ∈ U(gC). It is clear that (A.1) implies the invariance of
H∞ because the right hand side is contained in eidπ(X).H∞ ⊆ H.

We write D 7→ D∗ for the unique antilinear antiautomorphism of U(gC) with
X∗ = −X for X ∈ gC. Let x ∈ H∞, C+ := {z ∈ C : Im z ≥ 0} and consider the
function

f : C+ → C, z 7→ 〈v, ezdπ(X)D∗.x〉.
Then the strong continuity of the representation C+ → B(H), z 7→ ezdπ(X) (cf.
[Ne98, Lemma IV.5.2]) implies that f is continuous and antiholomorphic on the
open upper half plane int(C+). The same holds for the function

h : C+ → C, z 7→ 〈v, (ez adX .D∗)ezdπ(X).x〉
because [X,A]∗ = [A∗, X∗] = −[A∗, X ] = [X,A∗] for A ∈ U(gC) yields

(ez adX .D∗)∗ = ez adX .D

and therefore

h(z) = 〈(ez adX .D).v, ezdπ(X).x〉
which immediately shows that h is antiholomorphic.
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For z ∈ R we have

f(z) = 〈v, ezdπ(X)D∗.x〉 = 〈v, π(exp zX)D∗.x〉
= 〈v, (ez ad(X).D∗)π(exp zX).x〉 = 〈v, (ez adX .D∗)ezdπ(X).x〉 = h(z).

Therefore the Identity Theorem for Antiholomorphic Functions on half planes im-
plies that f = h. We conclude with

(
D.
(
eidπ(X).v

))
(x) = 〈D.(eidπ(X).v

)
, x〉 = 〈eidπ(X).v,D∗.x〉 = 〈v, eidπ(X)D∗.x〉

that

〈D.(eidπ(X).v
)
, x〉 = f(i) = h(i) = 〈eidπ(X).(e−i adX .D).v, x〉

for all x ∈M , and thus

D.
(
eidπ(X).v

)
= eidπ(X)

(
e−i adX .D

)
.v.(A.2)

This completes the proof of the invariance of H∞. Moreover, it shows that
eidπ(X)|H∞ is a continuous map.

Now we turn to the space Hω. Let v ∈ Hω and fix U ⊆ gC as above with
v ∈ HU . Then γv,U (Y ) = π(expY ).v for all Y ∈ U ∩ g. Let V ⊆ U be an open

convex 0-neighborhood in gC with ez adX .V ⊆ U whenever |z| ≤ 1. We claim that

π(expY )eidπ(X).v = eidπ(X)γv,U (e−i adX .Y )(A.3)

holds for all Y ∈ V ∩ g. In fact, the mappings

C+ → H, z 7→ π(expY )ezdπ(X).v and z 7→ ezdπ(X)γv,U (e−z adX .Y )

are both continuous and holomorphic on the open upper half plane. Moreover, for
z ∈ R, they coincide. Hence a similar argument as in the first part of the proof shows
that both functions coincide, and for z = i this proves the proposition. Now the
analyticity of γv,U implies that the mapping G→ H, g 7→ π(g)eidπ(X).v is analytic

on V and thus by equivariance analytic on G. This means that eidπ(X).v ∈ Hω.
To see that eidπ(X) induces a continuous map Hω → Hω, we first note that we

only have to show that for each U the corresponding map HU → Hω is continuous
(Lemma A.2).

In view of the Identity Theorem for Holomorphic Functions, (A.3) shows that

γeidπ(X).v,V (Y ) = eidπ(X)γv,U (e−i adX .Y )

for all Y ∈ V . This proves that eidπ(X).HU ⊆ HV and that vn → v in HU implies
eidπ(X).vn → eidπ(X).v in HV . Since the mapping HV → Hω is continuous by
definition of the topology on Hω, this completes the proof. �

Lemma A.4. (a) For each g ∈ G the map π(g) : Hω → Hω is continuous and the
orbit maps G→ Hω, g 7→ g.v for v ∈ Hω are continuous.

(b) For each v ∈ Hω the limit

dπ(X).v = lim
t→0

1

t

(
π(exp tX).v − v

)
exists in Hω.

(c) For each X ∈ gC the operator dπ(X) : Hω → Hω is continuous.
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Proof. (a) We have to show that for each U the map π(g) : HU → Hω is continuous
whenever U is sufficiently small. Let U ⊆ gC be a convex 0-neighborhood on which
the Campbell-Hausdorff series X ∗Y = X+Y + 1

2 [X,Y ]+ . . . defines a holomorphic
multiplication U × U → gC. For g = exp(Y ), Y ∈ U ∩ g, v ∈ HU∗U we then have

γπ(g).v,U (X) = π(expX)π(g).v = π(expX)π(expY ).v

= π(expX ∗ Y ).v = γv,U∗U (X ∗ Y )

for all X ∈ U . This shows that π(g) : HU∗U ⊆ HU and that the corresponding
linear map HU∗U → HU is continuous. Thus π(g) : HU∗U → Hω is continuous, and
hence π(g) : Hω → Hω is continuous because the 0-neighborhoods of the form U ∗U
form a 0-neighborhood basis. Since G = 〈exp(U ∩ g)〉, we see that for each g ∈ G
the corresponding map Hω → Hω is continuous.

To show that the orbit maps G → Hω are continuous, in view of the first part,
it suffices to prove that they are continuous in 1. For U as above, v ∈ HU∗U , and
g = expY ∈ exp(U ∩ g) we have just seen that

γπ(g).v,U (X) = γv,U∗U (X ∗ Y ),

and this implies that gn → 1, i.e., Y → 0 entails that π(gn).v → v in HU∗U , and
hence in Hω.

(b) Since the inclusions HU → Hω are continuous, it suffices to show that for
each v ∈ HU∗U the relation

dπ(X).v = lim
t→0

1

t

(
π(exp tX).v − v

)
(A.4)

holds with respect to the topology in HU . We have seen in (a) that for tX ∈ U we
have π(exp tX).HU∗U ⊆ HU . Furthermore

γπ(exp tX).v,U (Y ) = γv,U∗U (Y ∗ tX)

gives

1

t

(
γπ(exp tX).v,U (Y )− γv,U (Y )

)
=

1

t

(
γv,U (Y ∗ tX)− γv,U (Y )

)→ dγv,U (Y )dλ∗Y (0).X,

where λ∗Y (X) = Y ∗ X and the limit exists uniformly on compact subsets of U .
This proves that the limit exists in HU . Finally the continuity and the injectivity
of the mapping Hω → H shows that (A.4) holds in HU , hence in Hω.

(c) First we show that for each open connected 0-neighborhood U ⊆ gC we have
dπ(X).HU ⊆ HU . Let v ∈ HU and γv,U : U → H be the corresponding holomorphic
map. We put

ηv,U (Y ) := dπ(ead Y .X)γv,U (Y )

and note that since γv,U (U) ⊆ H∞, the right hand side is well defined. Moreover,
for each Z ∈ gC the mapping Y 7→ dπ(Z).γv,U (Y ) is holomorphic because it arises
by applying a right invariant holomorphic vector field on U , endowed with the
canonical local group structure, to a holomorphic function. Now the fact that g is
finite dimensional easily implies that ηv,U is a holomorphic map.

For Y ∈ g ∩ U we have

ηv,U (Y ) = dπ(eadY .X)γv,U (Y ) = π(expY )dπ(X)π(exp−Y )π(exp Y ).v

= π(expY )dπ(X).v = γdπ(X).v,U (Y ).
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This formula shows that dπ(X).v ∈ HU and that

γdπ(X).v,U (Y ) = dπ(eadY .X)γv,U (Y )

for all Y ∈ U . Therefore vn → v in HU implies locally uniform convergence of
γvn,U to γv,U , and hence locally uniform convergence of γdπ(X).vn,U to γdπ(X).v,U

because holomorphic vector fields yield continuous operators on spaces of holomor-
phic functions. �

Proposition A.5. Suppose that S = ΓG(W ) is an open complex Ol’shanskĭı semi-
group, where W ⊆ ig is a hyperbolic cone and that (π,H) is a holomorphic repre-
sentation of S corresponding to the unitary representation (π,H) of G. Then the
following assertions hold:

(i) Hω = span
(
π(S).H).

(ii) If X ∈W 0, then Hω =
⋃
t>0 π(Exp tX).H.

(iii) The topology on Hω coincides with the finest locally convex topology for which
all the maps π(s) : H → Hω are continuous.

Proof. (i), (ii) Since S is an open Ol’shanskĭı semigroup and π is a holomorphic
representation, the maps S → H, s 7→ π(s).v are holomorphic. So it is clear that
π(S).H ⊆ Hω. Therefore it suffices to prove (ii).

So let X ∈ W 0 and suppose that v ∈ Hω. Then there exists an open convex
0-neighborhood U ⊆ gC and a complex analytic map

γ : U → H with γ(Y ) =

∞∑
n=0

1

n!
dπ(Y )n.v

for all Y ∈ U . In view of the Identity Theorem for Holomorphic Functions, the
relation γ(Y ) = π(ExpY ).v for Y ∈ U ∩ (g + iW 0) follows from the holomorphy of
the representation π.

We choose t0 > 0 such that −t0X ∈ U and an open convex 0-neighborhood
V ⊆ U containing −t0X with t0X + V ⊆ U . We claim that

π(Exp t0X)γ(zX) = γ
(
(z + t0)X

)
whenever zX ∈ V . In fact, this holds for Re z > 0 because γ

(
(z + t0)X

)
=

π
(
Exp(z + t0)X

)
.v in this case, and π is a representation. Hence the Identity

Theorem for Holomorphic Functions proves the claim. For z = −t0 we obtain in
particular

v = γ(0) = π(Exp t0X)γ(−t0X) ∈ π(Exp t0X).H.
This completes the proof of (i) and (ii).

(iii) We write Hω
a for the space Hω endowed with the topology defined under

(iii). First we show that the map Hω → Hω
a is continuous, i.e., that for each open

connected 0-neighborhood U the map HU → Hω
a is continuous. Pick X ∈W 0 such

that −X ∈ U . Then we have seen in the proof of (ii) that π(ExpX).γv,U (−X) = v.
Hence HU ⊆ π(ExpX).H and therefore γv,U (−X) = π(ExpX)−1.v. If vn → v in
HU , then γvn,U (−X) → γv,U (−X), and hence π(ExpX)−1.vn → π(ExpX)−1.v.
This proves continuity of the map Hω → Hω

a .
To see that the map in the other direction is also continuous, fix s ∈ S0. We

have to show that the map π(s) : H → Hω is continuous. Let U ⊆ gC be an open
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connected 0-neighborhood such that U → S0, Y 7→ Exp(Y )s is biholomorphic onto
an open subset of S0. For v ∈ H we consider the map

γπ(s).v,U : U → H, Y 7→ π(ExpY s).v(A.5)

which is holomorphic and satisfies

γπ(s).v,U (Y ) = π(expY )π(s).v

for all Y ∈ U ∩ g. The existence of this map proves that π(s).H ⊆ HU . Now the
local boundedness of the representation of S further shows that if vn → v, then,
in view of (A.5), γπ(s).vn,U converges uniformly on each compact subset of U to
γπ(s).v,U . This means that the map π(s) : H → HU is continuous. �

We note that in the situation of Proposition A.5 the family of subspaces π(s).H,
s ∈ S, is directed. In fact, for s1, s2 ∈ S there exists s3 ∈ S with s1, s2 ∈ s3S.
Then clearly π(s1).H ∪ π(s2).H ⊆ π(s3).H.

Recall the spaceH−ω of antilinear continuous functionals onHω. In the situation
of Proposition A.5 a linear functional f on Hω lies in H−ω if and only if s.f =
f ◦ π(s∗) : H → C is continuous for all s ∈ S. This means that s.f ∈ H for all
s ∈ S. Thus we can describe H−ω as the space

H−ω =
⋂
s∈S

π(s)−1.H.

In this sense the operators in π(S) act as regularizing operators on H−ω.
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gebra, Geometry and Analysis, K. H. Hofmann et al., eds., de Gruyter, 1995. MR
97b:22017

[Ne96a] , Invariant convex sets and functions in Lie algebras, Semigroup Forum 53
(1996), 230–261. MR 97j:17033

[Ne96b] , On the complex and convex geometry of Ol’shanskĭı semigroups, Institut
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