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NILPOTENT ORBITS AND THETA-STABLE

PARABOLIC SUBALGEBRAS

ALFRED G. NOËL

Abstract. In this work, we present a new classification of nilpotent orbits
in a real reductive Lie algebra g under the action of its adjoint group. Our
classification generalizes the Bala-Carter classification of the nilpotent orbits
of complex semisimple Lie algebras. Our theory takes full advantage of the
work of Kostant and Rallis on pC , the “complex symmetric space associated
with g”. The Kostant-Sekiguchi correspondence, a bijection between nilpotent
orbits in g and nilpotent orbits in pC , is also used. We identify a fundamental
set of noticed nilpotents in pC and show that they allow us to recover all other
nilpotents. Finally, we study the behaviour of a principal orbit, that is an
orbit of maximal dimension, under our classification. This is not done in the
other classification schemes currently available in the literature.

Introduction

Let gC be a semisimple Lie algebra and GC its adjoint group. We say that an
element x of gC is nilpotent if and only if, adx : y → [x, y] for all y ∈ gC , is a
nilpotent endomorphism of gC . Kostant (see also Dynkin [Dy]) has shown, in his
fundamental 1959 paper [Ko], that the number of nilpotent orbits of GC in gC is
finite. The Bala-Carter classification can be expressed as follows:

There is a one-to-one correspondence between nilpotent orbits of gC and con-
jugacy classes of pairs (m, pm), where m is a Levi subalgebra of gC and pm is a
distinguished parabolic subalgebra of the semisimple algebra [m,m]. In this cor-
respondence, the nilpotent gC orbit comes from the Richardson orbit of P

m
, the

connected subgroup of GC with Lie algebra pm , on the nilradical of pm .
This work shows how a theory similar to the Bala-Carter classification can be

used to parametrize nilpotent orbits of a semisimple real Lie algebra g under the
action of its adjoint group G. For a Cartan decomposition g = k ⊕ p of g let
KC be the complexification of the connected subgroup K of G with Lie algebra k.
Sekiguchi [Se] proves that there is a one to one correspondence between the G-orbits
in g and the KC-orbits in pC . We call this correspondence the Kostant-Sekiguchi
correspondence since it was first conjectured by Kostant. This allows us to exploit
the rich theory of symmetric spaces [K-R].

A real reductive Lie algebra g has a Cartan decomposition g = k⊕p for a Cartan
involution θ. Hence, by complexification we obtain gC = kC ⊕ pC . Denote by σ the
conjugation of gC with regard to g.
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Our main classification theorem is proved in section 3. We prove that the orbits
KC

.e are in one-to-one correspondence with the triples of the form (l, q
l
,w), where

e is a non-zero nilpotent in pC , l is a minimal (θ, σ)-stable Levi subalgebra of gC
containing e, q

l
is a θ stable parabolic subalgebra of [l, l] and w is a certain L∩KC

prehomogeneous subspace of q
l
∩ pC containing e [Theorem 3.2.4]. We note that

Kawanaka has obtained related results. [Ka]
Complex semisimple Lie algebras regarded as real do not give rise to any new

nilpotent orbits. Their compact real forms contain no non-zero nilpotent. Therefore
we can limit our analysis to their non-compact real forms. Such simple real Lie
algebras were classified by Cartan and can be found in Helgason [He]. Note that
a complex conjugacy class of a real nilpotent can split under the action of the real
adjoint group. For example the two matrices

(
0 1
0 0

)
and

(
0 0
1 0

)
are conjugate under the complex group PSL2(C) but not under the real group
PSL2(R).

In section 1, we explain the nature of the Kostant-Sekiguchi correspondence.
Given a nilpotent element e in pC , we give a method for constructing a minimal
θ-stable Levi subalgebra containing e [Proposition 1.1.3]. A KS-triple (x, e, f) in
gC , that is a normal triple in Kostant-Rallis’ sense with the additional property that
σ(e) = f , is associated to a θ-stable parabolic subalgebra q of gC . Several important
Richardson-type theorems are also proved [Proposition 1.2.1 and Theorems 1.2.3,
1.2.6]. For example , let Q be the connected subgroup of GC with Lie algebra q. If
q = l⊕u is the Levi decomposition of q and if e is even we have Q ∩KC

.e = u∩ pC .
This explains the fact that our theory is so close to that of Bala and Carter for
even orbits. Define L to be the connected subgroup of GC with Lie algebra l.

In section 2 we introduce the notion of noticed nilpotent element. Such an
element e of pC is characterized by the fact that the reductive centralizer k(x,e,f)

C is
trivial [Lemma 2.1.1]. In fact a nilpotent is always noticed in the minimal (θ, σ)-
stable Levi subalgebra that contains it. Furthermore e is even and noticed if and

only if q = l ⊕ u and dim l ∩ kC = dim
u∩pC

[u∩kC ,u∩pC ] [Theorem 2.1.6]. This dimension

criteria is very similar to the one that Bala and Carter give for their distinguished
parabolic subalgebras. Finally we show that there are, in fact, non-even noticed
elements whose associated θ-stable parabolic subalgebra does not satisfy the above
dimension condition. This implies that our classification is different from the Bala-
Carter classification, where all the distinguished nilpotent elements are even. A
distinguished element in pC is noticed but not vice versa.

In section 4 we give a description of the noticed orbits of the classical simple
real Lie algebras in terms of signed Young diagrams. Among other results we show
that the non-zero noticed nilpotent orbits of sln(R) are parametrized by partitions
of n with distinct parts. The noticed orbits of most of the real simple algebras are
even. The classical algebras so∗2n, su∗2n, sp(p, q) have no non-zero noticed nilpotent
orbits [Theorem 4.2.1]. An exceptional simple real Lie algebra contains a non-zero
noticed element if and only if it is quasi-split [Proposition 4.1.1].

In the last section we analyze the behaviour of a principal nilpotent element of
pC , i.e. an element whose KC-orbit has maximal dimension among all KC-nilpotent
orbits, under the classification. The main result is that a principal nilpotent element
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e is regular in the minimal (θ, σ)-stable Levi subalgebra l of gC containing it and
the real form l0 of l is quasi-split [Theorem 5.1.8].

Nilpotent orbits have been used extensively in Representation Theory. Their
geometric structure is still being investigated by several researchers. Θ-stable para-
bolic subalgebras also play an important role in Representation Theory, specifically
through the work of Zuckerman and Vogan on Cohomological Induction. Our clas-
sification relates the two concepts.

1. Θ-stable Levi subalgebras

1.1. Minimal θ-stable Levi subalgebras. Let g be a real reductive Lie algebra
with adjoint group G and gC its complexification. Also let g = k ⊕ p be a Cartan
decomposition of g. Finally, let θ be the corresponding Cartan involution of g and
σ be the conjugation of gC with regard to g . Then gC = kC ⊕ pC where kC and pC
are obtained by complexifying k and p respectively. Denote by KC the connected
subgroup of the adjoint group GC of gC , with Lie algebra kC .

Definition. By a (σ, θ)-stable Levi subalgebra of gC we shall mean a Levi subal-
gebra of a θ-stable parabolic subalgebra of gC in Vogan’s sense [Vo]. In other words
if l is a (σ, θ)-stable Levi subalgebra of gC , then there exists a θ-stable parabolic
subalgebra q ⊆ gC with Levi decomposition q = l⊕u such that θ(l) = l and σ(l) = l.
Every such l is of the form l = gzC for some z ∈ ik.

A triple (x, e, f) in gC is called a standard triple if [x, e] = 2e, [x, f ] = −2f and
[e, f ] = x. If x ∈ kC , e and f ∈ pC , then (x, e, f) is a normal triple. It is a result of
Kostant and Rallis [K-R] that any nilpotent e of pC can be embedded in a standard
normal triple (x, e, f). Moreover e is KC-conjugate to a nilpotent e′ inside of a
normal triple (x′, e′, f ′) with σ(e′) = f ′ [Se]. The triple (x′, e′, f ′) will be called a
Kostant-Sekiguchi or KS-triple .

Every nilpotent E′ in g is G-conjugate to a triple (H,E, F ) in g with the property
that θ(H) = −H and θ(E) = −F [Se]. Such a triple will be called a KS-triple also.

Define a map c from the set of KS-triples of g to the set of normal triples of gC
as follows:

x = c(H) = i(E − F ),

e = c(E) =
1

2
(H − i(E + F )),

f = c(F ) =
1

2
(H + i(E + F )).

The triple (x, e, f) is called the Cayley transform of (H,E, F ). It is easy to ver-
ify that the triple (x, e, f) is a KS-triple and that x ∈ ik. The Kostant-Sekiguchi
correspondence [Se] gives a one-to-one map between the set of G-conjugacy classes
of nilpotents in g and the KC-conjugacy classes of nilpotents in pC . This correspon-
dence sends the zero orbit to the zero orbit and the orbit through the nilpositive
element of a KS-triple to the one through the nilpositive element of its Cayley trans-
form. Recently, Michèle Vergne [Ve] has proved that there is in fact a K-invariant
diffeomorphism between the G-conjugacy class and the KC-conjugacy class assso-
ciated by the Kostant-Sekiguchi correspondence.

The KS-triple (x, e, f) in gC corresponds to a real KS-triple (H,E, F ) in g un-
der the Kostant-Sekiguchi map and the reductive centralizer k(x,e,f)

C = k(H,E,F ) ⊕
ik(H,E,F ) is θ-stable and σ-stable.
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Let s = keC be the centralizer of e in kC . Call any subalgebra of kC consisting of
semisimple elements toral. Any toral subalgebra is commutative [H1]. A Cartan
subalgebra of a Lie algebra is a self-normalizing Lie subalgebra [H1]. We shall need
the following lemma:

Lemma 1.1.1. Let t be a maximal toral subalgebra of s. Then st is a Cartan
subalgebra of s, and t consists exactly of the semisimple elements in st.

Proof. This is part of the proof of Theorem 8.1.1 of [C-Mc].

Let t1 and t2 be two maximal toral subalgebras of s. Then st1 is Ke
C -conjugate

to st2 by a map that must send t1 to t2 because Ke
C preserves semisimplicity and

nilpotence in kC . Hence any two maximal toral subalgebras of keC are conjugate
under Ke

C .

Lemma 1.1.2. If t is a Cartan subalgebra of k(x,e,f)
C , then t is a maximal toral

subalgebra of keC .

Proof. We know that keC = k(x,e,f)
C ⊕ u

e
where u

e
is an adx invariant nilpotent ideal

of keC . Let t′ be a maximal toral subalgebra of keC such that t $ t′. Any element z of
t′ \ t can be written in the form of

z = z1 + z2 with z1 ∈ k(x,e,f)
C and z2 ∈ ue .

But

[t, z] = [t, z1]⊕ [t, z2] = 0.

Hence

[t, z1] = 0 and [t, z2] = 0,

since k(x,e,f)
C normalizes itself and gC .

Clearly z1 is in t, for t is a maximal toral subalgebra of k(x,e,f)
C . It follows that

z − z1 is in t′, that is, z − z1 is semisimple. Since z − z1 = z2 and z2 is nilpotent,
z2 = 0. Hence z must be in t.

Proposition 1.1.3. If l is a minimal (σ, θ)-stable Levi subalgebra of gC containing
a nilpotent element e of pC , then l = gt

C , where t is a maximal toral subalagebra of
keC .

Proof. Let (H,E, F ) be a KS-triple in g. By definition l = gzC for some z in ik.

Since iz ∈ k, we can find a maximal torus t
0

of k(H,E,F ) containing iz. Therefore
t = t

0
⊕ it

0
is a Cartan subalgebra of k(x,e,f)

C containing z. From Lemma 1.1.2 it is

also a maximal toral subalgebra of keC . Moreover gt
C ⊆ gzC = l.

We shall now prove that gt
C is a (σ, θ)-stable Levi subalgebra of gC containing e.

By minimality of l, this will complete the proof.
Since t is (σ, θ) stable, so is the centralizer gt

C. Let ∆ = ∆(gC , h) be the root
system relative to a Cartan subalgebra h of gC such that t ⊂ h. Then gt

C is the Levi
subalgebra generated by h and all the root spaces for the roots α ∈ ∆ such that
α(t) = 0.

We proceed to prove the following theorem.

Theorem 1.1.4. Any two minimal (σ, θ)-stable Levi subalgebras of gC containing
a nilpotent element e of pC are Ke

C conjugate.
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Proof. Let l1 and l2 be two minimal (σ, θ)-stable minimal Levi subalgebras of gC
containing e. Then l1 = gt1

C and l2 = gt2
C , where t1 and t2 are two maximal toral

subalgebras of keC . Since t1 and t2 are Ke
C -conjugate, so are l1 and l2.

1.2. Some denseness theorems. Let (x, e, f) be a KS-triple with x ∈ ik. From
the representation theory of sl2, gC has the following eigenspace decomposition:

gC =
⊕
j∈Z

g(j)
C where g(j)

C = {z ∈ gC | [x, z] = jz}.

The subalgebra q =
⊕
j∈N

g(j)
C is a parabolic subalgebra of gC with a Levi part

l = g(0)
C and nilradical u =

⊕
j∈N∗

g(j)
C .

Call q the Jacobson-Morosov parabolic subalgebra of e relative to the triple
(x, e, f). Our choice of the triple (x, e, f) forces q to be θ-stable in Vogan’s sense.

Retain the above notations. Let Q and L be the connected subgroups of GC with
Lie algebras q and l respectively. Define L ∩ KC to be the connected subgroup of
GC with Lie algebra l ∩ kC . We shall prove some facts about some eigenspaces of x
in pC .

Kostant and Rallis ([K-R, in proof of Lemma 4]) proved that L ∩ KC
.e is dense

in g(2)
C ∩ pC which is therefore a prehomogeneous space in Sato’s sense.

Let q be the Jacobson-Morozov parabolic subalgebra of e relative to the normal
triple (x, e, f). Then

Proposition 1.2.1. Q ∩ KC .e is dense in
⊕
i≥2

g(i)
C ∩ pC . Moreover if e is even, that

is g(i)
C = 0 for i odd, then Q ∩KC

.e = u ∩ pC .

Proof. The proof can easily be obtained by modifying an argument of Carter [Ca,
Proposition 5.7.3].

Lemma 1.2.2. With the above notation dim g(1)
C ∩ kC = dim g(1)

C ∩ pC .

Proof. See [No2].

The author wishes to thank Cary Rader for suggestions regarding the proof of
the following theorem.

Theorem 1.2.3. L ∩KC has finitely many orbits on each eigenspace g(i)
C ∩ pC .

Proof. Let S = {1, θ} and define H = L ×φ S to be the semidirect product of L
and S where φ is a homomorphism from S to Aut(L) such that for s ∈ S and y ∈
L, φ(s)(y) = s(y). If we identify L and S with L × 1 and 1 × S respectively, then
they are closed subgroups of H . If (y1, s1) and (y2, s2) are two elements of H , then
the group multiplication law on H is defined so that

(y1, s1)×φ (y2, s2) = (y1φ(s1)y2, s1s2).

Observe that S is diagonalizable and since L is a subgroup of index 2 in H , it is
normal in H . Moreover gC is stable under the adjoint representation of H . Let
LS = {y ∈ L|sys−1 = y for every s ∈ S}. It is obvious that LS = L ∩KC and that
the (−1) weight space of S in g(i)

C is g(i)
C ∩ pC . The fact that L has a finite number
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of orbits on g(i)
C [R2, Theorem E] implies that

gC(i) ∩ pC ⊆
n⋃
j=1

L.zj for zj ∈ g(i)
C .

Our theorem now follows from a result of Richardson [R2, Theorem A] that if
z ∈ g(i)

C ∩ pC , then L ∩ KC has only a finite number of orbits on the intersection

(L.z) ∩ (g(i)
C ∩ pC).

We shall now prove a theorem of great importance to us. We shall show that

L∩KC has a finite number of orbits on
u∩pC

[u∩kC ,u∩pC ] . But first, we give a Lie algebra

version of a theorem of R.W. Richardson. See ([Röh, Theorem 1.4]).
Some definitions are needed. Let Φ be a root system of gC and ∆ the set of

simple roots determined by our choice of a positive root system Φ+. It is a well
known fact that any parabolic subalgebra is GC -conjugate to a parabolic of the form
p = l ⊕ u, where

l = h⊕
∑
α∈〈Λ〉

gαC

and

u =
∑

α∈Φ+\〈Λ〉
gαC .

Here, Λ ⊆ ∆, 〈Λ〉 denotes the subroot system of Φ generated by Λ and h is the
Cartan subalgebra of gC relative to ∆. See [C-Mc].

Proposition 1.2.4. Retaining the above notation

1. u and [u, u] are the direct sum of their 1-dimensional root spaces.
2. A root α of u is a root of [u, u] if and only if it is the sum of two roots of u.

Such roots are called decomposable.
3. A root in u is indecomposable if and only if it is the sum of one simple root

not in Λ and various simple roots in Λ.

Proof. See Collingwood and McGovern [C-Mc, Proposition 8.2.7].

Let q = l + u be the Jacobson-Morozov parabolic subalgebra relative to the
standard triple (x, e, f) of gC . Let L be the connected subgroup of GC with Lie
algebra l. We obtain:

Theorem 1.2.5 (Richardson). L has only a finite number of orbits on u
[u,u] . In

particular there exists a unique dense orbit and so dim l ≥ dim u
[u,u] .

Proof. See [No2], [R2, Theorem E].

Now, let (x, e, f) be a normal triple and q = l ⊕ u its Jacobson-Morozov para-
bolic. The next theorem is very important. It shows that L∩KC has a dense orbit

on
u∩pC

[u∩kC ,u∩pC ] .

Theorem 1.2.6. L ∩KC has only a finite number of orbits on
u∩pC

[u∩kC ,u∩pC ] .

In particular there exists a unique dense (L ∩ KC)-orbit and so dim l ∩ kC ≥
dim

u∩pC
[u∩kC ,u∩pC ] .
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Proof. Define S and H as in Theorem 1.2.3. Then L ∩KC = LS. First we observe

that
u∩pC+[u,u]

[u,u] is included in
(

u
[u,u]

)
−1

, the −1 weight of S in u
[u,u] . It is a general

fact (see [Br, Theorem 5.20]) that

u ∩ pC + [u, u]

[u, u]
∼= u ∩ pC

[u, u] ∩ (u ∩ pC)
.

Furthermore

[u ∩ kC , u ∩ pC ] ⊆ [u, u] ∩ (u ∩ pC).

The fact that

[u, u] ⊆ [u ∩ kC ] + [u ∩ kC , u ∩ pC ]

implies that

[u, u] ∩ (u ∩ pC) ⊆ [u ∩ kC , u ∩ pC ]

because

[u ∩ kC , u ∩ pC ] ⊆ (u ∩ pC) and (u ∩ kC) ∩ (u ∩ pC) = 0.

Hence
u ∩ pC

[u, u] ∩ (u ∩ pC)
=

u ∩ pC

[u ∩ kC , u ∩ pC ]
.

It follows that

u ∩ pC

[u ∩ kC , u ∩ pC ]
⊆
(

u

[u, u]

)
−1

.

From the previous theorem u
[u,u] is included in a finite union of L orbits. Each such

orbit intersected with
(

u
[u,u]

)
−1

is a finite union of L ∩ KC orbit by Richardson.

[R2, Theorem A]. The desired result follows.

2. Noticed nilpotent orbits in symmetric spaces

2.1. Noticed nilpotent elements and θ-stable parabolic subalgebras.

Definition. A nilpotent element e in pC (or its KC-orbit) is noticed if the only
(θ, σ)-stable Levi subalgebra of gC containing e (or eqivalently meeting KC .e) is gC
itself.

A Levi subalgebra l contains e if and only if [l, l] does. Thus if e is noticed in l,
it is actually noticed in the semi-simple subalgebra [l, l] and any nilpotent e ∈ pC
is noticed in any minimal (θ, σ)-stable Levi subalgebra l containing it.

Let (x, e, f) be a normal triple. Then from Proposition 1.1.3, e is noticed if and
only if k(x,e,f)

C = {0}. Recall the Z2-gradation

gC =
⊕
i∈Z

g(i)
C =

⊕
i∈Z

g(i)
C ∩ kC ⊕ g(i)

C ∩ pC .

Using this gradation it is easy to give a criterion for a nilpotent e ∈ pC to be noticed.

Lemma 2.1.1. Retain the above notations. Then a nilpotent element e in pC is
noticed if and only if dim g(0)

C ∩ kC = dim g(2)
C ∩ pC .
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Proof. Dragomir Djoković proved the following result in section 12 of [D1]:
Let (x, e, f) be a normal triple of gC . Let l(e) be a Levi factor of keC . For any

integer i let

N(0, i) = dim g(i)
C ∩ kC ,

N(1, i) = dim g(i)
C ∩ pC .

Then dim l(e) = N(0, 0)−N(1, 2).
Note that k(x,e,f)

C is a Levi factor of keC . Hence,

dim k(x,e,f)
C = dim g(0)

C ∩ kC − dim g(2)
C ∩ pC .(2.1.2)

But e is noticed if and only if k(x,e,f)
C = 0. The lemma follows.

Later, we shall give a classification of the conjugacy classes of the nilpotent orbits
of KC in pC . It is a generalization of the Bala-Carter classification for GC-nilpotent
orbits in gC [B-C1]. Bala and Carter use the notion of distinguished parabolic sub-
algebra in order to parametrize the nilpotent orbits of gC . Such parabolic algebras
always contain a distinguished nilpotent element in gC .

Definition. A nilpotent element X in gC (or its GC-orbit) is distinguished if the
only Levi subalgebra of gC containing X (or eqivalently meeting GC .X) is gC itself.

Clearly any distinguished nilpotent belonging to pC is automatically noticed.
Furthermore Bala and Carter give the following criterion for a nilpotent X ∈ gC to
be distinguished:

Lemma 2.1.3. Retain the above notations. Then X is distinguished if and only if
dim g(0)

C = dim g(2)
C .

Proof. See Bala and Carter [B-C1] or Collingwood and McGovern [C-Mc, Lemma
8.2.1].

Observe the similarity between the criterion for X to be distinguished and that
for e to be noticed.

Recall that a non-zero nilpotent X of gC is even if and only if g(i)
C = 0 whenever

i is odd. Bala and Carter also proved that:

Theorem 2.1.4. Any distinguished nilpotent X ∈ gC is even.

Proof. See Bala and Carter [B-C1] or Collingwood and McGovern [C-Mc, Theorem
8.2.3].

The above eveness property is not shared by noticed nilpotent elements in pC .
We shall give some examples. But first we give the Bala-Carter characterization of
distinguished parabolic subalgebras.

Let H,X, Y be a standard triple of gC and let p be the Jacobson-Morozov para-
bolic subalgebra of X with Levi decomposition p = m⊕ v. Then we have:

Theorem 2.1.5. X is distinguished if and only if dimm = dim v
[v,v] .

Proof. See Bala and Carter [B-C1] or Collingwood and McGovern [C-Mc, Theorem
8.2.6].
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Therefore it makes sense to define an arbitrary parabolic subalgebra p = m⊕ v
to be distinguished if dimm = dim v

[v,v] .

If e is an even noticed nilpotent element of pC , then we can prove a theorem
similar to Theorem 2.1.5.

Theorem 2.1.6. Let e be an even nilpotent element of pC . Let q be a θ-stable
Jacobson-Morosov parabolic subalgebra of e relative to a triple (x, e, f) defined as

above. Then q = l ⊕ u and dim l ∩ kC = dim
u∩pC

[u∩kC ,u∩pC ] if and only if e is noticed.

Proof. We may assume that q is defined as above. Let u′ =
⊕
i≥4

g(i)
C . Then

dim l ∩ kC = dim g(0)
C ∩ kC ,

while

dim g(2)
C ∩ pC = dimu ∩ pC − dimu′ ∩ pC .

By definition we have

[u ∩ kC , u ∩ pC ] ⊂ u′ ∩ pC .

By the representation theory of sl2,

if z ∈ g(i)
C ∩ pC and i ≥ 4, then z = [e, z′] for some z′ in g(i−2)

C ∩ kC ⊂ u ∩ kC .

Hence

u′ ∩ pC ⊂ [u ∩ kC , u ∩ pC ].

The conclusion follows at once from Theorem 1.2.6 and Lemma 2.1.1.

For exceptional Lie algebras one obtains the following:

Proposition 2.1.7. Let gC be an exceptional simple complex Lie algebra. Let q =
l⊕ u be a θ-stable Jacobson-Morosov parabolic subalgebra of e relative to a normal

triple (x, e, f) defined as above. If e is noticed, then dim l ∩ kC = dim
u∩pC

[u∩kC ,u∩pC ] .

Proof. For our purpose we use the tables obtained by Djoković [D1, D2] in order
to isolate the orbits of interest. In view of the previous theorem, we only need to
consider non-even orbits for which k(x,e,f)

C = 0. It turns out there are only five of
them (see Table 1).

The details can be found in [No2]. Since q is the Jacobson-Morosov parabolic
subalgebra of e, we have

u ∩ pC

[u ∩ kC , u ∩ pC ]
∼= g(1)

C ∩ pC ⊕
g(2)

C ∩ pC

[g
(1)
C ∩ kC , g

(1)
C ∩ pC ]

as L ∩KC-modules.
Following Djoković we find that the only relevent cases come from the real forms

E7(7), E8(8) and E6(6).
Computations using the software Lie on a Macintosh IIci reveal that

dim g(0)
C ∩ kC = dim g(2)

C ∩ pC ,

dim g(1)
C ∩ kC = dim[g(1)

C ∩ kC , g
(1)
C ∩ pC ]

as indicated in the following table.
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Table 1.
1

Algebra orbits l ∩ kC g(1)
C ∩ kC g(1)

C ∩ pC g(2)
C ∩ pC [, ]

E7(7) 1111111 7 7 7 7 7

E8(8) 11111111 8 8 8 8 8

E8(8) 11111121 8 7 7 8 7

E6(6) 1111 4 4 4 4 4

E6(6) 1112 4 3 3 4 3

2.2. An important counter-example. It is not true in general that if e is no-
ticed, then

dim l ∩ kC = dim
u ∩ pC

[u ∩ kC , u ∩ pC ]
.

We shall give the following example.
Let g be sl(7,R). Then gC = sl(7,C), kC = so(7,C), and pC is the space of 7× 7

complex symmetric matrices. The Cartan involution θ is defined as θ(X) = −XT

for X ∈ g. Let

H =



3 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −3 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 0


and

E =



0
√

3 0 0 0 0 0
0 0 2 0 0 0 0

0 0 0
√

3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Choose F = ET . Then θ(H) = −H , θ(E) = −F . Hence (H,E, F ) is a KS-triple,
and x = i(E − F ) is in kC . In fact under the Kostant-Sekiguchi map (H,E, F )
corresponds to a normal triple (x, e, f), with

e =
1

2
(E + F + iH) and f =

1

2
(E + F − iH).

Next we compute the following eigenspaces of x.
A simple computation [No2] shows that dim g(0)

C ∩ kC = dim g(2)
C ∩ pC = 5. Hence

by Lemma 2.1.1, the triple (x, e, f) is noticed.

1[,] stands for [g
(1)
C ∩ kC , g

(1)
C ∩ pC ].
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From the theory of the classification of the real nilpotent orbits of sln [C-Mc]
and by Sekiguchi [Se]

GC .e = GC .E,

and the triple (x, e, f) can be associated to the partition [4, 2, 1] of 7 and the cor-
responding weighted Dynkin diagram is

2 0 1 1 0 2

o o o o o o

One sees that dim g(1)
C = 4. Consequently dim g(1)

C ∩ kC = dim g(1)
C ∩ pC = 2. But

dim[g(1)
C ∩ kC , g

(1)
C ∩ pC ] = 3. So

dim l ∩ kC = 5 6= 2 + (5− 3) = dim g
(1)
C ∩ pC

+ dim
g
(2)
C ∩ pC

[g
(1)
C ∩ kC, g

(1)
C ∩ pC]

= dim
u ∩ pC

[u ∩ kC, uC ∩ pC]
.

3. An extension of the Bala-Carter theory

3.1. The Bala-Carter correspondence. The Bala-Carter Classification can be
expressed as follows:

Theorem 3.1.1 (Bala-Carter). There is a one-to-one correspondence between nil-
potent orbits of gC and GC -conjugacy classes of pairs (m, p

m
), where m is a Levi

subalgebra of gC and p
m

is a distinguished parabolic subalgebra of the semisimple
algebra [m,m].

Proof. Bala and Carter [B-C1] (Also see Carter [Ca, Theorem 5.9.5], Collingwood
and McGovern [C-Mc, Theorem 8.2.12]).

3.2. Extension of the Bala-Carter correspondence. Let gu = k ⊕ ip. Then,
g
u

is a compact real form of gC and gC = g
u
⊕ ig

u
. Let κ be the Killing form on gC

and τ = θ ◦ σ, the conjugation of gC with respect to g
u
. For X and Y in gC define

κ′(X,Y ) = −κ(X, τ(Y )). It is well known that κ′ is a positive definite hermitian
form on gC .

The next lemma is also known.

Lemma 3.2.1. Let q =
⊕
j≥0

g(j)
C be the Jacobson-Morozov parabolic subalgebra as-

sociated with the triple (x, e, f) where x ∈ ig
u
.Then for j 6= k , g(j)

C is orthognal to

g(k)
C relative to κ′.

Proof. We can assume k > 0. Observe that τ(x) = −x, since x ∈ ig
u
. Let y ∈ g(k)

C ,

z ∈ g(j)
C and k 6= j. Then

[x, τ(z)] = τ([τ(x), z]) = τ([−x, z]) = −jτ(z).
Hence τ(z) ∈ g(−j)

C . Using associativity of the Killing form κ, we have

κ′(y, z) = −κ(y, τ(z)) = −1

k
κ([x, y], τ(z))

=
1

k
κ(y, [x, τ(z)]) = − j

k
κ(y, τ(z)) =

j

k
κ′(y, z).
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Hence

κ′(y, z) = 0.

We will need the following lemma.

Lemma 3.2.2. For any normal triple (x, e, f) of gC , [pxC , g
(2)
C ∩ pC ] = g(2)

C ∩ kC .

Proof. From the sl(2,C) representation theory we know that

[pxC , e] = g(2)
C ∩ kC .

Therefore, since e ∈ g(2)
C ∩ pC we have

[pxC , g
(2)
C ∩ pC ] ⊇ g(2)

C ∩ kC .

On the other hand, clearly,

[pxC , g
(2)
C ∩ pC ] ⊆ g(2)

C ∩ kC .

The lemma follows.

Let q = l ⊕ u be a θ-stable parabolic subalgebra of gC . Let m be the orthogonal
complement of [u ∩ kC , [u ∩ kC , u ∩ pC ]] relative to κ′ inside u ∩ pC . Define w to be
an L ∩KC module in m. Finally, let ŵ = w⊕ [l ∩ pC ,w]. Clearly, ŵ is θ-stable.

Definition. Define L to be the set of triples {gC , q,w} such that

1. w has a dense L ∩KC orbit: (L ∩KC).ê,
2. dim l ∩ kC = dim w
3. L.ê is dense in ŵ
4. ŵ ⊥ [u, [u, u]]
5. [u, ŵ] ⊥ ŵ
6. [u ∩ kC , u ∩ pC ] ⊆ [q ∩ kC ,w].

Property 3 implies that ŵ is an L-module for

L.ê = ŵ.

Hence ŵ is L stable.

Let S be the set of noticed KS-triples (x, e, f) of gC .
We have a map F from S to L which associates a triple (x, e, f) of S to an element

(gC , qx,w) of L where qx is the θ-stable Jacobson-Morosov parabolic subalgebra of
(x, e, f).

Let

w = g2
C ∩ pC .

From Kostant and Rallis [K-R] we know that L.e (respectively L ∩KC .e) is dense
in g(2)

C (respectively g(2)
C ∩ pC). Also

dim l ∩ kC = dim g(0)
C ∩ kC = dim g(2)

C ∩ pC ,

because e is noticed (see Lemma 2.1.1).
By definition l ∩ pC = pxC .
Since

[pxC , g
(2)
C ∩ pC ] = g(2)

C ∩ kC ,
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by Lemma 3.2.2, we must have

ŵ = g(2)
C .

Hence conditions 1, 2 and 3 in the above definition are verified. Furthermore, we
know that

u =
⊕
j∈N∗

g(j)
C .

it follows that

g(2)
C ⊥ [u, [u, u]],

by Lemma 3.2.1.
To see that condition 5 holds it is enough to observe that

[g(i)
C , g(j)

C ] ⊆ g(i+j)
C .

This observation, the definition of u and Lemma 3.2.1 imply that

[u, ŵ] ⊥ ŵ.

From the representation theory of sl2 we have

[q ∩ kC , g
2
C ∩ pC ] = u ∩ pC .

Hence

[u ∩ kC , u ∩ pC ] ⊆ [q ∩ kC ,w].

Therefore F is well defined.
From a theorem of Kostant and Rallis [K-R], there is a bijection between the

non-zero nilpotent KC-orbits in pC and the KC-conjugacy classes of normal triples.
Two normal noticed triples (x, e, f) and (x′, e′, f ′) are KC conjugate if and only if
their corresponding triples (gC , q,w) and (gC , q

′,w′) are KC conjugate. Hence, F
induces a one-to-one map from KC-conjugacy classes of S and the KC-conjugacy
classes of the triples of L. The next theorem tells us that such a map is also
surjective.

If q = l⊕ u is a θ-stable parabolic subalgebra of gC , then there exists z ∈ ik such
that

u = sum of eigenspaces of adz for positive eigenvalues,
l = eigenspace of adz for eigenvalue 0,
ū = sum of eigenspaces of adz for negative eigenvalues [K-V].

Furthermore l is (θ, σ)-stable. Also u and ū are both θ-stable. Finally

gC = ū⊕ l ⊕ u,

τ(u) = ū, and from Lemma 3.2.1 the spaces l, u and ū are mutually orthogonal
relative to κ′.

Theorem 3.2.3. For any triple (gC , q,w) of L there exists a normal triple (x, e, f)
in S such that q is the Jacobson-Morosov parabolic subalgebra for (x, e, f) and
w = g(2)

C ∩ pC .

Proof. Let τ(w) = w̄. First, we prove that

[w, w̄] ⊂ l ∩ kC .
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Clearly [w, w̄] ⊂ kC since both w and w̄ are subsets of pC . Therefore it is enough to
show that

[w, w̄] ⊂ l.

But

[w, w̄] ⊥ u,

because for all X ∈ w, Y ∈ w̄ and U ∈ u we have

κ′(U, [X,Y ]) = −κ(U, τ([X,Y ])) = −κ(U, [τ(X), τ(Y )])

= κ(U, [τ(Y ), τ(X)]) = −κ([τ(Y ), U ], τ(X)) = κ′([τ(Y ), U ], X) = 0,

since κ is invariant, τ(Y ) ∈ w and [u, ŵ] ⊥ ŵ.
Furthermore

[ū, w̄] ⊥ w̄,

because for all B and C ∈ w̄ and A ∈ ū we have

κ′([A,B], C) = −κ(τ(C), τ [τ(A), τ(B)]) = κ′(τ(C), [τ(A), τ(B)]) = 0,

since τ(B), τ(C) ∈ w and τ(A) ∈ u and [u, ŵ] ⊥ ŵ.
Moreover for all X ∈ w, Y ∈ w̄ and U ∈ ū we have

κ′(U, [X,Y ]) = −κ(U, τ([X,Y ])) = −κ(U, [τ(X), τ(Y )])

= −κ([U, τ(X)], τ(Y )) = κ′([U, τ(X)], Y ) = 0,

since κ is invariant, τ(X) ∈ w̄ and [ū, w̄] ⊥ w̄. Hence [w, w̄] ⊥ ū.
It follows that [w, w̄] ⊂ l, for l, u and ū are mutually orthogonal relative to κ′.

Therefore we must have

[w, w̄] ⊂ l ∩ kC .

Since L ∩KC has a dense orbit in w there exists Zw in w such that

[l ∩ kC , Zw] = w.

We now claim that gZw
C ∩ w̄ = 0. Indeed, let y be a non-zero element of w̄ such

that [y, Zw] = 0. Then

κ(w, y) = κ([Zw, l ∩ kC ], y) = −κ(l ∩ kC , [Zw, y]) = 0,

which contradicts the fact that w and w̄ are paired nondegenerately by the Killing
form κ of gC ; but

gZw

C is κ-orthogonal to [gC , Zw] ⊃ [l ∩ kC , Zw] = w.

Hence,

dim[w̄, Zw] = dim w̄ = dim w = dim l ∩ kC

whence we have

[w̄, Zw] = l ∩ kC ,

since Zw ∈ w.
Fix a θ-stable positive root system ∆+(gC , hC). To construct hC one starts with

a maximal abelian subspace t of k and adjoins a subspace a of p that is maximal
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with respect to the properties of being abelian and commuting with t (see Knapp
and Vogan [K-V]). Then hC is the complexification of

h = t⊕ a.

Furthermore since q is a θ-stable parabolic subalgebra the subspaces u and [u, u]
have the properties mentioned in Proposition 1.2.4. If α is a weight of gC , then gαC
denotes the corresponding weight space and Xα ∈ gαC is called a weight vector.

Choose x ∈ kC such that for any simple root β of gC ,

β(x) = 0 if gβC ⊆ l,
β(x) = 2 if gβC ⊆ ŵ,
β(x) = 1 otherwise.

The next step is to prove that w is the 2-eigenspace of adx on pC . Observe that,
since l, ŵ and the set of simple roots of gC whose root spaces are not in ŵ are
θ-stable, we have

β(x) = θβ(x), for all simple roots β of gC .

Furthermore two different simple roots of gC cannot restrict to the same weight of
pC . (See [K-V], page 257). In other words t-weights in u∩pC occur with multiplicity
1.

Define y and ŷ such that

u ∩ pC = [u ∩ kC , u ∩ pC ]⊕ y

and

u = [u, u]⊕ ŷ.

Clearly y = ŷ ∩ pC .
Let ν be a weight of pC such that gνC ⊆ ŵ. Then we only need to consider two

cases.

Case 1. ν is the restriction of a simple root α and gαC lies in ŷ. Then α(x) = 2 since
ŷ ⊆ ŵ. Hence ν(x) = 2.

Case 2. ν is a weight of [u∩kC , u∩pC ]. Let Xν be a non-zero vector in [u∩kC , u∩pC ]
such that

[x,Xν ] = ν(x)Xν .

Then

Xν ∈ [u ∩ kC , y]⊕ [u ∩ kC , [u ∩ kC , u ∩ pC ]].

Since ŵ ⊥ [u, [u, u]] Xν must be in [u ∩ kC , y]. But

u ∩ kC = [u ∩ kC , u ∩ kC ]⊕ v.

Therefore

Xν ∈ [v, y],

for ŵ ⊥ [u, [u, u]].

Now any weight α such that gαC lies in v or y must be the restriction of a simple
root of gC , otherwise Xν would be in [u, [u, u]].

Moreover, since

[u, ŵ] ∩ ŵ = {0},
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we must have

α(x) = 1.

Hence

ν(x) = 2.

Therefore w ⊆ g(2)
C ∩ pC .

Next we show that g(2)
C ∩ pC ⊆ w.

If ν is a weight of m but not of w, then either Xν 6∈ [u ∩ kC , u ∩ pC ] or Xν ∈
[u ∩ kC , u ∩ pC ] for

m ⊥ [u ∩ kC , [u ∩ kC , u ∩ pC ]].

In the first case we have ν(x) = 1.
If Xν ∈ [u∩kC , u∩pC ] ⊆ [q∩kC ,w], then either Xν ∈ [l∩kC ,w] or Xν ∈ [u∩kC ,w].

Since w is an L ∩KC-module, we must have

Xν ∈ [u ∩ kC ,w].

It follows that ν(x) ≥ 3.
Therefore if ν = β|t, then Xβ must be in ŵ. Hence

w = g(2)
C ∩ pC and ŵ = g(2)

C .

Choose e = Zw. Note that the fact that [w̄, Zw] = l ∩ kC makes it possible to
find f in w̄ such that [e, f ] = x, but then since w is the 2-eigenspace of x in pC , w̄
is the −2-eigenspace. Therefore [x, f ] = −2f . The triple (x, e, f) is normal. The
nilpotent e is noticed since dim l ∩ kC = dim w.

The following theorem completes the classification.
Let l be a (θ, σ)-stable Levi Subalgebra of gC . Define the set of triples (l, q

l
,w

l
)

to have the same properties as the triples of L, replacing gC by l. Here q
l

is a
θ-stable parabolic subalgebra of [l, l]. Then we have:

Theorem 3.2.4. There is a one-to-one correspondence between nilpotent KC-orbits
on pC and KC-conjugacy classes of triples (l, q

l
,w

l
) in L.

Proof. We noted before that a Levi subalgebra l contains a nilpotent element e ∈ pC
if and only if [l, l] does. Two Levi subalgebras are KC-conjugate if and only if their
derived subalgebras are conjugate. Each nilpotent e ∈ pC can be put in a normal
triple (x, e, f) inside of the minimal Levi subalgebra l containing e. By Theorem
1.1.4 two minimal Levi subalgebras containing e are conjugate under Ke

C . Hence
the theorem follows from Theorem 3.2.3

3.3. Example. Let g be sl(3,R), the set of 3 × 3 real matrices of trace 0. Then
gC = sl(3,C), kC = so(3,C), and pC is the space of 3×3 complex symmetric matrices.
The Cartan involution θ is defined as θ(X) = −XT for X ∈ g. Denote by Ȳ , the
complex conjugate of a matrix Y ∈ gC .

The set of orthogonal matrices (KC) preserves the set of symmetric matrices
(pC) under conjugation. The nilpotent orbits of KC on pC are parametrized by the
partitions of 3. Therefore, there are exactly two non-zero nilpotent classes since
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the zero nilpotent class corresponds to the partition [1, 1, 1]. A computation shows
that the following matrices

H1 =

 0 i 0
−i 0 0
0 0 0

 , H2 =

1 0 0
0 1 0
0 0 −2

 ,

E1 =
1

2

i 1 0
1 −i 0
0 0 0

 , E2 =

0 0 i
0 0 1
i 1 0

 , E3 =

0 0 −i
0 0 −1
i 1 0


generate the only θ-stable Borel subalgebra b of gC up to conjugacy. Let

b = CH1 ⊕ CE3 ⊕ CH2 ⊕ CE1 ⊕ CE2.

Of course b is conjugate to the set of upper triangular matrices of sl(3,C).
The only (σ, θ) stable Levi subalgebra of gC, other than gC, is b = CH1 + CH2.

Let u =
∑

i CEi.
We see that l ∩ kC = CH1 and m = CE1 ⊕ CE2. Let w1 = CE1 and w2 = CE2.

Clearly, L∩KC has a dense orbit on w1 and w2 respectively for [H1, E1] = 2E1 and
[H1, E2] = E2. Also

dim l ∩ kC = dim w1 = dim w2 = 1.

For each wi one verifies easily that the triple, (gC , b,wi), satisfies all the require-
ments specified above.

Thus we obtain the following correspondence between non-zero nilpotent orbits
of pC and elements of L:

(H1, E1, Ē1)←→ (gC , b,w1),

(2H1, E2, Ē2)←→ (gC , b,w2).

3.4. An important special case. In some special cases the θ-stable parabolic
subalgebra in the triple {gC , q,w} is characterized by a dimension criterion similar
to that of the distinguished parabolic subalgebras that play an essential role in the
Bala-Carter theory. One of these cases is very important because it classifies all
the noticed orbits of the classical real Lie algebras of type B, C and D and those of
the exceptional algebras of type E6(2), F4(4), G2(2). We shall say more about this
in the next section.

Define L to be the set of triples {gC , q,w} of L such that

1. dim l ∩ kC = dim
u∩pC

[u∩kC ,u∩pC ] .

2. u ∩ pC = [u ∩ kC , u ∩ pC ]⊕w.

Let S be the set of KS-triples (x, e, f) of gC such that e is even and noticed, then
we have a map from S to L which associates a triple (x, e, f) of S to an element
{gC , q,w} of L where q is the θ-stable Jacobson-Morozov parabolic subalgebra rela-
tive to (x, e, f) and w = g2

C ∩pC . From the previous results (see Theorem 2.1.6) it is
clear that such a map is well defined and induces a one-to-one map from KC-orbits

of S to the KC-conjugacy classes of the triples of L, which is also surjective by the
following theorem.

Theorem 3.4.1. For any triple {gC , q,w} of L there exists a normal triple (x, e, f)

in S such that q is the θ-stable parabolic subalgebra relative to (x, e, f) and w =
g(2)

C ∩ pC .



18 ALFRED G. NOËL

Proof. From Theorem 3.2.3 {gC , q,w} corresponds to a normal triple (x, e, f) of S

such that w= g(2)
C ∩ pC . But from the definition of w and from Theorem 2.1.6 the

triple (x, e, f) belongs to S. The theorem follows.

We may summarize the foregoing results as follows.

Theorem 3.4.2. There is a one-to-one correspondence between even nilpotent KC-
orbits on pC and KC conjugacy classes of triples (l, q

l
,w

l
) where l is a (σ, θ)-stable

Levi subalgebra of gC and

0. q
l
= m

l
⊕ u

l
is a θ-stable parabolic subalgebra of [l, l].

1. w
l
⊆ u

l
∩ pC .

2. w
l
is M

l
∩KC stable; (M

l
connected Lie group of GC with Lie algebra m

l
).

3. w
l
has a dense M

l
∩KC orbit.

4. dimm
l
∩ kC = dim w

l
.

5. dimm
l
∩ kC = dim

u
l
∩pC

[u
l
∩kC ,ul∩pC ] .

6. u
l
∩ pC = [u

l
∩ kC , ul ∩ pC ]⊕w

l
.

Proof. Similar to the proof of Theorem 3.2.4.

Remarks. It is possible to have more than two noticed elements associated to the
same θ-stable parabolic subalgebra. For example, in sl(7,R) the partitions [7],
[6,1], [5,2] and [4,3] are all associated to the same parabolic subalgebra, in this
case a Borel subalgebra. Of course this shows that there can be more than two
w’s associated with the same parabolic subalgebra. Moreover the correspondence
does not necessarily associate a θ-stable parabolic to its Richardson nilpotent (see
Humphreys [H2] for the definition of a Richardson element). For example, the
parabolic subalgebra q associated with the partition [4,2,1] contains a representative
X of [5,2]. And X is the Richardson nilpotent for q. But since q is not the Jacobson-
Morosov for [5,2] this nilpotent is not assigned to q by the correspondence.

4. Description of noticed orbits in simple real Lie algebras

4.1. Simple exceptional real Lie algebras. Djoković [D1, D2] (see also [C-Mc])
has computed the reductive centralizer for all real nilpotent orbits in the case
where g is an exceptional simple real Lie algebra. The results are given in several
tables, one for each algebra. Hence the noticed orbits can be easily identified from
Djoković’s tables. They are the ones for which k(x,e,f)

C = 0. The last two colums give

the isomorphism type of k(x,e,f)
C and g(H,E,F ) respectively. A study of the tables

reveals that

E6(2), E6(6), E7(7), E8(8), F4(4), G2(2)

are the only exceptional simple real Lie algebras to admit noticed nilpotent orbits.
They are quasi-split.

A real form, g, of gC is called quasi-split if there is a subalgebra, b, of g such that
bC = b + ib is a Borel subalgebra of gC .

The following proposition characterizes quasi-split real forms.

Proposition 4.1.1 (Rothschild). g contains a regular nilpotent iff g is quasi-split
iff g contains a regular semisimple H such that adH has all real eigenvalues.
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Proof. See Rothschild [Rot].

An element z of g is said to be regular if dimG.z ≥ dimG.y for all y in g.
Hence,

Theorem 4.1.2. An exceptional simple real Lie algebra is quasi-split if and only
if it contains a noticed nilpotent element.

This is not the case in general, as we shall see below. Now we turn our attention
to the classical algebras.

4.2. Simple classical real Lie algebras. Let g be a real classical Lie algebra. It
is known [S-S, B-Cu, C-Mc] that the nilpotent orbits of G in g are parametrized by
signed Young diagrams. Let (H,E, F ) be a standard triple in g. Denote by V the
standard repesentation of g, regarded as an sl2-module under the action of the real
Lie algebra generated by (H,E, F ). Then

V =
⊕
r≥0

M(r)

where each M(r) is a direct sum of irreducible (r+1)-dimensional sl2-modules. Let
[d1, d2, . . . , dk] be a partition of dimR V . Then the di’s are exactly the dimensions
of the irreducible summands of V (see [C-Mc]). For r ≥ 0, denote by H(r) the
highest weight space in M(r). From the sl2 theory we have

dimH(r) = mult(ρr,M(r))

where ρr is the irreducible representation of sl2 of highest weight r. If g is not su∗2n
or sln(R), then V carries a g-invariant form 〈., .〉 which induces a nondegenerate
bilinear form (., .)r on H(r) as follows:

if u, v ∈ H(r), then (u, v)r = 〈u, F rv〉.
It turns out that the induced forms (., .)r determine the ambient form 〈., .〉 uniquely
[C-Mc].

The reductive centralizer C = g(x,e,f)
C can be described as a direct sum of simple

complex Lie algebras [S-S, Ca, C-Mc]. The nilpotent orbits of GC in gC are also
parametrized by certain partitions. Let ri be the number of parts equal to i in the
description of the partition associated to e.

For type An

C = (
⊕
i

Ar
i
−1)⊕ Tk

where k = (No. of ri)− 1, and Tk is a torus of dimension k.
For type Cn

C = (
⊕
i odd

Cr
i
/2)⊕ (

⊕
i even, ri even

Dr
i
/2)⊕ (

⊕
i even, ri odd

B(r
i
−1)/2).

For type Bn and Dn

C = (
⊕
i even

Cr
i
/2)⊕ (

⊕
i odd, ri even

Dr
i
/2)⊕ (

⊕
i odd, ri odd

B(r
i
−1)/2).

In the above formulae D1 must be interpreted as a 1-dimensional torus T1 wherever
it occurs.
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To classify the noticed nilpotent KC-orbits in pC we shall proceed as follows:
maintaining the above notations, for each real algebra we will determine which
signed Young diagrams will force k(x,e,f)

C to be zero. Since

g(x,e,f)
C = k(x,e,f)

C ⊕ p(x,e,f)
C ,

we should be able to carry out our analysis on each real algebra separately by
indentifying which signed Young diagrams produce a real centraliser g(H,E,F ) in p.
We are using Helgason’s [He] realizations of the classical real algebras.

Type An.

Theorem 4.2.1. The non-zero noticed nilpotent orbits of sln(R) are parametrized
by partitions of n with distinct parts. If such a partition is even, then it corresponds
to two orbits labeled by I and II. The algebra su∗2n has no non-zero noticed nilpotent
orbit. Also su(p, p + 1) has exactly one non-zero noticed nilpotent orbit, which is
parametrized by a one-row signed Young diagram of signature (p, p + 1), su(p, p)
has exactly two non-zero noticed nilpotent orbits, each is parametrized by a one-
row signed Young diagram of signature (p, p). If |p − q| ≥ 2, then su(p, q) has no
non-zero noticed nilpotent orbits.

Proof.

1. sln(R). Let g = sln(R). Then k = son and p = set of n × n symmetric real
matrices. The nilpotent orbits of g are parametrized by Young diagrams of size n,
except that partitions having only even terms correspond to two orbits, denoted
as usual by I and II. [C-Mc]. Here gC = sln(C) and its nilpotent orbits are also
parametrized by partitions of n [C-Mc]. Moreover the Young diagram of the com-
plexification of a real orbit of g is obtained by omitting the signs and the numeral in
the case of “even” orbits, that is, orbits parametrized by partitions with even parts
only. Therefore for an orbit parametrized by a given partition d̄ to be noticed, that
is for k(x,e,f)

C to be trivial, all the parts of d̄ must be distinct since otherwise C will
have a summand of type Am and any real form of Am has a non-trivial compact
part. Hence if e is noticed, then the associated partition has distinct parts and

g(x,e,f)
C = Tk.

It remains to show that if the partition has distinct parts, then the torus part Tk
of the centralizer C is in pC .

Oberve that the partition d̄ = [n] is distinguished [B-C1]. Hence it is noticed.
Therefore we shall consider partitions made of two or more distinct parts. Let
d̄ = [d1, d2, . . . , dk+1], k ≥ 1, be the partition of n with distinct parts associated
with e. Consider the set of n × n diagonal matrices Di for 1 ≤ i ≤ k defined as
follows:

Let ci = (
i∑

j=1

dj)−di. Then Di is the n×n diagonal matrix with di’s consecutive

1’s starting at row ci+1 and the last dk+1 entries are all equal to −di
dk+1

. For example
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D1 =



Id1 0 . . . . . . . . . 0
0 0 . . . . . . . . . 0
...

...
. . .

...
...

...

0 0 . . . −d1

dk+1

... 0

0 0 . . . . . .
. . . 0

0 0 . . . . . . . . . −d1

dk+1


.

Here Idi denotes the di × di identity matrix. The diagonal matrices Di have trace
zero and commute with (x, e, f). Furthermore, by construction they are indepen-
dent and generate Tk. Hence

dim g(x,e,f)
C = k.

Since all the matrices Di described above belong to pC we must have

dim p(x,e,f)
C ≥ k.

Thus by dimensionality considerations, we obtain

g(x,e,f)
C = p(x,e,f)

C .

Hence, the non-zero noticed nilpotent orbits of sln(R) are parametrized by parti-
tions of n with distinct parts. If such a partition is even, then it corresponds to
two orbits labeled by I and II.

2. su(p, q). Let g = su(p, q). Then (see Helgason [He])

k =

{(
A 0
0 B

)∣∣A ∈ u(p), B ∈ u(q), trace(A +B) = 0

}
.

The nilpotent orbits of su(p, q) are parametrized by signed Young diagrams of
signature (p, q) [C-Mc]. The complexified complex orbits of these real orbits are
parametrized by a subset of the set of partitions of n = p+ q.

Observe that if p = q, then the one-row signed Young diagram of size 2p
describes a nilpotent of su(p, q). Similary if |p − q| = 1, then the one-row signed
Young diagram of size 2p + 1 describes a nilpotent of su(p, q). In both cases the
corresponding complex orbits are distinguished, hence noticed.

Let d̄ = [d1, d2, . . . , dk+1], k ≥ 1, be a partition of n with distinct parts. Assume
that d̄ is the complexification of a nilpotent orbit of g. Then it is clear that the
diagonal matrices of the form

√−1Di where Di is the matrix, defined above, gen-
erate Tk and all the independent matrices

√−1Di belong to kC . Again in this case
we have

dim g(x,e,f)
C = k.

But

dim k(x,e,f)
C ≥ k.

Thus by dimensionality considerations, we obtain

g(x,e,f)
C = k(x,e,f)

C .

This shows that if e is noticed, k must be zero which implies that e is distinguished.
It follows that su(p, p+1) has exactly one non-zero noticed nilpotent orbit, which is
parametrized by a one-row signed Young diagram of signature (p, p+1), su(p, p) has
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exactly two non-zero noticed nilpotent orbits, each is parametrized by a one-row
signed Young diagram of signature (p, p).

3. su∗2n. Let g = su∗2n. The nilpotent orbits of g are parametrized by partitions
of n. To obtain the partitions associated with their complexification we have to
replace each row of their Young diagrams with two copies of itself [C-Mc]. Hence
the complexified orbits are parametrized by partitions of 2n with no distinct parts.
Therefore su∗2n has no non-zero noticed nilpotent orbit.

Types Bn and Dn.

Theorem 4.2.2. The non-zero noticed nilpotent orbits of so(p, q) are parametrized
by Young diagrams of signature (p,q) such that:

(1) all rows are odd and can be repeated atmost twice,
(2) two rows of the same length must have their leftmost boxes labeled by different

signs,
(3) if all the rows have an even number of boxes labeled +, or all the rows have

an even number of boxes labeled –, then one numeral I or II is attached.

There are no non-zero noticed nilpotent orbits in so∗2n.

Proof.

1. so(p, q). Let g = so(p, q). Then the nilpotent orbits in g are parametrized by
signed Young diagrams of signature (p, q) such that rows of even length occur with
even multiplicity and have their leftmost boxes labeled +. Some of these diagrams
get Roman numerals attached to them as follows. If all rows have even length, then
two Roman numerals, each I or II are attached. If at least one row has odd length
and all such rows have an even number of boxes labeled +, or all such rows have
an even number of boxes labeled –, then one numeral I or II is attached [C-Mc].
Moreover gC = s0p+q(C) and its nilpotent orbits are also parametrized by partitions
of p + q in which even parts appear with even multiplicity [C-Mc]. To obtain the
Young diagram of the complexification of a real orbit of g we omit the signs. If the
associated partition is very even that is, every part is even and appears with even
multiplicity, we omit the first numeral. If it is not very even we omit the numeral.
For an orbit parametrized by a given partition d̄ to be noticed, that is for k(x,e,f)

C
to be trivial, all the parts of d̄ must be odd and repeated atmost twice. Otherwise
the centralizer C will have a summand of type Bl or Cm or Dn with n ≥ 2. Hence
if e is noticed, then

g(x,e,f)
C = Tk.

Note that k is the number of parts with multiplicity 2. Cleary if k = 0, then e is
distinguished.

We now show how to construct the torus part Tk of the centralizer C in pC . This
will make it possible to identify which of the nilpotents whose partitions have all
parts repeated atmost twice are noticed.

Let d̄ = [d1, d2, . . . , dl] be a partition of p + q of signature (p, q) which consists
of odd parts repeated atmost twice. Let (H,E, F ) be a KS-triple associated with
d̄. Then the standard representation V of g can be decomposed as a direct sum of
irreducible 〈H,E, F 〉-modules of weight ri = di − 1. The centralizer of g preserves
each M(ri). It also preserves the g-invariant symmetric form, 〈., .〉, carried by V .
Since all the ri’s are even (see [C-Mc]), (., .)ri is symmetric and the signature of 〈., .〉
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on M(ri) is obtained by starting with the signature of (., .)ri and replacing each ±
sign by an alternating sequence of signs of length di. Therefore if di has multiplicity
1, there are only two possible labellings since the one-dimensional highest weight
space is labelled either with a + or a –. However if di is repeated twice, then we
have three possible ways of labelling M(ri). It is useful to consider the following
example:

Assume that we are trying to label M(2) from the standard representation of
so(3, 3) with regard to the partition [3, 3]. Since symmetric real forms are equivalent
up to signature, we can rearrange the basis of V such that

M(2) = 〈e1, e2, e3〉 ⊕ 〈e4, e5, e6〉.
It is understood that each basis vector denotes a one-dimensional weight space in
an sl2 irreducible module. In our notation (e1, e4) form a basis of H(2). Clearly we
can label M(2) in three different ways:

+−+ +−+ −+−
−+− +−+ −+−

The first row represents the labels of e1, e2 and e3. The second row represents the
labels of e4, e5 and e6.

In general if the part d
l
is represented twice in the partition d̄, then M(r

l
) is the

direct sum of two irreducible sl2-modules of highest weight r
l
. Furthermore V has

a basis where

M(r
l
) = 〈ek, ek+1, . . . , ek+rl〉 ⊕ 〈ek+rl+1, ek+rl+2, . . . , ek+2rl+1〉.

Once again (ek, ek+rl+1) is a basis for H(r
l
) and (ek+rl , ek+2rl+1) is a basis for

H(−r
l
).

Assume that M(rl) is labelled as follows:

+−+−+ · · · −+

−+−+− · · ·+−
Let Z be a (p+ q)× (p + q) matrix such that

Zei = ei+rl+1 and Zei+rl+1 = ei if k ≤ i ≤ k + rl else Zei = 0.

Then

(ek, Zek)rl = (ek, ek+rl+1)rl = −(Zek, ek)rl = 0,

(ek+rl+1, Zek+rl+1)rl = (ek+rl+1, ek)rl = −(Zek+rl+1, ek+rl+1)rl = 0,

(ek, Zek+rl+1)rl = (ek, ek)rl = −(ek+rl+1, ek+rl+1)rl = −(Zek, ek+rl+1)rl .

Hence (, )rl is invariant under Z and so is the ambient form 〈., .〉. Furthermore
it easy to see that Z commutes with (H,E, F ). Therefore Z generates a one-
dimensional factor of the centralizer g(H,E,F ). By definition Z is a Hermitian
matrix. So all its eigenvalues are real and it lies in the vector part of a Cartan
subalgebra of g. We conclude that Z is G-conjugate to some element of p. (See
Helgason [He].)

A similar analysis can be carried out for the other two labellings. In both cases
one defines Z as follows:

Zei = ei+rl+1 and Zei+rl+1 = −ei if k ≤ i ≤ k + rl else Zei = 0.
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It is easy to verify that Z preserves (, )rl . Since Z is a skew-hermitian matrix, all
its eigenvalues are imaginary. Therefore Z is G conjugate to some element of k.
(See Helgason [He].)

Observe that the matrices Z described above commute and are independent.
Also there are exactly k such matrices for each orbit. Furthermore, without loss
of generality we can assume that (x, e, f) is the Cayley transform of the KS-triple
(H,E, F ). Therefore all the matrices Z commute with (x, e, f) and generate Tk.
Hence

dim g(x,e,f)
C = k.

In the first case all the Z’s are in pC . Hence

dim p(x,e,f)
C ≥ k.

Thus by dimensionality considerations, we obtain

g(x,e,f)
C = p(x,e,f)

C .

In the two other cases all the Z’s are in kC . Hence

g(x,e,f)
C = k(x,e,f)

C .

2. so∗2n. Let g = so∗2n. Then the nilpotent orbits are parametrized by signed Young
diagrams of size n and any signature in which rows of odd length have their leftmost
boxes labeled + [C-Mc]. Therefore we only need to consider partitions with distinct
odd parts. Let d̄ = [d1, d2, . . . , dl] be such a partition of n. Now so∗(2n) acts on a

2n-dimensional complex space V and can be defined as the subalgebra of so(2n,C)
that leaves invariant a skew-hermitian form 〈., .〉 on V . With the above notation V
can be seen as a direct sum of Mri ’s and each of them is made of two irreducible
modules of dimension di. Since all the ri’s are even (see [C-Mc]), (., .)ri is a skew-

hermitian. Define Z.ek =
√−1ek for ek ∈ Mri and zero elsewhere. Then clearly

Z preserves Hri and belongs to g(E,H,F ). But Z is a skew-hermitian matrix and
consequently is G-conjugate to some element of k. Consequently

dim k(x,e,f)
C ≥ k.

Thus by dimensionality considerations, we obtain

g(x,e,f)
C = k(x,e,f)

C .

The theorem follows.

Type Cn. Let g = sp(p, q). Then the nilpotent orbits in g are parametrized by
signed Young diagrams of signature (p, q) such that rows of even length have their
leftmost boxes labeled + [C-Mc].

Nilpotent orbits of spn(R) are parametrized by signed Young diagrams of size
2n and any signature in which odd rows appear with even multiplicity and begin
with + [C-Mc].

Also gC = spn(C) and its nilpotent orbits are parametrized by a partition of 2n
in which odd parts occur with even multiplicity.

A discussion similar to the one given in the previous section gives the next
theorem.

Theorem 4.2.3. The non-zero noticed nilpotent orbits of spn(R) are parametrized
by signed Young diagrams of size 2n such that

(1) all rows are even an can be repeated atmost twice,
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(2) two rows of the same length must have their leftmost boxes labeled with dif-
ferent signs.

There are no non-zero noticed nilpotent orbits in sp(p, q).

We have seen that the only exceptional simple real Lie algebras admitting nilpo-
tent orbits are the quasi-split ones. This is not true in the case of the classical
simple real Lie algebras, as the following example indicates.

Let g = so(6, 3). Then from Theorem 4.2.2, the orbit parametrized by the signed
Young diagram:

Figure 1

is noticed but g is not quasi-split.

Remark. We note that the noticed orbits of the simple real Lie algebras of type Bn,
Cn and Dn are even. This can be seen through an analysis of the weighted Dynkin
diagram associated with their complex counterparts (see [C-Mc]). Therefore our
classification, when restricted to the above algebras, is similar to the Bala-Carter
classification.

Noticed nilpotent orbits Types and Chromosomes. The above description
of noticed nilpotent orbits will be translated in the language of “Type” (see [B-Cu]
for the definition of Type). Except for sln(R) our description will use the work
of Djoković [D3] as a reference. Djoković used “Chromosomes” which are roughly
speaking signed and unsigned Young diagrams to describe nilpotent orbits of the
classical Lie algebras and then translated his description into the language of Type.

A gene, as Djoković defines it, can be interpreted as a row of a Young diagram.
The rank of a gene is the size of the row. In the case of signed Young diagrams, if
a row of length n ends with a +, we write g+(n) to denote the corresponding gene.
Similary g−(n) corresponds to the row of length n ending with –. For unsigned
Young diagrams we use g(n). The signature (r+, r−) of a gene is the signature of the
corresponding row. A chromosome is a non-negative integral linear combination of
genes. The signature of a chromosome is the sum of the signatures of its constituent
genes. For example the chromosome g+(5)+g+(3)+g+(1) corresponds to the Young
tableau in Figure 1. The “Type” representation of this orbit is ∆+

4 (0) + ∆+
2 (0) +

∆+
0 (0). The description is given in the following table where ε = ±. Simple

algorithms to find ε are given in [D3].

Remarks. In the case of sln(R) if all the k’s are odd, then we have two orbits
([B-Cu, page 355]). For so(p, q) and spn(R) 2∆ε

k(0) = ∆+
k (0)+∆−

k (0). Furthermore,
in the case of so(p, q) if for all the genes r+ is even or if for all the genes r− is even,
then we have two orbits.
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Table 2

ALGEBRA TYPES CHROMOSOMES

sln(R)
∑

ak∆k(0)
∑

akg(k + 1) 0 ≤ ak ≤ 1

su(p, q) ∆+
2p−1(0), ∆−

2p−1(0) g+(2p), g−(2p) q = p

∆−
2p(0) g−(2p+ 1) q = p+ 1

so(p, q)
∑

k:even

ak∆
ε
k(0)

∑
k:even

akg
ε(k + 1) 0 ≤ ak ≤ 2

spn(R)
∑

k:odd

ak∆
ε
k(0)

∑
k:odd

akg
ε(k + 1) 0 ≤ ak ≤ 2

5. Noticed principal orbits in simple real Lie algebras

5.1. Principal nilpotent element. Let e be in pC . Then e is principal if and
only if KC

.e is a maximal KC-orbit in pC [K-R] that is if and only if

dimKC
.e ≥ dimKC

.e′ for all e′ ∈ pC .

If the orbit G.λR corresponds to the orbit KC
.λC, then

dimC KC
.λC =

1

2
dimR G.λR =

1

2
dimC GC

.λC.

Kostant and Rallis give several characterizations of a principal nilpotent of pC .
We will use the following criterion due to them. We will say that e is principal if
and only if

dim KC
.e = dim pC − dim aC,

where aC is the complexification of a maximal abelian subspace a of p. The dimen-
sion of a is called the real rank of g (see Helgason [He]). The following theorem
gives a characterization of the quasi-split simple real Lie algebras g in terms of the
noticed principal elements.

Theorem 5.1.1. Let g be a simple real Lie algebra. Then g is quasi-split if and
only there exists a nilpotent element λC of pC such that λC is noticed and principal.

Proof. If g is an exceptional simple real Lie algebra, then an analysis of Djoković’s
tables [D2, D1] shows that the principal nilpotent orbit is noticed if and only if g is
quasi-split. Now assume that g is a classical real Lie algebra. If g is equal to sln(R),
su(p, q), or spn(R), then Theorems 4.2.1 and 4.2.3 tell us that the principal nilpotent
is noticed because it is also regular in each case. Moreover, since sp(p, q), su∗2n and
so∗2n have no non-zero noticed elements, we only need to give a proof for the case
where g = so(p, q). First we will give a general description of the principal orbit
of g which corresponds to a maximal KC-orbit in pC under the Kostant-Sekiguchi
correspondence, and then we shall prove that such an orbit is noticed if and only
if g is quasi-split. In our case the principal orbit is characterized by its dimension
pq− q. The dimension of the complex nilpotent orbits of type Bn and Dn are given
by

2n2 + n− 1

2

∑
i

si
2 +

1

2

∑
i odd

ri(5.1.2)
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and

2n2 − n− 1

2

∑
i

si
2 +

1

2

∑
i odd

ri,(5.1.3)

respectively, where ri and si are defined as follows: if [d1, d2, . . . , dl] is the partition
associated with the nilpotent orbit. Put ri = |{j|dj = i}| and si = |{j|dj ≥ i}|.
(See [C-Mc].)

We consider two cases:

Case 1. p = q.

Consider the orbit G.λR parametrized by the following Young diagram:

Figure 2

If p is even, then there are two such orbits and the Young diagram should be labeled
with Roman numerals I or II (see [C-Mc]).

The associated complex orbit GC
.λC is parametrized by [2p− 1, 1]. Then r1 = 1,

r2p−1 = 1, s1 = 2, and si = 1 for 2 ≤ i ≤ 2p − 1. Using formula 5.1.3 with n = p
we find that

dimGC
.λC = 2p2 − p− 1

2
(2p+ 2) + 1 = 2p2 − 2p.

Hence

dimKC
.λC = p2 − p.

Therefore the above orbit is principal. From Theorem 4.2.2 it is also noticed.
Finally so(p, p) is quasi-split.

Case 2. p > q.

Consider the orbit G.λR parametrized by the following Young diagram:

Figure 3
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where the first row has length 2q+ 1 and the remaining p− q− 1 rows have length
1. This orbit is noticed by Theorem 4.2.2.

If q is even, then there are two such orbits and the Young diagram should be
labeled with Roman numerals I or II (see [C-Mc]).

The associated complex orbit GC
.λC is parametrized by [2q + 1, 1p−q−1]. Thus

r1 = p− q − 1, r2q+1 = 1, s1 = p− q, and si = 1 for 2 ≤ i ≤ 2q + 1. Using formula

5.1.3 with n = p+q
2 we find that

dimGC
.λC =

(p+ q)2

2
− (p + q)

2
− 1

2
((p− q)2 + 2q) +

1

2
(p− q) = 2pq − 2q.

Using formula 5.1.3 with n = p+q−1
2 we have

dimGC
.λC =

(p + q)2 − 2(p+ q) + 1

2

− (p+ q − 1)

2
− 1

2
((p− q)2 + 2q) +

1

2
(p− q) = 2pq − 2q.

In either case we obtain

dimKC
.λC = pq − q.

Again the orbit KC
.λC is principal and noticed if and only if [2q + 1, 1p−q−1] dom-

inates every other admissible partition that is, if and only if |p − q| ≤ 2 ([C-Mc]),
that is, if and only if g is quasi-split. The result follows.

We shall need the following lemma.

Lemma 5.1.4. Let l be a minimal (σ, θ)-stable Levi subalgebra containing a prin-
cipal nilpotent e of pC . Then l is a minimal Levi subalgebra containing e.

Proof. Let (x, e, f) be a KS-triple containing e. We have proved [Proposition 1.1.3]
that l = gt

C where t is a maximal toral subalgebra of keC . In fact t ⊆ k(x,e,f)
C . From

King [Ki] we know that if e is principal, then

g(x,e,f)
C = k(x,e,f)

C .

Hence t is a maximal toral subalgebra of geC and l is a minimal Levi subalgebra
containing e [C-Mc].

We wish to thank David Vogan from MIT and Roger Carter from the University
of Warwick (England) for their suggestions about the proof of the following propo-
sition. The result was also mentioned by Collingwood and McGovern [C-Mc]. But
they did not provide a proof.

The Bala-Carter theory associates each GC-nilpotent orbits of gC to pair (m, pm)
where m is a Levi subalgebra of gC and pm is a distinguished parabolic of the
semi-simple algebra [m,m] (see [Ca]). Maintaining the above notations we have:

Proposition 5.1.5. Using the above notations (m, pm) and (m, qm) are conjugate
under GC if and only pm and qm are conjugate under M , the connected subgroup
of GC with Lie algebra m.

Proof. If pm and qm are M -conjugate, then they are necessarily GC -conjugate since
M ⊆ GC . Hence (m, pm) and (m, qm) are GC -conjugate.

Suppose that (m, pm) and (m, qm) are conjugate under GC . Let g ∈ GC be a con-
jugating element. Then g induces an automorphism on the semisimple part [m,m]
of m. Consequently to prove that pm and qm are conjugate under M it is enough
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to show that N(m)
M acts trivially on conjugacy classes of distinguished parabolic

subalgebras, where N(m) denote the normalizer of m in GC . Let Aut(m)
Int(m) denote the

outer automorphisms of m. It is isomorphic to the group of automorphisms of the
Dynkin diagram of m (see [Kn]). Int(m) should be understood as the set of inner
automorphisms of m.

We have M ⊆ Ker(Π ◦ϕ) where Π and ϕ are the projection and inclusion maps
respectively, as defined in the following sequence:

N(m)
ϕ−→ Aut(m)

Π−→ Aut(m)

Int(m)
−→ 1

giving

N(m)

Ker(Π ◦ ϕ)
⊆ Aut(m)

Int(m)
.

and

1 −→ Ker(Π ◦ ϕ)

M
−→ N(m)

M
−→ N(m)

Ker(Π ◦ ϕ)
−→ 1.(5.1.6)

Hence, the only important elements of N(m)
M are those outside of Ker(Π◦ϕ)

M .
We shall prove that the outer automorphisms of m do not change the conju-

gacy classes of distinguished parabolic subalgebras. It is known that the group
of automorphisms of the Dynkin diagram is a cyclic group of order 2 for types
Al(l ≥ 2), Dl (l > 4), and E6. It is S3, the permutation group on three letters, for
D4. Otherwise it is trivial (see [He]).

Bala and Carter [B-C2] give a description of the classes of semisimple subalgebras
of parabolic type. In every case, all but atmost one simple component has type
Al. Bala and Carter [B-C1] also give a description of the weighted Dynkin diagram
of each class of distinguished simple parabolic subalgebras. In type Al, the only
distinguished parabolic subalgebras are the Borel subalgebras. Thus, if all the
simple parts are of type Al (l ≥ 2), then pm and qm are conjugate under M .
Suppose there is a simple component not of type Al. A careful analysis of the
weighted Dynkin classes of distinguished simple parabolic subalgebras shows that
they are invariant under their nontrivial diagram automorphisms. Thus they are
invariant under the outer automorphisms of m. Hence they are invariant under
N(m)
M . It follows that pm and qm must be M -conjugate.

Moreover we have:

Proposition 5.1.7. Let e be a nilpotent element of gC and let l be a minimal Levi
subalgebra containing e. Then GC

.e∩ l = L.e, where L is the connected subgroup of
GC with Lie algebra l.

Proof. Since L ⊆ GC it is clear that

L.e ⊆ GC
.e ∩ l.

Let e′ be a nilpotent element of GC
.e ∩ l. From the Bala-Carter theory we can

associate a pair (l, pl) to GC
.e where pl is a distinguished parabolic subalgebra

of [l, l]. Similarly we can associate a pair (l′, pl′) to GC
.e′. Since e and e′ are GC -

conjugate the two pairs (l, pl) and (l′, pl′) are also conjugate under GC . In particular
l is GC -conjugate to l′. Therefore l is a minimum Levi subalgebra containing e′.
Then the Bala-Carter theory tells us that we can find a pair (l, ql), where ql is
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a distinguished parabolic subalgebra of [l, l] containing e′, which is GC-conjugate
to (l, pl). From Proposition 5.1.5 we know that pl and ql are conjugate under L.
From the Bala-Carter theory we know that e and e′ are Richardson elements of
pl and ql respectively. Since the Levi parts of pl and ql are L-conjugate they are
“associated” in Johnston’s and Richardson’s sense (see [J-R], [H2]). Thus e′ ∈ L.e.
The proposition follows.

Now we are ready to prove the main result on principal nilpotents in pC .

Theorem 5.1.8. Let e be a nilpotent principal element of pC . Then for any normal
triple (x, e, f) corresponding to a triple (l, q

l
,w

l
) as described in the classification

Theorem 3.2.4:

1. e is regular in l ∩ pC ,
2. the the real form l0 of l is quasi-split,

3. if q
l
= m⊕ v is a Levi decomposition of q

l
then dimm ∩ kC = dim

v∩pC
[v∩kC ,v∩pC ]

and ql is a Borel subalgebra of l,
4. g and l0 have the same real rank.

Proof. From Kostant and Rallis [K-R] e lies in the closure of a principal orbit of
L ∩KC on l ∩ pC . Therefore we can find a nilpotent e′ ∈ l ∩ pC such that

e ∈ L ∩KC
.e′ ⊆ KC

.e′.

Thus

KC
.e ⊆ KC

.e′.

Since e is principal

KC
.e = KC

.e′.

It follows that e′ is GC -conjugate to e. From Lemma 5.1.4 and Proposition 5.1.7

GC
.e ∩ l = L.e.

Thus e and e′ are conjugate under L. But

dimL ∩KC
.e = dimL ∩KC

.e′ =
1

2
dimL.e.

This implies that L ∩KC
.e is a principal orbit in l ∩ pC .

Moreover, e is noticed in l by definition. By Theorem 5.1.1 the real form l0 of l
is quasi-split. This implies that e is regular in l, and so is distinguished. Therefore
ql is a Borel subalgebra of l and since e is an even nilpotent

dimm ∩ kC = dim
v ∩ pC

[v ∩ kC , v ∩ pC ]
from Theorem 2.1.6.

Let a be a maximal abelian subspace of p and let m be the centralizer of a in k. By
the Kostant-Sekiguchi correspondence there is a real KS-triple (H,E, F ) in g such
that l0 = kt where t is a maximal toral subalgebra of k(H,E,F ). Thus we have

k(H,E,F ) ⊆ kH = m.

Hence a ⊆ l0. This implies that the real rank of l0 is equal to the dimension of
the subspace a which is also the real rank of g by definition. The desired result
follows.
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The previous theorem and some results of Bala and Carter [B-C2, B-C1] allow
us to describe the type of the semi-simple part of the quasi-split real form of l. The
next table gives the type of [l, l] and [l0, l0] for the non-quasi-split cases.

Table 3

Algebra [l, l] [l0, l0]

su(p, q) sl2q+1(C) su(q + 1, q)

su∗2n sln(C)⊕ sln(C) sln(C)

so(p, q) so2q+1(C) so(q + 1, q) p+ q even

so(p, q) so2(q+1)(C) so(q + 2, q) p+ q odd

so∗2n sln(C) su(n2 ,
n
2 ) n even

su(n+1
2 , n−1

2 ) n odd

sp(p, q) sl2q+1(C) su(q + 1, q) p > q

sp(q, q) sl2q(C) su(q, q)

E6(−14) sl5(C) su(3, 2)

E6(−26) sl3(C)⊕ sl3(C) sl3(C)

E7(−5) E6 E6(2)

E7(−25) sl6(C) su(3, 3)

E8(−24) E6 E6(2)

F4(−20) sl3(C) su(2, 1)
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