Skip to Main Content

Representation Theory

Published by the American Mathematical Society since 1997, this electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.71.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Hecke algebra representations related to spherical varieties
HTML articles powered by AMS MathViewer

by J. G. M. Mars and T. A. Springer
Represent. Theory 2 (1998), 33-69
DOI: https://doi.org/10.1090/S1088-4165-98-00027-2
Published electronically: February 11, 1998

Abstract:

Let $G$ be a connected reductive group over the algebraic closure of a finite field and let $Y$ be a spherical variety for $G$. We consider perverse sheaves on $G$ and on $Y$ which have a weight for the action of a Borel subgroup $B$ and are endowed with an action of Frobenius. This leads to the definition of a “generalized Hecke algebra”, attached to $G$, and of a module over that algebra, attached to $Y$. The same algebra and the same module can also be defined using constructible sheaves. Comparison of the two definitions gives, in the case of a symmetric variety $Y$ and $B$-equivariant sheaves, a geometric proof of results which Lusztig and Vogan obtained by representation theoretic means.
References
  • N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
  • A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
  • Friedrich Knop, On the set of orbits for a Borel subgroup, Comment. Math. Helv. 70 (1995), no. 2, 285–309. MR 1324631, DOI 10.1007/BF02566009
  • George Lusztig and David A. Vogan Jr., Singularities of closures of $K$-orbits on flag manifolds, Invent. Math. 71 (1983), no. 2, 365–379. MR 689649, DOI 10.1007/BF01389103
  • J. G. M. Mars and T. A. Springer, Character sheaves, Astérisque 173-174 (1989), 9, 111–198. Orbites unipotentes et représentations, III. MR 1021511
  • R. W. Richardson and T. A. Springer, The Bruhat order on symmetric varieties, Geom. Dedicata 35 (1990), no. 1-3, 389–436. MR 1066573, DOI 10.1007/BF00147354
  • R. W. Richardson and T. A. Springer, Combinatorics and geometry of $K$-orbits on the flag manifold, Linear algebraic groups and their representations (Los Angeles, CA, 1992) Contemp. Math., vol. 153, Amer. Math. Soc., Providence, RI, 1993, pp. 109–142. MR 1247501, DOI 10.1090/conm/153/01309
  • T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser, Boston, Mass., 1981. MR 632835
  • T. A. Springer, Algebraic groups with involutions, Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., vol. 6, Amer. Math. Soc., Providence, RI, 1986, pp. 461–471. MR 846035, DOI 10.1086/284483
  • T. A. Springer, The classification of involutions of simple algebraic groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 655–670. MR 927604
  • P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
  • Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, Vol. 340, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II); Dirigé par P. Deligne et N. Katz. MR 0354657
  • David A. Vogan, Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. Math. 71 (1983), no. 2, 381–417. MR 689650, DOI 10.1007/BF01389104
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (1991): 14M15, 55N33
  • Retrieve articles in all journals with MSC (1991): 14M15, 55N33
Bibliographic Information
  • J. G. M. Mars
  • Affiliation: Mathematisch Instituut, Universiteit Utrecht, Budapestlaan 6, 3508 TA Utrecht, Netherlands
  • T. A. Springer
  • Affiliation: Mathematisch Instituut, Universiteit Utrecht, Budapestlaan 6, 3508 TA Utrecht, Netherlands
  • Received by editor(s): April 17, 1997
  • Received by editor(s) in revised form: November 19, 1997
  • Published electronically: February 11, 1998
  • © Copyright 1998 American Mathematical Society
  • Journal: Represent. Theory 2 (1998), 33-69
  • MSC (1991): Primary 14M15, 55N33
  • DOI: https://doi.org/10.1090/S1088-4165-98-00027-2
  • MathSciNet review: 1600804