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HECKE ALGEBRA REPRESENTATIONS RELATED TO

SPHERICAL VARIETIES

J. G. M. MARS AND T. A. SPRINGER

Abstract. Let G be a connected reductive group over the algebraic closure
of a finite field and let Y be a spherical variety for G. We consider perverse
sheaves on G and on Y which have a weight for the action of a Borel subgroup
B and are endowed with an action of Frobenius. This leads to the definition
of a “generalized Hecke algebra”, attached to G, and of a module over that
algebra, attached to Y . The same algebra and the same module can also be
defined using constructible sheaves. Comparison of the two definitions gives,
in the case of a symmetric variety Y and B-equivariant sheaves, a geometric
proof of results which Lusztig and Vogan obtained by representation theoretic
means.

1. Introduction

1.1. Let G be a connected reductive group over an algebraically closed field k of
characteristic 6= 2 and let Y be a symmetric variety for G, i.e. Y = G/K, where
K is the fixed point group of an involutorial automorphism of G. Choose a Borel
subgroup B of G. Then B has only finitely many orbits on Y . Let v be such an orbit
and let L be a B-equivariant local system of rank one on v. Let j : v → v̄ denote the
embedding of v into its Zariski closure in Y and consider the intermediate extension
A = j!∗L[dim v] (cf. [BBD, 2.1.7 and 2.2.3]), also called intersection complex. This
is a perverse sheaf on v̄. The restrictions of the cohomology sheaves HiA to a B-
orbit u contained in v̄ are direct sums of irreducible B-equivariant local systems on
u, which have rank one. The problem is how to compute the multiplicities of the
irreducible components. By a general principle (see [BBD, section 6]) the question
is reduced to the case where k is the algebraic closure of a finite field. The problem
was solved by Lusztig and Vogan in [LV] (they considered K-orbits on B\G, which
is equivalent to considering B-orbits on G/K).

The paper [LV] exploits the purity of the perverse sheaves A, which is a result
on the eigenvalues of Frobenius on the stalks of the cohomology sheaves HiA. It
also makes use of representation theory: the numbers we are looking for have an
interpretation in the representation theory of real Lie groups and [LV] applies a
result of [V]. In the present paper we give a proof of the main results of [LV]
without having recourse to representation theory. Our proof gives an algorithm,
which is essentially the same as in [LV].

1.2. The problem can be formulated more generally for a spherical variety Y , i.e.
a variety with a G-action on which B has only finitely many orbits. One may
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also generalize the problem by considering local systems on the B-orbits which are
not necessarily B-equivariant, but have a weight for the B-action (see 2.2.1 for
the definition of weights). Actually, in our treatment of the symmetric case we
need B1-equivariant local systems, where B1 is the Borel subgroup of the simply
connected covering of the derived group of G. These local systems have a weight
for the B-action satisfying the condition in Theorem 7.1.2.

In the general setting (for a spherical variety Y and weights for B) we define an
abelian category CY like C′ in [LV] and an analogous category AY constructed with
perverse sheaves instead of local systems. These two categories have isomorphic
Grothendieck groups. The local systems on the one hand and the perverse sheaves
on the other hand provide two bases for that Grothendieck group and the problem
is to express one basis into the other, in other words, determine the coefficients
cη,u;ξ,v,i introduced in 3.4.1. The construction is such that not only the multiplic-
ities of the components in the cohomology sheaves of the perverse sheaves appear
in these coefficients, but also the eigenvalues of Frobenius on the stalks.

Applying Verdier duality we obtain the relations 3.4.2 for the coefficients c, in
which appear the coefficients bη,u;ξ,v that express the dual of our local systems in
the basis elements (they correspond to the Rγ,δ of [LV], whereas the coefficients c
are related to the Pγ,δ). When we know that the cohomology sheaves are punctually
pure of the correct weight, the coefficients c can be computed from the relations
3.4.2 when the coefficients b are known. This is explained in 3.4.3. Now the module
structure which we define in 3.2 on the Grothendieck groups is used in chapter 5 to
find relations satisfied by the coefficients b. They are in general not sufficient to de-
termine these coefficients. In the symmetric case and for B1-equivariant sheaves we
use the relations of chapter 5 together with 3.4.2 to solve the problem. An important
role is played by Lemma 7.4.1, a vanishing result for intersection cohomology.

Although we did not obtain a solution of the problem for general spherical vari-
eties, it seemed worthwhile to present our method in the general setting.

1.3. Notations and conventions. All varieties will be defined over an alge-
braically closed field k. We will deal with Q̄l-sheaves on varieties over k (l 6=
p = char(k)). If k = C, we may also consider sheaves of C-vector spaces for the
classical topology. In all cases we denote the coefficient field by E and speak of
E-sheaves.

By a local system we mean a smooth E-sheaf. We denote by DX the bounded
derived category of constructible E-sheaves on X . It has a t-structure such that the
heart of DX is the abelian category of perverse sheaves on X . Our main reference
for the theory of perverse sheaves is [BBD]. Our notations regarding constructible
sheaves and perverse sheaves are those of [BBD].

The cohomology sheaves of a complex K are denoted by HiK. The notation Hn

is used both for cohomology and for hyper-cohomology.
If L is a local system on a smooth irreducible subvariety U of X , the perverse

sheaf j!∗L[dimU ], where j is the embedding U → Ū , will be called the perverse
extension of L, as in [MS]. We extend it by zero on X − Ū .

For the definition of weights for Frobenius actions and the theorems concerning
them we refer to [BBD, section 5]. We will use, in particular, the purity of perverse
extensions.

Z(p) denotes the localisation of Z at (p), in particular Z(0) = Q, and M(p) =
Z(p) ⊗Z M for any Z-module M .
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1.4. A further survey of the contents. In 2.1 we recall the definition and
elementary properties of tame local systems (or Kummer local systems) on tori.
See also [MS], where the same notation is used. In 2.1.7 we quote results from
[SGA4-1/2] concerning a local system which is related to Jacobi sums.

We establish some results on local systems and perverse sheaves with a weight
for B in 2.2.

The purity result in 2.3.3 (not used in [LV]) is of crucial importance for our
method, because it allows the argument of 3.4.3.

In chapter 3 we define the categories CY and AY for a spherical variety Y . An
algebra structure is defined on the Grothendieck groups K(CG) and K(AG) and a
K(CG)- (resp. K(AG)-) module structure is defined on K(CY ) (resp. K(AY )). The
algebra K(CG) is related to the algebra K of [MS], see the remark at the end of 4.3.
Multiplication by t in K corresponds to a shift in the complexes and multiplication
by q in K(CG) corresponds to multiplication of eigenvalues of Frobenius by q. The
relation between the two algebras is explained by the fact that in the case under
consideration in [MS] all eigenvalues of Frobenius are integral powers of q (up to
roots of unity).

As in [LV], Verdier duality is used to define linear endomorphisms of K(AY ) and
K(CY ).

The goal of chapter 4 is to make the module structure on K(CY ) explicit by
computing the products of the basis elements of K(CG) with those of K(CY ). The
results are listed in 4.3.1, which is a non-trivial extension of [LV, Lemma 3.5]. Here
Jacobi sums can appear in the coefficients. The classification of B-orbits in 4.1 is
well-known, cf. [RS2, 2.2].

In chapter 5 we give explicitly the relations between the coefficients bη,u;ξ,v of
Dεξ,v which result from 4.3.1 by applying D.

So far everything was done in the general situation of a spherical variety and
sheaves with a weight for B. In chapters 6 and 7 we deal with symmetric varieties.
Chapter 6 reviews material about these. One of the main results is 7.1.2 establishing
a parity result for the intersection cohomology complexes (under a restriction on
the weights for B). Also the eigenvalues of Frobenius on the stalks are powers of q
times a root of unity. Finally, in 7.6 we give an example where Y is still symmetric,
but the condition on the weight for B is dropped. In that example Jacobi sums
appear as eigenvalues of Frobenius and Aξ,v is not always even.

2. Auxiliary results

2.1. Local systems on tori.

2.1.1. Let T be a torus over an algebraically closed field k of characteristic p and
n an integer not divisible by p. We follow Deligne [SGA4-1/2, Sommes trigonomét-
riques, 1.2]. The exact sequence

1 → Tn → T
n→ T → 1

defines a Tn-torsor Kn(T ) on T . If ρ : Tn → E∗ is a character of Tn, there is a
sheaf ρ(Kn(T )) (a smooth E-sheaf of rank 1) on T with a morphism ρ : Kn(T ) →
ρ(Kn(T )) which is everywhere 6= 0 and such that ρ(tz) = ρ(t)ρ(z) for the action of
z ∈ Tn.

If χ ∈ X(T ), the character group of T , and ρ(t) = ψ(χ(t)) for t ∈ Tn, we denote
ρ(Kn(T )) by Lχ,n. Here ψ is a fixed embedding of the group µ(k) of roots of unity
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of k into E∗. These sheaves are the so-called tame local systems on T . They are
called Kummer local systems in [MS]. They have the following properties.

Ldχ,dn = Lχ,n.
Lχ+χ′,n = Lχ,n ⊗ Lχ′,n.
Lχ,n is the constant sheaf E ⇔ χ ∈ nX(T ).

L−χ,n = dual of Lχ,n.
We put X̂(T ) = X(T )⊗Z(Z(p)/Z) = X(T )(p)/X(T ). Then we have an isomorphism

of X̂(T ) on the group of tame local systems on T , viz. ξ 7→ Lχ,n if ξ is represented
by χ/n, χ ∈ X(T ), n ∈ Z, n 6≡ 0(p). We use the notation Lξ for Lχ,n.
2.1.2. If k is the algebraic closure of the finite field Fq and T is defined over Fq, i.e.
obtained from a scheme T0 over Fq by extension of scalars from Fq to k, there is a

Tn-torsor Kn(T0) on T0 defined by the exact sequence 1 → (T0)n → T0
n→ T0 → 1.

A character ρ : Tn → E∗ is defined over Fq if ρ(Ft) = ρ(t) for all t ∈ Tn (F denotes
the Frobenius map). If ρ = ψ ◦ χ|Tn , this condition is satisfied if and only if there
is χ1 ∈ X(T ) such that χ(t−1Ft) = χ1(t)

n for all t ∈ T . Then ρ(Kn(T0)) = Lξ is
a sheaf on T0.

The endomorphism χ 7→ χ◦F of X(T ) can uniquely be extended to an automor-

phism of X̂(T ). The invariants of this automorphism correspond to the Lξ coming
from a sheaf on T0.

If a ∈ TF = T0(Fq), the action of F ∗
a on (Lξ)a is multiplication by ψ◦χ(b−1Fb)−1,

if b ∈ T0(k), b
n = a. The factor is an n-th root of unity.

2.1.3. Let T0 be a torus over Fq which splits over FqN . Put n = qN − 1. We have
a commutative diagram with exact rows

1 // (T0)n

ν

��

// T0

ν

��

n
// T0

// 1

1 // T0(Fq) // T0
L

// T0
// 1

Here £ is the isogeny t 7→ t−1Ft and the second row defines a T0(Fq)-torsor L0.

The map ν is defined by νt = t(Ft) . . . (FN−1t). Notice that FN t = tq
N

. We have
Ker (ν) = {t−1Ft | t ∈ Tn} and ν and ν|Tn are both surjective.

If ρ : Tn → E∗ is a character defined over Fq, ρ factorizes uniquely via T0(Fq). Let
ρ = η ◦ ν, η : T0(Fq)→E∗. Then ρ(Kn(T0)) = η(L0). Taking ρ = ψ ◦ χ, χ ∈ X(T ),
we have χ(t−1Ft) = χ1(t)

n and χ = χ1 ◦ ν, hence Lξ = ρ(Kn(T0)) = ψχ1(L0).
A diagram as above exists more generally for n divisible by qN − 1.

2.1.4. Corresponding to any homomorphism of tori φ : T → T ′ over k there is a

homomorphism φ̂ : X̂(T ′) → X̂(T ), obtained from X(T ′) → X(T ). If ξ ∈ X̂(T ′),
then L

bφξ = φ∗Lξ.
2.1.5. Lemma. Let φ : T → T ′ be a surjective homomorphism of tori. Put D =
Ker (φ) and let D0 be the connected component of D (a torus). Then we have an
exact sequence

0 → X(D/D0) → X̂(T ′) → X̂(T ) → X̂(D0) → 0.
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From the exact sequence 0 → X(T/D) → X(T ) → X(D) → 0 we get an exact
sequence

0 → TorZ
1(Z(p)/Z, X(D)) → X̂(T/D) → X̂(T ) → Z(p)/Z⊗Z X(D) → 0.

We have isomorphisms Z(p)/Z ⊗Z X(D)
∼→ Z(p)/Z ⊗Z X(D0) = X̂(D0) and

TorZ
1 (Z(p)/Z, X(D/D0))

∼→ TorZ
1 (Z(p)/Z, X(D)). For any finite abelian group A

whose order is not divisible by p, one has TorZ
1 (Z(p)/Z, A)

∼→ A. So there is an

isomorphism TorZ
1 (Z(p)/Z, X(D)) ∼= X(D/D0).

To the bijective homomorphism T/D → T ′ induced by φ there corresponds an
injection X(T ′) → X(T/D) whose cokernel is a p-group (= {0} if p = 0). Tensoring

with Z(p)/Z gives an isomorphism X̂(T ′) ∼= X̂(T/D).
Thus we obtain the announced exact sequence.

2.1.6. If ξ ∈ X̂(T ), ξ 6= 0, then Hi
c(T,Lξ) = Hi(T,Lξ) = 0 for all i. This is well

known.

2.1.7. There is another type of local systems which we shall encounter. It is a
special case of the sheaves studied in [SGA4-1/2, Sommes trigonométriques, §4].
We consider the algebra F3

q over Fq. Following the notations of [loc. cit.] we define
V0 to be the same algebra considered as a variety over Fq and W0 to be the subspace
defined by x0 + x1 + x2 = 0. Moreover, V ∗

0 is the multiplicative group of invertible
elements of V0 and W ∗

0 = W0 ∩ V ∗
0 .

Let n be an integer divisible by q−1 and not divisible by p. We have the following
commutative diagram with exact rows (it is 2.1.3 with T0 = G3

m).

1 // (V ∗
0 )n

ν

��

// V ∗
0

ν

��

n
// V ∗

0
// 1

1 // (F∗q)3 // V ∗
0

q−1
// V ∗

0
// 1

Here νt = t
n

q−1 .
Let χ : (F∗q)3 → E∗ be a character and χ ◦ ν = (χ0, χ1, χ2), χi : µn(F) → E∗.

Each of the two rows of the diagram defines a torsor on V ∗
0 and together with the

character χ◦ν resp. χ these torsors determine one and the same smooth sheaf on V ∗
0 ,

which is F(χ−1) = Kn(χ−1
0 , χ−1

1 , χ−1
2 ) in the notation of [loc. cit.]. If χ0χ1χ2 = 1,

Kn(χ−1
0 , χ−1

1 , χ−1
2 ) is the inverse image of a sheaf on V ∗

0 /Gm (we use the same
notation for this sheaf). Now we may identify V ∗

0 /Gm with the subset {(1, x1, x2)}
of F3. Then W ∗

0 /Gm is isomorphic to F−{0,−1}, by x 7→ (1, x,−1−x). Obviously,
F(χ−1) on W ∗/Gm = F − {0,−1} is the inverse image of Lχ0,n � Lχ1,n � Lχ2,n

under the map x 7→ (1, x,−1 − x), F − {0,−1} → (F∗)3. This is also the inverse
image of Lχ1,n � Lχ2,n under the map F− {0,−1} → (F∗)2, x 7→ (x,−1− x).

Proposition 4.16 of [loc. cit.] gives the following.
In the notation above assume that χ0χ1χ2 = 1 and that not all χi = 1.
Then Hi

c(W
∗/Gm,F(χ−1)) = 0 if i 6= 1 and dimH1

c = 1.
On H1

c (W
∗/Gm,F(χ−1)) the action of F ∗ is multiplication by

J(χ) = −
∑

x∈F∗q,x 6=−1

χ1(x)
−1χ2(−1− x)−1

where χi are the components of χ, i.e. χi = (χi)
n

q−1 .
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And by Proposition 4.20 of [SGA4-1/2, Sommes trigonométriques] we have:
If χ1 = χ2 , the action of the automorphism x 7→ −1 − x of W ∗/Gm on H1

c is
multiplication by −1.

2.2. Weights for solvable group actions.

2.2.1. Let B be a connected solvable linear algebraic group over the algebraically
closed field k. Denote its unipotent radical by U . Fix a maximal torus T of B and
let πT : B → B/U = T . If Y is a variety with B-action a : B × Y → Y , a local

system L on Y is said to have weight ξ ∈ X̂(T ) for the B-action if there exists an
isomorphism a∗L ∼= π∗TLξ � L. The same definition applies to perverse sheaves on
Y .

2.2.2. Let C be a closed subgroup of B and Y = B/C. Put D = πTC. Denote by
φ : T → T/D the canonical map and let π : Y → T/D be the map induced by πT .

If ξ ∈ X̂(T/D), then π∗Lξ is a local system of rank one on Y and it is easily seen

that it has weight φ̂ξ for the action of B on Y . Conversely we have:

2.2.3. Lemma. Assume that C ∩ U is connected. If L is a local system of rank

one on Y which has a weight for the B-action, there is a unique ξ ∈ X̂(T/D) such
that L is isomorphic to π∗Lξ.

The weight of L is annihilated by an integer m not divisible by the characteristic

p. Define B̃ to be the algebraic group which is a semi-direct product of T and U ,

the T -action on U now being given by tmut−m. The map ρ : B̃ → B, (t, u) 7→ tmu,

is a homomorphism. Put C̃ = ρ−1(C) and D̃ = π̃T C̃, where π̃T is the projection

B̃ → T . We then have a commutative diagram

B̃/C̃
eπ

//

∼=
��

T/D̃

∼=
��

Y = B/C
π

// T/D

Here π̃ is induced by π̃T and the vertical arrows are isomorphisms induced, re-

spectively, by ρ and by the multiplication by m in T . The sheaf L̃ on B̃/C̃ which

corresponds to L under the isomorphism B̃/C̃ → B/C is a B̃-equivariant local
system and the assertion of the lemma is equivalent to the corresponding one for

B̃/C̃ and L̃. So the proof is reduced to the case that L is B-equivariant.
Consider in this case the Cartesian square

B/C0 //

��

T/D0

��

B/C π
// T/D

The square is Cartesian, because C/C0 → D/D0 is an isomorphism, as a conse-
quence of the assumption that C∩U is connected. The B-equivariant local systems
on B/C are in 1-1-correspondence with the characters of C/C0 = D/D0, hence by

2.1.5 with the elements of Ker (X̂(T/D) → X̂(T/D0)), the correspondence being
ξ 7→ π∗Lξ. This proves the lemma.

With the same notation we have
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2.2.4. Proposition. Assume that C ∩U is connected. Let L be a local system on

Y = B/C which has a weight η ∈ X̂(T ) for the B-action. Then L is isomorphic

to a direct sum of local systems π∗Lξi , where the ξi are elements of X̂(T/D) with

φ̂ξi = η.

Again, one reduces the proof to the case that L is B-equivariant. Then the result
follows from the fact that C/C0 ∼= D/D0 is abelian.

2.2.5. Now let Y be a variety on which B acts with finitely many orbits. Let V
be the set of orbits. If v, v′ ∈ V , we write v′ ≤ v if v′ lies in the Zariski closure of
v. This defines an order on V . We use the notation v̇ for a representative of v. Let
Bv̇ be the isotropy group of v̇. Then Tv = πTBv̇ is independent of the choice of v̇
in v. Assume:

(a) all orbit maps B → v (b 7→ bv̇) are separable;
(b) all groups Bv̇ ∩ U are connected.

Assumption (a) implies that an orbit v is isomorphic to B/Bv̇, as a B-variety. Let

πv̇ : v → T/Tv be the map tuv̇ 7→ tTv (t ∈ T, u ∈ U). If ξ ∈ X̂(T/Tv), we write
Lξ,v̇ = π∗v̇Lξ and denote by Aξ,v̇ the perverse extension (see 1.3) of Lξ,v̇. The
isomorphism class of Lξ,v̇ resp. Aξ,v̇ depends only on v. We shall write Lξ,v resp.
Aξ,v, when only the isomorphism class is concerned. Lξ,v is extended by 0 to a
sheaf on Y .

We denote by φv the map T → T/Tv.

2.2.6. Proposition. Assume (a) and (b). Let v ∈ V and ξ ∈ X̂(T/Tv).

(i) Lξ,v and Aξ,v have weight φ̂vξ for the B-action.
(ii) If v′ ∈ V , i ∈ Z, then HiAξ,v|v′ is a direct sum of local systems Lξj ,v′ , where

ξj ∈ X̂(T/Tv′) and φ̂v′ξj = φ̂vξ. It is zero unless v′ ≤ v.
(iii) DAξ,v̇ = A−ξ,v̇(dim v).

In (iii), D stands for Verdier duality.

2.2.7. Proposition. Assume (a) and (b) of 2.2.5. Let A be a semi-simple per-
verse sheaf on Y which has a weight for the B-action. Then A is isomorphic to a
direct sum of perverse sheaves of the form Aξ,v.

This is easily proved. Reduce to the case of a simple perverse sheaf A and use
2.2.3.

2.3. A purity result.

2.3.1. Lemma. Let Z be a variety with a Gm-action m : Gm × Z → Z leaving
some z0 ∈ Z fixed. Assume that m extends to a morphism f : A1 × Z → Z
such that f({0} × Z) = {z0}. Let K ∈ DZ such that there exists an isomorphism
m∗K ∼= E�K. Then the canonical maps Hn(Z,K) → (HnK)z0 are isomorphisms.

It is easy to see that it suffices to prove the assertion when (HnK)z0 = 0 for all
n. Then the restriction of f∗K to {0} × Z is zero and the restriction of f∗K to
Gm × Z is m∗K ∼= E � K. So we have a morphism φ : f∗K → E �K. It is now
obvious that, when we define ft : Z → Z by ft(z) = f(t, z) (t ∈ A1), then f1 and
f0 are homotopic. So f1 and f0 induce the same homomorphism on Hn(Z,K) (see
[SGA7, exposé XV, 2.1] ). Hence Hn(Z,K) = 0 for all n.

Remark. The dual statement is: the canonical maps Hn
{z0}(Z,K) → Hn

c (Z,K) are

isomorphisms.
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2.3.2. Let G be a connected linear algebraic group, Y an irreducible variety and
a : G× Y → Y an action of G on Y . Fix y ∈ Y , let O = G · y be its orbit, and let
S be a transverse slice in y with respect to O. By this we mean that:

(a) S is a locally closed subset of Y containing y;
(b) the restriction of a defines a smooth morphism G× S → Y ;
(c) dimS = dimY − dimO.

Assume moreover that S admits a contraction of the following type. We have a
homomorphism λ : Gm → G such that:

(d) S and y are stable under Im(λ);
(e) the action Gm × S → S extends to a morphism A1 × S → S sending {0}× S

to y.

Let A ∈ DY such that a∗A is isomorphic to E � A. Using the properties (a),

(b), (c) of S we see that i∗A[−2 dimO](− dimO)
∼→i!A is an isomorphism. Here

i : S → Y is the embedding.
Now assume that k is the algebraic closure of a finite field and that, in the above

situation everything is defined over Fq. For A this means that it comes from a
complex in DY0, where Y0 is the Fq-scheme underlying Y . Since y ∈ Y0(Fq) we
have a Frobenius action on (HnA)y .

2.3.3. Proposition. Assume that there exists a transverse slice S in y, which
satisfies (a)–(e) of 2.3.2 and is defined over Fq. If A as in 2.3.2 is pure of weight
w, then the weights of (HnA)y are equal to w + n.

From i∗A[−2 dimO](− dimO) = i!A it follows that i∗A is pure of weight w. So
the weights ofHn(S,A) are ≥ w+n. By Lemma 2.3.1 we have (HnA)y = Hn(S,A).
Thus, the weights of (HnA)y are ≥ w + n, and also ≤ w + n by the purity of A.

3. A generalized Hecke algebra and its modules

3.1. Definition of K(AY ) and K(CY ).

3.1.1. Let G be a connected reductive group over the algebraically closed field k
and let Y be a spherical variety for G, i.e. a homogeneous space of G such that any
Borel subgroup of G has finitely many orbits in Y . We fix a Borel group B = TU of
G and use the notations of 2.2.5. In particular V is the set of B-orbits in Y . In the
sequel we always assume that the conditions (a) and (b) of 2.2.5 are satisfied. They
are, of course, in characteristic 0, and in any characteristic 6= 2 they are satisfied
if Y is symmetric. We call Y symmetric if Y = G/K, where K is the fixed point
group of an involution (= automorphism of order 2) of G.
G can be considered as a spherical variety for G×G. The action is (g1, g2) ·x =

g1xg
−1
2 and the set of B×B-orbits is the Weyl group of G. It is symmetric: consider

the involution of G×G which interchanges the two components.

3.1.2. From now on we assume that k is an algebraic closure of a finite field Fq.
We take E = Q̄l, where l is a prime different from the characteristic p of k. We
take q big enough, so that G,B, Y are defined over Fq, T is Fq-split, etc. There are
Frobenius morphisms F : G → G, F : Y → Y , etc. In 2.2.5 we defined Lξ,v̇ and
Aξ,v̇. If F v̇ = v̇ and Fξ = ξ, these objects also have an Fq-structure and we have
the Frobenius correspondence

F ∗Lξ,v̇ ∼→ Lξ,v̇ resp. F ∗Aξ,v̇
∼→ Aξ,v̇.
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We need one more notation. If a is the action of T on Y , am is the action such
that am(t) = a(tm). If a local system or a perverse sheaf has weight ξ for T and
mξ = 0, then it is equivariant for the action am (cf. the proof of 2.2.3).

Now we consider perverse sheaves A on Y supplied with an isomorphism Φ :
F ∗A ∼→ A. Then there are isomorphism Φn : (Fn)∗A ∼→ A for all n ≥ 1. We
assume that (A,Φ) satisfies the following conditions.

(1) A is U -equivariant and T -equivariant for the action am, where m is a fixed
integer not divisible by p.

(2) If y ∈ Y , Fny = y, the eigenvalues of Φny on (HiA)y lie in C1, where C1 is a

fixed subgroup of Q̄∗
l containing the roots of unity. Put C = C1/µ, µ = group of

the roots of unity in Q̄∗
l .

We identify (A,Φ) = (A,Φ′) if Φn = Φ′n for some n.
Morphisms between these objects are morphisms of perverse sheaves, compatible

with a power of Φ.
In this way an abelian category AY is defined. We denote by K(AY ) the

Grothendieck group of AY .
If C1 is taken big enough, K(AY ) is a Z[C]-module with a finite basis corre-

sponding to the Aξ,v with v ∈ V , ξ ∈ X̂(T/Tv), mφ̂vξ = 0.
Indeed, if (A,Φ) is an object of AY with A simple, then by Proposition 2.2.7,

A is of the form Aξ,v. We have Aut(Aξ,v) =Aut(Lξ,v) = Q̄∗
l and multiplication by

the class in C of c ∈ Q̄∗
l takes (A,Φ) to (A,Φ′) with Φ′ = cΦ. In other words, the

eigenvalues of Φny on (HiA)y are multiplied by cn.
We need an analogous construction with constructible sheaves instead of perverse

sheaves.
We consider constructible Q̄l-sheaves S on Y supplied with an isomorphism

Φ : F ∗S ∼→ S, assuming:
1) S is U -equivariant and T -equivariant for am (m fixed); Φ is equivariant for

these actions. This means that we have commutative diagrams

E�F ∗S = F ∗(E�S) //

id×Φ

��

F ∗a∗S = a∗F ∗S
a∗Φ

��

E�S // a∗S
where a stands for the action of U on Y , resp. for the action am of T .

2) If y ∈ Y , Fny = y, the eigenvalues of Φny on Sy lie in C1.
We identify (S,Φ) = (S,Φ′) if Φn = Φ′n for some n.
Morphisms between these objects are morphisms of equivariant sheaves S → S′

compatible with a power of Φ and Φ′. This means that we have commutative
diagrams

E�S //

��

a∗S

��

E�S ′ // a∗S ′

and (Fn)∗S Φn
//

��

S

��

(Fn)∗S ′
Φ′n

// S ′

This defines an abelian category CY . Let K(CY ) denote the Grothendieck group of
CY .
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If C1 is taken big enough, K(CY ) is a Z[C]-module with a finite basis, corre-

sponding to the Lξ,v with v ∈ V , ξ ∈ X̂(T/Tv), mφ̂vξ = 0.
When a constructible sheaf L has a natural Fq-structure, we denote by [L] the

class in K(CY ) of L equipped with the Frobenius correspondence. The same con-
vention applies to a perverse sheaf A and its class [A] in K(AY ).

There is a Z[C]-homomorphism h = hY : K(AY ) → K(CY ), given by [A] 7→∑
(−1)i[HiA] (HiA is supplied with the isomorphism F ∗HiA → HiA coming

from Φ : F ∗A → A; we dropped Φ in the notation). Since h[Aξ,v] is the sum of
(−1)dim v[Lξ,v] and a linear combination with coefficients in Z[C] of [Lη,u], u < v,
it is clear that h is bijective. The problem is now, how to express one basis into
the other.

3.1.3. As a special case of our definitions we have K(AG) and K(CG), where G is
considered as a spherical variety for G × G as in 3.1.1. The B × B-orbits are the
sets BwB, w ∈ W = N(T )/T . We denote by ẇ a representative in N(T ) for w.
Let us apply the definitions of 2.2.5 to this case. We have (T × T )w = {(t1, t2) ∈
T × T | t1 = w(t2)}, so T × T/(T × T )w can be identified with T by sending the
class of (t1, t2) to w−1(t1)t

−1
2 . Then the map πẇ : BwB → T × T/(T × T )w = T is

uẇtu′ 7→ t (u, u′ ∈ U, t ∈ T ). And X̂(T ) = X̂(T × T/(T × T )w) → X̂(T × T ) =

X̂(T ) × X̂(T ) is the map ξ 7→ (wξ,−ξ). So Lξ,w and Aξ,w have weight wξ (resp.
−ξ) for the left (resp. right) B-action.

Remarks. A category like CY with m = 1 (B-equivariant sheaves on Y ) was defined
in [LV]. There K-equivariant sheaves on G/B were considered. In [MS] the same
sheaves Lξ,w and Aξ,w were defined and studied without Frobenius actions.

3.2. Algebra and module structures.

3.2.1. Let w, y ∈W and ξ, η ∈ X̂(T ). If η = wξ, the perverse sheaf Aη,y�Aξ,w on
G× G is equivariant for the action of B given by b(g1, g2) = (g1b

−1, bg2), because
Aη,y has weight −η for the right B-action and Aξ,w has weight wξ for the left B-

action (3.1.3). Hence there is a unique perverse sheaf Ã on the quotient G B×G such

that Awξ,y�Aξ,w = f∗Ã[dimB], if f denotes the natural map G×G→ G B×G. The

product in G defines a proper map µ : G B×G→ G and µ!Ã is a semi-simple complex

on G, which means that µ!Ã is the direct sum of its shifted perverse cohomology

sheaves: µ!Ã =
⊕

pHi(µ!Ã)[−i] and that each pHi(µ!Ã) is a direct sum of simple

perverse sheaves (see [BBD, Théorème 5.4.5 and Théorème 5.3.8]; µ!Ã is pure,

because Ã is pure and µ is proper). These simple constituents have weight ywξ
(resp. −ξ) for the left (resp. right) B-action, hence are of the form Aξ,x, x ∈ W
such that xξ = ywξ (Proposition 2.2.7).

3.2.2. Definition.

[Awξ,y] [Aξ,w] =
∑

(−1)i[pHi(µ!Ã)],

[Aη,y] [Aξ,w] = 0 if η 6= wξ.

Extending this definition by linearity we put a structure of associative Z[C]-
algebra on K(AG). The associativity is proved using the map G B×G B×G → G. We
have [Awξ,e] [Aξ,w] = [Aξ,w].

Remark. The convolution of the isomorphism classes of Awξ,y and Aξ,w (without
Frobenius) was defined in [MS].
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In an analogous way a product is defined in K(CG).

3.2.3. Definition.

[Lwξ,y] [Lξ,w] =
∑

(−1)i[Hi(µ!L̃)],

[Lη,y] [Lξ,w] = 0 if η 6= wξ.

The constructible sheaf L̃ is the extension by 0 of the local system on ByBB×BwB
determined by Lwξ,y � Lξ,w. K(CG) is an associative Z[C]-algebra. We have
[Lwξ,e] [Lξ,w] = [Lξ,w].

Put h′G = (−1)dimBhG with hG as in 3.1.2 for Y = G.

3.2.4. Proposition. The map h′G : K(AG) → K(CG) is an isomorphism of Z[C]-
algebras.

This can be proved in the same way as Proposition 3.2.8 below.

3.2.5. We shall now define a K(AG)-module structure on K(AY ). Let w ∈W, v ∈
V, ξ ∈ X̂(T/Tv), η ∈ X̂(T ). Since Aη,w has weight −η for the right B-action and

Aξ,v has weight φ̂vξ for the B-action (2.2.6 and 3.1.3), the perverse sheafAη,w�Aξ,v
on G×Y is equivariant for the action of B given by b(g, y) = (gb−1, by), if η = φ̂vξ.

So A
bφvξ,w

�Aξ,v is, up to a shift [dimB], the inverse image of a perverse sheaf Ã on

the quotient GB×Y . The action of G on Y defines a proper map µ : GB×Y → Y and

µ!Ã is a semi-simple complex on Y . The simple constituents of µ!Ã have weight

w(φ̂vξ) for the B-action, hence are of the form Aξ′,v′ with v′ ∈ V , ξ′ ∈ X̂(T/Tv′)

such that φ̂v′ξ
′ = w(φ̂vξ).

3.2.6. Definition.

[A
bφvξ,w

] [Aξ,v] =
∑

(−1)i[pHi(µ!Ã)],

[Aη,w] [Aξ,v] = 0 if η 6= φ̂vξ.

The Z[C]-bilinear map K(AG) × K(AY ) → K(AY ) determined by 3.2.6 makes
K(AY ) aK(AG)-module. That it is a module is proved using the mapGB×GB×Y → Y .
We have [A

bφvξ,e
][Aξ,v] = [Aξ,v].

Notice that the product in K(AG) is not exactly a particular case of 3.2.6; the
latter gives a K(AG×G)-module structure on K(AG).

3.2.7. Definition.

[L
bφvξ,w

] [Lξ,v] =
∑

(−1)i[Hiµ!L̃],

[Lη,w] [Lξ,v] = 0 if η 6= φ̂vξ.

Here L̃ is the extension by 0 of the local system on BwBB×v determined by
L
bφvξ,w

� Lξ,v. The formulas give a K(CG)-module structure on K(CY ). Again

[L
bφvξ,e

] [Lξ,v] = [Lξ,v].
3.2.8. Proposition. The bijection hY : K(AY ) → K(CY ) preserves the module
structure, in the sense that

hY (km) = h′G(k)hY (m) if k ∈ K(AG), m ∈ K(AY ).
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It suffices to prove this for k = [A
bφvξ,w

] and m = [Aξ,v]. With Ã as above we

have

hY (km) = hY (
∑

(−1)i[pHi(µ!Ã)]) =
∑
i,j

(−1)i+j [Hj(pHi(µ!Ã))]

=
∑

(−1)j [Hj(µ!Ã)] =
∑
p,q

(−1)p+q[Rpµ!(HqÃ)].

The latter equality comes from the spectral sequence Rpµ!(HqÃ) ⇒ Hn(µ!Ã). On
the other hand hG(k)hY (m) =

∑
i,j(−1)i+j [HiA

bφvξ,w
][HjAξ,v].

If p is the projection G×Y → GB×Y , we have p∗Hq+dimBÃ =
∑
i+j=q HiA

bφvξ,w
�

HjAξ,v. From this observation and the definitions it follows easily that∑
p

(−1)p[Rpµ!(Hq+dimBÃ)] =
∑
i+j=q

[HiA
bφvξ,w

] [HjAξ,v].

Now

hG(k)hY (m) =
∑
q

(−1)q
∑
p

(−1)p[Rpµ!(Hq+dimBÃ)] = (−1)dimBhY (km).

3.3. Definition of D.

3.3.1. Verdier duality induces a Z-linear map D : K(AY ) → K(AY ). This map
is Z[C]-semilinear with respect to the involution of Z[C] defined by the inverse
in C. We also define D : K(CY ) → K(CY ). This semilinear map is given by
D[S] =

∑
(−1)i[HiDY S], where DY S is the Verdier dual of S as a complex on Y .

These definitions apply in particular to Y = G.

3.3.2. Proposition. (i) hY ◦D = D ◦ hY .
(ii) D(km) = qdimB(Dk)(Dm) if k ∈ K(AG), m ∈ K(AY ) or K(AG).
(iii) D(km) = qdimB(Dk)(Dm) if k ∈ K(CG), m ∈ K(CY ) or K(CG).
(iv) D ◦D is the identity.

Proof of (i).

hY (D[A]) = hY [DYA] =
∑

(−1)i[HiDYA]

=
∑
p,q

(−1)p+q[HpDY (HqA)] = D(hY [A]).

To prove (ii) take k = [A
bφvξ,w

] and m = [Aξ,v]. Then Dk = q− dimBwB[A−bφvξ,w
]

and Dm = q− dim v[A−ξ,v] by 2.2.6(iii). Let Ã be as before (3.2.5) and let ˜̃A be
the same object with ξ replaced by −ξ. Applying Verdier duality to the formula

A
bφvξ,w

�Aξ,v = p∗Ã[dimB] we find that DY Ã = ˜̃A(l(w) + dim v). Now

D(km) =
∑

(−1)iD[pHi(µ!Ã)]

=
∑

(−1)i[pH−iDY (µ!Ã)] =
∑

(−1)i[pHi(µ!DY Ã)]

= q−l(w)−dim v
∑

(−1)i[pHi(µ!
˜̃A)] = qdimB(Dk)(Dm).

Recall that dimBwB = l(w) + dimB, where l(w) is the length of w.
(iii) follows from (i) and (ii) and (iv) is obvious.
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3.4. Application of duality.

3.4.1. We now introduce some notations. If v ∈ V , ξ ∈ X̂(T/Tv), we let εξ,v =
[Lξ,v] ∈ K(CY ), including the case Y = G. Expressing D[Lξ,v] and [HiAξ,v] in the
basis elements of K(CY ) we have

Dεξ,v = q− dim vε−ξ,v +
∑
u<v

bη,u;ξ,vεη,u

and

[HiAξ,v] = δi,− dim vεξ,v +
∑
u<v

cη,u;ξ,v,iεη,u

with coefficients bη,u;ξ,v, cη,u;ξ,v,i ∈ Z[C]. Summation is over (η, u), u ∈ V , η ∈
X̂(T/Tu). We have bη,u;ξ,v = 0 unless φ̂uη = −φ̂vξ and cη,u;ξ,v,i = 0 unless φ̂uη =

φ̂vξ.

3.4.2. Applying hY to the equality D[Aξ,v] = q− dim v[A−ξ,v] we see that

D
∑

(−1)i[HiAξ,v] = q− dim v
∑

(−1)i[HiA−ξ,v],

since hY commutes with D. Now express both sides of the latter equality in the
basis elements, using the notations of 3.4.1. The result is∑

i

(−1)icη,u;−ξ,v,i − qdim v−dimu
∑
i

(−1)ic̄−η,u;ξ,v,i

= (−1)dim vqdim vbη,u;ξ,v + qdim v
∑

u<z<v

bη,u;ζ,z

∑
i

(−1)ic̄ζ,z;ξ,v,i if u < v.

Here ¯ denotes the involution of Z[C] defined by the inverse in C.

3.4.3. Since Lξ,v has weight zero, we know that Aξ,v is pure of weight dim v. This
means that the punctual weights of HiAξ,v are ≤ i + dim v. Assume that we are
in a situation where it is known that these weights are equal to i + dim v. Then
the cη,u;ξ,v,i are linear combinations with coefficients in Z and ≥ 0 of (classes of)

algebraic numbers with complex absolute values q
1
2 (i+dim v). Since Aξ,v is a perverse

extension, cη,u;ξ,v,i 6= 0 implies dimu < −i, if u < v. So the absolute values of the

algebraic numbers occurring in cη,u;−ξ,v,i are q
1
2 (i+dim v) ≤ q

1
2 (dim v−dimu−1) and the

absolute values of those occurring in qdim v−dimuc̄−η,u;ξ,v,i are q
1
2 (dim v−i)−dimu ≥

q
1
2 (dim v−dimu+1).
It follows that, when ξ, v, η, u are given, the coefficients cη,u;−ξ,v,i (i ∈ Z) are

determined by the formula in 3.4.2, if the right hand side is known. In particular,
when all the coefficients b are known, the coefficients cη,u;ξ,v,i can be computed
from the formula by descending induction on dimu.

4. Product of a minimal parabolic and an orbit

One can prove that the algebra K(CG) is generated by the elements εη,s with s

a simple reflection and η ∈ X̂(T ). Hence the K(CG)-module structure on K(CY )

is determined by the products ε
bφvξ,s

εξ,v with v ∈ V , ξ ∈ X̂(T/Tv), s a simple

reflection. In this chapter we are going to compute these products.
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4.1. Orbit types.

4.1.1. We use the notations of chapter 3. The results of 4.1 and 4.2 are valid over
any algebraically closed ground field k, from 4.3 on we take up the conventions of
3.1.2.

The choice of B and T determines the root system and the set of simple roots.
The Weyl group W = N(T )/T is generated by the set S of simple reflections.

We choose the one parameter subgroups uα associated to the roots in such a way
that nα = uα(1)u−α(−1)uα(1) ∈ N(T ) for every root α. Then nα is a representative
for the reflection sα corresponding to α. We have n2

α = α̌(−1) and n−α = n−1
α ,

where α̌ is the coroot. The following formulas will be used frequently.

uα(x)u−α(−x−1)uα(x) = α̌(x)nα (x ∈ k∗)
nαuα(x)n−1

α = u−α(−x) (x ∈ k)
Im (uα) is denoted by Uα.

4.1.2. Fix s ∈ S and let P = Ps be the parabolic subgroup of G generated by B
and s, so P = BsB = B ∪BsB. Let α be the simple root corresponding to s.

If v ∈ V and v̇ ∈ v, we have an equality of finite sets

B\Pv = B\P v̇ = B\P/Pv̇ ∼= P1/Pv̇,

where Pv̇ is the isotropy group of v̇. We choose the isomorphism B\P ∼= P1 in such
a way that Bnαuα(x) 7→ −x. The action of P on B\P (given by p0 ·Bp = Bpp−1

0 )
defines a homomorphism φ : P → Aut (P1). When Aut (P1) is identified with PGL2

in the usual way, we have

φ(uα(x)) =

(
1 x
0 1

)
k∗ , φ(nα) =

(
0 1
−1 0

)
k∗ , φ(α̌(x)) =

(
x 0
0 x−1

)
k∗

and Ker (φ) = Ker (α)UP , where UP is the unipotent radical of P .

4.1.3. Let H be a closed subgroup of PGL2. Modulo conjugation by an element
of φ(B) we have the following possibilities, if H is infinite.

I. H = PGL2.

IIa. φ(Uα) ⊂ H ⊂ φ(B). IIb. φ(U−α) ⊂ H ⊂ φ(nαBn
−1
α ).

IIIa. H = φ(T ). IIIb. H is the conjugate of φ(T ) by φ(nαuα(−1)).

IVa., resp. IVb. H is the normalizer of the group of case IIIa, resp. IIIb.

The number of H-orbits in P1 is 1 in case I, 2 in the cases II and IV, 3 in case III.
In case II there is one fix point, in case III there are two fix points and in case IV
there is an orbit consisting of two elements.

4.1.4. Let v ∈ V . We can choose v̇ ∈ v such that H = φ(Pv̇) is in one of the cases
I–IVb of 4.1.3. We call such an element v̇ a special element of v (for s) and say that
v is of type I, IIa, . . . for s.

The partition of Pv into B-orbits can easily be derived from the partition of P1

into H-orbits. We give below the situation in the various cases. The open B-orbit
in Pv = Psv is denoted by m(s)v as in [RS1].

I. Pv = v.
IIa. Pv = v ∪m(s)v, v is closed in Pv, dim v = dimPv − 1.

We have nαuα(x)v̇ ∈ m(s)v for all x ∈ k.
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IIb. Pv = v ∪ v′, v is open in Pv, dim v′ = dim v − 1.
We have nαuα(x)v̇ ∈ v if x 6= 0, nαv̇ ∈ v′.

IIIa. Pv = v ∪ v′ ∪m(s)v, v and v′ are closed in Pv, dim v = dim v′ = dimPv − 1
and v 6= v′.
We have nαv̇ ∈ v′, nαuα(x)v̇ ∈ m(s)v if x 6= 0.

IIIb. Pv = v ∪ v′ ∪ v′′, v is open, v′ and v′′ are closed in Pv, v′ 6= v′′, dim v′ =
dim v′′ = dim v − 1.
We have nαuα(x)v̇ ∈ v if x 6= 0,−1, nαv̇ ∈ v′, nαuα(−1)v̇ ∈ v′′.
v′ and v′′ are of type IIIa with special elements v̇′ = uα(1)n−1

α v̇ and v̇′′ = nαv̇
′.

IVa. Pv = v ∪m(s)v, v is closed in Pv, dim v = dimPv − 1.
We have nαv̇ ∈ v, nαuα(x)v̇ ∈ m(s)v if x 6= 0.

IVb. Pv = v ∪ v′, v is open and v′ is closed in Pv, dim v′ = dim v − 1.
We have nαuα(x)v̇ ∈ v if x 6= 0,−1, nαuα(x)v̇ ∈ v′ if x = 0,−1.
v′ is of type IVa with special element v̇′ = uα(1)n−1

α v̇.

4.1.5. Lemma. Let y ∈ Y . Put H = φ(Py) (notations of 4.1.2). If φ(Uα) ⊂ H,
then Uα ⊂ UPPy. If φ(U−α) ⊂ H, then U−α ⊂ UPPy.

We prove the first assertion. Assume that Boy = T oyU
o
y (this can be achieved

by replacing y by uy for an appropriate u ∈ U ; the assertion to be proved is
not changed by that substitution). We have Uα ⊂ Ker (α)UPPy , whence Uα ⊂
TUPB

o
y = TUPU

o
y . It follows that Uα ⊂ UPU

o
y ⊂ UPPy . The second assertion is

nothing but the first one applied to nαy.

4.2. Results involving the group Tv. In this section notations are as in 4.1. We
fix P = Ps and v and choose a special element v̇ ∈ v. We now give some results on

Tv and X̂(T/Tv) which are needed in the sequel.

4.2.1. Assume v is of type I for s. By Lemma 4.1.5 the group generated by Uα
and U−α is contained in UPPv̇. So Im (α̌) ⊂ UPBv̇ and by the definition of Tv it
follows that Im (α̌) ⊂ Tv. If χ ∈ X(T/Tv), then 〈χ, α̌〉 = 0. Obviously s(Tv) = Tv.

4.2.2. Assume v of type IIa. We have Pv̇ ⊂ B and, by Lemma 4.1.5, Uα ⊂ UPUv̇.
It is easily seen that s(Tv) = Tm(s)v.

4.2.3. Assume v of type IIIa. Then

(i) Tm(s)v = Tv ∩ Ker (α).
(ii) T = Tv Ker (α).
(iii) s(Tv) = Tv′ .

We have Pv̇ ⊂ TUP and Im (α̌) ⊂ Ker (α)UPPv̇. So Im (α̌) ⊂ Ker (α)Tv, which
implies (ii). Also (iii) is easy. We prove (i).

Let t ∈ Tm(s)v. There is u ∈ U such that tunαuα(1)v̇ = nαuα(1)v̇ (recall
that nαuα(1)v̇ ∈ m(s)v). Then tunαuα(1) = nαuα(1)t′u′ with t′ ∈ T , u′ ∈ UP ,
t′u′ ∈ Pv̇. It follows that tunαuα(1) ∈ UP s(t

′)nαuα(α(t′)−1), whence α(t′) = 1,
t = s(t′) = t′. So we have t ∈ Ker (α) and from t′u′ ∈ Bv̇ it follows that t ∈ Tv.

Conversely, let t ∈ Tv ∩ Ker (α). Choose u ∈ U such that ut ∈ Bv̇. Then u ∈ UP
and tnαuα(1)v̇ = nαuα(1)tv̇ ∈ UPnαuα(1)utv̇ = UPnαuα(1)v̇, so t ∈ Tm(s)v.
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4.2.4. Assume v of type IVa and assume that the characteristic of k is not 2. Then

(i) Im (α̌) ⊂ Tv.
(ii) α(Tm(s)v) = {±1}.
(iii) Tv ∩ Ker (α) = Tm(s)v ∩ Ker (α).
(iv) s(Tv) = Tv and s(Tm(s)v) = Tm(s)v.

We have Pv̇ ⊂ TUP ∪ nαTUP and 〈nα, Im (α̌)〉 ⊂ Ker (α)UPPv̇. That s(Tv) = Tv
follows from the facts that Bv̇ ⊂ TUP and nαv̇ ∈ v. We have obviously Im (α̌) ⊂
Ker (α)Tv. Choose τ ∈ k∗ and let t ∈ Ker (α) be such that tα̌(τ) ∈ Tv. Then
tα̌(τ−1) = s(tα̌(τ)) ∈ s(Tv) = Tv. Hence α̌(τ2) ∈ Tv. This proves (i).

One proves that Tv ∩ Ker (α) ⊂ Tm(s)v as in case IIIa.
Now we first prove the following lemma, which we shall also need later.

4.2.5. Lemma. Let x1, x2 ∈ k, t1, t2 ∈ T , u1, u2 ∈ UP be such that uα(x1)u1t1v̇
′

= uα(x2)u2t2v̇
′, where v̇′ = nαuα(−1)v̇ ∈ m(s)v. Then we have either x1 = x2,

α(t1) = α(t2) or x2 − x1 = α(t1) = −α(t2).

For the proof we may take x2 = 0, u2 = t2 = 1 and drop the indices 1. The
element g = uα(1)n−1

α uα(x)utnαuα(−1) stabilizes v̇. There are two possibilities:
g ∈ TUP or g ∈ nαTUP . If g ∈ TUP , we must have x = 0, α(t) = 1, and it follows
also that t ∈ Tv. Assume now that g ∈ nαTUP . Then x 6= 0 and

g = uα(1− x−1)nαα̌(x)uα(−x−1).n−1
α unα.s(t)uα(−1).

The condition g ∈ nαTUP gives x = 1, α(t) = −1.
We now finish the proof of 4.2.4. If t ∈ Tm(s)v, there are x ∈ k and u ∈ UP

such that uα(x)utv̇′ = v̇′, with v̇′ as in Lemma 4.2.5. By that lemma and its
proof we have then α(t) = 1 and t ∈ Tv or α(t) = −1. Assertion (iii) of 4.2.4 is
now proved. To complete the proof of (ii), choose i ∈ k such that i2 = −1 and
observe that α̌(i)nα ∈ Ker (α)UPPv̇. Conjugation by nαuα(−1) gives uα(1)α̌(i) ∈
Ker (α)UPPv̇′ . Hence there is t ∈ Tm(s)v with α(t) = −1.

Finally, we have α̌(−1) ∈ Tm(s)v (by (i) and (iii)). Together with (ii) this gives
the second assertion of (iv).

Remark. It has been shown by Knop [K] that there is an action of the Weyl group
on V such that the simple reflections act as follows. In case II the two B-orbits are
interchanged, in case III the two small orbits are interchanged, all other orbits are
fixed. If this action is denoted by (w, v) 7→ w ·v, 4.2.1–4.2.4 show that s(Tv) = Ts·v,
hence w(Tv) = Tw·v (w ∈W, v ∈ V ).

4.2.6. Let v be of type IIIa for s. Consider the natural homomorphism T/Tm(s)v →
T/Tv. Its kernel is Tv/Tm(s)v and from 4.2.3 we see that there are bijective ho-

momorphisms Tv/Tm(s)v → T/Ker (α)
α→ Gm. So Lemma 2.1.5 gives an exact

sequence

0 → X̂(T/Tv) → X̂(T/Tm(s)v) → X̂(Gm) → 0.

If v is of type IVa for s, we find in the same way, using 4.2.4(i), an exact sequence

0 → X̂(T/Tv) → X̂(T/Tv ∩ Ker (α)) → X̂(Gm) → 0.

Moreover, in this case we have a homomorphism X̂(T/Tm(s)v) → X̂(T/Tv∩Ker(α)),
which is surjective and has a kernel of two elements. This comes from the homo-
morphism T/Tm(s)v ∩ Ker (α) → T/Tm(s)v, using 4.2.4(ii) and (iii).
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4.2.7. It is convenient to formulate the above results also starting with an orbit of
type IIIb or IVb. We take these cases together. So let v be of type IIIb or IVb for
s and let v′ ⊂ Pv, v′ 6= v. We assume that the characteristic of k is not 2. Then

Tv ∩ Ker (α) = Tv′ ∩ Ker (α) , T = Tv′ Ker (α),

α(Tv) = {±1} in case IV, Tv ⊂ Ker (α) in case III.

In case IV we have Im (α̌) ⊂ Tv′ .

In the following diagram the row is exact. The map a is defined such that the
triangle is commutative.

X̂(T/Tv)

��

a

''
PP

PP
PP

PP
PP

PP

0 // X̂(T/Tv′)
// X̂(T/Tv ∩ Ker (α)) // X̂(Gm) // 0

The homomorphism X̂(T/Tv) → X̂(T/Tv ∩ Ker (α)) is surjective and has a kernel
of order two in case IV, it is the identity in case III.

An easy computation shows that a(ξ)− a(sξ) = 〈φ̂vξ, α̌〉.
Notice that s induces an automorphism of X̂(T/Tv), since s(Tv) = Tv. The

coroot α̌ : X(T ) → Z is extended to a map X̂(T ) → Z(p)/Z, which explains the

notation 〈φ̂vξ, α̌〉 (φv as in 2.2.5).

If Im (α̌) ⊂ Tv′ , we have 〈φ̂vξ, α̌〉 = 2a(ξ).
In case III the map a corresponding to the other small orbit in Pv is ξ 7→ −a(sξ),

so the sum of the two is 〈φ̂vξ, α̌〉. We shall denote these two maps X̂(T/Tv) →
X̂(Gm) by av′ and av′′ (when s and v are fixed).

Remark. If Y is symmetric, one has Im (α̌) ⊂ Tv′ in both cases III and IV (see 6.7).

4.3. The product ε
bφvξ,s

εξ,v.

4.3.1. For s ∈ S, v ∈ V and ξ ∈ X̂(T/Tv), the product ε
bφvξ,s

εξ,v is given in the

following table according to the type of v for s. In the case of an orbit of type IV
we assume that the characteristic of k is different from 2. It is assumed that all
B-orbits contain points over Fq and that Fξ = ξ. The notation of the orbits is as

in 4.1.4, notations for elements of X̂(T/Tv′) etc. are explained below. The proofs
will be given in 4.3.3–4.3.11.

I. qεξ,v
IIa. εsξ,m(s)v

IIb. (q − 1)εξ,v + qεsξ,v′ if 〈φ̂vξ, α̌〉 = 0,

qεsξ,v′ if 〈φ̂vξ, α̌〉 6= 0.
IIIa. εsξ,v′ + εsξ,m(s)v

IIIb. (q − 2)εξ,v + (q − 1)(εξ,v′ + εξ,v′′) if av′(ξ) = av′′(ξ) = 0,

−εξ,v if 〈φ̂vξ, α̌〉 = 0, av′(ξ) 6= 0,
−εsξ,v + (q − 1)εsξ,v′ if av′(ξ) 6= 0, av′′(ξ) = 0,
−εsξ,v + (q − 1)εsξ,v′′ if av′(ξ) = 0, av′′(ξ) 6= 0,

−Jv(ξ)εsξ,v if av′(ξ) 6= 0, av′′(ξ) 6= 0, 〈φ̂vξ, α̌〉 6= 0.
IVa. εξ,v + εξ1,m(s)v + εξ2,m(s)v
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IVb. (q − 1)εξ,v − εξ′,v + (q − 1)εξ̄,v′ if a(ξ) = 0,
−εξ,v if a(ξ) 6= 0, 2a(ξ) = 0,
−Jv(ξ)εsξ′,v if 2a(ξ) 6= 0.

If ξ ∈ X̂(T/Tv), then sξ ∈ X̂(T/s(Tv)). In case IIIa we have sξ ∈ X̂(T/T ′v) ⊂
X̂(T/Tm(s)v) (see 4.2.6). If v is of type IIIb and av′(ξ) = 0, then ξ lies in the

subgroup X̂(T/Tv′) of X̂(T/Tv) and sξ in the subgroup X̂(T/Tv′′) of X̂(T/Tv)

(see 4.2.7). In case IVa, ξ1 and ξ2 are the two elements of X̂(T/Tm(s)v) which are

mapped onto the image of ξ in X̂(T/Tv ∩ Ker (α)) (see 4.2.6). In case IVb, ξ′ is

the element 6= ξ of X̂(T/Tv) which has the same image as ξ in X̂(T/Tv ∩ Ker (α)).

When a(ξ) = 0, this image can be considered as an element ξ̄ of X̂(T/Tv′) (see
4.2.7).

The definition of Jv(ξ) in the cases IIIb and IVb is as follows. Since we assume
that T is defined and split over Fq and that Fξ = ξ, i.e. (q − 1)ξ = 0, we have
also (q − 1)av′(ξ) = (q − 1)av′′(ξ) = 0, in case IIIb. Therefore av′(ξ) and av′′(ξ)
determine two characters χ1, χ2 : F∗q → Q̄∗

l (see [MS, 2.3.1]; in our particular case,
if av′(ξ) = m

q−1 + Z, then χ1 = ψ ◦ m, ψ as in 2.1.1). Now Jv(ξ) is the class

in C (cf. 3.1.2) of the Jacobi sum J(χ−1) defined in 2.1.7 for χ with components
χ0 = χ−1

1 χ−1
2 , χ1, χ2:

J(χ−1) = −
∑

x∈F∗q,x 6=−1

χ1(x)χ2(−1− x).

If v is of type IVb, the definition is the same, just take χ1 = χ2 equal to the
character of F∗q determined by a(ξ).

4.3.2. The product in K(CG) is described by the following formulas, which can be
derived from 4.3.1, IIa and IIb, or proved directly. The notation is as in 3.1.3. Let

s ∈ S, w ∈ W , ξ ∈ X̂(T ).

εwξ,sεξ,w = εξ,sw if sw > w,
= (q − 1)εξ,w + qεξ,sw if sw < w and 〈wξ, α̌〉 = 0,
= qεξ,sw if sw < w and 〈wξ, α̌〉 6= 0,

4.3.3. Let s, v and ξ be as in 4.3.1. The local system L
bφvξ,s

� Lξ,v on BsB × v

is the pull-back of a local system L̃ on BsBB×v and we have to compute µ!L̃, where
µ is the map BsBB×v → Y induced by the action of G on Y . The image of µ is
m(s)v if v is of type IIa for s, it is v′ ∪m(s)v if v is of type IIIa and it is Pv in all
other cases. This can be read off from 4.1.4. We shall now treat the different cases.
Elements of GB×Y are denoted by g ∗ y and v̇ is a special element of v (see 4.1.4).

4.3.4. Assume v is of type IIa for s. Then µ is an isomorphism from BsBB×v onto
m(s)v, because Pv̇ = Bv̇ (4.2.2). If p ∈ Unαt1U and y ∈ t2Uv̇ with t1, t2 ∈ T ,
then py ∈ Us(t1t2)nαv̇, because U = UPUv̇ (4.2.2). Since nαv̇ ∈ m(s)v, it follows

immediately from the definitions that µ!L̃ = Lsξ,m(s)v and so ε
bφvξ,s

εξ,v = εsξ,m(s)v.

4.3.5. Assume v of type IIIa. Now µ is an isomorphism from BsBB×v onto its
image v′ ∪m(s)v, since Pv̇ = Bv̇. If p = bnαb1 ∈ BnαB and y = b2v̇ ∈ v, then
py ∈ v′ if b1b2 ∈ TUP , py ∈ m(s)v if b1b2 6∈ TUP .
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We shall make use of the following observation. The identity α̌(τ)nαuα(−1)α̌(τ)
= nαuα(−τ−2) implies, since Im (α̌) ⊂ Ker (α)UPPv̇, that nαuα(−τ−2)v̇ ∈
UP t0α̌(τ)v̇′′ with v̇′′ = nαuα(−1)v̇ ∈ m(s)v, if α̌(τ) ∈ t0Tv, t0 ∈ Ker (α).

The local system L
bφvξ,s

� Lξ,v is the inverse image of Lξ under the map f :

BsB×v→ T/Tv, where Unαt1U×Ut2v̇ → t1t2Tv. Let (BsB×v)′, resp. (BsB×v)′′,
denote the subset of BsB × v which is mapped onto v′, resp. v′′ = m(s)v, by the
product map. The restrictions f ′ and f ′′ of f to these subsets factorize as follows:

f ′ : (BsB × v)′ → v′
πv̇′→ T/Tv′

s→ T/Tv,

f ′′ : (BsB × v)′′ → v′′
πv̇′′→ T/Tv′′

s→ T/Tv.

Indeed, if p = unαb1, y = b2v̇ and b1b2 ∈ UPuα(x)t with u ∈ U , b1, b2 ∈ B,
t ∈ T , then we have py ∈ Unαtv̇ = Us(t)v̇′ if x = 0 and, applying the observation
above, we see that py ∈ Us(t)nαuα(α(t)−1x)v̇ = Us(t)t0α̌(τ)v̇′′ if x 6= 0 and
τ2 = −α(t)x−1, α̌(τ) ∈ t0Tv, t0 ∈ Ker (α). Notice that s(t0α̌(τ)) = t0α̌(τ)−1 ∈ Tv.

It follows now immediately that µ!L̃|v′ = Lsξ,v′ and µ!L̃|m(s)v = Lsξ,m(s)v . This
proves 4.3.1 in case IIIa.

4.3.6. Assume v of type IVa. The image of µ is Pv = v ∪m(s)v. If p = bnαb1 ∈
BnαB and y = b2v̇ ∈ v, then py ∈ v if b1b2 ∈ TUP , py ∈ m(s)v if b1b2 6∈ TUP .
Since Im (α̌) ⊂ Tv (4.2.4), we have in this case nαuα(−τ−2)v̇ ∈ UP α̌(τ)v̇′′ with
v̇′′ = nαuα(−1)v̇ ∈ m(s)v (cf. 4.3.5). Consider, as in 4.3.5, the map f : BsB× v →
T/Tv. Let (BsB × v)′, resp. (BsB × v)′′, denote the subset of BsB × V which
is mapped onto v, resp. m(s)v, by the product map. The restriction f ′ of f to
(BsB × v)′ factorizes in

f ′ : (BsB × v)′ → v
πnαv̇→ T/Tv,

as is easily checked. Since (BsBB×v)′ → v is an isomorphism, it follows that µ!L̃|v =

Lξ,v. The restriction of µ!L̃ to m(s)v can be determined from the following diagram.

(BsB × v)′′ // (BsBB×v)′′
ρ

//

��

T/Tv ∩ Ker (α) //

��

T/Tv

m(s)v
πv̇′′

// T/Tm(s)v

The first row is a factorization of the restriction of f to (BsB×v)′′. It is defined as
follows. Let p = unαb1 ∈ UnαB, y = b2v̇ ∈ v, b1b2 ∈ UPuα(x)t with x 6= 0. Then
py ∈ Us(t)α̌(τ)v̇′′, if τ2 = −α(t)x−1. The morphism ρ is defined by ρ(unαb1∗b2v̇) =
s(t)α̌(τ)(Tv ∩ Kerα)) and the other maps are the obvious ones. The vertical arrows
are 2-fold Galois coverings (see 4.2.4), the square is Cartesian. We see from the

diagram that µ!L̃|m(s)v = Lξ1,m(s)v ⊕ Lξ2,m(s)v, where ξ1, ξ2 ∈ X̂(T/Tm(s)v) are as
explained in 4.3.1. This completes the proof of 4.3.1 in case IVa.

4.3.7. In the cases where v is open in Pv we use the isomorphisms

BsBB×v ∼= {(pB, y) ∈ BsB/B × Pv | p−1y ∈ v}
∼= {(x, y) ∈ k × Pv | n−1

α uα(−x)y ∈ v}.
The first isomorphism is p ∗ y ↔ (pB, py), for the second one, write p = uα(x)nα.
The morphism µ : BsBB×v → Y corresponds to the projection (x, y) 7→ y. Recall
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that the image of µ is Pv. Now µ−1(v) ∼= {(x, y) ∈ k × v | n−1
α uα(−x)y ∈ v} and

µ−1(v′) ∼= {(x, y) ∈ k × v′ | n−1
α uα(−x)y ∈ v} in the cases IIb, IIIb, IVb.

From 4.1.4 we find the following necessary and sufficient conditions on (x, y) in
order that n−1

α uα(−x)y ∈ v.
If v is of type IIb and y ∈ uα(x′)UPT v̇ : x 6= x′.
If v is of type IIIb or IVb and y ∈ uα(x′)UP tv̇ : x 6= x′ and x− x′ 6= α(t).
If v is of type IIb and y ∈ v′: no condition.
If v is of type IIIb or IVb and y ∈ uα(x′)UPT v̇′ : x 6= x′.
In each of these cases we can write n−1

α uα(−x)y = bv̇ with b ∈ B and the local

system L̃ corresponds to the inverse image of Lξ under the map (x, y) 7→ πT (b)Tv ∈
T/Tv. We shall now consider the different cases separately.

4.3.8. Assume v is of type I. Since Pv = v, 4.3.7 gives an isomorphism BsBB×v ∼=
k × v. Let x ∈ k, y = tuv̇ ∈ v (t ∈ T, u ∈ U). Then n−1

α uα(−x)y ∈ s(t)n−1
α Uv̇ ⊂

UP s(t)v̇, since the group generated by Uα and U−α is contained in UPPv̇ (4.2.1).
We have also s(t) ∈ tTv, since Im (α̌) ⊂ Tv. So the image of (x, y) in T/Tv is tTv
and µ!L̃ = (pr2)!(Q̄l � Lξ,v) = Lξ,v[−2](−1). Hence ε

bφvξ,s
εξ,v = qεξ,v.

4.3.9. Assume v of type IIb. We apply 4.3.7. Let x ∈ k and y ∈ uα(x′)UP tv̇
with x 6= x′. With z = x − x′ we have n−1

α uα(−x)y ∈ UPn
−1
α uα(−z)tv̇ =

UPuα(z−1)α̌(−z−1)u−α(−z−1)tv̇ ⊂ Uα̌(−z−1)tv̇, since U−α ⊂ UPPv̇ by Lemma
4.1.5. So the image of (x, y) in T/Tv is α̌(−z−1)tTv. Since Bv̇ ⊂ B ∩ nαBn−1

α =

TUP , the map (x′, y′) 7→ uα(x′)y′ gives an isomorphism k × TUP v̇
∼→ V . Take

z = x− x′ as a coordinate in the place of x. Then we see that

µ!L̃ |v∼= (pr2)!(L−〈ξ,α̌〉 � Lξ,v),
where pr2 is the projection of k∗ × v on v. If 〈ξ, α̌〉 = 0, we have H1(µ!L̃) |v= Lξ,v
and H2(µ!L̃) |v= Lξ,v(−1). If 〈ξ, α̌〉 6= 0, then µ!L̃ |v= 0 by 2.1.6. This gives the
contribution (q− 1)εξ,v to ε

bφvξ,s
εξ,v in case 〈ξ, α̌〉 = 0. Notice that we may neglect

roots of unity as factors in Frobenius eigenvalues.
Next, let x ∈ k and y ∈ tUv̇′, where v̇′ = nαv̇. Then n−1

α uα(−x)y ∈ UP s(t)v̇, the

image of (x, y) in T/Tv is s(t)Tv and µ!L̃ |v′= (pr2)!(Q̄l �Lsξ,v′) = Lsξ,v′ [−2](−1).
This gives the contribution qεsξ,v′ to ε

bφvξ,s
εξ,v.

4.3.10. Assume v of type IIIb. We apply again 4.3.7. Let x ∈ k and y ∈
UPuα(x′)tv̇ with x 6= x′ and x−x′ 6= α(t). Then n−1

α uα(−x)y ∈ UP s(t)n−1
α uα(z)v̇,

where z = α(t)−1(x′ − x), so that z 6= 0,−1. Now v̇′ = uα(1)n−1
α v̇ is a special

element of the orbit v′, which is of type IIIa (see 4.1.4). We have n−1
α uα(z)v̇ =

n−1
α uα(z)nαuα(−1)v̇′ = u−α(−z)uα(−1)v̇′ ∈ Uα̌(z−1)nαuα(−z−1 − 1)v̇′. By the

observation made in the beginning of 4.3.5 we have nαuα(−z−1−1)v̇′ ∈ UP t0α̌(τ)v̇,
if τ2 = z(z + 1)−1, α̌(τ) ∈ t0Tv′ , t0 ∈ Ker (α). So finally n−1

α uα(−x)y ∈
Us(t)α̌(z−1)t0α̌(τ)v̇ and the image of (x, y) in T/Tv is

s(t)α̌(z−1)t0α̌(τ)Tv.

As in case IIb the map (x′, y′) 7→ uα(x′)y′ gives an isomorphism k × TUP v̇∼→ v. In y ∈ UPuα(x′)tv̇, the element t is determined modulo Tv, so α(t) is deter-
mined by y, since α(Tv) = 1 (4.2.7). It follows that we may take z = α(t)−1(x′−x)
as a coordinate in the place of x. Let k∗∗ denote k− {0,−1}. Then L̃ gives a local
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system on k∗∗ × v and we have to compute the direct image with proper support
of that local system for the second projection.

Suppose ξ ∈ X̃(T/Tv) is represented by χ/n with χ ∈ X(T/Tv), n an integer

prime to p. In 4.2.7 we defined a(ξ) ∈ X̂(Gm) = Z(p)/Z. It is computed as follows.
On Tv′ we have χ = a(χ)α with an integer a(χ). Then a(χ)/n is a representative
for a(ξ). Let us compute χ(s(t)α̌(z−1)t0α̌(τ)). Since t0α̌(τ)−1 ∈ Tv′ and α(t0) = 1,
we have χ(t0)τ

−〈χ,α̌〉 = τ−2a(χ), so that χ(α̌(z−1)t0α̌(τ)) = z−〈χ,α̌〉τ2〈χ,α̌〉−2a(χ) =
z−〈χ,α̌〉(z(z + 1)−1)〈χ,α̌〉−a(χ) = z−a(χ)(z + 1)a(sχ), as a(χ)− a(sχ) = 〈χ, α̌〉.

It follows that µ!L̃ |v∼= (pr2)!(J �Lsξ,v) where J is the inverse image of L−a(ξ)�
La(sξ) under the map k∗∗ → k∗ × k∗, z 7→ (z,−1 − z). If a(ξ) = a(sξ) = 0, then

J is constant and H1(µ!L̃) |v= Lξ,v ⊕ Lξ,v, H2(µ!L̃) |v= Lξ,v(−1), the other Hi

are zero (in this case sξ = ξ). If a(ξ) and a(sξ) are not both zero, we can apply
Proposition 4.16 of [SGA4-1/2, Sommes trigonométriques] (see 2.1.7). The Jacobi

sum in 2.1.7 equals ±1 if exactly one of a(ξ), a(sξ), 〈φ̂vξ, α̌〉 is zero, but it has
complex absolute value q1/2 if all three are non-zero. So we find the contribution
of v to ε

bφvξ,s
εξ,v as stated in 4.3.1.

Next, let x ∈ k and y ∈ UPuα(x′)tv̇′ with x 6= x′. Then n−1
α uα(−x)y ∈

UP α̌(−1)s(t)nαuα(−α(t)−1z)v̇′, where z = x − x′ 6= 0. In the same way as
before we find nαuα(−α(t)−1z)v̇′ ∈ UP t0α̌(τ)v̇ if τ2 = α(t)z−1, α̌(τ) ∈ t0Tv′ ,
t0 ∈ Ker (α). So n−1

α uα(−x)y ∈ UP α̌(−1)s(t)t0α̌(τ)v̇ and the image of (x, y) in
T/Tv is α̌(−1)s(t)t0α̌(τ)Tv. Let χ and n be as above and put χ′ = χ − a(χ)α ∈
X(T/Tv′), ξ

′ = χ′/n + X(T/Tv′) ∈ X̂(T/Tv′). Then χ(t0α̌(τ)) = τ2〈χ,α̌〉−2a(χ) =
(α(t)z−1)〈χ,α̌〉−a(χ) and sχ(t) = χ(t)α(t)−〈χ,α̌〉, so χ(s(t)t0α̌(τ)) = χ′(t)za(sχ). It

follows that µ!L̃ |v′= (pr2)!(La(sξ)�Lξ′,v′), where pr2 is the projection k∗×v′ → v′.
If a(sξ) 6= 0, then µ!L̃|v′ = 0 by 2.1.6. If a(sξ) = 0, then sξ = ξ′ ∈ X̂(T/Tv′) and

we have H1(µ!L̃) |v′= Lsξ,v′ , H2(µ!L̃) |v′= Lsξ,v′ (−1). This gives the contribution
(q − 1)εsξ,v′ to ε

bφvξ,s
εξ,v, when av′′(ξ) = −a(sξ) = 0. The contribution of v′′ is

determined by interchanging v′ and v′′. Now 4.3.1 is proved in case IIIb.

4.3.11. Assume v of type IVb. Let x ∈ k and y ∈ UPuα(x′)tv̇ with x 6= x′

and x − x′ 6= α(t). Put z = α(t)−1(x′ − x). Proceeding as in 4.3.10 we find that
n−1
α uα(−x)y ∈ Us(t)α̌(z−1τ)v̇, if τ2 = z(z+1)−1 (the factor t0 ∈ Ker (α) is absent,

because in this case Im (α̌) ⊂ Tv′). The image of (x, y) in T/Tv is s(t)α̌(z−1τ)Tv.

Suppose ξ ∈ X̂(T/Tv) is represented by χ/n with χ ∈ X(T/Tv) and n ∈ Z, prime
to p. In this case we have 〈χ, α̌〉 = 2a(χ), where a(χ) ∈ Z is determined by
the condition that χ = a(χ)α on Tv′ , so a(ξ) = a(χ)/n + Z (see 4.2.7). Now
χ(α̌(z−1τ)) = (z−1τ)2a(χ) = (z(z + 1))−a(χ).

Let Z denote the variety {(x, y) ∈ k × v | n−1
α uα(−x)y ∈ v} (which is iso-

morphic to µ−1(v)) and Z̃ = k∗∗ × k × TUP v̇, where k∗∗ = k − {0,−1}. By

Lemma 4.2.5 we have a 2-fold Galois covering γ : Z̃ → Z defined by γ(z, x′, y′) =
(x′ − α(t)z, uα(x′)y′) if y′ ∈ UP tv̇. Notice that α(t) is determined by y′, as a

special case of Lemma 4.2.5. The group of order two acts on Z̃ by (z, x′, y′) 7→
(−z − 1, x′ + α(t), uα(−α(t))y′), if y′ ∈ UP tv̇. We have a Cartesian diagram

Z̃
γ

//

β

��

Z

α

��

k × TUP v̇ π
// v

where β(z, x′, y′) = (x′, y′), α(x, y) = y and π(x′, y′) = uα(x′)y′.
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Define f : Z → k∗ by f ◦ γ(z, x′, y′) = z(z + 1). It follows from the computation

above that restriction of L̃ gives on Z the sheaf f∗L−a(ξ)⊗α∗Lsξ,v. Hence µ!L̃ |v∼=
α!(f

∗L−a(ξ) ⊗ α∗Lsξ,v) = α!f
∗L−a(ξ) ⊗ Lsξ,v.

Denote the complex α!f
∗L−a(ξ) by K. We are going to compute its cohomology

sheaves. On Z̃ we have γ∗f∗L−a(ξ) = J � Q̄l, where J is the inverse image of

L−a(ξ)�L−a(ξ) under the map k∗∗ → k∗×k∗, z 7→ (z,−1−z), and Q̄l is the constant

sheaf on k × TUP v̇. Now π∗K = π∗α!f
∗L−a(ξ) = β!γ

∗f∗L−a(ξ) = β!(J � Q̄l) =

p!J ⊗ Q̄l, where p denotes projection on a point. So π∗HiK = Hi
c(k

∗∗,J )⊗ Q̄l, a
constant sheaf, and HiK is a direct summand of π∗π∗HiK = Hi

c(k
∗∗,J ) ⊗ π∗Q̄l.

Let π∗Q̄l = Q̄l ⊕ E , where E corresponds to the non-trivial character of the Galois
group of π. The action of the Galois group of π on the stalks (HiK)y ∼= Hi

c(k
∗∗,J )

of HiK comes from the action of the automorphism σ : z 7→ −1 − z of k∗∗ on
H i
c(k

∗∗,J ).
Assume first that a(ξ) = 0. Then J = Q̄l and the non-zero cohomology spaces

are:
H1
c (k

∗∗, Q̄l) = Q̄2
l , σ acts with eigenvalues 1 and − 1;

H2
c (k

∗∗, Q̄l) = Q̄l(−1), σ acts trivially.

We conclude that H1K = Q̄l ⊕ E and H2K = Q̄l(−1). Hence H1(µ!L̃)|v = H1K ⊗
Lξ,v = Lξ,v ⊕ Lξ′,v and H2(µ!L̃)|v = Lξ,v(−1). Here ξ′ is as in 4.3.1 and sξ = ξ,
because a(ξ) = 0.

This gives (q − 1)εξ,v − εξ′,v as a contribution to ε
bφvξ,s

εξ,v.

Consider now the case a(ξ) 6= 0. The only non-zero cohomology space is
H1
c (k

∗∗,J ). This space is one-dimensional and the action of σ is multiplication
by −1, by Proposition 4.20 of [SGA4-1/2, Sommes trigonométriques] (see 2.1.7).

Now H1K = H1
c (k

∗∗,J )⊗ E and H1(µ!L̃) |v= H1
c (k

∗∗,J )⊗ Lsξ′,v. The contri-
bution to ε

bφvξ,s
εξ,v is −εξ,v if 2a(ξ) = 0 and −Jv(ξ)εsξ′,v if 2a(ξ) 6= 0 (notice that

sξ′ = ξ if a(ξ) 6= 0, 2a(ξ) = 0).
Finally, we have to determine the contribution of v′. Let x ∈ k and y ∈

UPuα(x′)tv̇′ with x 6= x′. Put z = x − x′. In the same way as in case IIIb
(4.3.10) we find that n−1

α uα(−x)y ∈ UP α̌(−1)s(t)α̌(τ)v̇, if τ2 = α(t)z−1. The
image of (x, y) in T/Tv is α̌(−1)s(t)α̌(τ)Tv. Let χ and n be as above and put

χ1 = χ − a(χ)α ∈ X(T/Tv′) and ξ1 = χ1/n + X(T/Tv′) ∈ X̂(T/Tv′). Then
χ(s(t)α̌(τ)) = sχ(t)τ2a(χ) = χ1(t)z

−a(χ).

It follows that µ!L̃ |v′= (pr2)!(L−a(ξ) � Lξ1,v′), where pr2 is the projection k∗ ×
v′ → v′. If a(ξ) 6= 0, then µ!L̃ |v′= 0 by 2.1.6. If a(ξ) = 0, then ξ1 is equal to the

element ξ̄ defined in 4.3.1 and H1(µ!L̃) |v′= Lξ̄,v′ , H2(µ!L̃) |v′= Lξ̄,v′(−1). So the
contribution of v′ is (q − 1)εξ̄,v′ , if a(ξ) = 0.

The proof of 4.3.1 is now complete.

Remark. The relation between the algebra K(CG) and the algebra K of [MS] is the
following. In K(CG) we have the formulas 4.3.2. Comparison of these formulas
with [MS, 3.3.1] shows that the Z[q]-subalgebra of K(CG) generated by the ele-
ments εξ,w is isomorphic to a Z[t]-subalgebra of the algebra K: to εξ,w corresponds

tl(w)−lξ(w)eξ,w and to multiplication by q corresponds multiplication by t2.

4.4. The restriction of Aξ,v to Pv.

4.4.1. Let v ∈ V , s ∈ S and P = Ps as before. If v is of a type b for s, then

Pv ⊂ v̄ and v is open in Pv. The restriction of Aξ,v (ξ ∈ X̂(T/Tv)) to Pv is the
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perverse extension of Lξ,v to Pv. It is given by one sheaf, in degree − dim v, which
we shall now compute. The result will be needed later.

4.4.2. Assume v is of type IIb for s. We have Pv = v ∪ v′. Let v̇ be a spe-
cial element of v, then v̇′ = n−1

α v̇ is one of v′. The set U−αv′ = U−αBv̇′ is an
open neighbourhood of v′ in Pv. The map k × v′ → U−αv′, (x, y) 7→ u−α(x)y, is
an isomorphism, since Pv̇′ ⊂ B. If t ∈ T , u ∈ U and x ∈ k∗, then u−α(x)tuv̇′ =
uα(x−1)α̌(−x−1)nαuα(x−1)tuv̇′ ∈ Uα̌(−x−1)s(t)v̇, since U ⊂ UPPv̇′ , so that
πv̇(u−α(x)tuv̇′) = α̌(−x−1)s(t)Tv (notation of 2.2.5). Let ξ = χ/n + X(T/Tv) ∈
X̂(T/Tv). From χ(α̌(−x−1)s(t)) = (−x)−〈χ,α̌〉sχ(t) we see that Lξ,v has trivial

local monodromy around v′ if 〈φ̂vξ, α̌〉 = 0. In that case Lξ,v can be extended to a
smooth sheaf L on Pv, whose restriction to v′ is Lsξ,v′ . Then Aξ,v |Pv= L[dim v].

If 〈φ̂vξ, α̌〉 6= 0, Aξ,v |Pv is the extension by zero of Lξ,v[dim v].

4.4.3. We assume now that v is of type IIIb and use the notations of 4.3.10. We
have Pv = v ∪ v′ ∪ v′′. The set v ∪ v′′ is an open neighbourhood of v′′ in Pv. It
is isomorphic to k × k × TUP v̇

′ by the map (x1, x, y) 7→ uα(x1)nαuα(x)y (∈ v if
x 6= 0, ∈ v′′ if x = 0). By the computations in the last part of 4.3.10 we have
uα(x1)nαuα(x)y ∈ Us(t)t0α̌(τ)v̇, if x 6= 0, y ∈ UP tv̇′, τ2 = −α(t)x−1, α̌(τ) ∈ t0Tv′ ,
t0 ∈ Ker (α), and χ(s(t)t0α̌(τ)) = χ′(t)(−x)a(sχ) with χ′ = χ− a(χ)α ∈ X(T/Tv′).
So Lξ,v has trivial local monodromy around v′′ if a(sξ) = 0, i.e. av′′(ξ) = 0. In
that case Lξ,v can be extended to a smooth sheaf on v ∪ v′′, whose restriction on
v′′ is Lξ,v′′ . Interchanging v′ and v′′ we have: Lξ,v extends to a smooth sheaf on
v ∪ v′, whose restriction to v′ is Lξ,v′ , if av′(ξ) = 0.

4.4.4. We assume that v is of type IVb and use the notations of 4.3.11. We have
Pv = v ∪ v′. The action of P on Y induces a 2-fold Galois covering µ : PB×v′ → Pv,
which is trivial over v′ (cf. 4.3.6). The open subset BsBB×v′ of PB×v′ is isomorphic to
k× k×TUP v̇′ by the map (x1, x, y) 7→ uα(x1)nα ? uα(x)y. By the computations in
4.3.11 we have uα(x1)nαuα(x)y ∈ Us(t)α̌(τ)v̇, if x 6= 0, y ∈ UP tv̇′, τ2 = −α(t)x−1,
and χ(s(t)α̌(τ)) = χ1(t)(−x)−a(χ) with χ1 = χ− a(χ)α ∈ X(T/Tv′). Let γ denote
the restriction of µ to BsBB×v′. We see that the inverse image of Lξ,v on γ−1(v)
has trivial local monodromy around γ−1(v′) if a(ξ) = 0. In that case Lξ,v extends
to a smooth sheaf on Pv, whose restriction to v′ is Lξ̄,v′ .

In the notations of 3.4.1 these results can be expressed as follows.

4.4.5. Lemma. Let u ⊂ Pv, u < v. Then cη,u;ξ,v,i = 0 if i 6= − dim v and
cη,u;ξ,v,− dim v = 0 except for the following cases, in which it equals 1:

(η, u) = (sξ, v′) if v is of type IIb and 〈φ̂vξ, α̌〉 = 0,
(η, u) = (ξ, v′) (resp. (ξ, v′′)) if v is of type IIIb and av′(ξ)=0 (resp. av′′(ξ)=0),
(η, u) = (ξ̄, v′) if v is of type IVb and a(ξ) = 0.

The formula in 3.4.2 can now be used to derive the following result.

4.4.6. Lemma. Let u ⊂ Pv, u < v. Then bη,u;ξ,v = 0 except for the following
cases, in which it equals q− dim v(1− q):

(η, u) = (−sξ, v′) if v is of type IIb and 〈φ̂vξ, α̌〉 = 0,
(η, u) = (−ξ, v′) (resp. (−ξ, v′′)) if v is of type IIIb and av′(ξ) = 0 (resp.
av′′(ξ) = 0),
(η, u) = (−ξ̄, v′) if v is of type IVb and a(ξ) = 0.
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This can, of course, also be proved directly by determining the Verdier dual on
Pv of j!Lξ,v, where j is the embedding v → Pv. In particular we have

4.4.7. Lemma. In K(CG) one has

Dεξ,s = q− dimB−1(ε−ξ,s + (1 − q)e−ξ,e) if 〈ξ, α̌〉 = 0,

= q− dimB−1ε−ξ,s if 〈ξ, α̌〉 6= 0.

Here s ∈ S, ξ ∈ X̂(T ), α is the simple root corresponding to s.

5. Recurrence relations for the coefficients b

5.1. Let v ∈ V , ξ ∈ X̂(T/Tv) and s ∈ S. Let α denote the simple root corre-
sponding to s. By 3.3.2 we have

D(ε
bφvξ,s

εξ,v) = qdimB(Dε
bφvξ,s

)(Dεξ,v)

and 4.4.7 gives a formula for Dε
bφvξ,s

, so that we have

D(ε
bφvξ,s

εξ,v) = (q−1ε−bφvξ,s
+ (q−1 − 1)ε−bφvξ,e

)Dεξ,v if 〈φ̂vξ, α̌〉 = 0,

= q−1ε−bφvξ,s
Dεξ,v if 〈φ̂vξ, α̌〉 6= 0.

Now ε
bφvξ,s

εξ,v is a linear combination of εη,u with u ⊂ Pv, which is given by

4.3.1. Thus we get relations between the coefficients b defined in 3.4.1. In general
these relations are not sufficient to determine the coefficients b, even when Y is
symmetric.

5.2. We now give the relations more explicitly in the different cases. If v is of type
IIa for s, we have

Dεsξ,m(s)v = (q−1ε−bφvξ,s
+ (q−1 − 1)ε−bφvξ,e

)Dεξ,v if 〈φ̂vξ, α̌〉 = 0,

= q−1ε−bφvξ,s
Dεξ,v if 〈φ̂vξ, α̌〉 6= 0.

If v is of type IIIa, we have the same expression for Dεsξ,m(s)v +Dεsξ,v′ .

Now assume v is of type IVa. The element ξ ∈ X̂(T/Tv) defines two elements

ξ1, ξ2 ∈ X̂(T/Tm(s)v), as in 4.3.1. Obviously φ̂m(s)vξ1 = φ̂m(s)vξ2 = φ̂vξ (see the

diagram in 4.2.7). Also 〈φ̂vξ, α̌〉 = 0, since Im (α̌) ⊂ Tv.
We apply the formula of 5.1 to ξ1 and m(s)v. By 4.3.1 we have ε

bφvξ,s
εξ1,m(s)v =

(q − 1)εξ1,m(s)v − εξ2,m(s)v + (q − 1)εξ,v and the result is

q−1ε−bφvξ,s
Dεξ1,m(s)v +Dεξ2,m(s)v = (q−1 − 1)Dεξ,v.

The same is valid with ξ1 and ξ2 interchanged. From these two identities we obtain
by adding them together and multiplying by q−1ε−bφvξ,s

+ (q−1 − 2)ε−bφvξ,e
, resp.

by subtracting, the following identities.
(i) Dεξ1,m(s)v +Dεξ2,m(s)v = (q−1ε−bφvξ,s

+ (q−1 − 2)ε−bφvξ,e
)Dεξ,v.

(ii) (q−1ε−bφvξ,s
− ε−bφvξ,e

)(Dεξ1,m(s)v −Dεξ2,m(s)v) = 0.

(To derive (i), use that in K(CG) one has ε2η,s = (q− 1)εη,s + qεη,e if 〈η, α̌〉 = 0 and

that in K(CY ) the relation (q−1 − 1)m = 0 implies m = 0.)
A consequence of (i) and (ii) is
(iii) (q−1ε−bφvξ,s

− ε−bφvξ,e
)(Dεξ1,m(s)v +Dεξ,v) = 0.
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Next, let v be of type IIIb or IVb and assume 〈φ̂vξ, α̌〉 = 0, a(ξ) 6= 0. Then we
find immediately that

(ε−bφvξ,s
+ ε−bφvξ,e

)Dεξ,v = 0.

If v is of type IIIb and 〈φ̂vξ, α̌〉 6= 0, av′(ξ) 6= 0, av′′(ξ) 6= 0, then

Jv(ξ)−1Dεsξ,v + q−1ε−bφvξ,s
Dεξ,v = 0.

If v is of type IVb and 〈φ̂vξ, α̌〉 6= 0, then

Jv(ξ)−1Dεsξ′,v + q−1ε−bφvξ,s
Dεξ,v = 0,

where ξ′ is as in 4.3.1.
These are all the relations which can be obtained by the method of 5.1. In fact,

when applied to an orbit of type IIb, the method gives the same result as when
applied to an orbit of type IIa, etc.

5.3. The equations (ii) and (iii) in 5.2 are of the type

(q−1εζ,s − εζ,e)
∑

aη,uεη,u = 0,

where ζ ∈ X̂(T ) such that 〈ζ, α̌〉 = 0 and aη,u ∈ Z[C] such that aη,u 6= 0 ⇒ φ̂uη = ζ.
This system of equations can easily be solved, using 4.3.1. The solution is

aη,u=asη,m(s)u if u is of type IIa,
aη,u=asη,u′ = aη,m(s)u if u is of type IIIa,
aη,u=aη1,m(s)u + aη2,m(s)u if u is of type IVa,
aη,u=0 if u is of type IIIb or IVb and a(η) 6= 0.

(iv)

The system

(εζ,s + εζ,e)
∑

bη,uεη,u = 0,

which also occurs in 5.2, can be solved in the same way. Here again 〈ζ, α̌〉 = 0 and

it is assumed that bη,u 6= 0 ⇒ φ̂uη = ζ. The solution is

bη,u = 0 if u is of type I,
bη,u + qbsη,m(s)u = 0 if u is of type IIa,
bη,u + bsη,u′ + (q − 1)bη,m(s)u = 0 if u is of type IIIa,
bη1,m(s)u = bη2,m(s)u, bη,u = (1 − q)bη1,m(s)u if u is of type IVa.

(v)

6. Symmetric varieties

6.1. We collect here some facts concerning symmetric varieties. References are
[S2] and [RS1].

Let G be a connected reductive group over an algebraically closed field k of
characteristic 6= 2. Let θ be an involution of G, i.e. an automorphism of the
algebraic group G of order 2, and K the group of elements of G which are fixed
by θ. Then K is a reductive group, not necessarily connected. The homogeneous
space Y = G/K is called a symmetric variety for G.

Choose in G a θ-stable maximal torus T and a θ-stable Borel group B such that
B ⊃ T (such a pair T , B always exists). We denote the normalizer of T in G by N
and we put N/T = W . Then N is θ-stable, θ acts on W and on the root system
and permutes the simple roots.

Let V = {x ∈ G | x(θx)−1 ∈ N}. Then V is left T -invariant and right K-
invariant and the map T \V/K → B\G/K, TxK 7→ BxK, is a bijection of finite
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sets. In particular Y is a spherical variety and the set V of B-orbits in Y can be
identified with the set T \V/K.

6.2. Let v ∈ V and choose a representative x ∈ V for v. The image w of n =
x(θx)−1 in W depends only on v. Put ψ = Int (n) ◦ θ. This is an involution of
G (because θn = n−1) and is determined by v up to conjugation by Int (t), t ∈ T .
The torus T is ψ-stable, ψ acts on it as w ◦ θ. The isotropy group of v̇ = xK is the
fixed point group Gψ of ψ.

Now B ∩Gψ is the fixed point group of the restriction of ψ to B∩nBn−1. Since
B ∩ nBn−1 = T (U ∩ nUn−1), we have B ∩ Gψ = Tψ(U ∩ nUn−1)ψ , in particular
Tv = Tψ. It also follows that U ∩Gψ is connected, as fixed point group of a semi-
simple automorphism of the connected unipotent group U ∩ nUn−1. So condition
(b) of 2.2.5 is satisfied.

6.3. Put τg = g(ψg)−1. Then τG is closed in G and τ : G→ τG is separable (this
is true for any semi-simple automorphism ψ of a connected linear algebraic group
G, see [S1, 4.4.4]). So τ induces an isomorphism of Y = G/Gψ on τG.

The morphism B → τB induced by τ is also separable. This is a slight extension
of [loc. cit.] and can be proved in the same way. It follows that B → v, b 7→ b · v̇ is
separable, i.e. condition (a) of 2.2.5 is satisfied.

6.4. Let U− =
∏
α<0 Uα and put S = (U−∩ψU−)v̇ (notations as in 6.2). Then S

is a transverse slice in v̇ with respect to v, as defined in 2.3.2, where G is replaced
by B. The properties (a), (b), (c) are easily checked. For (b), observe that the
morphism B × S → Y is the map B × (U− ∩ ψU−)/(U−)ψ → G/Gψ, induced by
the product in G and it suffices to check that this map is submersive.

If v is not the open orbit, we have dimS > 0 and there is a contraction of S
such that (d) and (e) of 2.3.2 are satisfied. Choose a homomorphism λ : Gm → Tψ

such that 〈λ, α〉 < 0 for all positive roots α with ψα > 0. The same S is also a slice

with contraction for the action of B̃ = T n U , defined in 2.2.3.

6.5. Let v ∈ V be fixed. Fix also a simple root α and denote by s the simple
reflection corresponding to α. We use the notations of 6.2. The orbit type of v for
s is related to certain properties of ψ with respect to α. Namely, we have
v is of type I for s if and only if ψα = α and ψ is the identity on Uα and U−α

(α is “compact imaginary” for v).
v is of type II for s if and only if ψα 6= ±α (α is “complex” for v).
v is of type IIIa or IVa for s if and only if ψα = α and ψ(g) = g−1 on U±α (α is

“non-compact imaginary” for v).
v is of type IIIb or IVb for s if and only if ψα = −α (α is “real” for v).
If v is of type I, IIa, IIIa or IVa, then sw > w (⇔ w−1α > 0 ⇔ ψα > 0). If v

is of type IIb, IIIb or IVb, then sw < w (⇔ w−1α < 0 ⇔ ψα < 0). The types III
and IV are distinguished from each other by the number of B-orbits in Psv.

6.6. Symmetric varieties have the following important property. If v ∈ V is not a
minimal B-orbit, then there exists a simple reflection s such that v is of a type b
for s.

For an arbitrary spherical variety this is not always true.
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6.7. We use the notations of 6.5. If v is of type IIIa or IVa for s, then ψα̌ = α̌,
hence Im (α̌) ⊂ Tψ = Tv.

Now let v be of type IIIb for s and Psv = v ∪ v′ ∪ v′′ as usual.

If ξ ∈ X̂(T/Tv), then 〈φ̂vξ, α̌〉 = 2av′(ξ), since Im (α̌) ⊂ Tv′ (cf. 4.2.7). Since

〈φ̂vξ, α̌〉 = av′(ξ) + av′′(ξ), we have av′(ξ) = av′′(ξ).

6.8. Now let T be a θ-stable maximal torus in G and let B be any Borel group
containing T . When V is defined as in 6.1 we still have a bijection T \V/K →
B\G/K. This follows from the result mentioned in 6.1. Choose g ∈ G such that
gT and gB are θ-stable and consider the map x 7→ gx of G onto itself.

For x ∈ V we can define n = x(θx)−1 ∈ N and ψ = Int (n) ◦ θ as in 6.2. The
classification of orbits in 6.5 is also valid in this case. The condition for v to be of
type I, IIa, IIIa or IVa is ψα > 0, which is now equivalent to θ(w−1α) > 0 or to
sww0 > ww0, where w0 ∈ W is the image of (θg)−1g ∈ N , g as above.

7. Proof of the main result

7.1. Statement of result.

7.1.1. Assumptions are as in chapters 3 and 4. In particular k is the algebraic
closure of Fq, where q is large. All B-orbits in Y contain elements over Fq and
Fξ = ξ for all ξ in consideration (they are finite in number). Moreover, we assume
now that Y is symmetric, so Y = G/Gθ, where θ is an involution of G, and the
characteristic of k is odd.

7.1.2. Theorem. Let v ∈ V , ξ ∈ X̂(T/Tv). Assume that 〈φ̂vξ, α̌〉 = 0 for all roots
α. Then

(i) qdim vbη,u;ξ,v is a polynomial in q with coefficients in Z, if u ∈ V , η ∈
X̂(T/Tu).

(ii) cη,u;ξ,v,i ∈ Nq 1
2 (i+dim v), if u ∈ V , η ∈ X̂(T/Tu), i ∈ Z. Moreover, if

cη,u;ξ,v,i 6= 0, then i+ dim v is even.

Assertion (ii) means that the eigenvalues of Frobenius on the stalks of HiAξ,v
are q

1
2 (i+dim v) times a root of unity and HiAξ,v = 0 unless i+ dim v is even.

We give an algorithm to compute the coefficients b and c, which will prove the
theorem. After 3.4.3 part (ii) is a consequence of part (i), since we have slices with
contraction by 6.4, the condition on weights in 3.4.3 is satisfied by Proposition
2.3.3. However, in general we cannot prove (i) without making use of the relation
between the coefficients b and c. In a few special cases assertion (i) does follow from
the recurrence relations for the coefficients b alone. This is the case, for instance,
when the only orbit type occurring is type II. The space Y = G with the action of
G×G is an example.

7.2. First reduction.

7.2.1. We prove Theorem 7.1.2(i) by an inductive procedure. The assertion is
obvious for a minimal orbit v. Suppose that v is not minimal and that 7.1.2(i) is
known to hold for all orbits of lower dimension. If there is s ∈ S such that v is of
type IIb for s, then bη,u;ξ,v can be computed from

Dεξ,v = (q−1ε−φ̂vξ,s + (q−1 − 1)ε−φ̂vξ,e)Dεsξ,v′

(see 5.2), using the formulas of 4.3.1, and they satisfy 7.1.2(i).
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Notice that φ̂v′ (sξ) = sφ̂vξ = φ̂vξ and 〈φ̂v′ (sξ), β̌〉 = 0 for all roots β. Now
assume that we have v ∈ V such that there is no s ∈ S which is of type IIb for
v. We may assume that B and T are θ-stable. Choose x ∈ V representing v and
define w and ψ as in 6.2. We denote the set of simple roots by ∆. Let I be the set
of simple roots α such that sα is of type IIIb or IVb for v. Then ψα = −α if α ∈ I
and ψα > 0 if α ∈ ∆ − I. This follows from 6.5, since the case IIb does not occur
here. Notice that I 6= ∅ if v is not minimal, which we assume. Since ψα = w(θα)
and θ∆ = ∆, we have w(∆) ⊂ −∆ ∪R+, where R+ is the set of positive roots. It
is known that there is a subset J of ∆ such that w is the longest element of the
subgroup WJ of W generated by J (cf. [B, ch.VI, §1, exercise 17]). It is easily seen
that in our case J = θI = I.

Let P = PI be the parabolic subgroup of G containing B and corresponding
to the subset I of ∆. Then P is ψ-stable. Let τ be defined as in 6.3. Since τP
is closed in P , it is closed in G, hence in τG. Moreover, τ induces isomorphisms
P/Pψ

∼→ τP and G/Gψ
∼→ τG. It follows that Pv is closed in Y (see also [S2, 6.3]).

Now v̄ is invariant under P = PI , since all α ∈ I are of some type b for v. Hence
Pv ⊂ v̄ and since Pv is closed we have Pv = v̄.

7.2.2. Let L be the Levi subgroup of P containing T . It is ψ-stable. The projection
of P = LUP on L is denoted by πL.

We define a symmetric variety Y (L) for L by Y (L) = Lv̇ ⊂ Y , where v̇ = xK, x
as above. By an argument as before we see that Lv̇ is closed in Y and isomorphic
to L/Lψ.

In L we have the Borel group πL(B) = B ∩ L containing T . Notice that T is
ψ-stable, but B ∩ L is not.

There is a surjective morphism π : v̄ → Y (L) defined by π(pv̇) = πL(p)v̇ for

p ∈ P . The fibers of π are isomorphic to UP /U
ψ
P . The B-orbits contained in v̄ are

in 1-1-correspondence with the (B ∩ L)-orbits in Y (L) by u 7→ πu. The image πv
of v is the open orbit in Y (L).

It is easily checked that, for any B-orbit u in v̄, we have Tu = Tπu and if
η ∈ X̂(T/Tu) = X̂(T/Tπu), then Lη,u = (π|u)∗Lη,πu. Denote by π̂ the Z[C]-
linear map K(CY (L)) → K(CY ) such that π̂(εη,πu) = εη,u if u ∈ V , u ≤ v and

η ∈ X̂(T/Tu).

7.2.3. Lemma. Let ξ ∈ X̂(T/Tv). With d = dim(UP /U
ψ
P ) we have:

(i) Dεξ,v = q−dπ̂(Dεξ,πv),
(ii) [HiAξ,v] = π̂[Hi+dAξ,πv].

Consider the Cartesian square

v

��

j
// v̄

π

��

πv
j(L)

// Y (L)

We have Dj!Lξ,v = Dπ∗j(L)
! Lξ,πv = π∗(Dj(L)

! Lξ,πv)[2d](d), since π is smooth with
relative dimension d. This proves (i). Also Aξ,v = π∗Aξ,πv[d], which gives (ii).
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7.2.4. By 7.2.3(i) assertion (i) of 7.1.2 for ξ, v will follow from the analogous
assertion for ξ, πv. This leads us to consider the particular case of a group G with
involution θ with the property that there exists a θ-stable maximal torus T in G
such that θα = −α for all roots of T . The open orbit only is of interest. The
condition on θ is equivalent to the condition that tθt lies in the center Z of G for
all t ∈ T .

7.3. Further reduction.

7.3.1. We take up the notation of 7.1.1. In addition, let C be a finite θ-stable
subgroup of the center of G. Let G′ = G/C. Then θ induces an involution θ′ of G′.
Put K = Gθ, K ′ = (G′)θ

′
, Y = G/K and Y ′ = G′/K ′. Let f denote the natural

homomorphism G→ G′ and π the morphism Y → Y ′ induced by f .
Let K∗ = {g ∈ G | g−1θg ∈ C}. Then K∗ = f−1(K ′) and g 7→ g−1θg defines a

homomorphism K∗ → C with kernel K. The finite abelian group K∗/K acts on Y
by xK 7→ xgK, if g ∈ K∗, and Y ′ is the quotient of Y for this action.

Define T ′ = f(T ), B′ = f(B), where T and B are as usual (they need not be
θ-stable). Let V ′ be the set of B′-orbits in Y ′.

Obviously, the image under π of a B-orbit is a B′-orbit and the inverse image of
a B′-orbit is a union of B-orbits of the same dimension. We have v1 ≤ v2 ⇒ πv1 ≤
πv2 if v1, v2 ∈ V . If v ∈ V , then πv̄ is closed in Y ′, hence πv̄ = πv.

7.3.2. If v ∈ V , then f(Tv) ⊂ T ′πv and f induces a surjective homomorphism
ψv : T/Tv → T ′/T ′πv with finite kernel Dv. So by 2.1.5 we have an exact sequence

0 → X(Dv) → X̂(T ′/T ′πv)
ψ̂v→ X̂(T/Tv) → 0.

There is a bijection between the fiber of v → πv and Dv.
Indeed, we may identify v (resp. πv) with B/Bv̇ (resp. B′/B′

πv̇), so that the
fiber is f−1(B′

πv̇)/Bv̇. Now πT induces a surjective map β : f−1(B′
πv̇)/Bv̇ →

f−1(T ′πv)/Tv = Dv and β−1(1) = U ∩ f−1(U ′
πv̇)/Uv̇ is connected, because U ∩

f−1(U ′
πv̇)

∼= U ′
πv̇ is connected (6.2), and it is finite, so it is {1}.

Let ξ′ ∈ X̂(T ′/T ′πv) and ξ = ψ̂vξ
′. Then the restriction of π∗Lξ′,πv to v is Lξ,v.

In case v̄ → πv is smooth, we have

Aξ,v = π∗Aξ′,πv,

Dj!Lξ,v = π∗(Dj′!Lξ′,πv),
as is seen from the diagram

v

��

j
// v̄

π

��

πv
j′

// πv

Let π̂v denote the Z[C]-linear map K(C′Y ) → K(CY ) determined by π̂v(εη′,u′) =∑
u⊂π−1(u′)∩v̄ εψ̂uη′,u if u′ ∈ V ′, η′ ∈ X̂(T ′/T ′u′). Summation is over all B-orbits u

contained in π−1(u′) ∩ v̄. The following lemma is now immediate.

7.3.3. Lemma. Let v ∈ V be such that v̄ → πv is smooth. Let ξ ∈ X̂(T/Tv) and

choose ξ′ ∈ X̂(T ′/T ′πv) such that ψ̂vξ
′ = ξ. Then

(i) Dεξ,v = π̂v(Dεξ′,πv),

(ii) [HiAξ,v] = π̂v[HiAξ′,πv].
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7.3.4. Now consider the case where G has a maximal torus T such that tθt ∈ Z for
all t ∈ T . Take for the group C in 7.3.1 the center of the derived group of G. The
image πv of the open orbit v in Y is the open orbit in Y ′ and Lemma 7.3.3 can be

applied. Notice that 〈φ̂vξ, α̌〉 = 〈φ̂πvξ′, α̌〉. In G′ = G/C we have again t′θ′t′ ∈ Z ′
for all t′ ∈ T ′, where Z ′ is the center of G′. This leads us to consider the case where
G satisfies the extra condition that its derived group has trivial center. Then G is
the direct product of a finite number of simple groups and a torus. All factors are
θ-stable, as a consequence of the condition on θ. The sheaves on G we consider are
the exterior tensor products of the corresponding sheaves on the factors of G. So it
is enough to consider the factors separately. For the central torus there is nothing
to prove.

On each simple factor the involution is split, i.e. there exists a maximal torus on
which θt = t−1.

7.3.5. The arguments of 7.2 and 7.3.4 show that Theorem 7.1.2 will be proved in
general when it has been proved for all simple groups with split involution.

7.4. The case of a simple group with split involution. In this section we
shall mainly be occupied with the case of a simple group with split involution, but
first we formulate a result in a more general setting.

7.4.1. Lemma. In the situation of 7.1.1 let v ∈ V be such that there is no s ∈ S of
type IIb for v. Let ξ ∈ X̂(T/Tv) such that for every s = sα ∈ S of type IIIb or IVb

for v we have 〈φ̂vξ, α̌〉 = 0, a(ξ) 6= 0 (notation of 4.2.7). Then Aξ,v = Lξ,v[dim v]
and DY Lξ,v = L−ξ,v[2 dim v](dim v).

The method of 7.2 reduces the proof to the case where all s ∈ S are of type
IIIb or IVb for v (which implies that v is the open orbit). We prove that bη,u;ξ,v =
cη,u;ξ,v,i = 0 for all η, u, i with u < v. This is done by descending induction on
dimu. If dimu = dim v − 1, there is s ∈ S such that v = m(s)u, i.e. u ⊂ Psv, and
our assertion follows from Lemmas 4.4.5 and 4.4.6. Now assume dim u < dim v−1.
Choose s of some type a for u. By 5.2 we have (ε−φ̂vξ,s + ε−φ̂vξ,e)Dεξ,v = 0 and

this implies by 5.3 that

bη,u = −qbsη,m(s)u if s is of type IIa for u,
bη,u + bsη,u′ = (1− q)bη,m(s)u if s is of type IIIa for u,
bη,u = (1 − q)bη1,m(s)u if s is of type IVa for u,

where we wrote bη,u for bη,u;ξ,v. Using the induction hypothesis we find immediately
that bη,u = 0 in case IIa or IVa. In case IIIa we have bη,u + bsη,u′ = 0. Apply the
relation 3.4.2 between the coefficients b and c to (η, u) and (sη, u′) and add the
two equalities thus obtained together. Then the right hand side is zero. This gives,
by the argument in 3.4.3, that c−η,u;ξ,v,i + c−sη,u′;ξ,v,i = 0. Since c−η,u;ξ,v,i and
c−sη,u′;ξ,v,i have coefficients ≥ 0 in Z, both must be zero. Also cη,u;−ξ,v,i = 0 and
finally bη,u;ξ,v = 0 by 3.4.2.

7.4.2. We assume from now on that G is simple and θ split.
We fix a maximal torus T in G such that θt = t−1 for all t ∈ T . For any

Borel group B containing T we have θB = B−, the opposite Borel group, and BK
is open in G. The open B-orbit v is the image of BK in Y = G/K. We have
Tv = T θ = B ∩K = {t ∈ T | t2 = 1} and X(T/Tv) = 2X(T ).
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Let R denote the root system of T and P (R) resp. Q(R) the weight lattice and
the root lattice. If G is adjoint, then X(T ) = Q(R) by definition, and otherwise G
is of type Al and the characteristic p divides l + 1 or G is of type E6 and p = 3.

All s ∈ S are of type IVb for v. We know already that they are of type IIIb
or IVb. If sα were of type IIIb for v, we would have α(Tv) = 1 (see 4.2.7), so
α ∈ 2X(T ). This is impossible when G is adjoint and for Al and E6 there is no
simple root in 2P (R).

We have X̂(T/Tv) = (Z(p)/Z)⊗Z2X(T ) = X(T )(p)/2X(T ) and φ̂v is the obvious

map X(T )(p)/2X(T )→ X(T )(p)/X(T ). The condition 〈φ̂vξ, α̌〉 = 0 for all α means

that ξ lies in the subgroup P (R) ∩X(T )(p)/2X(T ) of X̂(T/Tv).
We shall write P (R)′ for P (R)∩X(T )(p). So we consider only ξ in P (R)′/2X(T ).

For s ∈ S we denote by as the map X̂(T/Tv) → X̂(Gm) which was called a in
4.2.7. If ξ = ω+2X(T ) with ω ∈ P (R)′ and s is the reflection corresponding to the

simple root α, then as(ξ) = 1
2 〈ω, α̌〉+ Z ∈ 1

2Z/Z. The other element ξ′ ∈ X̂(T/Tv)

with the same image as ξ in X̂(T/Tv ∩ Ker (α)) is ξ + α, since 2α ∈ X(T/Tv) and
α 6∈ X(T/Tv).

7.4.3. LetG be simple and θ split. For the proof of Theorem 7.1.2(i) forG and θ we
follow again the procedure of 7.2 and 7.3.4. Suppose the theorem has been proved
for all simple groups of lower dimension with a split involution. Then induction on
dim v (v ∈ V ) proves 7.1.2(i) for G and all orbits other than the open orbit. So,
Theorem 7.1.2 will be completely proved when we have proved:

7.4.4. Lemma. Assume G is simple and θ split. If 7.1.2(i) holds for all orbits
other than the open orbit, then it holds for the open orbit also.

7.4.5. We use the notations of 7.4.2. In particular v is the open B-orbit in Y . We
assume that all bη,u;ξ1,v1 with v1 < v are known and satisfy 7.1.2(i).

Let s = sα ∈ S and ξ ∈ P (R)′/2X(T ). We know that s is of type IVb for v. If
as(ξ) = 0, we have by 5.2(i) applied to ξ̄ (defined as in 4.3.1) and v′:

Dεξ,v +Dεξ+α,v = (q−1ε−φ̂vξ,s + (q−1 − 2)ε−φ̂vξ,eDεξ̄,v′ .

So bη,u;ξ,v + bη,u;ξ+α,v is known for all η, u.
By 5.2(iii) we have

(q−1ε−φ̂vξ,s − ε−φ̂vξ,e)(Dεξ,v +Dεξ̄,v′) = 0.

The solution of this system of equations is given by 5.3(iv) with aη,u = bη,u;ξ,v +

bη,u;ξ̄,v′ and ζ = −φ̂vξ. In particular we see that

bη,u;ξ,v − bsη,m(s)u;ξ,v is known if s is of type IIa for u,
bη,u;ξ,v − bη,m(s)u;ξ,v is known if s is of type IIIa for u,
bη,u;ξ,v − bη1,m(s)u;ξ,v − bη2,m(s)u;ξ,v is known if s is of type IVa for u.

If as(ξ) 6= 0, then by 5.2 we have (ε−φ̂vξ,s + ε−φ̂vξ,e)Dεξ,v = 0 and 5.3(v) gives:

bη,u;ξ,v + qbsη,m(s)u;ξ,v = 0 if s is of type IIa for u,
bη,u;ξ,v + bsη,u′;ξ,v + (q − 1)bη,m(s)u;ξ,v = 0 if s is of type IIIa for u,
bη,u;ξ,v + (q − 1)bη1,m(s)u;ξ,v = 0 if s is of type IVa for u.



64 J. G. M. MARS AND T. A. SPRINGER

7.4.6. Fix u ∈ V , u < v, and η ∈ X̂(T/Tu). Assume that bη1,u1;ξ,v is known
and satisfies 7.1.2(i) for all ξ and all (η1, u1) with dimu1 > dim u. From 7.4.5 we
conclude that

(1) bη,u;ξ,v + bη,u;ξ+α,v is known if asα(ξ) = 0;
(2) bη,u;ξ,v is known if there is s ∈ S of type a for u such that as(ξ) = 0;
(3) bη,u;ξ,v is known if there is s ∈ S of type IIa or IVa for u such that as(ξ) 6= 0.
There are always s ∈ S of type a for u. If there is one of type IIa or IVa we are

done by (2) and (3).
We shall write bω for bη,u;ξ,v if ξ = ω + 2X(T ), ω ∈ P (R)′. We have asα(ξ) = 0

if and only if 〈ω, α̌〉 is even (see 7.4.2).
Let s = sα be of type IIIa for u. By (2), bω is known if 〈ω, α̌〉 is even and,

by (1), bω + bω+β is known if β is a simple root such that 〈ω, β̌〉 is even. Assume
there are simple roots α1, . . . , αk such that αk = α and 〈ω, α̌1〉, 〈ω + α1, α̌2〉,
〈ω + α1 + α2, α̌3〉, . . . , 〈ω + α1 + . . . + αk−1, α̌k〉 are all even. Then by the above
bω+α1+...+αi−1 + bω+α1+...+αi (1 ≤ i ≤ k− 1) and bω+α1+...+αk−1

are known. Hence
bω is known.

If the Dynkin diagram contains a subset of the type

• • . . . . . . . . . •
α1 α2 αk = α

with simple laces, then α1, . . . , αk satisfy the above condition if 〈ω, α̌1〉 is even and
〈ω, α̌i〉 are odd for 2 ≤ i ≤ k.

This means that for G of type Al, Dl or El we find bω except for the case where
〈ω, α̌〉 is odd for all simple α. But then bω = 0 by 7.4.1. The same argument works
for G2 since 〈α1, α̌2〉 and 〈α2, α̌1〉 are odd, and also for type Bl, Cl, F4 if α is a
long root.

If G is of type Bl, it is adjoint and there is no orbit of type III for sα when α
is the short root αl. Indeed, suppose sα were of type IIIb for some orbit. With ψ
as in 6.8 we would have ψα = −α and α(Tψ) = 1. Since α(Tψ) = 1, there exists
χ ∈ X(T ) such that α = ψχ − χ, and then 〈χ, α̌〉 = −1. This is impossible, since
for the adjoint group of type Bl and α = αl we have 〈χ, α̌〉 ∈ 2Z for all χ ∈ X(T ).

The two remaining cases, Cl and F4, are settled by the following lemma.

7.4.7. Lemma. Let G be of type Cl or F4 (and θ split) and let u be a B-orbit in
Y which is not the open orbit. At least one of the three holds:

(i) there is s ∈ S of type IIa for u,
(ii) there is s ∈ S of type IVa for u,
(iii) there is s ∈ S corresponding to a long root such that s is of type IIIa for u.

In any of the three cases bη,u;ξ,v can be computed. The proof of Lemma 7.4.7
will be given in 7.5. Then the proof of Lemma 7.4.4 is complete.

Remark. In 7.4.6 we have besides (1), (2), (3) also

(4) bη,u;ξ,v + bsη,u′;ξ,v is known if s is of type IIIa for u,

and this expression is q− dim v times a polynomial in q with coefficients in Z. It is
possible to deduce from this that qdim vbη,u;ξ,v is a polynomial in q with coefficients
in Z. Take, as in the proof of 7.4.1, the sum of the equality 3.4.2 and the same
with (η, u) replaced by (sη, u′). Then the right hand side is a polynomial in q with
coefficients in Z (this follows from the assumptions on the coefficients b made in
7.4.5 and 7.4.6 and application of 3.4.2). By the argument of 3.4.3 we conclude
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that c−η,u;ξ,v,i + c−sη,u′;ξ,v,i is a polynomial in q with coefficients in Z, hence is in

Zq 1
2 (i+dim v). Since c−η,u;ξ,v,i and c−sη,u′;ξ,v,i have coefficients in N, both must be

in Nq 1
2 (i+dim v). Applying 3.4.2 once more we see that qdim vbη,u;ξ,v is a polynomial

in q with coefficients in Z. This argument however does not yield a way to compute
bη,u;ξ,v.

7.5. Proof of Lemma 7.4.7.

7.5.1. In the notations of 7.4.2 assume that G is of type Cl or F4. The involution
θ then is an inner automorphism Int (n0) with n0 ∈ N , n2

0 ∈ Z and the image
of n0 in W is w0 = −1. We use the notations of Chapter 6. If x ∈ V , then
τx = x(θx)−1 = xn0x

−1n−1
0 ∈ N , so τG = C(n0)n

−1
0 , where C(n0) is the conjugacy

class of n0. The fixed point group K of θ is the centralizer of n0 in G. The map
x 7→ xn0x

−1 induces a bijection

V = T \V/K → T \N ∩ C(n0),

where the right hand side is the quotient of N ∩ C(n0) for the action of T by
conjugation.

Let v ∈ V and let x be a representative for v in V . Put n = xn0x
−1. There is a

map φ : V → W defined by φ(v) = w = image of n in W . We have w2 = e, since
n2

0 ∈ Z. The involution ψ introduced in Chapter 6 is now ψ = Int (nn−1
0 ) ◦ θ =

Int (n).
If s ∈ S corresponds to the simple root α, then ψα = wα and we see from 6.5

that
v is of type I for s if wα = α, Int (n) = 1 on U±α,
v is of type IIIa/IVa for s if wα = α, Int (n) = −1 on U±α,
v is of type IIIb/IVb for s if wα = −α,
v is of type II for s if wα 6= ±α,
v is of type I or a ⇔ wα > 0.
If v is of type IIIa or IVa, then φ(m(s)v) = sφ(v). If v is of type IIa, then

φ(m(s)v) = sφ(v)w0sw0. We have Tv = Tψ = {t ∈ T | w(t) = t}. If wα = −α,
then v is of type IIIb if and only if α(Tv) = 1, i.e. if α ∈ (w − 1)X(T ).

7.5.2. Let u ∈ V be such that there is no s ∈ S of type IIa for u. With w = φ(u)
we have for α ∈ ∆ either wα = α or wα < 0. Then there is a subset I of ∆ such
that ww0 = wI , the longest element of WI , and that wI = −1 on I (recall that w0

is the longest element of W ). If u is not the open orbit, then I 6= ∅.
7.5.3. We first consider the case where G is of type Cl. We use the notations for
the roots as in [B]. So the long simple root is αl. Let u and I be as in 7.5.2. Since
wI = −1 on I, I may have an irreducible component of the form {αj | j ≥ k} and
all other irreducible components consist of one element.

Assume αi is of type IIIa for u, for some i < l. Then wIαi = −αi and αi ∈
(siwI + 1)X(T ). Let αi = (siwI + 1)χ. Then 2 = 〈αi, α̌i〉 = 〈(siwI + 1)χ, α̌i〉 =
2〈χ, α̌i〉. So we have χ ∈ X(T ) such that 〈χ, α̌i〉 = 1 and wIχ = −χ. Then χ
is a linear combination of the roots in I and αi cannot be isolated in I, so I has
an irreducible component consisting of more than one element (and αi lies in this
component). This proves Lemma 7.4.7 when all components of I have only one
element.

Assume now that I has an irreducible component {αi | i > k} with 0 ≤ k ≤ l−2.
Let J = {j ≤ k, αj ∈ I}. Then all indices in J are strictly smaller than k and
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the difference between two of them is at least 2. Let βi denote the long root 2εi
(1 ≤ i ≤ l).

We have wI =
∏
j∈J sαj

∏
i>k sβi and φ(u) = wIw0 =

∏
j∈J sαj

∏
i≤k sβi . The

element n =
∏
j∈J nαj

∏
i≤k nβi of N is a representative for φ(u). Let tn ∈ N ∩

C(n0) correspond to u in the bijection T \N ∩C(n0) → V . The involution ψ is then
Int (tn). We know that αl is of type I, IIIa or IVa for u, since φ(u)αl = αl, and we
want to show that it is of type IIIa or IVa. Then Lemma 7.4.7 will be proved.

Obviously all factors in the definition of n centralize Uαl , so Int (n) is the identity
on Uαl and it suffices to prove that αl(t) = −1. This can be done by a computation
in Sp (2l). The class C(n0) in G is the projection of the analogous class in Sp (2l),
which is {x ∈ Sp (2l), x2 = −1}. Working with representatives in Sp (2l) we have
twIw0(t) = tntn−1 = (tn)2n−2 = −n−2 and αl(t) = εl(t)

2 = εl(twIw0(t)) =
−εl(n−2). Now n2 ∈ T and by the definition of n it lies in Sp (2k) embedded in an
obvious way in Sp(2l). Hence εl(n

2) = 1. Thus αl(t) = −1.

7.5.4. We now consider G of type F4. The notations concerning the root system
are again those of [B].

Let u and I be as in 7.5.2. So φ(u) = wIw0 and wI = −1 on I.
Let α be one of the short roots α3, α4 and suppose α is of type IIIa for u. As

in the case Cl there must be χ ∈ X(T ) such that wIχ = −χ and 〈χ, α̌〉 = 1.
Then 〈β, α̌〉 must be odd for at least one β ∈ I. In combination with the fact that
wI = −1 on I, this implies that I = {α2, α3, α4} or I = ∆. So Lemma 7.4.7 holds
when I is not one of these two sets.

Assume now I = {α2, α3, α4}. It is easily checked that wIw0 = sβ, where
β = 2α1 + 3α2 + 4α3 + 2α4 is the highest root. So nβ is a representative for φ(u).
Let tnβ be an element of N ∩C(n0) corresponding to u. Since β±α2 are not roots,
Uβ and U−β centralize Uα2 and so does nβ. When we show that α2(t) = −1, it will
follow that ψ = Int (tnβ) is −1 on Uα2 , so that α2 is of type IIIa or IVa for u and
Lemma 7.4.7 is proved in this case.

We may replace tnβ by a conjugate under T . This means that tmay be multiplied

by an element of Im(β̌), so take t ∈ Ker (β). Since tnβ ∈ C(n0), we have (tnβ)
2 = 1,

that is t2 = β̌(−1). Then α(t)2 = (−1)〈α,β̌〉 for any α, which gives α1(t)
2 = −1,

α2(t)
2 = α3(t)

2 = α4(t)
2 = 1 and β(t) = −α2(t). Also β(t) = 1, hence α2(t) = −1.

It remains to consider the case I = ∆. Now φ(u) = e and ψ = Int (t) with some
t ∈ C(n0), in particular t2 = 1.

Let t0 be the element of T with αi(t0) = −1 for 1 ≤ i ≤ 4. By [S3, 6.1], the
involution Int (t0) is split. Hence n0 is conjugate to t0 and T ∩ C(n0) is the orbit
of t0 under the Weyl group. Using the description of the Weyl group of F4 in [B,
p. 213], it is easy to check that for any of the twelve elements t of W · t0 one has
α1(t) = −1 or α2(t) = −1. So for each of the corresponding B-orbits there is a
long root α ∈ ∆ which is of type IIIa or IVa for that orbit (it is in fact IIIa). This
finishes the proof of Lemma 7.4.7.

7.6. An example. LetG be a semi-simple group of type C2 and θ a split involution
of G. Let T be a maximal torus in G such that θt = t−1 for all t ∈ T and choose
B ⊃ T . We recall some facts already mentioned in 7.5.1. We have θ = Int (n0) with
n0 ∈ N , n2

0 ∈ Z and n0 represents the longest element w0 of W . The B-orbits in
G/Gθ are in 1-1-correspondence with the T -conjugacy classes in N ∩C(n0), where
C(n0) is the G-conjugacy class of n0. If the B-orbit v corresponds to n ∈ N∩C(n0),
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then φ(v) is the image of n in W . We have φ(v)2 = e. If G = Sp4, then C(n0) =
{x ∈ Sp4 | x2 = −1}.

Let the simple roots be α1 (short) and α2 (long), let s1 and s2 be the simple
reflections and P1 and P2 the corresponding parabolic subgroups. It is easy to
determine the ordered set V of B-orbits in G/Gθ by the method of [RS1]. Doing
this one finds at the same time the P1-orbits and the P2-orbits. We describe the
result.

We let π denote the natural morphism from the symmetric space for Sp4 onto
the symmetric space for PSp4 (see 7.3.1).

In the case of Sp4 we denote the B-orbits by v1, v2, . . . and number them in
such a way that φ(vi) = e for i = 1, 2, 3, 4, φ(v5) = φ(v7) = s2, φ(v6) = s1,
φ(v8) = φ(v10) = s1s2s1, φ(v9) = s2s1s2, φ(v11) = w0.

In the case of PSp4 the orbits are then πv1 = πv4, πv2 = πv3, πv5 = πv7, πv6,
πv8 = πv10, πv9, πv11.

In the case of Sp4 the P1-orbits are v1, v4, v2 ∪ v3 ∪ v6, v5 ∪ v8 (type II), v7 ∪ v10
(type II), v9 ∪ v11 (type IV) and the P2-orbits are v1 ∪ v2 ∪ v5, v3 ∪ v4 ∪ v7, v6 ∪ v9
(type II), v8 ∪ v10 ∪ v11.

To obtain the correct picture we have to know that s2 is of type IIIa or IVa for
any minimal B-orbit in the PSp4 case. This follows from the proof in 7.5.3 (with
l = 2 and I = ∆).

In the pictures below a line joining e.g. 6 and 8 means that v6 ≤ v8.
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Next, we determine the groups Tv. Let v be an orbit with φ(v) = e. Choose x ∈ V
such that v = BxK, then xn0x

−1 ∈ T (see 7.5.1). It follows that x−1Tx ⊂ K,
since K is the centralizer of n0. Hence Tv = T . The other Tv are now easily
determined using the results in 4.2. We write α for α1, β for α2. For Sp4 we have
Tv5 = Tv7 = Ker (β), Tv6 = Ker (α), Tv8 = Tv10 = Ker (2α+β), Tv9 = Ker (α+β),
Tv11 = Ker (β) ∩ Ker (2α+ β) = {t ∈ T | t2 = 1}.
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And for PSp4 we have Tπv5 = Ker (β), Tπv6 = Ker (2α), Tπv8 = Ker (2α + β),
Tπv9 = Ker (2(α+ β)), Tπv11 = Ker (2α) ∩ Ker (2β) = {t ∈ T | t2 = 1}.

Now Dεξ,v and [HiAξ,v] can be computed for all ξ, v, i using 3.4.2, 5.2 and 5.3.
We give the results for G = PSp4 and the open orbit. Notation is as follows. We
have X̂(T/Tπvi) = 0 for i = 1, 2, X̂(T/Tπv5) = Z(p)β/Zβ, X̂(T/Tπv6) = Z(p)α/2Zα,

X̂(T/Tπv8) = Z(p)(2α + β)/Z(2α + β), X̂(T/Tπv9) = Z(p)(α + β)/2Z(α + β),

X̂(T/Tπv11) = Z(p)α+ Z(p)β/2Zα+ 2Zβ.

An element of X̂(T/Tπv6) will be given by a representative xα in Z(p)α, etc.

The two maps X̂(T/Tπv11) → Z(p)/Z defined by α and β (4.2.7) are given by

aα(xα+ yβ) = x− y + Z, aβ(xα + yβ) = y − 1
2x+ Z.

In the formulas below we abbreviate εξ,πvi to εξ,i, Jπv11 to J11, Aξ,πv11 to Aξ,11.

Dε0,11 = q−6ε0,11 + q−6(1− q)(ε0,8 + ε0,9) + q−6(1 − q)2(ε0,5 + ε0,6 + ε0,1)

− q−5(1− q)εα,6 + q−6(1 − q)3ε0,2

Dεβ,11 = q−6εβ,11 + q−6(1− q)(ε0,8 + εα+β,9) + q−6(1 − q)2(ε0,5 + εα,6 + ε0,1)

− q−5(1− q)ε0,6 + q−6(1 − q)3ε0,2

Dεα,11 = q−6εα,11 + q−6(1 − q)ε0,9 − q−5(1− q)(ε0,5 + ε0,6)− q−5(1− q)2ε0,2

Dεα+β,11 = q−6εα+β,11 + q−6(1− q)εα+β,9 − q−5(1 − q)(ε0,5 + εα,6)− q−5(1− q)2ε0,2

Dεα± 1
2
β,11 = q−6εα∓ 1

2
β,11 + q−6(1 − q)εα+ 1

2
β,8 − q−5(1 − q)ε 1

2
β,5

Dεα+yβ,11 = q−6εα−yβ,11 − q−6(1− q)J11(−α − yβ)ε−yβ,5 if 2y 6∈ Z

Dεxα,11 = q−6ε−xα,11 − q−6(1− q)J11(−xα)ε(−x−1)α,6 if x 6∈ Z

Dεxα+β,11 = q−6ε−xα+β,11 − q−6(1− q)J11(−xα− β)ε−xα,6 if x 6∈ Z
Dεxα+yβ,11

= q−6ε−xα−yβ,11 + q−6(1− q)ε−y(2α+β),8 if y − 1
2
x ∈ Z

= q−6ε−xα−yβ,11 + q−6(1− q)ε−y(α+β),9 if x− y ∈ Z
= q−6ε−xα−yβ,11 if y − 1

2
x 6∈ Z, x− y 6∈ Z

9=
;

y 6∈ Z,
x 6∈ 1 + 2Z

[H−6A0,11] =
X
v∈V

ε0,v

[H−6Aβ,11] = εβ,11 + ε0,8 + εα+β,9 + ε0,5 + εα,6 + ε0,1 + ε0,2

[H−6Aα,11] = εα,11 + ε0,9, [H−4Aα,11] = qε0,1

[H−6Aα+β,11] = εα+β,11 + εα+β,9, [H−4Aα+β,11] = qε0,1

[H−6Aα± 1
2
β,11] = εα± 1

2
β,11 + εα+ 1

2
β,8

[H−6Aα+yβ,11] = εα+yβ,11, [H−5Aα+yβ,11] = J11(α+ yβ)εyβ,5 if 2y 6∈ Z

[H−6Axα,11] = εxα,11, [H−5Axα,11] = J11(xα)ε(x+1)α,6 if x 6∈ Z

[H−6Axα+β,11] = εxα+β,11, [H−5Axα+β,11] = J11(xα+ β)εxα,6 if x 6∈ Z

[H−6Axα+yβ,11]

= εxα+yβ,11 + εy(2α+β),8 if y − 1
2
x ∈ Z

= εxα+yβ,11 + εy(α+β),9 if x− y ∈ Z
= εxα+yβ,11 if y − 1

2
x 6∈ Z, x− y 6∈ Z

9=
;

y 6∈ Z,
x 6∈ 1 + 2Z .

The [HiAξ,11] which have not been written down are zero.

The condition 〈φ̂πv11ξ, α̌〉 = 〈φ̂πv11ξ, β̌〉 = 0 of 7.1.2 is satisfied by ξ = 0, α, β,
α+ β, ± 1

2β, α± 1
2β.

For the ξ for which a Jacobi sum appears in the coefficients we have aα(ξ) 6= 0,
aβ(ξ) 6= 0, but the conclusion of Lemma 7.4.1 does not hold.
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