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SPHERICAL VARIETIES
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ABSTRACT. Let G be a connected reductive group over the algebraic closure
of a finite field and let Y be a spherical variety for G. We consider perverse
sheaves on G and on Y which have a weight for the action of a Borel subgroup
B and are endowed with an action of Frobenius. This leads to the definition
of a “generalized Hecke algebra”, attached to G, and of a module over that
algebra, attached to Y. The same algebra and the same module can also be
defined using constructible sheaves. Comparison of the two definitions gives,
in the case of a symmetric variety Y and B-equivariant sheaves, a geometric
proof of results which Lusztig and Vogan obtained by representation theoretic
means.

1. INTRODUCTION

1.1. Let G be a connected reductive group over an algebraically closed field k of
characteristic # 2 and let Y be a symmetric variety for G, i.e. Y = G/K, where
K is the fixed point group of an involutorial automorphism of G. Choose a Borel
subgroup B of G. Then B has only finitely many orbits on Y. Let v be such an orbit
and let £ be a B-equivariant local system of rank one on v. Let j : v — © denote the
embedding of v into its Zariski closure in Y and consider the intermediate extension
A = ji.Lldimv] (cf. [BBD, 2.1.7 and 2.2.3]), also called intersection complex. This
is a perverse sheaf on ©. The restrictions of the cohomology sheaves H'A to a B-
orbit u contained in v are direct sums of irreducible B-equivariant local systems on
u, which have rank one. The problem is how to compute the multiplicities of the
irreducible components. By a general principle (see [BBD, section 6]) the question
is reduced to the case where k is the algebraic closure of a finite field. The problem
was solved by Lusztig and Vogan in [LV] (they considered K-orbits on B\G, which
is equivalent to considering B-orbits on G/K).

The paper [LV] exploits the purity of the perverse sheaves A, which is a result
on the eigenvalues of Frobenius on the stalks of the cohomology sheaves H*A. It
also makes use of representation theory: the numbers we are looking for have an
interpretation in the representation theory of real Lie groups and [LV] applies a
result of [V]. In the present paper we give a proof of the main results of [LV]
without having recourse to representation theory. Our proof gives an algorithm,
which is essentially the same as in [LV].

1.2.  The problem can be formulated more generally for a spherical variety Y, i.e.
a variety with a G-action on which B has only finitely many orbits. One may
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also generalize the problem by considering local systems on the B-orbits which are
not necessarily B-equivariant, but have a weight for the B-action (see 2.2.1 for
the definition of weights). Actually, in our treatment of the symmetric case we
need Bj-equivariant local systems, where B; is the Borel subgroup of the simply
connected covering of the derived group of G. These local systems have a weight
for the B-action satisfying the condition in Theorem 7.1.2.

In the general setting (for a spherical variety Y and weights for B) we define an
abelian category Cy like C’ in [LV] and an analogous category Ay constructed with
perverse sheaves instead of local systems. These two categories have isomorphic
Grothendieck groups. The local systems on the one hand and the perverse sheaves
on the other hand provide two bases for that Grothendieck group and the problem
is to express one basis into the other, in other words, determine the coefficients
Cn,uiéw,i introduced in 3.4.1. The construction is such that not only the multiplic-
ities of the components in the cohomology sheaves of the perverse sheaves appear
in these coeflicients, but also the eigenvalues of Frobenius on the stalks.

Applying Verdier duality we obtain the relations 3.4.2 for the coefficients ¢, in
which appear the coefficients by, ¢, that express the dual of our local systems in
the basis elements (they correspond to the R, s of [LV], whereas the coefficients ¢
are related to the P, 5). When we know that the cohomology sheaves are punctually
pure of the correct weight, the coefficients ¢ can be computed from the relations
3.4.2 when the coefficients b are known. This is explained in 3.4.3. Now the module
structure which we define in 3.2 on the Grothendieck groups is used in chapter 5 to
find relations satisfied by the coefficients b. They are in general not sufficient to de-
termine these coefficients. In the symmetric case and for B;-equivariant sheaves we
use the relations of chapter 5 together with 3.4.2 to solve the problem. An important
role is played by Lemma 7.4.1, a vanishing result for intersection cohomology.

Although we did not obtain a solution of the problem for general spherical vari-
eties, it seemed worthwhile to present our method in the general setting.

1.3. Notations and conventions. All varieties will be defined over an alge-
braically closed field k. We will deal with Q;-sheaves on varieties over k (I #
p = char(k)). If £ = C, we may also consider sheaves of C-vector spaces for the
classical topology. In all cases we denote the coefficient field by F and speak of
E-sheaves.

By a local system we mean a smooth E-sheaf. We denote by DX the bounded
derived category of constructible E-sheaves on X. It has a t-structure such that the
heart of DX is the abelian category of perverse sheaves on X. Our main reference
for the theory of perverse sheaves is [BBD]. Our notations regarding constructible
sheaves and perverse sheaves are those of [BBD].

The cohomology sheaves of a complex K are denoted by H*K. The notation H"
is used both for cohomology and for hyper-cohomology.

If £ is a local system on a smooth irreducible subvariety U of X, the perverse
sheaf ji,£[dim U], where j is the embedding U — U, will be called the perverse
extension of L, as in [MS]. We extend it by zero on X — U.

For the definition of weights for Frobenius actions and the theorems concerning
them we refer to [BBD, section 5]. We will use, in particular, the purity of perverse
extensions.

Z(p)y denotes the localisation of Z at (p), in particular Z) = Q, and M, =
Zp) @z M for any Z-module M.
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1.4. A further survey of the contents. In 2.1 we recall the definition and
elementary properties of tame local systems (or Kummer local systems) on tori.
See also [MS], where the same notation is used. In 2.1.7 we quote results from
[SGA4-1/2] concerning a local system which is related to Jacobi sums.

We establish some results on local systems and perverse sheaves with a weight
for B in 2.2.

The purity result in 2.3.3 (not used in [LV]) is of crucial importance for our
method, because it allows the argument of 3.4.3.

In chapter 3 we define the categories Cy and Ay for a spherical variety Y. An
algebra structure is defined on the Grothendieck groups K(Cq) and K(Ag) and a
K(Cg)- (resp. K(Ag)-) module structure is defined on IC(Cy) (resp. K(Ay)). The
algebra IC(Cg) is related to the algebra K of [MS], see the remark at the end of 4.3.
Multiplication by ¢ in I corresponds to a shift in the complexes and multiplication
by ¢ in K(Cq) corresponds to multiplication of eigenvalues of Frobenius by ¢g. The
relation between the two algebras is explained by the fact that in the case under
consideration in [MS] all eigenvalues of Frobenius are integral powers of ¢ (up to
roots of unity).

As in [LV], Verdier duality is used to define linear endomorphisms of (. Ay ) and
K(Cy).

The goal of chapter 4 is to make the module structure on K(Cy) explicit by
computing the products of the basis elements of K(Cq) with those of K(Cy). The
results are listed in 4.3.1, which is a non-trivial extension of [LV, Lemma 3.5]. Here
Jacobi sums can appear in the coefficients. The classification of B-orbits in 4.1 is
well-known, cf. [RS2, 2.2].

In chapter 5 we give explicitly the relations between the coefficients by, ;¢ of
De¢ , which result from 4.3.1 by applying D.

So far everything was done in the general situation of a spherical variety and
sheaves with a weight for B. In chapters 6 and 7 we deal with symmetric varieties.
Chapter 6 reviews material about these. One of the main results is 7.1.2 establishing
a parity result for the intersection cohomology complexes (under a restriction on
the weights for B). Also the eigenvalues of Frobenius on the stalks are powers of ¢
times a root of unity. Finally, in 7.6 we give an example where Y is still symmetric,
but the condition on the weight for B is dropped. In that example Jacobi sums
appear as eigenvalues of Frobenius and A¢ , is not always even.

2. AUXILIARY RESULTS

2.1. Local systems on tori.

2.1.1. Let T be a torus over an algebraically closed field k of characteristic p and
n an integer not divisible by p. We follow Deligne [SGA4-1/2, Sommes trigonomét-
riques, 1.2]. The exact sequence

1—-T, -T3ST 1

defines a T),-torsor K,,(T) on T. If p : T,, — E* is a character of Tj,, there is a
sheaf p(K,(T")) (a smooth E-sheaf of rank 1) on T" with a morphism p : K,,(T") —
p(K,(T)) which is everywhere # 0 and such that p(tz) = p(t)p(z) for the action of
z €Ty,

If x € X(T), the character group of T', and p(t) = 1»(x(¢)) for ¢t € T},, we denote
p(Kn(T)) by Ly . Here ¢ is a fixed embedding of the group p(k) of roots of unity
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of k into E*. These sheaves are the so-called tame local systems on T'. They are
called Kummer local systems in [MS]. They have the following properties.

Lax,an = Lyn-

Lytym = ‘me @ Lyt .-

Ly is the constant sheaf E < x € nX(T).
L_yn = dualof L, ,.

We put )?(T) = X(T)®z(Zpy/Z) = X(T')(py/ X (T'). Then we have an isomorphism
of X (T) on the group of tame local systems on T, viz. £ — L, ,, if £ is represented
by x/n, x € X(T), n € Z, n # 0(p). We use the notation L¢ for £, .

2.1.2. If k is the algebraic closure of the finite field F, and T is defined over F, i.e.
obtained from a scheme Tj over F,; by extension of scalars from F, to k, there is a
T,.-torsor K, (Tp) on Ty defined by the exact sequence 1 — (7)., — Tp 5Ty — 1.
A character p : T,, — E* is defined over F, if p(F't) = p(t) for all t € T,, (F' denotes
the Frobenius map). If p = ¢ o x|r, , this condition is satisfied if and only if there
is x1 € X(T) such that x(t7'Ft) = x1(t)" for all t € T. Then p(K,(Tp)) = L¢ is
a sheaf on Tj.

The endomorphism y +— x o F of X (T) can uniquely be extended to an automor-
phism of X (T'). The invariants of this automorphism correspond to the £¢ coming
from a sheaf on Tj.

Ifa € TF = Ty(F,), the action of F* on (L¢), is multiplication by ¢ox (b= Fb)~1,
if b € Ty(k), b™ = a. The factor is an n-th root of unity.

2.1.3. Let Tp be a torus over IF;, which splits over F,n. Put n = gV — 1. We have
a commutative diagram with exact rows

1 s (To)n sy To —— Ty > 1

|

1 ——To(Fy) > To £ >To > 1

Here £ is the isogeny ¢t — ¢t~'Ft and the second row defines a Ty(F,)-torsor L.
The map v is defined by vt = t(Ft)... (FN=1t). Notice that FNt = t" . We have
Ker (v) = {t~'Ft |t € T,,} and v and v|r, are both surjective.

If p : T,, — E* is a character defined over [y, p factorizes uniquely via Ty(FF,). Let
p=nov,n:Ty(Fy)—E*. Then p(K,(To)) = n(Lo). Taking p =1 o x, x € X(T),
we have x(t7'Ft) = x1(t)" and x = x1 o v, hence L¢ = p(K,(Tp)) = ¢x1(Lo).

A diagram as above exists more generally for n divisible by ¢V — 1.

2.1.4. Correspogding to any homomorphism of tori ¢ : T — T’ over k there is a
homomorphism ¢ : X(T") — X(T'), obtained from X (7") — X (T). If £ € X(T"),
then ['355 = ¢*Le.

2.1.5. Lemma. Let ¢ : T — T’ be a surjective homomorphism of tori. Put D =
Ker (¢) and let D° be the connected component of D (a torus). Then we have an
exact sequence

0 — X(D/D°) — X(T") — X(T) — X(D°) — 0.



HECKE ALGEBRA REPRESENTATIONS RELATED TO SPHERICAL VARIETIES 37

From the exact sequence 0 — X (T'/D) — X(T) — X (D) — 0 we get an exact
sequence

0 — Tor}(Zg)/Z, X (D)) — X (T/D) — X(T) — L, /Z @z X (D) — 0.

We have isomorphisms Z,)/Z ®z X(D) = Z,)/Z @z X(D%) = X(D°) and
Tor%(Z(p)/Z,X(D/DO)) = Tor%(Z(p)/Z,X(D)). For any finite abelian group A
whose order is not divisible by p, one has Tor%(Z(p) /Z,A) = A. So there is an
isomorphism Tor{(Z,)/Z, X (D)) = X (D/D").

To the bijective homomorphism T'/D — T’ induced by ¢ there corresponds an
injection X (T”) — X (T'/ D) whose cokernel is a p-group (= {0} if p = 0). Tensoring
with Z,)/Z gives an isomorphism X (1") = X (T/D).

Thus we obtain the announced exact sequence.

2.16. If¢e )/(:(T), E€#0, then H(T,L¢) = HY(T, L¢) = 0 for all i. This is well
known.

2.1.7. There is another type of local systems which we shall encounter. It is a
special case of the sheaves studied in [SGA4-1/2, Sommes trigonométriques, §4].
We consider the algebra F3 over F,. Following the notations of [loc. cit.] we define
Vb to be the same algebra considered as a variety over F, and Wy to be the subspace
defined by xo + 21 + 2 = 0. Moreover, V" is the multiplicative group of invertible
elements of Vy and W = Wy N V.

Let n be an integer divisible by ¢—1 and not divisible by p. We have the following
commutative diagram with exact rows (it is 2.1.3 with Ty = G3)).

1 > (Vo )n Vo —— VW > 1

|l

1 > (F5)? sV s Vi > 1

qg—1

Here vt = ta1.

Let x : (F;)? — E* be a character and x o v = (xo0, X1, X2), Xi : pn(F) — E*.
Each of the two rows of the diagram defines a torsor on Vj and together with the
character yov resp. x these torsors determine one and the same smooth sheaf on V{,
which is F(x ') = Kn(xo 5 X1 5 Xz 1) in the notation of [loc. cit.]. If xox1x2 = 1,
Knlxo ' xit x5 1) is the inverse image of a sheaf on Vy/G,, (we use the same
notation for this sheaf). Now we may identify V;*/G,, with the subset {(1,x1,z2)}
of F3. Then W /G,, is isomorphic to F—{0, -1}, by  + (1,2, —1—z). Obviously,
F(x~') on W*/G,, = F —{0,—1} is the inverse image of Ly,n & Ly, n KLy, p
under the map = — (1,7,—1 —z), F — {0, -1} — (F*)2. This is also the inverse
image of Ly, », ® Ly, ,, under the map F — {0, -1} — (F*)?, z — (z,—1 — x).

Proposition 4.16 of [loc. cit.] gives the following.

In the notation above assume that xox1Xx2 = 1 and that not all x; = 1.

Then H(W* /G, F(x™ 1)) =0 ifi #1 and dim H! = 1.

On HX(W* /Gy, F(x™1)) the action of F* is multiplication by

Jo=- >, xi@) xe(-1-2)7"

1€]F;;,z;£—l

n

where x; are the components of x, i.e. x;i = (X;) 7 -
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And by Proposition 4.20 of [SGA4-1/2, Sommes trigonométriques] we have:
If x1 = X2 , the action of the automorphism x — —1 —x of W*/G,, on H} is
multiplication by —1.

2.2. Weights for solvable group actions.

2.2.1. Let B be a connected solvable linear algebraic group over the algebraically
closed field k. Denote its unipotent radical by U. Fix a maximal torus 7" of B and
let 7p : B — B/U =T. If Y is a variety with B-action a : B xY — Y, a local
system £ on Y is said to have weight £ € X (T) for the B-action if there exists an
isomorphism a*£ = 717.L¢ W L. The same definition applies to perverse sheaves on
Y.

2.2.2. Let C be a closed subgroup of B and Y = B/C. Put D = mpC. Denote by
¢ : T — T/D the canonical map and let 7 : Y — T/D be the map induced by 7.
If¢e )A((T/D), then 7L is a local system of rank one on Y and it is easily seen
that it has weight a& for the action of B on Y. Conversely we have:

2.2.3. Lemma. Assume that C N U is connected. If L is a local system of rank
one on'Y which has a weight for the B-action, there is a unique & € X(T/D) such
that L is isomorphic to m* Le.

The weight of £ is annihilated by an integer m not divisible by the characteristic
p. Define B to be the algebraic group which is a semi-direct product of T" and U,
the T-action on U now being given by ¢ ut™"™. The map p : B — B, (t,u) — t"u,
is a homomorphism. Put C = p~H(C) and D = 7TTC where 77 is the projection
B — T. We then have a commutative diagram

B/C———T/D

:l :l

Y =B/C ~—T/D

Here 7 is induced by 77 and the vertical arrows are isomorphisms induced, re-
spectively, by p and by the multiplication by m in T. The sheaf £ on B / C which
corresponds to £ under the isomorphism B / C - B /C is a B- equivariant local
system and the assertion of the lemma is equivalent to the corresponding one for
B / C and L. So the proof is reduced to the case that £ is B-equivariant.

Consider in this case the Cartesian square

B/C® ——T/D°

L

B/C ——T/D

The square is Cartesian, because C/C® — D/D° is an isomorphism, as a conse-
quence of the assumption that CNU is connected. The B-equivariant local systems
on B/C are in 1-1-correspondence with the characters of C/CY = D/D°, hence by
2.1.5 with the elements of Ker (X (/D) — X(T/D°)), the correspondence being
& — m*L¢. This proves the lemma.

With the same notation we have
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2.2.4. Proposition. Assume that Q NU is connected. Let L be a local system on
Y = B/C which has a weight n € X (T') for the B-action. Then L is isomorphic
to a direct sum of local systems m*L¢,, where the & are elements of X(T/D) with

oE; = 1.
Again, one reduces the proof to the case that £ is B-equivariant. Then the result
follows from the fact that C/C° = D/DY is abelian.

2.2.5. Now let Y be a variety on which B acts with finitely many orbits. Let V'
be the set of orbits. If v, v’ € V, we write v' < v if v’ lies in the Zariski closure of
v. This defines an order on V. We use the notation v for a representative of v. Let
B, be the isotropy group of ©. Then T}, = wr B, is independent of the choice of ©
in v. Assume:

(a) all orbit maps B — v (b bv) are separable;

(b) all groups By NU are connected.
Assumption (a) implies that an orbit v is isomorphic to B/ By, as a B-variety. Let
7o : v — T/T, be the map tud — tT, (t € T,u € U). If £ € X(T/T,), we write
Ley = miLle and denote by Ag, the perverse extension (see 1.3) of L¢ ;. The
isomorphism class of L¢ ; resp. A¢» depends only on v. We shall write L¢ , resp.
Ag¢ ., when only the isomorphism class is concerned. Lg, is extended by 0 to a
sheaf on Y.

We denote by ¢,, the map T — T/T,.

2.2.6. Proposition. Assume (a) and (b). Let v € V and & € X(T/T,).

(1) Lew and Ag ., have weight &,f for the B-action.

(i) If v' € V, i € Z, then H'A¢ o] is a direct sum of local systems Ly, ., where

& e )?(T/TU/) and ¢ & = Gu€. 1t is zero unless v’ < v.

(111) DA&{, = A_gﬂ',(dim ’U).

In (iii), D stands for Verdier duality.
2.2.7. Proposition. Assume (a) and (b) of 2.2.5. Let A be a semi-simple per-
verse sheaf on'Y which has a weight for the B-action. Then A is isomorphic to a
direct sum of perverse sheaves of the form Ag ..

This is easily proved. Reduce to the case of a simple perverse sheaf A and use
2.2.3.

2.3. A purity result.

2.3.1. Lemma. Let Z be a variety with a G,,-action m : G, X Z — Z leaving
some zg € Z fired. Assume that m extends to a morphism f : A x Z — Z
such that f({0} x Z) = {20}. Let K € DZ such that there exists an isomorphism
m*K =2 EXK. Then the canonical maps H"(Z, K) — (H"K)., are isomorphisms.

It is easy to see that it suffices to prove the assertion when (H"K),, = 0 for all
n. Then the restriction of f*K to {0} x Z is zero and the restriction of f*K to
G x Zism*K 2 EX K. So we have a morphism ¢ : f*K — FX K. It is now
obvious that, when we define f; : Z — Z by fi(z) = f(t,2) (t € A!), then f; and
fo are homotopic. So fi and fy induce the same homomorphism on H"(Z, K) (see
[SGAT, exposé XV, 2.1] ). Hence H™(Z,K) = 0 for all n.

Remark. The dual statement is: the canonical maps H?ZO}(Z, K)— HZ,K) are
isomorphisms.
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2.3.2. Let G be a connected linear algebraic group, Y an irreducible variety and
a:GXxY —Y anactionof GonY. Fixy €Y, let O =G -y be its orbit, and let
S be a transverse slice in y with respect to O. By this we mean that:

(a) S is a locally closed subset of Y containing y;

(b) the restriction of a defines a smooth morphism G x S — Y

(¢) dimS =dimY —dimO.
Assume moreover that S admits a contraction of the following type. We have a
homomorphism A : G,, — G such that:

(d) S and y are stable under Im(\);
(e) the action G,, x S — S extends to a morphism A! x S — S sending {0} x S
to y.

Let A € DY such that a*A is isomorphic to F X A. Using the properties (a),
(b), (c) of S we see that i* A[—2dim O](— dim ©)>i'A is an isomorphism. Here
i:5 — Y is the embedding.

Now assume that k is the algebraic closure of a finite field and that, in the above
situation everything is defined over ;. For A this means that it comes from a
complex in DYy, where Yy is the Fg-scheme underlying Y. Since y € Yy(Fy) we
have a Frobenius action on (H"A),.

2.3.3. Proposition. Assume that there exists a transverse slice S in y, which
satisfies (a)—(e) of 2.3.2 and is defined over Fy. If A as in 2.3.2 is pure of weight
w, then the weights of (H™A), are equal to w + n.

From i* A[—2 dim O](— dim O) = ' A it follows that i* A is pure of weight w. So
the weights of H™(S, A) are > w+n. By Lemma 2.3.1 we have (H"A4), = H™(S, A).
Thus, the weights of (H™A), are > w + n, and also < w + n by the purity of A.

3. A GENERALIZED HECKE ALGEBRA AND ITS MODULES

3.1. Definition of I(Ay) and K(Cy).

3.1.1. Let G be a connected reductive group over the algebraically closed field &
and let Y be a spherical variety for G, i.e. a homogeneous space of G such that any
Borel subgroup of G has finitely many orbits in Y. We fix a Borel group B = T'U of
G and use the notations of 2.2.5. In particular V is the set of B-orbits in Y. In the
sequel we always assume that the conditions (a) and (b) of 2.2.5 are satisfied. They
are, of course, in characteristic 0, and in any characteristic # 2 they are satisfied
if Y is symmetric. We call Y symmetric if Y = G/K, where K is the fixed point
group of an involution (= automorphism of order 2) of G.

G can be considered as a spherical variety for G x G. The action is (g1, g2) - & =
q1Tgy ! and the set of B x B-orbits is the Weyl group of G. It is symmetric: consider
the involution of G x G which interchanges the two components.

3.1.2. From now on we assume that k is an algebraic closure of a finite field F,.
We take E = Q;, where [ is a prime different from the characteristic p of k. We
take g big enough, so that G, B,Y are defined over IFy, T" is IF¢-split, etc. There are
Frobenius morphisms F': G — G, F : Y — Y, etc. In 2.2.5 we defined L¢ ; and
A¢p. If Fo =0 and F§ = &, these objects also have an F,-structure and we have
the Frobenius correspondence

F*E&i, :> Egﬂ‘, resp. F*Agﬂ‘, :> Ag)@.
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We need one more notation. If a is the action of T on Y, a,, is the action such
that a,,(t) = a(t™). If a local system or a perverse sheaf has weight ¢ for T and
mé& = 0, then it is equivariant for the action a, (cf. the proof of 2.2.3).

Now we consider perverse sheaves A on Y supplied with an isomorphism & :
F*A 5 A. Then there are isomorphism ®" : (F")*A = A for all n > 1. We
assume that (A, @) satisfies the following conditions.

(1) A is U-equivariant and T-equivariant for the action a,,, where m is a fized
integer not divisible by p.

(2) If y €Y, F™y =y, the eigenvalues of ®7 on (H'A), lie in C;, where C} is a
fixed subgroup of Q? containing the roots of unity. Put C = Cy/u, p = group of
the roots of unity in Q.

We identify (A4, ®) = (A4, ') if &” = '™ for some n.

Morphisms between these objects are morphisms of perverse sheaves, compatible
with a power of ®.

In this way an abelian category Ay is defined. We denote by K(Ay) the
Grothendieck group of Ay .

If C; is taken big enough, K(Ay) is a Z[C]-module with a finite basis corre-
sponding to the A¢ , withv e V, £ € X’(T/Tv), mavé =0.

Indeed, if (A, ®) is an object of Ay with A simple, then by Proposition 2.2.7,
A'is of the form Ag,. We have Aut(A¢,) =Aut(Le,,) = Q; and multiplication by
the class in C of ¢ € Q} takes (A4, ®) to (A, ®') with ® = c¢®. In other words, the
eigenvalues of ®7 on (H'A), are multiplied by ¢".

We need an analogous construction with constructible sheaves instead of perverse
sheaves.

We consider constructible Q;-sheaves S on Y supplied with an isomorphism
¢ : F*S 5 S, assuming:

1) § is U-equivariant and T-equivariant for a,, (m fixed); ® is equivariant for
these actions. This means that we have commutative diagrams

EXF*S = F*(EXS) —— F*a*S = a*F*S

lidx P j{a* P

EXS > a*S

where a stands for the action of U on Y, resp. for the action a,, of T

2) Ify €Y, F"y = y, the eigenvalues of &} on S, lie in C1.

We identify (S, ®) = (S, ') if " = @'" for some n.

Morphisms between these objects are morphisms of equivariant sheaves S — S’
compatible with a power of ® and ®’. This means that we have commutative
diagrams

EXS —— a*S and (F”)*SL)S

[ S U

BES' —— a8 () 5 S

This defines an abelian category Cy. Let K(Cy) denote the Grothendieck group of
Cy.
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If C; is taken big enough, K(Cy) is a Z[C]-module with a finite basis, corre-
sponding to the L¢, withv eV, £ € )A((T/Tv), mggvg =0.

When a constructible sheaf £ has a natural F,-structure, we denote by [£] the
class in IC(Cy) of L equipped with the Frobenius correspondence. The same con-
vention applies to a perverse sheaf A and its class [A] in K(Ay).

There is a Z[C]-homomorphism h = hy: K(Ay) — K(Cy), given by [4] —
S(—1)[H!A] (H'A is supplied with the isomorphism F*H'A — H'A coming
from ® : F*A — A; we dropped ® in the notation). Since h[A¢ ] is the sum of
(—1)dimv[L, ] and a linear combination with coefficients in Z[C] of [£, 4], u < v,
it is clear that h is bijective. The problem is now, how to express one basis into
the other.

3.1.3. As a special case of our definitions we have K(Ag) and K(Cg), where G is
considered as a spherical variety for G x GG as in 3.1.1. The B x B-orbits are the
sets BwB, w € W = N(T)/T. We denote by w a representative in N(T') for w.
Let us apply the definitions of 2.2.5 to this case. We have (T' x T),, = {(t1,t2) €
TxT |t =w(ta)}, soT xT/(T xT)y can be identified with T' by sending the
class of (t1,t2) to w™'(t1)ty . Then the map 7, : BuB — T x T/(T x T),, =T is
wity' — t (u, v’ € U, t € T). And X(T) = X(T x T/(T x T)y) — X(T x T) =
X’(T) X )A((T) is the map & — (w§, —§). So L¢ . and Ag ., have weight wé (resp.
—¢&) for the left (resp. right) B-action.

Remarks. A category like Cy with m = 1 (B-equivariant sheaves on Y') was defined
in [LV]. There K-equivariant sheaves on G/B were considered. In [MS] the same
sheaves L¢ ,, and A¢ ,, were defined and studied without Frobenius actions.

3.2. Algebra and module structures.

3.2.1. Letw,ye Wand¢&,ne€ )A((T) If n = w¢, the perverse sheaf A, , M A¢ ,, on
G x G is equivariant for the action of B given by b(g1,g2) = (g1b~*, bga), because
A,y has weight —n for the right B-action and A¢ ., has weight w¢ for the left B-
action (3.1.3). Hence there is a unique perverse sheaf A on the quotient G £G such
that Aue ., & Ae ., = f*A[dim B], if f denotes the natural map G x G — G £G. The
product in G defines a proper map p : G ¥G — G and u;g is a semi-simple complex
on G, which means that ,u!g is the direct sum of its shifted perverse cohomology
sheaves: A =@ PH'(juA)[—i] and that each PH(jA) is a direct sum of simple
perverse sheaves (see [BBD, Théoréme 5.4.5 and Théoréme 5.3.8]; A is pure,
because A is pure and p is proper). These simple constituents have weight ywé
(resp. —§) for the left (resp. right) B-action, hence are of the form A¢ ., 2 € W
such that z§ = ywé (Proposition 2.2.7).

3.2.2. Definition.
[Awey) [Aew] = D (-1)'PH (uA)],

[Any][Acw] = 0 ifn# we.
Extending this definition by linearity we put a structure of associative Z[C]-
algebra on K(Ag). The associativity is proved using the map GZG2G — G. We
have [Auwg e] [Aew] = [Ae.w]-

Remark. The convolution of the isomorphism classes of A¢, and Ag,, (without
Frobenius) was defined in [MS].
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In an analogous way a product is defined in K(Cg).

3.2.3. Definition.

[Loey) [Lew] = > (1) [H (mL)],
(L] [Lew] =0 if 0 # wé.

The constructible sheaf £ is the extension by 0 of the local system on ByB%BwB
determined by Ly¢y X Lew. K(Cq) is an associative Z[C]-algebra. We have

[Luwg.e] [Lew] = [Lew]-
Put hy = (=1)3mBhg with hg as in 3.1.2 for Y = G.

3.2.4. Proposition. The map hy, : K(Ag) — K(Cgq) is an isomorphism of Z[C]-
algebras.

This can be proved in the same way as Proposition 3.2.8 below.

3.2.5. We shall now define a K(Ag)-module structure on K(Ay ). Let w € W, v €
V,¢e X(T/T,), n € X(T). Since A, has weight —n for the right B-action and
Ag » has weight ¢y for the B-action (2.2.6 and 3.1.3), the perverse sheaf Ay wXAe
on G x Y is equivariant for the action of B given by b(g,y) = (gb™1,by), if n = &,5.
So A& tw & A¢ o, is, up to a shift [dim B], the inverse image of a perverse sheaf A on

the quotient GXY. The action of G on Y defines a proper map p: GX¥Y — Y and
,u!g is a semi-simple complex on Y. The simple constituents of ,u!g have weight
w(py€) for the B-action, hence are of the form Ae o withv' € V, ¢ € X(T/T,)
such that ¢y & = w(PyE).

3.2.6. Definition.
As ol Aen] = SO(-1IPH (A,

[An,w] [Aé,v] = 0ifn# (Evf

The Z[C]-bilinear map K(Ag) x K(Ay) — K(Ay) determined by 3.2.6 makes
K(Ay) a K(Ag)-module. That it is a module is proved using the map GXGZY — Y.
We have [A5 . ][A¢o] = [Aeol.

Notice that the product in K£(Ag) is not exactly a particular case of 3.2.6; the
latter gives a K(Agxq)-module structure on C(Ag).

3.2.7. Definition.
[£5,cl[Lea] = D (=DM mL],
[Lowl [Lew] = 0 if n# but.

Here £ is the extension by 0 of the local system on BwBZXv determined by
L5 ew X Ley. The formulas give a K(Cg)-module structure on K(Cy). Again

[£$v§7e] [['5711] = [‘Cf,v]'

3.2.8. Proposition. The bijection hy : K(Ay) — K(Cy) preserves the module
structure, in the sense that

hy (km) = his(k)hy (m) i k € K(Ag), m € K(Ay).
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It suffices to prove this for k = [A
have

Goew) and m = [Ag,]. With A as above we

hy(km) = hy (3 (=D PH uA)) = S (<1 CH (D))

(W (A =D (—1)PHR (HA)).

p.q

The latter equality comes from the spectral sequence RPuy(HIA) = H"(imA). On
the other hand he(k)hy (m) = 32, (1) [H'Ag . J[H Ag,].
If p is the projection G xY — G2Y, we have p*He+dimB 4 — > itizq
HJ Ag¢ . From this observation and the definitions it follows easily that
Z(—l)p[RpM! (Pa+dim B 1)) — Z [HiAqt?ug,w] [H7 Ag ).

P 1+j=q

H'A

Qg
d’vf»wlz

Now
ha(k)hy (m) =Y (1) (=P[R m(HF™ P A)] = (=1)" Phy (km).
q P
3.3. Definition of D.
3.3.1. Verdier duality induces a Z-linear map D : K(Ay) — K(Ay). This map
is Z[C]-semilinear with respect to the involution of Z[C] defined by the inverse
in C. We also define D : £(Cy) — K(Cy). This semilinear map is given by

DI[S] = Y(-1){[H'Dy 8], where Dy S is the Verdier dual of S as a complex on Y.
These definitions apply in particular to Y = G.

3.3.2. Proposition. (i) hy oD =Dohy.
(ii) D(km) = q™B(DEk)(Dm) if k € K(Ag), m € K(Ay) or K(Ag).
(iii) D(km) = ¢/"™B(Dk)(Dm) if k € K(Cg), m € K(Cy) or K(Cg).
(iv) Do D is the identity.

Proof of (i).
hy (D[A]) = hy [Dy A] = Z(—l)i[HiDYA]
= S ()PP Dy (H14)] = D(hy[4)),

p,q

To prove (ii) take k = [A5 . ] and m = [A¢.]. Then Dk = ¢~ dimB”“”B[A_&5 w)

and Dm = ¢~ 9mv[A_, ] by 2.2.6(iii). Let A be as before (3.2.5) and let A be
the same object with £ replaced by —¢. Applying Verdier duality to the formula

A3 ¢ B A, = p*A[dim B] we find that Dy A = A(I(w) + dimv). Now
D(km) =Y (=1)'D[PH’ (mA)]
=Y (~)'PH Dy (mA)] = > (~1)'[PH'(uDy A)]
= g A S P (A)] = g B (Dk) (D).

Recall that dim BwB = [(w) + dim B, where [(w) is the length of w.
(iii) follows from (i) and (ii) and (iv) is obvious.
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3.4. Application of duality.

3.4.1. We now introduce some notations. If v € V, £ € )/(:(T/Tv), we let g¢, =
[Le¢ 0] € K(Cy), including the case Y = G. Expressing D[L¢ ] and [H*A¢ ] in the
basis elements of K(Cy) we have

Dego=q""Ye ¢+ Y bpugtnu

u<v
and
[H' Aew] = 6i— dimvEe,o + Z Cus€0,iEn,u
u<v
with coefficients by, u:e v, Cpugi € Z[C]. Summation is over (n,u), u € V,ne
i((T/Tu). We have by ¢, = 0 unless ¢,n = —¢,€ and ¢, y.e.0,; = 0 unless ¢, n =
Pu§.

3.4.2. Applying hy to the equality D[A¢ ] = ¢~ 9™[A_¢,] we see that

DY (—1)[H'Ago] = a~ ™Y (~1)'[H'A_g,),

since hy commutes with D. Now express both sides of the latter equality in the
basis elements, using the notations of 3.4.1. The result is

Z(_l)icn,us—f,v,i — gt dim Z(_l)ié—mwé,v,i
4 %
_ (_l)diqudimvbn)u;g)v + qdimv Z bn,u;g‘,z Z(_l)iéq,z;é,v,i if u < v,
u<z<v i

Here ~ denotes the involution of Z[C] defined by the inverse in C.

3.4.3. Since L¢ , has weight zero, we know that A , is pure of weight dimv. This
means that the punctual weights of HiAg,v are < ¢ + dimwv. Assume that we are
in a situation where it is known that these weights are equal to ¢ + dimwv. Then
the ¢y u;¢,0,; are linear combinations with coefficients in Z and > 0 of (classes of)
algebraic numbers with complex absolute values ¢z (+4imv) - Since A ,, is a perverse
extension, ¢y y;¢ v, 7 0 implies dimu < —i4, if u < v. So the absolute values of the
algebraic numbers occurring in ¢; ;¢ v, are gz (i+dimv) < gz (dimv—dimu—1) 54 the
absolute values of those occurring in gdimv=dimug_ . . are g2 (dimv—i)—dimu >
q%(dimv—dimu+l).

It follows that, when &, v, n, u are given, the coefficients ¢, u;—¢,v,;s (1 € Z) are
determined by the formula in 3.4.2, if the right hand side is known. In particular,
when all the coefficients b are known, the coefficients ¢, ¢, can be computed
from the formula by descending induction on dim w.

4. PRODUCT OF A MINIMAL PARABOLIC AND AN ORBIT

One can prove that the algebra K(Cq) is generated by the elements ¢, , with s
a simple reflection and n € X(T'). Hence the K(Cg)-module structure on IC(Cy)
is determined by the products €3,¢.566 with v € V, £ € X(T/T,), s a simple
reflection. In this chapter we are going to compute these products.
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4.1. Orbit types.

4.1.1. We use the notations of chapter 3. The results of 4.1 and 4.2 are valid over
any algebraically closed ground field &, from 4.3 on we take up the conventions of
3.1.2.

The choice of B and T determines the root system and the set of simple roots.
The Weyl group W = N(T)/T is generated by the set S of simple reflections.

We choose the one parameter subgroups u, associated to the roots in such a way
that no = ua(1)u_n(—1)us(1l) € N(T) for every root «. Then n,, is a representative
for the reflection s, corresponding to a. We have n? = &(—1) and n_, = n;!,
where ¢ is the coroot. The following formulas will be used frequently.

U (2)u—o (2" Dua(r) = d&(2)ne  (z € k¥)

Y=u_o(—2) (z€k)

Nata(T)ny,
Im (ug) is denoted by U,,.
4.1.2. Fix s € S and let P = P; be the parabolic subgroup of G generated by B
and s, so P = BsB = BU BsB. Let a be the simple root corresponding to s.
If v € V and v € v, we have an equality of finite sets
B\Pv = B\Pi = B\P/P; = P'/P,,

where P; is the isotropy group of ©. We choose the isomorphism B\ P =2 P! in such
a way that Bnaue(z) — —z. The action of P on B\P (given by po- Bp = Bppy*)
defines a homomorphism ¢ : P — Aut (P'). When Aut (P!) is identified with PG Ly
in the usual way, we have

stuae) = (o 7 )k o= (0 5 )i eta@ = (5 % )

and Ker (¢) = Ker (a)Up, where Up is the unipotent radical of P.

4.1.3. Let H be a closed subgroup of PGLs. Modulo conjugation by an element
of ¢(B) we have the following possibilities, if H is infinite.

I. H = PGL,.
Ha. ¢(U,) C H C ¢(B). 1Ib. ¢(U_,) C H C ¢p(naBnt).
IlIa. H = ¢(T). IIIb. H is the conjugate of ¢(T) by ¢(naua(—1)).

IVa., resp. IVb. H is the normalizer of the group of case Illa, resp. IIIb.

The number of H-orbits in P! is 1 in case I, 2 in the cases II and IV, 3 in case III.
In case II there is one fix point, in case III there are two fix points and in case IV
there is an orbit consisting of two elements.

4.1.4. Let v € V. We can choose ¢ € v such that H = ¢(F;) is in one of the cases
I-IVb of 4.1.3. We call such an element © a special element of v (for s) and say that
v is of type I, Ila, ... for s.

The partition of Pv into B-orbits can easily be derived from the partition of P*
into H-orbits. We give below the situation in the various cases. The open B-orbit
in Pv = P, is denoted by m(s)v as in [RS1].

I. Pv=nw.

ITa. Pv=vUm(s)v, v is closed in Pv, dimv = dim Pv — 1.
We have nquq ()0 € m(s)v for all z € k.
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IIb. Pv =v U7, v is open in Pv, dimv' = dimv — 1.
We have nquq(2)0 € vif £ 0, n,o € ',
IITa. Pv=vUv Um(s)v, v and v’ are closed in Pv, dimv = dim v’ = dim Pv — 1
and v # v'.
We have n,0 € v/, nquq ()0 € m(s)v if x # 0.
IIIb. Pv = v U v Uv”, v is open, v and v” are closed in Pv, v/ # v”, dimv’ =
dimv” = dimv — 1.
We have nauq(2)0 € vif & £ 0,—1, nav € V', nqua(—1)0 € v”.
v" and v are of type IIla with special elements ¢’ = uq(1)n, 19 and o = nyv'.
IVa. Pv=vUm(s)v, v is closed in Pv, dimv = dim Pv — 1.
We have nq,0 € v, naua(z)0 € m(s)v if  # 0.
IVb. Pv=v U4, v is open and v’ is closed in Pv, dimv’ = dimwv — 1.
We have nquq ()0 € v if  # 0, -1, nque(x)v € v if £ =0, —1.

v’ is of type IVa with special element o' = u, (1)n 0.

4.1.5. Lemma. Lety € Y. Put H = ¢(P,) (notations of 4.1.2). If $(Us) C H,
then Uo C UpP,. If $(U_o) C H, then U_o C UpP,.

We prove the first assertion. Assume that By = T U, (this can be achieved
by replacing y by uy for an appropriate u € U; the assertion to be proved is
not changed by that substitution). We have U, C Ker(a)UpP,, whence U, C
TUpB;’ = TUpU{,’. It follows that U, C UpUlj’ C UpP,. The second assertion is
nothing but the first one applied to nyy.

4.2. Results involving the group T,,. In this section notations are as in 4.1. We
fix P = P, and v and choose a special element © € v. We now give some results on
T, and X (T'/T,) which are needed in the sequel.

4.2.1. Assume v is of type I for s. By Lemma 4.1.5 the group generated by U,
and U_, is contained in UpP;. So Im (&) C UpB,; and by the definition of T), it
follows that Im (&) C T,,. If x € X(T/Ty), then (x, &) = 0. Obviously s(T,) = Ts.

4.2.2. Assume v of type ITa. We have P; C B and, by Lemma 4.1.5, U, C UpU,.
It is easily seen that s(T%) = Ty (s)0-

4.2.3. Assume v of type Illa. Then

(i) Trn(syo = To N Ker ().
(il) T =T, Ker ().
(iti) s(T,) = Ty

We have Py C TUp and Im (&) C Ker (a)UpP;. So Im (&) C Ker (a)Ty,, which
implies (ii). Also (iii) is easy. We prove (i).

Let t € Thy(spw- There is u € U such that tunqua(1)d = nqua(1)v (recall
that naue(1)0 € m(s)v). Then tunque(l) = noua(1)t'vw with ¢/ € T, v € Up,
t'u € Py. Tt follows that tunyua (1) € Ups(t)nqua(a(t’)™1), whence a(t’) = 1,
t=s(t') =1t'. So we have t € Ker («) and from t'u’ € B, it follows that ¢t € T,,.

Conversely, let t € T, N Ker («). Choose u € U such that ut € B;. Then v € Up
and tnaua(1)0 = naua(1)td € Upnaua(1)utt = Upnata(1)0, 50 t € Tpy(s)y-
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4.2.4. Assume v of type IVa and assume that the characteristic of k is not 2. Then
(i) Im (&) C To,.
(i) a(Th(sy) = {£1}.
(iii) T, N Ker (o) = Ty ()0 N Ker ().
(iv) s(Ty) =Ty and s(Th(s)w) = Ton(s)o-
We have P, C TUp Un,TUp and (n,, Im(&)) C Ker (a)UpP;. That s(Ty,) =T,
follows from the facts that B, C TUp and n,0 € v. We have obviously Im (&) C
Ker (a)T,. Choose 7 € k* and let ¢t € Ker(«a) be such that ta(r) € T,. Then
ta(r=1) = s(ta(r)) € s(T,) = T,. Hence &(7%) € T,. This proves (i).
One proves that T, N Ker (a) C Tpy(s), as in case I11a.
Now we first prove the following lemma, which we shall also need later.

4.2.5. Lemma. Let x1, 29 € k, t1, t2 € T, uy, us € Up be such that uq(x1)u1t1?’
= uq(z2)ugte?d’, where 0 = nqua(—1)0 € m(s)v. Then we have either x1 = x2,
aty) = a(ts) or xa — 21 = a(ty) = —a(tz).

For the proof we may take xo = 0, us = ta = 1 and drop the indices 1. The
element g = uy(1)n U (2)utnaus(—1) stabilizes ©. There are two possibilities:
g€ TUp or g € n,TUp. If g € TUp, we must have = 0, a(t) = 1, and it follows
also that t € T),. Assume now that g € n,TUp. Then x # 0 and

g = tUa(l — 27 ned(2)ue(—2 )0y ung.s(t)uq(—1).
The condition g € n,TUp gives z = 1, a(t) = —1.

We now finish the proof of 4.2.4. If t € T),(,),, there are x € k and u € Up
such that wu,(z)utd’ = ¢/, with ©' as in Lemma 4.2.5. By that lemma and its
proof we have then a(t) = 1 and ¢ € T, or a(t) = —1. Assertion (iii) of 4.2.4 is
now proved. To complete the proof of (ii), choose i € k such that i> = —1 and
observe that &(i)ny € Ker (a)UpP,;. Conjugation by nyuqe(—1) gives uq(1)a(i) €
Ker (a)Up Py Hence there is t € Ty (s), With a(t) = —1.

Finally, we have &(—1) € Ty, (50 (by (i) and (iii)). Together with (ii) this gives
the second assertion of (iv).

Remark. Tt has been shown by Knop [K] that there is an action of the Weyl group
on V such that the simple reflections act as follows. In case II the two B-orbits are
interchanged, in case III the two small orbits are interchanged, all other orbits are
fixed. If this action is denoted by (w,v) — w-v, 4.2.1-4.2.4 show that s(T,) = Ts.,,
hence w(Ty) = Ty (we W, veV).

4.2.6. Let v be of type Illa for s. Consider the natural homomorphism 7'/ T, (s), —
T/T,. Its kernel is T, /T, (s), and from 4.2.3 we see that there are bijective ho-

momorphisms T, /Ty,(sys — T/ Ker (o) = Gy, So Lemma 2.1.5 gives an exact
sequence

0 — X(T/T) — X(T/Tm(sw) — X(Gp) — 0.
If v is of type IVa for s, we find in the same way, using 4.2.4(i), an exact sequence
0 — X(T/T,) — X(T/T, N Ker (a)) — X(Gp,) — 0.

Moreover, in this case we have a homomorphism )?(T/Tm(s)v) — X (T/T,NKer(a)),
which is surjective and has a kernel of two elements. This comes from the homo-
morphism T/ T, (5 N Ker (o) — T/ Ty (), using 4.2.4(ii) and (iii).
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4.2.7. Tt is convenient to formulate the above results also starting with an orbit of
type IIIb or IVb. We take these cases together. So let v be of type IIIb or IVDb for
s and let v/ C Pv, v' # v. We assume that the characteristic of k is not 2. Then

T, N Ker (a) =T, N Ker (o) , T =T, Ker («),
a(T,) = {£1} in case IV, T, C Ker (@) in case III.
In case IV we have Im (&) C T)y.

In the following diagram the row is exact. The map a is defined such that the
triangle is commutative.

X(T/T,)

|

0 —— X(T/Ty) — X(T/T, N Ker (o)) — X(Gp,) —— 0

The homomorphism X (T/T,) — X (T/T, N Ker () is surjective and has a kernel
of order two in case IV, it is the identity in case III.

An easy computation shows that a(£) — a(s€) = (€, ).

Notice that s induces an automorphism of X (T/Ty,), since s(T,) = T,. The
coroot & : X(T') — Z is extended to a map )?(T) — Zpy/Z, which explains the
notation (g€, &) (¢, as in 2.2.5).

If Im (&) C Ty, we have (€, &) = 2a().

In case III the map a corresponding to the other small orbit in Pv is £ — —a(s§),
so the sum of the two is (&, ). We shall denote these two maps X(T/T,) —
X(G,,) by ay and ayr (when s and v are fixed).

Remark. If Y is symmetric, one has Im (&) C T+ in both cases IIT and IV (see 6.7).

4.3. The product £3 . e¢ ..
431 Forse S,veVand €€ )?(T/Tv), the product €3 . ¢ is given in the
following table according to the type of v for s. In the case of an orbit of type IV
we assume that the characteristic of k is different from 2. It is assumed that all
B-orbits contain points over F, and that F¢ = £. The notation of the orbits is as
in 4.1.4, notations for elements of X’(T/Tv/) etc. are explained below. The proofs
will be given in 4.3.3-4.3.11.
1. L]Eg)v

IIa. 635)7-,1(3)1,
Ib. (¢ = Deg, + eoer 1 (008, @) =0,

qese,vr if (pu€, ) # 0.
II1a. Esgv T Es&,m(s)v
IIb. (g —2)ecy + (g = (€ + o) if au (§) = av (§) =0,

—&¢w if <¢v€7d> =0, av’(&) 7& 0,

—€seo (¢ — Dese,r if aw (§) #0, apr(§) =0,

g+ (0~ Dewewr i a(€) = 0, av(€) £0,

_jv(g)ssé,v if @, (5) 7é 0, ayr (5) 7é 0, <¢v§a 64> 7é 0.
IVa. ¢ v + €¢) m(s)o + Ecam(s)v
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IVb. (¢ —1)ee.o —eerv + (¢ — )eg 0 if a(§) = 0,

e if a(€) £ 0, 2a(€) = 0,

~Tu(©)eser if 2a(€) # 0.
If ¢ € X(T/T,), then s¢ € X(T/s(T,)). In case Illa we have s¢ € X(T/T.) C
X(T/Tyn(s)0) (see 4.2.6). If v is of type IIIb and a,(€) = 0, then & lies in the
subgroup X(T/Ty) of X(T/T,) and s¢ in the subgroup X(T/Ty:) of X (T/T,)
(see 4.2.7). In case IVa, & and & are the two elements of )A((T/Tm(s ») which are
mapped onto the image of £ in )A((T/T N Ker () (see 4.2.6). In case IVb, ¢’ is
the element # ¢ of )/(:(T/T ) which has the same image as £ in X(T/T N Ker («)).
When a(¢) = 0, this image can be considered as an element & of X (T/Ty) (see
4.2.7).

T})le definition of 7, () in the cases IIIb and IVb is as follows. Since we assume
that T is defined and split over F, and that F¢ = &, ie. (¢ —1)§ = 0, we have
also (¢ — 1)ay (§) = (¢ — )ay(§) = 0, in case IIb. Therefore a,/ () and a,(§)
determine two characters x1, x2 : Fj — Qj (see [MS, 2.3.1]; in our particular case,
if aw(§) = ;%5 +Z, then x1 = ¢ om, ¢ as in 2.1.1). Now J,(¢) is the class
in C (cf. 3.1.2) of the Jacobi sum J(x ') defined in 2.1.7 for y with components
Xo = X1 X2 s X1 X2

Jx == > xi@xa(-1-2).
z€Fy z#-1

If v is of type IVb, the definition is the same, just take x; = x2 equal to the
character of F; determined by a(§).

4.3.2. The product in K(Cg) is described by the following formulas, which can be
derived from 4.3.1, IAIa and IIb, or proved directly. The notation is as in 3.1.3. Let
seS,weW, e X(T).

Ewg,s€¢w =  E¢sw if sw > w,
= (¢—1)egw+ geesw if sw < w and (w, &) =0,
= Q¢ suw if sw < w and (w¢, &) # 0,

4.3.3. Let s, v and ¢ be as in 4.3.1. The local system L5 . B Le, on BsB X v

is the pull-back of a local system £ on BsB%v and we have to compute M!E, where
u is the map BsB¥v — Y induced by the action of G on Y. The image of yu is
m(s)v if v is of type Ila for s, it is v’ Um(s)v if v is of type Illa and it is Pv in all
other cases. This can be read off from 4.1.4. We shall now treat the different cases.
Elements of GXY are denoted by g *y and ¢ is a special element of v (see 4.1.4).

4.3.4. Assume v is of type Ila for s. Then p is an isomorphism from BsB%v onto
m(s)v, because P, = By (4.2.2). If p € Unyat1U and y € U0 with t1, to € T,
then py € Us(tita)na,v, because U = UpU, (4.2.2). Since n,v € m(s)v, it follows
immediately from the definitions that ,u!Z = Ls¢,m(s)» and so €3,¢,5560 = Esgm(s)v-

4.3.5. Assume v of type Illa. Now g is an isomorphism from BsBXv onto its
image v' Um(s)v, since P, = By. If p = bnaby € BngB and y = bav € v, then
py € V' if bibe € TUp, py € m(s)v if byby & TUp.



HECKE ALGEBRA REPRESENTATIONS RELATED TO SPHERICAL VARIETIES 51

We shall make use of the following observation. The identity &(7)nauq(—1)&(7)
= naua(—772) implies, since Im (&) C Ker(a)UpP;, that naus(—772)0 €
Uptoc ()" with 0 = naue(—1)0 € m(s)v, if &(r) € toTy, to € Ker ().

The local system £$v£)s X L¢ , is the inverse image of L¢ under the map f :
BsBxv — T/T,, where Unat1U xUta0 — t1t2T,. Let (BsBxw)', resp. (BsBxv)”,
denote the subset of BsB x v which is mapped onto v’, resp. v" = m(s)v, by the
product map. The restrictions f/ and f” of f to these subsets factorize as follows:

’ Tyt

' (BsBxv) —v =% T/Ty > T/T,,

11 Tt

f":(BsB xv)" =" = T/Ty > T/T,.
Indeed, if p = ungbr, y = bov and bibe € Upus(x)t with w € U, by, by € B,
t € T, then we have py € Un,t0o = Us(t)0' if z = 0 and, applying the observation
above, we see that py € Us(t)naua(a(t)™tz)o = Us(t)toa(r)d” if x # 0 and
2 = —a(t)z™t, a(r) € toTy, to € Ker (o). Notice that s(toi(r)) = toc(r) ™! € T,
It follows now immediately that M!E|v/ = Lg¢ v and N!Z|m(s)v = Lg¢ m(s)v- This
proves 4.3.1 in case IIIa.

4.3.6. Assume v of type IVa. The image of p is Pv = v Um(s)v. If p =bn,b; €
BnoB and y = bav € v, then py € v if biby € TUp, py € m(s)v if bibs & TUp.
Since Im (&) C T, (4.2.4), we have in this case nous(—772)0 € Upd(r)d” with
0" = ngua(—1)0 € m(s)v (cf. 4.3.5). Consider, as in 4.3.5, the map f: BsB xv —
T/T,. Let (BsB x v)', resp. (BsB x v)"”, denote the subset of BsB x V which
is mapped onto v, resp. m(s)v, by the product map. The restriction f’ of f to
(BsB x v)' factorizes in

f'(BsB xv) — v 8" T/T,,

as is easily checked. Since (BsB%v)' — v is an isomorphism, it follows that L, =
Le¢ . The restriction of L to m(s)v can be determined from the following diagram.

(BsB x v)"" —— (BsB%v)" —2 T/T, N Ker (o) —— T/ T,

| |

m(s)v T T/ T(s)o

The first row is a factorization of the restriction of f to (BsB x v)”. It is defined as
follows. Let p = ungby € UnaB, y = ba¥ € v, bibs € Upuy(x)t with & # 0. Then
py € Us(t)a(r)d", if 7> = —a(t)z~!. The morphism p is defined by p(unqby*bat) =
s(t)a(r)(T, N Ker ) and the other maps are the obvious ones. The vertical arrows
are 2-fold Galois coverings (see 4.2.4), the square is Cartesian. We see from the
diagram that ugE|m(S)v = Le¢; m(s)o D Ly m(s)v, Where &1, & € )A((T/Tm(s)v) are as
explained in 4.3.1. This completes the proof of 4.3.1 in case IVa.

4.3.7. In the cases where v is open in Pv we use the isomorphisms
BsBv = {(pB,y) € BsB/B x Pv | p~'y € v}
>~ {(x,y) € k x Pv|n ua(—2)y € v}.

The first isomorphism is p * y < (pB,py), for the second one, write p = uq(T)nq.
The morphism u : BsBXv — Y corresponds to the projection (z,y) — y. Recall
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that the image of p is Pv. Now p~1(v) 2 {(z,y) € k x v | nj ua(—2)y € v} and
p () 2 {(z,y) € k x v | nj us(—z)y € v} in the cases IIb, I1Ib, IVb.

From 4.1.4 we find the following necessary and sufficient conditions on (z,y) in
order that n;tus(—z)y € v.

If v is of type IIb and y € uo (2" ) UpTV : = # 2.

If v is of type IIIb or IVb and y € us(z')Uptd : x # 2’ and x — 2’ # a(t).

If v is of type IIb and y € v": no condition.

If v is of type IIIb or IVb and y € uy (2" ) UpTV' : = # 2.

In each of these cases we can write nlu,(—2)y = bo with b € B and the local
system £ corresponds to the inverse image of £¢ under the map (,y) — w7 (b)T, €
T/T,. We shall now consider the different cases separately.

4.3.8. Assume v is of type I. Since Pv = v, 4.3.7 gives an isomorphism BsB%v =
kxv Letz € k,y=tud € v (t € T,u € U). Then n; us(—2x)y € s(t)ny'Uv C
Ups(t)v, since the group generated by U, and U_,, is contained in UpP; (4.2.1).
We have also s(t) € tT,, since Im (&) C T,. So the image of (z,y) in T/T, is tT,
and juL = (pra)(Q R Le ) = Leo[~2)(—1). Hence &5 . ce0 = gee0-

4.3.9. Assume v of type IIb. We apply 4.3.7. Let x € k and y € uq(z')Upto
with  # 2/. With 2z = = — 2’ we have n  uy(—2)y € Upn; un(—2)to =
Uptua(z7Ha(—2"Yu_o(—2"YHto € Uda(—271)td, since U_, C UpP; by Lemma
4.1.5. So the image of (z,y) in T/T, is &(—2"1)tT,. Since B, C BN naBn! =
TUp, the map (2/,y') — uq(z')y’ gives an isomorphism k x TUpd = V. Take
z = x — 2’ as a coordinate in the place of x. Then we see that

WL |, (pro)i(L_ie.ay B Le v),

where pry is the projection of k* x v on v. If (£,@) = 0, we have H! (L) |v= Le.
and H2 (L) |v= Len(—1). If (£,@) # 0, then L |,= 0 by 2.1.6. This gives the
contribution (¢ — 1)e¢ ., to €5,¢,s5¢.0 1IN case (€,a) = 0. Notice that we may neglect
roots of unity as factors in Frobenius eigenvalues.

Next, let x € k and y € tU%', where o' = nyo. Then n; lu,(—x)y € Ups(t)v, the
image of (z,y) in T/T, is s(t)T, and L |y= (pro)(Q R Lae.) = Lo¢o[—2](—1).
This gives the contribution gese, to €5 ¢ ¢

4.3.10. Assume v of type IIIb. We apply again 4.3.7. Let x € k and y €
Uptg(2')to with o # 2’ and z — 2’ # a(t). Then n;  uq(—2)y € Ups(t)ng ua(2)0,
where 2 = a(t)~}(2' — 2), so that z # 0,—1. Now ¥ = u,(1)n; 0 is a special
element of the orbit v/, which is of type Illa (see 4.1.4). We have n_lu,(2)0 =
ng e (2)natia(—1)0" = u_o(—2)ua(=1)0" € Ud(z7 ) napua(—271 — 1)0’. By the
observation made in the beginning of 4.3.5 we have nouq(—2z=1—1)9" € Uptoc ()0,
if 72 = 2(z + )7L a(r) € toTy, to € Ker(a). So finally n; us(—x)y €
Us(t)a(z=Ytoa(r)d and the image of (z,y) in T/T, is

s(t)a(z"Dtoa(T)Ts,.
As in case IIb the map (2',y’) — uqn(2z')y’ gives an isomorphism k x TUp®
S v. In y € Upu,(2')to, the element ¢ is determined modulo T, so a(t) is deter-

mined by y, since a(T,) = 1 (4.2.7). Tt follows that we may take 2 = a(t) ™" (¢' — )
as a coordinate in the place of x. Let k** denote k — {0, —1}. Then L gives a local
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system on k** x v and we have to compute the direct image with proper support
of that local system for the second projection.

Suppose £ € X(T/T,) is represented by x/n with x € X(T/T,), n an integer
prime to p. In 4.2.7 we defined a(¢) € X (Gp,) = Zpy/Z. 1t is computed as follows.
On T,» we have x = a(x)a with an integer a(x). Then a(x)/n is a representative
for a(¢). Let us compute x(s(t)&(z71)toc(7)). Since toa (7)™t € T, and a(ty) = 1,
we have x(to)7~ 0% = 772000 50 that y(a(z~Dtpd(r)) = 2~ @ 72068 =2a00 =
2= 008 (2(z + 1)~ H @ —al) = z=a() (2 4+ 1)20%) | as a(x) — a(sy) = (x, &).

It follows that M;Z lv2 (pra)i(J W Lse,») where J is the inverse image of £L_,(¢) X
Lg(s¢y under the map k™ — k* x k*, z +— (2, —1 — 2). If a(§) = a(sf) = 0, then
J is constant and H' (L) |v= Len ® Lew, H2 (L) |o= Leo(—1), the other M’
are zero (in this case s = £). If a(£) and a(s) are not both zero, we can apply
Proposition 4.16 of [SGA4-1/2, Sommes trigonométriques] (see 2.1.7). The Jacobi
sum in 2.1.7 equals £1 if exactly one of a(§), a(s§), <<;A5vf,02) is zero, but it has
complex absolute value ¢'/2 if all three are non-zero. So we find the contribution
of v toeg . e as stated in 4.3.1.

Next, let € k and y € Upuy(2/)td’ with @ # /. Then njlu(—z)y €
Upd(—1)s(t)naua(—a(t)™12)0', where 2z = x — 2’ # 0. In the same way as
before we find nous(—a(t)=t2)0" € Uptoa(r)d if 72 = a(t)z™1, a(r) € toTy,
to € Ker (o). So nylus(—z)y € Upa(—1)s(t)toc(r)v and the image of (z,y) in
T/T, is &(—1)s(t)toc(7)T,. Let x and n be as above and put x' = x — a(x)a €
X(T/Ty), & =x'/n+ X(T/Ty) € X(T/Ty). Then x(tod(r)) = 720x8=2a00 =
(a(t)z= 1) =e00 and sx(t) = x()a(t) =, so x(s(t)tod(r)) = X' (t)2*0). It
follows that L |y = (pra): (La(seyX Ler 1), where pry is the projection E*xv — o',
If a(s€) # 0, then L]y =0 by 2.1.6. If a(s¢) = 0, then s& = ¢ € X(T/T,) and
we have HY (L) |y= Lsg.or, H2(L) = Ls¢,w(—1). This gives the contribution
(¢ — Desew to €5 ¢ .0, When aypr(§) = —a(s§) = 0. The contribution of v” is
determined by interchanging v" and v”. Now 4.3.1 is proved in case IIIb.

4.3.11. Assume v of type IVb. Let © € k and y € Upuq(2')to with x # 2’
and z — 2’ # a(t). Put z = a(t)~!(z' — x). Proceeding as in 4.3.10 we find that
nglua(—z)y € Us(t)a(z71r)0, if 72 = 2(2+1) ! (the factor to € Ker («) is absent,
because in this case Im (&) C T,/). The image of (x,y) in T/T, is s(t)a(z=17)T,.
Suppose £ € X(T/Tv) is represented by x/n with x € X(T'/T,) and n € Z, prime
to p. In this case we have (x,&) = 2a(y), where a(x) € Z is determined by
the condition that x = a(x)a on Ty, so a(§) = a(x)/n + Z (see 4.2.7). Now
x(@(z717)) = (2717)200 = (2(2 + 1)) 720,

Let Z denote the variety {(z,y) € k x v | njlua(—z)y € v} (which is iso-
morphic to p~(v)) and Z = k** x k x TUp®, where k** = k — {0,—1}. By
Lemma 4.2.5 we have a 2-fold Galois covering v : Z — Z defined by ~(z,2/,y') =
(' — a(t)z,uq(z")y’) if y' € Uptv. Notice that a(t) is determined by y’, as a
special case of Lemma 4.2.5. The group of order two acts on A by (z,2',y') —
(—z—1,2" 4+ a(t), ua(—a(t))y), if y € Uptd. We have a Cartesian diagram

Z—)Z
A J
kxTUpb ——v

/

where (2,2, y') = (2, ¢/), a(z,y) = y and w(z’,¢) = ua(2)y’.
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Define f: Z — k* by fov(z,2',y") = z(z + 1). Tt follows from the computation
above that restriction of £ gives on Z the sheaf f*L_,¢) ® a*Lge . Hence M;Z =
a!(f*ﬁ—a(g) & a*£s§7v) = O‘!f*ﬁ—a(é) ® £s§7v'

Denote the complex ay f*L_,(¢) by K. We are going to compute its cohomology
sheaves. On Z we have YL _ae = TK Qq, where J is the inverse image of
L_qe)ML_q(¢) under the map k™ — k*xk*, 2z — (2, —1—2), and Q is the constant
sheaf on k x TUpv. Now n*K = ﬁ*a!f*ﬁ_a(g) = 6!7*f*£_a(5) = ﬂl(] X @l) =
mJ ® Qy, where p denotes projection on a point. So 7*H'K = H:(k**,J) ® Q;, a
constant sheaf, and H'K is a direct summand of m.m*H'K = H!(k**,J) ® 1. Q.
Let m,Q; = Q; ® &, where £ corresponds to the non-trivial character of the Galois
group of 7. The action of the Galois group of 7 on the stalks (H'K), = H:(k**, J)
of H'K comes from the action of the automorphism o : z — —1 — z of £** on
Hi(k**, T). B

Assume first that a(§) = 0. Then J = Q; and the non-zero cohomology spaces

are: ~ -
Hcl(k**7@l) = @12, o acts with eigenvalues 1 and — 1;
H2(k*, Q) = Qi(—1), o acts trivially.

We conclude that H'K = Q; @ € and H2K = Q;(—1). Hence H' (1 L)|, = H'K ®
Lew = Lew® Lery and H2(mL)|y = Leo(—1). Here € is as in 4.3.1 and s& = ¢,
because a(§) = 0.

This gives (q — 1)e¢,0 — €¢/,0 as a contribution to e5 . ¢

Consider now the case a(§) # 0. The only non-zero cohomology space is
H!(k**,J). This space is one-dimensional and the action of ¢ is multiplication
by —1, by Proposition 4.20 of [SGA4-1/2, Sommes trigonométriques| (see 2.1.7).

Now H'K = HX(k**,J) ® & and H (L) |,= H(k**,J) ® Ls¢r . The contri-
bution to e . e is —g¢ if 2a(§) = 0 and —J,(§)eser v if 2a(€) # 0 (notice that
s¢ = ¢ if a(§) # 0, 2a(£) = 0).

Finally, we have to determine the contribution of v'. Let z € k and y €
Upug(z' )t with x # «’. Put z = 2 — 2/. In the same way as in case IIIb
(4.3.10) we find that njlus(—2)y € Upa(—1)s(t)a(r)v, if 72 = a(t)z~!. The
image of (z,y) in T/T, is &(—1)s(t)&(7)T,. Let x and n be as above and put
X1 = x —a(x)a € X(T/Ty) and & = x1/n + X(T/Ty) € X(T/T,). Then
X(s(t)a(r)) = sx(B)7200) = xa (£) 27,

It follows that /L |,= (pro)i(L_aee) X Le, o), where pro is the projection £* x
v — v If a(§) # 0, then wl lo»=0 by 2.1.6. If a(§) = 0, then & is equal to the
clement & defined in 4.3.1 and H!(juL) |v= Le s H(L) |ow= Le ., (—1). So the
contribution of v" is (¢ — 1)eg ., if a(§) = 0.

The proof of 4.3.1 is now complete.

Remark. The relation between the algebra I(Cg) and the algebra K of [MS] is the
following. In K(Cg) we have the formulas 4.3.2. Comparison of these formulas
with [MS, 3.3.1] shows that the Z[g]-subalgebra of K(Cg) generated by the ele-
ments ¢, is isomorphic to a Z[t]-subalgebra of the algebra KC: to e¢ ., corresponds
tl(w)_lf(w)eg7w and to multiplication by ¢ corresponds multiplication by ¢2.

4.4. The restriction of A¢, to Pv.

441. Letv eV, s €S and P = P, as before. If v is of a type b for s, then
Pv C 7 and v is open in Pv. The restriction of A¢, (£ € X(T/T,)) to Pv is the
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perverse extension of L¢ ,, to Pv. It is given by one sheaf, in degree — dim v, which
we shall now compute. The result will be needed later.

4.4.2. Assume v is of type IIb for s. We have Pv = v Uv'. Let © be a spe-
cial element of v, then ¥ = n ¥ is one of v. The set U_,v' = U_,Bv' is an
open neighbourhood of v' in Pv. The map k x v/ — U_,v', (2,y) — u_q()y, is
an isomorphism, since P,y C B. If t € T, uw € U and = € k*, then u_q(x)tut’ =
o (™ a(—z Hngue (= H)tud’ € Ua(—z71)s(t)d, since U C UpPy, so that
7o (u_o(2)tud’) = &(—x~1)s(t)T, (notation of 2.2.5). Let & = x/n + X(T/T,) €
X(T/T,). From x(a(—z71)s(t)) = (—z)~ X sy (t) we see that Le, has trivial
local monodromy around v’ if (g/b\vﬁ ,&) = 0. In that case L¢, can be extended to a
smooth sheaf £ on Pv, whose restriction to v’ is Ls¢ s. Then A¢, |py= L[dimv].

If (&, ) # 0, A¢ .o | o is the extension by zero of L¢ ,[dimv].

4.4.3. We assume now that v is of type IIIb and use the notations of 4.3.10. We
have Pv = v U v Uv”. The set v Uv” is an open neighbourhood of v” in Pv. It
is isomorphic to k X k x TUp®' by the map (x1,z,y) — uq(z1)naue(z)y (€ v if
x # 0, € v if x = 0). By the computations in the last part of 4.3.10 we have
Ua(T1) N0t (2)y € Us(t)tod(r)0, if 2 # 0,y € Uptd', 72 = —a(t)z™1, a(r) € toTy,
to € Ker (), and x(s(t)tod(7)) = X' (t)(—x)**X¥) with x' = x — a(x)a € X(T/Ty).
So L¢,, has trivial local monodromy around v” if a(s§) = 0, i.e. a,v(§) = 0. In
that case L¢, can be extended to a smooth sheaf on v U v”, whose restriction on
v"” is L¢ . Interchanging v' and v” we have: L, extends to a smooth sheaf on
vUv’, whose restriction to v’ is L¢ ., if a, (§) = 0.

4.4.4. We assume that v is of type IVb and use the notations of 4.3.11. We have
Pv =vUv'. The action of P on Y induces a 2-fold Galois covering p : P%v" — P,
which is trivial over v’ (cf. 4.3.6). The open subset BsB%v' of P%v’ is isomorphic to
kx kx TUp?' by the map (z1,2,y) — tq(21)ne *us(x)y. By the computations in
4.3.11 we have uq (71)nata(z)y € Us(t)a(r)o, if z #£ 0, y € Upti/, 72 = —a(t)z 71,
and x(s(t)a(r)) = x1(t)(—x) =X with x; = x — a(x)a € X(T/Ty). Let v denote
the restriction of u to BsB¥uv'. We see that the inverse image of L¢ , on v~ (v)
has trivial local monodromy around y~!(v’) if a(§) = 0. In that case L¢, extends
to a smooth sheaf on Pv, whose restriction to v is Lg .
In the notations of 3.4.1 these results can be expressed as follows.

4.4.5. Lemma. Let v C Pv, u < v. Then cyuevi = 0 if ¢ # —dimv and
Cn,ué,v,—dimv = 0 except for the following cases, in which it equals 1:
(n,u) = (s&,v") if v is of type IIb and <$v§,d> =0,
(n,u) = (&§,0") (resp. (§,v")) if v is of type IIIb and a, (§)=0 (resp. a,(§)=0),
(n,u) = (&,0") if v is of type IVb and a(€) = 0.

The formula in 3.4.2 can now be used to derive the following result.

4.4.6. Lemma. Let v C Pv, u < v. Then by ucn = 0 except for the following
cases, in which it equals g~ 4™ V(1 — q):

(n.u) = (=s€,0') if v is of type IIb and (§u, @) = 0,

(n,u) = (=&,0') (resp. (=&,v")) if v is of type IIb and a, (£) = 0 (resp.
Ay’ (5) = 0)1

(n,u) = (=&,v") if v is of type IVb and a(§) = 0.
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This can, of course, also be proved directly by determining the Verdier dual on
Pv of jiLe¢, where j is the embedding v — Pwv. In particular we have

4.4.7. Lemma. In K(Cg) one has

Degs =q ™B e e+ (1—qlege) if(€a)=
=g P le g if (€. &) #

Herese S, € € )?(T), a is the simple root corresponding to s.

5. RECURRENCE RELATIONS FOR THE COEFFICIENTS b

51. Letv eV, ¢ e X(T/T,) and s € S. Let a denote the simple root corre-
sponding to s. By 3.3.2 we have

D(eg ¢ fe0) = "™ P(Dej ) (Degy)

and 4.4.7 gives a formula for Dg&f <> o that we have

D(eg ¢ ew) =(0e g+ (a7 =De 5. )Deco i (b€, a) =0,
= q_lg—&,&st&U if (&, &) # 0.

Now &3 . €. i a linear combination of ey, with w C Pv, which is given by
4.3.1. Thus we get relations between the coefficients b defined in 3.4.1. In general
these relations are not sufficient to determine the coefficients b, even when Y is
symmetric.

5.2.  We now give the relations more explicitly in the different cases. If v is of type
ITa for s, we have

D€s§7m(s)v = (q_15—$u§,5 + (q_l - 1)€_$u§,e)DEE7U if <($va d> = 07
=q'e_j,¢Deco if (Gu€,a) # 0.
If v is of type Illa, we have the same expression for Des¢ m(s)v + Des¢,vr-

Now assume v is of type IVa. The element ¢ € X (T/T,) defines two elements
€1,62 € X(T/Tp(sy), as in 4.3.1. Obviously dp(sjufi = Gm(sypéa = dué (see the
diagram in 4.2.7). Also (¢,&, &) = 0, since Im (&) C T

We apply the formula of 5.1 to & and m(s)v. By 4.3.1 we have €3¢ sE€1,m(s)v =
(@ = 1)eg, m(s)o — E¢a,m(s)o + (@ — 1)€¢,» and the result is

47e_5,6.sD%e m(sp0 T Deam(syo = (47" — 1) Dego.

The same is valid with & and &, interchanged. From these two identities we obtain
by adding them together and multiplying by q_1€—$v£,s + (g7t - 2)5—&5,@7 resp.
by subtracting, the following identities.

(1) Degym(syo + Degymisye = (07" g, o+ (@7 =2)e_5 ¢ ) Deco

(i) (47" _g,c0 = €_g.c.0)(DEes m(s)o — Degym(syo) = 0.

(To derive (i), use that in K(Cg) one has €2 ; = (¢ — 1)ey,s + qen.c if (1, @) =0 and
that in K(Cy) the relation (¢~! — 1)m = 0 implies m = 0.)

A consequence of (i) and (ii) is

(iii) (q_1€_$v573 - E—$U£,e)(D‘€§1>m(S)U + De¢ ) = 0.



HECKE ALGEBRA REPRESENTATIONS RELATED TO SPHERICAL VARIETIES 57

Next, let v be of type IIIb or IVb and assume (q@vf, a) =0, a(§) # 0. Then we
find immediately that

(5—&573 + s_av&e)Dag,v =0.
If v is of type IIIb and (¢,&, &) # 0, ay (§) # 0, ay(§) # 0, then
Jo(€) ' Desew + a7 e_g o Deew = 0.
If v is of type IVb and <<;A5v§, @) # 0, then
T (5)_1D€S§/1U + q_ls—:ﬂuf,sDaf)U =0,

where £ is as in 4.3.1.

These are all the relations which can be obtained by the method of 5.1. In fact,
when applied to an orbit of type IIb, the method gives the same result as when
applied to an orbit of type Ila, etc.

5.3. The equations (ii) and (iii) in 5.2 are of the type
(0" ecs —€ce) D anuenu =0,

where ¢ € X (T) such that (¢, &) = 0 and ay,u € Z[C] such that a,, # 0 = bun = C.
This system of equations can easily be solved, using 4.3.1. The solution is

(iv)

U = Gy m(s)u if u is of type Ila,

U = s’ = Qo (s)u if u is of type Illa,

A = Ay m(s)u T Qo m(s)u it U is of type IVa,

apu=0 if u is of type IIIb or IVb and a(n) # 0.
The system

(ec,s +ece) Z by uEnu =0,

which also occurs in 5.2, can be solved in the same way. Here again (¢, &) = 0 and
it is assumed that b, ., 7# 0 = ¢,n = (. The solution is

byu=0 if u is of type I,

bn u T qbsn m(s)u — =0 if u is of type II&,
(V) bn u T bsn w T+ (q - l)bn m(s)u — 0 if u is of type III&,

bn m(s)u = bngnn(s)uv bn,u = (1 - q)bm,m(s)u if u is of type IVa.

6. SYMMETRIC VARIETIES

6.1. We collect here some facts concerning symmetric varieties. References are
[S2] and [RS1].

Let G be a connected reductive group over an algebraically closed field & of
characteristic # 2. Let 6 be an involution of G, i.e. an automorphism of the
algebraic group G of order 2, and K the group of elements of G which are fixed
by 6. Then K is a reductive group, not necessarily connected. The homogeneous
space Y = G/K is called a symmetric variety for G.

Choose in G a #-stable maximal torus 7" and a #-stable Borel group B such that
B D T (such a pair T', B always exists). We denote the normalizer of T in G by N
and we put N/T = W. Then N is f-stable,  acts on W and on the root system
and permutes the simple roots.

Let V = {z € G | (0z)~! € N}. Then V is left T-invariant and right K-
invariant and the map T\V/K — B\G/K, TxK — BzK, is a bijection of finite
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sets. In particular Y is a spherical variety and the set V' of B-orbits in Y can be
identified with the set T\V/K.

6.2. Let v € V and choose a representative x € V for v. The image w of n =
x(0z)~! in W depends only on v. Put 1 = Int(n) o #. This is an involution of
G (because fn = n~!) and is determined by v up to conjugation by Int (¢), t € T.
The torus T is y-stable, ¥ acts on it as w o #. The isotropy group of v = zK is the
fixed point group G¥ of 4.

Now BNGY is the fixed point group of the restriction of v to BNnBn~!. Since
BnnBn~! =T(UNnUn™t), we have BNGY = TY(U NnUn~1)¥, in particular
T, = TY. It also follows that U N G¥ is connected, as fixed point group of a semi-
simple automorphism of the connected unipotent group U NnUn~!. So condition
(b) of 2.2.5 is satisfied.

6.3. Put 7g = g(1g)~ . Then 7G is closed in G and 7 : G — 7G is separable (this
is true for any semi-simple automorphism v of a connected linear algebraic group
G, see [S1, 4.4.4]). So 7 induces an isomorphism of Y = G/G¥ on 7G.

The morphism B — 7B induced by 7 is also separable. This is a slight extension
of [loc. cit.] and can be proved in the same way. It follows that B — v, b +— b -0 is
separable, i.e. condition (a) of 2.2.5 is satisfied.

6.4. Let U™ = [[,c0Ua and put S = (U~ NyYU™)? (notations as in 6.2). Then S
is a transverse slice in © with respect to v, as defined in 2.3.2, where G is replaced
by B. The properties (a), (b), (c¢) are easily checked. For (b), observe that the
morphism B x 8 — Y is the map B x (U~ NyU~)/(U™)¥ — G/GY, induced by
the product in G and it suffices to check that this map is submersive.

If v is not the open orbit, we have dimS > 0 and there is a contraction of &
such that (d) and (e) of 2.3.2 are satisfied. Choose a homomorphism A : G, — T
such that (A, @) < 0 for all positive roots « with ¢« > 0. The same S is also a slice
with contraction for the action of B = T x U, defined in 2.2.3.

6.5. Let v € V be fixed. Fix also a simple root a and denote by s the simple
reflection corresponding to . We use the notations of 6.2. The orbit type of v for
s is related to certain properties of 1) with respect to a. Namely, we have

v is of type I for s if and only if Yo = o and 9 is the identity on U, and U_,
(o is “compact imaginary” for v).

v is of type II for s if and only if Ya # £a (a is “complex” for v).

v is of type I1la or IVa for s if and only if o = a and (g) = g~ on Uy, (' is
“non-compact imaginary” for v).

v is of type IIIb or IVD for s if and only if o = —a (v is “real” for v).

If v is of type I, Ila, IIla or IVa, then sw > w (& w™ta > 0 < ha > 0). Ifv
is of type IIb, ITIb or IVb, then sw < w (& w™la < 0 < Pa < 0). The types 11
and IV are distinguished from each other by the number of B-orbits in Psv.

6.6. Symmetric varieties have the following important property. If v € V is not a
minimal B-orbit, then there exists a simple reflection s such that v is of a type b
for s.

For an arbitrary spherical variety this is not always true.
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6.7. We use the notations of 6.5. If v is of type IIla or IVa for s, then ¥& = &,
hence Im (&) C TV = T,.

Now let v be of type IIIb for s and Psv = v U v Uv"” as usual.

If ¢ € X(T/T,), then (¢p&,d) = 2a, (€), since Im (&) C Ty (cf. 4.2.7). Since

(Pu§, &) = ay (§) + avr(§), we have a, (§) = ay (§).

6.8. Now let T be a f-stable maximal torus in G and let B be any Borel group
containing 7. When V is defined as in 6.1 we still have a bijection T\V/K —
B\G/K. This follows from the result mentioned in 6.1. Choose g € G such that
9T and 9B are @-stable and consider the map x — gx of G onto itself.

For z € V we can define n = z(fz)~™! € N and ¢ = Int(n) 0§ as in 6.2. The
classification of orbits in 6.5 is also valid in this case. The condition for v to be of
type I, Ia, Illa or IVa is 1a > 0, which is now equivalent to #(w~=ta) > 0 or to
swwpy > wwg, where wy € W is the image of (Ag)~'g € N, g as above.

7. PROOF OF THE MAIN RESULT
7.1. Statement of result.

7.1.1. Assumptions are as in chapters 3 and 4. In particular k is the algebraic
closure of F,, where ¢ is large. All B-orbits in Y contain elements over [, and
F¢ = ¢ for all £ in consideration (they are finite in number). Moreover, we assume
now that Y is symmetric, so Y = G/GY, where 6 is an involution of G, and the
characteristic of k is odd.

7.1.2. Theorem. Letv € V, & € X(T/T,). Assume that (¢,€,&) = 0 for all roots
a. Then

(1) U™V, w0 i a polynomial in q with coefficients in Z, if u € V, n €
X(T/Ty,). o A

(i) cpugwi € NgzOFTdmv) if o ¢ V n € X(T/T.,), i € Z. Moreover, if
Cnwstwi 7 0, then i+ dimwv is even.

Assertion (ii) means that the eigenvalues of Frobenius on the stalks of H'Ag,,
are ¢2(dimv) times a root of unity and H'Ag, = 0 unless i + dim v is even.

We give an algorithm to compute the coefficients b and ¢, which will prove the
theorem. After 3.4.3 part (ii) is a consequence of part (i), since we have slices with
contraction by 6.4, the condition on weights in 3.4.3 is satisfied by Proposition
2.3.3. However, in general we cannot prove (i) without making use of the relation
between the coefficients b and c. In a few special cases assertion (i) does follow from
the recurrence relations for the coeflicients b alone. This is the case, for instance,
when the only orbit type occurring is type II. The space Y = G with the action of
G x G is an example.

7.2. First reduction.

7.2.1. We prove Theorem 7.1.2(i) by an inductive procedure. The assertion is
obvious for a minimal orbit v. Suppose that v is not minimal and that 7.1.2(i) is
known to hold for all orbits of lower dimension. If there is s € S such that v is of
type IIb for s, then b, 4.¢ » can be computed from

De¢y = (q_lg—qgu{,s + ((]_1 - 1)5_$u§)@)DEs£,v’
(see 5.2), using the formulas of 4.3.1, and they satisfy 7.1.2(i).
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Notice that ¢y (s€) = spu€ = ¢of and (¢ (s€),3) = 0 for all roots 5. Now
assume that we have v € V such that there is no s € S which is of type IIb for
v. We may assume that B and T are f-stable. Choose x € V representing v and
define w and 1 as in 6.2. We denote the set of simple roots by A. Let I be the set
of simple roots « such that s, is of type IIIb or IVb for v. Then va = —aifa €l
and Ya > 0 if « € A — I. This follows from 6.5, since the case IIb does not occur
here. Notice that I # () if v is not minimal, which we assume. Since Yo = w(fa)
and A = A, we have w(A) C —A U R™, where R* is the set of positive roots. It
is known that there is a subset J of A such that w is the longest element of the
subgroup W of W generated by J (cf. [B, ch.VI, §1, exercise 17]). It is easily seen
that in our case J = 01 = I.

Let P = P; be the parabolic subgroup of G containing B and corresponding
to the subset I of A. Then P is v-stable. Let 7 be defined as in 6.3. Since 7P
is closed in P, it is closed in G, hence in 7G. Moreover, 7 induces isomorphisms
P/P¥ = 7P and G/GY = 7G. Tt follows that Puv is closed in Y (see also [S2, 6.3]).
Now o is invariant under P = Py, since all a € I are of some type b for v. Hence
Pv C v and since Pv is closed we have Pv = 9.

7.2.2. Let L be the Levi subgroup of P containing 7. It is ¢-stable. The projection
of P = LUp on L is denoted by 7p,.

We define a symmetric variety Y %) for L by V(&) = Ly C Y, where 0 = 2K, x
as above. By an argument as before we see that Lo is closed in Y and isomorphic
to L/LY.

In L we have the Borel group n1(B) = B N L containing 7. Notice that T is
1-stable, but BN L is not.

There is a surjective morphism 7 : 7 — Y &) defined by w(pd) = 71 (p)o for
p € P. The fibers of 7 are isomorphic to Up/Uﬁ. The B-orbits contained in v are
in 1-1-correspondence with the (B N L)-orbits in Y ) by 4 — 7u. The image 7v
of v is the open orbit in Y (%),

It is easily checked that, for any B-orbit w in v, we have T, = Ty, and if
n € X(T/T.) = X(T/Twu), then L, = (|u)*Lyru. Denote by # the Z[C)-
linear map K(Cyw)) — K(Cy) such that #(epru) = epu if u € V, u < v and
ne X(T/T.).

7.2.3. Lemma. Let ¢ € X(T/T,). With d = dim(Up/U}) we have:

(i) Deg,o = g% (Dee o),
(i) [H'Ago] = A[HT9 Ag o).

Consider the Cartesian square
v
U

We have DjiLe,, = Dﬂ'*j,(L)Egﬂm = W*(Dj!(L),Cg,m)[Qd](d), since 7 is smooth with
relative dimension d. This proves (i). Also Ag, = 7 A¢ ry[d], which gives (ii).

j
—

™

—c

—~

—Y L)

j(L)
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7.2.4. By 7.2.3(i) assertion (i) of 7.1.2 for &, v will follow from the analogous
assertion for &, mv. This leads us to consider the particular case of a group G with
involution € with the property that there exists a -stable maximal torus 7" in G
such that 6o = —a for all roots of T. The open orbit only is of interest. The
condition on 6 is equivalent to the condition that ¢t lies in the center Z of G for
allt eT.

7.3. Further reduction.

7.3.1. We take up the notation of 7.1.1. In addition, let C' be a finite #-stable
subgroup of the center of G. Let G" = G/C. Then 6 induces an involution ¢’ of G'.
Put K =G’ K' = ("), Y =G/K and Y’ = G'/K’. Let f denote the natural
homomorphism G — G’ and 7 the morphism Y — Y’ induced by f.

Let K* ={g€ G| g~ '0g € C}. Then K* = f~1(K’) and g — g~ '0g defines a
homomorphism K* — C with kernel K. The finite abelian group K*/K acts on Y’
by 2K — zgK, if g € K*, and Y’ is the quotient of Y for this action.

Define 77 = f(T'), B’ = f(B), where T and B are as usual (they need not be
f-stable). Let V' be the set of B’-orbits in Y.

Obviously, the image under 7 of a B-orbit is a B’-orbit and the inverse image of
a B’-orbit is a union of B-orbits of the same dimension. We have v; < vy = vy <
g if v1, vo € V. If v € V, then 77 is closed in Y, hence 7m0 = 7v.

7.3.2. If v € V, then f(T,) C T., and f induces a surjective homomorphism
Yy : T/T, — T'/T., with finite kernel D,. So by 2.1.5 we have an exact sequence

0— X(D,) — X(T'/T.,) % X(T/T,) — o.
There is a bijection between the fiber of v — 7wv and D,,.

Indeed, we may identify v (resp. mv) with B/B; (resp. B'/BL.,), so that the
fiber is f~Y(B.;)/Bs. Now mp induces a surjective map 3 : f~Y(B.;)/Bs —
fYr.,)/T, = D, and 871(1) = U N f~1(U.,)/Us is connected, because U N
FYUL,) 2 U, is connected (6.2), and it is finite, so it is {1}.

Let & € X(T'/T.,) and € = ¢,&'. Then the restriction of T Ler rp t0 Vs Lg .
In case v — 70 is smooth, we have

Aﬁ;u = W*Aﬁ/,ﬂva
DjiLey =" (DjiLe o),

v
T
Let 7, denote the Z[C]-linear map K(Cy) — K(Cy) determined by @y (€ w) =
D w1 (s Euy w LU €V 0 € X(T'/T),). Summation is over all B-orbits u

as is seen from the diagram

—

T

—

3

J
ﬁ/
j
contained in 771 (u/) N ©. The following lemma is now immediate.
7.3.3. Lemma. Let v € V be such that © — 70 is smooth. Let € € X(T/T,) and
choose &' € X(T'/T.,) such that 1, = . Then

(i) Dego = o(Degr ro),
(ii) [HZAf,v] = ﬁv[HzAf’ﬂrv]'
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7.3.4. Now consider the case where G has a maximal torus 7" such that t0t € Z for
all t € T. Take for the group C' in 7.3.1 the center of the derived group of G. The
image v of the open orbit v in Y is the open orbit in Y’ and Lemma 7.3.3 can be
applied. Notice that (§,&, &) = (prp’,@). In G’ = G/C we have again t'0't' € Z'
for all t’ € T", where Z' is the center of G’. This leads us to consider the case where
G satisfies the extra condition that its derived group has trivial center. Then G is
the direct product of a finite number of simple groups and a torus. All factors are
f-stable, as a consequence of the condition on #. The sheaves on G we consider are
the exterior tensor products of the corresponding sheaves on the factors of G. So it
is enough to consider the factors separately. For the central torus there is nothing
to prove.

On each simple factor the involution is split, i.e. there exists a maximal torus on
which 6t = ¢~1.

7.3.5. The arguments of 7.2 and 7.3.4 show that Theorem 7.1.2 will be proved in
general when it has been proved for all simple groups with split involution.

7.4. The case of a simple group with split involution. In this section we
shall mainly be occupied with the case of a simple group with split involution, but
first we formulate a result in a more general setting.

7.4.1. Lemma. In the situation of 7.1.1 let v € V be such that there is no s € S of
type IIb for v. Let & € X(T/Tv) such that for every s = sq € S of type I1Ib or IVbh
for v we have (p,€,&) = 0, a(€) # 0 (notation of 4.2.7). Then Ag., = Le,[dimv]
and Dy Le¢ , = L_¢,[2 dimv](dimv).

The method of 7.2 reduces the proof to the case where all s € S are of type
IIIb or IVD for v (which implies that v is the open orbit). We prove that by ¢, =
Cnusgwi = 0 for all m, w, ¢ with w < v. This is done by descending induction on
dimwu. If dimu = dimwv — 1, there is s € S such that v = m(s)u, i.e. u C Psv, and
our assertion follows from Lemmas 4.4.5 and 4.4.6. Now assume dimu < dimv — 1.
Choose s of some type a for u. By 5.2 we have (¢_; . +¢ 5 . )Deco = 0 and
this implies by 5.3 that

bow = —Qbsn,m(s)u if s is of type Ila for u,
byu + bsnu = (1 = @by m(syu  if s is of type Illa for u,
by = (1= )by m(s)u if s is of type IVa for u,

where we wrote by, o, for by, ¢ . Using the induction hypothesis we find immediately
that b, ., = 0 in case Ila or IVa. In case Illa we have b, + bsy,ws = 0. Apply the
relation 3.4.2 between the coefficients b and ¢ to (n,u) and (sn,u’) and add the
two equalities thus obtained together. Then the right hand side is zero. This gives,
by the argument in 3.4.3, that c_y u;e0s + C_spuiews = 0. Since ¢y w60, and
C—sn,u'ie,0,i have coefficients > 0 in Z, both must be zero. Also ¢y u;—¢,,; = 0 and
finally by, u;e,0 = 0 by 3.4.2.

7.4.2. We assume from now on that G is simple and 6 split.

We fix a maximal torus 7 in G such that 6t = ¢! for all t € T. For any
Borel group B containing T' we have § B = B~ , the opposite Borel group, and BK
is open in G. The open B-orbit v is the image of BK in Y = G/K. We have
T,=T°=BNK={teT|t>=1}and X(T/T,) = 2X(T).
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Let R denote the root system of T and P(R) resp. Q(R) the weight lattice and
the root lattice. If G is adjoint, then X (T) = Q(R) by definition, and otherwise G
is of type A; and the characteristic p divides [ + 1 or G is of type Fg and p = 3.

All s € S are of type IVb for v. We know already that they are of type I1Ib
or IVb. If s, were of type IIIb for v, we would have o(T,) = 1 (see 4.2.7), so
a € 2X(T). This is impossible when G is adjoint and for A; and Eg there is no
simple root in 2P(R).

We have X(T/T,) = (Z)/2)©722X (T) = X(T),)/2X (T) and ¢, is the obvious
map X (T'),)/2X(T) — X(T'),)/X(T). The condition ($o€, &) = 0 for all a means
that & lies in the subgroup P(R) N X (T')(,)/2X (T) of X(T/T,).

We shall write P(R)’ for P(R)NX(T')(,). So we consider only & in P(R)'/2X(T).

For s € S we denote by a, the map X(T/T,) — X(G,,) which was called a in
42.7. If £ =w+2X(T) with w € P(R)" and s is the reflection corresponding to the
simple root a, then a,(§) = 1(w,d) +Z € $Z/Z. The other element ¢’ € X(T/T,)
with the same image as ¢ in X (T/T, N Ker (a)) is € + a, since 2a € X (T/T,) and
a & X(T/T,).

7.4.3. Let G be simple and 6 split. For the proof of Theorem 7.1.2(i) for G and 6 we
follow again the procedure of 7.2 and 7.3.4. Suppose the theorem has been proved
for all simple groups of lower dimension with a split involution. Then induction on
dimv (v € V) proves 7.1.2(i) for G and all orbits other than the open orbit. So,
Theorem 7.1.2 will be completely proved when we have proved:

7.4.4. Lemma. Assume G is simple and 0 split. If 7.1.2(1) holds for all orbits
other than the open orbit, then it holds for the open orbit also.

7.4.5. We use the notations of 7.4.2. In particular v is the open B-orbit in Y. We
assume that all by, ¢, », With v1 < v are known and satisfy 7.1.2(1).

Let s = s, € S and £ € P(R)'/2X(T). We know that s is of type IVb for v. If
as(€) = 0, we have by 5.2(i) applied to ¢ (defined as in 4.3.1) and v':

-1

Degy + Degyaw = (07 e g e o+ (a7 —2)e_g . Degy

S0 by, uie,0 + byweta,o s known for all n, u.
By 5.2(iii) we have

-1

(q € _does E_J)vé)e)(Dé‘g)v + Deg ) = 0.

The solution of this system of equations is given by 5.3(iv) with a, ., = by weo +

by, g, and ¢ = —qgvé. In particular we see that
by e v — bspm(s)use v is known if s is of type Ila for u,
by e = bym(s)uwe,v is known if s is of type IIla for u,

by e v = by m(s)use o — Onam(s)we,o 18 known if s is of type IVa for u.
If as(§) # 0, then by 5.2 we have (_j . . +e_j3 . )JDecv =0 and 5.3(v) gives:

by v + qsym(syuse,w = 0 if s is of type Ila for u,
by usew + bonuriew + (g — l)bmm(s)u;gﬂ, =0 if s is of type Illa for u,
by usew + (@ — )by, m(syuse,o =0 if s is of type IVa for u.
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7.4.6. Fix u € V, u < v, and n € X(T/T,). Assume that by urse,0 is known
and satisfies 7.1.2(i) for all £ and all (1, u1) with dimwu; > dimwu. From 7.4.5 we
conclude that

(1) bn,u:{,v + bn,u;é—i-oc’v is known if ag,_ (f) = 0;

(2) by,use,0 is known if there is s € S of type a for u such that as(§) = 0;

(3) by,use,o is known if there is s € S of type Ila or IVa for u such that a, (&) # 0.

There are always s € S of type a for u. If there is one of type Ila or IVa we are
done by (2) and (3).

We shall write b, for by y.¢0 if § = w+ 2X(T), w € P(R)’. We have a,,(§) =0
if and only if (w, &) is even (see 7.4.2).

Let s = s, be of type Ila for u. By (2), b, is known if (w,&) is even and,
by (1), by + buyps is known if 3 is a simple root such that (w,3) is even. Assume
there are simple roots ai,...,ax such that oy = « and (w,d&1), (w + a1, @2),
(w+ a1 +ag,ds), ..., (w+ a1 + ...+ ag_1,d) are all even. Then by the above
botor+..+o; 1 +0otar+.. 40; (1 <i<k—1)and byta,+..4+a,_, are known. Hence
b, is known.

If the Dynkin diagram contains a subset of the type

Y @ L iieeeeae PE——
a1 a9 A =
with simple laces, then ayq, ... , oy satisfy the above condition if (w, ¢v1) is even and

(w, ;) are odd for 2 <i < k.

This means that for G of type A;, D; or E; we find b,, except for the case where
(w, &) is odd for all simple . But then b,, = 0 by 7.4.1. The same argument works
for Gy since (a1, cde) and {(ag,d;) are odd, and also for type B, Cy, Fy if « is a
long root.

If G is of type By, it is adjoint and there is no orbit of type III for s, when «
is the short root ;. Indeed, suppose s, were of type IIIb for some orbit. With
as in 6.8 we would have o = —a and «(T%) = 1. Since a(T?) = 1, there exists
X € X(T) such that « = by — x, and then (x, &) = —1. This is impossible, since
for the adjoint group of type B; and a = oy we have (x, &) € 2Z for all x € X(T).

The two remaining cases, C; and Fy, are settled by the following lemma.

7.4.7. Lemma. Let G be of type C) or Fy (and 0 split) and let u be a B-orbit in
Y which is not the open orbit. At least one of the three holds:

(i) there is s € S of type Ila for u,
(i) there is s € S of type IVa for u,
(iii) there is s € S corresponding to a long root such that s is of type IIla for u.

In any of the three cases by ;¢ » can be computed. The proof of Lemma 7.4.7
will be given in 7.5. Then the proof of Lemma 7.4.4 is complete.

Remark. In 7.4.6 we have besides (1), (2), (3) also
(4) by uew + beyuiev 1 known if s is of type Illa for u,

and this expression is ¢~ 9™ times a polynomial in ¢ with coefficients in Z. It is
possible to deduce from this that qdim”bmu;gﬂ, is a polynomial in ¢ with coefficients
in Z. Take, as in the proof of 7.4.1, the sum of the equality 3.4.2 and the same
with (,u) replaced by (sn,u’). Then the right hand side is a polynomial in ¢ with
coefficients in Z (this follows from the assumptions on the coefficients b made in
7.4.5 and 7.4.6 and application of 3.4.2). By the argument of 3.4.3 we conclude
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that c_y w¢,v,i + C—syutie,0,s i @ polynomial in ¢ with coefficients in Z, hence is in
Zq3(+dimo) - Gince Conusg i ad C_gy e i have coefficients in N, both must be
in Ngz(+dimv) - Applying 3.4.2 once more we see that ¢4 b, ,.¢ , is a polynomial
in ¢ with coefficients in Z. This argument however does not yield a way to compute

bnﬂu&v'
7.5. Proof of Lemma 7.4.7.

7.5.1. In the notations of 7.4.2 assume that G is of type C; or F4. The involution
6 then is an inner automorphism Int (ng) with ng € N, n € Z and the image
of ng in W is wg = —1. We use the notations of Chapter 6. If x € V), then
o = 2(0x)~! = angz"'ng ' € N,s07G = C(ng)ny ', where C(ng) is the conjugacy
class of ng. The fixed point group K of 6 is the centralizer of ng in G. The map
x +— xnoz ! induces a bijection

V =T\V/K — T\N N C(no),

where the right hand side is the quotient of N N C(ng) for the action of T by
conjugation.

Let v € V and let o be a representative for v in V. Put n = xnoz~!. There is a
map ¢ : V — W defined by ¢(v) = w = image of n in W. We have w? = e, since
n3 € Z. The involution ¢ introduced in Chapter 6 is now ¢ = Int (nng') o =
Int (n).

If s € S corresponds to the simple root «, then »a = wa and we see from 6.5
that

v is of type I for s if wa = a, Int (n) =1 on Uy,

v is of type IIla/IVa for s if wa = «, Int (n) = —1 on Ui,,

v is of type IIIb/IVD for s if wa = —a,

v is of type II for s if wa # +a,

v is of type I or a < wa > 0.

If v is of type Ila or IVa, then ¢(m(s)v) = sp(v). If v is of type Ila, then
d(m(s)v) = sp(v)woswg. We have T, =TV = {t € T | w(t) = t}. If wa = —q,
then v is of type IIIb if and only if «(7T,) =1, ie. if @ € (w — 1) X (T).

7.5.2. Let u € V be such that there is no s € S of type Ila for u. With w = ¢(u)
we have for o € A either wa = a or wa < 0. Then there is a subset I of A such
that wwy = wy, the longest element of Wy, and that w; = —1 on I (recall that wg
is the longest element of ). If u is not the open orbit, then I # (.

7.5.3. We first consider the case where G is of type C;. We use the notations for
the roots as in [B]. So the long simple root is ;. Let u and I be as in 7.5.2. Since

wr = —1 on I, I may have an irreducible component of the form {a; | j > k} and
all other irreducible components consist of one element.
Assume «; is of type Illa for u, for some ¢ < [. Then wya; = —a; and oy €

(s;wr + 1)X(T). Let oy = (sjwy + 1)x. Then 2 = (o, &) = ((siwr + 1)x, &) =
2(x,&;). So we have x € X(T) such that (x,&;) = 1 and wyxy = —x. Then x
is a linear combination of the roots in I and «; cannot be isolated in I, so I has
an irreducible component consisting of more than one element (and «; lies in this
component). This proves Lemma 7.4.7 when all components of I have only one
element.

Assume now that I has an irreducible component {o; | i > k} with 0 < k <1—2.
Let J = {j <k, o; € I}. Then all indices in J are strictly smaller than k and
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the difference between two of them is at least 2. Let §; denote the long root 2¢;
(1<i<l).

We have wr = [[;c Sa, [1isy $8. and ¢(u) = wrwo = [[;c; sa; [1i<s s5,- The
element n = [[;c;na; [[;<4 np, of N is a representative for ¢(u). Let tn € N N
C(ng) correspond to u in the bijection T\N NC(ng) — V. The involution % is then
Int (tn). We know that «; is of type I, IIIa or IVa for u, since ¢(u)a; = oy, and we
want to show that it is of type IIla or IVa. Then Lemma 7.4.7 will be proved.

Obviously all factors in the definition of n centralize U,,, so Int (n) is the identity
on U,, and it suffices to prove that «;(t) = —1. This can be done by a computation
in Sp (21). The class C(ng) in G is the projection of the analogous class in Sp (21),
which is {z € Sp(2l),2% = —1}. Working with representatives in Sp (2) we have
twrwe(t) = tntn™! = (tn)*>n™2 = —n~2 and o(t) = €(t)? = e (twrwe(t)) =
—&1(n™2). Now n? € T and by the definition of n it lies in Sp (2k) embedded in an
obvious way in Sp(21). Hence &;(n?) = 1. Thus a(t) = —1.

7.5.4. We now consider G of type Fy. The notations concerning the root system
are again those of [B].

Let u and I be as in 7.5.2. So ¢(u) = wywg and wy = —1 on I.

Let « be one of the short roots as, a4 and suppose « is of type Illa for u. As
in the case C; there must be x € X(T') such that w;x = —x and (x,d) = 1.
Then (8, &) must be odd for at least one 8 € I. In combination with the fact that
wy = —1 on I, this implies that I = {9, as,as} or I = A. So Lemma 7.4.7 holds
when I is not one of these two sets.

Assume now I = {ag,as,as}. It is easily checked that wrwy = sg, where
B =201 + 3az + 4ag + 24 is the highest root. So ng is a representative for ¢(u).
Let tng be an element of N NC(ng) corresponding to u. Since =+ ag are not roots,
Ug and U_g centralize U,, and so does ng. When we show that as(t) = —1, it will
follow that 1) = Int (tng) is —1 on U,,, so that as is of type IIla or IVa for u and
Lemma 7.4.7 is proved in this case.

We may replace tng by a conjugate under T'. This means that ¢ may be multiplied
by an element of Im(3), so take t € Ker (3). Since tng € C(ng), we have (tng)? = 1,
that is t> = $(—1). Then a(t)? = (=1)'*? for any «, which gives a;(t)? = —1,
az(t)? = a3z(t)? = as(t)? = 1 and B(t) = —aa(t). Also B(t) = 1, hence az(t) = —1.

It remains to consider the case I = A. Now ¢(u) = e and ¢ = Int (¢) with some
t € C(ng), in particular t2 = 1.

Let to be the element of T with «;(tg) = —1 for 1 < i < 4. By [S3, 6.1], the
involution Int (¢) is split. Hence ng is conjugate to to and T'N C(ng) is the orbit
of ¢y under the Weyl group. Using the description of the Weyl group of F; in [B,
p. 213], it is easy to check that for any of the twelve elements ¢ of W - ¢y one has
a1(t) = =1 or as(t) = —1. So for each of the corresponding B-orbits there is a
long root a € A which is of type IIla or IVa for that orbit (it is in fact IIIa). This
finishes the proof of Lemma 7.4.7.

7.6. An example. Let G be a semi-simple group of type Cs and 6 a split involution
of G. Let T be a maximal torus in G such that 6t = ¢t=! for all t € T' and choose
B D T. We recall some facts already mentioned in 7.5.1. We have § = Int (no) with
no € N, n2 € Z and ng represents the longest element wy of W. The B-orbits in
G/GY are in 1-1-correspondence with the T-conjugacy classes in N N C(ng), where
C(no) is the G-conjugacy class of ng. If the B-orbit v corresponds to n € NNC(ng),
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then ¢(v) is the image of n in W. We have ¢(v)? = e. If G = Spy, then C(ng) =
{x € Spy | 2% = —1}.

Let the simple roots be ay (short) and as (long), let s; and sy be the simple
reflections and P; and P, the corresponding parabolic subgroups. It is easy to
determine the ordered set V of B-orbits in G/G? by the method of [RS1]. Doing
this one finds at the same time the Pj-orbits and the Py-orbits. We describe the
result.

We let 7 denote the natural morphism from the symmetric space for Spy onto
the symmetric space for PSpy (see 7.3.1).

In the case of Sps we denote the B-orbits by v1,vs9,... and number them in
such a way that ¢(v;) = e for i = 1,2,3,4, ¢(vs) = @d(v7) = s2, d(vg) = s1,
d(vg) = ¢(v10) = 515251, P(vg) = s25152, P(v11) = wWo.

In the case of PSp,4 the orbits are then mv, = wvy4, v = w3, V5 = TU7, TUG,
Vg = V109, V9, TTU11-

In the case of Spy the Pi-orbits are vy, vy, v2 Uvs Uvg, vs Uug (type II), vz Uwvig
(type II), vg Uwyy (type IV) and the Pe-orbits are v1 Uve Uws, vs Uvg Uwy, v Uvg
(type H)7 vg Uwvig Uy,

To obtain the correct picture we have to know that s is of type IIla or IVa for
any minimal B-orbit in the PSp, case. This follows from the proof in 7.5.3 (with
l=2and I =A).

In the pictures below a line joining e.g. 6 and 8 means that vg < vg.

e
| > >
N\

AN

9
PSpy ‘ >< ‘
6

1u4 203

Next, we determine the groups T,. Let v be an orbit with ¢(v) = e. Choose x € V
such that v = Bz K, then zngz~! € T (see 7.5.1). It follows that x~ 1Tz C K,
since K is the centralizer of ng. Hence T,, = T. The other T, are now easily
determined using the results in 4.2. We write « for ay, § for as. For Spy we have
T,, = T,, = Ker (8), T,y = Ker(a), Tyy =Ty, = Ker 2a+0), Ty, = Ker (a+ /),
To,, = Ker (8) N Ker 2a+B) ={t €T | t* =1}.
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And for PSps we have Ty, = Ker (3), Trys = Ker (2a), Trys = Ker (2a + ),
Trve = Ker (2(a + ), Trvy, = Ker(2a) N Ker (28) = {t € T | t? = 1}.

Now De¢ ,, and [H'Ag ,] can be computed for all £, v, i using 3.4.2, 5.2 and 5.3.
We give the results for G = PSpﬁl and the open orbit. Notation is as follows. We
have X (T'/Ty,,) = 0fori=1,2, X(T/Tms) = L) B/ LB, X(T/Try) = ZLpyor/ 27,
):((T/Tm,s) = Zp)(2a + B)/Z(2a + B), (T/T,wg) = Zp)(a + B)/2Z(a + B),
X(T/Tro,,) = Z(p)AO[ + Z(p)ﬂ/ZZOé + 27.6.

An element of X (T'/Tr.,) will be given by a representative za in Z,)a, etc.

The two maps X (T/Trv,,) — Zpy/Z defined by o and § (4.2.7) are given by
ao(za+yB) =z —y+7Z, aglza+yB) =y — sz + Z.

In the formulas below we abbreviate ¢ v, t0 €¢,i; JTrvy, t0 J11, Ag,roir 10 Ag 11

Deo,11 = q %e0,11 +47%(1 — g)(c0,8 +€0,9) + 47 5(1 — q)*(e0,5 + 0,6 + €0,1)

—q %1 —qeas+q (1 —q) 02
Deg11=q %511 +q7 (1 —q)(c0,8 +€atp,0) + 0 (1 — ) *(c0,5 + a6 +€0,1)

— 4 °(1 = q)e0,6 + a7 (1 — q)°0,2

Dean =q %can + 971 —q)e0,9 — ¢ °(1 = g)(c0,5 +20,6) — ¢ °(1 — q)%0,2
Deatpi1 =4 %easpir+a %1 = @eatpo —a °(1 — q)(c0,5 + €a6) — ¢ °(1 — q)%c0,2
Deqiipnn = q_6€a$%ﬂ711 +q7%01 - Deatlps g P(1— Deips
Deatys11 = Ceaysin — ¢ (1 — ) Ji1(—a —yBle_yps if2y €27
Degail =q e—pa,11 —q (1 — QT (—za)e(—z—1)ae iz €Z
Degaspil =4 %c_zatpi1 — ¢ °(1 — )T (—za — B)e—zas fz &7
Degatyp,11

= q765—za—yﬁ,ll + q76(1 - q)£—y(2a+ﬁ),8 ify — %w €Z y Q 7
=q % ga—ys 11 + 0 (1= Qe_yarp)0 fz—y€eZ g 1’+ o7
:q_Gafz'afyﬂ,ll ify— %LL‘ L, x—y &L

[(HCA011] = D cow
veV

[H 6Aﬁ,n] =¢€8,11 +€0,8 + €a+3,9 +€0,5 + €a,6 + €0,1 +€0,2

[H™%An,11] = €a,11 + 20,9, [H *Aa,11] = ge0,1

(M™% Aatp,11] = €atpi1 +eatpo, [ Aarp 1] = ¢e0a

(H™ Aailﬁll]_aailﬁll+5a+ 8,8

(M CAasiyp11] = catypits (H P Aayypii] = Tii(a+yBleyss if 2y ¢ 7
(H™%Aza,11] = €za,11, [H % Aga,11] = T11(2Q)e (14 1)06 i T & Z
(H™0Ap048.11] = €xatp11, [H 5 Avatp 1] = J11(za + Bezas if ¢ € Z

[

H™ Aza‘Fyﬁ 11}
= CratyB 11 T Ey2atp)s Ty — 32 E€Z Z
- e e y ¢ Z,
Cratyp il T Ey(atp),o  HT—ye z @€ 1+27.
= €za+typ,11 ify— 5 L, x—y &L

The [H'Ag¢ 1) which have not been written down are zero.

The condition (¢roy, &, @) = (Gror &, B) = 0 of 7.1.2 is satisfied by & = 0, a, 3,
a+ B, 16, a+ 1B.

For the £ for which a Jacobi sum appears in the coefficients we have a,(§) # 0,
ag(€) # 0, but the conclusion of Lemma 7.4.1 does not hold.
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[BBD]
(K]
[LV]
[MS]
[RS1]

[RS2]

[S1]

[S2]
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[SGA4-1/2]
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(V]

REFERENCES

N. Bourbaki, Groupes et algébres de Lie, Chap. 4,5,6. Hermann, Paris, 1968. MR
39:1590

A. A. Beilinson, J. Bernstein, P. Deligne, Faisceaur pervers. Astérisque, vol. 100,
Math. France Soc., 1982. MR 86g:32015

F. Knop, On the set of orbits for a Borel subgroup. Comment. Math. Helv. 70 (1995),
285-309. MR 96¢:14039

G. Lusztig and D. A. Vogan Jr., Singularities of closures of K-orbits on flag mani-
folds. Invent. Math. 71 (1983), 365-379. MR 84h:14060

J. G. M. Mars and T. A. Springer, Character sheaves. Orbites unipotentes et
représentations III, Astérisque 173-174 (1989), pp. 111-198. MR 91a:20044

R. W. Richardson and T. A. Springer, The Bruhat order on symmetric varieties.
Geom. Dedicata. 35 (1990), 389-436. MR 92e:20032

R. W. Richardson and T. A. Springer, Combinatorics and geometry of K-orbits
on the flag manifold. Linear algebraic groups and their representations (R. Elman,
M. Schacher, V. Varadarajan, eds.) Contemporary Math. 153, Amer. Math. Soc.,
Providence, 1993, pp. 109-142. MR 94m:14065

T. A. Springer, Linear algebraic groups. Birkhduser, Boston, 1981 (2nd printing 1983).
MR 84i:20002

T. A. Springer, Some results on algebraic groups with involutions. Adv. Stud. Pure
Math., vol. 6, North-Holland, 1985, pp. 525-543. MR 87j:20073

T. A. Springer, The classification of involutions of simple algebraic groups. J. Fac.
Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 655-670. MR 89b:20096

P. Deligne, Séminaire de Géométrie Algébrique du Bois-Marie SGA 4%. Lecture Notes
in Math. 569, Springer 1977. MR 57:3132

P. Deligne and N. Katz, Séminaire de Géométrie Algébrique du Bois-Marie SGA7 II.
Lecture Notes in Math. 340, Springer, 1973. MR 50:7135

D. A. Vogan Jr., Irreducible characters of semisimple Lie groups III, Proof of
Kazhdan-Lusztig conjecture in the integral case. Invent. Math. 71 (1983), 381-417.
MR 84h:22036

MATHEMATISCH INSTITUUT, UNIVERSITEIT UTRECHT, BUDAPESTLAAN 6, 3508 TA UTRECHT,
NETHERLANDS



