TOTAL POSITIVITY IN PARTIAL FLAG MANIFOLDS

G. LUSZTIG

Abstract

The projective space of \mathbf{R}^{n} has a natural open subset: the set of lines spanned by vectors with all coordinates >0. Such a subset can be defined more generally for any partial flag manifold of a split semisimple real algebraic group. The main result of the paper is that this subset can be defined by algebraic equalities and inequalities.

Let G be a simply connected semisimple algebraic group over \mathbf{C} with a fixed split R-structure. We will often identify a real algebraic variety with its set of R-rational points. This applies, in particular, to G and to the flag manifold \mathcal{B} of G.

In [L2] we have defined (in terms of an "épinglage" of G) the open subsemigroup $G_{>0}$ of totally positive elements of G and a polyhedral open subset $\mathcal{B}_{>0}$ of \mathcal{B} which in some sense plays the same role for $G_{>0}$ as \mathcal{B} for G. More generally, for any partial flag manifold \mathcal{P}^{J} of G one can define the totally positive part $\mathcal{P}_{>0}^{J}$. (See [L4] or 1.5.) For $J=\emptyset$ we have $\mathcal{P}^{J}=\mathcal{B}, \mathcal{P}_{>0}^{J}=\mathcal{B}_{>0}$.

In this paper we show that $\mathcal{P}_{>0}^{J}$ is a connected component of an explicitly defined open real algebraic submanifold of \mathcal{P}^{J}. We also show that, in the simply laced case, $\mathcal{P}_{>0}^{J}$ can be defined by algebraic inequalities involving canonical bases (see [L1]). These results confirm conjectures made in [L4]. In the special case where $J=\emptyset$, they reduce to known results from [L2].

1. Preliminaries

1.1. Let \mathfrak{g} be the Lie algebra of G over \mathbf{R}. The given épinglage of G can be specified by giving a set $\left(e_{i}, f_{i}\right)_{i \in I}$ of Chevalley generators of \mathfrak{g}. Then $h_{i}=\left[e_{i}, f_{i}\right]$ span the Lie algebra \mathfrak{t} of an R-split maximal torus T of G.

For any $i \in I, a \in \mathbf{R}$, we set

$$
x_{i}(a)=\exp \left(a e_{i}\right) \in G, \quad y_{i}(a)=\exp \left(a f_{i}\right) \in G
$$

Let Y (resp. X) be the free abelian group of all homomorphisms of algebraic groups $\mathbf{R}^{*} \rightarrow T$ (resp. $T \rightarrow \mathbf{R}^{*}$). We write the operations in these groups as addition. Let $\langle\rangle:, Y \times X \rightarrow \mathbf{Z}$ be the standard pairing. For $i \in I$, there is a unique element $\check{\alpha}_{i} \in Y$ whose tangent map takes $1 \in \mathbf{R}$ to h_{i}. Let $\alpha_{i} \in X$ be defined by $t x_{i}(a) t^{-1}=x_{i}\left(\alpha_{i}(t) a\right)$ for all $a \in \mathbf{R}, t \in T$.

Let X^{+}be the set of all $\lambda \in X$ such that $\left\langle\check{\alpha}_{i}, \lambda\right\rangle \in \mathbf{N}$ for all $i \in I$. For $i \in I$ let $\varpi_{i} \in X$ be defined by $\left\langle\check{\alpha}_{i}, \varpi_{i}\right\rangle=1$ and $\left\langle\check{\alpha}_{j}, \varpi_{i}\right\rangle=0$ for $j \neq i$. Then $\left\{\varpi_{i} \mid i \in I\right\}$ is

[^0]a Z-basis of X. For $\lambda \in X$ we set
$$
\operatorname{supp}(\lambda)=\left\{i \in I \mid\left\langle\check{\alpha}_{i}, \lambda\right\rangle \neq 0\right\}
$$

If H is a subgroup of G and $g \in G$, we write ${ }^{g} H$ instead of $g H g^{-1}$.
1.2. Let B^{+}be the Borel subgroup of G that contains T and $x_{i}(a)$ for all $i \in$ $I, a \in \mathbf{R}$. Let B^{-}be the Borel subgroup of G that contains T and $y_{i}(a)$ for all $i \in I, a \in \mathbf{R}$. Let U^{+}, U^{-}be the unipotent radicals of B^{+}, B^{-}. Let \mathfrak{n}^{-}be the Lie algebra of U^{-}.

For any subset J of I, let P_{J}^{+}be the subgroup of G generated by B^{+}and by $\left\{y_{j}(a) \mid j \in J, a \in \mathbf{R}\right\}$. Note that $P_{\emptyset}^{+}=B^{+}$. Let \mathcal{P}^{J} be the set of subgroups of G of the form ${ }^{g} P_{J}^{+}$for some $g \in G$. We regard \mathcal{P}^{J} naturally as a real algebraic manifold (a partial flag manifold). Note that $\mathcal{P}^{\emptyset}=\mathcal{B}$ (the full flag manifold). Let $\pi^{J}: \mathcal{B} \rightarrow \mathcal{P}^{J}$ be the canonical map, that is, $B \mapsto P$ where $P \in \mathcal{P}^{J}$ contains B.
1.3. Let \mathcal{N} be the normalizer of T (in G). For $i \in I$, we set

$$
\dot{s}_{i}=y_{i}(1) x_{i}(-1) y_{i}(1) \in \mathcal{N}
$$

Let $W=\mathcal{N} / T$ and let s_{i} be the image of \dot{s}_{i} in W. Then W together with $\left(s_{i}\right)_{i \in I}$ is a Coxeter group. Let $l: W \rightarrow \mathbf{N}$ be the standard length function. For $w \in$ W, let I_{w} be the set of all sequences $\left(i_{1}, i_{2}, \ldots, i_{p}\right)$ in I such that $p=l(w)$ and $s_{i_{1}} s_{i_{2}} \ldots s_{i_{p}}=w$. Let $\dot{w}=\dot{s}_{i_{1}} \dot{s}_{i_{2}} \ldots \dot{s}_{i_{p}} \in \mathcal{N}$ where $\left(i_{1}, i_{2}, \ldots, i_{p}\right) \in I_{w}$. This is independent of the choice of $\left(i_{1}, i_{2}, \ldots, i_{p}\right)$.

If J is a subset of I, we denote by W^{J} the subgroup of W generated by $\left\{s_{j} \mid j \in J\right\}$. Let w_{0}^{J} be the unique element of maximal length of W^{J}. We shall write w_{0} instead of w_{0}^{\emptyset}. For $w \in W$, let w^{*} be defined by $w^{*}=w_{0} w w_{0}^{-1}$. For $i \in I$, let $i^{*} \in I$ be defined by $s_{i^{*}}=\left(s_{i}\right)^{*}$. Let $J^{*}=\left\{j^{*} \mid j \in J\right\}$. We have $\left(w_{0}^{J}\right)^{*}=w_{0}^{J^{*}}$.

We have a W-action on X in which $s_{i} \in W$ acts by $\lambda \mapsto \lambda-\left\langle\check{\alpha}_{i}, \lambda\right\rangle \alpha_{i}$.
For $w \in W$ we write ${ }^{w} B^{+},{ }^{w} B^{-}$instead of ${ }^{\dot{w}} B^{+},{ }^{\dot{w}} B^{-}$.
For B, B^{\prime} in \mathcal{B} there is a unique $w \in W$ such that $\left(B, B^{\prime}\right)$ is in the G-orbit on $\mathcal{B} \times \mathcal{B}$ (diagonal action) that contains $\left(B^{+},{ }^{w} B^{+}\right)$(or equivalently $\left(B^{-}, w^{*} B^{-}\right)$). We then write $\operatorname{pos}\left(B, B^{\prime}\right)=w$ and we regard pos as a function $\mathcal{B} \times \mathcal{B} \rightarrow W$.
1.4. Let \mathfrak{U}^{-}be the enveloping algebra of \mathfrak{n}^{-}. We have $\mathfrak{U}^{-}=\bigoplus_{\nu} \mathfrak{U}_{\nu}^{-}$where ν runs over $\mathbf{N}[I]$; here the subspaces \mathfrak{U}_{ν}^{-}are defined by $1 \in \mathfrak{U}_{0}^{-}, e_{i} \in \mathfrak{U}_{i}^{-}, \mathfrak{U}_{\nu}^{-} \mathfrak{U}_{\nu^{\prime}}^{-} \subset \mathfrak{U}_{\nu+\nu^{\prime}}^{-}$. Let $\hat{\mathfrak{U}}^{-}=\prod_{\nu} \mathfrak{U}_{\nu}^{-}$. We regard $\hat{\mathfrak{U}}^{-}$naturally as a completion of \mathfrak{U}^{-}. The algebra structure on \mathfrak{U}^{-}extends naturally (by continuity) to an algebra structure on $\hat{\mathfrak{U}}^{-}$.

There is a unique imbedding $U^{-} \subset \hat{\mathfrak{U}}^{-}$compatible with multiplication such that $y_{i}(a) \in U^{-}$corresponds to $\sum_{n \geq 0}\left(a^{n} / n!\right) f_{i}^{n} \in \hat{\mathfrak{U}}^{-}$for any $i \in I, a \in \mathbf{R}$.

Let \mathbf{B} be the canonical basis of \mathfrak{U}^{-}(see [L1]). Since \mathbf{B} is compatible with the decomposition $\mathfrak{U}^{-}=\bigoplus_{\nu} \mathfrak{U}_{\nu}^{-}$, any element of $\hat{\mathfrak{U}}^{-}$can be written uniquely as an infinite sum
(a) $\sum_{b \in \mathbf{B}} c_{b} b$ where $c_{b} \in \mathbf{R}$.

In particular, any element $u \in U^{-}$can be written uniquely as an infinite sum (a).
For any $i \in I$, we define $r_{i}: \mathbf{B} \rightarrow \mathbf{N}$ by

$$
b \in \mathfrak{U}^{-} f_{i}^{r_{i}(b)}, b \notin \mathfrak{U}^{-} f_{i}^{r_{i}(b)+1} .
$$

1.5. Let $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I_{w_{0}}$. Let

$$
\begin{aligned}
U_{>0}^{+} & =\left\{x_{i_{1}}\left(a_{1}\right) x_{i_{2}}\left(a_{2}\right) \ldots x_{i_{n}}\left(a_{n}\right) \mid a_{1} \in \mathbf{R}_{>0}, \ldots, a_{n} \in \mathbf{R}_{>0}\right\} \\
U_{>0}^{-} & =\left\{y_{i_{1}}\left(a_{1}\right) y_{i_{2}}\left(a_{2}\right) \ldots y_{i_{n}}\left(a_{n}\right) \mid a_{1} \in \mathbf{R}_{>0}, \ldots, a_{n} \in \mathbf{R}_{>0}\right\}
\end{aligned}
$$

Then $U_{>0}^{ \pm}$is an open subsemigroup (without 1) of $U^{ \pm}$, independent of the choice of $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I_{w_{0}}$. (See [L2].) Let $U_{\geq 0}^{ \pm}$be the closure of $U_{>0}^{ \pm}$in $U^{ \pm}$. Let

$$
\mathcal{B}_{>0}=\left\{{ }^{u} B^{+} \mid u \in U_{>0}^{-}\right\}=\left\{{ }^{u^{\prime}} B^{-} \mid u^{\prime} \in U_{>0}^{+}\right\}
$$

(The second equality is proved in [L2, 8.7].) This is an open subset of \mathcal{B}. Let $\mathcal{B}_{\geq 0}$ be the closure of $\mathcal{B}_{>0}$ in \mathcal{B}. For $J \subset I$ we set

$$
\mathcal{P}_{>0}^{J}=\pi^{J}\left(\mathcal{B}_{>0}\right), \quad \mathcal{P}_{\geq 0}^{J}=\pi^{J}\left(\mathcal{B}_{\geq 0}\right) .
$$

Then $\mathcal{P}_{>0}^{J}$ is open in \mathcal{P}^{J} and $\mathcal{P}_{\geq 0}^{J}$ is the closure of $\mathcal{P}_{>0}^{J}$ in \mathcal{P}^{J}.
1.6. For $\lambda \in X^{+}$, let Λ_{λ} be a simple algebraic G-module of finite dimension with a non-zero vector η_{λ} such that $x_{i}(a) \eta_{\lambda}=\eta_{\lambda}$ for all $i \in I, a \in \mathbf{R}$ and $t \eta_{\lambda}=\lambda(t) \eta_{\lambda}$ for all $t \in T$. For $B \in \mathcal{B}$ let L_{B}^{λ} be the unique B-stable line in Λ_{λ}. If $J \subset I$ and $\operatorname{supp}(\lambda) \subset I-J$, then for any $P \in \mathcal{P}^{J}$ there is a unique P-stable line L_{P}^{λ} in Λ_{λ}; we have $L_{P}^{\lambda}=L_{B}^{\lambda}$ for any $B \in \mathcal{B}$ such that $B \subset P$.

It is known that, if $\operatorname{supp}(\lambda)=I-J$, then $P \mapsto L_{P}^{\lambda}$ is an imbedding of \mathcal{P}^{J} into the projective space of Λ_{λ}.

Let $f_{i}: \Lambda_{\lambda} \rightarrow \Lambda_{\lambda}$ be the linear map such that, for any $a \in \mathbf{R}, \exp \left(a f_{i}\right): \Lambda_{\lambda} \rightarrow \Lambda_{\lambda}$ is given by the action of $y_{i}(a)$ on the G-module Λ_{λ}. The maps $f_{i}: \Lambda_{\lambda} \rightarrow \Lambda_{\lambda}$ define a \mathfrak{U}^{-}-module structure on Λ_{λ}. It is clear that this extends naturally (by continuity) to a $\hat{\mathfrak{U}}^{-}$-module structure on Λ_{λ}.

If $u \in U^{-}$, the action of u on the G-module Λ_{λ} coincides with the action of u in the $\hat{\mathfrak{U}}^{-}$-module Λ_{λ}.
1.7. For $\lambda \in X^{+}$, we have $\Lambda_{\lambda}=\bigoplus_{\mu \in X} \Lambda_{\lambda}^{\mu}$ where

$$
\Lambda_{\lambda}^{\mu}=\left\{x \in \Lambda_{\lambda} \mid t x=\mu(t) x \quad \forall t \in X\right\}
$$

are the weight spaces.
Let $\mathbf{B}(\lambda)$ be the set of all $b \in \mathbf{B}$ such that $r_{i}(b) \leq\left\langle\check{\alpha}_{i}, \lambda\right\rangle$ for all $i \in I$. According to [L1, 14.4.11], the map $b \mapsto b \eta_{\lambda}$ is a bijection of $\mathbf{B}(\lambda)$ onto a basis ${ }_{\lambda} \mathbf{B}$ of Λ_{λ} (called the canonical basis of Λ_{λ}). For $b \in \mathbf{B}-\mathbf{B}(\lambda)$ we have $b \eta_{\lambda}=0$. The basis ${ }_{\lambda} \mathbf{B}$ is compatible with the weight spaces of Λ_{λ}. Note that $\eta_{\lambda} \in{ }_{\lambda} \mathbf{B}$.

The following statement is obtained by combining [L1, 28.1.4] and [L1, 39.1.2]. (Note that the action of \dot{w} on Λ_{λ} coincides with the action of the operator $T_{i, 1}^{\prime}$ of [L1, 5.2.1], with $v=1$ on Λ_{λ}.)
(a) For any $w \in W$, the vector $\dot{w}\left(\eta_{\lambda}\right)$ is the unique element of ${ }_{\lambda} \mathbf{B}$ which lies in $\Lambda_{\lambda}^{w(\lambda)}$.
We set $\xi_{\lambda}=\dot{w}_{0}\left(\eta_{\lambda}\right) \in{ }_{\lambda} \mathbf{B}$.

2. Parabolic subgroups of general type

2.1. We fix $J \subset I$. Let $P \in \mathcal{P}^{J}$. We can find a unique Borel subgroup $B^{\prime} \subset P$ such that $\operatorname{pos}\left(B^{-}, B^{\prime}\right)=z$ for some $z \in W$ with $l\left(z w_{0}^{J}\right)=l(z)+l\left(w_{0}^{J}\right)$. Similarly, we can find a unique Borel subgroup $B^{\prime \prime} \subset P$ such that $\operatorname{pos}\left(B^{+}, B^{\prime \prime}\right)=v$ for some $v \in W$ with $l\left(v w_{0}^{J}\right)=l(v)+l\left(w_{0}^{J}\right)$. We say that P is of general type if $v=z=w_{0} w_{0}^{J}$
and $\operatorname{pos}\left(B^{\prime}, B^{\prime \prime}\right)=w_{0}^{J}$. Let \mathcal{P}_{*}^{J} be the set of all $P \in \mathcal{P}^{J}$ that are of general type. This is an open real algebraic submanifold of \mathcal{P}^{J}.

The following result has been conjectured in [L4, Sec.8]; in the case where $J=\emptyset$ it reduces to [L2, 8.14], while in the case where J has a single element, it reduces to [L4, 8.7].
Proposition 2.2. $\mathcal{P}_{>0}^{J}$ is a connected component of \mathcal{P}_{*}^{J}.
The proof will be given in 2.6.
Lemma 2.3. Let $B \in \mathcal{B}_{>0}$. Then B is opposed to B^{-}and to B^{+}. (See [L2, 8.7, 8.8].) Hence we can define $B^{\prime}, B^{\prime \prime} \in \mathcal{B}$ by

$$
\operatorname{pos}\left(B^{-}, B^{\prime}\right)=w_{0} w_{0}^{J}, \operatorname{pos}\left(B^{\prime}, B\right)=w_{0}^{J}, \operatorname{pos}\left(B^{+}, B^{\prime \prime}\right)=w_{0} w_{0}^{J}, \operatorname{pos}\left(B^{\prime \prime}, B\right)=w_{0}^{J}
$$

The following hold:
(a) $\operatorname{pos}\left(B^{\prime}, B^{+}\right)=w_{0}$.
(b) $\operatorname{pos}\left(B^{\prime \prime}, B^{-}\right)=w_{0}$.
(c) $\operatorname{pos}\left(B^{\prime}, B^{\prime \prime}\right)=w_{0}^{J}$.
(d) $B^{\prime} \in \mathcal{B}_{\geq 0}$.
(e) $B^{\prime \prime} \in \mathcal{B}_{\geq 0}$.

We prove (a). Let $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I_{w_{0}}$ be such that $\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in I_{w_{0} w_{0}^{J *}}$ and $\left(i_{k+1}, i_{k+2}, \ldots, i_{n}\right) \in I_{w_{0}^{J}}$.

We have $B={ }^{u} B^{-}$where $u=x_{i_{1}}\left(a_{1}\right) x_{i_{2}}\left(a_{2}\right) \ldots x_{i_{n}}\left(a_{n}\right)$ with $a_{1}, a_{2}, \ldots, a_{n}$ in $\mathbf{R}_{>0}$. Let

$$
u^{\prime}=x_{i_{1}}\left(a_{1}\right) x_{i_{2}}\left(a_{2}\right) \ldots x_{i_{k}}\left(a_{k}\right), \quad u^{\prime \prime}=x_{i_{k+1}}\left(a_{k+1}\right) x_{i_{k+2}}\left(a_{k+2}\right) \ldots x_{i_{n}}\left(a_{n}\right)
$$

so that $u=u^{\prime} u^{\prime \prime}$. Using [L2, 2.7(d)], we have

$$
\begin{gathered}
\operatorname{pos}\left({ }^{u^{\prime}} B^{-}, B\right)=\operatorname{pos}\left(B^{-},{u^{\prime \prime}}^{-}\right)=\operatorname{pos}\left(B^{-}, w_{0}^{J^{*}} B^{-}\right)=w_{0}^{J} \\
\operatorname{pos}\left(B^{-},{ }^{u^{\prime}} B^{-}\right)=\operatorname{pos}\left(B^{-}, w_{0} w_{0}^{J^{*}} B^{-}\right)=w_{0} w_{0}^{J}
\end{gathered}
$$

Hence $B^{\prime}={ }^{u^{\prime}} B^{-}$. Since $u^{\prime} \in B^{+}$, we have

$$
\operatorname{pos}\left(B^{\prime}, B^{+}\right)=\operatorname{pos}\left({ }^{u^{\prime}} B^{-}, B^{+}\right)=\operatorname{pos}\left(B^{-}, B^{+}\right)=w_{0}
$$

This proves (a). The proof of (b) is entirely similar.
We prove (c). Since $\operatorname{pos}\left(B^{\prime}, B\right)=w_{0}^{J}, \operatorname{pos}\left(B^{\prime \prime}, B\right)=w_{0}^{J}$, we have $\operatorname{pos}\left(B^{\prime}, B^{\prime \prime}\right)=y$ for some $y \in W^{J}$. Since $\operatorname{pos}\left(B^{-}, B^{\prime}\right)=w_{0} w_{0}^{J}$ and $l\left(w_{0} w_{0}^{J}\right)+l(y)=l\left(w_{0} w_{0}^{J} y\right)$, we have $\operatorname{pos}\left(B^{-}, B^{\prime \prime}\right)=w_{0} w_{0}^{J} y$. Using (b), we have $w_{0} w_{0}^{J} y=w_{0}$ hence $y=w_{0}^{J}$. This proves (c).

We prove (e). Let $B_{1} \in \mathcal{B}$ be defined by $\operatorname{pos}\left(B^{+}, B_{1}\right)=w_{0} w_{0}^{J}, \operatorname{pos}\left(B_{1}, B^{-}\right)=$ w_{0}^{J}. Then $B_{1} \in \mathcal{B}_{\geq 0}$ by [L2, 8.13].

For u as above we have

$$
\operatorname{pos}\left(B^{+},{ }^{u} B_{1}\right)=\operatorname{pos}\left({ }^{u} B^{+},{ }^{u} B_{1}\right)=w_{0} w_{0}^{J}, \operatorname{pos}\left({ }^{u} B_{1}, B\right)=\operatorname{pos}\left({ }^{u} B_{1},{ }^{u} B^{-}\right)=w_{0}^{J}
$$

Hence $B^{\prime \prime}={ }^{u} B_{1}$. Since $u \in U_{>0}^{+}$and $B_{1} \in \mathcal{B}_{\geq 0}$, we have ${ }^{u} B_{1} \in \mathcal{B}_{\geq 0}$. (See [L2, 8.12].) This proves (e). The proof of (d) is entirely similar.

Lemma 2.4. Let $B^{\prime}, B^{\prime \prime} \in \mathcal{B}$ be such that $\operatorname{pos}\left(B^{-}, B^{\prime}\right)=w_{0} w_{0}^{J}, \operatorname{pos}\left(B^{\prime}, B^{\prime \prime}\right)=w_{0}^{J}$, $\operatorname{pos}\left(B^{+}, B^{\prime \prime}\right)=w_{0} w_{0}^{J}$. Let $P=\pi^{J}\left(B^{\prime}\right)=\pi^{J}\left(B^{\prime \prime}\right)$. Assume that there exists $B \in \mathcal{B}_{\geq 0}$ such that $B \subset P$. Then
(a) $B^{\prime} \in \mathcal{B}_{\geq 0}$.
(b) $B^{\prime \prime} \in \mathcal{B}_{\geq 0}$.

Assume first that $B \in \mathcal{B}_{>0}$. We have $\operatorname{pos}\left(B^{\prime}, B\right)=y$ for some $y \in W^{J}$. Since $\operatorname{pos}\left(B^{-}, B^{\prime}\right)=w_{0} w_{0}^{J}$ and $l\left(w_{0} w_{0}^{J}\right)+l(y)=l\left(w_{0} w_{0}^{J} y\right)$, we have $\operatorname{pos}\left(B^{-}, B\right)=$ $w_{0} w_{0}^{J} y$. Since $B \in \mathcal{B}_{>0}$, we have $\operatorname{pos}\left(B^{-}, B\right)=w_{0}$. Hence $w_{0} w_{0}^{J} y=w_{0}$ and $y=w_{0}^{J}$. Thus, B^{\prime} is as in Lemma 2.3. Similarly, $B^{\prime \prime}$ is as in Lemma 2.3. Thus the desired result follows from Lemma 2.3(d),(e).

We now consider the general case. Let \mathcal{X} be the open set of \mathcal{B} consisting of all B_{1} such that $\operatorname{pos}\left(B^{-}, B_{1}\right) \in w_{0} w_{0}^{J} W^{J}$. For each $B_{1} \in \mathcal{X}$ there is a unique $B_{1}^{\prime} \in \mathcal{B}$ such that $\operatorname{pos}\left(B^{-}, B_{1}^{\prime}\right)=w_{0} w_{0}^{J}, \operatorname{pos}\left(B_{1}^{\prime}, B_{1}\right) \in W^{J}$; moreover, the map $\pi: \mathcal{X} \rightarrow \mathcal{B}$ given by $\pi\left(B_{1}\right)=B_{1}^{\prime}$ is continuous.

Now let $B \in \mathcal{B}_{\geq 0}$ be such that $B \subset P$. We clearly have $B \in \mathcal{X}$ and $\pi(B)=B^{\prime}$. There exists a sequence $\left(B^{n}\right)_{n \geq 1}$ in $\mathcal{B}_{>0}$ such that $\lim _{n \rightarrow \infty} B^{n}=B$. Then for each n we have $B^{n} \in \mathcal{X}$ and by the first part of the argument, we have $\pi\left(B^{n}\right) \in \mathcal{B}_{\geq 0}$. Using the continuity of π and the fact that $\mathcal{B}_{\geq 0}$ is closed in \mathcal{B}, it follows that $\pi(B) \in \mathcal{B}_{\geq 0}$. Hence $B^{\prime} \in \mathcal{B}_{\geq 0}$. Similarly, $B^{\prime \prime} \in \overline{\mathcal{B}_{\geq 0}}$. The lemma is proved.
Lemma 2.5. Let $B^{\prime} \in \mathcal{B}_{\geq 0}$ be such that $\operatorname{pos}\left(B^{-}, B^{\prime}\right)=w_{0} w_{0}^{J}, \operatorname{pos}\left(B^{\prime}, B^{+}\right)=w_{0}$. Then there exists $B \in \mathcal{B}_{>0}$ such that $\operatorname{pos}\left(B^{\prime}, B\right)=w_{0}^{J}$.

There is a unique $u \in U^{+}$such that $B^{\prime}={ }^{u} B^{-}$. Since $B^{\prime} \in \mathcal{B}_{\geq 0}$, we must have $u \in U_{\geq 0}^{+}$, by an argument in the proof of [L2, 8.4]. By [L2, 2.8], there exists $w \in W$, $\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in I_{w}$ and $a_{1}, a_{2}, \ldots, a_{k}$ in $\mathbf{R}_{>0}$ such that

$$
u=x_{i_{1}}\left(a_{1}\right) x_{i_{2}}\left(a_{2}\right) \ldots x_{i_{k}}\left(a_{k}\right)
$$

By $[\mathrm{L} 2,2.7(\mathrm{~d})]$, we have $u \in B^{-} \dot{w} B^{-}$, hence $\operatorname{pos}\left(B^{-},{ }^{u} B^{-}\right)=\operatorname{pos}\left(B^{-},{ }^{w} B^{-}\right)=w^{*}$. Now using $\operatorname{pos}\left(B^{-},{ }^{u} B^{-}\right)=w_{0} w_{0}^{J}$, we see that $w^{*}=w_{0} w_{0}^{J}$.

Let $\left(i_{k+1}, i_{k+2}, \ldots, i_{n}\right) \in I_{w_{0}^{J *}}$ and let $\tilde{u}=x_{i_{k+1}}(1) x_{i_{k+2}}(1) \ldots x_{i_{n}}(1)$. Let $\tilde{B}=$ ${ }^{\tilde{u}} B^{-}$. Clearly, $\operatorname{pos}\left(B^{-}, \tilde{B}\right)=\operatorname{pos}\left(B^{-}, w_{0}^{J^{*}} B^{-}\right)=w_{0}^{J}$. Since $u \tilde{u} \in U_{>0}^{+}$, we have ${ }^{u \tilde{u}} B^{-} \in \mathcal{B}_{>0}$. Then $\operatorname{pos}\left(B^{\prime},{ }^{u \tilde{u}} B^{-}\right)=\operatorname{pos}\left({ }^{u} B^{-},{ }^{u \tilde{u}} B^{-}\right)=\operatorname{pos}\left(B^{-},{ }^{\widetilde{u}} B^{-}\right)=w_{0}^{J}$. The lemma is proved.
2.6. Proof of Proposition 2.2. The inclusion $\mathcal{P}_{>0}^{J} \subset \mathcal{P}_{*}^{J}$ follows from Lemma 2.3 .

Since $\mathcal{P}_{>0}^{J}$ is an open connected subset of \mathcal{P}_{*}^{J}, it remains to show that $\mathcal{P}_{>0}^{J}$ is a closed subset of \mathcal{P}_{*}^{J}. Now $\mathcal{P}_{\geq 0}^{J} \cap \mathcal{P}_{*}^{J}$ is certainly a closed subset of \mathcal{P}_{*}^{J}. Hence it is enough to show that $\mathcal{P}_{\geq 0}^{J} \cap \overline{\mathcal{P}}_{*}^{J} \subset \mathcal{P}_{>0}^{J}$. Let $P \in \mathcal{P}_{\geq 0}^{J} \cap \mathcal{P}_{*}^{J}$. We associate $B^{\prime}, B^{\prime \prime}$ to P as in 2.1. We can find $B \in \mathcal{B}_{\geq 0}$ such that $B \subset^{-} P$. The assumptions of Lemma 2.4 are satisfied. We deduce that $B^{\prime} \in \mathcal{B}_{\geq 0}$. Thus, the assumptions of Lemma 2.5 are satisfied. We deduce that there exists $B_{1} \in \mathcal{B}_{>0}$ such that $\operatorname{pos}\left(B^{\prime}, B_{1}\right)=w_{0}^{J}$. We have $B_{1} \subset P$; hence, $P \in \mathcal{P}_{>0}^{J}$. Proposition 2.2 is proved.

Note added 2/25/1998. K. Rietsch has informed me that the lemmas in this section could also be proved by arguments in Lemmas 3 and 4 of her paper $A n$ algebraic cell decomposition of the non-negative part of a flag variety, preprint, http://xxx.lanl.gov/abs/alg-geom/9709035 (1997).

3. Canonical bases and $\mathcal{P}_{>0}^{J}, \mathcal{P}_{\geq 0}^{J}$

3.1. In this section we assume that G is of simply laced type. This assumption allows us to use the positivity properties of the canonical bases. We fix $J \subset I$.

If $\lambda \in X^{+}$and $x \in \Lambda_{\lambda}$, we say that $x>0$ (resp. $x \geq 0$) if all coordinates of x with respect to ${ }_{\lambda} \mathbf{B}$ are >0 (resp. ≥ 0). If L is a line in Λ_{λ}, we say that $L>0$ (resp. $L \geq 0$) if for some $x \in L-\{0\}$ we have $x>0$ (resp. $x \geq 0$).

Proposition 3.2. Assume that $\lambda \in X^{+}$is such that $\operatorname{supp}(\lambda) \subset I-J$.
(a) If $P \in \mathcal{P}_{>0}^{J}$, then $L_{P}^{\lambda}>0$.
(b) If $P \in \mathcal{P}_{\geq 0}^{J}$, then $L_{P}^{\lambda} \geq 0$.

We prove (a). We argue as in the proof of [L2, 8.17]. We choose $B \subset P$ such that $B \in \mathcal{B}_{>0}$. We have $L_{P}^{\lambda}=L_{B}^{\lambda}$. Now $L_{P}^{\lambda}=L_{B}^{\lambda}>0$ by the first two lines in the proof of [L2, 8.17]. This proves (a).

We prove (b). If P is as in (b), then P is in the closure of $\mathcal{P}_{>0}^{J}$ in \mathcal{P}^{J}, hence the line L_{P}^{λ} is a limit of a sequence of lines $L_{P^{\prime}}^{\lambda}$ with $P^{\prime} \in \mathcal{P}_{>0}^{J}$ to which (a) is applicable so that $L_{P^{\prime}}^{\lambda} \geq 0$. Hence $L_{P}^{\lambda} \geq 0$. The proposition is proved.
3.3. Let $\zeta=\sum_{j \in J} \varpi_{j} \in X$. For $i \in I-J$ we set $N_{i}=\left\langle\check{\alpha}_{i}, w_{0}^{J}(\zeta)\right\rangle$. It is easy to see that $N_{i} \geq 0$. We have the following partial converse to 3.2.

Theorem 3.4. Assume that $\lambda \in X^{+}$is such that $\left\langle\check{\alpha}_{i}, \lambda\right\rangle \geq N_{i}+1$ for all $i \in I-J$ and $\left\langle\check{\alpha}_{j}, \lambda\right\rangle=0$ for all $j \in J$. (In particular, $\operatorname{supp}(\lambda)=I-J$.) Let $P \in \mathcal{P}^{J}$.
(a) We have $P \in \mathcal{P}_{>0}^{J}$ if and only if $L_{P}^{\lambda}>0$.
(b) We have $P \in \mathcal{P}_{\geq 0}^{J}$ if and only if $L_{P}^{\lambda} \geq 0$.

The proof will be given in 3.12 .
Lemma 3.5. We fix $i \in I$. For any $\nu=\sum_{i^{\prime} \in I} \nu_{i^{\prime}} i^{\prime}$ we set

$$
\phi(\nu)=\sum_{i^{\prime} \in I ;\left\langle\check{\alpha_{i}}, \alpha_{i^{\prime}}\right\rangle=-1} \nu_{i^{\prime}} \in \mathbf{N}
$$

If $k>\phi(\nu)$ and $x \in \mathfrak{U}_{\nu}^{-}$, we have $f_{i}^{k} x \in \mathfrak{U}^{-} f_{i}^{k-\phi(\nu)}$.
We argue by induction on $\sum_{i^{\prime} \in I} \nu_{i^{\prime}}$. If $\nu=0$, the result is trivial. Assume now that $\nu \neq 0$. Then we may assume that $x=f_{i^{\prime}} x^{\prime}$ for some $i^{\prime} \in I$ and some $x^{\prime} \in \mathfrak{U}_{\nu^{\prime}}$ where $\nu^{\prime}=\nu-i^{\prime} \in \mathbf{N}[I]$ and that the result is true for $\left(x^{\prime}, \nu^{\prime}\right)$ instead of (x, ν). If $\left\langle\check{\alpha}_{i}, \alpha_{i^{\prime}}\right\rangle \neq-1$, then $\phi(\nu)=\phi\left(\nu^{\prime}\right)$ and

$$
f_{i}^{k} x=f_{i}^{k} f_{i^{\prime}} x^{\prime}=f_{i^{\prime}} f_{i}^{k} x^{\prime} \in f_{i^{\prime}} \mathfrak{U}^{-} f_{i}^{k-\phi\left(\nu^{\prime}\right)} \subset \mathfrak{U}^{-} f_{i}^{k-\phi(\nu)} .
$$

If $\left\langle\check{\alpha}_{i}, \alpha_{i^{\prime}}\right\rangle=-1$, then $\phi(\nu)=\phi\left(\nu^{\prime}\right)+1$. Using Serre's relations we see that $f_{i}^{k} f_{i^{\prime}} \in \mathfrak{U}^{-} f_{i}^{k-1}$ provided that $k \geq 2$. If $k>\phi(\nu)$, then $k \geq 2$ and $k-1>\phi\left(\nu^{\prime}\right)$; hence, by the induction hypothesis we have

$$
f_{i}^{k} x=f_{i}^{k} f_{i^{\prime}} x^{\prime} \in \mathfrak{U}^{-} f_{i}^{k-1} x^{\prime} \in \mathfrak{U}^{-} f_{i}^{k-1-\phi\left(\nu^{\prime}\right)}=\mathfrak{U}^{-} f_{i}^{k-\phi(\nu)} .
$$

The lemma is proved.
Lemma 3.6. Let b^{J} be the unique element of \mathbf{B} such that $b^{J} \eta_{\zeta}=\left(w_{0}^{J}\right) \eta_{\zeta}$. For any $i \in I-J$ and any $k>N_{i}$ we have $f_{i}^{k} b^{J} \in \mathfrak{U}^{-} f_{i}$.

Let $\nu=\sum_{i^{\prime} \in I} \nu_{i^{\prime}} i^{\prime}$ be such that $b^{J} \in \mathfrak{U}_{\nu}^{-}$. We have $\eta_{\zeta} \in \Lambda_{\zeta}^{\zeta}$ and $\left(w_{0}^{J}\right) \eta_{\zeta} \in \Lambda_{\zeta}^{w_{0}^{J}(\zeta)}$. Hence $\zeta-\sum_{i^{\prime} \in I} \nu_{i^{\prime}} \alpha_{i^{\prime}}=w_{0}^{J}(\zeta)$. In particular,
(a) $\nu_{i^{\prime}}=0$ for $i^{\prime} \notin J$.

Since $\nu_{i}=0$, the number $\phi(\nu)$ in 3.5 is given by

$$
\phi(\nu)=-\left\langle\check{\alpha}_{i}, \sum_{i^{\prime} \in I} \nu_{i^{\prime}} \alpha_{i^{\prime}}\right\rangle
$$

The last expression is equal to $\left\langle\check{\alpha}_{i}, w_{0}^{J}(\zeta)-\zeta\right\rangle=\left\langle\check{\alpha}_{i}, w_{0}^{J}(\zeta)\right\rangle=N_{i}$. Thus, $\phi(\nu)=N_{i}$ and the desired result follows from Lemma 3.5.

Lemma 3.7. If $j \in J$, then $f_{j} b^{J}$ is a linear combination of elements $b^{\prime} \in \mathbf{B}$ with $r_{j^{\prime}}\left(b^{\prime}\right) \geq 2$ for some $j^{\prime} \in J$.
$f_{j}\left(w_{0}^{J}\right) \cdot \eta_{\zeta}$ is equal to $\pm\left(w_{0}^{J}\right) e_{\tilde{j}} \eta_{\zeta}$ for some $\tilde{j} \in J$. But $e_{\tilde{j}} \eta_{\zeta}=0$. Thus, $f_{j}\left(w_{0}^{J}\right) \eta_{\zeta}$ $=0$. Hence $f_{j} b^{J} \eta_{\zeta}=0$. It follows that $f_{j} b^{J}$ is a linear combination with non-zero coefficients of elements $b^{\prime} \in \mathbf{B}$ such that either $r_{j^{\prime}}\left(b^{\prime}\right) \geq 2$ for some $j^{\prime} \in J$ or $r_{i}\left(b^{\prime}\right) \geq 1$ for some $i \in I-J$. The second alternative does not occur since (by 3.6(a)) b^{J} and $f_{j} b^{J}$ belong to the subalgebra of \mathfrak{U}^{-}generated by $\left\{f_{j^{\prime}} \mid j^{\prime} \in J\right\}$. The lemma follows.

Lemma 3.8. Let $u \in U^{-}$. Assume that $u \eta_{\lambda}>0$ in Λ_{λ} where λ is as in 3.4. Then $u\left(w_{0}^{J}\right) \eta_{\zeta} \geq 0$ in Λ_{ζ}. Moreover, the projection of $u\left(w_{0}^{J}\right) \eta_{\zeta}$ onto the $w_{0}(\zeta)$-weight space of Λ_{ζ} is $\neq 0$.

Using the imbedding $U^{-} \subset \hat{\mathfrak{U}}^{-}$(see 1.4), we can write $u=\sum_{b \in \mathbf{B}} c_{b} b$ (infinite sum) where $c_{b} \in \mathbf{R}$. Our assumption is that $c_{b}>0$ for any $b \in \mathbf{B}$ such that
(a) $r_{j}(b)=0$ for all $j \in J$ and $r_{i}(b) \leq N_{i}$ for all $i \in I-J$.

The product $u b^{J}$ in $\hat{\mathfrak{U}}^{-}$can be written as an infinite sum $u b^{J}=\sum_{b^{\prime} \in \mathbf{B}} d_{b^{\prime}} b^{\prime}$ with $d_{b^{\prime}} \in \mathbf{R}$. We must show that $d_{b^{\prime}} \geq 0$ for any $b^{\prime} \in \mathbf{B}$ such that
(b) $r_{j}\left(b^{\prime}\right) \leq 1$ for all $j \in J$ and $r_{i}\left(b^{\prime}\right)=0$ for all $i \in I-J$.

We must also show that
(c) $d_{b^{\prime}} \neq 0$ where $b^{\prime} \in \mathbf{B}$ satisfies $b^{\prime} \eta_{\zeta}=\xi_{\zeta}$.

We have $b b^{J}=\sum_{b^{\prime} \in \mathbf{B}} g_{b, b^{\prime}} b^{\prime}$ (finite sum) where $g_{b, b^{\prime}} \in \mathbf{Z}$. Hence
(d) $d_{b^{\prime}}=\sum_{b \in \mathbf{B}^{+}} c_{b} g_{b, b^{\prime}}$.

If for some $i \in I-J, b$ satisfies $r_{i}(b) \geq N_{i}+1$, then $b b^{J} \in \mathfrak{U}^{-} f_{i}^{N_{i}+1} b^{J} \in \mathfrak{U}^{-} f_{i}$ (see Lemma 3.6). Hence (by [L1, 14.3.2(b)]) $b b^{J}$ is a linear combination of elements $b^{\prime} \in \mathbf{B}^{+}$with $r_{i}\left(b^{\prime}\right) \geq 1$. Thus, $g_{b, b^{\prime}}=0$ whenever b^{\prime} is as in (b).

If for some $j \in J, b$ satisfies $r_{j}(b) \geq 1$, then $b b^{J} \in \mathfrak{U}^{-} f_{j} b^{J}$; hence, is a linear combination of elements $b^{\prime} \in \mathbf{B}$ with $r_{j^{\prime}}\left(b^{\prime}\right) \geq 2$ for some $j^{\prime} \in J$ (see Lemma 3.7). Thus, $g_{b, b^{\prime}}=0$ whenever b^{\prime} is as in (b).

We see that, if b^{\prime} is as in (b), then (c) can be rewritten as
(e) $d_{b^{\prime}}=\sum_{b} c_{b} g_{b, b^{\prime}}$ where b runs over the $b \in \mathbf{B}$ that satisfy (a).

For such b we have $c_{b}>0$ by our assumption. Since $g_{b, b^{\prime}} \geq 0$ for all b, b^{\prime} (see [L1, 14.4.13]), it follows that $d_{b^{\prime}} \geq 0$ for all b^{\prime} as in (b).

It remains to verify (c). Since $b^{J} \eta_{\zeta}$ is a non-zero vector in a weight space of Λ_{ζ}, we must have $\xi_{\zeta} \in \mathfrak{U}^{-} b^{J} \eta_{\zeta}$. Hence we can find $b \in \mathbf{B}$ such that $b b^{J} \eta_{\zeta}$ is a non-zero multiple of ξ_{ζ}. Hence, if b^{\prime} is as in (c), we have $g_{b, b^{\prime}} \neq 0$. Since $g_{b, b^{\prime}} \geq 0$, by the earlier argument, it follows that $g_{b, b^{\prime}}>0$. Then, in (e), the contribution of b to $d_{b^{\prime}}$ is $c_{b} g_{b, b^{\prime}}>0$. Since the contribution of the other b in (e) is ≥ 0, it follows that $d_{b^{\prime}}>0$. The lemma is proved.

Lemma 3.9. (a) Let $B \in \mathcal{B}$ be such that the projection of L_{B}^{λ} onto the $w_{0}(\lambda)$ weight space of Λ_{λ} is non-zero and the projection of L_{B}^{ζ} onto the $w_{0}(\zeta)$-weight space of Λ_{ζ} is non-zero. Then $\operatorname{pos}\left(B^{+}, B\right)=w_{0}$.
(b) Let $B \in \mathcal{B}$ be such that the projection of L_{B}^{λ} onto the λ-weight space of Λ_{λ} is non-zero and the projection of L_{B}^{ζ} onto the ζ-weight space of Λ_{ζ} is non-zero. Then $\operatorname{pos}\left(B^{-}, B\right)=w_{0}$.
We prove (a). We have $B={ }^{g} B^{+}$where $g=u \dot{w}$ with $u \in U^{+}, w \in W$.
If $\dot{w} \eta_{\lambda} \neq \xi_{\lambda}$, then $u \dot{w} \eta_{\lambda} \in L_{B}^{\lambda}$ is contained in the sum of weight spaces of Λ_{λ} corresponding to weights strictly higher than $w_{0}(\lambda)$, contradicting our assumption. Similarly, if $\dot{w} \eta_{\zeta} \neq \xi_{\zeta}$, then $u \dot{w} \eta_{\zeta} \in L_{B}^{\zeta}$ is contained in the sum of weight spaces of Λ_{ζ} corresponding to weights strictly higher than $w_{0}(\zeta)$, contradicting our assumption. Thus, we must have $\dot{w} \eta_{\lambda}=\xi_{\lambda}$ and $\dot{w} \eta_{\zeta}=\xi_{\zeta}$. Hence $\dot{w}_{0}^{-1} \dot{w}$ stabilizes both η_{λ} and η_{ζ}. Since $\left\langle\check{\alpha}_{i}, \lambda+\zeta\right\rangle>0$ for all $i \in I$, we deduce that $w_{0}^{-1} w=1$. Hence $\operatorname{pos}\left(B^{+}, B\right)=w_{0}$. This proves (a). The proof of (b) is entirely similar. The lemma is proved.
Lemma 3.10. (a) Let $B \in \mathcal{B}$ be such that $L_{B}^{\lambda}>0$ and $L_{B}^{\zeta}>0$. Then $B \in \mathcal{B}_{>0}$. (b) Let $B \in \mathcal{B}$ be such that $L_{B}^{\lambda} \geq 0$ and $L_{B}^{\zeta} \geq 0$. Then $B \in \mathcal{B} \geq 0$.

We prove (a). Let \mathcal{Y} be the set of all $B \in \mathcal{B}$ such that $L_{B}^{\lambda}>0$ and $L_{B}^{\zeta}>0$. If $B \in \mathcal{Y}$, then B satisfies the assumptions of 3.9 (a) and $3.9(\mathrm{~b})$ hence B is opposed to both B^{+}and B^{-}. From this point, the proof of (a) proceeds exactly as the proof of 8.17 (a) in [L2].

Now (b) follows from (a) using the same argument as the one used in [L2] to deduce 8.17 (b) from $8.17(\mathrm{a})$. The lemma is proved.
Lemma 3.11. Let $B \in \mathcal{B}$ be such that $\operatorname{pos}\left(B^{-}, B\right)=w_{0} w_{0}^{J}$. Assume that $L_{B}^{\lambda}>0$ in Λ_{λ} where λ is as in 3.4. Then $B \in \mathcal{B}_{\geq 0}$ and $\operatorname{pos}\left(B^{+}, B\right)=w_{0}$.

We have $B={ }^{g} B^{-}$where $g=u \dot{w}_{0}^{-1}\left(w_{0}^{J^{*}}\right)$ and $u \in U^{-}$. The line $L_{B}^{\lambda}=g L_{B^{-}}^{\lambda}$ contains the vector

$$
g \xi_{\lambda}=u \dot{w}_{0}^{-1}\left(w_{0}^{J^{*}}\right) \xi_{\lambda}=u\left(w_{0}^{J}\right) \dot{w}_{0}^{-1} \xi_{\lambda}=u\left(w_{0}^{J}\right) \eta_{\lambda}=u \eta_{\lambda} .
$$

Since $L_{B}^{\lambda}>0$, we have $u \eta_{\lambda}>0$ or $-u \eta_{\lambda}>0$. The second alternative cannot hold since $u \eta_{\lambda}$ is equal to η_{λ} plus a linear combination of elements in lower weight spaces. Thus,

$$
u \eta_{\lambda}>0
$$

The line $L_{B}^{\zeta}=g L_{B^{-}}^{\zeta}$ contains the vector

$$
g \xi_{\zeta}=u \dot{w}_{0}^{-1}\left(w_{0}^{J^{*}}\right) \dot{\xi}_{\zeta}=u\left(w_{0}^{J}\right) \dot{w}_{0}^{-1} \xi_{\zeta}=u\left(w_{0}^{J}\right) \eta_{\zeta}
$$

This vector is ≥ 0, by Lemma 3.8. Thus,
(a) $L_{B}^{\zeta} \geq 0$.

From Lemma 3.8 we see also that
(b) the projection of L_{B}^{ζ} onto the $w_{0}(\zeta)$-weight space of Λ_{ζ} is $\neq 0$.

This statement remains true if ζ is replaced by λ (since $L_{B}^{\lambda}>0$).
Using (a) together with $L_{B}^{\lambda}>0$, we see that the assumptions of Lemma 3.10(b) are satisfied; hence, $B \in \mathcal{B}_{\geq 0}$.

Using (b) and the analogous statement for λ, we see that the assumptions of Lemma 3.9(a) are satisfied; hence, $\operatorname{pos}\left(B^{+}, B\right)=w_{0}$. The lemma is proved.
3.12. Proof of Theorem 3.4. We prove 3.4(a). We attach $B^{\prime}, B^{\prime \prime}$ to P as in 2.1. Since the projections of L_{P}^{λ} onto the λ-weight space and the $w_{0}(\lambda)$-weight space are non-zero, it follows (as in the proof of 3.9) that $\operatorname{pos}\left(B^{-}, B^{\prime}\right)=w_{0} w_{0}^{J}$ and $\operatorname{pos}\left(B^{+}, B^{\prime \prime}\right)=w_{0} w_{0}^{J}$. By Lemma 3.9, we have $B^{\prime} \in \mathcal{B}_{\geq 0}$ and $\operatorname{pos}\left(B^{+}, B^{\prime}\right)=w_{0}$. Now using Lemma 2.5, we see that there exists $B \in \mathcal{B}_{>0}$ such that $\operatorname{pos}\left(B^{\prime}, B\right)=w_{0}^{J}$. Then $B \subset P$ and $P \in \mathcal{P}_{>0}^{J}$. This proves 3.4(a).

Now 3.4(b) follows from 3.4(a) using the same argument as the one used in [L2] to deduce $8.17(\mathrm{~b})$ from $8.17(\mathrm{a})$. Theorem 3.4 is proved.

Note added 2/25/1998. One can show (K. Rietsch) that the conclusion of Theorem 3.4 holds for any $\lambda \in X^{+}$such that $\operatorname{supp}(\lambda)=I-J$.
3.13. The following is a reformulation of a result in [L3]. Let $u \in U^{-}$. Write $u=\sum_{b \in \mathbf{B}} c_{b} b$ (infinite sum) with $c_{b} \in \mathbf{R}$ as in 1.4(a). Then:
(a) We have $u \in U_{>0}^{-}$if and only if $c_{b}>0$ for all $b \in \mathbf{B}$.
(b) We have $u \in U_{\geq 0}^{-}$if and only if $c_{b} \geq 0$ for all $b \in \mathbf{B}$.

This can be easily deduced from [L2, 5.4], using the definitions.

References

[L1] G. Lusztig, Introduction to quantum groups, Progr. in Math. 110, Birkhäuser, Boston, 1993. MR 94m:17016
[L2] G. Lusztig, Total positivity in reductive groups, Lie Theory and Geometry: in honor of B. Kostant, Progr. in Math. 123, Birkhäuser, Boston, 1994, pp. 531-568. MR 96m:20071
[L3] G. Lusztig, Total positivity and canonical bases, Algebraic groups and Lie groups (G. I. Lehrer, ed.), Cambridge Univ. Press, 1997, pp. 281-295.
[L4] G. Lusztig, Introduction to total positivity, Positivity in Lie theory: open problems, De Gruyter (to appear).

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

E-mail address: gyuri@math.mit.edu

[^0]: Received by the editors February 25, 1998.
 1991 Mathematics Subject Classification. Primary 20G99.
 Supported in part by the National Science Foundation.

