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TOTAL POSITIVITY IN PARTIAL FLAG MANIFOLDS

G. LUSZTIG

ABSTRACT. The projective space of R™ has a natural open subset: the set
of lines spanned by vectors with all coordinates > 0. Such a subset can be
defined more generally for any partial flag manifold of a split semisimple real
algebraic group. The main result of the paper is that this subset can be defined
by algebraic equalities and inequalities.

Let G be a simply connected semisimple algebraic group over C with a fixed
split R-structure. We will often identify a real algebraic variety with its set of
R-rational points. This applies, in particular, to G and to the flag manifold B of
G.

In [L2] we have defined (in terms of an “épinglage” of G) the open subsemigroup
G~ of totally positive elements of G and a polyhedral open subset B~ of B which
in some sense plays the same role for G>¢ as B for G. More generally, for any
partial flag manifold P of G one can define the totally positive part PZ,. (See
[L4] or 1.5.) For J = () we have P/ = B, P, = Bso.

In this paper we show that Pio is a connected component of an explicitly defined
open real algebraic submanifold of P/. We also show that, in the simply laced case,
P{, can be defined by algebraic inequalities involving canonical bases (see [L1]).
These results confirm conjectures made in [L4]. In the special case where J = (),
they reduce to known results from [L2].

1. PRELIMINARIES

1.1. Let g be the Lie algebra of G over R. The given épinglage of G can be
specified by giving a set (e;, f;)icr of Chevalley generators of g. Then h; = [e;, fi]
span the Lie algebra t of an R-split maximal torus T" of G.

For any ¢ € I,a € R, we set

zi(a) = exp(ae;) € G, yi(a) =exp(af;) € G.

Let Y (resp. X) be the free abelian group of all homomorphisms of algebraic groups
R* — T (resp. T — R*). We write the operations in these groups as addition.
Let (,) : Y x X — Z be the standard pairing. For ¢ € I, there is a unique
element &; € Y whose tangent map takes 1 € R to h;. Let o; € X be defined by
tzi(a)t™! = xi(a;(t)a) for alla € Rt € T.

Let X be the set of all A\ € X such that (&;,\) € N for all i € I. For i € I let
w; € X be defined by (&;, ;) =1 and (&, w;) = 0 for j # ¢. Then {w;|i € I} is
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a Z-basis of X. For A € X we set
supp(A) = {i € I|{(dq, A) # 0}.
1

If H is a subgroup of G and g € G, we write YH instead of gHg™*.

1.2. Let B be the Borel subgroup of G that contains T and z;(a) for all i €
I,a € R. Let B~ be the Borel subgroup of G that contains 7' and y;(a) for all
i€I,a € R. Let UT,U~ be the unipotent radicals of BT, B~. Let n~ be the Lie
algebra of U~.

For any subset J of I, let P}r be the subgroup of G generated by B* and by
{yj(a)lj € J,a € R}. Note that Py = B*. Let P’ be the set of subgroups of
G of the form 9P} for some g € G. We regard P’ naturally as a real algebraic
manifold (a partial flag manifold). Note that P? = B (the full lag manifold). Let
7/ : B — P’ be the canonical map, that is, B — P where P € P’ contains B.

1.3. Let A be the normalizer of T' (in G). For i € I, we set
S8 = yi(l)xi(—l)yi(l) eN.

Let W = N/T and let s; be the image of $; in W. Then W together with (s;);er
is a Coxeter group. Let [ : W — N be the standard length function. For w €
W, let I, be the set of all sequences (i1,1%2,...,4,) in I such that p = I(w) and
iy 8iy ... 55, = w. Let w = $; 8, ...5, € N where (i1,i2,...,ip) € I,. This is
independent of the choice of (i1, 12, ...,%p).

If J is a subset of I, we denote by W the subgroup of W generated by {s;|j € J}.
Let wy be the unique element of maximal length of W7. We shall write wq instead
of wd. For w € W, let w* be defined by w* = wowwy'. For i € I, let i* € I be
defined by s;- = (s;)*. Let J* = {j*|j € J}. We have (w)* = wy .

We have a W-action on X in which s; € W acts by A — A — {(&;, A)a;.

For w € W we write *Bt,* B~ instead of Y B+, ?B~.

For B, B’ in B there is a unique w € W such that (B, B’) is in the G-orbit on
B x B (diagonal action) that contains (B*,"“B*) (or equivalently (B~,” B~)).
We then write pos(B, B') = w and we regard pos as a function B x B — W.

1.4. Let 4~ be the enveloping algebra of n=. We have I~ = @, {I;; where v runs
over N[I]; here the subspaces U are defined by 1 € Uy, e; € U, UL C L7, .
Let 4~ = [, 4, . We regard i naturally as a completion of 4{~. The algebra
structure on {4~ extends naturally (by continuity) to an algebra structure on a4 .

There is a unique imbedding U~ C U= compatible with multiplication such that
yi(a) € U™ corresponds to >, - ,(a™/n!)f]" € = forany i€ I,a € R.

Let B be the canonical basis of 4~ (see [L1]). Since B is compatible with the
decomposition U~ = @, 4, , any element of {0~ can be written uniquely as an
infinite sum

(a) > pep o where ¢, € R.,

In particular, any element v € U~ can be written uniquely as an infinite sum (a).
For any ¢ € I, we define r; : B — N by

beum fI b g Ot
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1.5. Let (il,ig,...,in) EIwO. Let
U;_O = {Jiil (&1):1?1'2 (ag) Ty, (an)|a,1 €R-g,...,a, € R>0},
Ulo = {yi (a1)yi (a2) - ..y, (an)|ar € Rso, ..., an € Ruo}

Then Ufo is an open subsemigroup (without 1) of U, independent of the choice
of (i1,%2,...,in) € Ly,. (See [L2].) Let U;O be the closure of UL, in U*. Let

Boo = {“Bflu e UZ} = {“ B~ |[u' € U%,}.

(The second equality is proved in [L2, 8.7].) This is an open subset of B. Let B>
be the closure of Bsg in B. For J C I we set

Pl =77 (Bs0), Py =7"(Bxo).
Then PZ,, is open in P’ and ’Péo is the closure of P, in P7.

1.6. For A € X, let Ay be a simple algebraic G-module of finite dimension with
a non-zero vector ny such that z;(a)ny = n) for all i € I,a € R and tny = A(¢)nx
for all t € T. For B € B let L} be the unique B-stable line in Ay. If J C I and
supp()\) C I — J, then for any P € P’ there is a unique P-stable line L} in Ay; we
have L) = L} for any B € B such that B C P.

It is known that, if supp(A) = I — J, then P + L} is an imbedding of P’ into
the projective space of Ay.

Let f; : Ax — A, be the linear map such that, for any a € R, exp(af;) : Ax — Ay
is given by the action of y;(a) on the G-module Ay. The maps f; : Ay — A, define
a 14~ -module structure on Ay. It is clear that this extends naturally (by continuity)
to a $4~-module structure on Aj.

If w € U™, the action of u on the G-module A) coincides with the action of u in
the $4~-module A,.

1.7. For A € X, we have A\ = D, x Ay where
A ={z e M|tz = p(t)x Ve X}
are the weight spaces.

Let B()) be the set of all b € B such that r;(b) < (c, A) for all i € I. According
to [L1, 14.4.11], the map b — bn) is a bijection of B(\) onto a basis \B of Ay
(called the canonical basis of Ay). For b € B — B()\) we have by = 0. The basis
2B is compatible with the weight spaces of A). Note that 1) € A\B.

The following statement is obtained by combining [L1, 28.1.4] and [L1, 39.1.2].
(Note that the action of 1 on Ay coincides with the action of the operator T} ; of
[L1, 5.2.1], with v = 1 on Ajy.)

(a) For any w € W, the vector w(ny) is the unique element of \B which lies in
AV,
We set &) = wo(n)\) € \B.

2. PARABOLIC SUBGROUPS OF GENERAL TYPE

2.1. We fix J C I. Let P € P/. We can find a unique Borel subgroup B’ C P
such that pos(B~, B’) = z for some z € W with I(zw{) = I(2) + I(w). Similarly,
we can find a unique Borel subgroup B” C P such that pos(B™*, B”) = v for some
v € W with I(vwy ) = I(v)+1(wg). We say that P is of general type if v = z = wowy
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and pos(B’, B") = wy. Let P/ be the set of all P € P/ that are of general type.
This is an open real algebraic submanifold of P”.

The following result has been conjectured in [L4, Sec.8]; in the case where J = ()
it reduces to [L2, 8.14], while in the case where J has a single element, it reduces
to [L4, 8.7].

Proposition 2.2. PJ is a connected component of Py .
The proof will be given in 2.6.

Lemma 2.3. Let B € Bso. Then B is opposed to B~ and to BT. (See [L2, 8.7,
8.8].) Hence we can define B, B” € B by

pos(B~, B') = wowy , pos(B’, B) = wy ,pos(BT, B") = wowy , pos(B", B) = wy .
The following hold:

(a) pos(B’,B) = wo
(b) pos(B”, B~) = wy
() pos(B', B") = u
(d) B e BZO
(e) B"” € B>g
We prove (a). Let (i1,42,...,in) € Lu, be such that (i1, i2,... i) € 1,4+ and
(Tht 1 ht2, - -5 0n) € Ly
We have B = "B~ where u = x;, (a1)24,(a2) ...z, (a,) with a1,as,...,a, in
R>0 Let
u' = = Tiy (al)xlz (0’2) - Ly (ak) u” = Lijqq (ak+1)$ik+2 (ak+2) - Ty, (an)
so that u = v/u”. Using [L2, 2. 7(d)] we have
pos(* B~, B) = pos( B7) = pos(B_,wf’]*B_) =wy,
pos(B B™) =pos(B~ w"w‘{*B_) = wowy .

Hence B’ =% B~. Since u/ € B*, we have
pos(B’, BY) = pos(* B~, B™) = pos(B~, BT) = wy.

This proves (a). The proof of (b) is entirely similar.

We prove (c). Since pos(B’, B) = w{, pos(B”, B) = wy, we have pos(B’, B") = y
for some y € W, Since pos(B~, B') = wowy and l(wowo) +1(y) = l(wow0 y), Wi
have pos(B~, B") = wowdy. Using (b), we have wowgy = wq hence y = wy. Thls
proves (c).

We prove (e). Let By € B be defined by pos(B*, By) = wow,pos(B1,B~) =
wy. Then By € Bxq by [L2, 8.13].

For u as above we have

pos(B1,“By) = pos(“BY,"“By) = wowy , pos(“ By, B) = pos(“By,"B™) = wy .

Hence B” = “Bj;. Since u € UZ, o and By € B>g, we have “B; € B>g. (See [L2,
8.12].) This proves (e). The proof of (d) is entirely similar.
Lemma 2.4. Let B', B" € B be such that pos(B~, B') = wowy ,pos(B’, B") = w{,
pos(B*,B") = wowy. Let P = n/(B') = w/(B"). Assume that there exists
B € B>¢ such that B C P. Then

(a) B’ € B>g.

(b) B" € B>o.
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Assume first that B € Bso. We have pos(B’, B) = y for some y € W”. Since
pos(B~,B") = wowy and l(wowy) + I(y) = l(wowly), we have pos(B~,B) =
wowyy. Since B € Bsg, we have pos(B~, B) = wg. Hence wowiy = wy and
y = wy. Thus, B’ is as in Lemma 2.3. Similarly, B” is as in Lemma 2.3. Thus the
desired result follows from Lemma 2.3(d),(e).

We now consider the general case. Let X be the open set of B consisting of all
B; such that pos(B~, By) € wowg W. For each B; € X there is a unique B] € B
such that pos(B~, B}) = wowg, pos(B}, B1) € W7; moreover, the map 7 : X — B
given by 7(By) = Bj is continuous.

Now let B € B> be such that B C P. We clearly have B € X and 7(B) = B'.
There exists a sequence (B™),>1 in Bsg such that lim, .., B" = B. Then for each
n we have B™ € X and by the first part of the argument, we have 7(B") € B>o.
Using the continuity of 7= and the fact that B>¢ is closed in B, it follows that
7(B) € B>o. Hence B’ € B>¢. Similarly, B” € B>o. The lemma is proved.

Lemma 2.5. Let B’ € B¢ be such that pos(B~, B') = wowy , pos(B’, BT) = wy.
Then there exists B € Bsq such that pos(B’, B) = wy .

There is a unique u € U™ such that B’ = “B~. Since B’ € B>, we must have
u € U;O, by an argument in the proof of [L2, 8.4]. By [L2, 2.8], there exists w € W,
(i1,19,...,1) € I, and a1, ase,...,ar in Rsq such that

u = (a1)x,(a2) ... x; (ak).

By [L2, 2.7(d)], we have u € B~wB™~, hence pos(B~,“B~) = pos(B~,"B~) = w*.
Now using pos(B~,“B~) = wowy , we see that w* = wowy .

Let (ikt1,ih42,---in) € Ly and let @ = @y, (Dw,, (1) ... @i, (1). Let B =

“B~. Clearly, pos(B~,B) = pos(B‘,“fé]*B_) = wy. Since ut € UZ,, we have
iR~ € Bsg. Then pos(B’,**B~) = pos(*B~,““B~) = pos(B~,%B~) = wy.
The lemma is proved.

2.6. Proof of Proposition 2.2. The inclusion PZ, C P/ follows from Lemma
2.3.

Since P is an open connected subset of Py, it remains to show that PZ is a
closed subset of P/. Now PZ, NP/ is certainly a closed subset of P/. Hence it is
enough to show that PL{, NP/ c PL,. Let P € PL{,NP/. We associate B’, B” to
P asin 2.1. We can find B € B¢ such that B C P. The assumptions of Lemma
2.4 are satisfied. We deduce that B’ € B>g. Thus, the assumptions of Lemma 2.5
are satisfied. We deduce that there exists B; € Bsq such that pos(B’, By) = wy.
We have By C P; hence, P € P{,. Proposition 2.2 is proved.

Note added 2/25/1998. K. Rietsch has informed me that the lemmas in this sec-
tion could also be proved by arguments in Lemmas 3 and 4 of her paper An
algebraic cell decomposition of the mon-negative part of a flag variety, preprint,
http://xxx.lanl.gov/abs/alg-geom /9709035 (1997).

3. CANONICAL BASES AND PZ,, PI,

3.1. In this section we assume that G is of simply laced type. This assumption
allows us to use the positivity properties of the canonical bases. We fix J C I.
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If A € X and = € Ay, we say that > 0 (resp. > 0) if all coordinates of =
with respect to yB are > 0 (resp. > 0). If L is a line in A, we say that L > 0
(resp. L > 0) if for some x € L — {0} we have z > 0 (resp. « > 0).

Proposition 3.2. Assume that A € X is such that supp(\) C I — J.
(a) If P € P, then L > 0.
(b) If P € Py, then Ly > 0.

We prove (a). We argue as in the proof of [L2, 8.17]. We choose B C P such
that B € B>o. We have L = L. Now L3 = L7 > 0 by the first two lines in the
proof of [L2, 8.17]. This proves (a).

We prove (b). If P is as in (b), then P is in the closure of PZ,, in P”, hence the
line L7 is a limit of a sequence of lines L3, with P’ € P, to which (a) is applicable
so that L}, > 0. Hence L} > 0. The proposition is proved.

33. Let (=), @ €X. Foriel—Jweset N; = (&;,wy(()). It is easy to
see that IV; > 0. We have the following partial converse to 3.2.

Theorem 3.4. Assume that A € X is such that (&;,\) > N;+1 for alli € I —J
and {(¢;,\) =0 for all j € J. (In particular, suapp(A) = I — J.) Let P € P’.
(a) We have P € P, if and only if L > 0.
(b) We have P € Pgo if and only if L > 0.
The proof will be given in 3.12.

Lemma 3.5. We fixi € I. For anyv ="> ., .; vt we set

el

¢(I/) = Z vy € N.

Vel (qq,a)=—1

If k> ¢(v) and x € L5, we have fFa € u=fF=2),

v

We argue by induction on ), ., vir. If v = 0, the result is trivial. Assume now
that v # 0. Then we may assume that © = fy 2’ for some i’ € I and some z’ € i,
where v/ = v — ¢’ € N[I] and that the result is true for (2,v’) instead of (z,v). If
(4, ) # —1, then ¢(v) = ¢(v') and

fro = flfoa = foffa’ € fostm £ cum 00,

If (&, ap) = —1, then ¢(v) = &) + 1. Using Serre’s relations we see that
fEfi € 4= fF1 provided that k > 2. If k > ¢(v), then k > 2 and k — 1 > ¢(v/);
hence, by the induction hypothesis we have

R e T e e S N A
The lemma is proved.

Lemma 3.6. Let b’ be the unique element of B such that b ne = (wf)nc. For any
i€l —J and any k > N; we have fFb7 € 4~ f;.

J
Let v =Y, o, viri’ be such that b’ € &1, We have ¢ € Ag and (wi e € AZ° ©,
Hence ( — Y, c; viraw = wy (¢). In particular,

(a) vy =0fori' ¢ J.



76 G. LUSZTIG

Since v; = 0, the number ¢(v) in 3.5 is given by

P(v) = —(i, Y virai).
el
The last expression is equal to {&;, wg (¢) —¢) = (&, wy (¢)) = N;. Thus, ¢(v) = N;
and the desired result follows from Lemma 3.5.

Lemma 3.7. If j € J, then f;b' is a linear combination of elements b’ € B with
rj (b)) > 2 for some j' € J.

fi(wg Yne is equal to +(wg Je;ne for some j€J. But esne = 0. Thus, f;(wg)ne
= 0. Hence f;b/nc = 0. It follows that f;b”7 is a linear combination with non-zero
coefficients of elements ' € B such that either r; (') > 2 for some j° € J or
r;(b’) > 1 for some ¢ € I — J. The second alternative does not occur since (by
3.6(a)) b7 and f;b” belong to the subalgebra of 4~ generated by {f;/|j’ € J}. The
lemma follows.

Lemma 3.8. Let u € U~. Assume that uny > 0 in Ay where X is as in 3.4. Then
u(wy)ne > 0 in A¢c. Moreover, the projection of u(wd)ne onto the wo(¢)-weight
space of A¢ is # 0.

Using the imbedding U~ C £~ (see 1.4), we can write u = > pep Cob (infinite
sum) where ¢, € R. Our assumption is that ¢, > 0 for any b € B such that

(a) rj(b) =0for all j € Jand r;(b) < N; foralli € I — J.

The product ub” in 1~ can be written as an infinite sum ub’ = 37, g dyb’ With
dy € R. We must show that dyr > 0 for any ' € B such that

(b) 7;(b') <1forall j € Jand r;(t/)=0foralliel—J.

We must also show that
(¢) dp # 0 where b’ € B satisfies b'n; = &.

We have bb? = > wen 9o 0 (finite sum) where gy € Z. Hence
(d) do =3 pep+ Cogv,br-

If for some i € I — J, b satisfies 7;(b) > N; + 1, then b’ € U~ fNit1p/ € U= f;
(see Lemma 3.6). Hence (by [L1, 14.3.2(b)]) bb” is a linear combination of elements
v € BT with r;(0’) > 1. Thus, gy, = 0 whenever b’ is as in (b).

If for some j € J, b satisfies r;(b) > 1, then bb’ € U~ f;b7; hence, is a linear
combination of elements b’ € B with r;/ (') > 2 for some j' € J (see Lemma 3.7).
Thus, gpy = 0 whenever b’ is as in (b).

We see that, if b’ is as in (b), then (c) can be rewritten as

(€) dy =), cbgp,y where b runs over the b € B that satisfy (a).

For such b we have ¢, > 0 by our assumption. Since g > 0 for all b,b’ (see [L1,
14.4.13)), it follows that dp > 0 for all b as in (b).

It remains to verify (c). Since b7n; is a non-zero vector in a weight space of A¢,
we must have & € U~b7n.. Hence we can find b € B such that bb/n, is a non-zero
multiple of &. Hence, if b’ is as in (c), we have g, # 0. Since gpr > 0, by the
earlier argument, it follows that gy > 0. Then, in (e), the contribution of b to
dy is cpgppy > 0. Since the contribution of the other b in (e) is > 0, it follows that
dy > 0. The lemma is proved.
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Lemma 3.9. (a) Let B € B be such that the projection of L onto the wo(\)-
weight space of Ay is non-zero and the projection of L% onto the wy(¢)-weight
space of A¢ is non-zero. Then pos(B™, B) = wy.

(b) Let B € B be such that the projection of L onto the A-weight space of Ay is
non-zero and the projection of L<B onto the (-weight space of A¢ is non-zero.
Then pos(B~, B) = wy.

We prove (a). We have B = 9B where g = uw with u € U, w € W.

If wmy # &, then winy € L} is contained in the sum of weight spaces of A
corresponding to weights strictly higher than wg()), contradicting our assumption.
Similarly, if wne # &¢, then wune € LCB is contained in the sum of weight spaces of
A¢ corresponding to weights strictly higher than wg(¢), contradicting our assump-
tion. Thus, we must have wn, = &£ and wn: = &. Hence 1y L stabilizes both
nx and 7¢. Since (G, A+ ¢) > 0 for all i € I, we deduce that wy 'w = 1. Hence
pos(B™T, B) = wp. This proves (a). The proof of (b) is entirely similar. The lemma
is proved.

Lemma 3.10. (a) Let B € B be such that LY > 0 and LCB > 0. Then B € Bso.
(b) Let B € B be such that L% >0 and LCB > 0. Then B € Bxg.

We prove (a). Let ) be the set of all B € B such that L% > 0 and LCB > 0. If
B € ), then B satisfies the assumptions of 3.9(a) and 3.9(b) hence B is opposed to
both BT and B~. From this point, the proof of (a) proceeds exactly as the proof
of 8.17(a) in [L2).

Now (b) follows from (a) using the same argument as the one used in [L2] to
deduce 8.17(b) from 8.17(a). The lemma is proved.

Lemma 3.11. Let B € B be such that pos(B~, B) = wowg . Assume that Ly > 0
in Ay where X is as in 3.4. Then B € B>q and pos(B™, B) = wy.

We have B = 9B~ where g = wig *(wy )y and u € U~. The line Ly = gL},
contains the vector

géx = uiby " (wy JEn = u(wy Jig Méx = u(wy Ynx = una.

Since L% > 0, we have uny > 0 or —uny > 0. The second alternative cannot
hold since un) is equal to 1y plus a linear combination of elements in lower weight
spaces. Thus,

uny > 0.

The line LCB = gLC _ contains the vector

g€ = waig  (wy V& = u(wy g & = u(wg .

This vector is > 0, by Lemma 3.8. Thus,
(a) LS >0.
From Lemma 3.8 we see also that
(b) the projection of LCB onto the wg(¢)-weight space of A¢ is # 0.

This statement remains true if ¢ is replaced by A (since L% > 0).

Using (a) together with L) > 0, we see that the assumptions of Lemma 3.10(b)
are satisfied; hence, B € Bxg.

Using (b) and the analogous statement for A, we see that the assumptions of
Lemma 3.9(a) are satisfied; hence, pos(B™, B) = wg. The lemma is proved.
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3.12. Proof of Theorem 3.4. We prove 3.4(a). We attach B’, B” to P as in
2.1. Since the projections of Lj\g onto the A-weight space and the wgy(\)-weight
space are non-zero, it follows (as in the proof of 3.9) that pos(B~, B') = wowj and
pos(B*, B") = wowg. By Lemma 3.9, we have B’ € B> and pos(BT, B") = wy.
Now using Lemma 2.5, we see that there exists B € Bxg such that pos(B’, B) = wj .
Then B C P and P € PZ,. This proves 3.4(a).

Now 3.4(b) follows from 3.4(a) using the same argument as the one used in [L2]

to deduce 8.17(b) from 8.17(a). Theorem 3.4 is proved.

Note added 2/25/1998. One can show (K. Rietsch) that the conclusion of Theorem
3.4 holds for any A € X such that supp(\) =1 — J.

3.13. The following is a reformulation of a result in [L3]. Let w € U~. Write
u =) g cb (infinite sum) with ¢; € R as in 1.4(a). Then:

(a) We have u € UZ,, if and only if ¢; > 0 for all b € B.
(b) We have u € U5, if and only if ¢, > 0 for all b € B.

This can be easily deduced from [L2, 5.4], using the definitions.
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