TOTAL POSITIVITY IN PARTIAL FLAG MANIFOLDS

G. LUSZTIG

ABSTRACT. The projective space of \mathbb{R}^n has a natural open subset: the set of lines spanned by vectors with all coordinates > 0. Such a subset can be defined more generally for any partial flag manifold of a split semisimple real algebraic group. The main result of the paper is that this subset can be defined by algebraic equalities and inequalities.

Let G be a simply connected semisimple algebraic group over \mathbf{C} with a fixed split \mathbf{R} -structure. We will often identify a real algebraic variety with its set of \mathbf{R} -rational points. This applies, in particular, to G and to the flag manifold \mathcal{B} of G.

In [L2] we have defined (in terms of an "épinglage" of G) the open subsemigroup $G_{>0}$ of totally positive elements of G and a polyhedral open subset $\mathcal{B}_{>0}$ of \mathcal{B} which in some sense plays the same role for $G_{>0}$ as \mathcal{B} for G. More generally, for any partial flag manifold \mathcal{P}^J of G one can define the totally positive part $\mathcal{P}^J_{>0}$. (See [L4] or 1.5.) For $J = \emptyset$ we have $\mathcal{P}^J = \mathcal{B}, \mathcal{P}^J_{>0} = \mathcal{B}_{>0}$. In this paper we show that $\mathcal{P}^J_{>0}$ is a connected component of an explicitly defined

In this paper we show that $\mathcal{P}_{\geq 0}^J$ is a connected component of an explicitly defined open real algebraic submanifold of \mathcal{P}^J . We also show that, in the simply laced case, $\mathcal{P}_{\geq 0}^J$ can be defined by algebraic inequalities involving canonical bases (see [L1]). These results confirm conjectures made in [L4]. In the special case where $J = \emptyset$, they reduce to known results from [L2].

1. Preliminaries

1.1. Let \mathfrak{g} be the Lie algebra of G over \mathbf{R} . The given épinglage of G can be specified by giving a set $(e_i, f_i)_{i \in I}$ of Chevalley generators of \mathfrak{g} . Then $h_i = [e_i, f_i]$ span the Lie algebra \mathfrak{t} of an R-split maximal torus T of G.

For any $i \in I, a \in \mathbf{R}$, we set

$$x_i(a) = \exp(ae_i) \in G, \quad y_i(a) = \exp(af_i) \in G.$$

Let Y (resp. X) be the free abelian group of all homomorphisms of algebraic groups $\mathbf{R}^* \to T$ (resp. $T \to \mathbf{R}^*$). We write the operations in these groups as addition. Let $\langle , \rangle : Y \times X \to \mathbf{Z}$ be the standard pairing. For $i \in I$, there is a unique element $\check{\alpha}_i \in Y$ whose tangent map takes $1 \in \mathbf{R}$ to h_i . Let $\alpha_i \in X$ be defined by $tx_i(a)t^{-1} = x_i(\alpha_i(t)a)$ for all $a \in \mathbf{R}, t \in T$.

Let X^+ be the set of all $\lambda \in X$ such that $\langle \check{\alpha}_i, \lambda \rangle \in \mathbf{N}$ for all $i \in I$. For $i \in I$ let $\varpi_i \in X$ be defined by $\langle \check{\alpha}_i, \varpi_i \rangle = 1$ and $\langle \check{\alpha}_j, \varpi_i \rangle = 0$ for $j \neq i$. Then $\{\varpi_i | i \in I\}$ is

Received by the editors February 25, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 20G99.

Supported in part by the National Science Foundation.

a **Z**-basis of X. For $\lambda \in X$ we set

$$\operatorname{supp}(\lambda) = \{ i \in I | \langle \check{\alpha}_i, \lambda \rangle \neq 0 \}.$$

If H is a subgroup of G and $g \in G$, we write ${}^{g}H$ instead of ${}^{g}Hg^{-1}$.

1.2. Let B^+ be the Borel subgroup of G that contains T and $x_i(a)$ for all $i \in I, a \in \mathbf{R}$. Let B^- be the Borel subgroup of G that contains T and $y_i(a)$ for all $i \in I, a \in \mathbf{R}$. Let U^+, U^- be the unipotent radicals of B^+, B^- . Let \mathfrak{n}^- be the Lie algebra of U^- .

For any subset J of I, let P_J^+ be the subgroup of G generated by B^+ and by $\{y_j(a)|j\in J, a\in \mathbf{R}\}$. Note that $P_\emptyset^+=B^+$. Let \mathcal{P}^J be the set of subgroups of G of the form ${}^gP_J^+$ for some $g\in G$. We regard \mathcal{P}^J naturally as a real algebraic manifold (a partial flag manifold). Note that $\mathcal{P}^\emptyset=\mathcal{B}$ (the full flag manifold). Let $\pi^J:\mathcal{B}\to\mathcal{P}^J$ be the canonical map, that is, $B\mapsto P$ where $P\in\mathcal{P}^J$ contains B.

1.3. Let \mathcal{N} be the normalizer of T (in G). For $i \in I$, we set

$$\dot{s}_i = y_i(1)x_i(-1)y_i(1) \in \mathcal{N}.$$

Let $W = \mathcal{N}/T$ and let s_i be the image of \dot{s}_i in W. Then W together with $(s_i)_{i \in I}$ is a Coxeter group. Let $l: W \to \mathbf{N}$ be the standard length function. For $w \in W$, let I_w be the set of all sequences (i_1, i_2, \ldots, i_p) in I such that p = l(w) and $s_{i_1} s_{i_2} \ldots s_{i_p} = w$. Let $\dot{w} = \dot{s}_{i_1} \dot{s}_{i_2} \ldots \dot{s}_{i_p} \in \mathcal{N}$ where $(i_1, i_2, \ldots, i_p) \in I_w$. This is independent of the choice of (i_1, i_2, \ldots, i_p) .

If J is a subset of I, we denote by W^J the subgroup of W generated by $\{s_j|j\in J\}$. Let w_0^J be the unique element of maximal length of W^J . We shall write w_0 instead of w_0^\emptyset . For $w\in W$, let w^* be defined by $w^*=w_0ww_0^{-1}$. For $i\in I$, let $i^*\in I$ be defined by $s_{i^*}=(s_i)^*$. Let $J^*=\{j^*|j\in J\}$. We have $(w_0^J)^*=w_0^{J^*}$.

We have a W-action on X in which $s_i \in W$ acts by $\lambda \mapsto \lambda - \langle \check{\alpha}_i, \lambda \rangle \alpha_i$.

For $w \in W$ we write ${}^wB^+, {}^wB^-$ instead of ${}^{\dot{w}}B^+, {}^{\dot{w}}B^-$.

For B, B' in \mathcal{B} there is a unique $w \in W$ such that (B, B') is in the G-orbit on $\mathcal{B} \times \mathcal{B}$ (diagonal action) that contains $(B^+, {}^wB^+)$ (or equivalently $(B^-, {}^{w^*}B^-)$). We then write pos(B, B') = w and we regard pos as a function $\mathcal{B} \times \mathcal{B} \to W$.

1.4. Let \mathfrak{U}^- be the enveloping algebra of \mathfrak{n}^- . We have $\mathfrak{U}^- = \bigoplus_{\nu} \mathfrak{U}^-_{\nu}$ where ν runs over $\mathbf{N}[I]$; here the subspaces \mathfrak{U}^-_{ν} are defined by $1 \in \mathfrak{U}^-_0$, $e_i \in \mathfrak{U}^-_i$, $\mathfrak{U}^-_{\nu} \mathfrak{U}^-_{\nu'} \subset \mathfrak{U}^-_{\nu+\nu'}$. Let $\hat{\mathfrak{U}}^- = \prod_{\nu} \mathfrak{U}^-_{\nu}$. We regard $\hat{\mathfrak{U}}^-$ naturally as a completion of \mathfrak{U}^- . The algebra structure on \mathfrak{U}^- extends naturally (by continuity) to an algebra structure on $\hat{\mathfrak{U}}^-$.

There is a unique imbedding $U^- \subset \hat{\mathfrak{U}}^-$ compatible with multiplication such that $y_i(a) \in U^-$ corresponds to $\sum_{n>0} (a^n/n!) f_i^n \in \hat{\mathfrak{U}}^-$ for any $i \in I, a \in \mathbf{R}$.

Let **B** be the canonical basis of \mathfrak{U}^- (see [L1]). Since **B** is compatible with the decomposition $\mathfrak{U}^- = \bigoplus_{\nu} \mathfrak{U}^-_{\nu}$, any element of $\hat{\mathfrak{U}}^-$ can be written uniquely as an infinite sum

(a) $\sum_{b \in \mathbf{B}} c_b b$ where $c_b \in \mathbf{R}$.

In particular, any element $u \in U^-$ can be written uniquely as an infinite sum (a). For any $i \in I$, we define $r_i : \mathbf{B} \to \mathbf{N}$ by

$$b \in \mathfrak{U}^- f_i^{r_i(b)}, b \notin \mathfrak{U}^- f_i^{r_i(b)+1}.$$

1.5. Let $(i_1, i_2, \dots, i_n) \in I_{w_0}$. Let

$$U_{>0}^+ = \{x_{i_1}(a_1)x_{i_2}(a_2)\dots x_{i_n}(a_n)|a_1 \in \mathbf{R}_{>0},\dots,a_n \in \mathbf{R}_{>0}\},\$$

$$U_{>0}^- = \{y_{i_1}(a_1)y_{i_2}(a_2)\dots y_{i_n}(a_n)|a_1 \in \mathbf{R}_{>0},\dots,a_n \in \mathbf{R}_{>0}\}.$$

Then $U_{>0}^{\pm}$ is an open subsemigroup (without 1) of U^{\pm} , independent of the choice of $(i_1, i_2, \ldots, i_n) \in I_{w_0}$. (See [L2].) Let $U_{\geq 0}^{\pm}$ be the closure of $U_{>0}^{\pm}$ in U^{\pm} . Let

$$\mathcal{B}_{>0} = \{ {}^{u}B^{+} | u \in U_{>0}^{-} \} = \{ {}^{u'}B^{-} | u' \in U_{>0}^{+} \}.$$

(The second equality is proved in [L2, 8.7].) This is an open subset of \mathcal{B} . Let $\mathcal{B}_{\geq 0}$ be the closure of $\mathcal{B}_{>0}$ in \mathcal{B} . For $J \subset I$ we set

$$\mathcal{P}_{>0}^{J} = \pi^{J}(\mathcal{B}_{>0}), \quad \mathcal{P}_{\geq 0}^{J} = \pi^{J}(\mathcal{B}_{\geq 0}).$$

Then $\mathcal{P}_{>0}^J$ is open in \mathcal{P}^J and $\mathcal{P}_{>0}^J$ is the closure of $\mathcal{P}_{>0}^J$ in \mathcal{P}^J .

1.6. For $\lambda \in X^+$, let Λ_{λ} be a simple algebraic G-module of finite dimension with a non-zero vector η_{λ} such that $x_i(a)\eta_{\lambda}=\eta_{\lambda}$ for all $i\in I, a\in \mathbf{R}$ and $t\eta_{\lambda}=\lambda(t)\eta_{\lambda}$ for all $t\in T$. For $B\in \mathcal{B}$ let L_B^{λ} be the unique B-stable line in Λ_{λ} . If $J\subset I$ and $\operatorname{supp}(\lambda)\subset I-J$, then for any $P\in \mathcal{P}^J$ there is a unique P-stable line L_P^{λ} in Λ_{λ} ; we have $L_P^{\lambda}=L_B^{\lambda}$ for any $B\in \mathcal{B}$ such that $B\subset P$.

It is known that, if $\operatorname{supp}(\lambda) = I - J$, then $P \mapsto L_P^{\lambda}$ is an imbedding of \mathcal{P}^J into the projective space of Λ_{λ} .

Let $f_i: \Lambda_{\lambda} \to \Lambda_{\lambda}$ be the linear map such that, for any $a \in \mathbf{R}$, $\exp(af_i): \Lambda_{\lambda} \to \Lambda_{\lambda}$ is given by the action of $y_i(a)$ on the G-module Λ_{λ} . The maps $f_i: \Lambda_{\lambda} \to \Lambda_{\lambda}$ define a \mathfrak{U}^- -module structure on Λ_{λ} . It is clear that this extends naturally (by continuity) to a $\hat{\mathfrak{U}}^-$ -module structure on Λ_{λ} .

If $u \in U^-$, the action of u on the G-module Λ_{λ} coincides with the action of u in the $\hat{\mathfrak{U}}^-$ -module Λ_{λ} .

1.7. For $\lambda \in X^+$, we have $\Lambda_{\lambda} = \bigoplus_{\mu \in X} \Lambda^{\mu}_{\lambda}$ where

$$\Lambda^{\mu}_{\lambda} = \{ x \in \Lambda_{\lambda} | tx = \mu(t)x \quad \forall t \in X \}$$

are the weight spaces.

Let $\mathbf{B}(\lambda)$ be the set of all $b \in \mathbf{B}$ such that $r_i(b) \leq \langle \check{\alpha}_i, \lambda \rangle$ for all $i \in I$. According to [L1, 14.4.11], the map $b \mapsto b\eta_{\lambda}$ is a bijection of $\mathbf{B}(\lambda)$ onto a basis ${}_{\lambda}\mathbf{B}$ of Λ_{λ} (called the canonical basis of Λ_{λ}). For $b \in \mathbf{B} - \mathbf{B}(\lambda)$ we have $b\eta_{\lambda} = 0$. The basis ${}_{\lambda}\mathbf{B}$ is compatible with the weight spaces of Λ_{λ} . Note that $\eta_{\lambda} \in {}_{\lambda}\mathbf{B}$.

The following statement is obtained by combining [L1, 28.1.4] and [L1, 39.1.2]. (Note that the action of \dot{w} on Λ_{λ} coincides with the action of the operator $T'_{i,1}$ of [L1, 5.2.1], with v = 1 on Λ_{λ} .)

(a) For any $w \in W$, the vector $\dot{w}(\eta_{\lambda})$ is the unique element of $_{\lambda}\mathbf{B}$ which lies in $\Lambda_{\lambda}^{w(\lambda)}$.

We set $\xi_{\lambda} = \dot{w}_0(\eta_{\lambda}) \in {}_{\lambda}\mathbf{B}$.

2. Parabolic subgroups of general type

2.1. We fix $J \subset I$. Let $P \in \mathcal{P}^J$. We can find a unique Borel subgroup $B' \subset P$ such that $pos(B^-, B') = z$ for some $z \in W$ with $l(zw_0^J) = l(z) + l(w_0^J)$. Similarly, we can find a unique Borel subgroup $B'' \subset P$ such that $pos(B^+, B'') = v$ for some $v \in W$ with $l(vw_0^J) = l(v) + l(w_0^J)$. We say that P is of general type if $v = z = w_0 w_0^J$

and $pos(B', B'') = w_0^J$. Let \mathcal{P}_*^J be the set of all $P \in \mathcal{P}^J$ that are of general type. This is an open real algebraic submanifold of \mathcal{P}^J .

The following result has been conjectured in [L4, Sec.8]; in the case where $J=\emptyset$ it reduces to [L2, 8.14], while in the case where J has a single element, it reduces to [L4, 8.7].

Proposition 2.2. $\mathcal{P}_{>0}^J$ is a connected component of \mathcal{P}_*^J .

The proof will be given in 2.6.

Lemma 2.3. Let $B \in \mathcal{B}_{>0}$. Then B is opposed to B^- and to B^+ . (See [L2, 8.7, 8.8].) Hence we can define $B', B'' \in \mathcal{B}$ by

$$pos(B^-, B') = w_0 w_0^J, pos(B', B) = w_0^J, pos(B^+, B'') = w_0 w_0^J, pos(B'', B) = w_0^J.$$

The following hold:

- (a) $pos(B', B^+) = w_0$.
- (b) $pos(B'', B^-) = w_0$.
- (c) $pos(B', B'') = w_0^J$.
- (d) $B' \in \mathcal{B}_{\geq 0}$.
- (e) $B'' \in \mathcal{B}_{>0}$.

We prove (a). Let $(i_1, i_2, \ldots, i_n) \in I_{w_0}$ be such that $(i_1, i_2, \ldots, i_k) \in I_{w_0 w_0^{J^*}}$ and $(i_{k+1}, i_{k+2}, \ldots, i_n) \in I_{w_0^{J^*}}$.

We have $B = {}^{u}B^{-}$ where $u = x_{i_1}(a_1)x_{i_2}(a_2)...x_{i_n}(a_n)$ with $a_1, a_2, ..., a_n$ in $\mathbf{R}_{>0}$. Let

$$u' = x_{i_1}(a_1)x_{i_2}(a_2)\dots x_{i_k}(a_k), \quad u'' = x_{i_{k+1}}(a_{k+1})x_{i_{k+2}}(a_{k+2})\dots x_{i_n}(a_n)$$

so that u = u'u''. Using [L2, 2.7(d)], we have

$$pos(^{u'}B^-, B) = pos(B^-, {^{u''}}B^-) = pos(B^-, {^{w_0^{J^*}}}B^-) = w_0^J,$$
$$pos(B^-, {^{u'}}B^-) = pos(B^-, {^{w_0}}{^{w_0^{J^*}}}B^-) = w_0w_0^J.$$

Hence $B' = u'B^-$. Since $u' \in B^+$, we have

$$pos(B', B^+) = pos(u'B^-, B^+) = pos(B^-, B^+) = w_0.$$

This proves (a). The proof of (b) is entirely similar.

We prove (c). Since $pos(B', B) = w_0^J$, $pos(B'', B) = w_0^J$, we have pos(B', B'') = y for some $y \in W^J$. Since $pos(B^-, B') = w_0w_0^J$ and $l(w_0w_0^J) + l(y) = l(w_0w_0^Jy)$, we have $pos(B^-, B'') = w_0w_0^Jy$. Using (b), we have $w_0w_0^Jy = w_0$ hence $y = w_0^J$. This proves (c).

We prove (e). Let $B_1 \in \mathcal{B}$ be defined by $pos(B^+, B_1) = w_0 w_0^J$, $pos(B_1, B^-) = w_0^J$. Then $B_1 \in \mathcal{B}_{>0}$ by [L2, 8.13].

For u as above we have

$$pos(B^+, {}^{u}B_1) = pos({}^{u}B^+, {}^{u}B_1) = w_0w_0^J, pos({}^{u}B_1, B) = pos({}^{u}B_1, {}^{u}B^-) = w_0^J.$$

Hence $B'' = {}^uB_1$. Since $u \in U_{>0}^+$ and $B_1 \in \mathcal{B}_{\geq 0}$, we have ${}^uB_1 \in \mathcal{B}_{\geq 0}$. (See [L2, 8.12].) This proves (e). The proof of (d) is entirely similar.

Lemma 2.4. Let $B', B'' \in \mathcal{B}$ be such that $pos(B^-, B') = w_0 w_0^J$, $pos(B', B'') = w_0^J$, $pos(B^+, B'') = w_0 w_0^J$. Let $P = \pi^J(B') = \pi^J(B'')$. Assume that there exists $B \in \mathcal{B}_{\geq 0}$ such that $B \subset P$. Then

- (a) $B' \in \mathcal{B}_{\geq 0}$.
- (b) $B'' \in \mathcal{B}_{\geq 0}$.

74 G. LUSZTIG

Assume first that $B \in \mathcal{B}_{>0}$. We have pos(B',B) = y for some $y \in W^J$. Since $pos(B^-,B') = w_0w_0^J$ and $l(w_0w_0^J) + l(y) = l(w_0w_0^Jy)$, we have $pos(B^-,B) = w_0w_0^Jy$. Since $B \in \mathcal{B}_{>0}$, we have $pos(B^-,B) = w_0$. Hence $w_0w_0^Jy = w_0$ and $y = w_0^J$. Thus, B' is as in Lemma 2.3. Similarly, B'' is as in Lemma 2.3. Thus the desired result follows from Lemma 2.3(d),(e).

We now consider the general case. Let \mathcal{X} be the open set of \mathcal{B} consisting of all B_1 such that $pos(B^-, B_1) \in w_0 w_0^J W^J$. For each $B_1 \in \mathcal{X}$ there is a unique $B_1' \in \mathcal{B}$ such that $pos(B^-, B_1') = w_0 w_0^J, pos(B_1', B_1) \in W^J$; moreover, the map $\pi : \mathcal{X} \to \mathcal{B}$ given by $\pi(B_1) = B_1'$ is continuous.

Now let $B \in \mathcal{B}_{\geq 0}$ be such that $B \subset P$. We clearly have $B \in \mathcal{X}$ and $\pi(B) = B'$. There exists a sequence $(B^n)_{n\geq 1}$ in $\mathcal{B}_{>0}$ such that $\lim_{n\to\infty} B^n = B$. Then for each n we have $B^n \in \mathcal{X}$ and by the first part of the argument, we have $\pi(B^n) \in \mathcal{B}_{\geq 0}$. Using the continuity of π and the fact that $\mathcal{B}_{\geq 0}$ is closed in \mathcal{B} , it follows that $\pi(B) \in \mathcal{B}_{\geq 0}$. Hence $B' \in \mathcal{B}_{\geq 0}$. Similarly, $B'' \in \mathcal{B}_{\geq 0}$. The lemma is proved.

Lemma 2.5. Let $B' \in \mathcal{B}_{\geq 0}$ be such that $pos(B^-, B') = w_0 w_0^J, pos(B', B^+) = w_0$. Then there exists $B \in \mathcal{B}_{\geq 0}$ such that $pos(B', B) = w_0^J$.

There is a unique $u \in U^+$ such that $B' = {}^uB^-$. Since $B' \in \mathcal{B}_{\geq 0}$, we must have $u \in U_{\geq 0}^+$, by an argument in the proof of [L2, 8.4]. By [L2, 2.8], there exists $w \in W$, $(i_1, i_2, \ldots, i_k) \in I_w$ and a_1, a_2, \ldots, a_k in $\mathbb{R}_{>0}$ such that

$$u = x_{i_1}(a_1)x_{i_2}(a_2)\dots x_{i_k}(a_k).$$

By [L2, 2.7(d)], we have $u \in B^-\dot{w}B^-$, hence $pos(B^-, {}^uB^-) = pos(B^-, {}^wB^-) = w^*$. Now using $pos(B^-, {}^uB^-) = w_0w_0^J$, we see that $w^* = w_0w_0^J$.

Let $(i_{k+1}, i_{k+2}, \dots, i_n) \in I_{w_0^{J^*}}$ and let $\tilde{u} = x_{i_{k+1}}(1)x_{i_{k+2}}(1)\dots x_{i_n}(1)$. Let $\tilde{B} = \tilde{u}B^-$. Clearly, $pos(B^-, \tilde{B}) = pos(B^-, w_0^{J^*}B^-) = w_0^J$. Since $u\tilde{u} \in U_{>0}^+$, we have $u\tilde{u}B^- \in \mathcal{B}_{>0}$. Then $pos(B', u\tilde{u}B^-) = pos(uB^-, u\tilde{u}B^-) = pos(B^-, \tilde{u}B^-) = w_0^J$. The lemma is proved.

2.6. **Proof of Proposition 2.2.** The inclusion $\mathcal{P}_{>0}^J\subset\mathcal{P}_*^J$ follows from Lemma 2.3

Since $\mathcal{P}_{>0}^J$ is an open connected subset of \mathcal{P}_*^J , it remains to show that $\mathcal{P}_{>0}^J$ is a closed subset of \mathcal{P}_*^J . Now $\mathcal{P}_{\geq 0}^J \cap \mathcal{P}_*^J$ is certainly a closed subset of \mathcal{P}_*^J . Hence it is enough to show that $\mathcal{P}_{\geq 0}^J \cap \mathcal{P}_*^J \subset \mathcal{P}_{>0}^J$. Let $P \in \mathcal{P}_{\geq 0}^J \cap \mathcal{P}_*^J$. We associate B', B'' to P as in 2.1. We can find $B \in \mathcal{B}_{\geq 0}$ such that $B \subset P$. The assumptions of Lemma 2.4 are satisfied. We deduce that $B' \in \mathcal{B}_{\geq 0}$. Thus, the assumptions of Lemma 2.5 are satisfied. We deduce that there exists $B_1 \in \mathcal{B}_{>0}$ such that $\operatorname{pos}(B', B_1) = w_0^J$. We have $B_1 \subset P$; hence, $P \in \mathcal{P}_{>0}^J$. Proposition 2.2 is proved.

Note added 2/25/1998. K. Rietsch has informed me that the lemmas in this section could also be proved by arguments in Lemmas 3 and 4 of her paper An algebraic cell decomposition of the non-negative part of a flag variety, preprint, http://xxx.lanl.gov/abs/alg-geom/9709035 (1997).

3. Canonical bases and
$$\mathcal{P}_{>0}^{J}, \mathcal{P}_{\geq 0}^{J}$$

3.1. In this section we assume that G is of simply laced type. This assumption allows us to use the positivity properties of the canonical bases. We fix $J \subset I$.

If $\lambda \in X^+$ and $x \in \Lambda_{\lambda}$, we say that x > 0 (resp. $x \geq 0$) if all coordinates of x with respect to $_{\lambda}\mathbf{B}$ are > 0 (resp. ≥ 0). If L is a line in Λ_{λ} , we say that L > 0(resp. $L \ge 0$) if for some $x \in L - \{0\}$ we have x > 0 (resp. $x \ge 0$).

Proposition 3.2. Assume that $\lambda \in X^+$ is such that $\text{supp}(\lambda) \subset I - J$.

- (a) If $P \in \mathcal{P}_{>0}^J$, then $L_P^{\lambda} > 0$. (b) If $P \in \mathcal{P}_{\geq 0}^J$, then $L_P^{\lambda} \geq 0$.

We prove (a). We argue as in the proof of [L2, 8.17]. We choose $B \subset P$ such that $B \in \mathcal{B}_{>0}$. We have $L_P^{\lambda} = L_B^{\lambda}$. Now $L_P^{\lambda} = L_B^{\lambda} > 0$ by the first two lines in the proof of [L2, 8.17]. This proves (a).

We prove (b). If P is as in (b), then P is in the closure of $\mathcal{P}_{>0}^J$ in \mathcal{P}^J , hence the line L_P^{λ} is a limit of a sequence of lines $L_{P'}^{\lambda}$ with $P' \in \mathcal{P}_{>0}^J$ to which (a) is applicable so that $L_{P'}^{\lambda} \geq 0$. Hence $L_{P}^{\lambda} \geq 0$. The proposition is proved.

3.3. Let $\zeta = \sum_{j \in J} \varpi_j \in X$. For $i \in I - J$ we set $N_i = \langle \check{\alpha}_i, w_0^J(\zeta) \rangle$. It is easy to see that $N_i \geq 0$. We have the following partial converse to 3.2.

Theorem 3.4. Assume that $\lambda \in X^+$ is such that $\langle \check{\alpha}_i, \lambda \rangle \geq N_i + 1$ for all $i \in I - J$ and $\langle \check{\alpha}_i, \lambda \rangle = 0$ for all $j \in J$. (In particular, supp $(\lambda) = I - J$.) Let $P \in \mathcal{P}^J$.

- (a) We have $P \in \mathcal{P}_{>0}^J$ if and only if $L_P^{\lambda} > 0$. (b) We have $P \in \mathcal{P}_{\geq 0}^J$ if and only if $L_P^{\lambda} \geq 0$.

The proof will be given in 3.12.

Lemma 3.5. We fix $i \in I$. For any $\nu = \sum_{i' \in I} \nu_{i'} i'$ we set

$$\phi(\nu) = \sum_{i' \in I; \langle \check{\alpha}_i, \alpha_{i'} \rangle = -1} \nu_{i'} \in \mathbf{N}.$$

If $k > \phi(\nu)$ and $x \in \mathfrak{U}_{\nu}^-$, we have $f_i^k x \in \mathfrak{U}^- f_i^{k-\phi(\nu)}$.

We argue by induction on $\sum_{i' \in I} \nu_{i'}$. If $\nu = 0$, the result is trivial. Assume now that $\nu \neq 0$. Then we may assume that $x = f_{i'}x'$ for some $i' \in I$ and some $x' \in \mathfrak{U}_{\nu'}$ where $\nu' = \nu - i' \in \mathbf{N}[I]$ and that the result is true for (x', ν') instead of (x, ν) . If $\langle \check{\alpha}_i, \alpha_{i'} \rangle \neq -1$, then $\phi(\nu) = \phi(\nu')$ and

$$f_i^k x = f_i^k f_{i'} x' = f_{i'} f_i^k x' \in f_{i'} \mathfrak{U}^- f_i^{k-\phi(\nu')} \subset \mathfrak{U}^- f_i^{k-\phi(\nu)}.$$

If $\langle \check{\alpha}_i, \alpha_{i'} \rangle = -1$, then $\phi(\nu) = \phi(\nu') + 1$. Using Serre's relations we see that $f_i^k f_{i'} \in \mathfrak{U}^- f_i^{k-1}$ provided that $k \geq 2$. If $k > \phi(\nu)$, then $k \geq 2$ and $k-1 > \phi(\nu')$; hence, by the induction hypothesis we have

$$f_i^k x = f_i^k f_{i'} x' \in \mathfrak{U}^- f_i^{k-1} x' \in \mathfrak{U}^- f_i^{k-1-\phi(\nu')} = \mathfrak{U}^- f_i^{k-\phi(\nu)}.$$

The lemma is proved.

Lemma 3.6. Let b^J be the unique element of **B** such that $b^J \eta_{\zeta} = (w_0^J) \dot{\eta}_{\zeta}$. For any $i \in I - J$ and any $k > N_i$ we have $f_i^k b^J \in \mathfrak{U}^- f_i$.

Let $\nu = \sum_{i' \in I} \nu_{i'} i'$ be such that $b^J \in \mathfrak{U}_{\nu}^-$. We have $\eta_{\zeta} \in \Lambda_{\zeta}^{\zeta}$ and $(w_0^J) \eta_{\zeta} \in \Lambda_{\zeta}^{w_0^J(\zeta)}$. Hence $\zeta - \sum_{i' \in I} \nu_{i'} \alpha_{i'} = w_0^J(\zeta)$. In particular,

(a) $\nu_{i'} = 0$ for $i' \notin J$.

G. LUSZTIG

76

Since $\nu_i = 0$, the number $\phi(\nu)$ in 3.5 is given by

$$\phi(\nu) = -\langle \check{\alpha}_i, \sum_{i' \in I} \nu_{i'} \alpha_{i'} \rangle.$$

The last expression is equal to $\langle \check{\alpha}_i, w_0^J(\zeta) - \zeta \rangle = \langle \check{\alpha}_i, w_0^J(\zeta) \rangle = N_i$. Thus, $\phi(\nu) = N_i$ and the desired result follows from Lemma 3.5.

Lemma 3.7. If $j \in J$, then $f_j b^J$ is a linear combination of elements $b' \in \mathbf{B}$ with $r_{j'}(b') \geq 2$ for some $j' \in J$.

 $f_j(w_0^J)\dot{\eta}_\zeta$ is equal to $\pm(w_0^J)\dot{e}_{\tilde{j}}\eta_\zeta$ for some $\tilde{j}\in J$. But $e_{\tilde{j}}\eta_\zeta=0$. Thus, $f_j(w_0^J)\dot{\eta}_\zeta=0$. Hence $f_jb^J\eta_\zeta=0$. It follows that f_jb^J is a linear combination with non-zero coefficients of elements $b'\in \mathbf{B}$ such that either $r_{j'}(b')\geq 2$ for some $j'\in J$ or $r_i(b')\geq 1$ for some $i\in I-J$. The second alternative does not occur since (by 3.6(a)) b^J and f_jb^J belong to the subalgebra of \mathfrak{U}^- generated by $\{f_{j'}|j'\in J\}$. The lemma follows.

Lemma 3.8. Let $u \in U^-$. Assume that $u\eta_{\lambda} > 0$ in Λ_{λ} where λ is as in 3.4. Then $u(w_0^J)\eta_{\zeta} \geq 0$ in Λ_{ζ} . Moreover, the projection of $u(w_0^J)\eta_{\zeta}$ onto the $w_0(\zeta)$ -weight space of Λ_{ζ} is $\neq 0$.

Using the imbedding $U^- \subset \hat{\mathfrak{U}}^-$ (see 1.4), we can write $u = \sum_{b \in \mathbf{B}} c_b b$ (infinite sum) where $c_b \in \mathbf{R}$. Our assumption is that $c_b > 0$ for any $b \in \mathbf{B}$ such that

(a) $r_i(b) = 0$ for all $j \in J$ and $r_i(b) \leq N_i$ for all $i \in I - J$.

The product ub^J in $\hat{\mathfrak{U}}^-$ can be written as an infinite sum $ub^J = \sum_{b' \in \mathbf{B}} d_{b'}b'$ with $d_{b'} \in \mathbf{R}$. We must show that $d_{b'} \geq 0$ for any $b' \in \mathbf{B}$ such that

(b) $r_i(b') \leq 1$ for all $j \in J$ and $r_i(b') = 0$ for all $i \in I - J$.

We must also show that

(c) $d_{b'} \neq 0$ where $b' \in \mathbf{B}$ satisfies $b' \eta_{\zeta} = \xi_{\zeta}$.

We have $bb^J = \sum_{b' \in \mathbf{B}} g_{b,b'}b'$ (finite sum) where $g_{b,b'} \in \mathbf{Z}$. Hence

(d)
$$d_{b'} = \sum_{b \in \mathbf{B}^+} c_b g_{b,b'}$$
.

If for some $i \in I - J$, b satisfies $r_i(b) \ge N_i + 1$, then $bb^J \in \mathfrak{U}^- f_i^{N_i + 1} b^J \in \mathfrak{U}^- f_i$ (see Lemma 3.6). Hence (by [L1, 14.3.2(b)]) bb^J is a linear combination of elements $b' \in \mathbf{B}^+$ with $r_i(b') \ge 1$. Thus, $g_{b,b'} = 0$ whenever b' is as in (b).

If for some $j \in J$, b satisfies $r_j(b) \ge 1$, then $bb^J \in \mathfrak{U}^- f_j b^J$; hence, is a linear combination of elements $b' \in \mathbf{B}$ with $r_{j'}(b') \ge 2$ for some $j' \in J$ (see Lemma 3.7). Thus, $g_{b,b'} = 0$ whenever b' is as in (b).

We see that, if b' is as in (b), then (c) can be rewritten as

(e) $d_{b'} = \sum_b c_b g_{b,b'}$ where b runs over the $b \in \mathbf{B}$ that satisfy (a).

For such b we have $c_b > 0$ by our assumption. Since $g_{b,b'} \ge 0$ for all b,b' (see [L1, 14.4.13]), it follows that $d_{b'} \ge 0$ for all b' as in (b).

It remains to verify (c). Since $b^J \eta_{\zeta}$ is a non-zero vector in a weight space of Λ_{ζ} , we must have $\xi_{\zeta} \in \mathfrak{U}^- b^J \eta_{\zeta}$. Hence we can find $b \in \mathbf{B}$ such that $bb^J \eta_{\zeta}$ is a non-zero multiple of ξ_{ζ} . Hence, if b' is as in (c), we have $g_{b,b'} \neq 0$. Since $g_{b,b'} \geq 0$, by the earlier argument, it follows that $g_{b,b'} > 0$. Then, in (e), the contribution of b to $d_{b'}$ is $c_b g_{b,b'} > 0$. Since the contribution of the other b in (e) is ≥ 0 , it follows that $d_{b'} > 0$. The lemma is proved.

- **Lemma 3.9.** (a) Let $B \in \mathcal{B}$ be such that the projection of L_B^{λ} onto the $w_0(\lambda)$ -weight space of Λ_{λ} is non-zero and the projection of L_B^{ζ} onto the $w_0(\zeta)$ -weight space of Λ_{ζ} is non-zero. Then $pos(B^+, B) = w_0$.
 - (b) Let $B \in \mathcal{B}$ be such that the projection of L_B^{λ} onto the λ -weight space of Λ_{λ} is non-zero and the projection of L_B^{ζ} onto the ζ -weight space of Λ_{ζ} is non-zero. Then $pos(B^-, B) = w_0$.

We prove (a). We have $B = {}^{g}B^{+}$ where $g = u\dot{w}$ with $u \in U^{+}, w \in W$.

If $\dot{w}\eta_{\lambda} \neq \xi_{\lambda}$, then $u\dot{w}\eta_{\lambda} \in L_{B}^{\lambda}$ is contained in the sum of weight spaces of Λ_{λ} corresponding to weights strictly higher than $w_{0}(\lambda)$, contradicting our assumption. Similarly, if $\dot{w}\eta_{\zeta} \neq \xi_{\zeta}$, then $u\dot{w}\eta_{\zeta} \in L_{B}^{\zeta}$ is contained in the sum of weight spaces of Λ_{ζ} corresponding to weights strictly higher than $w_{0}(\zeta)$, contradicting our assumption. Thus, we must have $\dot{w}\eta_{\lambda} = \xi_{\lambda}$ and $\dot{w}\eta_{\zeta} = \xi_{\zeta}$. Hence $\dot{w}_{0}^{-1}\dot{w}$ stabilizes both η_{λ} and η_{ζ} . Since $\langle \check{\alpha}_{i}, \lambda + \zeta \rangle > 0$ for all $i \in I$, we deduce that $w_{0}^{-1}w = 1$. Hence $pos(B^{+}, B) = w_{0}$. This proves (a). The proof of (b) is entirely similar. The lemma is proved.

Lemma 3.10. (a) Let $B \in \mathcal{B}$ be such that $L_B^{\lambda} > 0$ and $L_B^{\zeta} > 0$. Then $B \in \mathcal{B}_{>0}$. (b) Let $B \in \mathcal{B}$ be such that $L_B^{\lambda} \geq 0$ and $L_B^{\zeta} \geq 0$. Then $B \in \mathcal{B}_{\geq 0}$.

We prove (a). Let \mathcal{Y} be the set of all $B \in \mathcal{B}$ such that $L_B^{\lambda} > 0$ and $L_B^{\zeta} > 0$. If $B \in \mathcal{Y}$, then B satisfies the assumptions of 3.9(a) and 3.9(b) hence B is opposed to both B^+ and B^- . From this point, the proof of (a) proceeds exactly as the proof of 8.17(a) in [L2].

Now (b) follows from (a) using the same argument as the one used in [L2] to deduce 8.17(b) from 8.17(a). The lemma is proved.

Lemma 3.11. Let $B \in \mathcal{B}$ be such that $pos(B^-, B) = w_0 w_0^J$. Assume that $L_B^{\lambda} > 0$ in Λ_{λ} where λ is as in 3.4. Then $B \in \mathcal{B}_{\geq 0}$ and $pos(B^+, B) = w_0$.

We have $B={}^gB^-$ where $g=u\dot{w}_0^{-1}(w_0^{J^*})$ and $u\in U^-$. The line $L^\lambda_B=gL^\lambda_{B^-}$ contains the vector

$$g\xi_{\lambda} = u\dot{w}_{0}^{-1}(w_{0}^{J^{*}})\xi_{\lambda} = u(w_{0}^{J})\dot{w}_{0}^{-1}\xi_{\lambda} = u(w_{0}^{J})\eta_{\lambda} = u\eta_{\lambda}.$$

Since $L_B^{\lambda} > 0$, we have $u\eta_{\lambda} > 0$ or $-u\eta_{\lambda} > 0$. The second alternative cannot hold since $u\eta_{\lambda}$ is equal to η_{λ} plus a linear combination of elements in lower weight spaces. Thus,

$$u\eta_{\lambda} > 0.$$

The line $L_B^{\zeta} = gL_{B^-}^{\zeta}$ contains the vector

$$g\xi_{\zeta} = u\dot{w}_{0}^{-1}(w_{0}^{J^{*}})\xi_{\zeta} = u(w_{0}^{J})\dot{w}_{0}^{-1}\xi_{\zeta} = u(w_{0}^{J})\eta_{\zeta}.$$

This vector is ≥ 0 , by Lemma 3.8. Thus,

(a) $L_B^{\zeta} \ge 0$.

From Lemma 3.8 we see also that

(b) the projection of L_B^{ζ} onto the $w_0(\zeta)$ -weight space of Λ_{ζ} is $\neq 0$.

This statement remains true if ζ is replaced by λ (since $L_B^{\lambda} > 0$).

Using (a) together with $L_B^{\lambda} > 0$, we see that the assumptions of Lemma 3.10(b) are satisfied; hence, $B \in \mathcal{B}_{>0}$.

Using (b) and the analogous statement for λ , we see that the assumptions of Lemma 3.9(a) are satisfied; hence, $pos(B^+, B) = w_0$. The lemma is proved.

78 G. LUSZTIG

3.12. **Proof of Theorem 3.4.** We prove 3.4(a). We attach B', B'' to P as in 2.1. Since the projections of L_P^{λ} onto the λ -weight space and the $w_0(\lambda)$ -weight space are non-zero, it follows (as in the proof of 3.9) that $pos(B^-, B') = w_0 w_0^J$ and $pos(B^+, B'') = w_0 w_0^J$. By Lemma 3.9, we have $B' \in \mathcal{B}_{\geq 0}$ and $pos(B^+, B') = w_0$. Now using Lemma 2.5, we see that there exists $B \in \mathcal{B}_{>0}$ such that $pos(B', B) = w_0^J$. Then $B \subset P$ and $P \in \mathcal{P}_{>0}^J$. This proves 3.4(a).

Now 3.4(b) follows from 3.4(a) using the same argument as the one used in [L2] to deduce 8.17(b) from 8.17(a). Theorem 3.4 is proved.

Note added 2/25/1998. One can show (K. Rietsch) that the conclusion of Theorem 3.4 holds for any $\lambda \in X^+$ such that $\operatorname{supp}(\lambda) = I - J$.

- 3.13. The following is a reformulation of a result in [L3]. Let $u \in U^-$. Write $u = \sum_{b \in \mathbf{B}} c_b b$ (infinite sum) with $c_b \in \mathbf{R}$ as in 1.4(a). Then:
- (a) We have $u \in U_{>0}^-$ if and only if $c_b > 0$ for all $b \in \mathbf{B}$.
- (b) We have $u \in U_{>0}^-$ if and only if $c_b \ge 0$ for all $b \in \mathbf{B}$.

This can be easily deduced from [L2, 5.4], using the definitions.

References

- [L1] G. Lusztig, Introduction to quantum groups, Progr. in Math. 110, Birkhäuser, Boston, 1993. MR 94m:17016
- [L2] G. Lusztig, Total positivity in reductive groups, Lie Theory and Geometry: in honor of B. Kostant, Progr. in Math. 123, Birkhäuser, Boston, 1994, pp. 531-568. MR 96m:20071
- [L3] G. Lusztig, Total positivity and canonical bases, Algebraic groups and Lie groups (G. I. Lehrer, ed.), Cambridge Univ. Press, 1997, pp. 281-295.
- [L4] G. Lusztig, Introduction to total positivity, Positivity in Lie theory: open problems, De Gruyter (to appear).

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

E-mail address: gyuri@math.mit.edu