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TOTAL POSITIVITY IN PARTIAL FLAG MANIFOLDS

G. LUSZTIG

Abstract. The projective space of Rn has a natural open subset: the set
of lines spanned by vectors with all coordinates > 0. Such a subset can be
defined more generally for any partial flag manifold of a split semisimple real
algebraic group. The main result of the paper is that this subset can be defined
by algebraic equalities and inequalities.

Let G be a simply connected semisimple algebraic group over C with a fixed
split R-structure. We will often identify a real algebraic variety with its set of
R-rational points. This applies, in particular, to G and to the flag manifold B of
G.

In [L2] we have defined (in terms of an “épinglage” of G) the open subsemigroup
G>0 of totally positive elements of G and a polyhedral open subset B>0 of B which
in some sense plays the same role for G>0 as B for G. More generally, for any
partial flag manifold PJ of G one can define the totally positive part PJ

>0. (See
[L4] or 1.5.) For J = ∅ we have PJ = B,PJ

>0 = B>0.
In this paper we show that PJ

>0 is a connected component of an explicitly defined
open real algebraic submanifold of PJ . We also show that, in the simply laced case,
PJ
>0 can be defined by algebraic inequalities involving canonical bases (see [L1]).

These results confirm conjectures made in [L4]. In the special case where J = ∅,
they reduce to known results from [L2].

1. Preliminaries

1.1. Let g be the Lie algebra of G over R. The given épinglage of G can be
specified by giving a set (ei, fi)i∈I of Chevalley generators of g. Then hi = [ei, fi]
span the Lie algebra t of an R-split maximal torus T of G.

For any i ∈ I, a ∈ R, we set

xi(a) = exp(aei) ∈ G, yi(a) = exp(afi) ∈ G.

Let Y (resp. X) be the free abelian group of all homomorphisms of algebraic groups
R∗ → T (resp. T → R∗). We write the operations in these groups as addition.
Let 〈, 〉 : Y × X → Z be the standard pairing. For i ∈ I, there is a unique
element α̌i ∈ Y whose tangent map takes 1 ∈ R to hi. Let αi ∈ X be defined by
txi(a)t

−1 = xi(αi(t)a) for all a ∈ R, t ∈ T .
Let X+ be the set of all λ ∈ X such that 〈α̌i, λ〉 ∈ N for all i ∈ I. For i ∈ I let

$i ∈ X be defined by 〈α̌i, $i〉 = 1 and 〈α̌j , $i〉 = 0 for j 6= i. Then {$i|i ∈ I} is
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a Z-basis of X . For λ ∈ X we set

supp(λ) = {i ∈ I|〈α̌i, λ〉 6= 0}.
If H is a subgroup of G and g ∈ G, we write gH instead of gHg−1.

1.2. Let B+ be the Borel subgroup of G that contains T and xi(a) for all i ∈
I, a ∈ R. Let B− be the Borel subgroup of G that contains T and yi(a) for all
i ∈ I, a ∈ R. Let U+, U− be the unipotent radicals of B+, B−. Let n− be the Lie
algebra of U−.

For any subset J of I, let P+
J be the subgroup of G generated by B+ and by

{yj(a)|j ∈ J, a ∈ R}. Note that P+
∅ = B+. Let PJ be the set of subgroups of

G of the form gP+
J for some g ∈ G. We regard PJ naturally as a real algebraic

manifold (a partial flag manifold). Note that P∅ = B (the full flag manifold). Let
πJ : B → PJ be the canonical map, that is, B 7→ P where P ∈ PJ contains B.

1.3. Let N be the normalizer of T (in G). For i ∈ I, we set

ṡi = yi(1)xi(−1)yi(1) ∈ N .

Let W = N/T and let si be the image of ṡi in W . Then W together with (si)i∈I
is a Coxeter group. Let l : W → N be the standard length function. For w ∈
W , let Iw be the set of all sequences (i1, i2, . . . , ip) in I such that p = l(w) and
si1si2 . . . sip = w. Let ẇ = ṡi1 ṡi2 . . . ṡip ∈ N where (i1, i2, . . . , ip) ∈ Iw. This is
independent of the choice of (i1, i2, . . . , ip).

If J is a subset of I, we denote by W J the subgroup of W generated by {sj|j ∈ J}.
Let wJ

0 be the unique element of maximal length of W J . We shall write w0 instead

of w∅0 . For w ∈ W , let w∗ be defined by w∗ = w0ww
−1
0 . For i ∈ I, let i∗ ∈ I be

defined by si∗ = (si)
∗. Let J∗ = {j∗|j ∈ J}. We have (wJ

0 )∗ = wJ∗
0 .

We have a W -action on X in which si ∈W acts by λ 7→ λ− 〈α̌i, λ〉αi.
For w ∈W we write wB+,wB− instead of ẇB+, ẇB−.
For B,B′ in B there is a unique w ∈ W such that (B,B′) is in the G-orbit on

B × B (diagonal action) that contains (B+,wB+) (or equivalently (B−,w
∗
B−)).

We then write pos(B,B′) = w and we regard pos as a function B × B →W .

1.4. Let U− be the enveloping algebra of n−. We have U− =
⊕

ν U−ν where ν runs

over N[I]; here the subspaces U−ν are defined by 1 ∈ U−0 , ei ∈ U−i ,U
−
ν U−ν′ ⊂ U−ν+ν′ .

Let Û− =
∏

ν U−ν . We regard Û− naturally as a completion of U−. The algebra

structure on U− extends naturally (by continuity) to an algebra structure on Û−.

There is a unique imbedding U− ⊂ Û− compatible with multiplication such that

yi(a) ∈ U− corresponds to
∑

n≥0(a
n/n!)fni ∈ Û− for any i ∈ I, a ∈ R.

Let B be the canonical basis of U− (see [L1]). Since B is compatible with the

decomposition U− =
⊕

ν U−ν , any element of Û− can be written uniquely as an
infinite sum

(a)
∑

b∈B cbb where cb ∈ R.

In particular, any element u ∈ U− can be written uniquely as an infinite sum (a).
For any i ∈ I, we define ri : B → N by

b ∈ U−f ri(b)i , b /∈ U−f ri(b)+1
i .
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1.5. Let (i1, i2, . . . , in) ∈ Iw0 . Let

U+
>0 = {xi1(a1)xi2 (a2) . . . xin(an)|a1 ∈ R>0, . . . , an ∈ R>0},

U−
>0 = {yi1(a1)yi2(a2) . . . yin(an)|a1 ∈ R>0, . . . , an ∈ R>0}.

Then U±
>0 is an open subsemigroup (without 1) of U±, independent of the choice

of (i1, i2, . . . , in) ∈ Iw0 . (See [L2].) Let U±
≥0 be the closure of U±

>0 in U±. Let

B>0 = {uB+|u ∈ U−
>0} = {u′B−|u′ ∈ U+

>0}.
(The second equality is proved in [L2, 8.7].) This is an open subset of B. Let B≥0

be the closure of B>0 in B. For J ⊂ I we set

PJ
>0 = πJ(B>0), PJ

≥0 = πJ (B≥0).

Then PJ
>0 is open in PJ and PJ

≥0 is the closure of PJ
>0 in PJ .

1.6. For λ ∈ X+, let Λλ be a simple algebraic G-module of finite dimension with
a non-zero vector ηλ such that xi(a)ηλ = ηλ for all i ∈ I, a ∈ R and tηλ = λ(t)ηλ
for all t ∈ T . For B ∈ B let LλB be the unique B-stable line in Λλ. If J ⊂ I and
supp(λ) ⊂ I − J , then for any P ∈ PJ there is a unique P -stable line LλP in Λλ; we
have LλP = LλB for any B ∈ B such that B ⊂ P .

It is known that, if supp(λ) = I − J , then P 7→ LλP is an imbedding of PJ into
the projective space of Λλ.

Let fi : Λλ → Λλ be the linear map such that, for any a ∈ R, exp(afi) : Λλ → Λλ

is given by the action of yi(a) on the G-module Λλ. The maps fi : Λλ → Λλ define
a U−-module structure on Λλ. It is clear that this extends naturally (by continuity)

to a Û−-module structure on Λλ.
If u ∈ U−, the action of u on the G-module Λλ coincides with the action of u in

the Û−-module Λλ.

1.7. For λ ∈ X+, we have Λλ =
⊕

µ∈X Λµ
λ where

Λµ
λ = {x ∈ Λλ|tx = µ(t)x ∀t ∈ X}

are the weight spaces.
Let B(λ) be the set of all b ∈ B such that ri(b) ≤ 〈α̌i, λ〉 for all i ∈ I. According

to [L1, 14.4.11], the map b 7→ bηλ is a bijection of B(λ) onto a basis λB of Λλ

(called the canonical basis of Λλ). For b ∈ B − B(λ) we have bηλ = 0. The basis

λB is compatible with the weight spaces of Λλ. Note that ηλ ∈ λB.
The following statement is obtained by combining [L1, 28.1.4] and [L1, 39.1.2].

(Note that the action of ẇ on Λλ coincides with the action of the operator T ′i,1 of
[L1, 5.2.1], with v = 1 on Λλ.)

(a) For any w ∈ W , the vector ẇ(ηλ) is the unique element of λB which lies in

Λ
w(λ)
λ .

We set ξλ = ẇ0(ηλ) ∈ λB.

2. Parabolic subgroups of general type

2.1. We fix J ⊂ I. Let P ∈ PJ . We can find a unique Borel subgroup B′ ⊂ P
such that pos(B−, B′) = z for some z ∈ W with l(zwJ

0 ) = l(z) + l(wJ
0 ). Similarly,

we can find a unique Borel subgroup B′′ ⊂ P such that pos(B+, B′′) = v for some
v ∈W with l(vwJ

0 ) = l(v)+l(wJ
0 ). We say that P is of general type if v = z = w0w

J
0
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and pos(B′, B′′) = wJ
0 . Let PJ

∗ be the set of all P ∈ PJ that are of general type.
This is an open real algebraic submanifold of PJ .

The following result has been conjectured in [L4, Sec.8]; in the case where J = ∅
it reduces to [L2, 8.14], while in the case where J has a single element, it reduces
to [L4, 8.7].

Proposition 2.2. PJ
>0 is a connected component of PJ∗ .

The proof will be given in 2.6.

Lemma 2.3. Let B ∈ B>0. Then B is opposed to B− and to B+. (See [L2, 8.7,
8.8].) Hence we can define B′, B′′ ∈ B by

pos(B−, B′) = w0w
J
0 , pos(B′, B) = wJ

0 , pos(B+, B′′) = w0w
J
0 , pos(B′′, B) = wJ

0 .

The following hold:

(a) pos(B′, B+) = w0.
(b) pos(B′′, B−) = w0.
(c) pos(B′, B′′) = wJ

0 .
(d) B′ ∈ B≥0.
(e) B′′ ∈ B≥0.

We prove (a). Let (i1, i2, . . . , in) ∈ Iw0 be such that (i1, i2, . . . , ik) ∈ Iw0wJ∗
0

and

(ik+1, ik+2, . . . , in) ∈ IwJ∗
0

.

We have B = uB− where u = xi1 (a1)xi2 (a2) . . . xin(an) with a1, a2, . . . , an in
R>0. Let

u′ = xi1 (a1)xi2 (a2) . . . xik(ak), u′′ = xik+1
(ak+1)xik+2

(ak+2) . . . xin(an)

so that u = u′u′′. Using [L2, 2.7(d)], we have

pos(u
′
B−, B) = pos(B−, u

′′
B−) = pos(B−,w

J∗
0 B−) = wJ

0 ,

pos(B−, u
′
B−) = pos(B−,w0w

J∗
0 B−) = w0w

J
0 .

Hence B′ = u′B−. Since u′ ∈ B+, we have

pos(B′, B+) = pos(u
′
B−, B+) = pos(B−, B+) = w0.

This proves (a). The proof of (b) is entirely similar.
We prove (c). Since pos(B′, B) = wJ

0 , pos(B′′, B) = wJ
0 , we have pos(B′, B′′) = y

for some y ∈ W J . Since pos(B−, B′) = w0w
J
0 and l(w0w

J
0 ) + l(y) = l(w0w

J
0 y), we

have pos(B−, B′′) = w0w
J
0 y. Using (b), we have w0w

J
0 y = w0 hence y = wJ

0 . This
proves (c).

We prove (e). Let B1 ∈ B be defined by pos(B+, B1) = w0w
J
0 , pos(B1, B

−) =
wJ

0 . Then B1 ∈ B≥0 by [L2, 8.13].
For u as above we have

pos(B+, uB1) = pos(uB+, uB1) = w0w
J
0 , pos(uB1, B) = pos(uB1,

uB−) = wJ
0 .

Hence B′′ = uB1. Since u ∈ U+
>0 and B1 ∈ B≥0, we have uB1 ∈ B≥0. (See [L2,

8.12].) This proves (e). The proof of (d) is entirely similar.

Lemma 2.4. Let B′, B′′ ∈ B be such that pos(B−, B′) = w0w
J
0 , pos(B′, B′′) = wJ

0 ,
pos(B+, B′′) = w0w

J
0 . Let P = πJ (B′) = πJ(B′′). Assume that there exists

B ∈ B≥0 such that B ⊂ P . Then

(a) B′ ∈ B≥0.
(b) B′′ ∈ B≥0.
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Assume first that B ∈ B>0. We have pos(B′, B) = y for some y ∈ W J . Since
pos(B−, B′) = w0w

J
0 and l(w0w

J
0 ) + l(y) = l(w0w

J
0 y), we have pos(B−, B) =

w0w
J
0 y. Since B ∈ B>0, we have pos(B−, B) = w0. Hence w0w

J
0 y = w0 and

y = wJ
0 . Thus, B′ is as in Lemma 2.3. Similarly, B′′ is as in Lemma 2.3. Thus the

desired result follows from Lemma 2.3(d),(e).
We now consider the general case. Let X be the open set of B consisting of all

B1 such that pos(B−, B1) ∈ w0w
J
0W

J . For each B1 ∈ X there is a unique B′
1 ∈ B

such that pos(B−, B′
1) = w0w

J
0 , pos(B′

1, B1) ∈ W J ; moreover, the map π : X → B
given by π(B1) = B′

1 is continuous.
Now let B ∈ B≥0 be such that B ⊂ P . We clearly have B ∈ X and π(B) = B′.

There exists a sequence (Bn)n≥1 in B>0 such that limn→∞Bn = B. Then for each
n we have Bn ∈ X and by the first part of the argument, we have π(Bn) ∈ B≥0.
Using the continuity of π and the fact that B≥0 is closed in B, it follows that
π(B) ∈ B≥0. Hence B′ ∈ B≥0. Similarly, B′′ ∈ B≥0. The lemma is proved.

Lemma 2.5. Let B′ ∈ B≥0 be such that pos(B−, B′) = w0w
J
0 , pos(B′, B+) = w0.

Then there exists B ∈ B>0 such that pos(B′, B) = wJ
0 .

There is a unique u ∈ U+ such that B′ = uB−. Since B′ ∈ B≥0, we must have
u ∈ U+

≥0, by an argument in the proof of [L2, 8.4]. By [L2, 2.8], there exists w ∈W ,

(i1, i2, . . . , ik) ∈ Iw and a1, a2, . . . , ak in R>0 such that

u = xi1(a1)xi2(a2) . . . xik(ak).

By [L2, 2.7(d)], we have u ∈ B−ẇB−, hence pos(B−, uB−) = pos(B−,wB−) = w∗.
Now using pos(B−, uB−) = w0w

J
0 , we see that w∗ = w0w

J
0 .

Let (ik+1, ik+2, . . . , in) ∈ IwJ∗
0

and let ũ = xik+1
(1)xik+2

(1) . . . xin(1). Let B̃ =

ũB−. Clearly, pos(B−, B̃) = pos(B−,w
J∗
0 B−) = wJ

0 . Since uũ ∈ U+
>0, we have

uũB− ∈ B>0. Then pos(B′, uũB−) = pos(uB−, uũB−) = pos(B−, ũB−) = wJ
0 .

The lemma is proved.

2.6. Proof of Proposition 2.2. The inclusion PJ
>0 ⊂ PJ

∗ follows from Lemma
2.3.

Since PJ
>0 is an open connected subset of PJ

∗ , it remains to show that PJ
>0 is a

closed subset of PJ
∗ . Now PJ

≥0 ∩ PJ
∗ is certainly a closed subset of PJ

∗ . Hence it is

enough to show that PJ
≥0 ∩ PJ

∗ ⊂ PJ
>0. Let P ∈ PJ

≥0 ∩PJ
∗ . We associate B′, B′′ to

P as in 2.1. We can find B ∈ B≥0 such that B ⊂ P . The assumptions of Lemma
2.4 are satisfied. We deduce that B′ ∈ B≥0. Thus, the assumptions of Lemma 2.5
are satisfied. We deduce that there exists B1 ∈ B>0 such that pos(B′, B1) = wJ

0 .
We have B1 ⊂ P ; hence, P ∈ PJ

>0. Proposition 2.2 is proved.

Note added 2/25/1998. K. Rietsch has informed me that the lemmas in this sec-
tion could also be proved by arguments in Lemmas 3 and 4 of her paper An
algebraic cell decomposition of the non-negative part of a flag variety, preprint,
http://xxx.lanl.gov/abs/alg-geom/9709035 (1997).

3. Canonical bases and PJ
>0,PJ

≥0

3.1. In this section we assume that G is of simply laced type. This assumption
allows us to use the positivity properties of the canonical bases. We fix J ⊂ I.
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If λ ∈ X+ and x ∈ Λλ, we say that x > 0 (resp. x ≥ 0) if all coordinates of x
with respect to λB are > 0 (resp. ≥ 0). If L is a line in Λλ, we say that L > 0
(resp. L ≥ 0) if for some x ∈ L− {0} we have x > 0 (resp. x ≥ 0).

Proposition 3.2. Assume that λ ∈ X+ is such that supp(λ) ⊂ I − J .

(a) If P ∈ PJ
>0, then LλP > 0.

(b) If P ∈ PJ
≥0, then LλP ≥ 0.

We prove (a). We argue as in the proof of [L2, 8.17]. We choose B ⊂ P such
that B ∈ B>0. We have LλP = LλB. Now LλP = LλB > 0 by the first two lines in the
proof of [L2, 8.17]. This proves (a).

We prove (b). If P is as in (b), then P is in the closure of PJ
>0 in PJ , hence the

line LλP is a limit of a sequence of lines LλP ′ with P ′ ∈ PJ
>0 to which (a) is applicable

so that LλP ′ ≥ 0. Hence LλP ≥ 0. The proposition is proved.

3.3. Let ζ =
∑

j∈J $j ∈ X . For i ∈ I − J we set Ni = 〈α̌i, wJ
0 (ζ)〉. It is easy to

see that Ni ≥ 0. We have the following partial converse to 3.2.

Theorem 3.4. Assume that λ ∈ X+ is such that 〈α̌i, λ〉 ≥ Ni + 1 for all i ∈ I − J
and 〈α̌j , λ〉 = 0 for all j ∈ J . (In particular, supp(λ) = I − J .) Let P ∈ PJ .

(a) We have P ∈ PJ
>0 if and only if LλP > 0.

(b) We have P ∈ PJ
≥0 if and only if LλP ≥ 0.

The proof will be given in 3.12.

Lemma 3.5. We fix i ∈ I. For any ν =
∑

i′∈I νi′ i
′ we set

φ(ν) =
∑

i′∈I;〈α̌i,αi′ 〉=−1

νi′ ∈ N.

If k > φ(ν) and x ∈ U−ν , we have fki x ∈ U−fk−φ(ν)
i .

We argue by induction on
∑

i′∈I νi′ . If ν = 0, the result is trivial. Assume now
that ν 6= 0. Then we may assume that x = fi′x

′ for some i′ ∈ I and some x′ ∈ Uν′

where ν′ = ν − i′ ∈ N[I] and that the result is true for (x′, ν′) instead of (x, ν). If
〈α̌i, αi′〉 6= −1, then φ(ν) = φ(ν′) and

fki x = fki fi′x
′ = fi′f

k
i x

′ ∈ fi′U
−fk−φ(ν′)

i ⊂ U−fk−φ(ν)
i .

If 〈α̌i, αi′〉 = −1, then φ(ν) = φ(ν′) + 1. Using Serre’s relations we see that

fki fi′ ∈ U−fk−1
i provided that k ≥ 2. If k > φ(ν), then k ≥ 2 and k − 1 > φ(ν′);

hence, by the induction hypothesis we have

fki x = fki fi′x
′ ∈ U−fk−1

i x′ ∈ U−fk−1−φ(ν′)
i = U−fk−φ(ν)

i .

The lemma is proved.

Lemma 3.6. Let bJ be the unique element of B such that bJηζ = (wJ
0 )̇ηζ . For any

i ∈ I − J and any k > Ni we have fki b
J ∈ U−fi.

Let ν =
∑

i′∈I νi′ i
′ be such that bJ ∈ U−ν . We have ηζ ∈ Λζ

ζ and (wJ
0 )̇ηζ ∈ Λ

wJ
0 (ζ)

ζ .

Hence ζ −∑i′∈I νi′αi′ = wJ
0 (ζ). In particular,

(a) νi′ = 0 for i′ /∈ J .
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Since νi = 0, the number φ(ν) in 3.5 is given by

φ(ν) = −〈α̌i,
∑
i′∈I

νi′αi′〉.

The last expression is equal to 〈α̌i, wJ
0 (ζ)−ζ〉 = 〈α̌i, wJ

0 (ζ)〉 = Ni. Thus, φ(ν) = Ni

and the desired result follows from Lemma 3.5.

Lemma 3.7. If j ∈ J , then fjb
J is a linear combination of elements b′ ∈ B with

rj′(b
′) ≥ 2 for some j′ ∈ J .

fj(w
J
0 )̇ηζ is equal to ±(wJ

0 )̇ej̃ηζ for some j̃ ∈ J . But ej̃ηζ = 0. Thus, fj(w
J
0 )̇ηζ

= 0. Hence fjb
Jηζ = 0. It follows that fjb

J is a linear combination with non-zero
coefficients of elements b′ ∈ B such that either rj′ (b

′) ≥ 2 for some j′ ∈ J or
ri(b

′) ≥ 1 for some i ∈ I − J . The second alternative does not occur since (by
3.6(a)) bJ and fjb

J belong to the subalgebra of U− generated by {fj′ |j′ ∈ J}. The
lemma follows.

Lemma 3.8. Let u ∈ U−. Assume that uηλ > 0 in Λλ where λ is as in 3.4. Then
u(wJ

0 )̇ηζ ≥ 0 in Λζ . Moreover, the projection of u(wJ
0 )̇ηζ onto the w0(ζ)-weight

space of Λζ is 6= 0.

Using the imbedding U− ⊂ Û− (see 1.4), we can write u =
∑

b∈B cbb (infinite
sum) where cb ∈ R. Our assumption is that cb > 0 for any b ∈ B such that

(a) rj(b) = 0 for all j ∈ J and ri(b) ≤ Ni for all i ∈ I − J .

The product ubJ in Û− can be written as an infinite sum ubJ =
∑

b′∈B db′b
′ with

db′ ∈ R. We must show that db′ ≥ 0 for any b′ ∈ B such that

(b) rj(b
′) ≤ 1 for all j ∈ J and ri(b

′) = 0 for all i ∈ I − J .

We must also show that

(c) db′ 6= 0 where b′ ∈ B satisfies b′ηζ = ξζ .

We have bbJ =
∑

b′∈B gb,b′b
′ (finite sum) where gb,b′ ∈ Z. Hence

(d) db′ =
∑

b∈B+ cbgb,b′ .

If for some i ∈ I − J , b satisfies ri(b) ≥ Ni + 1, then bbJ ∈ U−fNi+1
i bJ ∈ U−fi

(see Lemma 3.6). Hence (by [L1, 14.3.2(b)]) bbJ is a linear combination of elements
b′ ∈ B+ with ri(b

′) ≥ 1. Thus, gb,b′ = 0 whenever b′ is as in (b).
If for some j ∈ J , b satisfies rj(b) ≥ 1, then bbJ ∈ U−fjbJ ; hence, is a linear

combination of elements b′ ∈ B with rj′ (b
′) ≥ 2 for some j′ ∈ J (see Lemma 3.7).

Thus, gb,b′ = 0 whenever b′ is as in (b).
We see that, if b′ is as in (b), then (c) can be rewritten as

(e) db′ =
∑

b cbgb,b′ where b runs over the b ∈ B that satisfy (a).

For such b we have cb > 0 by our assumption. Since gb,b′ ≥ 0 for all b, b′ (see [L1,
14.4.13]), it follows that db′ ≥ 0 for all b′ as in (b).

It remains to verify (c). Since bJηζ is a non-zero vector in a weight space of Λζ,
we must have ξζ ∈ U−bJηζ . Hence we can find b ∈ B such that bbJηζ is a non-zero
multiple of ξζ . Hence, if b′ is as in (c), we have gb,b′ 6= 0. Since gb,b′ ≥ 0, by the
earlier argument, it follows that gb,b′ > 0. Then, in (e), the contribution of b to
db′ is cbgb,b′ > 0. Since the contribution of the other b in (e) is ≥ 0, it follows that
db′ > 0. The lemma is proved.
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Lemma 3.9. (a) Let B ∈ B be such that the projection of LλB onto the w0(λ)-

weight space of Λλ is non-zero and the projection of LζB onto the w0(ζ)-weight
space of Λζ is non-zero. Then pos(B+, B) = w0.

(b) Let B ∈ B be such that the projection of LλB onto the λ-weight space of Λλ is

non-zero and the projection of LζB onto the ζ-weight space of Λζ is non-zero.
Then pos(B−, B) = w0.

We prove (a). We have B = gB+ where g = uẇ with u ∈ U+, w ∈W .
If ẇηλ 6= ξλ, then uẇηλ ∈ LλB is contained in the sum of weight spaces of Λλ

corresponding to weights strictly higher than w0(λ), contradicting our assumption.

Similarly, if ẇηζ 6= ξζ , then uẇηζ ∈ LζB is contained in the sum of weight spaces of
Λζ corresponding to weights strictly higher than w0(ζ), contradicting our assump-

tion. Thus, we must have ẇηλ = ξλ and ẇηζ = ξζ . Hence ẇ−1
0 ẇ stabilizes both

ηλ and ηζ . Since 〈α̌i, λ + ζ〉 > 0 for all i ∈ I, we deduce that w−1
0 w = 1. Hence

pos(B+, B) = w0. This proves (a). The proof of (b) is entirely similar. The lemma
is proved.

Lemma 3.10. (a) Let B ∈ B be such that LλB > 0 and LζB > 0. Then B ∈ B>0.

(b) Let B ∈ B be such that LλB ≥ 0 and LζB ≥ 0. Then B ∈ B≥0.

We prove (a). Let Y be the set of all B ∈ B such that LλB > 0 and LζB > 0. If
B ∈ Y, then B satisfies the assumptions of 3.9(a) and 3.9(b) hence B is opposed to
both B+ and B−. From this point, the proof of (a) proceeds exactly as the proof
of 8.17(a) in [L2].

Now (b) follows from (a) using the same argument as the one used in [L2] to
deduce 8.17(b) from 8.17(a). The lemma is proved.

Lemma 3.11. Let B ∈ B be such that pos(B−, B) = w0w
J
0 . Assume that LλB > 0

in Λλ where λ is as in 3.4. Then B ∈ B≥0 and pos(B+, B) = w0.

We have B = gB− where g = uẇ−1
0 (wJ∗

0 )̇ and u ∈ U−. The line LλB = gLλB−
contains the vector

gξλ = uẇ−1
0 (wJ∗

0 )̇ξλ = u(wJ
0 )̇ẇ−1

0 ξλ = u(wJ
0 )̇ηλ = uηλ.

Since LλB > 0, we have uηλ > 0 or −uηλ > 0. The second alternative cannot
hold since uηλ is equal to ηλ plus a linear combination of elements in lower weight
spaces. Thus,

uηλ > 0.

The line LζB = gLζB− contains the vector

gξζ = uẇ−1
0 (wJ∗

0 )̇ξζ = u(wJ
0 )̇ẇ−1

0 ξζ = u(wJ
0 )̇ηζ .

This vector is ≥ 0, by Lemma 3.8. Thus,

(a) LζB ≥ 0.

From Lemma 3.8 we see also that

(b) the projection of LζB onto the w0(ζ)-weight space of Λζ is 6= 0.

This statement remains true if ζ is replaced by λ (since LλB > 0).
Using (a) together with LλB > 0, we see that the assumptions of Lemma 3.10(b)

are satisfied; hence, B ∈ B≥0.
Using (b) and the analogous statement for λ, we see that the assumptions of

Lemma 3.9(a) are satisfied; hence, pos(B+, B) = w0. The lemma is proved.
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3.12. Proof of Theorem 3.4. We prove 3.4(a). We attach B′, B′′ to P as in
2.1. Since the projections of LλP onto the λ-weight space and the w0(λ)-weight
space are non-zero, it follows (as in the proof of 3.9) that pos(B−, B′) = w0w

J
0 and

pos(B+, B′′) = w0w
J
0 . By Lemma 3.9, we have B′ ∈ B≥0 and pos(B+, B′) = w0.

Now using Lemma 2.5, we see that there exists B ∈ B>0 such that pos(B′, B) = wJ
0 .

Then B ⊂ P and P ∈ PJ
>0. This proves 3.4(a).

Now 3.4(b) follows from 3.4(a) using the same argument as the one used in [L2]
to deduce 8.17(b) from 8.17(a). Theorem 3.4 is proved.

Note added 2/25/1998. One can show (K. Rietsch) that the conclusion of Theorem
3.4 holds for any λ ∈ X+ such that supp(λ) = I − J .

3.13. The following is a reformulation of a result in [L3]. Let u ∈ U−. Write
u =
∑

b∈B cbb (infinite sum) with cb ∈ R as in 1.4(a). Then:

(a) We have u ∈ U−
>0 if and only if cb > 0 for all b ∈ B.

(b) We have u ∈ U−
≥0 if and only if cb ≥ 0 for all b ∈ B.

This can be easily deduced from [L2, 5.4], using the definitions.
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