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FINITE QUATERNIONIC MATRIX GROUPS

GABRIELE NEBE

Abstract. Let D be a definite quaternion algebra such that its center has
degree d over Q. A subgroup G of GLn(D) is absolutely irreducible if the
Q-algebra spanned by the matrices in G is Dn×n. The finite absolutely ir-
reducible subgroups of GLn(D) are classified for nd ≤ 10 by constructing
representatives of the conjugacy classes of the maximal finite ones. Methods
to construct the groups and to deal with the quaternion algebras are devel-
oped. The investigation of the invariant rational lattices yields quaternionic
structures for many interesting lattices.
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1. Introduction

The rational group algebra of any finite group is a semisimple algebra, hence a
direct sum of matrix rings over division algebras. Whereas for any n ∈ N there
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exists a finite group G such that Qn×n is a direct summand of QG (in other words
GLn(Q) has a finite absolutely irreducible subgroup) this is not true for an arbitrary
division algebra 6= Q. Clearly the centers of the occurring division algebras are
generated by the character values of the corresponding character of G and hence
finite abelian extensions of Q. If the center is real, then the involution on QG defined
by g 7→ g−1 for all g ∈ G preserves the corresponding direct summand Dn×n and
therefore induces an involution on it. From this one deduces the theorem of Brauer
and Speiser, which says that if the center K := Z(D) is a totally real number field,
then D is either K or a quaternion algebra over K.

For fixed n and fixed degree d := [K : Q] of the real field K over Q the unit
group of the direct summand of QG embeds into GLdn(Q) if D = K is abelian and
into GL4dn(Q) if D is a quaternion algebra over K. The image of G under this
homomorphism is a finite subgroup of GLdn(Q) resp. GL4dn(Q) with enveloping
algebra Dn×n. Since for given m ∈ N the group GLm(Q) has finitely many conju-
gacy classes of finite subgroups. This shows that for fixed n and d, there are only
finitely many possibilities for D.

This paper deals with the case where D is a definite quaternion algebra over K.
All D are determined for which Dn×n is a direct summand of QG for a finite group
G; in other words, G has an absolutely irreducible representation into GLn(D), if
n · [K : Q] ≤ 10. We derive much finer information on the unit group GLn(D) of
Dn×n by determining all of its absolutely irreducible (cf. Definition 2.1) maximal
finite (a.i.m.f.), subgroups. The classification results are given in the form of tables
containing representatives for the primitive a.i.m.f. subgroups of GLn(D) and some
information on the invariant lattices (cf. Table 6.3, Theorem 12.1, Table 12.7, and
the Theorems 12.15, 12.17, 12.19, 13.1, 13.3, 13.5, 14.1, 14.14, 15.1, 15.3, 16.1,
17.1, 18.1, 19.1, and 20.1). The conjugacy classes of the a.i.m.f. subgroups are
interrelated via common absolutely irreducible subgroups (cf. Definition 2.12) and
we determine the resulting simplicial complexes for n ≤ 7, (n, d) 6= (4, 2).

Quaternionic matrix groups have already been studied by various authors. For
instance in [Ami 55] the finite subgroups of GL1(D) are classified, [HaS 85] treats
the quasisimple finite subgroups of GL2(D), and A.M. Cohen determines the finite
quaternionic reflection groups in [Coh 80]. Quite a few of these reflection groups
are a.i.m.f. subgroups (cf. Remark 5.2). The last article is somehow closer to the
present paper, since Cohen describes the corresponding root systems. But none of
the authors treat the subject from the arithmetic point of view so they do not look
at the G-invariant lattices for the various maximal orders in D.

Any subgroup G of GLn(D) may be considered as a subgroup of GL4dn(Q) via
the regular representation of D. The rational irreducible maximal finite subgroups
of GLm(Q) are classified for m ≤ 31 (cf. [PlN 95], [NeP 95], [Neb 95], [Neb 96],
[Neb 96a]). As a consequence of this paper one obtains certain maximal finite
subgroups of GLm(Q) which contain an a.i.m.f. group. So the results give a partial
classification of the rational irreducible maximal finite subgroups of GLm(Q) for
the new degrees m=32, 36, and 40 (see Appendix).

Finite subgroups of GLm(Q) act on Euclidean lattices. In particular the maximal
finite groups are automorphism groups of distinguished lattices. The action of an
a.i.m.f. subgroup G of GLn(D) ≤ GL4dn(Q) on such a lattice L defines a Hermitian
structure on L as a lattice over its endomorphism ring EndG(L), which is an order
in the commuting algebra CQm×m(G) ∼= D. Only those lattices L where EndG(L)
is a maximal order in D are investigated. This yields Hermitian structures for
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many nice lattices. For example for the Leech lattice, the unique even unimodular
lattice of dimension 24 without roots, we find, in addition to the two well known
structures as Hermitian lattice described in [Tit 80], nine other structures over a
maximal order of a definite quaternion algebra D preserved by an a.i.m.f. subgroup
of GLn(D).

There is a mysterious connection between large class numbers of number fields
and the existence of nice lattices. For example the Leech lattice occurs as an invari-

ant lattice of the group SL2(23) due to the fact that the class number of Z[ 1+
√
-23

2 ]
is 3. The occurence of large prime divisors of the determinants of invariant lattices
of maximal finite groups also has an explanation using class groups. In GL16(Q)
there are two irreducible maximal finite subgroups fixing no lattice of which the
determinant only involves primes dividing the group order. The same phenomenon
happens in GL32(Q) where there are at least four such primitive groups. These
four groups contain a.i.m.f. subgroups of GL2(D) where D is the quaternion al-

gebra with center Q[
√

3,
√

5] ramified only at the four infinite places. The narrow
class group of the center of D, which is isomorphic to the group of stable classes
of left ideals of a maximal order in D (cf. [Rei 75]), is of order 2 and the norm of
any integral generator has a prime divisor ≥ 11. Related to this the determinants
of the integral lattices of the six maximal finite groups have prime divisors ≥ 11.

The article is organized as follows: Chapter 2 contains the fundamental defini-
tions and generalizations of some important properties of rational matrix groups
to matrix groups over quaternion algebras. The most important notion is the one
of imprimitivity reducing the determination of a.i.m.f. groups to the one of prim-
itive ones. In the next chapter known restrictions on the quaternion algebras that
can be Morita equivalent to a direct summand of a group algebra of a finite group
are used to introduce a notation for these quaternion algebras. Chapter 4 derives
methods to compute representatives of the conjugacy classes of maximal orders in
a definite quaternion algebra D and describes the results for the occurring D by
expanding the mass formulas. Chapter 5 introduces some notation used for finite
matrix groups. As an application of the classification of finite subgroups of GL2(C)
and a theorem of Brauer the a.i.m.f. subgroups of GL1(D) for arbitrary quaternion
division algebras D are determined in Chapter 6. The invariant lattices are only
determined if the degree of the center of D over Q is ≤ 5 since the class number of
D rapidly increases afterwards.

In this paper one does not know the quaternion algebra D in advance. So,
before one can use arithmetic structures and calculate the a.i.m.f. group G as an
automorphism group of a lattice, one has to build up a fairly large subgroup of G
to get enough restrictions on D. For this purpose, methods to conclude from the
existence of a small normal subgroup N in G, the existence of a (much) bigger one,
the generalized Bravais group of N (cf. Definition 7.1), are developed further. For
some groups N this generalized Bravais group splits as a tensor factor and reduces
the determination of G to the one of CG(N) which is a maximal finite subgroup in
the unit group of the commuting algebra of N . If the enveloping algebra of N is a
central simple K-algebra, the general case is not much harder.

The possible normal p-subgroups of primitive a.i.m.f. groups may be derived
from a theorem of P. Hall and are essentially extraspecial groups. The investigation
of the automorphism groups of the relevant p-groups leads to a determination of the
generalized Bravais groups of these groups in Chapter 8. The next chapter contains
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a table of the occurring quasisimple groups to fix the notation for the irreducible
characters and to give the information that is used from the classification of finite
simple groups and their character tables in [CCNPW 85].

When building up the primitive maximal finite subgroups of GLn(D) by normal
subgroups one needs not only the maximal finite matrix groups in smaller dimension
but the maximal pairs of finite groups together with their normalizers. Some of
these “building blocks” are classified in Chapter 10. In Chapter 11 four infinite
series of a.i.m.f. groups which come from representations of the groups SL2(p) for
primes p are presented. The last nine chapters deal with the determination of the
a.i.m.f. groups of GLn(D) for definite quaternion algebrasD with n[Z(D) : Q] ≤ 10.
There is one chapter for each dimension n = 2, . . . , 10.

The general strategy is as follows: Let G be a primitive a.i.m.f. subgroup of
GLn(D) for some n ∈ N and a d-dimensional Q-division algebra D. Then the order
of G is bounded in terms of nd (cf. Proposition 2.16). One has only finitely many
possibilities for the maximal nilpotent normal subgroup P :=

∏
p||G|Op(G) (see

Table 8.7). The centralizer CG(P ) is an extension of a direct product of quasisimple
groups Q := CG(P )(∞) by a subgroup of the outer automorphism group of Q. The
possibilities for Q are deduced from the classification of finite simple groups and
their character tables in [CCNPW 85] (cf. Table 9.1). So one has a finite list
of possible normal subgroups QP � G with G/QP ≤ Out(QP ). The methods
developed in Chapter 7 now allow one to conclude the existence of a usually much
larger normal subgroup B := B◦(QP ) in G. The possible extensions G of B by
outer automorphisms of QP not induced by elements of B can now be handled case
by case.

In an appendix the invariants of the lattices of the new maximal finite subgroups
of GL32(Q), GL36(Q), and GL40(Q) are displayed in the form of tables.

The computer calculations were mainly done by stand alone C-programs (for
solving systems of linear equations, calculating sublattices invariant under an order
in Qn×n with the algorithm described in [PlH 84], calculating automorphism groups
of positive definite lattices as described in [PlS 97], . . . ) developed at the Lehrstuhl
B für Mathematik of the RWTH Aachen (Germany). These algorithms are or will
be also available in MAGMA (cf. [MAGMA]). The investigation of the isomorphism
type of the matrix groups was done with the help of the two group theory packages
GAP (cf. [GAP 94]) and MAGMA. Invariant Hermitian forms for the primitive
a.i.m.f. subgroups of GLn(D) can be obtained from the author’s home page, via
http://www-math.math.rwth-aachen.de/∼LBFM/.

The work for this paper was a research project during a one year DFG-fellowship
at the University of Bordeaux. I want to thank both organizations. In particular I
express my gratitude to J. Martinet who encouraged me to treat quaternion algebras
and towards the institute of applied mathematics of the University of Bordeaux for
allowing me to use one of their computers.

2. Definitions and first properties

In this paper maximal finite subgroups of the unit group GLn(D) of Dn×n for
totally definite quaternion algebras D over totally real number fields will be deter-
mined.

Since the representation theoretical methods generalize to arbitrary division al-
gebras D, let D be a division algebra whose center K is a finite extension of Q.
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The module V := D1×n is a right module for Dn×n. Its endomorphisms are given
by left multiplication with elements of D. For computations it is convenient also
to let the endomorphisms act from the right. Then EndDn×n(V ) ∼= Dop which we
identify with D in the case of quaternion algebras.

The following definition can also be found in [ShW 86].

Definition 2.1. Let G be a finite group and ∆ : G→ GLn(D) be a representation
of G.

(i) Let L be a subring of K. The enveloping L-algebra L∆(G) is defined as

L∆(G) := {
∑

g∈∆(G)

lgg | lg ∈ L} ⊆ Dn×n.

(ii) ∆ is called absolutely irreducible if the enveloping Q-algebra ∆(G) := Q∆(G)
of ∆(G) is Dn×n.

(iii) ∆ is called centrally irreducible if the enveloping K-algebra K∆(G) is Dn×n.
(iv) ∆ is called irreducible if the commuting algebra CDn×n(∆(G)) is a division

algebra.
(v) A subgroupG ≤ GLn(D) is called irreducible (resp. centrally irreducible, abso-

lutely irreducible), if its natural representation id : G→ GLn(D) is irreducible
(resp. centrally irreducible, absolutely irreducible).

Being only interested in those groups G, to which the quaternion algebra D is
really attached, only the absolutely irreducible maximal finite (a.i.m.f.) subgroups
of GLn(D) will be determined. The irreducible maximal finite subgroups G of
GLn(D) are absolutely irreducible in their enveloping Q-algebra G, which is a
matrix ring over some division algebra G ∼= D′m×m with m2dimQ(D′) dividing
n2dimQ(D). The reducible maximal finite subgroups of GLn(D) can be built up
from the irreducible maximal finite subgroups of GLl(D) for l < m.

As in the case D = Q, the notion of primitivity gives an important reduction in
the determination of the maximal finite subgroups.

Definition 2.2. (cf. [Lor 71] (1.3)) LetG ≤ GLn(D) be an irreducible finite group.
Consider V := D1×n as D-G-bimodule. G is called imprimitive, if there exists a
decomposition V = V1 ⊕ . . .⊕ Vs of V as a nontrivial direct sum of D-left modules
such that G permutes the Vi (i.e. for all g ∈ G, for all 1 ≤ i ≤ s, ∃1 ≤ j ≤ s such
that Vig ⊆ Vj). If G is not imprimitive, G is called primitive.

If G is an imprimitive group and V = V1 ⊕ . . . ⊕ Vs a nontrivial G-stable de-
composition of V as in the definition, the natural representation of G is induced
up from the natural representation ∆1 of the subgroup U := StabG(V1) on V1. If
G is absolutely irreducible, then ∆1 : U → EndD(V1) is also absolutely irreducible.
Especially the imprimitive a.i.m.f. subgroups of GLn(D), being maximal finite, are
wreath products of primitive a.i.m.f. subgroups of GLd(D) with the full symmetric
group Sn

d
of degree n

d for divisors d of n.
As for D = Q, the primitive groups have the following frequently used property:

Remark 2.3. Let G ≤ GLn(D) be a primitive finite group and N �G be a normal
subgroup. Then the enveloping K-algebra KN ⊆ Dn×n is simple.

Proof. Assume that KN is not simple. Since KN is semisimple there exists a
decomposition 1 = e1 + . . . + es of 1 ∈ KN into centrally primitive idempotents
ei ∈ KN (1 ≤ i ≤ s). The group G acts by conjugation on N , hence on KN and
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therefore on the set of centrally primitive idempotents in KN . So the decomposition
V = V e1⊕. . .⊕V es is stable under the action of G. By primitivity of G this implies
s = 1.

Corollary 2.4. Let G ≤ GLn(D) be a primitive finite subgroup and N � G be a
normal subgroup.

(i) If N is a p-group, then (p− 1) · pα divides dimQ(K) · n for some α ≥ 0.
(ii) If N is abelian, then N is cyclic.

Notation 2.5. Let G be a primitive subgroup of GLn(D) and N � G a normal
subgroup of G. By Remark 2.3, the restriction of the natural character of G to N
is a multiple of a K-irreducible character χ, where K := Z(D). By the theorem of
Skolem-Noether the knowledge of χ is sufficient to identify the conjugacy class of
N in GLn(D). This will be expressed by the phrase G contains N with character
χ.

Invariant Hermitian lattices. For the rest of this chapter assume that D is a
totally definite quaternion algebra, and let ∗ : D → D be the canonical involution
of D such that xx∗ ∈ K = Z(D) for all x ∈ D and such that ∗ induces the identity
on the center K. (cf. [Scha 85, (8.11.2)]) We extend ∗ to Dn×n by applying the
involution to the entries of the matrices. Then g 7→ (g∗)t where gt denotes the
transposed matrix of g is an involution on the algebra Dn×n.

Then the maximal finite subgroups of GLn(D) can be described as full automor-
phism groups of totally positive definite Hermitian lattices as follows:

Definition and Lemma 2.6. Let G be a finite subgroup of GLn(D) and V :=
D1×n the natural G-right-module and let M be an order in D = EndDn×n(V ).

(i) An M-lattice L ≤ V is a finitely generated projective M-left module with
QL = V .

(ii) The set

ZM(G) := {L ≤ V | L is a M-lattice and Lg ⊆ L}
of G-invariant M-lattices in V is nonempty.

(iii) The K vector space

F(G) := {F ∈ Dn×n | F t = F ∗ and gF (g∗)t = F for all g ∈ G}
of G-invariant Hermitian forms contains a totally positive definite form, i.e.

F>0(G) := {F ∈ F(G) | ε(F )is positive definite

for all embeddings ε : K ↪→ R} 6= ∅.
(iv) Let L be an M-lattice in V and F ∈ Dn×n a totally positive definite Hermitian

form. The automorphism group

Aut(L, F ) := {g ∈ GLn(D) | Lg ⊆ L and gF (g∗)t = F}
of L with respect to F is a finite group.

(v) The a.i.m.f supergroups of G are of the form Aut(L, F ) for some L ∈ ZM(G)
and F ∈ F>0(G).

Proof. (ii) Let (b1, . . . , bn) be a D-basis of V . Then

L := {
n∑
i=1

mibigi | mi ∈ M, gi ∈ G} ∈ ZM(G).
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(iii) Choose any totally positive definite Hermitian form F ∈ Dn×n. Define F0 :=∑
g∈G gF (g∗)t. Then F0 ∈ F>0(G) is totally positive definite.

(iv) Fix an embedding ε : K → R and let m := max{ε(vF (v∗)t) | v ∈ S}, where S
is a finite subset of L generating L. Then the set {x ∈ L | ε(xF (x∗)t) ≤ m} is a
finite set containing the images of the elements of S under the automorphisms
g ∈ Aut(L, F ). Since g is uniquely determined by these images, one has only
finitely many possibilities for g.

(v) Follows from (ii)-(iv).

In view of 2.6 (v), one may calculate all a.i.m.f. supergroups of a finite subgroup
G ≤ GLn(D) as automorphism groups of G-invariant lattices.

The centralizer CGLn(D)(G) of G in GLn(D) acts on ZM(G). Two lattices are
called isomorphic if they lie in the same orbit under this action. Clearly a system
of representatives of isomorphism classes of lattices in ZM(G) suffices to get all
a.i.m.f. supergroups. So the theorem of Jordan and Zassenhaus says that one may
always find a finite critical set of invariant lattices in the sense of the following
definition.

Definition 2.7. A set of lattices S ⊆ ZM(G) is called critical (resp. normal crit-
ical) if for all finite groups H with G ≤ H ≤ GLn(D) (resp. G � H ≤ GLn(D))
there is an L ∈ S and some F ∈ F>0(G) such that H ≤ Aut(L, F ). If S = {L}
consists of one lattice, L itself is called (normal) critical.

Definition 2.8. Let L ∈ ZM(G) and F ∈ F>0(G).

(i) The Hermitian dual lattice is defined as

L∗ := {v ∈ D1×n | vF lt ∈ M for all l ∈ L}.
(ii) If L is integral (i.e. L∗ ⊇ L), then its Hermitian determinant is det(L) :=

|L∗/L|.
Remark 2.9. For all L ∈ ZM(G) and F ∈ F>0(G) the Hermitian dual lattice L∗ is
also in ZM(G) (cf. [Neb 98, Lemma 1.1]).

The rational maximal finite supergroups. Recall that D is a totally definite
quaternion algebra with center K and d := [K : Q]. Via the regular representation
of D, one may embed GLn(D) into GL4dn(Q). Therefore it makes sense to ask for
the rational maximal finite supergroupsG ≤ H ≤ GL4dn(Q) of an a.i.m.f. subgroup
G of GLn(D). The relation of the lattices is given in the following

Definition 2.10 (cf. [Scha 85, p. 348]). Let M be an order in D and L an M-
lattice. Let F ∈ Dn×n be a totally positive definite Hermitian form. The corre-
sponding Euclidean Z-lattice L is the set L (considered as Z-module) together with
the trace form tr(F ) : (v, w) 7→ tr(vF (w∗)t) where tr is the reduced trace of D over
Q.

Remark 2.11. (i) Since tr(x) = tr(x∗), the trace form tr(F ) of a Hermitian form
F is a symmetric Q-bilinear form. If F is totally positive definite, then tr(F ) is
positive definite.

(ii) Let G ≤ GLn(D) be absolutely irreducible. Since D is totally definite the
Q-vector space of G-invariant quadratic forms on Q4dn is {tr(F ) | F ∈ F(G)}
= {tr(aF0) | a ∈ K} for any F0 ∈ F>0(G). As in Remark 2.6 one gets that
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the rational maximal finite supergroups of G are of the form Aut(L, tr(F )) :=
{g ∈ GL4dn(Q) | Lg = L, gtr(F )gt = tr(F )} for some F ∈ F>0(G) and L ∈
ZM(G), where M := EndG(L) is an order in D.

(iii) As the G-invariant Hermitian forms give rise to embeddings of G into an or-
thogonal group over K, one may also consider the invariant skew-Hermitian forms
to get embeddings of G into the symplectic group over K. For an a.i.m.f. subgroup
G of GLn(D) the K vector space F(G) is of dimension one, whereas the K vector
space of invariant skew-Hermitian forms is D0F(G), where D0 denotes the quater-
nions of trace 0 in D, is of dimension 3 over K. Therefore the embedding of G into
the symplectic group is not unique.

Common absolutely irreducible subgroups. Having found the a.i.m.f. sub-
groups of GLn(D), one may interrelate them via common absolutely irreducible
subgroups in the sense of the following definition.

Definition 2.12. The simplicial complexM irr
n (D) of a.i.m.f. subgroups ofGLn(D)

has the GLn(D)-conjugacy classes of a.i.m.f. groups of degree n as vertices. The
s + 1 vertices P0, . . . , Ps form an s-simplex, if there exist representatives Gi ∈ Pi
and an absolutely irreducible subgroup H ≤ GLn(D) with H ≤ Gi for i = 0, . . . , s.

This definition is a straightforward generalization of the definition of M irr
n (Q) for

rational irreducible matrix groups (cf. [Ple 91]). One might think of generalizations
of this definition to common uniform subgroups U (i.e. dimK(F(U)) = 1) of a.i.m.f.
groups in GLn(D) and GLn(D′) for (different) quaternion algebras D and D′ with
the same center K. A second possibility to interrelate a.i.m.f. subgroups of GLn(D)
for different quaternion algebras D (or even simplices in M irr

n (D)) is described in
Remark 12.11.

In this paper we determine the simplicial complexes M irr
n (D) for n ≤ 7 with

(n, [Z(D) : Q]) 6= (4, 2).
As for the simplicial complexes of rational matrix groups the D-isometry class of

the invariant Hermitian forms distinguishes the different components of M irr
n (D).

By [Scha 85, Theorem 10.1.7] two Hermitian forms are isometric if and only if
their trace forms (cf. Definition 2.10) are isometric quadratic forms over the center
K = Z(D). Hence in our situation all totally positive definite Hermitian forms of
a given dimension are isometric.

To build up the a.i.m.f. groups, but also to find their common absolutely irre-
ducible subgroups, it is helpful to know divisors of the group order.

Lemma 2.13. Let U ≤ GLn(D) be an absolutely irreducible subgroup, M a maxi-
mal order in D and L ∈ ZM(U). Let p ∈ Z be a prime.

(i) If p ramifies in D, then p divides the order of U .
(ii) Let F be a U -invariant Hermitian form on L. If p divides |AL∗/L| for all

fractional ideals A of K such that AL∗ ⊇ L, then p divides the order of U .

Proof. (i) If p ramifies inD , then p divides the discriminant of the maximal orders in
Dn×n. The order ZU is contained in some maximal order and hence its discriminant
is also divisible by p. Since ZU is an epimorphic image of the group ring ZU , p
divides the order of U .

(ii) Since M is a maximal order, by [Neb 98, Lemma 1.1] the Hermitian dual
lattice L∗ is also a M − U -lattice. Let R be the ring of integers in K and ℘ be
a prime ideal containing p. Assume that p |6 |U |. Then by (i) ℘ does not ramify
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in D and therefore the two-sided ideals of R℘ ⊗R M are of the form R℘ ⊗R AM
for fractional ideals A of R. If for all fractional ideals A of R the completion
R℘⊗RAL∗ 6= R℘⊗R L, then the R℘-order R℘⊗R MU is not a maximal order and
therefore p divides |U | which is a contradiction.

The next lemma may be proved similarly to Lemma (II.7) of [NeP 95]:

Lemma 2.14. Let N �G ≤ GLn(D) be a normal subgroup of G with |G/N | =: s.
Then s · dimQ(QN) ≥ dimQQG.

Proof. If G =
⋃s
i=1 Ngi and (b1, . . . , bm) is a Q-basis of QN , then the elements

bjgi (1 ≤ i ≤ s, 1 ≤ j ≤ m) generate QG.

For normal subgroups of index 2 in an absolutely irreducible subgroup G of
GLn(D) one may now strengthen Lemma 2.13:

Lemma 2.15. Let N � G be a normal subgroup of index two in an absolutely
irreducible subgroup G of GLn(D). If p is a prime ramifying in D, then p divides
the discriminant of the enveloping Z-order ZN of N .

Proof. If N is already absolutely irreducible, the lemma follows from Lemma 2.13.
So assume that N is not absolutely irreducible. Let g ∈ G−N . Then ZG contains
the order O := ZN ⊕ZNg of finite index. The discriminant of O is disc(ZN)2 the
square of the discriminant of ZN .

By the formula in [Schu 05] the prime divisors of the order of a finite group G
may be bounded in terms of the character degree and the (degree of) the character
field of an irreducible faithful character of G.

Proposition 2.16. Let χ be a faithful irreducible rational character of a finite
group G with χ(1) = n. Then the order of G divides

Mn :=
∏

p≤n+1

pbn/(p−1)c+bn/(p(p−1))c+bn/(p2(p−1))c+...

where the product runs over all primes p ≤ n+ 1.

In view of Lemma 2.13 (i), one now has only finitely many candidates for quater-
nion algebras D such that GLn(D) has a finite absolutely irreducible subgroup, if
one bounds n and the degree of the center of D over Q.

But there remain too many candidates for D to be dealt with separately. So the
main strategy to find the primitive maximal finite absolutely irreducible subgroups
G ≤ GLn(D) will be to build them up using normal subgroups.

The following lemma can be shown to hold as in [Neb 96, Lemma 1.13]:

Lemma 2.17. Let N �G ≤ GLn(D) be a normal subgroup of G with |G/N | = 2.
Assume that QN and QG = Dn×n are simple algebras with centers K resp. K+,
where K is complex and K+ is the maximal totally real subfield of K. Then the
isoclinic group is not a subgroup of GLn(D).

Immediately from the theorem of Brauer and Witt one gets the following lemma:

Lemma 2.18. Let U ≤ G, χ an irreducible character of G and χ1 an irreducible
constituent of χ|U . Assume that the character fields of χ and χ1 are equal. If
(χ|U , χ1) is odd, then the Schur index of χ is 2 at exactly those primes where χ1

has Schur index 2.
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3. The Schur subgroup of the Brauer group

Standard references for this section are [Yam 74] and [Rei 75].
Let K be a number field and Br(K) denote the Brauer group of K. If G is a

finite group, then by Maschke’s theorem, the algebra KG is a finite dimensional
semisimple K-algebra, hence KG =

⊕
Ai decomposes into a direct sum of simple

K-algebras Ai
∼= Dni×ni

i , which are full matrix rings over K-division algebras Di.
The Schur subgroup S(K) of Br(K) consists of the classes [D] where D is a central
simple K-division algebra for which there is an n ∈ N and a finite group G such
that Dn×n is a ring direct summand of KG.

If Dn×n is a ring direct summand of the rational group algebra QG and K
contains the center Z(D), then [K ⊗Z(D) D] ∈ S(K), so the algebra QG contains
all information about the Schur subgroups of the Brauer group of algebraic number
fields.

Definition 3.1. Let D be a Q-division algebra. Define

µ(D) := min{n ∈ N | Dn×n is a ring direct summand of QG
for some finite group G} ∈ N ∪ {∞}.

If µ(D) <∞, then the center K := Z(D) is the character field of some character
of a finite group, hence an abelian extension of Q.

Moreover, by a theorem of Benard and Schacher (cf. [Yam 74], Theorem 6.1),
D has uniformly distributed invariants, which means in particular, that the Schur
index of the completions D ⊗K℘, does not depend on the prime ℘ of K but only
on the rational prime ℘ ∩Q contained in it.

In this paper, we only treat the case, where K is a (totally) real number field. In
this case, the theorem of Brauer and Speiser says, that D is a quaternion algebra,
i.e. all local Schur indices are 1 or 2. So D is uniquely determined by the set of the
rational primes that are contained in primes of K that ramify in D.

Notation 3.2. Let µ(D) < ∞ and assume that K := Z(D) = Q[α] is a (totally)
real number field. Let r(D) := {p1, . . . , pk} ⊆ N∪ {∞} be the set of those rational
primes that are contained in a prime of K that ramifies in D. Then D is denoted
by Qα,p1,... ,pk .

If K = Q or K = Q[
√
d] is a real quadratic field, then Theorems 7.2, 7.8, and

7.14 of [Yam 74] characterize the set of all central simple K-division algebras D
with µ(D) <∞.

The results of this paper in particular give information on µ(D) for quaternion
algebras D with totally real center and [Z(D) : Q] · µ(D) ≤ 10 (cf. Table 4.1). It
turns out that in these small dimensions, the pi are either inert or ramified in Z(D).

It is not true, that for all n > µ(D) there is a finite group G such that Dn×n is a
ring direct summand of QG. However, taking wreath products (or tensor products
with absolutely irreducible subgroups of GLd(Q)) one shows that this holds for
all multiples n = d · µ(D) of µ(D). It would be interesting to know, if the ideal
generated by the n for which there is a finite group G such that Dn×n is a ring
direct summand of QG in general is Z.
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4. Algorithms for quaternion algebras

Let D be a totally definite quaternion algebra over K = Z(D). Let G be an
a.i.m.f. subgroup of GLn(D). To find some distinguished integral lattices on which
G acts, we embed GLn(D) (and hence G) into GL4dn(Q). In the tables we will give
rational irreducible maximal finite (r.i.m.f.) subgroups of GL4dn(Q) containing G
and fixing a G-lattice L for which EndG(L) ⊆ D is a maximal order. The set of
isomorphism classes of such G-lattices is the union of the sets of isomorphism classes
of MG-lattices where M runs through a system of representatives of conjugacy
classes of maximal orders in D.

To check completeness we use the well known mass formulas developed by M.
Eichler [Eic 38] (cf. [Vig 80]).

Let h be the class number of K, D the discriminant of D over K, and M any
maximal order in D. Let (Ii)1≤i≤s be a system of representatives of left ideal classes
of M, Mi := {x ∈ D | Iix ⊆ Ii} the right order of Ii and ωi := [M∗

i : R∗] the index
of the unit group of R, the ring of integers in K, in the unit group of Mi. Then
one has:

s∑
i=1

ω−1
i = 21−d · |ζK(−1)| · h ·

∏
℘|D

(n(℘)− 1)

where the product is taken over all primes ℘ of R dividing the discriminant D of
D and n denotes the norm of K over Q.

If Mi and Mj are conjugate in D, one may choose a new representative for the

class of Ij to achieve that Mi = Mj . Then I−1
i Ij is a 2-sided Mi-ideal. Moreover

the M-left ideals Ii and Ij are equivalent, if and only if I−1
i Ij is principal.

So if one reorders the Mi such that the first t orders M1, . . . ,Mt form a system
of representatives of conjugacy classes of maximal orders in D and Hi is the number
of isomorphism classes of 2-sided ideals of Mi (1 ≤ i ≤ t), then

s∑
i=1

ω−1
i =

t∑
i=1

ω−1
i Hi.

The occurring quaternion algebras have the additional property of having uni-
formly distributed invariants (cf. Chapter 3). Therefore the Galois groupGal(K/Q)
acts on D:

Choose a K-basis (1 =: b1, b2, b3, b4) of D. An element σ ∈ Gal(K/Q) defines an
automorphism σ of the Q-algebra D by σ(

∑
aibi) :=

∑
σ(ai)bi. By the theorem

of Skolem and Noether the class σInn(D) of the automorphism σ does not depend
on the chosen basis. Therefore one gets a well defined action of Gal(K/Q) on the
set of conjugacy classes of maximal orders in D. This action preserves ωi and Hi.

Let ω1
i := 1

2 |{x ∈ Mi | xx∗ = 1}| be the index of ±1 in the group of units in Mi

of norm 1, and ωnsi := N(M∗
i )/(R

∗)2. Then ωi = ω1
i · ωnsi .

If ni denotes the length of the orbits of the class of Mi under Gal(K/Q) one
gets Table 4.1 below.

In the first column the degree d := [K : Q] is given, in the second one the
name of the quaternion algebra D as explained in Notation 3.2. The third column
contains the relevant dimensions n and in the last column, the mass formula of D
is expanded. Here the sum is taken over a system of representatives of the orbits
of Gal(K/Q) on the conjugacy classes of maximal orders in D.
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Table 4.1. The totally definite quaternion algebras Q with d :=
[Z(Q) : Q] ≤ 5 for which there is an n ≤ 10

d such that GLn(Q) has
a finite absolutely irreducible subgroup:

d D n
P

ni(ω
1
i · ωnsi )−1 ·Hi

1 Q∞,2 1 . . . 10 12−1

Q∞,3 1 . . . 10 6−1

Q∞,5 2, 4, 6, 8, 10 3−1

Q∞,2,3,5 8 3−1 + 3−1

Q∞,7 3, 4, 6, 8, 9, 10 2−1

Q∞,11 5, 6, 10 2−1 + 3−1

Q∞,13 6 1
Q∞,17 8 1 + 3−1

Q∞,19 9, 10 1 + 2−1

2 Q√2,∞ 1 . . . 5 24−1

Q√2,∞,2,3 2, 4 1

Q√2,∞,2,5 4 3−1

Q√3,∞ 1 . . . 5 (12 · 2)−1 + (12 · 2)−1

Q√5,∞ 1 . . . 5 60−1

Q√5,∞,2,3 4 5−1 · 2
Q√5,∞,2,5 2, 4 5−1

Q√5,∞,5,3 2, 4 5−1 + 3−1

Q√6,∞ 2, 4 (12 · 2)−1 + (6 · 2)−1 + (4 · 2)−1

Q√7,∞ 3, 4 (4 · 2)−1 + (3 · 2)−1 + (12 · 2)−1

Q√10,∞ 4 3−1 + 2−1 + 12−1 + 4−1

Q√11,∞ 5 12−1 + 2−1

Q√13,∞ 3 12−1

Q√15,∞ 4 3−1 + (1 · 2)−1 + (2 · 2)−1 + 6−1+

(3 · 2)−1 + 2−1 + 12−1 + (2 · 2)−1

Q√17,∞ 4 6−1

Q√21,∞ 3, 4 12−1 + 6−1

Q√33,∞ 5 6−1 + 3−1

3 Qθ7,∞,7 1 . . . 3 14−1

Qθ7,∞,2 2 12−1

Qθ7,∞,3 2 6−1 + 7−1

Qθ9,∞,3 1 . . . 3 18−1

Qθ9,∞,2 2 12−1 + 9−1

Qω13,∞,13 2 1
Qω19,∞,19 3 2−1 + 1 + 3 · 1

4 Qθ15,∞ 1, 2 (30 · 2)−1 + 60−1

Qθ16,∞ 1, 2 16−1 + 24−1

Qθ20,∞ 1, 2 (20 · 2)−1 + (12 · 2)−1 + 60−1

Qθ24,∞ 1, 2 (24 · 2)−1 + (8 · 2)−1 + 24−1

Qη17,∞ 2 6−1 + 2 · 12−1

Q√2+
√

5,∞ 2 24−1 + 60−1

Q√2+
√

5,∞,2,5 2 5−1 + 2 · 1 · 2
Qη40,∞ 2 (10 · 2)−1 + 60−1 + 5−1

+(2 · 2)−1 + (12 · 2)−1 + (4 · 2)−1

Q√3+
√

5,∞ 2 60−1 + (12 · 2)−1 + (12 · 2)−1 + (5 · 2)−1

Qη48,∞ 2 (6 · 2)−1 + (2 · 2)−1 + 2 · 3−1 + 24−1

+(8 · 2)−1 + 2 · (1 · 2)−1 + (4 · 2)−1

+(1 · 2)−1 + (8 · 2)−1 + (2 · 2)−1

5 Qθ11,∞,11 1, 2 22−1 + 3−1

Qθ11,∞,2 2 12−1 + 1−1 + 11−1

Qθ11,∞,3 2 6−1 + 1−1 · 2 + 5 · 1−1 + 1−1 · 2
Qσ25,∞,5 2 3−1 + 5 · 3−1 · 2 + 5 · 1−1 · 2 + 5 · 1−1 + 5 · 1−1
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For the algebraic numbers the following notation is used:

Notation 4.2. As usual ζm denotes a primitive m-th root of unity in C and
√
m

a square root of m. Moreover θm := ζm + ζ−1
m denotes a generator of the maxi-

mal totally real subfield of the m-th cyclotomic field. ωm (resp. ηm, σm) denote
generators of a subfield K of Q[ζm] with Gal(K/Q) ∼= C3 (resp. C4, C5).

The algorithmic problems in evaluating these formulas are:

a) determine the ideals Ij .
b) decide whether two maximal orders are conjugate in D.
c) determine the length of the orbit of M under the Galois group Gal(K/Q).
d) determine ω−1

i Hi.

Problem a) is the major difficulty here. There is of course the well known
geometric approach to this question using the Minkowski bound on the norm of
a representative of the ideal classes. From the arithmetic point of view one may
apply two different strategies to find the ideals Ij :

There is a coarser equivalence relation than conjugacy namely the stable iso-
morphism cf. [Rei 75, (35.5)]. The theorem of Eichler [Rei 75, (34.9)] says that
the reduced norm is an isomorphism of the group of stable isomorphism classes of
M-left ideals onto the narrow class group of the center K. This gives estimates for
the norms of the ideals Ij .

A second arithmetic strategy is to look for (commutative, nonfull) suborders O
of D. The number of the maximal orders Mi containing O as a pure submodule
can be calculated using the formula [Vig 80, (5.12)].

Example. Let D := Q√
3+
√

5,∞. Then the narrow class group of K = Q[
√

3 +
√

5]
has order 2 and is generated by a prime ideal dividing 11. So there are two stable
isomorphism classes of M-ideals one containing the ideal classes of I1, I2, and I3,
the other one contains that of of I4 (in the notation of Table 4.1). The second

strategy applied to O = Z[ζ5,
√

3] gives that there are two orders Mi containing
a fifth root of unity, because the class number of O is 2 (and again a prime ideal
dividing 11 generates the class group).

The problems b), c), and d) can be dealt with using the normform of D:
Let D be a definite quaternion algebra over K and N be its reduced norm which

is a quadratic form with associated bilinear form 〈x, y〉 = tr(xy∗) where tr is the
reduced trace and ∗ the canonical involution of D. The special orthogonal group
SO(D, N) := {ϕ : D → D | N(ϕ(x)) = N(x) for all x ∈ D, det(ϕ) = 1} is the group
of all proper isometries of D with respect to the quadratic form N . The following
proposition is surely well known (cf. [Vig 80, Théorème 3.3]) (cf. also [DuV 64] for
a geometric interpretation of the quaternionic conjugation).

Proposition 4.3. With the notation above one has

SO(D, N) = {x 7→ a1xa
−1
2 | ai ∈ D∗, N(a1) = N(a2)}

is induced by left multiplication with elements of D of norm 1 and conjugation with
elements of D∗.
Proof. Clearly the mapping x 7→ a1xa

−1
2 with ai ∈ D∗ and N(a1) = N(a2) is a

proper isometry of the K-vector space (D, N).
To see the converse inclusion let D = 〈1, i, j, ij = k = −ji〉K with i2 = a and

j2 = b and ϕ : D → D be an isometry of determinant 1 with respect to N . Then
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N(ϕ(1)) = 1 and after left multiplication by ϕ(1)−1 we may assume that ϕ(1) = 1.
Let b2 := ϕ(i), b3 := ϕ(j), and b4 := ϕ(k). Then tr(bi1) = 0 and hence b∗i = −bi
for all i = 2, 3, 4, and b22 = a, b23 = b, b24 = −ab. Moreover tr(bib

∗
j ) = 0 = −tr(bibj)

and hence bibj = −bjbi for all 2 ≤ i 6= j ≤ 4. Thus (b2b3)b4 = b4(b2b3) and
therefore b4 ∈ Kb2b3 is an element of trace 0 in the field generated by b2b3. Since
b24 = (b2b3)

2, this implies that b4 = ±b2b3. If b4 = b2b3, then ϕ is an K-algebra
automorphism of D and hence induced by conjugation with an element of D∗ and
we are done. In this case ϕ is of determinant 1. Hence if b4 = −b2b3, the mapping
ϕ has determinant −1, which is a contradiction.

Corollary 4.4. Let Mi (i = 1, 2) be two orders in D. Then M1 is conjugate to
M2 if and only if the lattices (M1, N) and (M2, N) are properly isometric.

Proof. Clearly if the two orders are conjugate the lattices are properly isometric,
so we show the converse: let ϕ : M1 → M2 be a proper isometry with respect to
N . By the proposition there are elements a1, a2 ∈ D∗ with N(a1) = N(a2) such
that a1M1a

−1
2 = M2. Since 1 ∈ M1 this implies that a1a

−1
2 is an element of norm

1 in M2 and hence M2 = a1a
−1
2 a2M1a

−1
2 = a2M1a

−1
2 is conjugate to M1.

Since ∗ is the identity on the subspace K and the negative identity on the 3-
dimensional subspace 1⊥ consisting of the elements of D with trace 0, one easily
sees that ∗ is an improper isometry (of determinant -1) of (D, N). Thus, if one of
the orders M1 or M2 is stable under ∗, one may omit the word “properly” in the
corollary above. Note that this holds particularly for maximal orders.

Corollary 4.5. Let M be an order in D. The group of proper isometries of the
lattice (M, N) is induced by the transformations of the form b 7→ axbx−1, where
a ∈ M is an element of norm 1 and x ∈ ND∗(M) normalizes M.

By Corollary 4.5 the order of the isometry group |Aut(Mi, N)| = ω1
i · ωi · 2s · 2 ·

2 · H−1
i , where s is the number of finite primes of K that ramify in D. Now 2ω1

i

is simply the number of shortest vectors of the lattice (Mi, N) and can easily be
calculated. Hence ω−1

i Hi = |Aut(Mi, N)|−1 · 2s+2 · ω1
i .

Corollary 4.6. Let M be an order in D and σ ∈ Gal(K/Q). Then M is conjugate
to σ(M), if and only if the R-lattices (M, N) and (M, σ ◦N) are isometric.

Proof. The corollary follows from Corollary 4.4 and the fact that tr(σ(x)σ(y∗)) =
σ(tr(xy∗)).

5. Notation for the finite matrix groups

The notation for the absolutely irreducible maximal finite (a.i.m.f.) subgroups
of GLn(D) is similar to the one for the rational irreducible maximal finite (r.i.m.f.)
subgroups of GLn(Q).

If D = Qα,p1,... ,ps , then the (conjugacy class of an) a.i.m.f. group G ≤ GLn(D)
is denoted by α,p1,... ,ps [G]n.

The automorphism groups of root lattices are usually denoted by the name of
the corresponding root system An, . . . , E8, F4.

For the quasisimple groups the notation in [CCNPW 85] is used with the excep-
tion that the alternating group of degree m is denoted by Altm.
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A maximal finite matrix group always contains the negative unit matrix. If G is
a matrix group, then ±G denotes the group generated by G and the negative unit
matrix.

The symbols Mp+1,i and A
(j)
p−1 (i, p+1

2j ∈ {2, 3, 4, 6} with 2i | p − 1) denote

(automorphism groups of) lattices of PSL2(p) as described in Chapter V of
[PlN 95].

Let G ≤ GLn(D) and H ≤ GLm(D′) be two irreducible finite matrix groups.
Let A be a subalgebra of CDn×n(G) such that Aop is isomorphic to a subalgebra of

CD′m×m(H), such that Dn×n ⊗A D′m×m ∼= D′′l×l is again simple. Then tensoring
the natural representations of G and H yields a representation of the direct product
G × H . The corresponding matrix group G ⊗A H is a subgroup of GLl(D′) and
isomorphic to a central product of G and H . If A ∼= Q[α] is a field or A ∼= Qα

is a quaternion algebra, the matrix group G ⊗A H is abbreviated as G⊗
α
H and if

A = Q as G⊗H .
Already the groups C5

∼= G ≤ GL1(Q[ζ5]) and S̃3
∼= H ≤ GL1(Q∞,3) show that

this tensor notation needs to be extended. Though Q[ζ5] ⊗ Q∞,3
∼= Q[ζ5]

2×2 the
maximal common subalgebra of the two algebras Q[ζ5] and Q∞,3 is Q. We use the
symbol G⊗√5

′ H to denote the corresponding subgroup of GL2(Q[ζ5]).
To describe quite frequently occurring extensions of tensor products of matrix

groups of index 2 as in Theorem 7.11, we use the notation introduced in [PlN 95,

Proposition (II.4)]: The symbols C
2(p)⊗
α

N , C
2(p)⊃×@
α
N , and C

2(p)

�
α

N denote primitive

matrix groups G that are extensions of the tensor product of the two matrix groups
N and C by an automorphism x with x2 ∈ C⊗

α
N . Since N (as well as C = CG(N))

is a normal subgroup of G, one may write the elements of G as tensor products as

in [CuR 81, Theorem (11.17)]. Let x = y⊗ z. In the first case G = C
2(p)

⊗
α
N , y ∈ C̄,

z ∈ N̄ , Ḡ = C̄⊗
α
N̄ and p ∈ Z(Ḡ) is the norm of y which is also the norm of z (cf.

Definition 7.10). If G = C
2(p)⊃×@
α
N , then y 6∈ C̄ but still z ∈ N̄ and p is the norm of

z. In the last case x induces nontrivial automorphisms on both centers Z(N̄) and
Z(C̄).

If p = 1, it is omitted. Also the symbol × and α is omitted if either N or C is
contained in A.

Remark 5.1. As the referee pointed out, one should like to compare the classifi-
cation of maximal finite subgroups of GLn(D) with Aschbacher’s classification of
subgroups of the finite classical groups in [Asc 84].

In Aschbacher’s classification the groups in C1 (reducible groups), C2 (imprim-
itive groups), C3, and C5 reduce to smaller situations, the same is true here. But
cases 3 and 5 are harder to deal with, since Galois groups of abelian extension fields
are not necessarily cyclic. One may not always extend the cocylces to overgroups,
as one sees from the maximal finite subgroups [D120.2]16,i i = 1, 2 of GL16(Q).

The types C6 and C8 (extraspecial resp. simple groups) are dealt with in Chapter
8 and 9 of this paper.

The main difficulties are the tensor products (types C4 and C7 of Aschbacher’s
classification). These difficulties lead to Chapter 10, where a first approach is made
to classify the possible tensor factors. These factors are not necessarily maximal
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finite subgroups of the unit group of a smaller algebra as the following example
shows.

Consider the symmetry group D8 of a square. This is an imprimitive maximal
finite subgroup of GL2(Q). It admits an outer automorphism α ∈ NGL2(Q)(D8)

satisfying α2 = 2I2. Similarly the matrix group L2(7) ≤ Aut(A6) admits an addi-
tional outer automorphism β ∈ NGL6(Q)(L2(7)) with β2 = 2I6. Hence α ⊗ β also

normalizes the tensor product D8 ⊗ L2(7) ≤ GL12(Q) The group D8

2(2)⊗ L2(7) =
〈D8 ⊗ L2(7), 1

2α ⊗ β〉 is a maximal finite subgroup of GL12(Q) though the group
±L2(7) is not maximal finite in GL6(Q).

The general phenomenon may be described by the groups Glide(N) of gliding
automorphisms as defined in Definition 7.3.

Example 5.2. The quaternionic reflection groups of Table III in [Coh 80] that are
a.i.m.f. groups are

O2 = ∞,3[SL2(9)]2, O3 = √
3,∞,∞[2.S6]2,

P2 = ∞,2[(D8 ⊗Q8).Alt5]2, P3 = √
2,∞,∞[(D8 ⊗Q8).S5]2,

Q = ∞,3[±U3(3)]3, R = √
5,∞,∞[2.J2]3,

S3 = ∞,2[2
1+6
− .O−6 (2)]4,

T = √
5,∞[(SL2(5) ◦ SL2(5)⊗√

5
SL2(5)) : S3]4, and U = ∞,2[±U5(2)]5.

6. The a.i.m.f. subgroups of GL1(Q)

Let Q be a totally definite quaternion algebra over its center K and assume that
K is a (totally real) number field. Let G ≤ GL1(Q) be a finite subgroup such that
QG = Q. The classification of finite subgroups of PGL2(C) in [Bli 17] shows that
G/Z(G) is either abelian, a dihedral group or one of the 3 exceptional groups Alt3,
S4 or Alt5. Using this classification one gets the following:

Theorem 6.1. Let G ≤ GL1(Q) be an a.i.m.f. subgroup of GL1(Q), where Q is a
totally definite quaternion algebra over a totally real number field K = Z(Q).

Then K is the maximal totally real subfield of a cyclotomic field.
If [K : Q] ≤ 2, then G is one of ∞,2[SL2(3)]1, ∞,3[S̃3]1, √2,∞[S̃4]1, √3,∞[Q24]1,

or √
5,∞[SL2(5)]1.

If [K : Q] ≥ 3, let m be even such that K = Q[θm] ≤ Q[ζm]. Then G = Q2m =
Cm.C2 ≤ GL1(Q) is a generalized quaternion group, a nonsplit extension of a cyclic
group of order m by a C2. If m

2 = pα is a power of the prime p ≡ 3 (mod 4), then
Q = Qθm,∞,p is ramified at the place over p. In all other cases, the quaternion
algebra Q is only ramified at the infinite places of K.

Proof. The possible groups G may immediately be obtained from [Bli 17]. So we
only have to compute the local Schur indices of the groups Q2m. To this purpose
let p be a prime and 2 < r be a divisor of m. Then the restriction χ′ of the natural
character χ of Q2m to the subgroup Q4r remains irreducible. By the theorem of
Brauer [Bra 51] (cf. also [Lor 71]) the Schur index of χ and the one of χ′ over
Qp[θm] are equal. If r is a prime such that p does not divide 2r, then by Lemma
2.13 the p-adic Schur index of χ′ is 1. This is also true if p = 2 and r are odd, since
then the Sylow 2-subgroup of the cyclic subgroup of index 2 in Q4r is C2 ([Lor 71,
p. 98]). So if m

2 is not a prime power, the quaternion algebra Q is not ramified at
any finite prime.
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If m
2 is a power of some prime l ≡ 1 (mod 4), then Ql contains a fourth root of

unity. Hence the l-adic Schur index of χ′ is 1. (This follows also from the parity of
the number of ramified primes, since [Q[θl] : Q] is even.) If m is a power of 2, then
m ≥ 16. Since [Q2[θm] : Q2] is even, Q2[θm] splits Q2 ⊗ Q∞,2. Choosing r = 4 in
the consideration above, yields that the 2-adic Schur index of χ′ = χ|Q8

over Q2[θm]
is 1. If m

2 = pα is a power of a prime p ≡ 3 (mod 4). Choosing r = p, the Schur
index of χ′ over Qp, hence also the one over the character field Qp[χ

′] = Qp[θp] is 2.
But now [Qp[θm] : Qp[θp]] = pα−1 is odd, hence the character field Qp[χ] does not
split the quaternion algebra Qp⊗Qθp,∞,p. Therefore Q is ramified at the place over
p, which again also follows from the fact that [Q[θm] : Q] is odd in this case.

Remark 6.2. Let Q be an indefinite quaternion algebra with totally real center K.
If GL1(Q) has an absolutely irreducible finite subgroup G, then Q = K2×2.

Table 6.3. The a.i.m.f. subgroups of GL1(Q), where Q is a defi-
nite quaternion algebra such that [Z(Q) : Q] ≤ 5:

lattice L |Aut(L)| r.i.m.f. supergroups

∞,2[SL2(3)]1 23 · 3 F4

∞,3[S̃3]1 22 · 3 A2
2

√
2,∞[S̃4]1 24 · 3 E8, F

2
4

√
3,∞[Q24]1 23 · 3 A4

2, F
2
4

A2 ⊗ F4, E8

√
5,∞[SL2(5)]1 23 · 3 · 5 E8, [(SL2(5)

2

� SL2(5)) : 2]8

θ7,∞,7[Q28]1 22 · 7 (A6)
2, (A

(2)
6 )2

θ9,∞,3[Q36]1 22 · 32 A6
2, E

2
6

θ15,∞[Q60]1 22 · 3 · 5 (A2 ⊗ A4)
2, [(SL2(5)

2

� SL2(5)) : 2]28, E
2
8

A2 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8, A2 ⊗ E8,

[SL2(5) ◦ SL2(5) : 2
2

�√
5
D10]16

θ16,∞[Q32]1 25 (B16)
F 4

4 , E2
8

θ20,∞[Q40]1 23 · 5 A4
4, [(SL2(5)

2

� SL2(5)) : 2]28, E
2
8

A4 ⊗ F4, F4⊗̃F4,

[SL2(5)
2(2)

⊃×@
∞,2

21+4
− .Alt5]16

[(SL2(5)
2

� SL2(5)) : 2]28, E
2
8 ,

[SL2(5) ◦ SL2(5) : 2
2

�√
5
D10]16

θ24,∞[Q48]1 24 · 3 A8
2, E

2
8 , [(SL2(5)

2

� SL2(5)) : 2]28,
(A2 ⊗ F4)

2, F 4
4

(F 4
4 )

(A2 ⊗ F4)
2, F4⊗̃F4, A2 ⊗E8,

E2
8 , [SL2(5)

2(2)

⊃×@
∞,2

21+4
− .Alt5]16

θ11,∞,11[Q44]1 22 · 11 (A10)
2, (A

(2)
10 )2, (A

(3)
10 )2

[L2(11)
2(3)

⊗ D12]20 [L2(11)
2(3)

⊃×@ D12]20
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Proof of Remark 6.2. Let G ≤ GL1(Q) be a finite absolutely irreducible subgroup
and p be a finite prime ramified in Q. As in the proof of Theorem 6.1 one concludes
that G = ±Cpα .C2, K = Q[θpα ] and the finite primes of K ramified in Q divide
p. Since all infinite primes of K are not ramified in Q and p is totally ramified in
K, this contradicts the fact that the number of primes in K that ramify in Q is
even.

If Q is a definite quaternion algebra and the degree of the center of Q over Q is
≤ 5, the a.i.m.f. subgroups of GL1(Q) and their r.i.m.f. supergroups are given in
Table 6.3. The first column gives a name for the a.i.m.f. group G also indicating the
quaternion algebra Q. This entry is followed by the order of G. In the last column
the r.i.m.f. supergroups fixing a G-lattice with maximal order as endomorphism
ring are given. If there is no such group, at least one r.i.m.f. supergroup of G is
specified in brackets. If there is more than one conjugacy class of maximal orders
M in Q, they are listed in the next lines separated by lines in the third column in
the same order as they are displayed in Table 4.1.

7. Normal subgroups of primitive groups

Throughout this chapter let K denote an abelian number field with complex
conjugation and R the maximal order in K. Then R is a Dedekind ring.

Let N�G be a normal subgroup of the primitive group G in GLn(K). As proved
in Chapter 2 (cf. 2.3) the enveloping K-algebra of N is a simple algebra.

Generalizing the notion of a generalized Bravais group (as defined in Definition
(II.9) of [NeP 95] for K = Q) to arbitrary number fields K, one may often conclude
the existence of a larger normal subgroup B◦K(N) in G if G is maximal finite.

For this purpose recall the radical idealizer process (cf. [BeZ 85]): Let Λ be an
R-order in a simple K-algebra A. The arithmetic (right) radical ARr(Λ) of Λ is
defined as the intersection of all those maximal right ideals of Λ which contain the
discriminant ideal of Λ. The arithmetic radical is a full R-module in A. Its (right)
idealizer Idr(ARr(Λ)), which is defined as the set of all elements a ∈ A, such
that ARr(Λ)a ⊆ ARr(Λ), is again an R-order in A containing Λ. The repeated
application of (Idr ◦ ARr) is called the radical idealizer process. It constructs
a finite ascending chain of R-orders in A. The maximal element of this chain
(Idr ◦ARr)

∞(Λ) is necessarily a hereditary order in A (cf. [Rei 75] pp. 356-358).

Definition 7.1. Let N ≤ GLn(K) be a finite group and F an N invariant Her-
mitian form on Kn. Assume that the algebra A := KN is simple. Then the
natural A-module Kn decomposes into a direct sum of l copies of an irreducible
A-module V . Let Λ := RN , be the R-order generated by the matrices in N and
Λ0 := (Idr ◦ ARr)

∞(Λ) be the hereditary order in A obtained by applying the
radical idealizer process to the R-order Λ. Let L1, . . . , Ls ⊆ V be representatives
of the isomorphism classes of the irreducible Λ0-lattices in V . Then the generalized
Bravais group of N is defined as

B◦K(N) := {g ∈ KN | Lig = Li, 1 ≤ i ≤ s, gF ḡt = F}.
If K = Q, the group B◦Q(N) is also denoted by B◦(N).

Note that the definition of B◦K(N) does not depend on the choice of F ∈ F>0(N),

since the elements in KN commute with all F ′F−1 for F ′ ∈ F(N).
As for K = Q in [NeP 95, Proposition (II.10)] one proves:
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Proposition 7.2. Let k be a subfield of K.

(i) If X is a finite subgroup of the unit group (kN)∗ of kN with N � X, then
X ≤ B◦k(N).

(ii) If D is a central K-division algebra of index s and G is a primitive a.i.m.f.
subgroup of GLn(D) ≤ GLs2n(K) with N �G, then N �B◦k(N) =: B�G. In

particular B = G∩kN is the unique maximal finite subgroup of the normalizer
of N in (kN)∗. Moreover the centralizer of N in G is CG(B) = CG(N).

Example. The generalization of the definition to arbitrary number fields K pro-
vides stronger restrictions on the possible normal subgroups of G. For example, for
K := Q[

√
2] and N = Q8 one has B◦K(N) = S̃4 whereas B◦Q(N) = SL2(3).

In the situation of Proposition 7.2 (i), the a.i.m.f. group G contains the normal
subgroup NCG(N). The quotient group G/NCG(N) embeds into the outer auto-
morphism group Out(N) of N . The image of G/CG(N) in Aut(N) contains the
group of automorphisms that are induced by B◦K(N) and is contained in the sub-
group Autstab(N) of Aut(N) consisting of those automorphisms of N , that stabilize
the irreducible constituent χ of the natural character of N .

Definition 7.3. Let N ≤ GLn(K) be a finite subgroup of GLn(K), such that the
enveloping algebra KN is a simple K-algebra. Let χ be an absolutely irreducible
character occurring in the natural character of N .

(i) The automorphism group Aut(N) acts on the set of irreducible characters of
N . Autstab(N) := StabAut(N)(χ) is called the group of stable automorphisms
of the matrix group N .

(ii) N is called primitively saturated over K, if N � B◦K(N) and all stable auto-
morphisms of N are induced by conjugation with elements of B◦K(N).

(iii) The factor group Glide(N,χ,K) := GlideK(N) := Autstab(N)/κ(B◦K(N)) of
Autstab(N) modulo the group of automorphisms induced by conjugation with
elements of B◦K(N) is called the group of gliding automorphisms of the matrix
group N . We set Glide(N) := GlideQ(N).

Remark 7.4. Let N , A, Λ0 be as in Definition 7.1. Since the elements of Autstab(N)
define Z(A)-algebra automorphisms of A, the theorem of Skolem and Noether says
that there are elements in A∗ inducing these automorphisms on A. Since these
elements normalize N , they also normalize Λ0 and therefore act as inclusion pre-
serving bijections on the set of Λ0-lattices. The subgroup induced by conjugation
with elements in B◦K(N) is the kernel of this action and therefore a normal subgroup
of Autstab(N). Hence GlideK(N) is well defined.

For a maximal ideal ℘ of R let A℘ and Λ℘ denote the completions of A and Λ0

at ℘. Since Λ℘ is hereditary the Λ℘-lattices in a simple A℘-module are linearly
ordered by inclusion. Since B◦K(N) stabilizes all Λ℘-lattices one gets an action of
GlideK(N) on this chain of Λ℘-lattices (shifting up or down).

Proposition 7.5. In the situation of Proposition 7.2 (ii), assume that N is prim-
itively saturated over K and that the center of KN is K. If B := B◦K(N) and
C := CG(N), then G = BC.

Proof. Since G is primitive, the automorphisms of N that are induced by g ∈ G
stabilize χ. Hence there is a b ∈ B such that bg ∈ C.

The automorphism groups of the indecomposable root lattices An (n ≥ 4), E6,
E7, and E8 provide examples for primitively saturated groups.
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Corollary 7.6. Let D be a Q-division algebra and G a primitive irreducible max-
imal finite subgroup of GLn(D). Assume that G contains a normal subgroup N
isomorphic to either Altn (n ≥ 5), U4(2) = Aut(E6)

′, S6(2) = Aut(E7)
′, or

2.O+
8 (2) = Aut(E8)

′ (where the corresponding irreducible constituent χ of the natu-
ral character of N is of degree n−1, 6, 7, respectively 8). Then G = B◦(N)⊗CG(N).

Proof. In all cases Autstab(N) is already induced by conjugation with elements of
B◦(N).

Corollary 7.7. Let Q be a definite quaternion algebra with center K and G a
primitive a.i.m.f. subgroup of GLn(Q). Then G has no normal subgroup N iso-
morphic to M11, 2.M12, or 2.M22 where the restriction of the natural character of
G to N is a multiple of the sum of the two Galois conjugate complex characters of
degree 10.

Proof. Since the whole outer automorphism group of N is already induced by con-
jugation with elements in B◦(N), the group G is of the form G = B◦(N)CG(N). In
particular the character field of the natural character of G is complex. Therefore
G is not an absolutely irreducible subgroup of GLn(Q).

The following theorem is a version of a well known theorem of Clifford (cf.
[CuR 81, Theorem (11.20)]), which is usually only formulated for algebraically
closed fields.

Theorem 7.8. Let G ≤ GLn(K) be a finite group, N �G a normal subgroup such
that the enveloping K-algebra A := KN is central simple. Let C := CKG(A) be the

commuting algebra of A in KG. Then the natural representation ∆ : G→ GLn(K)
is a tensor product ∆ = ∆1 ⊗ ∆2 of projective representations ∆1 : G → A∗ and
∆2 : G→ C∗.

Proof. Let g ∈ G. Since N �G, conjugation with g induces a K-algebra automor-
phism of A. By the theorem of Skolem and Noether, there is an a ∈ A∗, such that
ag =: b ∈ C. Hence g = a⊗ b ∈ A⊗ C = KG.

In the situation of Theorem 7.8, ∆1(G) is a (not necessarily finite) subgroup
of the normalizer of N in the unit group of its enveloping algebra NA∗(N). If
one additionally assumes that G is (primitive and) maximal finite and chooses ∆1

and ∆2 appropriately, then B := B◦K(N) = Ker(∆2) is the unique maximal finite
subgroup of NA∗(N).

Lemma 7.9. Let N ≤ GLn(K) be a finite matrix group such that the algebra
KN is simple with center Z. Let ¯ also denote the complex conjugation on the
abelian number field Z and let Z+ be the maximal totally real subfield of Z. Let

α ∈ GlideK(N). Then there is a ∈ KN
∗

such that a representative of α is induced
by conjugation with a. Moreover there is q ∈ Z+ such that aF ātr = qF for all F ∈
F(N). The element q is a totally positive element of Z+ unique up to multiplication
with elements of the group {zz̄ | z ∈ Z}.
Proof. Let F ∈ F>0(N) be an N -invariant K-Hermitian form. Then the matrix
aF āt is again N -invariant, because a normalizes N . Hence there is a q ∈ C :=
CKn×n(N), such that aF āt = qF . Every element x ∈ C may be written as a
sum of a symmetric and a skew symmetric element (with respect to F ), i.e. x =

x+ + x− with x+, x− ∈ C and x+F = F (x+)t and x−F = −F (x−)t. Then
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clearly q = aF ātF−1 is symmetric. Since a commutes with x+ and x− one has
x+q = ax+F ātF−1 = qx+ and x−q = qx−. Hence q ∈ Z lies in the center of C.
If F ′ ∈ F(N) is another N -invariant Hermitian form, then there is c ∈ C such
that F ′ = cF . Then aF ′āt = acF āt = caF āt = cqF = qF ′. Since a is unique up
to multiplication with elements of Z and FztF−1 = z̄ for all z ∈ Z, q is unique
up to norms (resp. up to squares if Z = Z+) of elements in Z. Moreover if F is
totally positive definite, then aF āt = qF is also totally positive definite, whence q
is totally positive.

Definition 7.10. The element q in the lemma above is called the norm of α.

IfA is a central simple algebra over a totally real field K, then ∆1(G)/(K∗B◦K(N))
is of exponent ≤ 2, as shown in the next theorem. This is somehow an explanation
for the fact that the constructions given in Proposition (II.4) of [PlN 95] suffice to
describe all r.i.m.f. groups in dimension ≤ 31.

Theorem 7.11. Let K be a real abelian number field and N ≤ GLn(K) a finite
matrix group such that the enveloping algebra KN is simple with center K. Assume
that N � B◦K(N) =: B. Then GlideK(N) is of exponent 1 or 2.

Proof. Let α ∈ Autstab(N). Since KN is central simple, there is an a ∈ (KN)∗,
such that α is induced by conjugation with a. Let F be an N -invariant K-quadratic
form. By Lemma 7.9 there is q ∈ K = Z(KN) such that aFat = qF . Therefore
a2q−1F (a2q−1)t = F . Since the automorphism α has finite order, there is an m ∈ N
such that (a2q−1)m ∈ Z(KN) = K. One calculates F = (a2q−1)mF ((a2q−1)m)t =
(a2q−1)2mF . Hence (a2q−1)2m = 1 and (a2q−1) is an element of finite order in
(KN)∗ normalizing N . By Proposition 7.2 a2q−1 ∈ B.

If GlideK(N) is of order 2 and KN is a central simple K-algebra, the primitive
a.i.m.f. groups G with normal subgroup N contain a subgroup of index 1 or 2 which
is a tensor product B⊗CG(N). If α ∈ Autstab(N)−κ(B) and q are as in the proof
above, we call N nearly tensor decomposing with parameter q.

Note that Theorem 7.11 is false if one omits the assumption that K is real. One
counterexample is provided by the faithful character of degree 144 of the group
3.U3(5) (cf. [CCNPW 85]). The smallest counterexample I know is N ∼= C3 ×
(C7 : C3). Let N := 〈z, x, y | z3, x7, y3, xy = x2〉. Then N has an automorphism
s of order 3, with zs = z, xs = x, ys = yz. N has a faithful representation into
GL3(K) where K := Q[

√−3,
√−7]. The corresponding character χ extends to

±N : 〈s〉 but the character value of xs involves further irrationalities. So the order
of GlideK(N) is divisible by 3.

Corollary 7.12. With the notation of the proof of Theorem 7.11, the element α ∈
GlideK(N) is uniquely determined by the class of q in K∗/(K∗)2.

Proof. Let α, β ∈ Autstab(N) be induced by conjugation with a resp. b ∈ (KN)∗

such that aFat = qF and bFbt = r2qF , with q, r ∈ K∗. Replacing b by br−1

we assume that r = 1. Then ab−1F (ab−1)t = F . As in the proof above, the
matrix ab−1 ∈ KN is an element of finite order normalizing N and hence ab−1 ∈
B◦K(N).
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8. The normal p-subgroups of primitive groups

and their automorphism groups

In this chapter we calculate the generalized Bravais groups and outer auto-
morphism groups of the relevant p-groups N which are candidates for normal p-
subgroups of a primitive a.i.m.f. group G. Since all abelian characteristic subgroups
of N are cyclic (Corollary 2.4), these groups are classified by P. Hall:

Theorem 8.1 (cf. [Hup 67], p. 357). Let N be a p-group, such that all abelian
characteristic subgroups of N are cyclic.

If p > 2, then N is a central product of a cyclic group and an extraspecial group
of exponent p.

If p = 2, then N is a central product of an extraspecial 2-group with a cyclic
dihedral, generalized quaternion, or quasidihedral 2-group.

If K is an abelian number field, then all of these groups have a (up to auto-
morphism) unique K-irreducible faithful representation. The corresponding matrix
group is called an admissible p-group over K.

The automorphism groups of the extraspecial groups are well known (cf.
[Win 72]). For these groups one finds:

Proposition 8.2. Let n ∈ N, p be a prime, and N = p1+2n
+ or N = 2

1+2(n−1)
− if

p = 2. If N � B◦(N) =: B, then B is as follows:
If p > 2, then B = ±p1+2n

+ .Sp2n(p).

If N = 21+2n
+ , then B = 21+2n

+ .O+
2n(2).

If N = 2
1+2(n−1)
− , then B = 2

1+2(n−1)
− .O−2(n−1)(2).

Proof. Case p > 2: By [Win 72] the subgroup of the outer automorphism group of
the extraspecial p-group p1+2n

+ = N of exponent p which centralizes the center Cp
of N is the symplectic group Sp2n(p). Hence if N � B, then B ≤ ±N.Sp2n(p). In
[Wal 62], Wall constructs a lattice of dimension (p − 1) · pn on which ±N.Sp2n(p)
acts. Therefore ±N.Sp2n(p) ≤ B.

Case p = 2: If p = 2, the proposition can be checked directly for n ≤ 3. So
assume n ≥ 4. Let ε be + or −. Then by [Win 72] the outer automorphism group
of 21+2n

ε is the orthogonal group SOε
2n(2) = GOε

2n(2). It contains a subgroup
Oε

2n(2) of index 2 (cf. [CCNPW 85, p. xii]).
By [Wal 62] the group B1 := 21+2n

+ .O+
2n(2) is the full automorphism group of

a lattice of dimension 2n. Now N = D8 ⊗ . . . ⊗ D8 is conjugate in GL2n(Q) to
the tensor product of n copies of D8. If D8 ∈ GL2(Q) is given in the monomial
representation, then α :=

(
1 1
1 −1

)
normalizes D8 and satisfies α2 = 2I2. Hence the

element a := α ⊗ I2 ⊗ . . . ⊗ I2 normalizes N and hence B. Since a2 = 2 is not
a square in Q∗, there is no element of finite order in GL2n(Q) inducing the same
automorphism on N as a. Therefore 〈B1, a〉 ∼= N.SO+

2n(2) is the full holomorph of
N and B1 = B the unique maximal finite subgroup of the normalizer NGL2n(Q)(N).

If ε = −, then N = 2
1+2(n−1)
− = D8 ⊗ . . . ⊗ D8 ⊗ Q8 is the centralizer of a

subgroup Q8 ≤ 21+2n
+ . One finds a subgroup of index 2 in the holomorph of N as

a centralizer of the subgroup Q8 in 21+2n
+ .O+

2n(2). Since a normalizes N and lies in
the enveloping Q-algebra of N the proposition follows.

Lemma 8.3. Let N := 21+2n
+ YC4

∼= 21+2n
− YC4. Then the outer automorphism

group Out(N) is isomorphic to O2n+1(2)× C2.
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Proof. The mapping q : N/N ′ → N ′, xN ′ 7→ x2 is a well defined nondegenerate
quadratic form on N/N ′ ∼= F2n+1

2 . The inner automorphisms induce the identity
on N/N ′ and q is Out(N)-invariant. Since every isometry of (N/N ′, q) can be ex-
tended to an automorphism of N , one gets an epimorphism Aut(N) → Out(N) →
O2n+1(2). The kernel H consists of all automorphisms of N inducing the iden-
tity on N/N ′. Now N = Q8Y . . .YQ8YC4 = 〈A1, B1〉Y . . .Y〈An, Bn〉Y〈A〉 where
〈Ai, Bi〉 ∼= Q8 and Ai and Bi commute with Aj and Bj for i 6= j. Let α ∈ H .
If α(Ai) = A2Ai for some i, we multiply α with the inner automorphism κBi in-
duced by conjugation with Bi to achieve α(Ai) = Ai for all i. Analogously for
Bi. After this α is either the identity or α = α0 where α0(Ai) = Ai, α0(Bi) = Bi

for all i, and α0(A) = A3. Hence H/Inn(N) = (〈α0〉Inn(N))/Inn(N) � Out(N)
is a normal subgroup of order 2 of Out(N). Since O2n+1(2) ∼= Aut(N)/H ∼=
COut(N)(Z(N))�Out(N) one has Out(N) ∼= O2n+1(2)× 〈α0〉.

Corollary 8.4. Let m,n ∈ N, m > 1, p be a prime, and N = p1+2n
+ YCpm . If

N � B◦(N) =: B, then B = ±N.Sp2n(p).
Moreover Out(N) = Sp2n(p)×Aut(Cpm).

Proof. If p > 2, then Cpm = Z(N) and p1+2n
+ = Ω1(N) are characteristic subgroups

of N . Since the elements in B centralize the center of N , the first statement follows
from Proposition 8.2. For p = 2, the groups C2m = Z(N) and V := 21+2nYC4 =
Ω2(N) are characteristic subgroups of N . The holomorph of V can be constructed

as the centralizer of an element of order 4 in 2
1+2(n+1)
+ in 2

1+2(n+1)
+ .O+

2(n+1)(2).

Hence by Lemma 8.3 the subgroup of the automorphism group of N centralizing
the center of N is induced by B. Since O2n+1(2) ∼= Sp2n(2) (cf. e.g. [Tay 92,
Theorem 11.9]), the first statement follows.

The outer automorphism group Out(N) contains a normal subgroup κ(B) =
COut(N)(Z(N)) ∼= B/±N , the image of B in Out(N). The automorphisms of Z(N)
may be extended to outer automorphisms of N , hence Out(N)/κ(B) ∼= Aut(Z(N))
is isomorphic to the automorphism group of Cpm = Z(N). The kernel of the
epimorphism Out(N) → Sp2n(p) constructed above is a normal complement of
κ(B) in Out(N) which shows that Out(N) = κ(B)×Aut(Cm

p ).

Lemma 8.5. Let m > 3. The outer automorphism groups of the dihedral, quasidi-
hedral, or generalized quaternion groups U are:

Out(D2m) ∼= Out(Q2m) ∼= C2 × C2m−2 and Out(QD2m) ∼= C2m−2 .

Proof. In all three cases U has a unique subgroup V isomorphic to C2m−1 of index
2 which is therefore characteristic in U . U/V induces a subgroup of order 2 of
the automorphism group of V . Since Aut(V ) is abelian Out(U) has an epimorphic
image C2m−2 with kernel H consisting of those outer automorphisms that induce
the identity on V modulo inner automorphisms of U .

Let D2m = 〈x, y | x2m−1

, y2, (xy)2〉. The elements of order 2 in D2m − V are
xiy with 1 ≤ i ≤ 2m−1. Since yx = x−2y these form 2 orbits under the group of
inner automorphisms of D2m . Via the absolutely irreducible faithful representation
of degree 2 the group D2m can be viewed as a subset G of the algebra Q[θ2m−1 ]2×2.
If x, y denote the corresponding elements of G, the element (1 − x) normalizes G

since (1 − x)−1y(1 − x) = (1 − x−1)(1 − x)−1y = −x2m−1−1y. Hence the outer
automorphism induced by (1− x) generates H .
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Analogous considerations hold for the generalized quaternion group Q2m .

The elements of the group QD2m = 〈x, y | x2m−1

, y2, xy = x2m−2−1〉 that are not
in V again form two conjugacy classes. But now one of them consists of elements
of order 4, the other one of elements of order 2. Hence here H = 1.

Corollary 8.6. Let m,n ∈ N, m > 3, and U be one of D2m , Q2m , or QD2m . If
N := 21+2n

+ YU is a normal subgroup of an a.i.m.f. matrix group G, then B :=
B◦(N) = N.O2n+1(2) and Out(N) is isomorphic to O2n+1(2) × C2 × C2m−2 if
U = D2m or Q2m , and Out(N) ∼= O2n+1(2)× C2m−2 if U = QD2m .

Proof. Since m > 3, U has a unique subgroup V isomorphic to C2m−1 of index 2.
V is the center of the subgroup 21+2n

+ YV =: W of N generated by the elements
of order 2m−1. Therefore V and W are characteristic subgroups of N and hence
normal in G. Thus with Corollary 8.4 W.O2n+1(2) ∼= B◦(W ) = G∩QW is a normal
subgroup of G (and therefore also of B). In particular, these automorphisms do
extend to automorphisms of N .

If g ∈ N −W , then g induces the Galois automorphism of the center of QW
over the center of QN . Hence N(QN)∗(W ) = 〈N(QW )∗(W ), g〉 with the theorem of

Skolem and Noether. Hence B = N.O2n+1(2) by Corollary 8.4.
By the same corollary the full automorphism group of W is C2 × C2m−2 ×

O2n+1(2). These automorphisms extend to automorphisms of N . Since a sub-
group C2 of Out(W ) is induced by conjugation with elements of U , Out(N) has an
epimorphic image C2m−2×O2n+1(2). Let H be the kernel and 1 6= x̄ ∈ H . Then one
may choose the representative x of x̄ modulo the group of inner automorphisms of N
such that x centralizes W (and N/W ∼= C2). Then x maps C := CN (U) =∼= 21+2n

+

and hence U = CN (C) into themselves. Hence H is a subgroup of the outer auto-
morphism group of U . Since all automorphisms of U can be extended to N , the
group H is isomorphic to Out(U) and the corollary follows from Corollary 8.5.

The results of this section are summarized in the following table.

Table 8.7. Let D be a finite dimensional Q-division algebra and
G be a primitive a.i.m.f. group in GLd(D). Then Op(G) is one of
the following groups:

N B◦(N) N̄ Glide(N)

p1+2n
+ , p > 2 ±N.Sp2n(p) Q[ζp]

pn×pn 1

21+2n
+ N.O+

2n(2) Q2n×2n C2 (2)

21+2n
− N.O−2n(2) Q2n−1×2n−1

∞,2 C2 (2)

Cpm ±N Q[ζpm ] 1

p1+2n
+ YCpm , m > 1 ±N.Sp2n(p) Q[ζpm ]p

n×pn 1

21+2n
+ YD2m , m > 3 ±N.Sp2n(2) Q[θ2m−1 ]2

n+1×2n+1

C2 (2− θ2m−1)

21+2n
+ YQ2m , m > 3 ±N.Sp2n(2) Q2n×2n

θ
2m−1 ,∞ C2 (2− θ2m−1)

21+2n
+ YQD2m , m > 3 ±N.Sp2n(2) Q[ζ2m−1 − ζ−1

2m−1 ]
2n+1×2n+1

1
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The first column contains the isomorphism type of the admissible p-group N .
The information in the second column is only proved under the assumption that
N is a normal subgroup of its generalized Bravais group over Q (cf. Definition
7.1), which is necessarily the case if N is a normal subgroup of a primitive a.i.m.f.
subgroup. Under this assumption, the second column contains the generalized
Bravais group of N . The third column gives the enveloping Q-algebra N of N
and the last column contains the factor group Glide(N) of the subgroup of the
automorphism group of N that acts trivially on the center Z of N . For all a.i.m.f.
subgroups G containing N as a normal subgroup the quotient G/(B◦(N)CG(N)) is
a subgroup of Glide(N).Gal(Z/Q). If |Glide(N)| = 2, a norm (cf. Definition 7.10)
of a nontrivial element in Glide(N) is given in brackets.

Definition 8.8. Let N �G. Then N is called self-centralizing, if CG(N) ≤ N .

Proposition 8.9. Let D be a definite quaternion algebra with center K. Let G
be a primitive a.i.m.f. subgroup of GLn(D) and O2(G) a self-centralizing normal
subgroup. Then G = B◦K(O2(G)), n = 2m−1 is a power of 2, and O2(G) is centrally
irreducible. Moreover one of the following three possibilities occurs:

(i) K = Q, O2(G) = 21+2m
− , and G = 21+2m

− .O−2m(2).

(ii) K = Q[
√

2] and G is one of 21+2m
− .GO−2m(2) or (2

1+2(m−1)
+ ⊗Q16).O2m−1(2).

(iii) K = Q[θ2s ] with s > 3 and G = (2
1+2(m−1)
+ ⊗Q2s+1).O2m−1(2).

Proof. By Theorem 8.1 the group O2(G) is a central product of an extraspecial 2-
group with a cyclic, dihedral, quasidihedral, or generalized quaternion group. Since
O2(G) is self-centralizing,G/O2(G) is a subgroup ofOut(O2(G)) withO2(G/O2(G))
= 1. Hence by Corollary 8.6 and Lemma 8.3 either G = B◦(O2(G)) or O2(G) =

21+2n
− , K = Q[

√
2] and G = B◦K(O2(G)) = 21+2m

− .GO−2m(2).

Corollary 8.10. Let N be an admissible p-group over K and pa := |Z(N)| the

order of the center of N . If N is not an extraspecial 2-group or K contains Q[
√

2],
then GlideK(N) = 1 and Aut(N)/Autstab(N) is isomorphic to the Galois group
Gal(K[ζpa ]/K).

Lemma 8.11. Let G ≤ GLn(D) be a primitive a.i.m.f. group such that Fit(G) :=∏
p||G|Op(G) is a self-centralizing normal subgroup. Then Fit(G) is irreducible.

Proof. If O2(G) is not an extraspecial 2-group, the Lemma follows from Corollary
8.10 and Lemma 2.14.

So assume that O2(G) is an extraspecial 2-group and let B := B◦K(O2(G)). Then
N := CG(B)B is a normal subgroup of index 1 or 2 in G.

Let Z := Z(KFit(G)) be the center of the enveloping K-algebra of Fit(G),

z := [Z : K], f := dimK(KFit(G)) = m2z, and g := dimK(KG) = 4n2. By
Corollary 8.10, the center of KN is a subfield K ⊆ Z(KN) ⊆ Z, say of degree x
over K.

Assume that Fit(G) is reducible. Then mz < 2n and by Lemma 2.14 and
Corollary 8.10 dimK(KN) = (mz)2x−1 ≤ (mz)2 ≤ n2. With Lemma 2.14, this
contradicts the absolute irreducibility of G.
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The next lemma is useful to exclude cyclic normal subgroups (cf. also Lemma
11.2).

Lemma 8.12. Let G be a primitive a.i.m.f. group and 3 < p ≡ 3 (mod 4) be a
prime. If Op(G) = Cp, then N := Cp : C p−1

2
is not a normal subgroup of G.

Proof. Assume that N � G. Since G is primitive, the enveloping algebra of N is

QN = Q[
√

-p]
p−1
2 × p−1

2 . If C := CG(N), then G/CN embeds into C2, the outer

automorphism group of N . Now N is a subgroup of M := L2(p) ⊆ QN . Since
NḠ∗(M) > NḠ∗(N), the group G also normalizes M and hence 〈G,M〉 is a proper
supergroup of G.

Remark 8.13. If p ≡ 1 (mod 4), then the outer automorphism group of Cp :
C p−1

2
=: N ≤ GL p−1

2
(Q[

√
p]) is C2 × C2, where the additional automorphism is

induced by conjugation with (1− ζ) ∈ QN = Q[
√
p]

p−1
2 × p−1

2 , where ζ generates the
normal p-subgroup of N .

9. The candidates for quasi-semi-simple normal subgroups

In this chapter we list the information used from the classification of finite simple
groups and their character tables as given in [CCNPW 85]. Let G be a primitive
a.i.m.f. subgroup of GLn(D). Then the minimal normal subgroups of the centralizer
inG of the Fitting group ofG are central products of isomorphic quasisimple groups.
Such groups are called quasi-semi-simple. The candidates for the quasi-semi-simple
normal subgroups of G may be derived from the following table:

Table 9.1. Table of the quasisimple matrix groups admitting a
homogenous representation into Qn×n for a totally definite quater-
nion algebra Q with center of degree d over Q and d · n ≤ 10:

group N B◦(N)
character

of N
QN Glide(N)

Alt5 ±Alt5 χ3a + χ3b Q[
√

5]3×3 1

Alt5 ±S5 χ4 Q4×4 1

Alt5 ±S6 χ5 Q5×5 -

SL2(5) SL2(5) 2(χ2a + χ2b) Q√
5,∞,∞ 1

SL2(5) SL2(9) 2χ4 Q2×2
∞,3 -

SL2(5) SL2(5) 2χ6 Q3×3
∞,2 C2 (2)

L2(7) ±L2(7) χ3a + χ3b Q[
√

-7]3×3 1

L2(7) ±L2(7) χ6 Q6×6 C2 (2)

L2(7) ±S6(2) χ7 Q7×7 -

L2(7) ±L2(7) : 2 χ8 Q8×8 1
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group N B◦(N)
character

of N
QN Glide(N)

SL2(7) SL2(7) χ4a + χ4b Q[
√

-7]4×4 1

SL2(7) SL2(7) 2(χ6a + χ6b) Q3×3√
2,∞,∞ C2 (2 +

√
2)

SL2(7) SL2(7) 2χ8 Q4×4
∞,3 C2 (3)

Alt6 ±S6 χ5a resp. χ5b Q5×5 1

Alt6 ±S10 χ9 Q9×9 -

Alt6 ±S6 χ10 Q10×10 C2 (2)

SL2(9) SL2(9) 2χ4a resp. 2χ4b Q2×2
∞,3 C2 (3)

SL2(9) SL2(9) 2(χ8a + χ8b) Q4×4√
5,∞,∞ C2 (5 + 2

√
5)

SL2(9) SL2(9) 2(χ10a + χ10b) Q5×5√
2,∞,∞ C2 (2 +

√
2)

3.Alt6 ±3.Alt6
χ3a + χ′3a
+χ3b + χ′3b

Q[
√

5,
√

-3]3×3 1

3.Alt6 ±3.Alt6 χ6 + χ′6 Q[
√

-3]6×6 C2 (2)

3.Alt6 ±3.M10 χ9 + χ′9 Q[
√

-3]9×9 1

L2(8) ±S6(2) χ7 Q7×7 -

L2(8) 2.O+
8 (2).2 χ8 Q8×8 -

L2(11) ±L2(11) χ5a + χ5b Q[
√

-11]5×5 1

L2(11) ±L2(11) : 2 χ10a Q10×10 1

L2(11) ±L2(11) χ10b Q10×10 C2 (3)

SL2(11) SL2(11) χ6a + χ6b Q[
√

-11]6×6 1

SL2(11) SL2(11) 2χ10 Q5×5
∞,2 C2 (2)

SL2(11) SL2(11) 2(χ10a + χ10b) Q5×5√
3,∞,∞ C2 (2)

L2(13) ±L2(13) χ7a + χ7b Q[
√

13]7×7 1

SL2(13) SL2(13) 2(χ6a + χ6b) Q3×3√
13,∞,∞ 1

SL2(13) SL2(13) 2χ14 Q7×7
∞,2 C2 (2)

SL2(17) SL2(17) 2(χ8a + χ8b) Q4×4√
17,∞,∞ 1

SL2(17) SL2(17) 2χ16 Q8×8
∞,3 C2 (3)

Alt7 ±S7 χ6 Q6×6 1

Alt7 ±Alt7 χ10a + χ10b Q[
√

-7]10×10 1

2.Alt7 2.Alt7 χ4a + χ4b Q[
√

-7]4×4 1

2.Alt7 2.Alt7 2χ20a Q10×10
∞,3 C2 (3)

2.Alt7 2.Alt7 2χ20b Q10×10
∞,3 C2 (6)

3.Alt7 6.U4(3).2 χ6 + χ′6 Q[
√

-3]6×6 -

L2(19) ±L2(19) χ9a + χ9b Q[
√

-19]9×9 1

SL2(19) SL2(19) χ10a + χ10b Q[
√

-19]10×10 1

SL2(19) SL2(19) 2χ18 Q9×9
∞,2 C2 (2)

SL2(19) SL2(19) 2χ20 Q10×10
∞,3 C2 (3)
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group N B◦(N)
character

of N
QN Glide(N)

U3(3) ±U3(3) 2χ6 Q3×3
∞,3 C2 (3)

U3(3) ±S6(2) χ7 Q7×7 -

U3(3) U3(3) ◦ C4 χ7a + χ7b Q[
√

-1]7×7 1

SL2(25) SL2(25) 2χ12 Q6×6
∞,5 C2 (5)

M11 ±S11 χ10a Q10×10 -

M11 ±M11 χ10b + χ10c Q[
√

-2]10×10 1

Alt8 ±S6(2) χ7 Q7×7 -

2.Alt8 2.O+
8 (2).2 χ8 Q8×8 -

2.L3(4) 2.L3(4) : 22 χ10a + χ10b Q[
√

-7]10×10 1

6.L3(4) 6.L3(4) χ6 + χ′6 Q[
√

-3]6×6 C2 (2)

U4(2) ±U4(2) ◦ C3 χ5a + χ5b Q[
√

-3]5×5 1

U4(2) ±U4(2) : 2 χ6 Q6×6 1

U4(2) ±U4(2) ◦ C3 χ10a + χ10b Q[
√

-3]10×10 1

2.U4(2) 2.U4(2) ◦ C3 χ4a + χ4b Q[
√

-3]4×4 1

2.U4(2) 2.U4(2) 2χ20 Q10×10
∞,2 C2 (2)

U3(4) 2.G2(4) 2χ12 Q6×6
∞,2 -

2.M12 2.M12 : 2 χ10a + χ10b Q[
√

-2]10×10 1

U3(5) ±U3(5) : 3 2χ20 Q10×10
∞,5 C2 (5)

Alt9 2.O+
8 (2).2 χ8 Q8×8 -

2.Alt9 2.O+
8 (2).2 χ8a resp. χ8b Q8×8 -

2.M22 2.M22 : 2 χ10a + χ10b Q[
√

-7]10×10 1

2.J2 2.J2 2(χ6a + χ6b) Q3×3√
5,∞,∞ 1

2.J2 2.J2 2χ14 Q7×7
∞,2 C2 (2)

S6(2) ±S6(2) χ7 Q7×7 1

2.S6(2) 2.O+
8 (2).2 χ8 Q8×8 -

Alt10 ±S10 χ9 Q9×9 1

2.U4(3) 2.U4(3).4 2χ20 Q10×10
∞,3 C2 (3)

6.U4(3) 6.U4(3).2 χ6 + χ′6 Q[
√

-3]6×6 1

U5(2) ±U5(2) 2χ10 Q5×5
∞,2 C2 (2)

Alt11 ±S11 χ10 Q10×10 1

2.O+
8 (2) 2.O+

8 (2).2 χ8 Q8×8 1

2.G2(4) 2.G2(4) 2χ12 Q6×6
∞,2 C2 (2)



134 GABRIELE NEBE

The first column contains the quasisimple matrix group N , the second column
its generalized Bravais group over Q (cf. Definition 7.1) followed by the character
χ of a Q-irreducible constituent of the natural QN -module and the enveloping
algebra QN . If G is a primitive maximal finite group in GLn(D) with normal
subgroup N , then G has a normal subgroup B◦(N)CG(N) such that the factor
group G/(B◦(N)CG(N)) embeds into Glide(N).Gal(Q[χ]/Q) (cf. Definition 7.3).
Especially if |Glide(N)| = 2, a norm of a nontrivial element of this group (cf.
Definition 7.10) is given in brackets.

10. Some building blocks

By Chapter 7 we may build up the primitive maximal finite matrix groups using
normal subgroups that satisfy a certain maximality condition.

Let D be a definite quaternion algebra with center K and N = B◦(N) be a
normal subgroup of a primitive a.i.m.f. subgroup G of GLn(D). Assume that KN
is a central simple K-algebra and let G = (∆1 ⊗ ∆2)(G) be as in Theorem 7.8.
Since K is totally real, Theorem 7.11 says that G contains the normal subgroup
U := CG(N) = ker(∆1) with (∆2(G)K∗)/(∆2(U)K∗) ∼= (∆1(G)K∗)/(∆1(N)K∗)
of exponent 1 or 2. Choose gi ∈ ∆2(G) such that (g1, . . . , gs) maps onto a basis of
(∆2(G)K∗)/(∆2(U)K∗). Then there are qi ∈ K∗ such that q−1

i g2
i ∈ U .

Lemma 10.1. In the situation above, the pair (U, S = {g1, . . . , gs}) satisfies the
following maximality condition: For all finite supergroups V ≥ U that are contained
in K∆2(G) =: A, such that gi ∈ NA∗(V ) for all 1 ≤ i ≤ s, one has V = U .

Call such a pair (U, S) a maximal pair and U a nearly maximal finite subgroup
of A∗. Note that if (U, S) is a maximal pair then, since NA∗(U) ⊆ NA∗(B◦(U)),
one has U = B◦(U).

Table 10.2. Assume that A is a quaternion algebra with center
Q and s = 1. Then the maximal pairs (U, {g}) may be derived
from the following table:

U norm(g) A

±C3 2 Q2,3

±C3 1 Q2×2

C4 3 Q2,3

C4 1 Q2×2

S̃3 3 Q∞,3

SL2(3) 2 Q∞,2

D8 2 Q2×2

±S3 3 Q2×2

Here the first column displays the matrix group U , the second column gives a
norm of the element g = g1 in the normalizer of U in A∗ as defined in Definition
7.10, and the last column the central simple Q-algebra A = ∆2(G) generated by U
and g.



FINITE QUATERNIONIC MATRIX GROUPS 135

For central simple algebras KN the most important situation is that the gi lie in
the enveloping algebra (cf. Theorem 7.11). For the determination of the maximal
possibilities for N , the following is helpful:

Remark 10.3. In the situation of Theorem 7.11, let a ∈ NKN
∗(N) be normalized

such that aFat = qF where q ∈ R is a norm of α (cf. Definition 7.10). Let L be an
a2q−1-invariant RN -lattice and assume that F ∈ F>0(N) is integral on L. Then
qL ⊆ La ⊆ L. If the ideal generated by q and det(F,L) is the ring of integers of K,
then F defines a bilinear form F̄ : L/qL×L/qL→ R/qR. Since the dual lattice of
La with respect to F is (La)# = q−1L#a, the lattice La corresponds to a maximal
isotropic subspace of L/qL.

Let N(≤ GL8(Q)) be a finite matrix group such that the enveloping Q-algebraN
is a central simple Q-algebra of dimension 16. Assume that all abelian characteristic
subgroups of N are cyclic. If the pair (N, {g}) with g ∈ NQN∗(N) is a maximal
pair, then N is one of the groups in the following table:

Table 10.4

N norm(g) QN
A4 1 Q4×4

±C5 : C4 5 Q4×4

F4 1, 2 Q4×4

C3

2

� SL2(3) 3, 6 Q4×4

S3 ⊗D8 2, 6 Q4×4

SL2(5) : 2 1, 5 Q2×2
∞,5

SL2(5).24 1, 5 Q2×2
∞,5

21+4
− .Alt5 1, 2 Q2×2

∞,2

C3

2(2)⊃×@ D8 3, 6 Q2×2
∞,2

S3 ⊗ SL2(3) 1, 2, 3, 6 Q2×2
∞,2

C3

2
� SL2(3) 1, 2, 3, 6 Q2×2

∞,3

SL2(9) 1, 3 Q2×2
∞,3

S̃3 ⊗D8 2, 6 Q2×2
∞,3

C3

2(2)⊃×@ D8 1, 2, 3, 6 Q2×2
2,3

S̃3⊗√-3
SL2(3) 1, 2, 3, 6 Q2×2

2,3

In the first column of this table the finite matrix group N is given using the
notation of Chapter 5. The last column displays the enveloping Q-algebra A := N̄
of N . The second column allows one to read off the elements g ∈ NA∗(N) such
that (N, {g}) is a maximal pair, since these are modulo N uniquely determined by
their norms (cf. Corollary 7.12) . In particular N is a maximal finite subgroup of
A∗, if and only if a “1” appears in this column.

Proof. The proof is divided into 5 cases according to the possible enveloping alge-
bras QN = Q2×2 where Q is either a definite or an indefinite quaternion algebra
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with center Q. If Q is definite, Theorem 12.1 below implies that Q is one of Q∞,2,
Q∞,3, or Q∞,5. In the indefinite case it follows from [Sou 94] that Q is either
Q2×2 or Q2,3. In the last case, N is already maximal finite, since the 2 maximal
finite subgroups of GL2(Q2,3) are the generalized Bravais groups of their minimal
absolutely irreducible subgroups.

If QN = Q4×4, then N is contained in one of the three r.i.m.f. subgroups G =
A4, F4, or A2

2 of GL4(Q). Let L be the natural G-lattice.
If N ≤ A4, then the order of N is divisible by 5. Hence N = A4

∼= ±S5 or
N = ±C5 : C4 is the generalized Bravais group of one of the two minimal absolutely
irreducible subgroups Alt5 or C5 : C4 of A4. In the first case, NGL4(Q)(N) = Q∗N ,
by Corollary 7.6. In the other case, N fixes additionally the lattices A4(1− x) and
A4(1 − x)2 where x generates O5(N). Hence NGL4(Q)(N) additionally contains an

element (x + x−1) of norm 5 inducing a similarity A4 ∼ A4(1− x)2.
Since the lattice F4 is 2-modular, the normalizer NGL4(Q)(F4) contains an el-

ement of norm 2 ([Neb 97, Proposition 3]). Apart from 2L#, there is no other
sublattice M with 2L ⊂ M ⊂ L which is similar to L. Moreover 2 and 3 are
the only primes dividing the group order. Hence by Remark 10.3, the absolutely
irreducible nearly maximal finite subgroups N contained in F4 are the absolutely
irreducible stabilizers of the maximal isotropic subspaces of L/3L. There are eight
such subspaces lying in one orbit under the action of the group F4. The stabilizer

of such a subspace is SL2(3)
2

� C3.
Similarly, the absolutely irreducible nearly maximal finite proper subgroups of

A2
2 stabilize one of the 6 maximal isotropic subspaces of (A2

2)/2(A2
2). All these

stabilizers are conjugate to S3 ⊗D8.
Now assume that Q is a definite quaternion algebra. Then N embeds into one

of the six primitive a.i.m.f. groups of Theorem 12.1 or into SL2(3) o C2 or S̃3 o C2.
Let M be a maximal order of Q.

If Q = Q∞,5, then N embeds into one of SL2(5).2 or SL2(5) : 2. As in the
case N ≤ A4 the only other possibility for a nearly maximal finite group is ±C5.C4.
But now the outer automorphism of ±C5.C4 mapping an element x of order 8 in
±C5.C4 onto −x extends to an automorphism of SL2(5).2 and SL2(5) : 2 stabilizing
the character. Hence the nonsplit extension ±C5.C4 is not a nearly maximal finite
group.

If Q = Q∞,2, then N is a subgroup of one of the three a.i.m.f. groups 21+4
− .Alt5,

SL2(3)⊗S3, or SL2(3)oC2. Since 21+4
− .Alt5 has an element of norm 2 in its normal-

izer, and the stabilizers of the other ten M/2M-subspaces of L/2L corresponding
to lattices which are similar to L are not absolutely irreducible, one finds with
Remark 10.3 that N is a stabilizer of one of the forty M-sublattices correspond-
ing to the maximal isotropic subspaces of the M/3M-module L/3L, where L is a
M21+4

− Alt5-lattice. These lattices lie in one orbit under 21+4
− .Alt5. One calculates

N = C3

2(2)

⊃×@ D8 in this case.
All prime divisors of the order of G := S3 ⊗ SL2(3) arise as norms of elements

of the normalizer of N in N
∗
. Since the absolutely irreducible subgroups of G are

characteristic in G Corollary 7.12 implies that the group N has no proper nearly
maximal finite subgroups.

If N is a subgroup of SL2(3) oC2, the forty maximal isotropic M/3M-subspaces
of L/3L fall into two orbits of length 16 and 24. Their stabilizers are not absolutely
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irreducible. The stabilizers of the thirteen M/2M-subspaces of L/2L corresponding
to lattices which are similar to L are either SL2(3)oC2 which has a noncyclic abelian
normal subgroup or the subgroup D8 ⊗ SL2(3) of index 12. Since B◦(D8 ⊗Q8) =
21+4
− .Alt5, one finds no groups N here.

In the last case, Q = Q∞,3. Now N is a subgroup of one of the a.i.m.f. groups G

conjugate to SL2(3)
2

� C3, SL2(9), or S̃3 o C2. All three groups admit an element
of norm 3 in their normalizer.

In the first case, G itself admits an element of norm 2 in its normalizer. The

minimal absolutely irreducible subgroups of G are S̃4 and Q8

2

� C3. For p = 2 and
3, there is only one proper MS̃4-sublattice of L containing pL which is similar to

L. This lattice is also fixed by G, hence N 6= S̃4. Clearly N 6= Q8

2
� C3, because

N 6= B◦(N) = G.
In the other two cases, the proper subspaces of the M/3M module L/3L give

rise to thirty-one resp. thirty-seven lattices similar to L. In the first case, their
stabilizers are either G or subgroups of index 20 resp. 10 in G normalizing a Sylow
3-subgroup (∼= C3 × C3) of G. In the last case, the thirty-seven lattices fall into
two orbits. The lattices which are not fixed by G have a reducible stabilizer ∼= C8.

Hence by Remark 10.3 N is an absolutely irreducible stabilizer of one of the fif-
teen M sublattices corresponding to the maximal isotropic subspaces of the M/2M-
module L/2L, where L is a MG-lattice. In the first case, these subspaces form one

orbit. The stabilizer of such a subspace is S̃4 and not absolutely irreducible. In
the last case, the fifteen maximal isotropic subspaces fall into two orbits of length
9 respectively 6 under the action of G. Only a representative of the second orbit
has an absolutely irreducible stabilizer N = D8 ⊗ S̃3.

11. Special dimensions

There are some cases where it is easy to describe an infinite family of simplicial
complexes M irr

n (D). Two of them are dealt with in the next theorem.

Theorem 11.1. (i) Let p ≡ 1 (mod 4) be a prime. M p−1
4

(Q√
p,∞) consists of a

single vertex: √
p,∞[SL2(p)] p−1

4
. The group SL2(p) fixes an even unimodular

Z-lattice (of rank 2(p− 1)).
(ii) Let p be a prime. If p ≡ 1 (mod 4), then M p−1

2
(Q∞,p) consists of one 1-

dimensional simplex:

r r
∞,p[SL2(p).2] p−1

2
∞,p[SL2(p) : 2] p−1

2

where the common absolutely irreducible subgroup of the two a.i.m.f. groups
is ±Cp.Cp−1. The corresponding Z-lattices are unimodular (for the nonsplit
extension ∞,p[SL2(p).2] p−1

2
) resp. p-modular (for the split extension

∞,p[SL2(p) : 2] p−1
2

).

If p ≡ −1 (mod 4), then M p−1
2

(Q∞,p) consists of one single vertex:

∞,p[±L2(p).2] p−1
2

. The group ∞,p[±L2(p).2] p−1
2

fixes an even p-modular Z-

lattice (of rank 2(p− 1)).
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To prove the theorem, we need a lemma which is also of independent interest in
later chapters.

Lemma 11.2. Let D be a definite quaternion algebra with center K and d :=
[K : Q] = 1 or 2. Let p be an odd prime such that n := p−1

2d ∈ N. If G ≤ GLn(D)
is an a.i.m.f. subgroup, then Op(G) = 1.

Proof. Assume the Op(G) > 1. Then by the formula in [Schu 05] P := Op(G) ∼= Cp
and in the case d = 2, K = Q[

√
p] and p ≡ 1 (mod 4). Since the commuting

algebra CDn×n(P ) is isomorphic to Q[ζp], the centralizer CG(P ) = ±P . Now G is
absolutely irreducible, so G/CG(P ) ∼= C p−1

d
is isomorphic to the subgroup of index

d in the automorphism group of P . The split extension ±P : C p−1
d

has real Schur

index 1, and the nonsplit extension G = ±P.C p−1
d

is a subgroup of √p,∞[SL2(p)] p−1
4

(if d = 2), ∞,p[SL2(p).2] p−1
2

(if d = 1 and p ≡ 1 (mod 4)), resp. ∞,p[±L2(p).2] p−1
2

(if d = 1 and p ≡ 3 (mod 4)) which is a contradiction.

Proof of Theorem 11.1. From the classification of a.i.m.f. subgroups ofGL1(Q√
5,∞)

and GL p−1
2

(Q∞,p) for p ≤ 11 in this paper, the theorem is true for p ≤ 11. So we

may assume p ≥ 13.

(i) Let Q := Q√
p,∞, n := p−1

4 , and G be an a.i.m.f. subgroup of GLn(Q).

Then by Lemma 2.13 p divides the order of G. By Proposition 2.16 the Sylow
p-subgroup P of G is ∼= Cp. Since the degree of the natural character of G is p−1

2
[Fei 82, Theorem VIII.7.2] implies that either G/Z(G) ∼= PSL2(p) or P � G is
normal in G. The second case is excluded by Lemma 11.2. Since ±1 are the only
roots of unity contained in the center Q[

√
p], the results on the Schur indices of

the characters of SL2(p) in [Fei 83] yield that G = SL2(p) in the first case. The
SL2(p)-invariant Z-lattices are described in [Neb 98].

(ii) Let −1 ∈ G ≤ GL p−1
2

(Q∞,p) be absolutely irreducible.

Then by Lemma 2.13 p divides the order of G. By Proposition 2.16 the Sylow
p-subgroup of G has order p. Let M be a maximal order in Q∞,p, P the maximal
two-sided ideal of M containing p, and L ∈ ZM(G) a MG-lattice in the natural

G-module Q1×p−1
2∞,p . Then L̄ := L/PL is a Fp2G-module of dimension p−1

2 . Since

the kernel of the action of G on L̄ coincides with the one on PL/pL, this kernel is
contained in Op(G). By Lemma 11.2 Op(G) = 1, so L̄ is a faithful Fp2G-module
and [Fei 82, Theorem (VIII.3.3)] implies that G is of type L2(p), i.e. the unique

composition factor Op′ (G)/(Op′ (G) ∩Op′ (G)) of G of order divisible by p is either

isomorphic to L2(p) or to Cp. Here Op′(G) is the smallest normal subgroup of G
of index prime to p and Op′(G) the largest normal subgroup of G of order prime
to p. Let g be an element of order p in G. Then CG(g) embeds into GL1(Q[ζp]),
hence is 〈±g〉. Therefore g acts fixed point freely on Op′(G)/〈±1〉. By Thompson’s
theorem (cf. [Hup 67], p. 505) Op′(G)/〈±1〉 is nilpotent. Let r 6= p be a prime and
A an abelian normal r-subgroup of G. Then A is cyclic by Corollary 2.4 and the
enveloping algebra of A is contained in Q(p−1)×(p−1). Hence by Corollary 2.4 r < p
and g centralizes A. Therefore r = 2 and A ≤ 〈±1〉. Hence Op′(G) = O2(G) and
the maximal abelian normal subgroup of G is 〈±1〉.

If O2(G) > ±1, then Proposition 8.9 gives a contradiction to the fact that the
p-adic Schur index of the natural representation of G is 2.
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Hence O2(G) = ±1 and Op′ (G) is one of ±L2(p), SL2(p), or ±Cp. By Lemma
11.2 the latter possibility does not occur. [Fei 83, Theorem 6.1] yields that the p-
adic Schur indices of the representations of SL2(p) are 1. Hence the C-constituents

of the restriction of the natural representation of G to Op′(G) are of degree p−1
2 .

Using the character tables in [Schu 07] one concludes that if p ≡ −1 (mod 4), then
G is the unique extension of ±L2(p) ≤ GL p−1

2
(Q[

√
-p]) by C2

∼= Out(L2(p)) with

real Schur index 2, and if p ≡ 1 (mod 4), then G is one of the two extensions of
the matrix group SL2(p) of (i).

For p ≡ 1 (mod 4), the SL2(p).2-invariant and SL2(p) : 2-invariant Z-lattices are
described in [Neb 98, Remark 2.5]. For their determinants see [Tie 97, Section 5]. If
p ≡ 3 (mod 4), the natural representation of the group L2(p) ≤ ∞,p[±L2(p).2] p−1

2
is

a globally irreducible representation ([Gro 90, Chapter 11]). The Z[ 1+
√−p
2 ]L2(p)-

lattices are unimodular Hermitian lattices over Z[ 1+
√−p
2 ]. The lattices of which

the endomorphism ring is a maximal order M of Q∞,p containing Z[ 1+
√−p
2 ] and

which are preserved by the a.i.m.f. group ∞,p[±L2(p).2] p−1
2

are scalar extensions

of these unimodular lattices and therefore also unimodular Hermitian. Since the
discriminant of M is generated by

√−p, they become p-modular Z-lattices.

12. The a.i.m.f. subgroups of GL2(Q)

Z(Q) = Q

Theorem 12.1. Let Q be a definite quaternion algebra with center Q and G be a
maximal finite primitive absolutely irreducible subgroup of GL2(Q). Then Q is one
of Q∞,2, Q∞,3, or Q∞,5 and G is conjugate to one of the groups in the following
table.

List of the primitive a.i.m.f. subgroups of GL2(Q).

lattice L |Aut(L)| r.i.m.f. supergroups

∞,2[2
1+4
− .Alt5]2 27 · 3 · 5 E8

∞,2[SL2(3)]1 ⊗A2 24 · 32 A2 ⊗ F4

∞,3[SL2(9)]2 24 · 32 · 5 E8

∞,3[SL2(3)
2

� C3]2 24 · 32 F 2
4

∞,5[SL2(5).2]2 24 · 3 · 5 E8

∞,5[SL2(5) : 2]2 24 · 3 · 5 [(SL2(5)
2

� SL2(5)) : 2]8

Proof. If G contains a quasi-semi-simple normal subgroup, [HaS 85] and
[CCNPW 85] show that either G(∞) ∼= SL2(5) and G = ∞,5[SL2(5).2]2 or G =

∞,5[SL2(5) : 2]2 or G = G(∞) = ∞,3[SL2(9)]2. Now assume that G contains no
quasi-semi-simple normal subgroup. By Lemma 11.2 O5(G) = 1. If O3(G) = 1,
then O2(G) is a self-centralizing normal subgroup of G. With Proposition 8.9 one
finds that G = B◦(O2(G)) = ∞,2[2

1+4
− .Alt5]2.

If O3(G) > 1, then O3(G) ∼= C3, G contains C := CG(O3(G)) of index two, and C
is an absolutely irreducible subgroup of (Q[ζ3]⊗Q)∗. Using [Bli 17] one finds that C
is one of C3◦SL2(3) or C3⊗D8. In both cases, one has two possible automorphisms
of C yielding each a unique extension G = C.2 in GL2(Q) (cf. Lemma 2.17). In
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the first case, G is one of ∞,2[SL2(3)]1 ⊗ A2 or ∞,3[SL2(3)
2

� C3]2. In the second

case, one finds no groups G, since S̃3⊗D8 is imprimitive and C3

2(2)⊃×@ D8 is a proper
subgroup of ∞,2[2

1+4
− .Alt5]2.

Theorem 12.2. M2(Q∞,2)
irr is as follows.

r r r
∞,2[2

1+4
− .Alt5]2 ∞,2[SL2(3)]21 ∞,2[SL2(3)]1 ⊗A2

List of the maximal simplices in M irr
2 (Q∞,2)

simplex a common subgroup

(∞,2[2
1+4
− .Alt5]2,∞,2[SL2(3)]21) D8 ⊗Q8

Proof. The a.i.m.f. subgroups of GL2(Q∞,2) can be deduced from Theorem 12.1
and Theorem 6.1. The completeness of the list of maximal simplices in M irr

2 (Q∞,2)
follows from the fact, that the unique minimal absolutely irreducible subgroup of

∞,2[SL2(3)]1⊗A2 is S3⊗Q8 and does not fix any 3-unimodular lattice with maximal
order as an endomorphism ring.

Theorem 12.3. M2(Q∞,3)
irr is as follows.

r r r
∞,3[SL2(9)]2 ∞,3[S̃3]

2
1∞,3[SL2(3)

2
� C3]2

List of the maximal simplices in M irr
2 (Q∞,3)

simplex a common subgroup

(∞,3[SL2(9)]2,∞,3[S̃3]
2
1) (±C3 × C3).C4

(∞,3[SL2(9)]2,∞,3[SL2(3)
2

� C3]2) S̃4

Proof. The a.i.m.f. subgroups ofGL2(Q∞,3) can be deduced from Theorem 12.1 and
Theorem 6.1. The completeness of the list of maximal simplices in M irr

2 (Q∞,3) fol-
lows from the fact, that the minimal absolutely irreducible subgroups of

∞,3[SL2(3)
2

� C3]2 are S̃4 and Q8

2

� C3. Whereas the first group also embeds
into ∞,3[SL2(9)]2, the second one has a unique a.i.m.f. supergroup.

Theorem 12.4. M2(Q∞,5)
irr is as follows.

r r
∞,5[SL2(5) : 2]2∞,5[SL2(5).2]2
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List of the maximal simplices in M irr
2 (Q∞,5)

simplex a common subgroup
(∞,5[SL2(5).2]2,∞,5[SL2(5) : 2]2) (±C5).C4

Proof. The theorem follows immediately from Theorem 12.1 and Theorem 6.1.

Z(Q) real quadratic.

Theorem 12.5. Let G be an absolutely irreducible maximal finite subgroup of
GL2(Q), where Q is a totally definite quaternion algebra with center K and
[K : Q] = 2. Assume that G has a quasi-semi-simple normal subgroup. Then
Q is isomorphic to Q√

5,∞ or Q√
3,∞ and G is conjugate to one of

√
5,∞[SL2(5)⊗√

5
D10]2, √5,∞[SL2(5)]1 ⊗A2, √3,∞[2.S6]2,

or the imprimitive group √
5,∞[SL2(5)]21.

Proof. Let G be such a maximal finite group and N �G a quasi-semi-simple nor-
mal subgroup. If G is imprimitive Theorem 6.1 implies that G = √

5,∞[SL2(5)]21.

Assume now that G is primitive. By Table 9.1 N is either SL2(5) or SL2(9) (cf.
also [HaS 85]). Assume first that N is SL2(5). Then the enveloping algebra of N is

QN = Q√
5,∞. If K 6= Q[

√
5], then N is an irreducible subgroup of GL2(Q). The

centralizer CG(N) embeds into CGL2(Q)(N) ∼= K[
√

5]∗. Since K[
√

5] is a totally
real field, one gets that CG(N) = ±1. Therefore G contains N of index 2 and by
Lemma 2.14 the enveloping Q-algebra of G is of dimension 8 or 16, contradicting
the assumption that G is an absolutely irreducible subgroup of GL2(Q).

Hence K = Q[
√

5] is the center of the enveloping algebra QN . Then N is prim-
itively saturated over K and hence G = N⊗

K
C, for some centrally irreducible

maximal finite subgroup of (CQ2×2(N))∗. The commuting algebra of N is an in-

definite quaternion algebra with center Q[
√

5] ramified at those primes on which Q
ramifies. The classification of finite subgroups of GL2(C) ([Bli 17]) now shows that

CQ2×2(QN) is isomorphic to Q[
√

5]2×2. MoreoverCG(N) is one of ±D10, ±S3, orD8.
One computes that the two groups √

5,∞[SL2(5)⊗√
5
D10]2 and √

5,∞[SL2(5)]1 ⊗ A2

are maximal finite whereas the third group is a proper subgroup of the imprimitive
maximal finite group √

5,∞[SL2(5)]21.

If N = SL2(9), the enveloping algebra QN of N is Q2×2
∞,3. Therefore the central-

izer C := CG(N) has to be contained in the center of GL2(Q) ∼= K∗. Since K is
totally real, one has C = ±1. The factor groupG/N is a subgroup of Glide(N) = C2

and [CCNPW 85] implies that Q = Q√
3,∞ and G = N.2 = √

3,∞[2.S6]2.

Theorem 12.6. Let G be an absolutely irreducible maximal finite subgroup of
GL2(Q), where Q is a totally definite quaternion algebra with center K and
[K : Q] = 2. Assume that G has no quasi-semi-simple normal subgroup. Then
Q is isomorphic to Q√

2,∞, Q√
2,∞,2,3, Q√

3,∞, Q√
5,∞,2,5, Q√

5,∞,5,3, or Q√
6,∞
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and G is conjugate to one of the primitive groups

√
2,∞[21+4

− .S5]2, √2,∞[S̃4]1 ⊗A2, √2,∞,2,3[C3

2(2+
√

2)⊃×@ D16]2,

√
2,∞,2,3[C3

2(2+
√

2)⊃@ Q16]2, √3,∞[D24

2(2)⊗ SL2(3)]2, √5,∞,2,5[C5

2(2)⊃×@ D8],

√
5,∞,2,5[C5

2(2)⊃×@ SL2(3)], √5,∞,5,3[±C5

2(3)⊃×@ S3],

√
5,∞,5,3[C5

2(3)⊃×@ S̃3], or √
6,∞[GL2(3)

2

� C3]2,

or to one of the imprimitive groups √
2,∞[S̃4]

2
1 or √

3,∞[C12.C2]
2
1.

Proof. The imprimitive a.i.m.f. groups may be determined with Theorem 6.1 so
assume that G is primitive. If p is a prime with Op(G) 6= 1, then by Corollary 2.4
one has that p ∈ {2, 3, 5}.

Assume first that O5(G) 6= 1. Then N := O5(G) ∼= C5. The centralizer
C := CG(O5(G)) embeds into the commuting algebra CQ2×2(O5(G)) which is either

isomorphic to an indefinite quaternion algebra Q′ with center Q[ζ5] if K = Q[
√

5]
or to K[ζ5] if the center K of Q is not the maximal real subfield of Q[ζ5]. In the
latter case one finds C = ±C5 which contradicts the assumption that G is absolutely
irreducible. Therefore K = Q[

√
5]. Since the prime divisors of |G| lie in {2, 3, 5}

the only finite places, on which Q is ramified contain one of these 3 primes. There-
fore, Q[ζ5] splits Q and one has Q′ = Q[ζ5]

2×2. Moreover G contains C of index
2. Hence by Lemma 2.14, C is an absolutely irreducible subgroup of GL2(Q[ζ5]).
Using the classification of finite subgroups of PGL2(C) in [Bli 17] together with the
assumption that G contains no quasi-semi-simple normal subgroup, O5(G) = C5

and C = B◦(C), one finds that C is one of C5 ⊗D8, C5⊗√
5
′ SL2(3), ±C5 ⊗ S3, or

C5⊗√
5
′ S̃3.

If G centralizes C/O5(G), then G is a proper subgroup of one of the three groups
involving SL2(5) of Theorem 12.5.

If G induces the nontrivial outer automorphism of C/O5(G), one has 2 =
|H2(C2, C2)| possible extensions G = C.2, only one of which has real Schur in-
dex 1, by Lemma 2.17. One computes that G is

√
5,∞,2,5[C5

2(2)⊃×@ D8],√5,∞,2,5[C5

2(2)⊃×@ SL2(3)],√5,∞,5,3[±C5

2(3)⊃×@ S3],√5,∞,5,3[C5

2(3)⊃×@ S̃3],

respectively.
Assume now that O5(G) = 1 and O3(G) 6= 1. Then O3(G) ∼= C3. The central-

izer C := CG(O3(G)) embeds into the commuting algebra CQ2×2(O3(G)) which is
isomorphic to an indefinite quaternion algebra Q′ over K[ζ3]. Since G is absolutely
irreducible and contains C of index 2, Lemma 2.14 implies that C is an absolutely
irreducible subgroup of GL1(Q′). Hence Q′ = K[ζ3]

2×2. The classification of finite
subgroups of PGL2(C) ([Bli 17]) together with the assumption that G is primitive,
has no quasi-semi-simple normal subgroup, and satisfies O5(G) = 1, one finds that

C is one of C3⊗D16, C3⊗QD16, C3⊗GL2(3), C3◦Q16, C3◦S̃4, or O2(C) = C4◦Q8

and C = C3B◦(O2(G)) = C3 ⊗ (C4 ◦ SL2(3)).2.
If C = C3 ⊗D16 or C3 ◦Q16, the normalizer N(QC)∗(C) of C in the unit group

of its enveloping algebra contains CK[ζ3]
∗ of index 2. In the other cases one has a

unique outer automorphism of C inducing the Galois automorphism of K[ζ3] over
the maximal totally real subfield K of K[ζ3]. Therefore one finds in these cases
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only two possible extensions G = C.2, only one of which has real Schur index 1.

One concludes that G is one of S̃3⊗D16, C3

2(2+
√

2)⊃×@ D16, C3

2

�QD16, C3

2

�GL2(3),

C3

2(2+
√

2)⊃@ Q16, S3⊗Q16, S3⊗ S̃4, respectively C3

2
� (C4 ◦SL2(3)).2. The first group

is a proper subgroup of √2,∞[21+4
− .S5]2, the third is contained in the fourth group

√
6,∞[GL2(3)

2

� C3]2, the sixth one in the seventh group √
2,∞[S̃4]1 ⊗ A2, and the

last group is √
3,∞[C3

2

� (C4 ◦ SL2(3)).2]2 = √
3,∞[D24

2(2)

⊗ SL2(3)]2.

If Op(G) = 1 for all odd primes p, then Proposition 8.9 gives that O2(G) is one

of D8 ⊗Q8 or D8⊗Q16. In the first case G = √
2,∞[21+4

− .S5]2 is maximal finite. In

the last case, O2(G) is an absolutely irreducible subgroup of GL2(Q√
2,∞). Let M

be the up to conjugacy unique maximal order in Q√
2,∞. One computes the Bravais

group on a normal critical MO2(G)-lattice (cf. Definition 2.7) to be √2,∞[21+4
− .S5]2,

contradicting the assumptions on O2(G).

Table 12.7. List of the primitive a.i.m.f. subgroups of GL2(Q)
where Q is a totally definite quaternion algebra over a real qua-
dratic number field Z(Q).

lattice L |Aut(L)| r.i.m.f. supergroups

√
2,∞[21+4

− .S5]2 28 · 3 · 5 F4⊗̃F4, E
2
8

√
2,∞[S̃4]1 ⊗A2 25 · 32 (A2 ⊗ F4)

2, A2 ⊗E8

√
2,∞,2,3[C3

2(2+
√

2)

⊃×@ D16]2 25 · 3 (A2 ⊗ F4)
2, A8

2

√
2,∞,2,3[C3

2(2+
√

2)⊃@ Q16]2 25 · 3 F 4
4 , E2

8

√
3,∞[D24

2(2)

⊗ SL2(3)]2 26 · 32 (A2 ⊗ F4)
2, E2

8

A2 ⊗ E8, F4⊗̃F4

√
3,∞[2.S6]2 25 · 32 · 5 E2

8 , [(Sp4(3) ◦ C3)
2⊃×@√
-3

SL2(3)]16

[SL2(9)
2(3)

⊗
∞,3

SL2(9) : 2]16, F4⊗̃F4

√
5,∞[SL2(5)⊗√

5
D10]2 24 · 3 · 52 [(SL2(5) ◦ SL2(5)) : 2

2⊃×@√
5

D10]16

√
5,∞[SL2(5)]1 ⊗ A2 24 · 32 · 5 A2 ⊗ [(SL2(5)

2

� SL2(5)) : 2]8, A2 ⊗ E8

√
5,∞,2,5[C5

2(2)

⊃×@ D8] 24 · 5 A4
4

√
5,∞,2,5[C5

2(2)

⊃×@ SL2(3)] 24 · 3 · 5 E2
8 , [(SL2(5)

2

� SL2(5)) : 2]28

√
5,∞,5,3[±C5

2(3)

⊃×@ S3] 23 · 3 · 5 (A2 ⊗A4)
2

(A2 ⊗A4)
2

√
5,∞,5,3[C5

2(3)

⊃×@ S̃3] 23 · 3 · 5 E2
8 , [(SL2(5)

2

� SL2(5)) : 2]28

E2
8 , [(SL2(5)

2

� SL2(5)) : 2]28
√

6,∞[(S3 ⊗ SL2(3)).2]2 25 · 32 (A2 ⊗ F4)
2, F4⊗̃F4

(A2 ⊗ F4)
2, F 4

4 , [(SL2(5)
2

� SL2(5)) : 2]28

A2 ⊗ E8, E
2
8 , [SL2(5)

2(2)

⊃×@
∞,2

21+4
− .Alt5]16
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The first column contains representatives G of the conjugacy classes of a.i.m.f.
subgroups of GL2(Q), the second the order of the corresponding groups. In the
third column the r.i.m.f. supergroups of G that act on a lattice L ∈ ZM(G) for
some maximal order of Q are given. There is one line for each conjugacy class of
maximal orders in Q which come in the same order as in Table 4.1.

Theorem 12.8. M irr
2 (Q√

2,∞) is as follows.

r r r√
2,∞[21+4

− .S5]2√
2,∞[S̃4]

2
1

√
2,∞[S̃4]1 ⊗A2

List of the maximal simplices in M irr
2 (Q√

2,∞)

simplex a common subgroup

(√2,∞[21+4
− .S5]2,√2,∞[S̃4]

2
1) Q16 ⊗D8

Proof. The completeness of the list of a.i.m.f. subgroups in GL2(Q√
2,∞) follows

from Theorems 6.1, 12.5 and 12.6. To see that the list of maximal simplices in
M irr

2 (Q√
2,∞) is complete one has to note that the unique minimal absolutely ir-

reducible subgroup of √2,∞[S̃4]1 ⊗ A2 is Q16 ⊗ S3 and not contained in one of the
other a.i.m.f. groups.

Theorem 12.9. M irr
2 (Q√

2,∞,2,3) consists of two 0-simplices

r r√
2,∞,2,3[C3

2(2+
√

2)⊃×@ D16]2 √
2,∞,2,3[C3

2(2+
√

2)⊃@ Q16]2

Proof. The completeness of the list of a.i.m.f. subgroups in GL2(Q√
2,∞,2,3) follows

from Theorems 6.1, 12.5, and 12.6. Both a.i.m.f. groups are minimal absolutely
irreducible whence the theorem follows.

Theorem 12.10. M irr
2 (Q√

3,∞) is as follows.

r
r

r@@@
@�

�
�
�√

3,∞[D24

2(2)⊗ SL2(3)]2
√

3,∞[Q24]
2
1

√
3,∞[2.S6]2
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List of the maximal simplices in M irr
2 (Q√

3,∞)

simplex a common subgroup

(√3,∞[D24

2(2)⊗ SL2(3)]2,√3,∞[Q24]
2
1) D24 ⊗Q8

(√3,∞[D24

2(2)

⊗ SL2(3)]2,√3,∞[2.S6]2) S̃4.2

(√3,∞[Q24]
2
1,
√

3,∞[2.S6]2) (±C3 × C3).D8

Proof. The completeness of the list of a.i.m.f. subgroups in GL2(Q√
3,∞) follows

from Theorems 6.1, 12.5, and 12.6. The list of maximal simplices in M irr
2 (Q√

3,∞)

is complete as one can see by computing the lattices of (±C3 × C3).D8 and S̃4.2,
the minimal absolutely irreducible subgroups of √3,∞[2.S6]2 of order not divisible
by 5.

Remark 12.11. The simplicial complexM2(Q√
2,∞) containsM2(Q∞,2), in the sense,

that for every vertex v ∈ M2(Q∞,2) there is a vertex of v′ ∈ M2(Q√
2,∞) with

representatives Gv respectively Gv′ , such that Gv ≤ Gv′ and for every simplex
(v1, . . . , vs) ∈ M2(Q∞,2), the corresponding simplex (v′1, . . . , v

′
s) is a simplex in

M2(Q√
2,∞).

In this sense the simplicial complex M2(Q√
3,∞) contains M2(Q∞,3).

Theorem 12.12. M irr
2 (Q√

5,∞) is as follows.

r r r√
5,∞[SL2(5)⊗√

5
D10]2 √

5,∞[SL2(5)]21
√

5,∞[SL2(5)]1 ⊗A2

List of the maximal simplices in M irr
2 (Q√

5,∞)

simplex a common subgroup
(√5,∞[SL2(5)⊗√

5
D10]2,√5,∞[SL2(5)]21) Q20⊗√

5
D10

Proof. The completeness of the list of a.i.m.f. subgroups in GL2(Q√
5,∞) follows

from Theorems 6.1, 12.5, and 12.6. To see that the list of maximal simplices
in M irr

2 (Q√
5,∞) is complete one has to note that the unique minimal absolutely

irreducible subgroup of √5,∞[SL2(5)]1 ⊗ A2 is Q20 ⊗ S3 and not contained in one
of the other a.i.m.f. groups.

Theorem 12.13. M irr
2 (Q√

5,∞,2,5) consists of two 0-simplices

r r√
5,∞,2,5[C5

2(2)⊃×@ D8]2 √
5,∞,2,5[C5

2(2)⊃×@ SL2(3)]2
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Proof. The completeness of the list of a.i.m.f. subgroups in GL2(Q√
5,∞,2,5) follows

from Theorems 6.1, 12.5, and 12.6. The completeness of the list of maximal sim-

plices in M irr
2 (Q√

5,∞,2,5) follows from the fact that the group √
5,∞,2,5[C5

2(2)⊃×@ D8]2
is minimal absolutely irreducible.

Similarly one gets:

Theorem 12.14. M irr
2 (Q√

5,∞,5,3) consists of two 0-simplices

r r√
5,∞,5,3[±C5

2(2)⊃×@ S3]2 √
5,∞,5,3[C5

2(2)⊃×@ S̃3]2

Z(Q) real cubic.

Theorem 12.15. Let Q be a definite quaternion algebra with center K of degree
3 over Q and G a primitive a.i.m.f. subgroup of GL2(Q). Then G is one of the
groups in the following table, which is built up as in Table 12.7:

List of the primitive a.i.m.f. subgroups of GL2(Q).

lattice L |Aut(L)| r.i.m.f. supergroups

θ9,∞,3[C9

2(2)⊃×@√
-3
SL2(3)]2 24 · 33 F 6

4 , [31+2
+ : SL2(3)

2

�√
-3
SL2(3)]212

θ9,∞,2[D18 ⊗ SL2(3)]2 24 · 33 (A2 ⊗ F4)
3 , F4 ⊗ E6

F4 ⊗ E6

θ9,∞,2[C9

2(2)⊃×@ D8]2 24 · 32 E2
8 , [Sp4(3)

2
�√
-3

31+2
+ : SL2(3)]24

(A12
2 ), (E4

6)

θ7,∞,7[Q28]1 ⊗A2 23 · 3 · 7 (A6 ⊗A2)
2, (A

(2)
6 ⊗A2)

2

θ7,∞,7[C7

2(3)⊃×@√
-7
S̃3]2 23 · 3 · 7 [6.U4(3).22]212

θ7,∞,7[C7

2(2)⊃×@ D8]2 24 · 7 [L2(7)
2(2)⊗ D8]

2
12, [L2(7)

2(2)⊃×@ D8]
2
12

θ7,∞,2[D14 ⊗ SL2(3)]2 24 · 3 · 7 A6 ⊗ F4, A
(2)
6 ⊗ F4

θ7,∞,2[C7

2(2)⊃×@ SL2(3)]2 24 · 3 · 7 [L2(7)
2(2)⊗ F4]24, [L2(7)

2(2)⊃×@ F4]24

θ7,∞,3[±C7

2(3)⊃×@ S3]2 23 · 3 · 7 [6.U4(3).22]212

((A2 ⊗A6)
2), ((A2 ⊗A

(2)
6 )2)

θ7,∞,3[D14 ⊗ S̃3]2 23 · 3 · 7 (A2 ⊗A6)
2, (A2 ⊗A

(2)
6 )2

([6.U4(3).22]212)

ω13,∞,13[±C13.C4]2 23 · 13 (A2
12)

[2.Co1]24 , [SL2(13)
2(2)⊃@ SL2(3)]24
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Proof. Let Q be a definite quaternion algebra with center K of degree 3 over Q and
G a primitive a.i.m.f. subgroup of GL2(Q). Then K is contained in a cyclotomic
field of degree ≤ 12, hence K ∼= Q[θ7], Q[θ9], or Q[ω13], where ω13 is a generator of
the subfield of degree 3 over Q of the cyclotomic field Q[ζ13] and the θi = ζi + ζ−1

i

generate the maximal real subfield of Q[ζi] (cf. Notation 4.2). By [CCNPW 85],
G has no quasi-semi-simple normal subgroup. If K = Q[ω13], then 13 divides |G|.
One concludes that O13(G) ∼= C13 and G = ω13,∞,13[±C13.C4]2. Now assume that
K = Q[θ7]. Then 7 divides the order of G. Since the possible normal 2- and 3-
subgroups have no automorphism of order 7, one has O7(G) ∼= C7. The centralizer
C := CG(C7) is a centrally irreducible subgroup of GL1(D) for a quaternion algebra
D with center Q[ζ7]. One only has the possibilities D = Q[ζ7]

2×2 and C = ±C7×U ,

where U is one of D8, S3, or S̃3, or D = Qζ7,2, where C = C7 ⊗ SL2(3). Since
|Out(±U)| = 2, one has in each case 2 possibilities for G = C.2, where there is always
a unique extension yielding a representation with real Schur index 2 (cf. Lemma
2.17). Since Q28 ⊗D8 is imprimitive, one finds the groups of the proposition. The
case K = Q[θ9] is dealt with analogously.

Corollary 12.16. Let Q be a definite quaternion algebra with center K of degree 3
over Q and G an a.i.m.f. subgroup of GL2(Q). Then Q is one of Qθ9,∞,3, Qθ9,∞,2,
Qθ7,∞,7, Qθ7,∞,2, Qθ7,∞,3, or Qω13,∞,13. The simplicial complexes M irr

2 (Q) consist
of 0-simplices each.

Proof. Theorems 6.1 and 12.15 prove the completeness of the list of quaternion
algebras Q and of a.i.m.f. subgroups of GL2(Q). That there are no common

absolutely irreducible subgroups, may be easily seen, since the groups θ9,∞,2[C9

2(2)⊃×@
D8]2, θ7,∞,7[Q28]1 ⊗ A2, θ7,∞,7[C7

2(3)

⊃×@√
-7
S̃3]2, θ7,∞,7[C7

2(2)

⊃×@ D8]2, θ7,∞,3[±C7

2(3)

⊃×@ S3]2,

and θ7,∞,3[D14⊗S̃3]2 are minimal absolutely irreducible and the minimal absolutely

subgroups of θ7,∞,2[D14 ⊗ SL2(3)]2 resp. θ7,∞,2[C7

2(2)⊃×@ SL2(3)]2 are D14 ⊗Q8 resp.

C7

2(2)⊃×@ Q8 and not isomorphic.
Let M be a maximal order of Qθ9,∞,3 and U a minimal absolutely irreducible

subgroup of θ9,∞,3[C9

2(2)⊃×@√
-3
SL2(3)]2. Then U/O2(U) ∼= D18. Hence the 2-modular

constituents of the natural representation of U ⊗θ9 M ≤ GL24(Q) are of degree 12,
so U cannot fix a 2-modular and a 2-unimodular lattice. So there is no common

absolutely irreducible subgroup of θ9,∞,3[Q36]
2
1 and θ9,∞,3[C9

2(2)⊃×@√
-3
SL2(3)]2.

Z(Q) real quartic.

Theorem 12.17. Let Q be a definite quaternion algebra with center K of degree
4 over Q and G a primitive a.i.m.f. subgroup of GL2(Q). Then G is one of the
groups in the following table:
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List of the primitive a.i.m.f. subgroups of GL2(Q), where Q is a definite
quaternion algebra with center K and [K : Q] = 4.

θ16,∞[Q32]1 ⊗A2 ( 26 · 3)

O1 (A16
2 )

O2 (F4 ⊗A2)
4, (E8 ⊗A2)

2

θ16,∞[S̃4⊗√
2
D32]2 (28 · 3)

O1 (F 8
4 )

O2 (F4⊗̃F4)
2, E4

8

θ24,∞[S̃4⊗√
2
D48]2 (27 · 32)

O1 (A2 ⊗ F4)
4, (A2 ⊗ E8)

2 (F4⊗̃F4)
2, E4

8

O2 (E4
8 ), ((A2 ⊗ F4)

4)

O3 (F4⊗̃F4)
2, (A2 ⊗ E8)

2, A2 ⊗ F4⊗̃F4, [21+10
+ .O+

10(2)]32

θ20,∞[Q40]1 ⊗A2 (24 · 3 · 5)

O1 (A2 ⊗A4)
4, (A2 ⊗ [(SL2(5)

2
� SL2(5)) : 2]8)

2, (A2 ⊗ E8)
2

O2 A2 ⊗A4 ⊗ F4, A2 ⊗ F4⊗̃F4,

O3 (A2 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8)
2, (A2 ⊗ E8)

2,

A2 ⊗ [SL2(5) ◦ SL2(5) : 2
2
�√
5
D10]16

θ20,∞[SL2(5)⊗√
5
D40]2 (25 · 3 · 52)

O1 E4
8 , [(SL2(5)

2

� SL2(5)) : 2]48, [SL2(5) ◦ SL2(5) : 2
2

�√
5
D10]

2
16

O2 E8 ⊗ F4, [(SL2(5)
2

� SL2(5)) : 2]8 ⊗ F4, [21+4
− .Alt5⊗∞,2

SL2(5)
2(2)

�√
5
D10]32

O3 [((SL2(5) ◦ SL2(5))
2
�√
5
(SL2(5) ◦ SL2(5))) : S4]32,i (i = 1, 2)

[SL2(5) ◦ SL2(5) : 2
2

�√
5
D10]

2
16

θ20,∞[C5

2
� (C4 ◦ SL2(3).2)]2 (26 · 3 · 5)

O1 (F4⊗̃F4)
2, (A4 ⊗ F4)

2, [SL2(5)
2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16

O2 A4 ⊗ E8, [21+10
+ .O+

10(2)]32, [SL2(5)
2(2)⊃×@
∞,2

21+6
− .O−6 (2)]32

O3 E8 ⊗ F4, [(SL2(5)
2
� SL2(5)) : 2]8 ⊗ F4, [21+4

− .Alt5⊗∞,2
SL2(5)

2(2)

�√
5
D10]32

θ15,∞[SL2(5)⊗√
5
D30]2 (24 · 32 · 52)

O1 [SL2(5) ◦ SL2(5) : 2
2

�√
5
D10]

2
16, (A2 ⊗ E8)

2,

(A2 ⊗ [(SL2(5)
2
� SL2(5)) : 2]8)

2

O2 A2 ⊗ [SL2(5) ◦ SL2(5) : 2
2

�√
5
D10]16,

[((SL2(5) ◦ SL2(5))
2

�√
5
(SL2(5) ◦ SL2(5))) : S4]32,i (i = 1, 2)
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θ15,∞[C15

2(2)

⊃×@√
-3
SL2(3)]2 (24 · 32 · 5)

O1 (A4 ⊗ F4)
2, [SL2(5)

2(3)

⊃×@
∞,3

(SL2(3)
2

� C3)]
2
16, [Sp4(3) ◦ C3

2

�√
-3
SL2(3)]216

O2 E8 ⊗ F4, F4 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8,

[(SL2(5)⊗√
5
D10)

2(3)

⊃×@
∞,3

(SL2(3)
2

� C3)]32

θ15,∞[C15

2(2)⊃×@ D8]2 (24 · 3 · 5)

O1 (F4⊗̃F4)
2, [D120.(C4 × C2)]

2
16, [SL2(5)

2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16

O2 [(21+4
− .Alt5⊗∞,2

SL2(5))
2(2)

�√
5
D10]32

[((SL2(5) ◦ SL2(5)) : 2
2(6)⊃×@√

5

(C3

2(2)⊃×@ D8)]32,i (i = 1, 2)

η17,∞[±C17.C4]2 (23 · 17)

O1 [SL2(17)
2(3)⊃@ S̃3]32,i (i = 1, 2), [SL2(17)

2(3)◦ S̃3]32

O2 [21+10
+ .O+

10(2)]32

√
2,∞[S̃4]1 ⊗ √

5[±D10]2 (25 · 3 · 5)

O1 (A4 ⊗ F4)
2, A4 ⊗ E8, [C15 : C4

2(2)⊃×@ F4]32

O2 [SL2(5) ◦ SL2(5) : 2
2

�√
5
D10]

2
16, [(21+4

− .Alt5⊗∞,2
SL2(5))

2(2)

�√
5
D10]32,

[SL2(9)⊗D10

2
� SL2(5)]32, [(SL2(5)⊗√

5
D10)

2(3)⊃×@
∞,3

(SL2(3)
2
� C3)]32

√
5,∞[SL2(5)]1 ⊗ √

2[D16]2 (26 · 3 · 5)

O1 [21+10
+ .O+

10(2)]32, [(Sp4(3)⊗√
-3
Sp4(3)) : 2

2
� C3]32,

[SL2(9).2
2(2)⊃×@
∞,2

21+4
− .Alt5]32, [SL2(5)

2(2)⊃×@
∞,2

21+6
− .O−6 (2)]32,

(F4⊗̃F4)
2, [SL2(5)

2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16

O2 [((SL2(5) ◦ SL2(5)) : 2
2(6)⊃×@√

5

(C3

2(2)⊃×@ D8)]32,i (i = 1, 2), E8 ⊗ F4,

[(SL2(5)
2

� SL2(5)) : 2]48, [(SL2(5)
2

� SL2(5)) : 2]8 ⊗ F4, E
4
8

√
2+
√

5,∞,2,5[C5

2(2)⊃×@ D16]2 (25 · 5)

O1 A8
4, (A4 ⊗ F4)

2, [D120.(C4 × C2)]
2
16

O2 ([D120.(C4 × C2)]
2
16)

√
2+
√

5,∞,2,5[C5

2(2)⊃×@ Q16]2 (25 · 5)

O1 [SL2(5)
2(3)⊃×@
∞,3

SL2(9)]216, [SL2(9)
2(3)⊗
∞,3

SL2(9)]216, [SL2(5)
2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16,

[Sp4(3) ◦ C3

2

�√
-3
SL2(3)]216, [SL2(5)

2(3)

⊃×@
∞,3

(SL2(3)
2

� C3)]
2
16,

E4
8 , (F4⊗̃F4)

2, [(SL2(5)
2

� SL2(5)) : 2]48

O2 ([Sp4(3) ◦ C3

2

�√
-3
SL2(3)]216)
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η40,∞[C5

2

�QD16]2 (25 · 5)

O1 A8
4, (A4 ⊗ F4)

2, (F4⊗̃F4)
2, E4

8 , [(SL2(5)
2

� SL2(5)) : 2]48,

[SL2(5)
2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16

O2 [(SL2(5)
2
� SL2(5)) : 2]48, E

4
8 , F4 ⊗ [(SL2(5)

2
� SL2(5)) : 2]8,

F4 ⊗ E8, [SL2(5) ◦ SL2(5) : 2
2

�√
5
D10]

2
16,

[(21+4
− .Alt5⊗∞,2

SL2(5))
2(2)

�√
5
D10]32

O3 (A8
4), ([(SL2(5)

2
� SL2(5)) : 2]48), (E4

8 )

O4 F4 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8, F4 ⊗ E8, [21+10
+ .O+

10(2)]32

[(21+4
− .Alt5⊗∞,2

SL2(5))
2(2)

�√
5
D10]32, [SL2(5)

2(2)⊃×@
∞,2

21+6
− .O−6 (2)]32

O5 [21+10
+ .O+

10(2)]32, (A4 ⊗ F4)
2, [SL2(5)

2(2)⊃×@
∞,2

21+6
− .O−6 (2)]32

A4 ⊗ E8, (F4⊗̃F4)
2, [SL2(5)

2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16

O6 A4 ⊗ E8, (F4⊗̃F4)
2, [SL2(5)

2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16

[21+10
+ .O+

10(2)]32, (A4 ⊗ F4)
2, [SL2(5)

2(2)⊃×@
∞,2

21+6
− .O−6 (2)]32

√
5,∞[SL2(5)]1 ⊗ √

3[D24]2 (25 · 32 · 5)

O1 (A2 ⊗ E8)
2, (A2 ⊗ [(SL2(5)

2

� SL2(5)) : 2]8)
2,

F4 ⊗ [(SL2(5)
2
� SL2(5)) : 2]8,

[((SL2(5) ◦ SL2(5))
2

�√
5
(SL2(5) ◦ SL2(5))) : S4]32,i (i = 1, 2),

F4 ⊗ E8, [((SL2(5) ◦ SL2(5)) : 2
2(6)⊃×@√

5

(C3

2(2)⊃×@ D8)]32,i (i = 1, 2)

O2 F4 ⊗ E8, F4 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8, A2 ⊗ F4⊗̃F4, [21+10
+ .O+

10(2)]32,

A2 ⊗ [SL2(5)
2(2)⊃×@
∞,2

21+4
− .Alt5]16, [SL2(5)

2(2)⊃×@
∞,2

21+6
− .O−6 (2)]32,

[(Sp4(3)⊗√
-3
Sp4(3)) : 2

2

� C3]32, [SL2(5)
2(3)⊃×@
∞,3

(Sp4(3)
2

� C3)]32

O3 (A2 ⊗ E8)
2, (A2 ⊗ [(SL2(5)

2

� SL2(5)) : 2]8)
2, F4⊗̃F 2

4 ,

[SL2(5)
2(2)

⊃×@
∞,2

21+4
− .Alt5]

2
16, E

4
8 ,

[(SL2(5)
2

� SL2(5)) : 2]48,

[SL2(5)
2(3)⊃×@
∞,3

(SL2(3)
2
� C3)]

2
16, [Sp4(3) ◦ C3

2
�√
-3
SL2(3)]216

O4 [SL2(5) ◦ C5

2(3)⊃×@ D24]32
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√
3,∞[Q24]1 ⊗ √

5[±D10]2 (24 · 3 · 5)

O1 [(21+4
− .Alt5⊗∞,2

SL2(5))
2(2)

�√
5
D10]32, [(SL2(5)⊗√

5
D10)

2(3)⊃×@
∞,3

(SL2(3)
2

� C3)]32,

[SL2(5) ◦ SL2(5) : 2
2
�√
5
D10]

2
16, A2 ⊗ [SL2(5) ◦ SL2(5) : 2

2
�√
5
D10]16

O2 A4 ⊗ E8, A2 ⊗A4 ⊗ F4, [C15 : C4

2(2)⊃×@ F4]32,

[(21+4
− .Alt5⊗∞,2

SL2(5))
2(2)

�√
5
D10]32

O3 (A2 ⊗A4)
4, (F4 ⊗A4)

2, [D120.(C4 × C2)]
2
16,

[SL2(5) ◦ SL2(5) : 2
2
�√
5
D10]

2
16

O4 ([D120.2]216,1)

√
3+
√

5,∞[C5

2⊃×@ D24]2 (24 · 3 · 5)

O1 [SL2(5) ◦C5

2(3)

⊃×@ D24]32

O2 [SL2(3)
2(2)◦ C5

2(3)⊃×@ D24]32

O3 ([D120.2]216,1)

O4 [((SL2(5) ◦ SL2(5))
2
�√
5
(SL2(5) ◦ SL2(5))) : S4]32,1,

[((SL2(5) ◦ SL2(5)) : 2
2(6)⊃×@√

5

(C3

2(2)⊃×@ D8)]32,1

√
3+
√

5,∞[C5

2⊃×@√
5
′
Q24]2 (24 · 3 · 5)

O1 [SL2(5) ◦C5

2(3)⊃×@√
5
′
Q24]32

O2 [SL2(3)
2(2)◦ (C5

2(3)⊃×@√
5
′
Q24)]32

O3 ([D120.2]216,2)

O4 ([(SL2(5)
2
� SL2(5)) : 2]48), ((F4⊗̃F4)

2)

η48,∞[C3

2

�QD32]2 (26 · 3)

O1 A16
2 , (A2 ⊗ F4)

4, F 8
4 , E4

8

O2 (F 8
4 ), (A16

2 )

O3 (A16
2 ), (F 8

4 ), (E4
8)

O4 E4
8 , (F4⊗̃F4)

2, (A2 ⊗ F4)
4, (A2 ⊗ E8)

2

O5 (A16
2 ), (F 8

4 )

O6 (A16
2 ), [21+10

+ .O+
10(2)]32

O7 (A2 ⊗ E8)
2, (A2 ⊗ F4)

4, (F4⊗̃F4)
2, E4

8

O8 [21+10
+ .O+

10(2)]32

O9 (A16
2 ), (F 8

4 )

O10 (A16
2 ), (F 8

4 )
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In the first line of each box the a.i.m.f. group G and its order is given. In
the next lines some r.i.m.f. supergroups fixing a G-lattice with maximal order as
endomorphism ring are given. If I did not find such groups, at least one r.i.m.f.
supergroup of G is specified in brackets. If there is more than one isomorphism
class of maximal orders in Q they are listed in the following lines, headed by the
symbols O1, O2, . . . to distinguish the different Z-isomorphism classes of maximal
orders, in the same order as they are displayed in Table 4.1.

Proof. Let Q be a definite quaternion algebra with center K of degree 4 over Q and
G a primitive a.i.m.f. subgroup of GL2(Q). Then K is contained in a cyclotomic
field of degree 8 or 16 over Q. If K is the maximal real subfield of a cyclotomic
field of degree 8 over Q, then K is one of Q[θ15], Q[θ20], Q[θ24], or Q[θ16].

Assume first that K = Q[θ15]. If G contains a quasi-semi-simple normal sub-
group, then SL2(5) �G. The centralizer C := CG(SL2(5)) embeds into the com-
muting algebra D := CQ2×2(SL2(5)), which is an indefinite quaternion algebra
with center K. Since SL2(5) is primitively saturated over K the group G is of
the form G = SL2(5)C. Hence C is a maximal finite subgroup of D∗ and the

enveloping Q[
√

5]-algebra Q[
√

5]C of C is D. By the classification of finite sub-
groups of PGL2(C) in [Bli 17], this implies that D = K2×2 and C = ±D30.
Hence G = θ15,∞[SL2(5)⊗√

5
D30]2 in this case. Now assume that G does not

contain a quasi-semi-simple normal subgroup. Since K is the character field of
the natural character of G, an inspection of the relevant groups in Table 8.7
yields that O5(G) > 1. Hence O5(G) ∼= C5 and G contains the normal subgroup
N := B◦K(O5(G)) = ±C15. The centralizer CG(N) = B◦(CG(N)) is a centrally
irreducible subgroup of (Q ⊗K Q[ζ15])

∗ and G/CG(N) ∼= C2. By Theorem 8.1
CG(N) is either C15⊗√-3

SL2(3) or C15 ⊗D8. In each case there are two possible

automorphisms. Since the group Q60 ⊗ D8 is imprimitive and D30 ⊗ SL2(3) em-

beds into θ15,∞[SL2(5)⊗√
5
D30]2 one finds that G is one of θ15,∞[C15

2(2)

⊃×@ SL2(3)]2 or

θ15,∞[C15

2(2)

⊃×@ D8]2.
The case where K = Q[θ20] is similar. If G contains a quasi-semi-simple normal

subgroup, one easily concludes that G = θ20,∞[SL2(5)⊗√
5
D40]2. If G has no quasi-

semi-simple normal subgroup, then as above, O5(G) ∼= C5 and N := B◦K(O5(G)) =
C20 �G. Let C := CG(N).

If O2(G) > C4, then O2(C) = C4 ⊗ D8
∼= C4 ◦ Q8 and C = B◦K(C) = C5 ⊗

(C4 ◦ SL2(3).2). There is only one possible automorphism and therefore G =

θ20,∞[C5

2
� (C4 ◦ SL2(3).2)]2 in this case.

If O3(C) > 1, one has to remark that Q40 ⊗ S3
∼= C20

2(3)

⊃×@√
-1
S̃3 and D40 ⊗ S̃3

∼=

C20

2(3)⊃×@ S3. Since the last group is a subgroup of θ20,∞[SL2(5)⊗√
5
D40]2, one finds

that G is θ20,∞[Q40]1 ⊗A2 in this case.

In the last two cases, K does not contain a subfield Q[
√

5]. Since K is the
character field of the natural character of G, one finds that O5(G) = 1 and that G
does not contain a quasi-semi-simple normal subgroup.
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If K = Q[θ24] clearly O3(G) 6= 1. Hence O3(G) = C3 and G contains a normal
subgroup N := B◦K(O3(G)) = C24. One concludes that O2(G) = C8 ◦ Q8 and

CG(N) = B◦K(C24⊗√-1
Q8) = C48⊗√

2
S̃4. Now S̃4 is primitively saturated over K

and therefore G = θ24,∞[S̃4⊗√
2
D48]2

In the last case K = Q[θ16]. If O3(G) > 1, then O3(G) ∼= C3 and CG(O3(G))

is an absolutely irreducible subgroup of Q[
√

-3] ⊗Q. Since S̃3 ⊗D32 = C16

2(3)⊃×@ S3

embeds into θ16,∞[S̃4⊗√
2
D32]2, G is θ16,∞[Q32]1 ⊗A2 = θ16,∞[C16

2(3)⊃×@ S̃3]2.

If O3(G) = 1, then O2(G) is a self-centralizing normal subgroup of G and G =

B◦(O2(G)) = θ16,∞[S̃4⊗√
2
D32]2 with Proposition 8.9.

Now we consider the case, where K does not embed into a cyclotomic field of
degree 8 over Q. Since K is real and of degree 4, this implies that K is contained
in one of the cyclotomic fields Q[ζi] for i = 17, 40, 60, 48 of degree 16 over Q and

that K is one of Q[η17], Q[
√

2,
√

5], Q[η40], Q[
√

3,
√

5], or Q[η48]. The fields Q[ηi]
denote subfields of Q[ζi] with Gal(Q[ηi]/Q) ∼= C4.

In all cases i divides the exponent of G. If K = Q[ηi] is a cyclic extension of
Q, then K is generated by a single character value. So in these cases G contains
an element x of order i. Since K is the character field of the natural character of
G, the whole Galois group Γ := Gal(Q[ζi]/Q[ηi]) is induced by conjugation with
elements in the normalizer NG(〈x〉). Hence G contains the irreducible subgroup
±Ci.Γ. Computing the automorphism group of the invariant lattices one gets G =

±Ci.Γ is one of η17,∞[±C17.C4]2, η40,∞[C5

2
�QD16]2, respectively η48,∞[C3

2
�QD32]2.

Now let K = Q[
√

2,
√

5]. If G contains a quasi-semi-simple normal subgroup
one easily concludes that G = √

5,∞[SL2(5)]1 ⊗ √
2[D16]2. Otherwise G contains

a normal subgroup N ∼= C5. The centralizer CG(N) is an absolutely irreducible
subgroup of GL1(Q⊗Q[ζ5]) and G contains CG(N) of index 2.

Hence, clearly O3(G) = 1 and by Table 8.7 O2(G) is one of Q8, D16, or Q16.

In the first case, G contains the normal subgroup B◦K(O2(G)) = S̃4. This group is

primitively saturated over K and therefore G = √
2,∞[S̃4]1 ⊗ √

5[±D10]2.

In the other two cases the elements in G − CG(N) may induce two different
automorphisms. Since the groups Q20 ⊗ D16 resp. D10 ⊗ Q16 are contained in
√

5,∞[SL2(5)]1 ⊗ √
2[D16]2 resp. √

2,∞[S̃4]1 ⊗ √
5[±D10]2, one finds that G is one of

√
2+
√

5,∞,2,5[C5

2(2)⊃×@ D16]2 resp. √2+
√

5,∞,2,5[C5

2(2)⊃×@ Q16]2.

In the case K = Q[
√

5,
√

3], one analogously gets that G is one of

√
5,∞[SL2(5)]1 ⊗ √

3[D24]2, √3,∞[Q24]1 ⊗ √
5[±D10]2,

√
3+
√

5,∞[C5

2⊃×@ D24 ]2, or √3+
√

5,∞[C5

2⊃×@√
5
′
Q24]2.

Theorem 12.18. Let Q be a definite quaternion algebra with center K and
[K : Q] = 4. If G is an a.i.m.f. subgroup of GL2(Q), then Q is one of Qθ16,∞,
Qθ24,∞, Qθ20,∞, Qθ15,∞, Qη17,∞, Q√

2+
√

5,∞, Q√
2+
√

5,∞,2,5, Qη40,∞, Q√
3+
√

5,∞,
or Qη40,∞. If K is not the maximal real subfield of a cyclotomic field, the simplicial
complexes M irr

2 (Q) consist of zero simplices. For K = Q[θi] (i = 16, 24, 20, 15) the
simplicial complexes M irr

2 (Q) are as follows.
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r r rθ16,∞[S̃4⊗√
2
D32]2 θ16,∞[Q32]

2
1 θ16,∞[Q32]1 ⊗A2

r rθ24,∞[S̃4⊗√
2
D48]2 θ24,∞[Q48]

2
1

r
r

r
�
�
�
�
�Q
Q
Q
Q
Q

  `̀ r
θ20,∞[SL2(5)⊗√

5
D40]2

θ20,∞[C5

2
� (C4 ◦ SL2(3)).2]2

θ20,∞[Q40]
2
1 θ20,∞[Q40]1 ⊗A2

r r r
r

θ15,∞[SL2(5)⊗√
5
D30]2 θ15,∞[Q60]

2
1 θ15,∞[C15

2(2)⊃×@√
-3
SL2(3)]2

θ15,∞[C15

2⊃×@ D8]2

List of the maximal simplices in M irr
2 (Q)

simplex
a common

subgroup

(θ16,∞[S̃4⊗√
2
D32]2, θ16,∞[Q32]

2
1) Q32 ⊗D8

(θ24,∞[S̃4⊗√
2
D48]2, θ24,∞[Q48]

2
1) Q48 ⊗D8

(θ20,∞[SL2(5)⊗√
5
D40]2, θ20,∞[Q40]

2
1, θ20,∞[C5

2
� (C4 ◦ SL2(3)).2]2) Q40 ⊗D8

(θ15,∞[SL2(5)⊗√
5
D30]2, θ15,∞[Q60]

2
1) Q20⊗√

5
D30

Z(Q) real quintic.

Analogously one finds:

Theorem 12.19. Let Q be a definite quaternion algebra with center K of degree
5 over Q and G a primitive a.i.m.f. subgroup of GL2(Q). Then G is one of
the groups in the following table, which is built up as Table 12.7. The simplicial
complexes consist of zero simplices each.
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List of the primitive a.i.m.f. subgroups of GL2(Q), where Q is a definite
quaternion algebra with center K and [K : Q] = 5.

lattice L |Aut(L)| some r.i.m.f. supergroups

θ11,∞,11[Q44]1 ⊗A2 23 · 3 · 11 (A2 ⊗A10)
2, (A2 ⊗A

(2)
10 )2, (A2 ⊗A

(3)
10 )2

([L2(11)
2(3)

⊗ D12]
2
20), ([L2(11)

2(3)

⊃×@ D12]
2
20)

θ11,∞,11[C11

2(2)⊃×@ SL2(3)]2 24 · 3 · 11 [SL2(11)
2(2)◦ SL2(3)]220, [U5(2)

2(2)◦ SL2(3)]220

[L2(11)⊗√
-11

SL2(3)⊗ S3).2]40

θ11,∞,11[±C11

2(3)

⊃×@ S3]2 23 · 3 · 11 [L2(11)
2(3)

⊃×@ D12]
2
20, [L2(11)

2(3)

⊗ D12]
2
20

((A2 ⊗A10)
2)

θ11,∞,2[±C11

2(2)⊃×@ D8]2 24 · 11 [SL2(11)
2(2)⊗
∞,2

21+4
− .Alt5]40,

[U5(2)
2(2)⊗
∞,2

21+4
− .Alt5]40

([2.M12.2⊗√-2
GL2(3)]40)

((A4
10)), (((A

(2)
10 )4)), (((A

(3)
10 )4))

θ11 [±D22]1 ⊗∞,2[SL2(3)]1 24 · 3 · 11 A10 ⊗ F4, A
(2)
10 ⊗ F4, A

(3)
10 ⊗ F4

(A10 ⊗ F4)

[SL2(11)
2(S)◦ L2(3)]220

θ11 [±D22]1 ⊗∞,3[S̃3]1 23 · 3 · 11 (A10 ⊗A2)
2, (A

(2)
10 ⊗A2)

2, (A
(3)
10 ⊗A2)

2

((A10 ⊗A2)
2)

((A10 ⊗A2)
2)

((A10 ⊗A2)
2)

θ11,∞,3[±C11

2(3)⊃×@ S̃3]2 23 · 3 · 11 [L2(11)
2(3)⊃×@ D12]

2
20, [L2(11)

2(3)⊗ D12]
2
20

([L2(11)
2(3)⊃×@ D12]

2
20), ([L2(11)

2(3)⊗ D12]
2
20)

([L2(11)
2(3)⊃×@ D12]

2
20), ([L2(11)

2(3)⊗ D12]
2
20)

([L2(11)
2(3)⊃×@ D12]

2
20), ([L2(11)

2(3)⊗ D12]
2
20)

σ25,∞,5[±C25.C4]2 23 · 52 E5
8 , [(SL2(5)

2
� SL2(5)) : 2]58

(E5
8), ([(SL2(5)

2

� SL2(5)) : 2]58)

(E5
8), ([(SL2(5)

2

� SL2(5)) : 2]58)

(E5
8), ([(SL2(5)

2

� SL2(5)) : 2]58)

(E5
8), ([(SL2(5)

2
� SL2(5)) : 2]58)
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13. The a.i.m.f. subgroups of GL3(Q)

Z(Q) = Q
Theorem 13.1. Let Q be a definite quaternion algebra with center Q and G be a
primitive a.i.m.f. subgroup of GL3(Q). Then G is one of the groups in the following
table.

List of the primitive a.i.m.f. subgroups of GL3(Q).

lattice L |Aut(L)| r.i.m.f. supergroups

∞,2[SL2(5)]3 23 · 3 · 5 [SL2(5)
2(2)◦ SL2(3)]12

∞,3[±U3(3)]3 26 · 33 · 7 [6.U4(3).22]12

∞,3[±31+2
+ .GL2(3)]3 25 · 34 E2

6

∞,7[±L2(7).2]3 25 · 3 · 7 (A
(2)
6 )2

Proof. Let Q be a definite quaternion algebra with center Q and G be a primitive
a.i.m.f. subgroup of GL3(Q). Assume that 1 6= N�G is a quasi-semi-simple normal
subgroup ofG. With [CCNPW 85] one finds that N is one ofAlt5, SL2(5), L2(7), or
U3(3). The centralizer C := CG(N) in G of N embeds into the commuting algebra

CQ3×3(N), which is isomorphic to Q[
√

5], Q, Q[
√

-7], resp. Q in the respective cases.
Therefore C = ±1 in all cases and G/±N embeds into C2, the outer automorphism
group of N . This gives a contradiction in the first case, since both groups (±Alt5).2
are subgroups of GL6(Q). In the second and fourth cases, one finds that N = G =

∞,2[SL2(5)]3 resp. N = G = ∞,3[±U3(3)]3, because the extensions of the natural
character of N to N.2 are not rational. In the third case G = ∞,7[±L2(7).2]3 has to
be isomorphic to a nonsplit extension of ±N by C2.

Now assume that G does not contain a quasi-semi-simple normal subgroup and
let p be a prime with Op(G) 6= 1. Then by Corollary 2.4 one has p ∈ {2, 3, 7}. By
Lemma 11.2 O7(G) = 1.

Therefore Proposition 8.11 gives that O3(G) 6= 1. From Table 8.7 one gets that
O3(G) is one of C3, C9, or 31+2

+ . In the first two cases, CG(O3(G)) = ±O3(G)
and G contains CG(O3(G)) of index 2, contradicting the irreducibility of G. In the
last case, G contains the generalized Bravais group B◦(O3(G)) = ±31+2

+ : SL2(3) of
index 2. The split extension is a subgroup of GL6(Q), so G has to be isomorphic
to the nonsplit extension G = ∞,3[±31+2

+ .GL2(3)]3.

Theorem 13.2. Let Q be a definite quaternion algebra with center Q and let G
be an a.i.m.f. subgroup of GL3(Q). Then Q is one of Q∞,2, Q∞,3, or Q∞,7. The
simplicial complexes M irr

3 (Q) are as follows:r r
∞,2[SL2(5)]3 ∞,2[SL2(3)]31r r r
∞,3[±U3(3)]3 ∞,3[S̃3]

3
1∞,3[±31+2

+ .GL2(3)]3r∞,7[±L2(7).2]3
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List of maximal simplices in M irr
3 (Q∞,3):

simplex a common subgroup

(∞,3[±U3(3)],∞,3[±31+2
+ .GL2(3)]3) 31+2

+ : C8

(∞,3[S̃3]
3
1,∞,3[±31+2

+ .GL2(3)]3) (±31+2
+ ).C2

Proof. Theorems 13.1 and 6.1 prove the completeness of the list of quaternion
algebras Q and of a.i.m.f. subgroups of GL3(Q). The completeness of the list
of maximal simplices in M irr

3 (Q) for the respective quaternion algebras Q can
be seen as follows: M irr

3 (Q∞,2) consists of two 0-simplices, because the group

∞,2[SL2(5)]3 is minimal absolutely irreducible. The unique minimal absolutely

irreducible subgroup of ∞,3[±U3(3)]3 is 31+2
+ : C8 as one sees from the list of maximal

subgroups of U3(3) in [CCNPW 85]. This group does not embed into ∞,3[S̃3]
3
1 so

the list of maximal simplices in M irr
3 (Q∞,3) is complete.

Z(Q) real quadratic.

Theorem 13.3. Let Q be a definite quaternion algebra with center K, such that
[K : Q] = 2 and let G be a primitive a.i.m.f. subgroup of GL3(Q). Then G is
conjugate to one of the groups in the following table, which is built up as Table
12.7.

List of the primitive a.i.m.f. subgroups of GL3(Q).

lattice L |Aut(L)| r.i.m.f. supergroups

√
2,∞[SL2(7)]3 24 · 3 · 7 [SL2(7) ◦ S̃4]24

√
2,∞[SL2(5).2]3 24 · 3 · 5 [SL2(5)

2(2)◦ SL2(3)]
2
12, [SL2(5)

2(2)

⊃×@
∞,2

21+4′
− .Alt5]24

√
3,∞[(±U3(3)).2]3 27 · 33 · 7 [6.U4(3).2

2]212, [6.U4(3).2
2

�√
-3
SL2(3)]24

[2.Co1]24, [(C4 ◦ SL2(3)).2
2(3)

⊃×@√
-1
U3(3)]24

√
3,∞[C4

2

� 31+2
+ : SL2(3)]3 26 · 34 E4

6 , [31+2
+ : SL2(3)

2(2)

⊃×@√
-3
SL2(3)]

2
12

F4 ⊗ E6, [Sp4(3)
2

�√
-3

31+2
+ : SL2(3)]24

√
5,∞[2.J2]3 28 · 33 · 52 · 7[2.J2

2

� SL2(5)]24, [2.Co1]24

√
5,∞[Alt5⊗√

5
SL2(5)]3 25 · 32 · 52 [(SL2(5) ◦ SL2(5)) : 2

2

�√
5
Alt5]24,i (i = 1, 2)

√
7,∞[C4

2

� L2(7)]3 26 · 3 · 7 (A
(2)
6 )4, [L2(7)

2(2)

⊃×@ D8]
2
12, [6.U4(3).2

2]212

[2.Co1]24, [6.U4(3).2
2

�√
-3
SL2(3)]24

[L2(7)
2(2)

⊃×@ F4]24, A
(2)
6 ⊗ F4,

[(C4 ◦ SL2(3)).2
2(3)

⊃×@√
-1
U3(3)]24

√
13,∞[SL2(13)]3 23 · 3 · 7 · 13 [SL2(13)

2(2)⊃@ SL2(3)]24, [2.Co1]24

√
21,∞[±C3

2

� L2(7)]3 25 · 32 · 7 (A2 ⊗ A
(2)
6 )2, [6.U4(3).2

2]212

[2.Co1]24, [L2(7)
2(2)

⊃×@ F4]24
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Proof. Let G be a primitive a.i.m.f. subgroup of GL3(Q). Assume that 1 6= N �G
is a quasi-semi-simple normal subgroup of G. With [CCNPW 85] one finds that N
is one of Alt5, SL2(5) (2 groups), L2(7), SL2(7), 3.Alt6, SL2(13), U3(3), or 2.J2.
If N is isomorphic to SL2(7), SL2(13), or 2.J2, one computes that G = N is an
a.i.m.f. group.

If N is U3(3) or SL2(5) (where the restriction of the natural character of G
to N is 2χ6), the centralizer CG(N) embeds into CQ3×3 (N) = Z(Q) = K. Since
K is a (totally) real field, one concludes that CG(N) = ±1 and G/±N ∼= C2 is
isomorphic to the outer automorphism group of N . Using [CCNPW 85] one finds
that G = √

2,∞[SL2(5).2]3 resp. G = √
3,∞[(±U3(3)).2]3.

If N = SL2(5), where the restriction of the natural character χ of G to N con-
tains χ2a, one has Q = Q√

5,∞ and χ|N = 3χ2a. The centralizer CG(N), embedding

into CQ3×3(N) = Q[
√

5]3×3, is either ±1 or Alt5. Since 3 does not divide the order of
the outer automorphism group of N , the first possibility contradicts the irreducibil-
ity of G. In the second case one computes G = NCG(N) = √

5,∞[Alt5⊗√
5
SL2(5)]3.

Now assume that G contains a simple normal subgroup N isomorphic to Alt5.
Since the maximal real subfield of Q is the center K = Z(Q), one finds that

K ∼= Q[
√

5] and the restriction of the natural character of G to N is (w.l.g.) 2χ3a.
The centralizer C := CG(N) embeds into GL1(Q). Therefore it is isomorphic to
a subgroup of SL2(5). Since the outer automorphism of N induces the Galois
automorphism on the center of the enveloping algebra QN one concludes that
G = CN = √

5,∞[Alt5⊗√
5
SL2(5)]3.

Now let N = L2(7) be a normal subgroup of G. The centralizer CG(N) embeds

into K[
√

-7] and therefore is one of ±1, C4, or ±C3. Since G contains NCG(N) of
index 2, one concludes, that in the first case G cannot be absolutely irreducible,
because that character field is only Q. In the remaining two cases one constructs

G to be √
7,∞[C4

2

� L2(7)]3 resp. √21,∞[±C3

2

� L2(7)]3.

In the last case N = 3.Alt6 and CG(N) = ±C3. Using [CCNPW 85] one finds
that G = ±3.PGL2(9) is not maximal finite but contained in √

5,∞[2.J2]3.
Assume for the rest of the proof, that G does not contain a quasi-semi-simple

normal subgroup. By Corollary 2.4 Op(G) = 1 for p 6∈ {2, 3, 5, 7, 13} and by Lemma
11.2 O13(G) = 1.

If O7(G) 6= 1, then O7(G) = C7. Because K = Z(Q) is a real quadratic number
field, one has that C := CG(O7(G)) embeds into K[ζ7], hence is one of ±C7, C28

or ±C21 and G contains C of index 6. In the first case, the character field of the
natural character of G is Q contradicting the absolute irreducibility of G. In the
other two cases one has a unique possibility for G ≤ GL3(Q). Both groups are not

maximal finite but contained in √
7,∞[C4

2

� L2(7)]3 resp. √21,∞[±C3

2

� L2(7)]3.

Next assume that O5(G) 6= 1. Then O5(G) = C5 and K = Z(Q) is isomorphic to

Q[
√

5]. The centralizer CG(O5(G)) embeds into CQ3×3 (O5(G)) = Q[ζ5]
3×3. Since

G does not contain a quasi-semi-simple normal subgroup and 3 does not divide the
order of the automorphism group of O5(G), this contradicts the irreducibility of G.

Assume now, that O3(G) > 1. Then O3(G) is one of C3, C9, or 31+2
+ . In the

first case CG(O3(G)) embeds into K[ζ3]
3×3. Since G does not contain a quasi-

semi-simple normal subgroup and 3 does not divide the order of the automorphism
group of O5(G), this contradicts the irreducibility of G. In the second case, C :=
CG(O3(G)) embeds into K[ζ9], hence is one of ±C9 or C36. The assumption that
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O3(G) = C9 implies in both cases that the index of C in G is not divisible by 3,
which contradicts the irreducibility of G. In the last case, the group G contains
the normal subgroup B := B◦(O3(G)) = ±31+2

+ : SL2(3). The centralizer CG(B)
embeds into K[ζ3], hence is one of ±C3 or C12. The first possibility contradicts

the absolutely irreducibility of G, and in the second case, G = √
3,∞[C4

2

� 31+2
+ :

SL2(3)]3.
If Op(G) = 1 for all odd primes p, O2(G) is self-centralizing in G contradicting

Proposition 8.9.

Theorem 13.4. Let Q be a definite quaternion algebra with real quadratic center
K and let G be an a.i.m.f. subgroup of GL3(Q). Then Q is one of Q√

2,∞, Q√
3,∞,

Q√
5,∞, Q√

7,∞, Q√
13,∞, or Q√

21,∞. The simplicial complexes M irr
3 (Q) are as

follows:

r r r
√

2,∞[SL2(5).2]3

√
2,∞[SL2(7)]3

√
2,∞[S̃4]

3
1

r r r
√

3,∞[(±U3(3)).2]3

√
3,∞[C4

2

� 31+2
+ : SL2(3)]3

√
3,∞[C12.C2]

3
1

r r

r

�
�
�
�
�
�
�@
@
@
@
@
@
@

√
5,∞[2.J2]3

√
5,∞[Alt5⊗√

5
SL2(5)]3√

5,∞[SL2(5)]31r√
7,∞[C4

2
� L2(7)]3

r√
13,∞[SL2(13)]3

r√
21,∞[±C3

2
� L2(7)]3

List of maximal simplices in M irr
3 (Q√

3,∞):

simplex a common subgroup

(√3,∞[(±U3(3)).2]3,√3,∞[C4

2

� ±31+2
+ : SL2(3)]3) (±31+2

+ : C8).C2

(√3,∞[C12.C2]
3
1,
√

3,∞[C4

2

� ±31+2
+ : SL2(3)]3) C4

2

� 31+2
+
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List of maximal simplices in M irr
3 (Q√

5,∞):

simplex a common subgroup
(√5,∞[2.J2]3,√5,∞[Alt5⊗√

5
SL2(5)]3) Alt5 ⊗Q8

(√5,∞[SL2(5)]31,
√

5,∞[Alt5⊗√
5
SL2(5)]3) Q20 ⊗Alt4

(√5,∞[2.J2]3,√5,∞[SL2(5)]31) (±C5 × C5).D12

Proof. Theorems 13.3 and 6.1 prove the completeness of the list of quaternion
algebras Q and of a.i.m.f. subgroups of GL3(Q). The completeness of the list of
maximal simplices in M irr

3 (Q) for the respective quaternion algebras Q can be seen
as follows:

M irr
3 (Q√

2,∞) consists of three 0-simplices, because the groups √
2,∞[SL2(7)]3

and √
2,∞[SL2(5).2]3 are minimal absolutely irreducible groups.

The unique minimal absolutely irreducible subgroup of √
3,∞[(±U3(3)).2]3 is

(±31+2
+ : C8).2 as one sees from the list of maximal subgroups of U3(3) in

[CCNPW 85]. Therefore, there is no common absolutely irreducible subgroup of

√
3,∞[(±U3(3)).2]3 and √

3,∞[C12.C2]
3
1

and one sees that the list of maximal simplices in M irr
3 (Q√

3,∞) is complete.

From the list of maximal subgroups in [CCNPW 85] one finds that the absolutely
irreducible maximal subgroups of √5,∞[2.J2]3 are ±3.PGL2(9), SL2(3)⊗Alt5, and

(±C5×C5).D12. The first group has no absolutely irreducible subgroup of which the
only nonabelian composition factors are isomorphic to Alt5. The unique minimal
absolutely irreducible subgroup of the second group is Q8 ⊗ Alt5, and the two
minimal absolutely irreducible subgroups ((±C5×C5).C6 and (±C5×C5).S3) of the
third group do not embed into √

5,∞[Alt5⊗√
5
SL2(5)]3.

Z(Q) real cubic.

Theorem 13.5. Let Q be a definite quaternion algebra with center K of degree 3
over Q and G a primitive a.i.m.f. subgroup of GL3(Q). Then G is conjugate to

one of θ9,∞,3[±C9

2
�√
-3

31+2
+ : SL2(3)]3, θ7,∞,7[±C7

2
�√
-7
L2(7)]3, or ω19,∞,19[±C19.C6]3.

List of the primitive a.i.m.f. subgroups of GL3(Q).

lattice L |Aut(L)| some r.i.m.f. supergroups

θ9,∞,3[±C9

2

�√
-3

31+2
+ : SL2(3)]3 25 · 35 [±31+4 : Sp4(3).2]218, E

6
6

θ7,∞,7[±C7

2

�√
-7
L2(7)]3 25 · 3 · 72 [±L2(7)

2

�√
-7
L2(7)]218

ω19,∞,19[±C19.C6]3 22 · 3 · 19 A2
18, (A

(5)
18 )2

Proof. Let Q be a definite quaternion algebra with center K of degree 3 over Q
and let G be a primitive a.i.m.f. subgroup of GL3(Q). Then K is contained in
a cyclotomic field of degree ≤ 18, hence K ∼= Q[θ7], Q[θ9], Q[ω13], or Q[ω19],
where θi are generators of the maximal totally real subfield of the corresponding
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cyclotomic field Q[ζi] and the ωi generators of the subfield of degree 3 over Q
of the corresponding cyclotomic field Q[ζi] (cf. notation 4.2). By Table 9.1 the
only possibility for a quasi-semi-simple normal subgroup N of G is N = L2(7). If
L2(7)�G, then clearly

K = Q[θ7], CG(L2(7)) = ±C7, and G = θ7,∞,7[±C7

2
�√
-7
L2(7)]3.

Assume that K 6= Q[ω13]. Then 13 divides |G| and one concludes that O13(G) ∼=
C13. To get the character field K, 4 has to divide the degree of the natural char-
acter of G, which is a contradiction. If K = Q[ω19], one similarly gets that
G = ω19,∞,19[±C19.C6]3. Now assume that K = Q[θ7]. Then 7 divides the or-
der of G. Since the possible normal 2- and 3-subgroups have no automorphism
of order 7, one has either L2(7) � G (which is dealt with above) or O7(G) ∼= C7.
In the last case Q[ζ7] is a maximal subfield of Q and the centralizer CG(C7) is a
centrally irreducible subgroup of GL3(Q[ζ7]). Since O7(G) 6= C7 ×C7, this implies

L2(7) � G. One finds G = θ9,∞,3[±C9

2

�√
-3

31+2
+ : SL2(3)]3 completely analogous, if

K = Q[θ9].

Corollary 13.6. Let Q be a definite quaternion algebra with center K of degree 3
over Q and G an a.i.m.f. subgroup of GL3(Q). Then Q is one of Qθ9,∞,3, Qθ7,∞,7,
or Qω19,∞,19. The simplicial complexes M irr

3 (Q) are as follows:

r rθ9,∞,3[±C9

2
�√
-3

31+2
+ : SL2(3)]3 θ9,∞,3[±C9.C2]

3
1

r r
θ7,∞,7[±C7

2

�√
-7
L2(7)]3 θ7,∞,7[±C7.C2]

3
1

r
ω19,∞,19[±C19.C6]3

simplex a common subgroup

(θ9,∞,3[±C9

2

�√
-3

31+2
+ : SL2(3)]3, θ9,∞,3[±C9.C2]

3
1) ±C9

2

�√
-3

31+2
+

(θ7,∞,7[±C7

2

�√
-7
L2(7)]3, θ7,∞,7[±C7.C2]

3
1) ±C7

2

�√
-7
C7 : C3

Proof. Theorems 6.1 and 13.5 give the list of quaternion algebrasQ and the a.i.m.f.
subgroups of GL3(Q). Since all simplicial complexes M irr

3 (Q) for the respective
quaternion algebras Q consist of one simplex, it is clear that the list of maximal
simplices in M irr

3 (Q) is complete.
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14. The a.i.m.f. subgroups of GL4(Q)

Z(Q) = Q

Theorem 14.1. Let Q be a totally definite quaternion algebra with center Q and
G be a maximal finite primitive absolutely irreducible subgroup of GL4(Q). Then
Q is one of Q∞,2, Q∞,3, Q∞,5, or Q∞,7. The primitive a.i.m.f. subgroups G of
GL4(Q) are given in the following table:

List of the primitive a.i.m.f. subgroups of GL4(Q).

lattice L |Aut(L)| r.i.m.f. supergroups

∞,2[2
1+4
− Alt5]2 ⊗A2 28 · 32 · 5 A2 ⊗ E8

∞,2[SL2(3)]1 ⊗A4 26 · 32 · 5 A4 ⊗ F4

∞,2[2
1+6
− .O−6 (2)]4 213 · 34 · 5 F4⊗̃F4

∞,2[SL2(5)
2(2)⊃×@ D8]4 26 · 3 · 5 [SL2(5)

2(2)⊃×@
∞,2

21+4′
− .Alt5]16

∞,3[S̃3]1 ⊗A4 25 · 32 · 5 (A2 ⊗A4)
2

∞,3[S̃3]1 ⊗ F4 28 · 33 (A2 ⊗ F4)
2

∞,3[Sp4(3)
2

� C3]4 28 · 35 · 5 E2
8

∞,3[SL2(5)
2(3)⊃×@ S3]4 25 · 32 · 5 [(SL2(5)

2
� SL2(5)) : 2]28

∞,3[SL2(7)]4 24 · 3 · 7 [SL2(7)
2(3)◦ S̃3]16

∞,5[SL2(5).2]2 ⊗A2 25 · 32 · 5 A2 ⊗ E8

∞,5[SL2(5) : 2]2 ⊗A2 25 · 32 · 5 A2 ⊗ [(SL2(5)
2
� SL2(5)) : 2]8

∞,5[SL2(5)
2
�√
5
D10]4 25 · 3 · 52 [(SL2(5) ◦ SL2(5)) : 2

2
�√
5
D10]16

∞,7[SL2(7).2]4 25 · 3 · 7 (B16)

∞,7[2.S7]4 25 · 32 · 5 · 7 E2
8

The proof of this theorem is split up into eight lemmata. For the rest of this
paragraph let Q be a definite quaternion algebra with center Q and let G be a
primitive a.i.m.f. subgroup of GL4(Q). Then G has a complex representation of
degree 8 of which the character values lie in Q. By [Schu 05] this implies that the
prime divisors of the order of G and hence the finite primes, at which Q ramifies,
lie in {2, 3, 5, 7}.
Lemma 14.2. If the order of G is divisible by 7, then G is one of ∞,3[SL2(7)]4,

∞,7[SL2(7).2]4, or ∞,7[2.S7]4.

Proof. Assume that 7 divides |G|. Since O7(G) = 1 and the possible normal p-
subgroups ofG have no automorphism of order 7 (cf. Chapter 8), G contains a quasi-
semi-simple normal subgroup N of order divisible by 7. According to [CCNPW 85]
N is one of SL2(7) (2 representations) or 2.Alt7 (cf. Table 9.1).

If N is conjugate to SL2(7), where the enveloping Q-algebra of N is Q4×4
∞,3,

the group N is already an absolutely irreducible subgroup of GL4(Q∞,3). One
computes that G = N = ∞,3[SL2(7)]4.
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Next assume that N is conjugate to SL2(7), where the enveloping Q-algebra of N

is Q[
√

-7]4×4. Then the centralizer CG(N) embeds into CQ4×4(N) ∼= Q[
√

-7], hence
is ±1. Therefore G is isomorphic to SL2(7).2. Since there is an element x of order
7 in G, such that χ(x) ∈ Q for all irreducible characters χ of G and χo(x) = −1 for
the natural character χo (of degree 8) of G, Theorem A of [Fei 83] implies that Q
can only be ramified at ∞ and 7. Let M denote the maximal order in Q∞,7, which
is unique up to conjugacy. Then N fixes up to isomorphism five M-lattices, three
of which form a set of normal critical lattices (in the sense of Definition 2.7), and a
one-dimensional space of Hermitian forms. The automorphism group on the three
normal critical lattices is ∞,7[SL2(7).2]4 whereas the automorphism groups of the
two MN -lattices, which are not invariant under the outer automorphism of N are
conjugate to ∞,7[2.S7]4. One concludes that G is conjugate to ∞,7[SL2(7).2]4 in
this case.

If N is isomorphic to 2.Alt7, one concludes as above that G = N.2 and Q is
isomorphic to Q∞,7. Since N contains the subgroup SL2(7) of the last case, one
gets that G is conjugate to ∞,7[2.S7]4 in this case.

We now may assume that 7 does not divide the order of G. Hence the only finite
primes on which Q ramifies lie in {2, 3, 5}.
Lemma 14.3. If G contains a quasisimple normal subgroup N isomorphic to

Sp4(3), then G is ∞,3[Sp4(3)
2
� C3]4.

Proof. If Sp4(3) ∼= N E G, then G contains the normal subgroup B◦(N) = Sp4(3)◦
C3 = NCG(N) of index 2. Since there is an element x of order 3 in G, such that
χ(x) ∈ Q for all irreducible characters χ of G and χo(x) = −1 for the natural
character χo (of degree 8) of G, Theorem A of [Fei 83] implies that Q = Q∞,3. Let
M denote the maximal order in Q∞,3, which is unique up to conjugacy. N fixes
only one isomorphism class of M-lattices and a one-dimensional space of Hermitian
forms and therefore has at most one a.i.m.f. supergroup. One computes that G is

∞,3[Sp4(3)
2

� C3]4.

Imediately from Corollary 7.6 one gets:

Lemma 14.4. If G contains a normal subgroup N isomorphic to Alt5, then G is

∞,2[SL2(3)]1 ⊗A4 or ∞,3[S̃3]1 ⊗A4.

Lemma 14.5. G does not contain a normal subgroup SL2(9).

Proof. Assume that SL2(9) ∼= N�G. Then the restriction of the natural character
of G to N is 4χ4a (or 4χ4b) and the centralizer C := CG(N) embeds into CQ4×4(N)
which is an indefinite quaternion algebra C with center Q. Since the two outer
automorphisms of N , not contained in S6 ≤ Aut(N) interchange the two characters
χ4a and χ4b, the group G contains CN of index ≤ 2. Since B◦(C3 ◦SL2(9)) = C3 ◦
Sp4(3) one has O3(C) = 1. If G = CN , then C is an a.i.m.f. subgroup of GL1(C).
Hence by Corollary 6.2 C ∼= Q2×2, Q ∼= Q∞,3, C = D8 and G = ∞,3[SL2(9)]2 ⊗D8

is imprimitive and contained in ∞,3[SL2(9)]22. Hence G contains CN of index

2. Since O3(C) = 1, one finds O2(C) ∼= C4 and G = C4

2(3)⊃@ N is contained in

∞,2[2
1+6
− .O−6 (2)]4.
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Lemma 14.6. If G contains a normal subgroup N isomorphic to SL2(5), then G
is one of

∞,2[SL2(5)
2(2)⊃×@ D8]4, ∞,3[SL2(5)

2(3)⊃×@ S3]4, ∞,5[SL2(5).2]2 ⊗A2,

∞,5[SL2(5) : 2]2 ⊗A2, or ∞,5[SL2(5)
2

�√
5
D10]4.

Proof. By Table 9.1 the restriction of the natural character ofG to N is 4(χ2a+χ2b).
The centralizer C := CG(N) embeds into C := CQ4×4(N) which is an indefinite

quaternion algebra with center Q[
√

5]. Moreover, the center of the enveloping

algebra QCN is Q[
√

5] and G contains CN of index 2. With Lemma 2.14 this

implies that dimQ(QCN) = 32. Therefore dimQ[
√

5](Q[
√

5]C) = 4. One concludes

that C is isomorphic to Q[
√

5]2×2 and C is one of D10, S3, or D8. Let α be an
element of G−CN . In the first case, α does not centralize C. Computing the two
possible extensions CN.2 = G one finds that they are isomorphic and G is conjugate

to ∞,5[SL2(5)
2
�√
5
D10]4 in this case. In the other two cases one has two possibilities:

Either α centralizes C or it induces the unique nontrivial outer automorphism of
C. If α centralizes C one concludes that G is one of

∞,5[SL2(5).2]2 ⊗A2 or ∞,5[SL2(5) : 2]2 ⊗A2,

since the two groups ∞,5[SL2(5).2]2⊗D8 resp. ∞,5[SL2(5) : 2]2⊗D8 are imprimitive
and contained in ∞,5[SL2(5).2]22 resp. ∞,5[SL2(5) : 2]22.

If α does not centralize C, one finds in each case two nonisomorphic exten-

sions: ∞,3[SL2(5)
2(3)⊃×@ S3]4 and a proper subgroup of ∞,3[Sp4(3)

2
� S3]4 resp.

∞,2[SL2(5)
2(2)⊃×@ D8]4 and a proper subgroup of ∞,2[2

1+6
− .O−6 (2)]4. Hence G is con-

jugate to ∞,3[SL2(5)
2(3)⊃×@ S3]4 resp. ∞,2[SL2(5)

2(2)⊃×@ D8]4 in these cases.

Lemma 14.7. If G does not contain a quasi-semi-simple normal subgroup, then
O5(G) = 1.

Proof. Assume that O5(G) > 1. Then O5(G) ∼= C5. Since Q[ζ5] splits all possible
quaternion algebras Q (which are Q∞,2, Q∞,3, Q∞,5, and Q∞,2,3,5 since by Lemma
14.2 ramification at 7 is excluded) the centralizer C := CG(O5(G)) embeds into
CQ4×4(O5(G)) ∼= Q[ζ5]

2×2. Moreover G contains C of index 4. Applying Lemma

2.14 two times, one sees that the enveloping algebra QC is isomorphic to Q[ζ5]
2×2.

If O3(C) 6= 1, then C is one of ±C5⊗S3 or C5⊗S̃3. Since the outer automorphism

groups of S̃3 resp. ±S3 are ∼= C2 and Q is totally definite one concludes that G
contains one of the groups Q20⊗S3 or D10⊗ S̃3 of index 2. Computing the possible
extensions one finds that G is not maximal finite but contained in ∞,5[SL2(5).2]2⊗
A2 and ∞,5[SL2(5) : 2]2 ⊗ A2 resp. ∞,3[Sp4(3)

2
� C3]4 and ∞,3[SL2(5)

2(3)⊃×@ S3]4 or

∞,3[S̃3]1 ⊗A4 resp. ∞,5[SL2(5)
2

�√
5
D10]4.

If O3(G) = 1, then C is either D8 or SL2(3) and as above one finds that G is
a proper subgroup of ∞,5[SL2(5).2]22 and ∞,5[SL2(5) : 2]22 resp. ∞,2[2

1+6
− .O−6 (2)]4

and ∞,2[SL2(5)
2(2)⊃×@ D8]4 or ∞,2[SL2(3)]1 ⊗A4 resp. ∞,5[SL2(5)

2
�√
5
D10]4.
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Lemma 14.8. If G does not contain a quasi-semi-simple normal subgroup, O5(G)

= 1, and O3(G) 6= 1, then G is conjugate to ∞,2[2
1+4
− .Alt5]2⊗A2 or ∞,3[S̃3]1⊗F4.

Proof. Assume that O3(G) > 1. Then O3(G) ∼= C3. Since Q[ζ3] splits all possible
quaternion algebras Q (which are Q∞,2, Q∞,3, Q∞,5, and Q∞,2,3,5 since by Lemma
14.2 ramification at 7 is excluded) the centralizer C := CG(O3(G)) embeds into
CQ4×4(O3(G)) ∼= Q[ζ3]

2×2. Moreover G contains C of index 2. Lemma 2.14 implies

that the enveloping algebra QC is isomorphic to Q[ζ3]
4×4.

With Theorem 8.1 one finds that O2(G) is one of Q8, Q8 ◦Q8, or Q8 ⊗D8. and

C is one of C3 ⊗ GL2(3), C3 ◦ S̃4, C3 ⊗ F4 or C3 ◦ 21+4
− .Alt5. Constructing the

possible extensions one gets that G is either one of the two groups in the lemma or

a proper subgroup of ∞,2[2
1+6
− .O−6 (2)]4 or ∞,3[Sp4(3)

2

� C3]4.

Proposition 8.9 yields the following:

Lemma 14.9. If G does not contain a quasi-semi-simple normal subgroup and
Op(G) = 1 for all odd primes p, then G is conjugate to ∞,2[2

1+6
− .O−6 (2)]4.

Proof of Theorem 14.1. Assume first that G contains a quasi-semi-simple normal
subgroup N . According to Table 9.1 N is one of Alt5, SL2(5), SL2(9), SL2(7) (2
representations), 2.Alt7, or Sp4(3). These cases are dealt with in Lemma 14.4, 14.6,
14.5, 14.2, respectively 14.3. The remaining three lemmata treat the case, that G
does not contain a quasi-semi-simple normal subgroup.

Theorem 14.10. M irr
4 (Q∞,2) is as follows:
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JJ







r
∞,2[SL2(5)

2(2)

⊃×@ D8]4

∞,2[SL2(3)]1 ⊗A4

(∞,2[SL2(3)]1 ⊗A2)
2

∞,2[2
1+4
− .Alt5]2 ⊗A2

∞,2[2
1+4
− .Alt5]

2
2

∞,2[2
1+6
− .O−6 (2)]4

∞,2[SL2(3)]41
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List of the maximal simplices in M irr
4 (Q∞,2)

simplex a common subgroup

(∞,2[2
1+4
− .Alt5]

2
2, ∞,2[SL2(3)]41,∞,2[2

1+6
− .O−6 (2)]4) D8 ⊗D8 ⊗Q8

(∞,2[2
1+6
− .O−6 (2)]4,∞,2[SL2(5)

2(2)⊃×@ D8]4) Q20

2(2)⊃×@ D8

((∞,2[SL2(3)]1 ⊗A2)
2,∞,2[2

1+6
− .O−6 (2)]4) ((S3 × S3)⊗ SL2(3)).2

((∞,2[SL2(3)]1 ⊗A2)
2,∞,2[2

1+4
− .Alt5]2 ⊗A2) A2 ⊗D8 ⊗Q8

(∞,2[2
1+4
− .Alt5]

2
2,∞,2[2

1+4
− .Alt5]2 ⊗A2) (C3 o C2)

2(2)⊃×@ D8

Proof. The list of a.i.m.f. subgroups of GL4(Q∞,2) is obtained from Theorems 14.1,
12.1, and 6.1. The vertex ∞,2[SL2(3)]1 ⊗ A4 forms a component on its own, as it
can be seen from the proof of Theorem (VI.13) in [NeP 95]. There it is shown that
for every absolutely irreducible subgroup U ≤ GL16(Q) of Aut(F4⊗A4) the degrees
of the 5-modular constituents of the natural representation of U are divisible by 4.
Assume that there is a common absolutely irreducible subgroup V ≤ GL4(Q∞,2)
of ∞,2[SL2(3)]1 ⊗ A4 and one of the other a.i.m.f. subgroups of GL4(Q∞,2). Let
H ∼= SL2(3) be the unit group of the endomorphism ring M of the V -lattice

∞,2[SL2(3)]1 ⊗A4. Then the group H ◦ V ≤ GL16(Q) is an absolutely irreducible
subgroup of Aut(F4 ⊗A4) acting on the Z-lattices of the r.i.m.f. supergroups that
one obtains from the M-lattices of the a.i.m.f. supergroups of V . Hence H ◦V fixes
a 5-unimodular Z-lattice or a Z-lattice with elementary divisors 28 ·58 contradicting
Theorem (VI.13) of [NeP 95].

Now consider the vertex G := ∞,2[SL2(5)
2(2)⊃×@ D8]4. The minimal absolutely

irreducible subgroup of this group is easily seen to be Q20

2(2)⊃×@ D8. Since the only
other a.i.m.f. supergroup of this group is ∞,2[2

1+6
− .O−6 (2)]4, the list of maximal

simplices in M irr
4 (Q∞,2) with vertex G is complete.

To finish the proof it remains to show that there are no other simplices with
one vertex G := (∞,2[SL2(3)]1⊗A2)

2 or H := ∞,2[2
1+4
− .Alt5]2⊗A2 and one vertex

in {∞,2[2
1+4
− .Alt5]

2
2,∞,2[SL2(3)]41,∞,2[2

1+6
− .O−6 (2)]4}. Assume that there is such an

additional simplex and let U be an absolutely irreducible common subgroup of
the groups belonging to the vertices of the simplex. First assume that one of the
vertices of the simplex is H . Let M be the maximal order in Q∞,2 and L ∈ ZM(H)
be a natural M-lattice of U . For p = 2 and 3 let Lp be the full preimage of the
Sylow p-subgroup of the finite abelian group L#/L. Then for both primes p = 2
and 3, the M/pMU -module Lp/L is not simple, hence U fixes a M-lattice Mp

with L ⊂ Mp ⊂ Lp. Computing the stabilizers in H of all the possible lattices
one finds no such absolutely irreducible group U . In an analogous way, one checks
the completeness of the list of maximal simplices in M irr

4 (Q∞,2) with vertex G.
Since the unique G-orbit of lattices M2 having an absolutely irreducible stabilizer
StabG(M2) satisfies M2 ∼ ∞,2[2

1+4
− .Alt5]2 ⊗ A2 one concludes that every simplex

with vertex G not listed in the theorem also contains a vertex H . Therefore the
list of maximal simplices in M irr

4 (Q∞,2) with vertex G is complete.

Theorem 14.11. M irr
4 (Q∞,3) is as follows.
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∞,3[SL2(9)]22

∞,3[Sp4(3)
2
� C3]4

∞,3[S̃3]
4
1

∞,3[S̃3]1 ⊗ F4

∞,3[SL2(5)
2(3)

⊃×@ S3]4

∞,3[S̃3]1 ⊗A4

∞,3[SL2(7)]4

�
���

∞,3[SL2(3)
2(2)⊃@ C3]

2
2

List of the maximal simplices in M irr
4 (Q∞,3)

simplex a common subgroup

(∞,3[SL2(3)
2(2)⊃@ C3]

2
2∞,3[S̃3]

4
1,

∞,3[S̃3]1 ⊗ F4,∞,3[Sp4(3)
2

� C3]4)
GL2(3)⊗ S̃3

(∞,3[SL2(9)]22,∞,3[SL2(3)
2(2)⊃@ C3]

2
2∞,3[Sp4(3)

2
� C3]4) D8 ⊗ S̃4

(∞,3[S̃3]
4
1,∞,3[SL2(9)]22) ((±C3 × C3).C4) o C2

(∞,3[Sp4(3)
2

� C3]4,∞,3[SL2(5)
2(3)⊃×@ S3]4) Q20

2(3)⊃×@ S3

Proof. The list of a.i.m.f. subgroups of GL4(Q∞,3) is obtained from Theorems 14.1,
12.1, and 6.1. The group ∞,3[SL2(7)]4 forms a simplex on its own, because it is
minimal absolutely irreducible. The minimal absolutely irreducible subgroups U
of ∞,3[S̃3]1 ⊗ A4 either satisfy U (∞) = Alt5 or U = S̃3 ⊗ C5 : C4. In both cases
U is not a subgroup of one of the other a.i.m.f. groups. The minimal absolutely

irreducible subgroup of ∞,3[SL2(5)
2(3)⊃×@ S3]4 is Q20

2(3)⊃×@ S3 and its only other a.i.m.f.

supergroup is ∞,3[Sp4(3)
2

� C3]4. To prove the theorem it remains to show that
the list of maximal simplices in M irr

4 (Q∞,3) with vertex G := ∞,3[SL2(9)]22 is
complete. Assume that there is an absolutely irreducible subgroup U ≤ G such
that the a.i.m.f. supergroups of U lie not in one of the two maximal simplices
in M irr

4 (Q∞,3) with vertex G listed in the theorem. Then U embeds into one of

∞,3[S̃3]
4
1 or ∞,3[S̃3]1 ⊗ F4 and hence the order of U is not divisible by 5. Moreover

U contains a normal subgroup N � U of index 2, such that the restriction of the
natural representation ∆ of U to N is ∆|N = ∆1 + ∆2 with ∆i(N) ≤ ∞,3[SL2(9)]2
absolutely irreducible (i = 1, 2). Therefore ∆1(N) is one of the two absolutely

irreducible subgroups of ∞,3[SL2(9)]2 of order not divisible by 5, which are S̃4 and

(±C3 × C3).C4. By Lemma 2.14 one also finds that the enveloping algebra QN of
N is Q2×2

∞,3 ⊕ Q2×2
∞,3. Hence ∆1 and ∆2 are inequivalent. Let M be the maximal

order in Q∞,3 and L ∈ ZM(∆1(N)).
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If ∆1(N) = (±C3×C3).C4, then 2L is a maximal M∆1(N) sublattice of L. Hence

U cannot embed into one of ∞,3[SL2(3)
2(2)⊃@ C3]

2
2 or ∞,3[S̃3]1 ⊗ F4. Therefore U is a

subgroup of ∞,3[Sp4(3)
2

� C3]4 in this case. Since this primitive a.i.m.f. group has
a normal subgroup ∼= C3, there is a normal subgroup N1 of U of index 2 such that
QN1

∼= Q[
√

-3]4×4 Therefore N1 ∩N =: N2 is a normal subgroup of index 2 in N

such that the enveloping algebra Q∆1(N2) is Q[
√

-3]2×2. But ∆1(N) has only one
subgroup of index 2 and the enveloping algebra of this subgroup is isomorphic to
Q∞,3 ⊕Q∞,3 which is a contradiction.

Hence ∆1(N) = S̃4. If ℘3 denotes the maximal ideal of M containing 3, then
L/℘L is a simple F9∆1(N)-module. Since ∆1 and ∆2 are inequivalent, one con-

cludes that U cannot fix one of the M-lattices of ∞,3[S̃3]1 ⊗ F4 or ∞,3[S̃3]
4
1.

Theorem 14.12. M irr
4 (Q∞,5) is as follows.

r
r

r r

r
@
@
@
@

�
�
�
�∞,5[SL2(5).2]22

∞,5[SL2(5) : 2]22

∞,5[SL2(5)
2
�√
5
D10]4

∞,5[SL2(5) : 2]2 ⊗A2

∞,5[SL2(5).2]2 ⊗A2

List of the maximal simplices in M irr
4 (Q∞,5)

simplex a common subgroup

(∞,5[SL2(5).2]22,∞,5[SL2(5) : 2]22,∞,5[SL2(5)
2

�√
5
D10]4) Q20

2

�√
5
D10

(∞,5[SL2(5) : 2]2 ⊗A2,∞,5[SL2(5).2]2 ⊗A2) (±C5.C4)⊗A2

Proof. The list of a.i.m.f. subgroups of GL4(Q∞,5) may be obtained from Theorems
14.1, 12.1, and 6.1. To see that the list of maximal simplices in M irr

4 (Q∞,5) is
complete, one has to note, that the minimal uniform subgroup of both groups

∞,5[SL2(5) : 2]2 ⊗ A2 and ∞,5[SL2(5).2]2 ⊗A2 is (±C5.C4) ⊗A2. Since this group
does not embed into one of the other 3 a.i.m.f. groups one easily deduces the
theorem.

Theorem 14.13. M irr
4 (Q∞,7) is as follows.

r r
∞,7[SL2(7).2]4∞,7[2.S7]4

Proof. By Theorems 14.1, 12.1, and 6.1. M irr
4 (Q∞,7) has two vertices. These two

a.i.m.f. groups have no common absolutely irreducible subgroup since both groups
are minimal absolutely irreducible as one sees from the list of maximal subgroups
of the two groups given in [CCNPW 85].
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Z(Q) real quadratic.

Theorem 14.14. Let Q be a definite quaternion algebra with center K, such that
[K : Q] = 2 and let G be a primitive a.i.m.f. subgroup of GL4(Q). Then G is
conjugate to one of the a.i.m.f. groups given in the following table.

The table is built up as the one in Theorem 12.17.

List of the primitive a.i.m.f. subgroups of GL4(Q), where Q is a definite
quaternion algebra over a real quadratic field.

√
2,∞[S̃4]1 ⊗A4 (27 · 32 · 5)

(F4 ⊗A4)
2, E8 ⊗A4

√
2,∞[21+4

− .S5]2 ⊗A2 (29 · 32 · 5)

(E8 ⊗A2)
2, (F4 ⊗A2)

4

∞,3[SL2(9)]2 ⊗ √
2[D16]2 (27 · 32 · 5)

[(Sp4(3)⊗√
-3
Sp4(3)) : 2

2

� C3]32, [SL2(9).2
2(2)⊃×@
∞,2

21+4
− .Alt5]32

∞,5[SL2(5).2]2 ⊗ √
2[D16]2 (27 · 3 · 5)

[SL2(5)
2(2)

⊃×@
∞,2

21+6
− .O−6 (2)]32, [SL2(5)

2(2)

⊃×@
∞,2

21+4
− .Alt5]

2
16

√
2,∞[21+6

− .O−6 (2).2]4 (214 · 34 · 5)

[21+10
+ .O+

10(2)]32, (F4⊗̃F4)
2

√
2,∞,2,3[C3

2(2+
√

2)⊃@ S̃4⊗√
2
D16]4 (28 · 32)

E4
8 , (F4⊗̃F4)

2

√
2,∞,2,3[C3

2(2+
√

2)⊃×@ S̃4 ◦Q16]4 (28 · 32)

(A2 ⊗ E8)
2, (A2 ⊗ F4)

4

√
2,∞,2,5[SL2(5)

2(2+
√

2)⊃×@ D16]4,1 (27 · 3 · 5)

(E4
8 )

√
2,∞,2,5[SL2(5)

2(2+
√

2)⊃×@ D16]4,2 (27 · 3 · 5)

([(SL2(5)
2
� SL2(5)) : 2]48)

√
2,∞,2,5[D10

2(2+
√

2)⊃×@ Q16]4 (26 · 5)

(A8
4)



170 GABRIELE NEBE

√
3,∞[Q24]1 ⊗A4 (26 · 32 · 5)

O1 (A4 ⊗A2)
4, (A4 ⊗ F4)

2

O2 F4 ⊗A4 ⊗A2, E8 ⊗A4

√
3,∞[SL2(7) : 2]4 (25 · 3 · 7)

O1 [SL2(7)
2(3)◦ S̃3]

2
16, [SL2(7)

2(3)

⊗
∞,3

(SL2(3)
2

� C3)]32

O2 [(SL2(3) ◦ C4).2
2(3)

⊃×@√
-1
SL2(7)]32, [SL2(7)

2(3)

⊗
∞,3

SL2(9)]32

√
3,∞[Sp4(3)

2
�√
-3
C12]4 (29 · 35 · 5)

O1 E4
8 , [(Sp4(3) ◦ C3)

2

�√
-3
SL2(3)]216

O2 F4 ⊗ E8, [(Sp4(3)⊗√
-3
Sp4(3)) : 2

2
� C3]32

∞,5[SL2(5).2]2 ⊗ √
3[D24]2 (26 · 32 · 5)

O1 [(SL2(5)
2

� SL2(5)) : 2]48, [SL2(5)
2(3)

⊃×@
∞,3

(SL2(3)
2

� C3)]
2
16

O2 [(SL2(5)
2

� SL2(5)) : 2]8 ⊗ F4, [SL2(5)
2(3)

⊃×@
∞,3

(Sp4(3)
2

� C3)]32

√
3,∞[D8 ⊗D8 ⊗ C4.S6

2

� C3]4 (211 · 33 · 5)

O1 (F4⊗̃F4)
2, (A2 ⊗ E8)

2

O2 (F4⊗̃F4)⊗A2, [21+10
+ .O+

10(2)]32

√
3,∞[SL2(5)

2(2+
√

3)⊃×@ D24]4 (26 · 32 · 5)

O1 [SL2(5)
2(2)⊃×@
∞,2

21+6
− .O−6 (2)]32, [SL2(5)

2(2)⊃×@
∞,2

21+4
− .Alt5]16 ⊗A2

O2 [SL2(5)
2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16, ([(SL2(5)

2
� SL2(5)) : 2]8 ⊗A2)

2

√
3,∞[D10

2⊃×@ Q24]4 (25 · 3 · 5)

O1 [(SL2(5) ◦ SL2(5)) : 2
2
�√
5
D10]

2
16, [D120.(C4 × C2)]

2
16

O2 [C15 : C4

2(2)

⊃×@ F4]32, [21+4
− .Alt5⊗∞,2

SL2(5)
2

�√
5
D10]32
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√
5,∞[SL2(5)]1 ⊗ F4 (29 · 33 · 5)

[(SL2(5)
2
� SL2(5)) : 2]8 ⊗ F4, F4 ⊗ E8

√
5,∞[SL2(5)⊗√

5
D10]2 ⊗A2 (25 · 32 · 52)

[(SL2(5) ◦ SL2(5)) : 2
2

�√
5
D10]16 ⊗A2

√
5,∞[SL2(9)]4 (24 · 32 · 5)

[SL2(9)
2
� SL2(5)]32, ([4.L3(4).22]32,1, [4.L3(4).22]32,2)

∞,3[SL2(9)]2 ⊗ √
5[±D10]2 (25 · 32 · 52)

[SL2(9)⊗D10

2
� SL2(5)]32

√
5,∞[(SL2(5) ◦ SL2(5)⊗√

5
SL2(5)) : S3]4 (28 · 34 · 53)

[((SL2(5) ◦ SL2(5))
2

�√
5
(SL2(5) ◦ SL2(5))) : S4]32,i (i = 1, 2)

∞,3[SL2(3)
2

� C3]2 ⊗ √
5[±D10]2 (25 · 32 · 5)

[(SL2(5)⊗√
5
D10)

2(3)⊃×@
∞,3

(SL2(3)
2

� C3)]32

∞,2[2
1+4
− .Alt5]2 ⊗ √

5[±D10]2 (28 · 3 · 52)

[(21+4
− .Alt5⊗∞,2

SL2(5))
2(2)

�√
5
D10]32

√
5,∞[SL2(5)]1⊗√

5
√

5,2,5[C5

2(2)⊃×@√
5
′
SL2(3)]2 (26 · 32 · 52)

[(SL2(5) ◦ SL2(5)) : 2
2

�√
5
D10]

2
16

√
5,∞[SL2(5)]1⊗√

5
√

5,2,5[C5

2(2)

⊃×@ D8]2 (26 · 3 · 52)

E4
8 , [(SL2(5)

2

� SL2(5)) : 2]48

√
5,∞,2,5[C5

2(2)⊃×@ F4]4 (28 · 32 · 5)

(A4 ⊗ F4)
2

√
5,∞,2,5[C5

2(2)⊃×@√
5
′
21+4
− .Alt5]4 (28 · 32 · 5)

(F4⊗̃F4)
2, [SL2(5)

2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16
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√
5,∞,2,5[C5

2(2)

⊃×@ D8]2 ⊗A2 (25 · 3 · 5)

(A2 ⊗A4)
4

√
5,∞,2,5[C5

2(2)⊃×@√
5
′
SL2(3)]2 ⊗A2 (25 · 32 · 5)

(A2 ⊗ E8)
2, (A2 ⊗ [(SL2(5)

2

� SL2(5)) : 2]8)
2

√
5,∞,2,5[C5

2(2)⊃×@√
5

(C3

2(2)⊃×@ D8)]32 (25 · 3 · 5)

[D120.(C4 × C2)]
2
16

√
5,∞,2,5[C5

2(2)⊃×@√
5
′
(SL2(3)

2
� C3)]4 (25 · 32 · 5)

[(Sp4(3) ◦C3)
2

�√
-3
SL2(3)]216, [SL2(5)

2(3)⊃×@
∞,3

(SL2(3)
2

� C3)]
2
16

√
5,∞,5,3[C5

2(3)⊃×@ SL2(9)]4 (25 · 32 · 52)

O1 [SL2(9)
2(3)

⊗ SL2(9) : 2]216, [SL2(5)
2(3)

⊗ SL2(9)]216

O2 [(Sp4(3)⊗√
-3
Sp4(3)) : 2

2
� C3]32, [SL2(5)

2(3)⊃×@ (Sp4(3)
2
� C3)]32

√
5,∞[SL2(5)]1⊗√

5
√

5,5,3[C5

2(3)

⊃×@√
5
′
S̃3]2 (25 · 32 · 52)

O1 [(SL2(5) ◦ SL2(5)) : 2
2
�√
5
D10]

2
16

O2 [(SL2(5) ◦ SL2(5)) : 2
2

�√
5
D10]

2
16

√
5,∞[SL2(5)]1⊗√

5
√

5,5,3[C5

2(3)⊃×@ S3]2 (25 · 32 · 52)

O1 (A2 ⊗ E8)
2, (A2 ⊗ [(SL2(5)

2
� SL2(5)) : 2]8)

2

O2 (A2 ⊗ E8)
2, (A2 ⊗ [(SL2(5)

2

� SL2(5)) : 2]8)
2

√
5,∞,5,3[C5

2(3)⊃×@√
5

(C3

2(2)⊃×@ D8)]32 (25 · 3 · 5)

O1 [D120.(C4 × C2)]
2
16, ([C15 : C4

2(2)⊃×@ F4]32)
O2 [D120.(C4 × C2)]

2
16

√
5,∞,5,3[C5

2(3)⊃×@√
5
′
(C3

2(2)⊃×@ D8)]32 (25 · 3 · 5)

O1 [SL2(5)
2(2)

⊃×@
∞,2

21+4
− .Alt5]

2
16, (F4⊗̃F4)

2

O2 [SL2(5)
2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16, (F4⊗̃F4)

2

√
5,∞,5,3[C5

2(3)

⊃×@√
5
′
(SL2(3)

2

� C3)]4 (25 · 32 · 5)

O1 [(Sp4(3) ◦C3)
2
�√
-3
SL2(3)]216, [SL2(5)

2(3)⊃×@
∞,3

(SL2(3)
2
� C3)]

2
16

O2 [(Sp4(3) ◦C3)
2
�√
-3
SL2(3)]216, [SL2(5)

2(3)⊃×@
∞,3

(SL2(3)
2
� C3)]

2
16

√
5,∞,5,3[C5

2(3)⊃×@ (SL2(3)
2

� C3)]4 (25 · 32 · 5)

O1 (A4 ⊗ F4)
2

O2 (A4 ⊗ F4)
2
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√
5,∞,2,3[C5

2(6)

⊃×@√
5
′
(S̃3 ⊗D8)]32 (25 · 3 · 5)

(E4
8), ([(SL2(5)

2
� SL2(5)) : 2]48)

√
5,∞,2,3[C5

2(6)⊃×@ (S3 ⊗D8)]32 (25 · 3 · 5)

((A2 ⊗A4)
4)

√
5,∞,2,3[C5

2(6)⊃×@√
5

(C3

2(2)⊃×@ D8)]32 (25 · 3 · 5)

[D120.(C4 × C2)]
2
16, [((SL2(5) ◦ SL2(5)) : 2

2(6)⊃×@√
5

(C3

2(2)⊃×@ D8)]32,1

√
5,∞,2,3[C5

2(6)⊃×@√
5
′
(C3

2(2)⊃×@ D8)]32 (25 · 3 · 5)

([SL2(5)
2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16)

√
5,∞,2,3[C5

2(6)

⊃×@√
5
′
S3 ⊗ SL2(3))]4 (25 · 32 · 5)

((A2 ⊗ E8)
2), ((A2 ⊗ [(SL2(5)

2
� SL2(5)) : 2]8)

2)

√
5,∞,2,3[C5

2(6)⊃×@√
5

(S̃3⊗√-3
SL2(3))]4 (25 · 32 · 5)

[((SL2(5) ◦ SL2(5))
2
�√
5
(SL2(5) ◦ SL2(5))) : S4]32,1

√
5,∞,2,3[C5

2(6)

⊃×@ (SL2(3)
2

� C3)]4 (25 · 32 · 5)

((A4 ⊗ F4)
2)

√
5,∞,2,3[C5

2(6)⊃×@√
5
′
(SL2(3)

2

� C3)]4 (25 · 32 · 5)

([SL2(5)
2(3)⊃×@
∞,3

(SL2(3)
2

� C3)]
2
16)

√
6,∞[(SL2(9)⊗D8).2]4 (27 · 32 · 5)

O1 [21+10
+ .O+

10(2)]32, [(Sp4(3)⊗√
-3
Sp4(3)) : 2

2

� C3]32

O2 [(Sp4(3)⊗√
-3
Sp4(3)) : 2

2

� C3]32, E
4
8

O3 (F4⊗̃F4)
2, [SL2(9).2

2(2)⊃×@
∞,2

21+4
− .Alt5]32

√
6,∞[(S3 ⊗ 21+4

− .Alt5).2]4 (29 · 32 · 5)

O1 (A2 ⊗ E8)
2, [21+10

+ .O+
10(2)]32

O2 (A2 ⊗ E8)
2, [SL2(5)

2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16, E

4
8

O3 (F4⊗̃F4)
2, A2 ⊗ F4⊗̃F4, [SL2(5)

2(2)⊃×@
∞,2

21+6
− .O−6 (2)]32

√
6,∞[(S3 ⊗ F4).2]4 (29 · 33)

O1 (F4⊗̃F4)
2, A2 ⊗ F4⊗̃F4, [SL2(5)

2(2)

⊃×@
∞,2

21+6
− .O−6 (2)]32

O2 (A2 ⊗ F4)
4, (F4⊗̃F4)

2

O3 (A2 ⊗ E8)
2, [21+10

+ .O+
10(2)]32
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√
7,∞[2.Alt7

2

� C4]4 (26 · 32 · 5 · 7)

O1 E4
8 , (F4⊗̃F4)

2, [2.Alt7
2(3)⊃×@√

-7
S̃3]

2
16

O2 [(2.Alt7
2

�√
-7

2.Alt7) : 2]32, [2.Alt7
2(3)

⊃×@√
-7

(SL2(3)
2

� C3)]32

O3 F4 ⊗ E8, [21+10
+ .O+

10(2)]32

√
7,∞[SL2(7)

2

� C4]4 (26 · 3 · 7)

O1 (F4⊗̃F4)
2, [SL2(7)

2(3)

⊃×@√
-7
S̃3]

2
16

O2 [SL2(7)
2

�√
-7

2.Alt7]32, [SL2(7)
2(3)⊃×@√

-7
(SL2(3)

2

� C3)]32

O3 [21+10
+ .O+

10(2)]32

√
10,∞[SL2(5)

2

�D16]4 (27 · 3 · 5)

O1 E4
8 , [(SL2(5)

2

� SL2(5)) : 2]48, F4 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8,

F4 ⊗ E8, [(SL2(5) ◦ SL2(5)) : 2
2(6)⊃×@√

5

(C3

2(2)⊃×@ D8)]32,i(i = 1, 2)

O2 [SL2(5)
2(2)⊃×@
∞,2

21+6
− .O−6 (2)]32, [(Sp4(3)⊗√

-3
Sp4(3)) : 2

2

� C3]32,

(F4⊗̃F4)
2, [SL2(5)

2(3)

⊃×@
∞,3

(Sp4(3)
2

� C3)]32, [21+10
+ .O+

10(2)]32,

[SL2(9).2
2(2)

⊃×@
∞,2

21+4
− .Alt5]32, [SL2(5)

2(2)

⊃×@
∞,2

21+4
− .Alt5]

2
16

O3 ∼
O4 ∼

√
10,∞[D10

2
� S̃4]4 (26 · 3 · 5)

O1 [SL2(9)⊗D10

2
� SL2(5)]32, [(SL2(5) ◦ SL2(5)) : 2

2
�√
5
D10]

2
16,

[(21+4
− .Alt5⊗∞,2

SL2(5))
2
�√
5
D10]32, [(SL2(5)⊗√

5
D10)

2(3)⊃×@
∞,3

(SL2(3)
2
� C3)]32

O2 (A4 ⊗ F4)
2, A4 ⊗ E8, [C15 : C4

2(2)

⊃×@ F4]32
O3 ∼
O4 ∼

√
15,∞[SL2(5)

2

�D24]4,1 (26 · 32 · 5)

O1 (A2 ⊗ E8)
2, [(SL2(5) ◦ SL2(5)) : 2

2(6)

⊃×@√
5

(C3

2(2)

⊃×@ D8)]32,2

O2 A2 ⊗ (F4⊗̃F4), [SL2(5)
2(3)

⊃×@
∞,3

(Sp4(3)
2

� C3)]32

O3 E4
8 , [SL2(5)

2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16

O4 E4
8 , [SL2(5)

2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16

O5 (A2 ⊗ E8)
2, [SL2(5)

2(3)⊃×@
∞,3

(C3

2
� SL2(3))]216

O6 (F4⊗̃F4)
2, [(SL2(5)

2
� SL2(5)) : 2]48

O7 [21+10
+ .O+

10(2)]32, F4 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8

O8 [SL2(5)
2(2)⊃×@
∞,2

21+6
− .O−6 (2)]32, F4 ⊗ E8
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√
15,∞[SL2(5)

2

�D24]4,2 (26 · 32 · 5)

O1 (A2 ⊗ [(SL2(5)
2
� SL2(5)) : 2]8)

2, [(SL2(5) ◦ SL2(5)) : 2
2(6)⊃×@√

5

(C3

2(2)⊃×@ D8)]32,1

O2 [SL2(5)
2(2)

⊃×@
∞,2

21+4
− .Alt5]16 ⊗ A2, [(Sp4(3)⊗√

-3
Sp4(3)) : 2

2

� C3]32

O3 (F4⊗̃F4)
2, [(SL2(5)

2

� SL2(5)) : 2]48

O4 (F4⊗̃F4)
2, [(SL2(5)

2

� SL2(5)) : 2]48

O5 (A2 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8)
2, [SL2(5)

2(3)⊃×@
∞,3

(Sp4(3)
2

� C3)]32

O6 [SL2(5)
2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16, E

4
8

O7 [SL2(5)
2(2)⊃×@
∞,2

21+6
− .O−6 (2)]32, F4 ⊗ E8

O8 [21+10
+ .O+

10(2)]32, F4 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8

√
15,∞[SL2(5)

2

�D24]4,3 (26 · 32 · 5)

O1 F4 ⊗ E8, [(SL2(5) ◦ SL2(5)) : 2
2(6)⊃×@√

5

(C3

2(2)⊃×@ D8)]32,1

O2 [21+10
+ .O+

10(2)]32, F4 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8

O3 (A2 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8)
2, [(Sp4(3) ◦ C3)

2

�√
-3
SL2(3)]216

O4 (A2 ⊗ [(SL2(5)
2
� SL2(5)) : 2]8)

2, [(Sp4(3) ◦ C3)
2
�√
-3
SL2(3)]216

O5 (F4⊗̃F4)
2, [(SL2(5)

2

� SL2(5)) : 2]48

O6 (A2 ⊗ E8)
2, [SL2(5)

2(3)⊃×@
∞,3

(SL2(3)
2

� C3)]
2
16

O7 A2 ⊗ F4⊗̃F4, [SL2(5)
2(3)

⊃×@
∞,3

(Sp4(3)
2

� C3)]32

O8 [SL2(5)
2(2)⊃×@
∞,2

21+4
− .Alt5]16 ⊗ A2, [(Sp4(3)⊗√

-3
Sp4(3)) : 2

2
� C3]32

√
15,∞[SL2(5)

2

�D24]4,4 (26 · 32 · 5)

O1 F4 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8, [(SL2(5) ◦ SL2(5)) : 2
2(6)

⊃×@√
5

(C3

2(2)

⊃×@ D8)]32,1

O2 [SL2(5)
2(2)

⊃×@
∞,2

21+6
− .O−6 (2)]32, F4 ⊗ E8

O3 (A2 ⊗ E8)
2, [SL2(5)

2(3)⊃×@
∞,3

(SL2(3)
2
� C3)]

2
16

O4 (A2 ⊗ E8)
2, [SL2(5)

2(3)⊃×@
∞,3

(SL2(3)
2
� C3)]

2
16

O5 E4
8 , [SL2(5)

2(2)⊃×@
∞,2

21+4
− .Alt5]

2
16

O6 (A2 ⊗ [(SL2(5)
2
� SL2(5)) : 2]8)

2, [(Sp4(3) ◦ C3)
2
�√
-3
SL2(3)]216

O7 A2 ⊗ [SL2(5)
2(2)

⊃×@
∞,2

21+4
− .Alt5]16, [(Sp4(3)⊗√

-3
Sp4(3)) : 2

2

� C3]32

O8 A2 ⊗ F4⊗̃F4, [SL2(5)
2(3)

⊃×@
∞,3

(Sp4(3)
2

� C3)]32
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√
15,∞[D10

2

�Q24]4,1 (25 · 3 · 5)

O1 [21+4
− .Alt5⊗∞,2

SL2(5)
2

�√
5
D10]32, [(SL2(5) ◦ SL2(5)) : 2

2

�√
5
D10]

2
16

O2 [21+4
− .Alt5⊗∞,2

SL2(5)
2
�√
5
D10]32, A4 ⊗ E8

O3 [D120.(C4 × C2)]
2
16, (A2 ⊗A4)

4

O4 [D120.(C4 × C2)]
2
16, (A2 ⊗A4)

4

O5 [21+4
− .Alt5⊗∞,2

SL2(5)
2

�√
5
D10]32, (A4 ⊗ F4)

2

O6 [D120.(C4 × C2)]
2
16, (A2 ⊗A4)

4

O7 A2 ⊗A4 ⊗ F4, [C15 : C4

2(2)⊃×@ F4]32

O8 A2 ⊗A4 ⊗ F4, [C15 : C4

2(2)⊃×@ F4]32

√
15,∞[D10

2
�Q24]4,2 (25 · 3 · 5)

O1 [21+4
− .Alt5⊗∞,2

SL2(5)
2
�√
5
D10]32, [(SL2(5) ◦ SL2(5)) : 2

2
�√
5
D10]

2
16

O2 A2 ⊗A4 ⊗ F4, [C15 : C4

2(2)⊃×@ F4]32

O3 (F4 ⊗A4)
2, [(SL2(5) ◦ SL2(5)) : 2

2

�√
5
D10]

2
16

O4 (A4 ⊗ F4)
2, [(SL2(5) ◦ SL2(5)) : 2

2

�√
5
D10]

2
16

O5 [D120.(C4 × C2)]
2
16, [(SL2(5) ◦ SL2(5)) : 2

2

�√
5
D10]

2
16

O6 (F4 ⊗A4)
2, [(SL2(5) ◦ SL2(5)) : 2

2

�√
5
D10]

2
16

O7 [21+4
− .Alt5⊗∞,2

SL2(5)
2

�√
5
D10]32, A4 ⊗ E8

O8 [21+4
− .Alt5⊗∞,2

SL2(5)
2

�√
5
D10]32, A4 ⊗ E8

√
17,∞[SL2(17)]4 (25 · 32 · 17)

[SL2(17)
2(3)⊃@ S̃3]32,i(i = 1, 2)

√
21,∞[2.Alt7

2

� C3]4 (25 · 33 · 5 · 7)

O1 (A2 ⊗ E8)
2, [2.Alt10]

2
16, [2.Alt7

2(3)⊃×@√
-7
S̃3]

2
16

O2 [21+10
+ .O+

10(2)]32, [(2.Alt7
2

�√
-7

2.Alt7) : 2]32

√
21,∞[SL2(7)

2
� C3]4 (25 · 32 · 7)

O1 [SL2(7)
2(3)⊃×@√

-7
S̃3]

2
16

O2 [SL2(7)
2
�√
-7

2.Alt7]32
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In this table, the symbol ∼ means that the r.i.m.f. supergroups acting on the
O3G- and O4G-lattices are the same as the ones for O2.

The proof is split into twelve lemmata which are organized according to the dif-
ferent candidates for quasi-semi-simple normal subgroups and normal p-subgroups.
For the rest of this section let Q be a definite quaternion algebra with center K
and let G be a primitive a.i.m.f. subgroup of GL4(Q). Assume that 1 6= N �G is
a quasi-semi-simple normal subgroup of G. By Table 9.1 and Lemma 7.2 N is one
of Alt5, SL2(5), SL2(5) ◦ SL2(5), SL2(5) ◦ SL2(5)⊗√

5
SL2(5), SL2(7) (2 groups),

SL2(9) (2 groups), SL2(17), 2.Alt7, or Sp4(3) = 2.U4(2).
The first lemma deals with the absolutely irreducible candidates for normal sub-

groups N .

Lemma 14.15. If G contains a normal subgroup N isomorphic to SL2(9) with
character χ8a (or χ8b) resp. SL2(17) with character χ8a (or χ8b), then G is conju-
gate to √

5,∞[SL2(9)]4 resp. √
17,∞[SL2(17)]4.

If G contains a normal subgroup N conjugate to SL2(5)◦SL2(5)⊗√
5
SL2(5), then

G = √
5,∞[(SL2(5) ◦ SL2(5)⊗√

5
SL2(5)) : S3]4.

Proof. In both cases N is already absolutely irreducible. One computes that G =
B◦(N) is maximal finite.

The next two lemmata deal with primitively saturated groups.

Lemma 14.16. If G contains a normal subgroup N ∼= Alt5 with character χ4, then
G is one of √2,∞[S̃4]1 ⊗A4 or √

3,∞[Q24]1 ⊗A4.

Proof. By Proposition 7.5 G is of the form A4 ⊗ H , where H ≤ GL1(Q) is a

primitive a.i.m.f. group. Hence by Theorem 6.1 H is one of √2,∞[S̃4]1, √3,∞[Q24]1,

or √5,∞[SL2(5)]1. The lemma follows because G = √
5,∞[SL2(5)]1⊗A4 is contained

in √
5,∞[(SL2(5) ◦ SL2(5)⊗√

5
SL2(5)) : S3]4.

Lemma 14.17. N is not conjugate to SL2(5) ◦ SL2(5).

Proof. Assume that G contains a normal subgroup N = SL2(5) ◦ SL2(5). The

enveloping algebra of N is Q[
√

5]4×4. Hence K = Q[
√

5]. Since B := B◦(N) =
SL2(5) ◦ SL2(5) : 2 is primitively saturated over K, the group G = BC, where
C := CG(N) is a centrally irreducible maximal finite subgroup of GL1(Q). Hence
Q = Q√

5,∞ = K ⊗ Q∞,2 = K ⊗ Q∞,3 and C = SL2(5). But this contradicts
Lemma 14.15.

Now we come to the centrally irreducible groups N .

Lemma 14.18. If G contains a normal subgroup N isomorphic to SL2(7) with
character χ8, then G is conjugate to √

3,∞[SL2(7).2]4.

Proof. The group N is a centrally irreducible subgroup of GL4(Q). Therefore
CG(N) ⊆ K is ±1. Since G is absolutely irreducible, it contains N of index 2. With
[CCNPW 85] one gets G = √

3,∞[SL2(7).2]4.

There are three candidates N , for which the centralizer CG(N) is contained in
the character field K[χ(N)] of a constituent of the natural character of N .
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Lemma 14.19. If G contains a normal subgroup N isomorphic to SL2(7), 2.Alt7,
resp. Sp4(3), with character χ4a + χ4b, then G is conjugate to one of

√
7,∞[SL2(7)

2
� C4]4 or √

21,∞[SL2(7)
2
� C3]4,

√
7,∞[2.Alt7

2
� C4]4 or √

21,∞[2.Alt7
2
� C3]4,

resp. √
3,∞[Sp4(3)

2

�√
-3
C12]4.

Proof. In all cases CG(N) =: C is contained in the extension of K by the character
values of the natural character of N . Hence in the first two cases C ≤ K[

√−7]∗ and
C ≤ K[

√−3]∗ in the last case. In all cases G contains the normal subgroup B◦(N)C
of index 2. Since the dimension of the enveloping Q-algebra of N is 32, Lemma
2.14 implies that C is not contained in N . Hence in the first two cases C is one of
C4 or C3 and K = Q[

√
7] or Q[

√
21]. By Lemma 2.17 there is a unique extension

G = (N ⊗ C4).2 or G = (N ⊗ C3).2 with real Schur index 2. The maximality of
these four groups is checked with Remark 2.6. In the last case, B◦(N) = Sp4(3)◦C3

has a nontrivial normal 3-subgroup. The primitivity of G implies that C = C12

and K = Q[
√

3]. Again G = √
3,∞[Sp4(3)

2

�√
-3
C12]4 is unique.

In the next case KN is a proper central simple K-subalgebra of Q4×4.

Lemma 14.20. If G contains a normal subgroup N = SL2(9) with character χ4,
then G is conjugate to one of ∞,3[SL2(9)]2 ⊗ √

2[D16]2, ∞,3[SL2(9)]2 ⊗ √
5[D10]2,

√
5,∞,3,5[C5

2(3)⊃×@ SL2(9)]4, or √
6,∞[(SL2(9)⊗D8).2]4.

Proof. Since KN is central simple, by [Rei 75, 7.11] the algebra QG = Q4×4 is
a tensor product Q4×4 = KN⊗

K
A, where A is the commuting algebra of N , an

indefinite quaternion algebra over K. Let B := B◦K(N) and C := CG(N). Then
O3(C) = 1, because B◦(N ◦ C3) = Sp4(3) ◦ C3. Distinguish 2 cases:

a) K = Q[
√

3]. Then B = 2.S6 is primitively saturated. By Lemma 7.5, G =
B⊗
K
C for some centrally irreducible maximal finite subgroup C ≤ A. Using the

classification of finite subgroups of GL2(C) in [Bli 17], one finds that C = D24

(which contains ±S3 and D8) contradicting O3(C) = 1.

b) Now let K 6= Q[
√

3]. Then B = N = SL2(9) and G contains the normal
subgroup BC of index ≤ 2. Assume first, that C is a centrally irreducible subgroup
of A. Then A = K2×2 by Remark 6.2 and C ≤ GL2(K) is a dihedral group
with O3(C) = 1. Hence C = ±D10, D16, or D8. In the first two cases C is an

absolutely irreducible subgroup of GL2(K) for K = Q[
√

5] resp. Q[
√

2]. Computing
the automorphism groups of the NC-lattices one finds that G is ∞,3[SL2(9)]2 ⊗
√

5[D10]2 resp. ∞,3[SL2(9)]2 ⊗ √
2[D16]2. In the third case NC = SL2(9) ⊗ D8 is

not absolutely irreducible. Since Out(NC) = C2 ×C2, the group G = NC.2 is one
of √3,∞,∞[2.S6]2 ⊗ [D8]2 (and imprimitive), ∞,3[SL2(9)]2 ⊗ √

2[D16]2 (leading to a

bigger C), or the a.i.m.f. group √
6,∞[(SL2(9)⊗D8).2]4, because in each case there

is a unique extension with real character field. If C is not centrally irreducible,
then C is cyclic. The conditions G = NC.2 and O3(C) = 1 imply that C is one of

C8 or C5 and G = C8

2(3)⊃×@ SL2(9) = D16

|C2

3| 2.S6 or G = C5

2(3)⊃×@ SL2(9). Since 3
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is a norm in Q[ζ8]/Q[
√

2] but not in Q[ζ5]/Q[
√

5], the algebra Q is Q√
2,∞ in the

first case and Q√
5,∞,3,5 in the second case. Whereas the second group is maximal

finite, the first one is a subgroup of √2,∞[21+6
− .O−6 (2).2]4.

The last and most fruitful case is the one where G has a normal subgroup N ∼=
SL2(5). This case is split up into two lemmata according to whetherN is primitively
saturated over K or not.

Lemma 14.21. If K = Q[
√

5] and G contains a normal subgroup N ∼= SL2(5)
with character χ2a (or χ2b), then G is √

5,∞[SL2(5)]1⊗√
5
C, where C is one of

F4, √
5[D10]2 ⊗ A2, √

5,3,5[C5

2(3)⊃×@ S3]2, √
5,3,5[C5

2(3)⊃×@ S̃3]2, √
5,2,5[C5

2(2)⊃×@ D8]2, or

√
5,2,5[C5

2(2)⊃×@ SL2(3)]2.

Proof. N is primitively saturated over K = Q[
√

5]. Hence by Lemma 7.5 G = NC,
for some primitive centrally irreducible maximal finite subgroup C := CG(N) ≤ D∗,
where D := CQ4×4 (N). By the formula in [Schu 05] (cf. Proposition 2.16), the only
primes dividing the order of G are 2, 3, and 5. If C is not absolutely irreducible
in D∗, then C is a maximal finite subgroup of GL4(Q), because Q[

√
5] splits the

possible p-adic Schur indices at p = 2, 3, and 5. Using Lemma 14.16 and the
classification of maximal finite subgroups of GL4(Q) (cf. e.g. [BBNWZ 78]), one
gets that G = √

5,∞[SL2(5)]1 ⊗ F4. Now assume that C is absolutely irreducible.

Then the character field of the natural character of C is K = Q[
√

5]. By Lemmas
14.17 and 14.15 C has no normal subgroup SL2(5) or SL2(5) ◦ SL2(5). With
[CCNPW 85] one finds that C is soluble. An inspection of the possible normal
p-subgroups yields O5(C) = C5. The centralizer D := CC(O5(C)) embeds into
CD(C) which is a quaternion algebra over Q[ζ5] and C contains D of index 2. Since
C is absolutely irreducible, [Bli 17] yields the possibilities D = ±C5E, where E is

one of SL2(3), D8, S3, or S̃3.

If CC(E) > ±C5, then C is one of ±C5.C2⊗√−1
SL2(3), ±D10⊗D8, ±C5.C2⊗√−1

S̃3,

or ±D10⊗S3. Now the first and third groups are not maximal finite, but contained
in SL2(5)⊗√−1

SL2(3) resp. SL2(5)⊗√−1
S̃3 and the second group is imprimitive. So

G = √
5,∞[SL2(5)]1⊗√

5
√

5[±D10 ⊗ S3]2 in this case.

If CC(E) = ±C5, then G = ±C5

2(p)⊃×@ E, for some square free p ∈ N>1. Since
|Glide(E)| = 2 and the enveloping algebra of E is central simple, the outer au-
tomorphism and p are unique. By Lemma 2.17 there is a unique extension G in
GL4(R), in each of the four cases.

Lemma 14.22. If K 6= Q[
√

5] and G contains a normal subgroup N ∼= SL2(5)
with character χ2a + χ2b, then G is conjugate to one of

∞,5[SL2(5).2]2 ⊗ √
2[D16]2, √2,∞,2,5[SL2(5)

2(2+
√

2)

� D16]4,1,

√
2,∞,2,5[SL2(5)

2(2+
√

2)

� D16]4,2, ∞,5[SL2(5).2]2 ⊗ √
3[D24]2,

√
3,∞[SL2(5)

2(2+
√

3)

⊃×@ D24]4, √10,∞[SL2(5)
2

�D16]4,

or √
15,∞[SL2(5)

2
�D24]4,i (1 ≤ i ≤ 4).
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Proof. Let A := CQ4×4 (N) be the commuting algebra of N . Then A is an indefinite

quaternion algebra with center K[
√

5]. The centralizer C := CG(N) embeds into

A with Q[
√

5]C = A. By [Bli 17] this implies that C is one of D16 or D24. In both
cases, the outer automorphism group of C is isomorphic to C2 × C2.

Assume first that C ∼= D16. Let D16 = 〈x, y | x8, y2, (xy)2〉. Then Out(D16) =
〈α, β〉, with α(x) = x−1, α(y) = x3y and β(x) = x3, β(y) = y (cf. Lemma 8.5).
Then α2 = β2 = id, but (αβ)2 is the conjugation by x. Since αβ does not fix x,
this implies that there is no extension D16.2, where αβ is an inner automorphism.
Note that the action of α on the epimorphic image C is induced by conjugation
with y(1 − x) and hence by an inner automorphism of QC. If γ denotes the outer
automorphism of SL2(5), then G/NC induces one of γ, γα, or γβ on the central
product NC. In all cases there are 2 = |H2(C2, Z(NC) ∼= C2)| extensions NC.2.
Only in the last case do they lead to isomorphic groups, because there is an element
of norm −1 in Q[

√
2]. Since the group ∞,5[SL2(5) : 2]2 ⊗ √

2[D16]2 is contained in
√

2,∞[21+6
− .O−6 (2).2]4 the group G is one of the a.i.m.f. groups

∞,5[SL2(5).2]2 ⊗ √
2[D16]2, √2,∞,2,5[SL2(5)

2(2+
√

2)

� D16]4,1,

√
2,∞,2,5[SL2(5)

2(2+
√

2)

� D16]4,2, or √10,∞[SL2(5)
2

�D16]4.

The case C ∼= D24 is similar. Here all the groups C.2 exist and one has
eight different groups NC.2, Since ∞,5[SL2(5) : 2]2 ⊗ √

3[D24]2 is contained in

√
3,∞[Sp4(3)

2

�√
-3
C12]4 and one extension SL2(5)

2(2+
√

3)⊃×@ D24 a proper subgroup

of √
3,∞[D8 ⊗ D8 ⊗ C4.S6

2

� C3]4 the group G is one of the six a.i.m.f. groups

∞,5[SL2(5).2]2 ⊗ √
3[D24]2, √

3,∞[SL2(5)
2(2+

√
3)

⊃×@ D24]4, or √
15,∞[SL2(5)

2

� D24]4,i
(1 ≤ i ≤ 4).

For the rest of this section we assume that G does not contain a quasi-semi-
simple normal subgroup. By Lemma 11.2 and Corollary 2.4 one has Op(G) = 1 for
p > 5 and Op(G) ≤ Cp for p = 3, 5.

Lemma 14.23. If G does not contain a quasi-semi-simple normal subgroup and
Op(G) = 1 for all odd primes p, then O2(G) = 21+6

− = D8 ⊗ D8 ⊗ Q8 and G =
√

2,∞[21+6
− .O−6 (2).2]4.

Proof. By Proposition 8.9 O2(G) is one of 21+6
− or Q8 ◦ Q8 ⊗ Q16. In the first

case G = √
2,∞[21+6

− .O−6 (2).2]4 is maximal finite. In the other case N is already

irreducible. The Bravais group on a normal critical N -lattice (cf. Definition 2.7) is
√

2,∞[21+4
− .S5]

2
2 contradicting the primitivity of G.

Lemma 14.24. If G does not contain a quasi-semi-simple normal subgroup, O5(G)
= 1, and O3(G) = C3, then G is one of

√
2,∞[21+4

− .S5]1 ⊗A2, √2,∞,2,3[C3

2(2+
√

2)⊃@ (S̃4⊗√
2
D16)]4,

√
2,∞,2,3[C3

2(2+
√

2)⊃×@ (S̃4 ◦Q16)]4 ,√3,∞[D8 ⊗D8 ⊗ C4.S6

2
� C3]4,

√
6,∞[(S3 ⊗ 21+4

− .Alt5).2]4, or √
6,∞[(S3 ⊗ F4).2]4.
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Proof. The centralizer C := CG(O3(G)) is an absolutely irreducible subgroup of
(Q[ζ3] ⊗ Q2×2)∗ and G/C ∼= C2. Table 8.7 gives that O2(G) = O2(C) is one of
Q8 ◦Q8 ⊗ C4, D8 ⊗Q8, Q8 ◦Q8, Q8 ⊗D16, Q8⊗√-2

QD16, or Q8 ◦Q16.

In the first case K = Q[
√

3] and G contains B := B◦(C) = C3⊗(C4⊗Q8◦Q8).S6

of index 2. Hence G is conjugate to √
3,∞[D8 ⊗D8 ⊗ C4.S6

2
� C3]4 in this case.

If O2(C) = Q8 ⊗ D8, then G contains B = C3 ◦ 21+4
− .Alt5 of index 22. Hence

CG(O2(C)) = CG(B◦(O2(G)) = ±S3, and G is one of the two groups

√
6,∞[(S3 ⊗ 21+4

− .Alt5).2]4 or √2,∞[21+4
− .S5]1 ⊗A2.

Note that in both cases there is a unique extension with real character field.
In the case O2(G) = Q8 ◦Q8 one similarly finds that G contains S̃3⊗F4 of index

2. Since the group F4.2 ⊗ S̃3 is contained in √
2,∞[21+6

− .O−6 (2).2]4, G is conjugate

to √
6,∞[(S3 ⊗ F4).2]4 in this case.

IfO2(C) = Q8⊗D16, thenK = Q[
√

2] andG containsB = S̃4⊗√
2
D16◦C3 of index

2. If the elements in G−B induce an outer automorphism of B◦(O2(G)), then G is

conjugate to √
2,∞,2,3[C3

2(2+
√

2)⊃@ (S̃4⊗√
2
D16)]4. If they don’t, then CG(O2(G)) ∼= ±S3

and G is contained in √
2,∞[21+4

− .S5]2 ⊗A2.

Assume now that O2(G) = Q8⊗√-2
QD16. Then K = Q[

√
6] and G/B ∼= C2.

Hence there is a unique group G = B.2 with real Schur index 2. This group is not
maximal finite but contained in √

6,∞[(S3 ⊗ 21+4
− .Alt5).2]4.

In the last case O2(G) = Q8 ◦Q16. Now K = Q[
√

2] and G = B.2 is conjugate

to √
2,∞,2,3[C3

2(2+
√

2)⊃×@ (S̃4 ◦Q16)]4, because S̃4 ◦Q16⊗ S̃3 is contained in √
2[F4.2]4⊗

∞,3[S̃3]1.

The last and most complicated case is the case O5(G) > 1. In this case O5(G) ∼=
C5. Recall that we assume for the rest of this chapter, that G is a primitive a.i.m.f.
group of GL4(Q), K = Z(Q) a real quadratic field and that G does not contain
a quasi-semi-simple normal subgroup. As for the case SL2(5) � G, there are two

essentially different situations: K = Q[
√

5] and K 6= Q[
√

5] which are treated
separately.

Lemma 14.25. If K = Q[
√

5] and O5(G) = C5, then G is one of

√
5,∞,2,5[C5

2(2)⊃×@ F4]4, √
5,∞,2,5[C5

2(2)⊃×@√
5
′
21+4
− .Alt5]4,

∞,2[2
1+4
− .Alt5]2 ⊗ √

5[±D10]2, ∞,3[SL2(3)
2

� C3]2 ⊗ √
5[±D10]2,

A2 ⊗ √
5,∞,2,5[C5

2(2)⊃×@ D8]2, √
5,∞,2,3[C5

2(6)⊃×@ S3 ⊗D8]32,

√
5,∞,2,3[C5

2(6)⊃×@√
5
′
S̃3 ⊗D8]32, √

5,∞,2,5[C5

2(2)⊃×@√
5

(C3

2(2)⊃×@ D8)]32,

√
5,∞,5,3[C5

2(3)⊃×@√
5

(C3

2(2)⊃×@ D8)]32, √
5,∞,2,3[C5

2(6)⊃×@√
5

(C3

2(2)⊃×@ D8)]32,

√
5,∞,5,3[C5

2(3)⊃×@√
5
′
(C3

2(2)⊃×@ D8)]32, √
5,∞,2,3[C5

2(6)⊃×@√
5
′
(C3

2(2)⊃×@ D8)]32,
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√
5,∞,5,3[C5

2(3)

⊃×@ (SL2(3)
2

� C3)]4, √
5,∞,2,3[C5

2(6)

⊃×@ (SL2(3)
2

� C3)]4,

√
5,∞,2,5[C5

2(2)⊃×@√
5
′
(SL2(3)

2
� C3)]4, √

5,∞,5,3[C5

2(3)⊃×@√
5
′
(SL2(3)

2
� C3)]4,

√
5,∞,2,3[C5

2(6)⊃×@√
5
′
(SL2(3)

2

� C3)]4, √
5,∞,2,3[C5

2(6)⊃×@√
5

S̃3⊗√-3
SL2(3)]4,

A2 ⊗ √
5,∞,2,5[C5

2(2)⊃×@√
5
′
SL2(3)]2 or √

5,∞,2,3[C5

2(6)⊃×@√
5
′
S3 ⊗ SL2(3)]4.

Proof. The centralizer C := CG(O5(G)) is an absolutely irreducible subgroup of
(Q[ζ5]⊗K Q2×2)∗ and G/C ∼= C2.

Assume first that O3(C) = 1. Using Table 8.7 one finds that O2(G) = O2(C)
is one of Q8 ◦ Q8 or Q8 ⊗ D8 and G contains C of index 2. Since Q20 ⊗ F4

is a subgroup of √
5,∞[SL2(5)]1 ⊗ F4, G is √

5,∞,2,5[C5

2(2)⊃×@ F4]4 in the first case.

The second case leads to the two a.i.m.f. groups √
5,∞,2,5[C5

2(2)

⊃×@√
5
′
21+4
− .Alt5]4 and

√
5[D10]2 ⊗∞,2[2

1+4
− .Alt5]2.

Now assume that O3(C) 6= 1. Then O3(C) ∼= C3 and C ∼= C5 × H . Since
O5(H) = 1 and H does not contain a quasi-semi-simple normal subgroup and 5
does not divide the order of the automorphism groups of the possible normal 2-
subgroups, QH is a central simple Q-algebra of dimension 16. Table 10.4 yields

that H is one of S3⊗D8, S̃3⊗D8, C3

2(2)

⊃×@ D8 (2 groups), S3⊗SL2(3), S̃3⊗√-3
SL2(3),

or C3

2(2)

⊃×@ SL2(3) (2 groups). In all cases Glide(H) is isomorphic to C2 × C2. If
G = CG(H)H , then CG(H) is one of ±D10 or Q20 according to the real Schur index
of an absolutely irreducible constituent of the natural character of H . In the second
case G is not maximal finite but contained in SL2(5)H . In the first case H is a
maximal finite subgroup of its enveloping algebra. Therefore the only possibility for

H is H = ∞,3[SL2(3)
2

� C3]2. One checks that G = ∞,3[SL2(3)
2

� C3]2⊗√
5[±D10]2

is maximal finite.
If CG(H) = ±C5, then one has for each group H three possible automorphisms.

By Lemma 2.17 there is at most one extension G = C.2 in each case. Constructing
the twenty-four groups G = H.2 one finds that G is one of the groups in the Lemma.

More precisely, the three nontrivial “outer” elements in NQH∗(H) may be dis-
tinguished via their norms, which are 2, 3, respectively 6. If one considers of the
isoclinic pairs the group H with real Schur index 1 first, one finds from Table 10.4
that in the first and second case, the automorphism with norm 3 yields imprimitive
groups. In the fourth and fifth case the normalizer element of norm 2 yields a

proper subgroup of √5,∞,2,5[C5

2(2)⊃×@√
5
′
21+4
− .Alt5]4 resp. √5,∞,2,5[C5

2(2)⊃×@ F4]4.

In some cases, G is not maximal finite due to the fact, that an outer element
normalizes SL2(5) ≤ (Q[

√
5]⊗QH)∗. These cannot be read off directly from Table

10.4 and are the following: In the second case, additionally the automorphism with

norm 2 gives rise to a group contained in √
5,∞[SL2(5)]1⊗√

5
√

5,2,5[C5

2(2)⊃×@ D8]2. In the
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seventh case, the automorphisms of prime norm 2 resp. 3 yield proper subgroups
of

√
5,∞[SL2(5)]1⊗√

5
√

5,2,5[C5

2(2)⊃×@√
5
′
SL2(3)]2 resp. √5,∞[SL2(5)]1⊗√

5
√

5,5,3[C5

2(3)⊃×@√
5
′
S̃3]2.

Finally the group SL2(3) ⊗ C5

2(3)⊃×@√
5
′
S3 is not maximal finite but contained in

√
5,∞[SL2(5)]1⊗√

5
√

5,3,5[C5

2(3)⊃×@√
5
′
S̃3]2.

Lemma 14.26. If K 6= Q[
√

5] and O5(G) = C5, then G is one of

√
2,∞,2,5[D10

2(2+
√

2)

� Q16]4, √
3,∞[D10

2⊃×@ Q24]4,

√
10,∞[D10

2

� S̃4]4, √
15,∞[D10

2

�Q24]4,1, √
15,∞[D10

2

�Q24]4,2.

Proof. The centralizer C := CG(O5(G)) is an absolutely irreducible subgroup of
(Q[ζ5] ⊗ Q)∗ ∼= GL2(K[ζ5]) and G/C ∼= C4. From the classification of finite sub-

groups of PGL2(C) one concludes that C = C5×H , where H is one of D16, Q16, S̃4,
Q24, or D24. In all cases the exponent of Out(H) is 2. So CG(H) > ±C5 contains
one of ±D10 or Q20, according to the real Schur index of an absolutely irreducible
constituent of the natural character of H . Since Glide(H) does not contain an
element of norm 5, one concludes that G is not maximal in the second case, but an
additional quasi-semi-simple normal subgroup SL2(5) arises. This excludes the first
and last case. In the other three cases, G is clearly not of the form HCG(H), since
otherwise G = C5 : C4 ⊗H is contained in A4 ⊗H . Hence HCG(H) = D10H and
G = HCG(H).2. Fixing the outer automorphism one has two possible extensions
in each case. They lead to isomorphic groups G.

If H = Q16, then Out(H) ∼= C2 × C2. Since one outer automorphism does not
give rise to an extension H.2 (cf. proof of Lemma 14.22), two groups G need to be

considered. The group D10

2

�Q16 is contained in √
10,∞[D10

2

� S̃4]4 so G is conjugate

to √
2,∞,2,5[D10

2(2+
√

2)

� Q16]4 in this case.

If H = S̃4 and K = Q[
√

2], then H is primitively saturated over K. Hence

G = CG(H)H is not maximal finite. One finds that G is √
10,∞[D10

2
� S̃4]4 in this

case.
Finally, if H = Q24, then Out(H) ∼= C2×C2. Here three different automorphisms

have to be considered. They yield the three a.i.m.f. groups √
3,∞[D10

2⊃×@ Q24]4,

√
15,∞[D10

2

�Q24]4,1, and √
15,∞[D10

2

�Q24]4,2.
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15. The a.i.m.f. subgroups of GL5(Q)

Z(Q) = Q
Theorem 15.1. Let Q be a definite quaternion algebra with center Q and let G be
a primitive a.i.m.f. subgroup of GL5(Q). Then G is conjugate to one of the groups
in the following table.

List of the primitive a.i.m.f. subgroups of GL5(Q).

lattice L |Aut(L)| r.i.m.f. supergroups

∞,2[±U5(2)]5 211 · 35 · 5 · 11 [U5(2)
2(2)◦ SL2(3)]20

∞,2[SL2(11)]5 23 · 3 · 5 · 11 [SL2(11)
2(2)◦ SL2(3)]20

A5 ⊗∞,2[SL2(3)]1 27 · 33 · 5 A5 ⊗ F4

∞,3[±U4(2)
2
� C3]5 28 · 35 · 5 [±U4(2)

2
� C3]

2
10

∞,11[±L2(11).2]5 24 · 3 · 5 · 11 (A
(2)
10 )2

[L2(11)
2(3)⊃×@ D12]20

Proof. LetQ be a definite quaternion algebra with center Q and let G be a primitive
a.i.m.f. subgroup of GL5(Q). Assume that 1 6= N � G is a quasi-semi-simple
normal subgroup of G. By Table 9.1 N is one of Alt6, L2(11), SL2(11), U4(2),
or U5(2). The centralizer C := CG(N) in G of N embeds into the commuting

algebra CQ5×5 (N), which is isomorphic to Q, Q, Q[
√

-11], Q, Q[
√

-3], resp. Q in
the respective cases. In the first case G = B◦(N)C is one of A5 ⊗ ∞,2[SL2(3)]1
or A5 ⊗ ∞,3[S̃3]1 by Corollary 7.6 and Theorem 6.1. Whereas the first group is a
maximal finite subgroup of GL5(Q∞,2), the second group is a proper subgroup of

∞,3[±U4(2)
2

� C3]5.
In cases 3 and 5, N is already absolutely irreducible and lattice sparse. Its unique

a.i.m.f. supergroup is ∞,2[±U5(2)]5, resp. ∞,2[SL2(11)]5.
In the other two cases, C is contained in B◦(N), which is a normal subgroup

of index 2 = |Out(N)| in G. Since the commuting algebra CQ5×5 (N) is an imag-
inary quadratic field, there is in both cases only one absolutely irreducible sub-
group G = B◦(N).2 ≤ GL5(Q). One computes G = ∞,11[±L2(11).2]5 resp. G =

∞,3[±U4(2)
2

� C3]5.
Now assume that G has no quasi-semi-simple normal subgroup. Since the pos-

sible normal p-subgroups of G, which embed into GL1(Q) do not admit an auto-
morphism of order 5, one has O11(G) ∼= C11, contradicting Lemma 11.2.

Theorem 15.2. Let Q be a definite quaternion algebra with center Q and let G be
an a.i.m.f. subgroup of GL5(Q). Then Q is one of Q∞,2, Q∞,3, or Q∞,11. The
simplicial complexes M irr

5 (Q) are as follows:r r r r
∞,2[SL2(11)]5 A5 ⊗∞,2[SL2(3)]1 ∞,2[SL2(3)]51 ∞,2[±U5(2)]5

r r
∞,3[±U4(2)

2

� C3]5 ∞,3[S̃3]
5
1r∞,11[(±L2(11)).2]5
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List of maximal simplices in M irr
5 (Q∞,2):

simplex a common subgroup
(∞,2[±U5(2)]5, ∞,2[SL2(3)]51) 24+4 : (Alt5 × C3)

List of maximal simplices in M irr
5 (Q∞,3):

simplex a common subgroup

(∞,3[±U4(2)
2
� C3]5, ∞,3[S̃3]

5
1) 24 : Alt5

2⊃@ C3

Proof. Theorems 15.1 and 6.1 prove the completeness of the list of quaternion alge-
brasQ and of a.i.m.f. subgroups of GL5(Q). One only has to show the completeness
of the list of maximal simplices in M irr

5 (Q∞,2), because for the other two quaternion
algebras Q, the simplicial complex M irr

5 (Q) consists of a single simplex: Let M2

denote a maximal order of Q∞,2. Since the group ∞,2[SL2(11)]5 fixes a lattice of de-
terminant divisible by 11, the minimal absolutely irreducible subgroups of the group

∞,2[SL2(11)]5 are of order divisible by 11 (cf. Lemma 2.13). Going through the list
of maximal subgroups of L2(11) in [CCNPW 85] one sees that ∞,2[SL2(11)]5 is min-
imal absolutely irreducible. Hence ∞,2[SL2(11)]5 forms a 0-simplex in M irr

5 (Q∞,2).
The minimal absolutely irreducible subgroups of A5 ⊗∞,2[SL2(3)]1 are Alt5 ⊗Q8

and C4

2⊃×@ Alt5. Both groups do not embed into any other a.i.m.f. subgroup of

GL5(Q∞,2), since they do not fix any 3-unimodular M2-lattice. Therefore the list
of maximal simplices in M irr

5 (Q∞,2) is complete.

Z(Q) real quadratic.

Theorem 15.3. Let G be a primitive absolutely irreducible maximal finite subgroup
of GL5(Q), where Q is a totally definite quaternion algebra with center K and
[K : Q] = 2. Then Q is isomorphic to Q√

5,∞, Q√
2,∞, Q√

3,∞, Q√
11,∞, or Q√

33,∞
and G is conjugate to one of the groups given in the table below, which is built up
as Table 12.7:

Proof. Let Q be a definite quaternion algebra with center K := Z(Q) a real qua-
dratic field. Let G be a primitive absolutely irreducible subgroup of GL5(Q), and
p be a prime such that Op(G) 6= 1. Then either Op(G) is a subgroup of GL1(Q) or

p = 5 and O5(G) ∼= C25 or 51+2
+ , or p = 11 and O11(G) ∼= C11.

If O5(G) ∼= C25, then CG(O5(G)) = ±O5(G). But 5 divides the index of the
abelian normal subgroup O5(G) in G, because G is absolutely irreducible. This
contradicts the assumption O5(G) ∼= C25 (and also the primitivity of G).

Now let O5(G) ∼= 51+2
+ . Then K = Q[

√
5]. The inclusion 51+2

+ � B := ±51+2
+ :

SL2(5) ≤ GL5(Q[ζ5]) together with Out(51+2
+ ) ∼= GL2(5) then shows that G con-

tains a normal subgroup B of index 2. There is a unique extension B.2 with real
Schur index 2. Hence G = √

5,∞[±51+2
+ : SL2(5).2]5 in this case.

If O11(G) ∼= C11, then CG(O11(G)) is isomorphic to one of C22, C44, or C66. In
the first case, G is not absolutely irreducible and in the other two cases, G is a

proper subgroup of √11,∞[C4

2
� L2(11)]5 resp. √33,∞[±C3

2
� L2(11)]5.
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List of the primitive a.i.m.f. subgroups of GL5(Q) where Q is a totally definite
quaternion algebra over a real quadratic number field Z(Q).

lattice L |Aut(L)| some r.i.m.f. supergroups

√
5,∞[SL2(5)]1 ⊗A5 27 · 33 · 52 A5 ⊗E8, A5 ⊗H4

√
5,∞[±51+2

+ : SL2(5).2]5 25 · 3 · 54 [±51+2
+ : SL2(5).2

2
� SL2(5)]40

√
2,∞[SL2(11).2]5 24 · 3 · 5 · 11 [SL2(11)

2(2)◦ SL2(3)]220,

[SL2(11)
2(2)
⊗
∞,2

21+4
− .Alt5]40

√
2,∞[±U5(2).2]5 212 · 35 · 5 · 11 [±U5(2)

2(2)◦ SL2(3)]220,

[U5(2)
2(2)
⊗
∞,2

21+4
− .Alt5]40

√
2,∞[SL2(9)]5 24 · 32 · 5 [2.U4(2)

2(2)◦ SL2(3)]40
√

2,∞[S̃4]1 ⊗ A5 28 · 33 · 5 A5 ⊗E8, (A5 ⊗ F4)2

√
3,∞[SL2(11)]5 23 · 3 · 5 · 11 [SL2(11)

2(3)⊃@ C12.C2]40

[SL2(11)
2(2)⊃@ SL2(3)]40

√
3,∞[C12

2
�√
-3
U4(2)]5 29 · 35 · 5 [±C3

2
� U4(2)]410, [±U5(2)

2(2)◦ SL2(3)]220

[±C3

2
� U4(2)]10 ⊗ F4,

[U5(2)
2(2)
⊗
∞,2

21+4
− .Alt5]40

√
11,∞[C4

2
� L2(11)]5 25 · 3 · 5 · 11 (A

(3)
10 )4 [±U5(2)

2(2)◦ SL2(3)]220

A
(3)
10 ⊗ F4 , [U5(2)

2(2)
⊗
∞,2

21+4
− .Alt5]40

√
33,∞[±C3

2
� L2(11)]5 24 · 32 · 5 · 11 (A

(3)
10 ⊗ A2)2, [±U5(2)

2(2)◦ SL2(3)]220,

[L2(11)
2(3)
⊃×@ D12]220

[(L2(11)⊗√-11
SL2(3) ⊗ S3).2]40

Assume now, that for all primes p, Op(G) is a subgroup of GL1(Q). Then the
automorphism group of Op(G) is soluble and its order is not divisible by 5. Since G

is absolutely irreducible, the last term of the derived series of G(∞) is a quasi-semi-
simple group. Table 9.1 implies that G(∞) is one of Alt6, SL2(9), L2(11), SL2(11)
(2 matrix groups), U4(2), or U5(2).

The two groups √2,∞[SL2(9)]5 and √
3,∞[SL2(11)]5 are a.i.m.f. groups.

In the first case, B◦(Alt6) ∼= ±S6 = A5 is a primitively saturated absolutely
irreducible subgroup of GL5(Q). Therefore Corollary 7.6 says that G is a tensor
product ±S6 ⊗ U , where U is a maximal finite subgroup of GL1(Q). By Theorem

6.1 U is one of √5,∞[SL2(5)]1, √2,∞[S̃4]1, or √
3,∞[C12.C2]1. Whereas in the first

two cases, G is maximal finite, the last group √
3,∞[C12.C2]1⊗A5 is contained in the

maximal finite group √
3,∞[C12

2

�√
-3
U4(2)]5. (Note that ±C3◦U4(2) = B◦(Alt6⊗C3).)

Now assume that G(∞) ∼= L2(11). Then the centralizer C := CG(G(∞)) embeds

into GL1(K[
√

-11]), and G : G(∞)C = 2. If C = ±1, then the center of the
enveloping algebra ofG is Q and thereforeG is not absolutely irreducible inGL5(Q).

Hence the biquadratic fieldK[
√

-11] contains a root of unity. ThereforeK = Q[
√

11]

and C ∼= C4 or K = Q[
√

33] and C ∼= ±C3. By Lemma 2.17 in both cases, there
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is a unique extension G = G(∞)C.C2 with real Schur index. Hence G is one of

√
11,∞[C4

2

� L2(11)]5 or √33,∞[±C3

2

� L2(11)]5.

Next let G(∞) be SL2(11), where the restriction of the natural character of G
to G(∞) is χ10. Then the centralizer C := CG(G(∞)) embeds into GL1(K), hence
is trivial, and G : G(∞) = 2. There is a unique extension G = SL2(11).2 with real
character field. Therefore G = √

2,∞[SL2(11).2]5.

The case G(∞) = U5(2) is completely analogous.
The remaining case is G(∞) ∼= U4(2). Then G contains the normal subgroup

B := B◦(G(∞)) = ±C3◦U4(2). Moreover C := CG(B) = CG(G(∞)) ≤ GL1(K[
√

-3])
andG containsBC of index 2. If C ≤ B, then the character field of the natural char-
acter of G is Q, contradicting the fact that G is absolutely irreducible in GL5(Q).

Hence C ∼= C12 and K = Q[
√

3]. The unique extension G = BC.2 in GL5(Q) is

√
3,∞[C12

2

�√
-3
U4(2)]5.

Theorem 15.4. M irr
5 (Q√

2,∞) is as follows.

r
r

r
r r
√

2,∞[SL2(11).2]5√
2,∞[±U5(2).2]5

√
2,∞[SL2(9)]5√

2,∞[S̃4]
5
1

√
2,∞[S̃4]1 ⊗A5

List of the maximal simplices in M irr
5 (Q√

2,∞)

simplex a common subgroup

(√2,∞[±U5(2).2]5,√2,∞[S̃4]
5
1) (±24+4.(C3 ×Alt5)).2

Proof. The completeness of the list of a.i.m.f. subgroups in GL5(Q√
2,∞) follows

from Theorems 6.1 and 15.3. So we only have to show that the list of maximal
simplices in M irr

5 (Q√
2,∞) is complete. The two a.i.m.f. groups √2,∞[SL2(9)]5 and

√
2,∞[SL2(11).2]5 are minimal absolutely irreducible.

So we only have to deal with G := √
2,∞[S̃4]1 ⊗ A5. The minimal absolutely

irreducible subgroups V of G contain a normal subgroup N of index ≤ 2 of the form
N := U ⊗ Alt5, where U is of index ≤ 2 in one of the two absolutely irreducible
subgroups Q16 or S̃4 of S̃4. The minimality of V implies that U is of order 8
or 16. Hence the 3-modular defect of V is one. Let M be a maximal order of
Q√

2,∞. Then the MV -lattices are fixed under the group H := Q16 ◦ V , where Q16

is the Sylow 2-subgroup of the unit group of M. The group H is an absolutely
irreducible subgroup of GL20(Q[

√
2]). Since 3 is inert in Q[

√
2], one concludes that

the 3-modular constituents of H are of degree 8 and 32. Therefore V does not fix
a 3-unimodular lattice.

Theorem 15.5. M irr
5 (Q√

3,∞) is as follows.
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r
r r
√

3,∞[C12

2

�√
-3
U4(2)]5

√
3,∞[C12.C2]

5
1

√
3,∞[SL2(11)]5

List of the maximal simplices in M irr
5 (Q√

3,∞)

simplex a common subgroup

(√3,∞[C12

2

�√
-3
U4(2)]5, √3,∞[C12.C2]

5
1) C12

2

�√
-3

24.Alt5

Proof. The completeness of the list of a.i.m.f. subgroups in GL5(Q√
3,∞) follows

from Theorems 6.1 and 15.3. The list of maximal simplices in M irr
5 (Q√

3,∞) is

complete, because √
3,∞[SL2(11)]5 is minimal absolutely irreducible.

Theorem 15.6. M irr
5 (Q√

5,∞) is as follows.

r
r r
√

5,∞[(±51+2
+ : SL2(5)).2]5

√
5,∞[SL2(5)]51

√
5,∞[SL2(5)]1 ⊗A5

List of the maximal simplices in M irr
5 (Q√

5,∞)

simplex a common subgroup

(√5,∞[(±51+2
+ : SL2(5)).2]5, √5,∞[SL2(5)]51) (±51+2

+ ).2

Proof. To see the completeness of the list of maximal simplices in M irr
5 (Q√

5,∞)
it suffices to show that there is no common absolutely irreducible subgroup of
G := √

5,∞[SL2(5)]1 ⊗ A5 and one of the other two maximal finite subgroups of

GL5(Q√
5,∞). The minimal absolutely irreducible subgroups U of G are ±C5.C2 ⊗

Alt5 and ±C5

2⊃×@ Alt5. If M is a maximal order of Q√
5,∞, then the 3-modular

constituents of the natural representation of UM are of degree 8 and 32. So both
groups U do not embed into √

5,∞[(±51+2
+ : SL2(5)).2]5 or √5,∞[SL2(5)]51.

Theorem 15.7. The two simplicial complexes M5(Q√
11,∞)irr and M5(Q√

33,∞)irr

consists of one 0-simplex each.
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16. The a.i.m.f. subgroups of GL6(Q)

Theorem 16.1. Let Q be a definite quaternion algebra with center Q and let G be
a primitive a.i.m.f. subgroup of GL6(Q). Then G is conjugate to one of the groups
in the table below, which is built up as Table 12.7.

List of the primitive a.i.m.f. subgroups of GL6(Q).

lattice L |Aut(L)| r.i.m.f. supergroups

∞,2[2.G2(4)]6 213 · 33 · 52 · 7 · 13 [2.Co1]24

∞,2[(±3).PGL2(9)]6 25 · 33 · 5 [(±3).PGL2(9)
2(2)◦ SL2(3)]24

∞,2[3
1+2
+ : SL2(3)

2(2)

⊃×@ D8]6 27 · 34 [Sp4(3)
2

�√
-3

(31+2
+ : SL2(3))]24

∞,2[SL2(5)
2(2)

⊗ D8]6 26 · 3 · 5 [SL2(5)
2(2)

⊃×@
∞,2

21+4
− .Alt5]24

∞,2[L2(7)
2(2)

⊗ SL2(3)]6 27 · 32 · 7 [L2(7)
2(2)

⊗ F4]24

∞,2[L2(7)
2(2)

⊃×@ SL2(3)]6 27 · 32 · 7 [L2(7)
2(2)

⊃×@ F4]24

∞,2[C4

2(3)⊃@ U3(3)]6 28 · 33 · 7 [(SL2(3) ◦ C4)
2(3)

⊃×@√
-1
U3(3)]24

∞,2[SL2(5)]3 ⊗ A2 24 · 32 · 5 A2 ⊗ [SL2(5)
2(2)◦ SL2(3)]12

∞,2[SL2(3)]1 ⊗ E6 210 · 34 · 5 E6 ⊗ F4

∞,2[SL2(3)]1 ⊗ A6 27 · 33 · 5 · 7 A6 ⊗ F4

∞,2[SL2(3)]1 ⊗ A
(2)
6 27 · 32 · 7 A

(2)
6 ⊗ F4

∞,2[SL2(3)]1 ⊗M6,2 26 · 32 · 5 M6,2 ⊗ F4

∞,3[6.U4(3).2
2]6 210 · 37 · 5 · 7 [6.U4(3).2

2]212

∞,3[C3

2(2)⊃@ SL2(5)]6 24 · 32 · 5 [SL2(5)
2(2)◦ SL2(3)]

2
12

∞,3[3
1+2
+ : SL2(3)

2(2)

⊃×@ SL2(3)]6 27 · 35 [31+2
+ : SL2(3)

2(2)

⊃×@ SL2(3)]
2
12

∞,3[S̃3]1 ⊗ A6 26 · 33 · 5 · 7 (A6 ⊗ A2)
2

∞,3[S̃3]1 ⊗ A
(2)
6 26 · 32 · 7 (A

(2)
6 ⊗ A2)

2

∞,3[S̃3]1 ⊗M6,2 25 · 32 · 5 (M6,2 ⊗ A2)
2

∞,5[SL2(25)]6 24 · 3 · 52 · 13 [2.Co1]24

∞,5[2.J2.2]6 29 · 33 · 52 · 7 [2.Co1]24

∞,5[2.J2 : 2]6 29 · 33 · 52 · 7 [2.J2

2

� SL2(5)]24

∞,5[Alt5
2

�√
5
SL2(5)]6,1 26 · 32 · 52 [(SL2(5) ◦ SL2(5)) : 2

2

�√
5
Alt5]24,1

∞,5[Alt5
2

�√
5
SL2(5)]6,2 26 · 32 · 52 [(SL2(5) ◦ SL2(5)) : 2

2

�√
5
Alt5]24,2

∞,7[L2(7)
2(2)

⊃×@ D8]6 27 · 3 · 7 [L2(7)
2(2)

⊃×@ D8]
2
12

∞,7[L2(7)
2(3)

⊃×@ S̃3]6 26 · 32 · 7 [6.U4(3).2
2]212

∞,7[±L2(7).2]3 ⊗ A2 26 · 32 · 7 (A2 ⊗ A
(2)
6 )2

∞,11[SL2(11).2]6 24 · 3 · 5 · 11 (B24)

[2.Co1]24

∞,13[SL2(13).2]6 24 · 3 · 7 · 13 [2.Co1]24

∞,13[SL2(13) : 2]6 24 · 3 · 7 · 13 [SL2(13)
2(2)⊃@ SL2(3)]24
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The proof is split into seventeen lemmata. For the rest of this section let Q be
a definite quaternion algebra with center Q and G be a primitive a.i.m.f. subgroup
of GL6(Q).

Lemma 16.2. The last term G(∞) of the derived series is either 1 or a quasi-

semi-simple group. If G is soluble, then G is one of ∞,2[3
1+2
+ : SL2(3)

2(2)⊃×@ D8]6 or

∞,3[3
1+2
+ : SL2(3)

2(2)⊃×@ SL2(3)]6.

Proof. Since the possible normal p-subgroups of G embed into GL12(Q) and
GL6(Q), Theorem 8.1 together with Lemma 2.18 leave the following possibilities for
Op(G): C13, C7, C3, C9, 31+2

+ , C2, C4, D8, Q8, C8, or QD16. The automorphism
groups of these groups are soluble, so the first part of the lemma follows.

The first case is excluded by Lemma 11.2 and the case O7(G) ∼= C7 is excluded
with the help of Lemma 8.12.

If O3(G) = C9, then C := CG(O3(G)) embeds into GL2(Q[ζ9]), because Q[ζ9]
splits all possible quaternion algebras. With [Bli 17] one finds that C is one of
C9 ⊗D8 or C9⊗√-3

B◦(Q8) = C9⊗√-3
SL2(3), and G contains C of index 6. In both

cases 3 does not divide the order of the outer automorphism group of C/O3(G), so
one concludes that O3(G) > C9 which is a contradiction.

Now assume that O3(G) = 31+2
+ . Then G contains a normal subgroup B :=

B◦(O3(G)) ∼= ±31+2
+ : SL2(3). Similarly as above one has that C := CG(O3(G))

is one of C3 ⊗ D8 or C3 ◦ SL2(3). Moreover G contains BC of index 2. Let
α ∈ G − BC. In each case one has two possibilities, either α induces a nontrivial
outer automorphism on B◦(O2(G)) or not. For each possibility there is a unique
group G with real Schur index 2. For the first possibility one computes that G

is ∞,2[3
1+2
+ : SL2(3)

2(2)

⊃×@ D8]6 or ∞,3[3
1+2
+ : SL2(3)

2(2)

⊃×@ SL2(3)]6. For the second
possibility, one computes that G is either a proper subgroup of the imprimitive
a.i.m.f. group ∞,3[±31+2

+ .GL2(3)]23 or a proper subgroup of E6 ⊗∞,2[SL2(3)]1.
In the other cases, B◦(Op(G)) does not admit an outer automorphism of order

3. One concludes that G being absolutely irreducible, has to contain a quasi-semi-
simple normal subgroup (cf. Lemma 8.11).

Lemma 16.3. If G contains a subgroup U conjugate to 3.Alt6, where the restric-
tion of the natural character of G to U is χ6 + χ′6, then G is one of ∞,2[2.G2(4)]6,

∞,2[(±3).PGL2(9)]6, or ∞,3[6.U4(3).22]6.

Proof. The last term of the derived series G(∞) has to contain 3.Alt6, hence is one
of 3.Alt6, 6.L3(4), 6.U4(3), or 2.G2(4).

First we prove that Q is either Q∞,3 or Q∞,2.

If G(∞) = 2.G2(4), then G(∞) is already an absolutely irreducible subgroup of
GL6(Q∞,2), hence in this case it is clear that Q = Q∞,2. In the other three cases,
one has O3(G) = C3 and the enveloping algebra of U coincides with the one of
CG(O3(G)) =: C. The discriminant of the enveloping Z-order of U is 218 · 311+36.
Therefore, 2 and 3 are the only primes, which may divide the discriminant of the
enveloping Z-order of C. Since C is a normal subgroup of G of index 2, Lemma
2.15 together with the fact that the number of ramified primes is even and Q is
ramified at ∞, implies that Q is either Q∞,2 or Q∞,3.

Let M2 (resp. M3) denote a maximal order of Q∞,2 (resp. Q∞,3).
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The group U is a uniform subgroup of GL6(Q) and fixes up to isomorphism
6 ·6 = 36 M2-lattices. Computing the automorphism groups of the relevant lattices
one finds that ∞,2[2.G2(4)]6 and ∞,2[(±3).PGL2(9)]6 are the only primitive a.i.m.f.
supergroups of U in GL6(Q∞,2).

Similarly U fixes up to isomorphism 2 · 6 = 12 M3-lattices and one finds

∞,3[6.U4(3).22]6 as the only primitive a.i.m.f. supergroup of U in GL6(Q∞,3).

The next lemma follows also from Theorem 11.2.

Lemma 16.4. If G(∞) is SL2(13), then G is one of ∞,13[SL2(13).2]6 or

∞,13[SL2(13) : 2]6.

Proof. The centralizer CG(G(∞)) embeds into Q[
√

13], and is therefore ±1. Hence
G contains G(∞) of index 2 = |Out(G(∞))|. One computes that both groups G are
a.i.m.f. groups in GL6(Q∞,13).

Similarly one finds

Lemma 16.5. If G(∞) is 2.J2, then G is one of ∞,5[2.J2.2]6 or ∞,5[2.J2 : 2]6.

Lemma 16.6. If G(∞) is SL2(11), then G is conjugate to ∞,11[SL2(11).2]6.

Proof. The centralizer CG(G(∞)) embeds into Q[
√

-11], and is therefore ±1. Hence
G contains G(∞) of index 2 = |Out(G(∞))|. By Lemma 2.17 there is at most one
extension G(∞).2 which is an a.i.m.f. group of GL6(Q). One computes that G is
conjugate to ∞,11[SL2(11).2]6.

Lemma 16.7. G(∞) is not isomorphic to SL2(7).

Proof. Assume that G(∞) is isomorphic to SL2(7). Then the restriction of the
natural character of G to G(∞) is 2(χ6a + χ6b). The centralizer CG(G(∞)) embeds

into Q[
√

2] hence is ±1 and G = G(∞) or G = G(∞).2. The lemma follows, since
the second group is no subgroup of GL6(Q), because the character field is of degree
4 over Q, and G(∞) is not absolutely irreducible.

Lemma 16.8. If G(∞) is SL2(25), then G = G(∞) is conjugate to ∞,5[SL2(25)]6.

Proof. The group SL2(25) has two characters of degree 12. The corresponding
representations lead to conjugate groups in GL6(Q∞,5), since the characters are in-

terchanged by an outer automorphism ofG(∞). The absolutely irreducible subgroup
of GL6(Q∞,5) fixes up to isomorphism 1 lattice. Since it is the full automorphism
group of this lattice, the lemma follows.

Lemma 16.9. If G(∞) is U4(2), then G is conjugate to E6 ⊗∞,2[SL2(3)]1.

Proof. Let B := B◦(G(∞)) = Aut(E6). By Corollary 7.6 G = B ⊗ CG(B) is a
tensor product and CG(B) is an a.i.m.f. subgroup of GL1(Q). From Proposition

6.1 one gets that G is one of E6 ⊗∞,2[SL2(3)]1 or E6 ⊗∞,3[S̃3]1. In the last case,
G is not maximal finite, but a proper subgroup of ∞,3[6.U4(3).22]6. (Note that
B◦(C3 ⊗ U4(2)) = 6.U4(3).2.)

Similarly one finds

Lemma 16.10. If G(∞) is Alt7, then G is conjugate to one of A6 ⊗∞,2[SL2(3)]1
or A6 ⊗∞,3[S̃3]1.
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Lemma 16.11. G(∞) is not isomorphic to SL2(9).

Proof. Assume that G(∞) = SL2(9). Lemma 2.18 implies that Q = Q∞,3. The

centralizer CG(G(∞)) embeds into GL3(Q). The primitivity of G implies that C =
±1. But then G is not irreducible, because 3 |6 |Out(SL2(9))|.
Lemma 16.12. If G contains a normal subgroup N conjugate to SL2(5), where
the restriction of the natural character of G to N is 3(χ2a +χ2b), then G is one of

the two isoclinic groups ∞,5[Alt5
2

�√
5
SL2(5)]6,1 or ∞,5[Alt5

2

�√
5
SL2(5)]6,2.

Proof. The centralizer C := CG(N) is a centrally irreducible subgroup of

GL3(Q[
√

5]) hence C = Alt5. Moreover G contains CN of index 2. Comput-
ing the two possible extensions one finds that G is one of the two groups in the
lemma.

Lemma 16.13. If G contains a normal subgroup N isomorphic to Alt5, then G is
one of

M6,2 ⊗∞,2[SL2(3)]1, M6,2 ⊗∞,3[S̃3]1,

∞,5[Alt5
2

�√
5
SL2(5)]6,1 or ∞,5[Alt5

2

�√
5
SL2(5)]6,2.

Proof. The centralizer C := CG(N) is a centrally irreducible subgroup of

GL1(Q[
√

5] ⊗Q) and G contains CN of index 2. Assume first that CG(C) > ±N .
Then CG(C) ∼= ±N.2 and G is a tensor product G = CG(C) ⊗ C, where C
is an a.i.m.f. subgroup of GL1(Q). Since the nonsplit extension S5

|∧C4 is a
monomial subgroup of GL6(Q) (cf. [PlN 95, (V.3)]), one finds that G is one of

M6,2⊗∞,2[SL2(3)]1 or M6,2⊗∞,3[S̃3]1. Now let CG(C) = ±N . Using the classifica-
tion of a.i.m.f. subgroups ofGL1(Q′) for definite quaternion algebrasQ′ with center

Q or Q[
√

5], one finds that C = B◦(C) is one of SL2(3), S̃3, Q20, or SL2(5). In
the last case, the lemma follows from Lemma 16.12, whereas in the first three cases
both extensions G = NCG(N).2 are proper subgroups of one of the two groups of
Lemma 16.12.

Lemma 16.14. If N := G(∞) = U3(3), then G is conjugate to ∞,2[C4

2(3)⊃@ U3(3)]6.

Proof. The centralizer C := CG(N) embeds into an indefinite quaternion algebra
with center Q. Since B◦(N ◦ C3) = 6.U4(3).2, one concludes that O3(C) = 1.
One has the following possibilities for O2(G) = O2(C): ±1, C4, or D8. The first
possibility immediately yields a contradiction, then G contains N of index 2 and
Lemma 2.14 implies that dim(QG) ≤ 2dim(QN) = 2 · 36 < 144. Therefore G is
not absolutely irreducible in this case. In the other two cases G contains a normal
subgroup N ◦C4. The discriminant of the enveloping Z-order of N ◦C4 is 312 · 236.
Therefore Lemma 2.15 implies that Q is one of Q∞,2 or Q∞,3, if G contains N ◦C4

of index two. If [G : (N ◦ C4)] > 2, then O2(C) = D8 and NO2(C) is already an
absolutely irreducible subgroup of GL6(Q∞,3). So in this case Q = Q∞,3.

Let M2 (resp. M3) denote a maximal order of Q∞,2 (resp. Q∞,3).
Then N ◦C4 fixes only one M2-lattice. The automorphism group of this lattice is

∞,2[C4

2(3)⊃@ U3(3)]6. Hence G is conjugate to this a.i.m.f. group, if Q = Q∞,2. If Q =
Q∞,3, then N ◦C4 fixes up to isomorphism 6 M3-lattices. The automorphism group
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of the normalized lattices is conjugate to ∞,3[±U3(3)]23 contradicting the primitivity
of G.

Lemma 16.15. If G(∞) is conjugate to SL2(5), where the restriction of the nat-

ural character of G to G(∞) is 2χ6, then G is one of ∞,2[SL2(5)
2(2)⊗ D8]6, A2 ⊗

∞,2[SL2(5)]3, or ∞,3[C3

2(2)⊃@ SL2(5)]6.

Proof. Let G(∞) be conjugate to SL2(5) as described in the lemma. Then the cen-
tralizer C := CG(G(∞)) embeds into GL1(Q′), where Q′ is an indefinite quaternion
algebra with center Q. Hence C is soluble. Moreover G contains CG(∞) of index
≤ 2 = |Out(G(∞))|. By Lemma 2.14 this implies that C 6= ±1. Therefore one
either has O3(C) = C3 or O3(C) = 1 and C = C4 or D8. The discriminant of the
enveloping Z-order of G(∞) is (58 · 25+9)2. Using Lemma 2.15 one excludes in all
cases that Q is ramified at 5. Hence Q is one of Q∞,2 or Q∞,3, where the latter
possibility only occurs if O3(G) = C3. Let M2 (resp. M3) denote a maximal order
of Q∞,2 (resp. Q∞,3). In the first case N := SL2(5) ◦ C3 is a normal subgroup
of G. The Bravais group of a normal critical M2N -lattice (cf. Definition 2.7) is
conjugate to A2 ⊗ ∞,2[SL2(5)]3. So G is conjugate to this group, if Q = Q∞,2.
If Q = Q∞,3, then every M3N -lattice is normal critical. One concludes that G is

conjugate to ∞,3[C3

2(2)⊃@ SL2(5)]6 in this case. If O3(C) = 1, then G contains a nor-
mal subgroup N := SL2(5) ◦ C4. Moreover Q = Q∞,2. The automorphism group

of a normal critical M2N -lattice is conjugate to ∞,2[SL2(5)
2(2)⊗ D8]6. Therefore

G = ∞,2[SL2(5)
2(2)⊗ D8]6.

Similarly one finds

Lemma 16.16. If G(∞) is conjugate to L2(7), where the restriction of the natural

character of G to G(∞) contains χ6, then G is conjugate to ∞,2[L2(7)
2(2)⊗ SL2(3)]6.

Lemma 16.17. If G(∞) is conjugate to L2(7), with character χ3a +χ3b, then G is

conjugate to one of ∞,2[L2(7)
2(2)⊃×@ SL2(3)]6, ∞,2[SL2(3)]1 ⊗A

(2)
6 , ∞,3[L2(7)

2(3)⊃×@ S3]6,

∞,3[S̃3]1 ⊗A
(2)
6 , ∞,7[L2(7)

2(2)⊃×@ D8]6, ∞,7[L2(7)
2(3)⊃×@ S̃3]6, or ∞,7[±L2(7).2]3 ⊗A2.

Proof. The centralizer C := CG(G(∞)) embeds into a quaternion algebra Q′ with

center Q[
√

-7], more precisely Q′ = Q[
√

-7]2×2 if 2 is not ramified in Q and
Q′ = Q√

-7,2,2, if 2 ramifies in Q. Because G is absolutely irreducible, G con-

tains CG(∞) of index 2 and C is a centrally irreducible subgroup of GL1(Q′). The
classification of the finite subgroup of PGL2(C) in [Bli 17] implies that C is one of

SL2(3), D8, S3, or S̃3. Since the enveloping algebra of C is central simple, one has
2=|NQC∗(C)/CQC∗(C)| possible automorphisms. By Lemma 2.17 there is for each

automorphism a unique extension with real Schur index 2. SinceD8⊗∞,7[±L2(7).2]3
is imprimitive, G is one of the seven groups in the Lemma.

Lemma 16.18. G(∞) is not conjugate to 3.Alt6, where the restriction of the nat-
ural representation of G to G(∞) is χ3a + χ′3a + χ3b + χ′3b.

Proof. Assume that G(∞) is conjugate to 3.Alt6. Then CG(G(∞)) = ±C3 is con-
tained in ±G(∞) and G contains ±G(∞) of index 22 = |Out(G(∞))|. Since Q is
positive definite, G contains the unique extension N := ±3.PGL2(9) with real
Schur index 2 (cf. Lemma 2.17) of index 2. The Bravais group of a normal critical
ZN -lattice is 2.J2 contradicting the assumption that G(∞) = 3.Alt6.
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Theorem 16.19. Let Q be a definite quaternion algebra with center Q and G be
an a.i.m.f. subgroup of GL6(Q). Then Q is one of Q∞,2, Q∞,3, Q∞,5, Q∞,7,
Q∞,11, or Q∞,13. The simplicial complexes M irr

6 (Q) are as follows:

r
r r
r
r
r

r
r

rr
r
r
r

r

r
r

Q
Q
Q
Q
Q

aa

∞,2[2.G2(4)]6

∞,2[2
1+4
− .Alt5]

3
2

∞,2[3
1+2
+ : SL2(3)

2(2)⊃×@ D8]6

∞,2[L2(7)
2(2)

⊃×@ SL2(3)]6

∞,2[L2(7)
2(2)⊗ SL2(3)]6

∞,2[SL2(3)]1 ⊗A6

∞,2[SL2(3)]1 ⊗A
(2)
6

∞,2[SL2(3)]61

∞,2[(±3).PGL2(9)]6 ∞,2[C4

2(3)⊃@ U3(3)]6

∞,2[SL2(5)]3 ⊗A2

∞,2[SL2(3)]1 ⊗M6,2

∞,2[SL2(3)]1 ⊗ E6

(∞,2[SL2(3)]1 ⊗A2)
3

∞,2[SL2(5)]23

∞,2[SL2(5)
2(2)⊗ D8]6

r
r r
r
r
r
r

r
r
r
r

Q
Q
Q
Q
Q

�
�
�
�
�

�
�
�
�
�
�
�

aa

!!

∞,3[U3(3)]23

∞,3[6.U4(3).22]6

∞,3[S̃3]
6
1

∞,3[SL2(9)]32

∞,3[SL2(3)
2

� C3]
3
2

∞,3[3
1+2
+ .SL2(3)

2(2)

⊃×@ SL2(3)]6

∞,3[±31+2
+ .GL2(3)]23 ∞,3[C3

2(2)⊃@ SL2(5)]6

∞,3[S̃3]1 ⊗M6,2

∞,3[S̃3]1 ⊗A
(2)
6

∞,3[S̃3]1 ⊗A6
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r

r

r

r
r

r
r

J
J
J
J
J

�
�
�
�
�
�
�
A
A
A
A
A
A
A
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���XXX
XXX ���

��HH∞,5[SL2(25)]6

∞,5[SL2(5).2]32

∞,5[SL2(5) : 2]32

∞,5[2.J2.2]6

∞,5[2.J2 : 2]6

∞,5[Alt5
2

�√
5
SL2(5)]6,1

∞,5[Alt5
2
�√
5
SL2(5)]6,2

r r r r
∞,7[L2(7)

2(2)⊃×@ D8]6∞,7[L2(7)
2(3)⊃×@ S̃3]6∞,7[±L2(7).2]3 ⊗A2∞,7[±L2(7).2]23r

∞,11[SL2(11).2]6

r r
∞,13[SL2(13) : 2]6∞,13[SL2(13).2]6

List of maximal simplices in M irr
6 (Q∞,2):

simplex a common subgroup

(∞,2[2.G2(4)]6, ∞,2[2
1+4
− .Alt5]

3
2, ∞,2[SL2(3)]61) Alt4 ⊗D8 ⊗Q8

(∞,2[3
1+2
+ : SL2(3)

2(2)⊃×@ D8]6, ∞,2[2
1+4
− .Alt5]

3
2) 31+2

+

2(2)⊃×@ D8

(∞,2[SL2(5)
2(2)⊗ D8]6, ∞,2[SL2(5)]23) SL2(5)⊗D8

((A2 ⊗∞,2[SL2(3)]1)
3, E6 ⊗∞,2[SL2(3)]1) 31+2

+ : 2⊗Q8

(∞,2[L2(7)
2(2)⊃×@ SL2(3)]6, ∞,2[L2(7)

2(2)⊗ SL2(3)]6) C7 : C3

2(2)⊃×@ SL2(3)

(A6 ⊗∞,2[SL2(3)]1, ∞,2[L2(7)
2(2)⊗ SL2(3)]6) L2(7)⊗Q8

(A6 ⊗∞,2[SL2(3)]1, A
(2)
6 ⊗∞,2[SL2(3)]1) C7 : C6 ⊗ SL2(3)
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List of maximal simplices in M irr
6 (Q∞,3):

simplex a common subgroup

(∞,3[U3(3)]23, ∞,3[6.U4(3).22]6, ∞,3[±31+2
+ .GL2(3)]23) 31+2

+ : C8 ⊗ S3

(∞,3[6.U4(3).22]6, ∞,3[±31+2
+ .GL2(3)]23, ∞,3[S̃3]

6
1) ±31+2

+ .C2 ⊗ S3

(∞,3[S̃3]
6
1, ∞,3[±31+2

+ .GL2(3)]23, ∞,3[SL2(9)]32) (±C4
3 ).C12

(∞,3[SL2(3)
2

� C3]
3
2, ∞,3[SL2(9)]32) S̃4 ⊗Alt4

(∞,3[3
1+2
+ : SL2(3)

2(2)⊃×@ SL2(3)]6, ∞,3[SL2(3)
2

� C3]
3
2) 31+2

+

2(2)⊃×@ Q8

(A6 ⊗∞,3[S̃3]1, A
(2)
6 ⊗∞,3[S̃3]1) C7 : C6 ⊗ S̃3

List of maximal simplices in M irr
6 (Q∞,5):

simplex a common subgroup
(∞,5[SL2(5).2]32,∞,5[SL2(5) : 2]32,

∞,5[2.J2.2]6,∞,5[2.J2 : 2]6,∞,5[SL2(25)]6)
(±C5 × C5).C12

(∞,5[SL2(5).2]32,∞,5[SL2(5) : 2]32,

∞,5[Alt5
2
�√
5
SL2(5)]6,1,∞,5[Alt5

2
�√
5
SL2(5)]6,2)

Q20

2⊃×@ Alt4

(∞,5[2.J2.2]6,∞,5[Alt5
2

�√
5
SL2(5)]6,1) Alt5

2⊃@ Q8

(∞,5[2.J2 : 2]6,∞,5[Alt5
2

�√
5
SL2(5)]6,2) Alt5

2⊃@ Q8

List of maximal simplices in M irr
6 (Q∞,13):

simplex a common subgroup
(∞,13[SL2(13) : 2]6, ∞,13[SL2(13).2]6) ±C13.C12

Theorems 16.1, 13.1, 12.1, and 6.1 prove the completeness of the list of quater-
nion algebras Q and of a.i.m.f. subgroups of GL6(Q). So it remains to prove the
completeness of the list of maximal simplices in M irr

6 (Q). That the simplices listed
do exist, can be easily seen by computing the automorphism groups of the invariant
lattices of the groups listed in the column “a common subgroup”.

To make the formulations of the proofs not so lengthy, we introduce some nota-
tion for imprimitive groups.

Notation 16.20. Let G = H oSd = (H1× . . .×Hd) : Sd be an imprimitive subgroup
of GLn(D) and ∆ its natural representation.

For a subgroup U ≤ G the restriction of ∆ to the stabilizer

S1(U) := {u ∈ U | h1u ∈ H1 for all h1 ∈ H1}
of the first component has a summand ∆1 : S1(U) → H1. Define

π1(U) := ∆1(S1(U)) ≤ H1.

Then ∆|U is induced up from ∆1, hence Frobenius reciprocity implies that if U is
absolutely irreducible, then π1(U) is an absolutely irreducible subgroup of GLn

d
(D).

The base group of U is defined as the intersection of U with H1 × . . .×Hd �G.
Clearly this is a normal subgroup of U .
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The proof is split up into several lemmata according to the different quaternion
algebras Q∞,p. Since M irr

6 (Q∞,13) and M irr
6 (Q∞,11) consist of one simplex, it

suffices to consider p ≤ 7.

Lemma 16.21. M irr
6 (Q∞,7) consists of four 0-simplices.

Proof. The minimal absolutely irreducible subgroups of the three primitive a.i.m.f.

groups ∞,7[L2(7)
2(2)⊃×@ D8]6, ∞,7[L2(7)

2(3)⊃×@ S̃3]6, and A2 ⊗∞,7[±L2(7).2]3 are the nor-
malizers in these groups of the Sylow 7-subgroups. The lemma follows by computing
the invariant lattices of these three groups.

Lemma 16.22. The list of maximal simplices in M irr
6 (Q∞,5) given in Theorem

16.19 is complete.

Proof. Since the other five a.i.m.f. groups in GL6(Q∞,5) form a 4-simplex, it suffices
to consider the minimal absolutely irreducible subgroups U of one of the two groups

G ∞,5[Alt5
2
�√
5
SL2(5)]6,1 and ∞,5[Alt5

2
�√
5
SL2(5)]6,2. Let N �U be the intersection

of U with the normal subgroup Alt5�G and M := U∩SL2(5). Then the restriction
of the natural representation ∆ of U to N is of degree 1 or 3. If it is of degree 1, the
index of NM in U is divisible by 3. Since 5 divides the order of U and subgroups
of Alt5 and SL2(5), of which the order is a multiple of 5 have no nontrivial factor
group of order divisible by 3, one concludes that U ∼= SL2(5).2 is a full subdirect
product. But this contradicts the fact that U is absolutely irreducible. Hence ∆|N
is of degree 3, and N is one of Alt4 or Alt5. In the first case, 5 divides the order of

the centralizer C := CU (N) and the minimality of U implies that U = Q20

2⊃×@ Alt4.

In the second case, C ≤ SL2(5) is a centrally irreducible subgroup of Q√
5,∞.

This leaves the possibilities C = Q20, Q8, SL2(3), and S̃3. Moreover U contains

NC of index 2. In the first case U contains Q20

2⊃×@ Alt4 from above and the

third possibility C = SL2(3) gives groups containing NQ8.2. An inspection of the
lattices of the remaining groups yields the lemma.

Proposition 16.23. The list of maximal simplices in M irr
6 (Q∞,3) given in Theo-

rem 16.19 is complete.

The proof is divided into seven lemmata, which are organized according to the
largest primes dividing the determinant of an invariant primitive lattice of the
a.i.m.f. group.

Let S denote a maximal simplex of M irr
6 (Q∞,3) not listed in Theorem 16.19.

Lemma 16.24. S contains no vertex A6 ⊗∞,3[S̃3]1 or A
(2)
6 ⊗∞,3[S̃3]1.

Proof. Let U be a minimal absolutely irreducible subgroup of one of the two a.i.m.f.
groups of the lemma. Then by Lemma 2.13 7 divides the order of U . If U con-
tains a normal subgroup of order 7, then U = C7 : C6 ⊗ ∞,3[S̃3]1 is a common
subgroup of the 2 groups. If the Sylow 7-subgroup of U is not normal in U , then
the minimality of U implies that U (∞) = L2(7), where the restriction of the natural
character of U to U (∞) is 4χ6, where χ6 + 1 is a permutation character of L2(7).
Since the corresponding permutation representation does not extend to L2(7).2, one

concludes that U = L2(7) ⊗ ∞,3[S̃3]1, which has only ∞,3[S̃3]1 ⊗ A6 as an a.i.m.f.
supergroup.
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Lemma 16.25. S contains no vertex ∞,3[C3

2(2)⊃@ SL2(5)]6 or M6,2 ⊗∞,3[S̃3]1.

Proof. Let U be a minimal absolutely irreducible subgroup of one of the two groups
G. Then by Lemma 2.13 5 divides |U |. Since for both groups, the normalizer of a
Sylow 5-subgroup is reducible, one concludes that U (∞) = G(∞). In both cases one
finds that U = G is minimal absolutely irreducible.

Lemma 16.26. The irreducible subgroups V ≤ B◦(31+2
+ ) = 31+2

+ : SL2(3) ≤
GL3(Q[ζ3]) satisfy 31+2

+ or 31+2
− ≤ O3(V ).

Proof. Let V be an irreducible subgroup of G := 31+2
+ : SL2(3). If N := V ∩

O3(G) = 1, then V is isomorphic to a subgroup of SL2(3) and reducible. Therefore
N , being nontrivial, contains the center of G and is one of O3(G), C3 × C3 or
C3. In the first case, 31+2

+ ≤ O3(V ). In the second case V/N stabilizes a flag in

F2
3 = O3(G)/Z(G), hence is an abelian subgroup of SL2(3). Since the degree of

the natural character of V is 3 and N is an abelian normal subgroup of V , one has
O3(V ) = 31+2

− in this case. The last case again contradicts the irreducibility of V ,
being contained in C3 × SL2(3).

Lemma 16.27. S contains no vertex G := ∞,3[3
1+2
+ : SL2(3)

2(2)⊃×@ SL2(3)]6.

Proof. Let M be a maximal order in Q∞,3. Let U be a minimal absolutely irre-
ducible subgroup of G. The natural representation of U is of the form ∆1 ⊗ ∆2,
where ∆1(U) has a subgroup V of index 2 such that V ≤ ±31+2

+ .SL2(3) is an irre-
ducible subgroup of GL3(Q[ζ3]). By Lemma 16.26 O3(V ) contains an extraspecial
3-group. In particular the 2-modular constituents of the natural representation of
VM are of degree 12. Comparing the determinants of the invariant integral lat-
tices one sees that the only other a.i.m.f. group, into which U might embed, is

∞,3[SL2(3)
2

� C3]
2
3.

Lemma 16.28. S contains no vertex G := ∞,3[SL2(3)
2

� C3]
3
2.

Proof. Let M be a maximal order in Q∞,3. Let U be a minimal absolutely irre-
ducible subgroup of G. With the notation introduced in 16.20 the group π1(U) ≤
∞,3[SL2(3)

2

� C3]2 is an absolutely irreducible subgroup of GL2(Q∞,3). Hence

π1(U) contains one of the two minimal absolutely irreducible subgroups Q8

2

� C3

or S̃4 of ∞,3[SL2(3)
2

� C3]2 (cf. proof of Theorem 12.3). In particular the 3-modular
constituents of Mπ1(U) are of degree 4.

The intersection N of U with the base group of G is a normal subgroup N � U
with U/N ∼= C3 or S3. In the first case, π1(U) = π1(N) and the Clifford theory
implies that the degrees of the 3-modular constituents of U are divisible by 4. With
Lemma 16.27 one sees that U does not define a new simplex. In the second case,
π1(N) is a normal subgroup of index 2 in π1(U). Assuming that the 3-modular
constituents of Mπ1(N) are not all of degree 4, one only finds the possibility that
π1(N) = C12.C2 = S3

|∧C2C8. But then the 2-modular constituents of Mπ1(N) are
of degree 4 which implies that U does not define a new simplex.

Lemma 16.29. There is no common absolutely irreducible subgroup of G :=

∞,3[U3(3)]23 and one of ∞,3[S̃3]
6
1 or ∞,3[SL2(9)]32.
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Proof. Let U be an absolutely irreducible subgroup of G. Then U contains a normal
subgroup N � U of index 2, such that the restriction of the natural representation
∆ of U to N is the sum of two inequivalent absolutely irreducible representations
∆|N = ∆1 +∆2. The groups ∆1(N) ∼= ∆2(N) are absolutely irreducible subgroups

of ∞,3[U3(3)]3. Hence ∆1(N) is either ∼= U3(3) or 31+2
+ : C8. Both groups have no

subgroup of index 3 or 6. Therefore U is not a subgroup of ∞,3[S̃3]
6
1 or ∞,3[SL2(9)]32.

Proposition 16.23 now follows from the next lemma:

Lemma 16.30. There is no common absolutely irreducible subgroup of G :=

∞,3[SL2(9)]32 and H := ∞,3[6.U4(3).22]6.

Proof. Let U be an absolutely irreducible subgroup of G. Then π1(U) is one of the

four absolutely irreducible subgroups ±32.C4, S̃4, SL2(5), or SL2(9) of π1(G) =

∞,3[SL2(9)]2.

If π1(U) = S̃4, then π1(U) is a subgroup of ∞,3[SL2(3)
2

� C3]2 and the lemma
follows from Lemma 16.28.

Since U is a subgroup of H the centralizer N := CU (O3(H))�U in U of O3(H)
is a subgroup of U of index 2 with commuting algebra CQ6×6

∞,3
(N) ∼= Q[ζ3]. Since N

is normal, π1(N)� π1(U) is a subgroup of index 2 with CQ2×2
∞,3

(π1(N)) ∼= Q[ζ3].

Since in the first case the unique subgroup V of index 2 in π1(U) has commuting
algebra CQ2×2

∞,3
(V ) = Q ⊕ Q and the last two groups π1(U) are perfect, this is a

contradiction.

Proposition 16.31. The list of maximal simplices in M irr
6 (Q∞,2) given in Theo-

rem 16.19 is complete.

This proposition is proved in the rest of this chapter which concludes the proof
of Theorem 16.19.

The first lemma is easily checked with help of Lemma 2.13 and [CCNPW 85].

Lemma 16.32. (i) The minimal absolutely irreducible subgroup of ∞,2[SL2(3)]1
⊗M6,2 is S5 ⊗Q8.

(ii) The minimal absolutely irreducible subgroups of ∞,2[SL2(3)]1 ⊗ A6 are C7 :
C6 ⊗Q8, C7 : C6

|∧C3SL2(3), and L2(7)⊗Q8.

(iii) The minimal absolutely irreducible subgroups of ∞,2[SL2(3)]1 ⊗ A
(2)
6 embed

into ∞,2[SL2(3)]1 ⊗A6.
(iv) The group ∞,2[SL2(5)]3 ⊗A2 is minimal absolutely irreducible.
(v) The group ∞,2[(±3).PGL2(9)]6 is minimal absolutely irreducible.

(vi) The minimal absolutely irreducible subgroup of ∞,2[C4

2(3)⊃@ U3(3)]6 is the nor-

malizer of the Sylow 3-subgroup C4

2(3)⊃@ 31+2
+ : C8.

Corollary 16.33. The restriction of M irr
6 (Q∞,2) to the set {∞,2[L2(7)

2(2)⊗ SL2(3)]6,

∞,2[L2(7)
2(2)⊃×@ SL2(3)]6, A

(2)
6 ⊗∞,2[SL2(3)]1, A6⊗∞,2[SL2(3)]1, ∞,2[SL2(3)]1⊗M6,2,

A2⊗∞,2[SL2(5)]3, ∞,2[(±3).PGL2(9)]6, ∞,2[C4

2(3)⊃@ U3(3)]6} consists of full simplices
and is as given in Theorem 16.19.
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Proof. After computing the a.i.m.f. supergroups of the minimal absolutely irre-
ducible subgroups given in Lemma 16.32, it suffices to show, that there is no com-
mon absolutely irreducible group of one of the first two groups and one further
a.i.m.f. group not mentioned in the corollary. Let U be such an absolutely irre-
ducible group. Then by Lemma 2.13 the order of U is divisible by 7. Hence the
only other a.i.m.f. group into which U may embed is ∞,2[2.G2(4)]6. Therefore
CU (C7) ≤ ±C3 and U is clearly not an absolutely irreducible subgroup of one of
the first two groups.

Lemma 16.34. The restriction of M irr
6 (Q∞,2) to the set {∞,2[SL2(5)

2(2)⊗ D8]6,

∞,2[SL2(5)]23} consists of full simplices and is a one dimensional simplex.

Proof. Let U be an absolutely irreducible subgroup of one of the two a.i.m.f. groups
G in the lemma and one other a.i.m.f. group. Then U (∞) = SL2(5) (or SL2(5) ×
SL2(5)), where the restriction of the natural character of G to U is 2χ6 (or χ6+χ′6).
The second possibility is clearly impossible, hence U (∞) = SL2(5). The only other
a.i.m.f. groups into which U may embed are ∞,2[2.G2(4)]6 and ∞,2[SL2(3)]61. Since

U is absolutely irreducible, the centralizer of U (∞) in U is a nontrivial 2-group.
One concludes that the 5-modular constituents of the absolutely irreducible group
U ◦ SL2(3) ≤ GL24(Q) are of degree 8 and 16. So U ◦ SL2(3) does not fix a
5-unimodular Z-lattice.

Lemma 16.35. The only maximal simplex in M irr
6 (Q∞,2) with vertex G :=

∞,2[3
1+2
+ : SL2(3)

2(2)⊃×@ D8]6 is (G,∞,2[2
1+4
− .Alt5]

3
2).

Proof. Let U be an absolutely irreducible subgroup of G. Then U = V
2(2)⊃×@ D8,

where V ≤ 31+2
+ : SL2(3) is an absolutely irreducible subgroup of GL3(Q[ζ3]). By

Lemma 16.26 O3(V ) either contains O3(G) or is 31+2
− . Let M be a maximal order in

Q∞,2, and SL2(3) its unit group. The natural representation of O3(V )⊗√−3
SL2(3)

has two different 2-modular constituents of degree 6. These are interchanged by the
outer automorphism of V ⊗ D8 inducing the Galois automorphism on the center
of O3(V ). Therefore the 2-modular constituents of U ◦ SL2(3) are of degree 12.
So the only a.i.m.f. groups into which U may embed are G,∞,2[2

1+4
− .Alt5]

3
2, and

∞,2[2.G2(4)]6. Since the order of the latter group is not divisible by 34 and the
normalizer of its Sylow 3-subgroup is not absolutely irreducible, the lemma follows.

Lemma 16.36. There is no common absolutely irreducible subgroup of ∞,2[SL2(3)]1
⊗ E6 or (∞,2[SL2(3)]1 ⊗ A2)

3 and one of ∞,2[2.G2(4)]6, ∞,2[2
1+4
− .Alt5]

3
2, or

∞,2[SL2(3)]61.

Proof. Let V be an absolutely irreducible subgroup of E6 ⊗∞,2[SL2(3)]1 or (A2 ⊗
∞,2[SL2(3)]1)

3, M a maximal order of Q∞,2 and U ∼= SL2(3) the unit group of M.
Assume that V embeds into one of the last three groups of the lemma. Then the
degrees of the 3-modular constituents of the natural representation of V ◦U are not
all divisible by 4. We claim that

(U ◦ V )/(O3(U ◦ V )) contains a normal 2-subgroup ≥ C4 ◦Q8.(?)

Assume first that V ≤ E6⊗∞,2[SL2(3)]1. Then the natural representation of V
is a tensor product ∆1 ⊗∆2 with ∆1(V ) ≤ E6 ≤ GL6(Q) and ∆2(V ) ≤ SL2(3) ≤
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GL1(Q∞,2) absolutely irreducible. Clearly, ∆1(V ) does not contain U4(2), hence is
soluble and contained in one of the two absolutely irreducible maximal subgroups
±31+2.2.S4 or ±33 : (S4 × C2) ([CCNPW 85]) of E6. Moreover ∆2(V ), being abso-
lutely irreducible, contains the normal two subgroup Q8 ≤ SL2(3). One concludes
that O2(V/O3(V )) contains a subgroup C4, hence (?).

Assume now that V ≤ (∞,2[SL2(3)]1 ⊗ A2)
3. Then π1(V ) is an absolutely irre-

ducible subgroup of ∞,2[SL2(3)]1⊗A2, hence contains S3⊗Q8. The first component
of the base group of V is a normal subgroup of index ≤ 2 in π1(U), hence contains
C4. Again one sees that O2(V/O3(V )) contains a subgroup C4, hence (?).

Since C4 ◦Q8 is an irreducible subgroup of GL4(F3) the 3-modular constituents
of V ◦ U have degree divisible by 4, which gives a contradiction.

Since the first two and the last three groups of the lemma above form a full
simplex in M irr

6 (Q∞,2), one now gets Proposition 16.31

17. The a.i.m.f. subgroups of GL7(Q)

Theorem 17.1. Let Q be a definite quaternion algebra with center Q and G be a
primitive a.i.m.f. subgroup of GL7(Q). Then G is conjugate to one of the groups
in the following table.

List of the primitive a.i.m.f. subgroups of GL7(Q).

lattice L |Aut(L)| r.i.m.f. supergroups

∞,2[±U3(3)
2
� C4]7 28 · 33 · 7 [U3(3)

2
�√
-1

(Q8 ◦ C4).S3]28

∞,2[SL2(13)]7 23 · 3 · 7 · 13 [SL2(13)
2(2)◦ SL2(3)]28

∞,2[2.J2]7 28 · 33 · 52 · 7 [2.J2
2(2)◦ SL2(3)]28

∞,2[SL2(3)]1 ⊗ E7 212 · 35 · 5 · 7 F4 ⊗ E7

∞,3[S̃3]1 ⊗ E7 211 · 35 · 5 · 7 (A2 ⊗ E7)
2

Proof. Let Q be a definite quaternion algebra with center Q and G be a primitive
a.i.m.f. subgroup of GL7(Q). Assume that 1 6= N � G is a quasi-semi-simple
normal subgroup of G. With Table 9.1 one finds that B := B◦(N) is one of
SL2(13), U3(3) ◦ C4, ±S6(2), or 2.J2. The centralizer C := CG(N) = CG(B) in
G of N embeds into the commuting algebra CQ7×7(N), which is isomorphic to Q,

Q[
√

-1], Q, or Q in the respective cases. If B = SL2(13) or B = 2.J2, the group
B is already absolutely irreducible and one computes and concludes that G = B is

∞,2[SL2(13)]7 or ∞,2[2.J2]7.
If B = U3(3) ◦ C4, then C ∼= C4 is contained in B and G contains B of in-

dex 2=|Out(N)|. Since the commuting algebra of B is isomorphic to an imagi-
nary quadratic field, one finds only one group G = B.2 in GL7(Q). Hence G is

∞,2[±U3(3)
2

� C4]7 in this case.
If N = S6(2), then B = ±S6(2) = Aut(E7) is tensor decomposing. With Theo-

rem 6.1 one finds that G is conjugate to one of E7⊗∞,2[SL2(3)]1 or E7⊗∞,3[S̃3]1.
Now assume that G does not contain a quasi-semi-simple normal subgroup. Since

there are no nilpotent groups having a character of degree 7 or 14, the largest
nilpotent normal subgroup of G embeds into GL1(Q), hence is one of ±C3 or Q8.
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This leads to a contradiction, because both groups clearly have no automorphism
of order 7.

Theorem 17.2. Let Q be a definite quaternion algebra with center Q and G be
an a.i.m.f. subgroup of GL7(Q). Then Q is one of Q∞,2 or Q∞,3. The simplicial
complexes M irr

7 (Q) are as follows:

r r r rr
∞,2[SL2(13)]7

∞,2[SL2(3)]1 ⊗ E7

∞,2[SL2(3)]71 ∞,2[2.J2]7

∞,2[U3(3)
2

� C4]7

r r
∞,3[S̃3]1 ⊗ E7∞,3[S̃3]

7
1

List of maximal simplices in M irr
7 (Q∞,2):

simplex a common subgroup

(∞,2[SL2(3)]1 ⊗ E7, ∞,2[SL2(3)]71) L2(7)⊗ SL2(3)

List of maximal simplices in M irr
7 (Q∞,3):

simplex a common subgroup

(∞,3[S̃3]1 ⊗ E7, ∞,3[S̃3]
7
1) L2(7)⊗ S̃3

Proof. Theorems 17.1 and 6.1 prove the completeness of the list of quaternion
algebras Q and of a.i.m.f. subgroups of GL7(Q). One only has to show the com-
pleteness of the list of maximal simplices in M irr

7 (Q∞,2), because the simplicial
complex M irr

7 (Q∞,3) consists of a single simplex: The group ∞,2[SL2(13)]7 fixes a
Z-lattice of determinant divisible by 13. So the minimal absolutely irreducible sub-
groups of the group ∞,2[SL2(13)]7 are of order divisible by 13 (Lemma 2.13). Since
the orders of the maximal subgroups of L2(13) are not divisible by 7 · 13, one con-
cludes that ∞,2[SL2(13)]7 is minimal absolutely irreducible. Hence ∞,2[SL2(13)]7
forms a 0-simplex in M irr

7 (Q∞,2). By [CCNPW 85] the maximal subgroups of 2.J2

of order divisible by 7 are C2 × U3(3) and (C2 × L2(7)).2. Since the last group
has no irreducible character of degree 14, and the unique irreducible character of
U3(3) of degree 14 belongs to an orthogonal representation, one sees that ∞,2[2.J2]7
is minimal absolutely irreducible. Similarly, the restriction of the characters χ7a

and χ7b of U3(3) to a maximal subgroup of U3(3) become reducible, because these
characters are constituents of the permutation character of U3(3) associated to its
unique subgroup of order divisible by 7. One concludes that (±U3(3)).2 is the unique

minimal absolutely irreducible subgroup of ∞,2[U3(3)
2

� C4]7. Since this subgroup

does not embed into one of the other a.i.m.f. groups, ∞,2[U3(3)
2

� C4]7 forms a
component on its own in M irr

7 (Q∞,2). The remaining two a.i.m.f. groups form a
1-simplex in M irr

7 (Q∞,2), so the proof is complete.
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18. The a.i.m.f. subgroups of GL8(Q)

Theorem 18.1. Let Q be a definite quaternion algebra with center Q and G a
primitive a.i.m.f. subgroup of GL8(Q). Then G is conjugate to one of the groups
listed in the following table:

List of the primitive a.i.m.f. subgroups of GL8(Q).

lattice L |Aut(L)| r.i.m.f. supergroups

∞,2[2
1+8
− .O−8 (2)]8 221 · 34 · 5 · 7 · 17[21+10

+ .O+
10(2)]32

∞,2[2
1+4
− .Alt5]2 ⊗A4 210 · 32 · 52 A4 ⊗ E8

∞,2[SL2(3)]1 ⊗ A4 ⊗A2 27 · 33 · 5 A2 ⊗ A4 ⊗ F4

∞,2[2
1+6
− .O−6 (2)]4 ⊗ A2 214 · 35 · 5 A2 ⊗ F4⊗̃F4

∞,2[SL2(5)
2(2)
⊃×@ D8]4 ⊗ A2 27 · 32 · 5 A2 ⊗ [SL2(5)

2(2)
⊃×@

∞,2
21+4′
− .Alt5]16

∞,2[SL2(3)]1 ⊗ E8 216 · 36 · 52 · 7 F4 ⊗ E8

∞,2[SL2(3)]1 ⊗ [(SL2(5)
2
� SL2(5)) : 2]8 28 · 33 · 52 F4 ⊗ [(SL2(5)

2
� SL2(5)) : 2]8

∞,2[SL2(3)]1 ⊗M8,3 27 · 32 · 7 F4 ⊗M8,3

∞,2[C4

2(3)
⊃@ SL2(7)]8 26 · 3 · 7 [SL2(3) ◦ C4.2

2(3)
⊃×@√
-1
SL2(7)]32

∞,2[Sp4(3) ◦ C3

2(2)
⊃×@ D8]8 210 · 36 · 5 [(Sp4(3)⊗√-3

Sp4(3)) : 2
2
� C3]32

∞,2[SL2(5)
2(2)
⊃×@ F4]8 210 · 33 · 5 [SL2(5)

2(2)
⊃×@

∞,2
21+6
− .O−6 (2)]32

∞,2[SL2(5)
2(3)
⊃×@ (C3

2(2)
⊃×@ D8)]8 27 · 32 · 5 [SL2(5)

2(3)
⊃×@

∞,3
(Sp4(3)

2
� C3)]32

∞,2[SL2(5)
2(2)

�√
5

(D10 ⊗D8)]8 27 · 3 · 52 [21+4
− .Alt5⊗∞,2

SL2(5)
2
�√
5
D10]32

∞,2[D10

2(6)
⊃×@ (C3

2
� SL2(3))]8 26 · 32 · 5 [C15 : C4

2(2)
⊃×@ F4]32

∞,3[S̃3]1 ⊗ E8 215 · 36 · 52 · 7 (A2 ⊗E8)2

∞,3[S̃3]1 ⊗ [(SL2(5)
2
� SL2(5)) : 2]8 27 · 33 · 52 (A2 ⊗ [(SL2(5)

2
� SL2(5)) : 2]8)2

∞,3[S̃3]1 ⊗M8,3 26 · 32 · 7 (A2 ⊗M8,3)2

∞,3[SL2(9)]2 ⊗ A4 27 · 33 · 52 A4 ⊗ E8

∞,3[SL2(9)]2 ⊗ F4 211 · 34 · 5 F4 ⊗ E8

∞,3[SL2(3)
2
� C3]2 ⊗A4 27 · 33 · 5 (A4 ⊗ F4)2

∞,3[Sp4(3) ◦ C3

2(2)
⊃×@√
-3
SL2(3)]8 210 · 36 · 5 [Sp4(3) ◦ C3

2(2)
⊃×@√
-3
SL2(3)]216

∞,3[SL2(7)
2(3)
⊗ S3]8 26 · 32 · 7 [SL2(7)

2(3)◦ S̃3]216

∞,3[SL2(17)]8 25 · 32 · 17 [SL2(17)
2(3)◦ S̃3]16

∞,3[SL2(7)
2(3)
⊃×@ S3]8 26 · 32 · 7 [SL2(7)

2(3)
⊃×@√
-7
S̃3]216

∞,3[2.Alt7
2(3)
⊃×@ S3]8 26 · 33 · 5 · 7 [2.Alt7

2(3)
⊃×@√
-7
S̃3]216

∞,3[SL2(5)
2(3)
⊃×@ (SL2(3)

2
� C3)]8 27 · 33 · 5 [SL2(5)

2(3)
⊃×@

∞,3
(SL2(3)

2
� C3)]216

∞,3[SL2(5)
2(2)
⊃×@ (C3

2(2)
⊃×@ D8)]8 27 · 32 · 5 [SL2(5)

2(2)
⊃×@

∞,2
21+4
− .Alt5]216

∞,3[C3

2(2)
⊃@ 21+6

− .O−6 (2)]8 214 · 35 · 5 (F4⊗̃F4)2

∞,3[SL2(5)
2(3)

�√
5

(D10 ⊗ S3)]8 26 · 32 · 52 [(SL2(5) ◦ SL2(5)) : 2
2
�√
5
D10]216

∞,3[D10

2(6)
⊃×@ (C3

2(2)
⊃×@ D8)]8 26 · 3 · 5 [D120.(C4 × C2)]216
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lattice L |Aut(L)| r.i.m.f. supergroups

∞,5[2.S6]8 25 · 32 · 5 [SL2(9)
2
� SL2(5)]32

∞,5[SL2(5).2]2 ⊗ F4 210 · 33 · 5F4 ⊗E8

∞,5[SL2(5) : 2]2 ⊗ F4 210 · 33 · 5F4 ⊗ [(SL2(5)
2
� SL2(5)) : 2]8

∞,5[D10

2(3)
⊃×@ SL2(9)]8 26 · 32 · 52 [SL2(9)⊗D10

2
� SL2(5)]32

∞,5[SL2(5)
2
�√
5
D10]4 ⊗A2 26 · 32 · 52A2 ⊗ [(SL2(5) ◦ SL2(5)) : 2

2
�√
5
D10]16

∞,5[((SL2(5) ◦ SL2(5))
2
�√
5
SL2(5)) : S3]8,1 29 · 34 · 53G1

∞,5[((SL2(5) ◦ SL2(5))
2
�√
5
SL2(5)) : S3]8,2 29 · 34 · 53G2

∞,5[SL2(5)
2(6)
⊃×@ (C3

2(2)
⊃×@ D8)]8,1 27 · 32 · 5 [(SL2(5) ◦ SL2(5)) : 2

2(6)
⊃×@√
5

(C3

2(2)
⊃×@ D8)]32,1

∞,5[SL2(5)
2(6)
⊃×@ (C3

2(2)
⊃×@ D8)]8,2 27 · 32 · 5 [(SL2(5) ◦ SL2(5)) : 2

2(6)
⊃×@√
5

(C3

2(2)
⊃×@ D8)]32,2

∞,5[D10

2(2)
⊃×@ 21+4

− .Alt5]8 29 · 3 · 52 [(21+4
− .Alt5⊗∞,2

SL2(5))
2(2)

�√
5
D10]32

∞,5[D10

2(3)
⊃×@ (C3

2
� SL2(3))]8 26 · 32 · 5 [(SL2(5)⊗√

5
D10)

2(3)
⊃×@

∞,3
(SL2(3)

2
� C3)]32

∞,5[SL2(5).2]2⊗√-3 ∞,3[S̃3]1⊗√-3 ∞,2[SL2(3)]1 27 · 33 · 5 [Sp4(3) ◦ C3

2(2)
⊃×@√
-3
SL2(3)]216

∞,5[SL2(5) : 2]2⊗√-3 ∞,3[S̃3]1⊗√-3 ∞,2[SL2(3)]1 27 · 33 · 5 [SL2(5)
2(3)
⊃×@

∞,3
(SL2(3)

2
� C3)]216

∞,5[SL2(5).2]2⊗√-3 2,3[C3

2(2)
⊃×@ D8]2 27 · 32 · 5 E4

8

∞,5[SL2(5) : 2]2⊗√-3 2,3[C3

2(2)
⊃×@ D8]2 27 · 32 · 5 [(SL2(5)

2
� SL2(5)) : 2]48

∞,2,3,5[SL2(5)
2(6)
⊃×@ (S3 ⊗D8)]8,1 27 · 32 · 5 (F4⊗̃F4)2

∞,2,3,5[SL2(5)
2(6)
⊃×@ (S3 ⊗D8)]8,2 27 · 32 · 5 [SL2(5)

2(2)
⊃×@

∞,2
21+4
− .Alt5]216

∞,2,3,5[SL2(5)
2(6)
⊃×@ (SL2(3)

2
� C3)]8,1 27 · 33 · 5 (A2 ⊗ E8)2

∞,2,3,5[SL2(5)
2(6)
⊃×@ (SL2(3)

2
� C3)]8,2 27 · 33 · 5 (A2 ⊗ [(SL2(5)

2
� SL2(5)) : 2]8)2

3,5[±D10

2(3)
⊃×@ S3]4⊗√-3 ∞,2[SL2(3)]1 26 · 32 · 5 (A4 ⊗ F4)2

∞,2,3,5[D10

2(2)
⊃×@ (C3

2
� SL2(3))]8 26 · 32 · 5 [(SL2(5) ◦ SL2(5)) : 2

2
�√
5
D10]216

2,5[D10

2(2)
⊃×@ D8]4⊗√-3 ∞,3[S̃3]1 26 · 3 · 5 [D120.(C4 × C2)]216

∞,2,3,5[D10

2(3)
⊃×@ (C3

2(2)
⊃×@ D8)]8 26 · 3 · 5 (A2 ⊗ A4)2

Here for i = 1, 2 Gi := [((SL2(5) ◦ SL2(5))
2
�√
5
(SL2(5) ◦ SL2(5))) : S4]32,i.
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lattice L |Aut(L)| r.i.m.f. supergroups

∞,7[SL2(7).2]4 ⊗A2 26 · 32 · 7 (A2 ⊗ E8)
2

∞,7[SL2(7)
2(2)⊃×@ D8]8 27 · 3 · 7 (F4⊗̃F4)

2

∞,7[SL2(7)
2(3)⊃×@√

-7
S̃3]8 26 · 32 · 7 [SL2(7)

2(3)⊃×@√
-7
S̃3]

2
16

∞,7[2.S7]4 ⊗A2 26 · 33 · 5 · 7(A2 ⊗ E8)
2

∞,7[Alt7
2(3)⊃×@√

-7
S̃3]8 26 · 33 · 5 · 7[Alt7

2(3)⊃×@√
-7
S̃3]

2
16

∞,7[Alt7
2(3)⊃×@ D8]8 27 · 32 · 5 · 7(F4⊗̃F4)

2

∞,17[SL2(17).2]8 26 · 32 · 17 [SL2(17)
2(3)⊃@ S̃3]32,1

[SL2(17)
2(3)⊃@ S̃3]32,1

∞,17[SL2(17) : 2]8 26 · 32 · 17 [SL2(17)
2(3)⊃@ S̃3]32,2

[SL2(17)
2(3)⊃@ S̃3]32,2

The proof is split into several lemmata. For the rest of this chapter let Q be a
definite quaternion algebra with center Q and G be a primitive a.i.m.f. subgroup
of GL8(Q).

By Table 9.1 and Lemma 7.2 the possibilities for quasi-semi-simple normal sub-
groups N of G are SL2(5), SL2(5)◦SL2(5), SL2(5)◦SL2(5)⊗√

5
SL2(5), Alt5, L2(7),

SL2(7) (2 matrix groups), SL2(9) (2 matrix groups), SL2(17) (2 matrix groups),
2.Alt7, Sp4(3) = 2.U4(2), and 2.O+

8 (2).
First we treat the tensor decomposing normal subgroups N .

Lemma 18.2. If G contains a normal subgroup N ∼= Alt5, then G is one of

∞,2[2
1+4
− .Alt5]2 ⊗A4, ∞,2[SL2(3)]1 ⊗A2 ⊗A4,

∞,3[SL2(3)
2

� C3]2 ⊗A4, or ∞,3[SL2(9)]2 ⊗A4.

Proof. By Corollary 7.6 G is of the form A4⊗H , where H ≤ GL2(Q) is a primitive
a.i.m.f. group. Hence by Theorem 12.1 H is one of

∞,2[(D8 ⊗Q8).Alt5]2, ∞,2[SL2(3)]1 ⊗A2, ∞,3[SL2(9)]2,

∞,3[SL2(3)
2
� C3]2, ∞,5[SL2(5).2]2 or ∞,5[SL2(5) :2]2.

In the last two cases G is a proper subgroup of

∞,5[((SL2(5) ◦ SL2(5))
2

�√
5
SL2(5)) : S3]8,1

resp. ∞,5[((SL2(5) ◦ SL2(5))
2

�√
5
SL2(5)) : S3]8,2

Similarly one gets the next two lemmata:

Lemma 18.3. If G contains a normal subgroup N ∼= L2(7), then G is one of

∞,2[SL2(3)]1 ⊗M8,3 or ∞,3[S̃3]1 ⊗M8,3.
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Lemma 18.4. If G contains a normal subgroup N ∼= 2.O+
8 (2), then G is one of

∞,2[SL2(3)]1 ⊗ E8 or ∞,3[S̃3]1 ⊗ E8.

The next lemma deals with the absolutely irreducible quasi-semi-simple normal
subgroups N :

Lemma 18.5. If G contains a normal subgroup N isomorphic to SL2(17) with
character χ16, then G is conjugate to ∞,3[SL2(17)]8.

Proof. N is already absolutely irreducible. One finds G = B◦(N).

Next we treat those candidates for normal subgroups N in G, such that CG(N)
has to be contained in B◦(N).

Lemma 18.6. If G has a normal subgroup N isomorphic to one of SL2(9), SL2(5)◦
SL2(5)⊗√

5
SL2(5), or SL2(17) with character χ8a+χ8b, then G is conjugate to one

of

∞,5[2.S6], ∞,5[((SL2(5) ◦ SL2(5))
2
�√
5
SL2(5)) : S3]8,1,

∞,5[((SL2(5) ◦ SL2(5))
2

�√
5
SL2(5)) : S3]8,2, ∞,17[SL2(17).2]8 or ∞,17[SL2(17) : 2]8.

Proof. In all cases the centralizer CG(N) embeds into the enveloping algebra of N
and hence is contained in B◦(N). Assume first, that N is isomorphic to SL2(9).
Since the character field of the extension of the character χ8a to 2.PGL2(9) is of
degree 4 over Q (cf. [CCNPW 85]), G is isomorphic to 2.S6. (Note that the outer
automorphism of S6 interchanges the two isoclinism classes of groups 2.S6, so there
is only one group to be considered.) Hence G = ∞,5[2.S6].

If N = SL2(5) ◦SL2(5)⊗√
5
SL2(5), then B◦(N) = N : S3 and one computes that

G is one of the two extensions (N : S3).2. In the last case, G = N.2 is one of the
two extensions of SL2(17) by Out(SL2(17)) ∼= C2.

Lemma 18.7. If G contains a normal subgroup N ∼= SL2(7) with character χ8,

then G is one of ∞,3[SL2(7)
2(3)⊗ S3]8 or ∞,2[C4

2(3)⊃@ SL2(7)]8.

Proof. By Table 9.1 the group N is nearly tensor decomposing over Q with pa-
rameter 3. Since B◦(N) = N by 10.1 G is either G = NC where C := CG(N)
is an a.i.m.f. subgroup of GL1(D), where D is an indefinite quaternion algebra

with center Q such that (C, 3,D) is not a maximal triple or of the form B
2(3)

⊗ C

or B
2(3)⊃×@ C where (C, 3,D) is a maximal triple. Since the group SL2(7) ⊗ D8

is imprimitive using Table 10.2 one finds that G is one of ∞,3[SL2(7)
2(3)⊗ S3]8 or

∞,2[C4

2(3)⊃@ SL2(7)]8.

Lemma 18.8. If G contains a normal subgroup N ∼= SL2(9) with character χ4,

then G is one of ∞,3[SL2(9)]2 ⊗A4, ∞,3[SL2(9)]2 ⊗ F4, or ∞,5[D10

2(3)⊃×@ SL2(9)]8.

Proof. As in the last lemma N is nearly tensor decomposing over Q with parameter
3. Hence G is either G = NC where C := CG(N) is an a.i.m.f. subgroup ofGL2(D),
whereD is an indefinite quaternion algebra with center Q such that (C, 3,D) is not a
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maximal triple or of the form B
2(3)⊗ C or B

2(3)⊃×@ C where (C, 3,D) is a maximal triple.
Moreover B◦(SL2(9) ◦ C3) = Sp4(3) ◦ C3 implies that in both cases O3(C) = 1.

Since the group ∞,2[(C4 ◦ SL2(3)).2
2(3)⊃×@√

-1
SL2(9)]8 is contained in ∞,2[2

1+8
− .O−8 (2)]8,

Table 10.4 implies that G is one of the three a.i.m.f. groups in the Lemma.

In the next three cases, the center of the enveloping algebra of N is an imaginary
quadratic field.

Lemma 18.9. If G has a normal subgroup N ∼= SL2(7) with character χ4a +

χ4b, then G is conjugate to one of ∞,3[SL2(7)
2(3)

⊃×@ S3]8, ∞,7[SL2(7).2]4 ⊗ A2,

∞,7[SL2(7)
2(2)⊃×@ D8]8, or ∞,7[SL2(7)

2(3)⊃×@√
-7
S̃3]8.

Proof. The centralizer C := CG(N) is a centrally irreducible subgroup of GL1(D)

where D is a quaternion algebra over Q[
√

-7] and G contains NC of index 2. Using
the classification of finite subgroups of GL2(C) in [Bli 17], one finds that C is one

of D8, ±S3, SL2(3), or S̃3. Distinguish 2 cases:
a) CG(C) > ±N . Then G = (N.2)C is one of ∞,7[SL2(7).2]4 ⊗ [D8]2 or

∞,7[SL2(7).2]4⊗A2. In the first case, G is imprimitive contained in ∞,7[SL2(7).2]24.
b) CG(C) = ±N . The groups C are nearly tensor decomposing over Q with

parameter 2, 3, 2, resp. 3. Since C = CG(N) Lemma 10.1 implies that G is

one of ∞,7[SL2(7)
2(2)⊃×@ D8]8, ∞,2[SL2(7)

2(2)⊃×@ SL2(3)]8, ∞,3[SL2(7)
2(3)⊃×@ S3]8, or

∞,7[SL2(7)
2(3)⊃×@√

-7
S̃3]8. The second group fixes a 32-dimensional extremal unimod-

ular lattice with maximal order as an endomorphism ring. By [BaN 97] this yields
that the second group is contained in ∞,2[2

1+8
− .O−8 (2)]8.

Completely analogous one finds:

Lemma 18.10. If G has a normal subgroup N ∼= 2.Alt7 with character χ4a + χ4b,
then G is conjugate to one of

∞,3[2.Alt7
2(3)⊃×@ S3]8, ∞,7[2.S7]4 ⊗A2,

∞,7[2.Alt7
2(2)⊃×@ D8]8 or ∞,7[2.Alt7

2(3)⊃×@√
-7
S̃3]8.

Lemma 18.11. If G has a normal subgroup N ∼= 2.U4(2) = Sp4(3) with character
χ4a + χ4b, then G is conjugate to

∞,2[Sp4(3) ◦ C3

2(2)⊃×@ D8]8 or ∞,3[Sp4(3) ◦ C3

2(2)⊃×@√
-3
SL2(3)]8.

Proof. Let B := B◦(N) ∼= ±C3 ◦ N . The centralizer C := CG(N) is a centrally

irreducible subgroup of GL1(D) where D is a quaternion algebra over Q[
√

-3] and
G contains BC of index 2. Moreover O3(B) = C3 implies O3(C) = 1. Hence C is
either D8 or SL2(3) and the lemma follows as above.

Lemma 18.12. If N = SL2(5) ◦SL2(5) is a normal subgroup of G, then G is one

of ∞,2[SL2(3)]1⊗ [(SL2(5)
2

� SL2(5)) : 2]8 or ∞,3[S̃3]1⊗ [(SL2(5)
2

� SL2(5)) : 2]8.
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Proof. G contains the normal subgroup B := B◦(N) = N : 2. The centralizer C :=

CG(N) embeds into Q[
√

5]⊗Q. Since the primes dividing |G| are ≤ 5, Q[
√

5] splits
all possible Schur indices of Q at a finite prime. Moreover G contains CB of index
2 = [Q[

√
5] : Q] and C is a centrally irreducible subgroup of GL1(Q√

5,∞). Hence

C is one of SL2(5), SL2(3), S̃3, or Q20. The first case contradicts Lemma 18.6.

The lemma follows since the groups (SL2(5)◦SL2(5)) : 2
2(2)⊃×@ SL2(3) (2 extensions),

(SL2(5)◦SL2(5)) : 2
2(3)⊃×@ S̃3 (2 extensions), (SL2(5)◦SL2(5)) : 2

2
�√
5
Q20 are contained

in one of the groups ∞,5[((SL2(5) ◦ SL2(5))
2
�√
5
SL2(5)) : S3]8,i (i = 1, 2).

Lemma 18.13. If N := SL2(5) is the only quasi-semi-simple normal subgroup of
G, then G is one of the following twenty a.i.m.f. groups

∞,5[SL2(5).2]2 ⊗ F4, ∞,5[SL2(5) : 2]2 ⊗ F4,

∞,5[SL2(5).2]2⊗√-3 ∞,3[S̃3]1⊗√-3 ∞,2[SL2(3)]1,

∞,5[SL2(5) : 2]2⊗√-3 ∞,3[S̃3]1⊗√-3 ∞,2[SL2(3)]1,

∞,5[SL2(5).2]2⊗√-3 2,3[C3

2(2)

⊃×@ D8]2, ∞,5[SL2(5) : 2]2⊗√-3 2,3[C3

2(2)

⊃×@ D8]2,

∞,2[SL2(5)
2(2)⊃×@ F4]8, ∞,2,3,5[SL2(5)

2(6)⊃×@ (SL2(3)
2
� C3)]8,1,

∞,2,3,5[SL2(5)
2(6)⊃×@ (SL2(3)

2

� C3)]8,2, ∞,2[SL2(5)
2(2)⊃×@ D8]4 ⊗A2,

∞,3[SL2(5)
2(3)⊃×@ (SL2(3)

2

� C3)]8, ∞,2,3,5[SL2(5)
2(6)⊃×@ (S3 ⊗D8)]8,1,

∞,2,3,5[SL2(5)
2(6)⊃×@ (S3 ⊗D8)]8,2, ∞,3[SL2(5)

2(2)⊃×@ (C3

2(2)⊃×@ D8)]8,

∞,2[SL2(5)
2(3)⊃×@ (C3

2(2)⊃×@ D8)]8, ∞,5[SL2(5)
2(6)⊃×@ (C3

2(2)⊃×@ D8)]8,1,

∞,5[SL2(5)
2(6)⊃×@ (C3

2(2)⊃×@ D8)]8,2, ∞,5[SL2(5)
2

�√
5
D10]4 ⊗A2,

∞,3[SL2(5)
2(3)

�√
5

(D10 ⊗ S3)]8 or ∞,2[SL2(5)
2(2)

�√
5

(D10 ⊗D8)]8.

Proof. Let C := CG(N). Then C embeds into Q[
√

5]4×4 (again since Q[
√

5] splits
all possible finite Schur indices) and G contains the group NC of index 2. By 2.14

C is a centrally irreducible subgroup of GL4(Q[
√

5]). Distinguish two cases:
a) CG(C) > N . Then CG(C) = N.2 is one of the two extensions of N by Out(N)

and G = N.2⊗C, where C is an a.i.m.f. subgroup of Q∞,5⊗Q. Hence C is either
a r.i.m.f. subgroup of GL4(Q), thus C = F4 by Lemma 18.2 or a 3-parametric

irreducible Bravais group in GL8(Q). By [Sou 94] C is one of SL2(3)⊗√
-3
S̃3 (B21)

or C3

2(2)⊃×@ D8 (B19 ∼ B20). Hence G is one of the first six groups of the lemma.
b) CG(C) = N . The groups C will be constructed according to their possible

normal p-subgroups:
(i) Assume first that O3(C) = O5(C) = 1. Then Table 8.7 together with the

central irreducibility of C implies that O2(C) = Q8 ◦ Q8 and G contains N ⊗ F4
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of index 2. Moreover the elements in G − CN induce an outer automorphism of

F4. Since one of the two extensions SL2(5)
2(2)⊃×@ F4 embeds into ∞,2[2

1+8
− .O−8 (2)]8

the group G is ∞,2[SL2(5)
2(2)

⊃×@ F4]8 in this case.
(ii) Now assume that O3(C) > 1 and O5(C) = 1. Then O3(C) ∼= C3 and

CC(O3(C)) is a centrally irreducible subgroup of GL2(Q[
√

5, ζ3]). Hence O2(C)

is one of Q8 or D8 and C is one of SL2(3)⊗√
-3

S̃3, SL2(3)
2

� C3, D8 ⊗ S3, or

C3

2(2)⊃×@ D8. Note that by Lemma 2.17 in each case there is a unique extension
C = CC(O3(C)).2 with real Schur index 1. For all four candidates for C, the
outer automorphism group Out(C) is isomorphic to C2 × C2, hence one has to
consider three nontrivial outer automorphisms which can be distinguished via the
determinants of the elements in QC inducing the automorphism by conjugation
(cf. Corollary 7.12). In each case there are two extensions G = NC.2. Hence
one has to construct twenty-four candidates for a.i.m.f. groups G. The groups

SL2(5)
2(2)⊃×@
∞,2

SL2(3) ⊗ S̃3 (both extensions) and SL2(5)
2(3)⊃×@
∞,3

S̃3 ⊗ SL2(3) (both ex-

tensions) clearly embed into ∞,3[S̃3]1 ⊗ E8, ∞,3[S̃3]1 ⊗ [(SL2(5)
2

� SL2(5)) : 2]8,

∞,2[SL2(3)]1 ⊗ E8, respectively ∞,2[SL2(3)]1 ⊗ [(SL2(5)
2
� SL2(5)) : 2]8. Also the

two groups SL2(5)
2(6)⊃×@√

5

(SL2(3)⊗√
-3
S̃3) are not maximal finite but contained in the

respective groups ∞,5[((SL2(5) ◦ SL2(5))
2
�√
5
SL2(5)) : S3]8,i (i = 1, 2).

The two groups SL2(5)
2(2)

⊃×@ (SL2(3)
2

� C3) may be enlarged to the respective

groups SL2(5)
2(2)⊃×@ F4. One of the extensions SL2(5)

2(3)⊃×@ (SL2(3)
2

� C3) is contained

in ∞,3[Sp4(3) ◦ C3

2(2)⊃×@√
-3
SL2(3)]8.

The two groups ∞,3[SL2(5)
2(3)⊃×@ S3]4 ⊗D8 are imprimitive and one of the groups

SL2(5)
2(2)⊃×@ D8 ⊗ A2 is contained in ∞,2[2

1+6
− .O−6 (2)]4 ⊗ A2. One of the extensions

SL2(5)
2(2)⊃×@√

-1
(C3

2(2)⊃×@ D8) is contained in ∞,3[C3

2(2)⊃@ 21+6
− .O−6 (2)]8 and one of the groups

SL2(5)
2(3)⊃×@√

-1
(C3

2(2)⊃×@ D8) is a proper subgroup of ∞,2[Sp4(3) ◦C3

2(2)⊃×@ D8]8. Hence G is

one of the ten groups numbered 8–17 of the lemma.
(iii) Now assume that O5(C) > 1. Then O5(C) ∼= C5 and CC(O5(C)) is a

centrally irreducible subgroup of GL2(Q[ζ5]) and hence of the form H ⊗C5, where

H is one of S3, S̃3, D8, or SL2(3). Moreover C contains CC(O5(C)) of index 2.
Since the outer automorphism group of H is C2 in all cases, C is one of ±D10⊗S3,

±C5

2(3)

⊃×@ S3, Q20 ◦ S̃3, C5

2(3)

⊃×@√
5
′
S̃3, D10⊗D8, C5

2(2)

⊃×@ D8, Q20 ◦SL2(3), or C5

2(2)

⊃×@√
5
′
SL2(3).

In the four cases where CC(H) = ±C5 the outer automorphism group of C is cyclic
of order 4 yielding no possibilities for primitive groupsG = NC.2 ≤ GL8(Q). In the
other four cases Outstab(C) ∼= C2 and one has two possible extensions G = NC.2.
But now they lead to isomorphic groups. In all cases where a normal subgroup Q20
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is involved, one may enlarge NC.2 by replacing Q20 by SL2(5). Since the group

∞,5[SL2(5)
2

�√
5
D10]4 ⊗D8 is imprimitive, G is one of the last three groups of the

Lemma.

For the rest of this chapter we assume that G does not contain a quasi-semi-
simple normal subgroup. By Lemma 11.2 O17(G) = 1.

Immediately from Proposition 8.9 one finds

Lemma 18.14. If O3(G) = O5(G) = 1, then G = ∞,2[2
1+8
− .O−8 (2)]8.

Lemma 18.15. If O5(G) = 1 and O3(G) > 1, then G is one of

∞,2[2
1+6
− .O−6 (2)]4 ⊗A2 or ∞,3[C3

2(2)⊃@ 21+6
− .O−6 (2)]8.

Proof. Then O3(G) ∼= C3 and C := CG(O3(G)) is a normal subgroup of index 2
in G. Moreover C is a centrally irreducible normal subgroup of GL4(Q ⊗ Q[ζ3]),
whence O2(C) = 21+6

− or 21+6
+ . Let B := B◦(O2(G)). Then G contains the normal

subgroup O3(G)B of index two. The enveloping algebra of B is a central simple Q-
algebra and B fixes up to isomorphism 2 lattices. With Corollary 7.12 one finds that
Glide(B) is (at most) C2. The group 21+6

+ .Alt8 ⊗ S̃3 is contained in ∞,3[S̃3]1 ⊗ E8

and C3

2(2)

⊃×@ 21+6
+ .Alt8 has the a.i.m.f. supergroup ∞,2[2

1+8
− .O−8 (2)]8. So G is one of

the two groups in the lemma.

Lemma 18.16. If O5(G) > 1 and O3(G) = 1, then G is conjugate to

∞,5[D10

2(2)⊃×@ 21+4
− .Alt5]8.

Proof. If O5(G) > 1, then O5(G) ∼= C5 and C := CG(O5(G)) is a centrally ir-
reducible subgroup of GL4(Q[ζ5]). Moreover G/C ∼= C4

∼= Out(C5). Let B :=
B◦(O2(G)). Table 8.7 gives that C = C5B, since B is one of F4 or 21+4

− .Alt5.
In both cases Glide(B) ∼= C2, hence G contains the normal subgroup Q20 ⊗ F4

resp. D10 ⊗ 21+4
− .Alt5 of index 2. The first possibility leads to groups contained in

∞,5[SL2(5).2]2⊗F4 or ∞,2[SL2(5)
2(2)⊃×@ F4]8. In the second case G is the a.i.m.f. group

of the lemma, since (C5 : C4)⊗ 21+4
− .Alt5 is contained in ∞,2[2

1+4
− .Alt5]2 ⊗A4.

Lemma 18.17. If O5(G) > 1 and O3(G) > 1, then G is conjugate to one of

2,5[D10

2(2)⊃×@ D8]4⊗√-3 ∞,3[S̃3]1, 3,5[±D10

2(3)⊃×@ S3]4⊗√-3 ∞,2[SL2(3)]1,

∞,2,3,5[D10

2(2)⊃×@ (C3

2
� SL2(3))]8, ∞,5[D10

2(3)⊃×@ (C3

2
� SL2(3))]8,

∞,2[D10

2(6)

⊃×@ (C3

2

� SL2(3))]8, ∞,2,3,5[D10

2(3)

⊃×@ (C3

2(2)

⊃×@ D8)]8,

or ∞,3[D10

2(6)

⊃×@ (C3

2(2)

⊃×@ D8)]8.

Proof. As in the previous lemma O5(G) = C5 and C := CG(O5(G)) is a centrally
irreducible subgroup of GL4(Q[ζ5]). One finds that C is of the form C5 ×H where
H does not admit an outer automorphism of order 4. Hence G contains a normal
subgroup Q20H or D10H of index 2. In the first case, one has the same candidates
for H as in the proof of the Lemma 18.13 b) (ii). In all four cases the enveloping Q-
algebra of H is central simple and Glide(H) does not contain an element of norm
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5. One concludes that G is not maximal but contained in one of the groups of

Lemma 18.13. In the second case H is one of SL2(3)⊗ S3, SL2(3)
2

� C3, D8 ⊗ S̃3,

or C3

2(2)⊃×@ D8. As in part b) (ii) of Lemma 18.13 Out(H) ∼= C2 × C2 in all cases.
Since the groups C5 : C4 ⊗H are contained in the corresponding groups A4 ⊗H ,
one has to consider three automorphisms in each case. But now the two possible

extensions D10H.2 lead to isomorphic groups. The group D10

2(2)⊃×@ SL2(3) ⊗ A2 is

contained in ∞,5[D10

2⊃×@√
5

SL2(5)]4 ⊗A2 and D10

2(6)⊃×@ (SL2(3)⊗ S3) is contained in

∞,3[(D10 ⊗ S3)
2(3)

�√
5
SL2(5)]8.

Clearly D10

2(3)

⊃×@ S̃3 ⊗D8 is imprimitive and D10

2(6)

⊃×@ (S3 ⊗D8) is a subgroup of

∞,2[(D10 ⊗D8)
2(2)

�√
5
SL2(5)]8.

With Corollary 7.12 one gets that D10

2(2)⊃×@ (C3

2(2)⊃×@ D8) is contained in D10

2(2)⊃×@
21+4
− .Alt5.

Since the other groups are a.i.m.f. groups, one gets the Lemma.

19. The a.i.m.f. subgroups of GL9(Q)

Theorem 19.1. Let Q be a definite quaternion algebra with center Q and G a
primitive a.i.m.f. subgroup of GL9(Q). Then G is conjugate to one of the groups
in the following table.

List of the primitive a.i.m.f. subgroups of GL9(Q)

lattice L |Aut(L)| r.i.m.f. supergroups

∞,2[SL2(19)]9 23 · 33 · 5 · 19 [SL2(19)
2(2)◦ SL2(3)]36

∞,2[SL2(3)]1 ⊗A9 23 · 3 · 10! F4 ⊗A9

∞,3[±31+4
+ .Sp4(3).2]9 29 · 39 · 5 [±31+4

+ .Sp4(3).2]218

∞,3[±3.Alt6.2
2]9 26 · 33 · 5 [±3.Alt6.2

2]218

∞,3[S̃3]1 ⊗A9 22 · 3 · 10! (A2 ⊗A9)
2

∞,7[±L2(7)
2

�√
-7
L2(7)]9 29 · 32 · 72 [±L2(7)

2

�√
-7
L2(7)]218

∞,19[±L2(19).2]9 24 · 33 · 5 · 19 ((A
(5)
18 )2)

(A
(5)
18 )2

Proof. Let Q be a definite quaternion algebra with center Q and G be a primitive
a.i.m.f. subgroup of GL9(Q). Assume that 1 6= N � G is a quasi-semi-simple
normal subgroup of G. With Table 9.1 one finds that B := B◦(N) is one of SL2(5),
±L2(7), ±3.Alt6, ±L2(19), SL2(19), ±U3(3), or ±S10. In the last case, G is one of

∞,2[SL2(3)]1 ⊗ A9, ∞,3[S̃3]1 ⊗ A9, by Corollary 7.6. If B = SL2(19) the group B
is already absolutely irreducible and one computes and concludes that G = B is

∞,2[SL2(19)]9.
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If B = ±U3(3) or B = SL2(5), then Q = Q∞,3 resp. Q∞,2 and the centralizer
CG(B) is an absolutely irreducible subgroup of GL3(Q). One concludes that G is
imprimitive in these two cases.

If B = ±L2(19), the centralizer CG(B) is ±1 and G = B.2 = ∞,19[±L2(19).2]9.
If B = ±3.Alt6, thenQ = Q∞,3. If M denotes a maximal order inQ, then ZM(B)

contains only one isomorphism class of lattices. For L ∈ ZM(B) one calculates that
the Hermitian automorphism group of L is G = ∞,3[3.Alt6.2

2]9.
In the last case, B = ±L2(7). The centralizer C := CG(B) is an absolutely

irreducible subgroup of GL3(Q[
√

-7]). One concludes that either G is imprimitive

or C is one of ±C7 : C3 or ±L2(7). One finds that G = ∞,7[±L2(7)
2
�√
-7
L2(7)]9 in

this case.
Now assume that G does not contain a quasi-semi-simple normal subgroup.

Then the Fitting subgroup of G is a self-centralizing normal subgroup. By Ta-
ble 8.7 one has the following possibilities for Fit(G): ±C19, ±C7, ±31+2

+ YC9, or
±31+4

+ , because 3 does not divide the order of Out(Fit(G))/B◦(Fit(G)) and 9
does not divide the degree of the corresponding irreducible character of Fit(G)
in the other cases. In the first case, G is a proper subgroup of ∞,19[±L2(19).2]9
by Lemma 11.2. The second and third case lead to reducible groups and in the
last case, G contains B◦(Fit(G)) = ±31+4

+ .Sp4(3) of index 2. One concludes that

G = ∞,3[±31+4
+ .Sp4(3).2]9.

20. The a.i.m.f. subgroups of GL10(Q)

Theorem 20.1. Let Q be a definite quaternion algebra with center Q and G a
primitive a.i.m.f. subgroup of GL10(Q). Then G is one of the groups listed in the
following table:
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List of the primitive a.i.m.f. subgroups of GL10(Q).

lattice L |Aut(L)| r.i.m.f. supergroups

∞,2[2.U4(2)]10 27 · 34 · 5 [2.U4(2)
2(2)◦ SL2(3)]40

∞,2[SL2(11)]5 ⊗ A2 24 · 32 · 5 · 11 A2 ⊗ [SL2(11)
2(2)◦ SL2(3)]20

∞,2[SL2(11)
2(2)
⊗ D8]10 26 · 3 · 5 · 11 [SL2(11)

2(2)
⊗ 21+4

− .Alt5]40

∞,2[±U5(2)]5 ⊗A2 212 · 36 · 5 · 11 A2 ⊗ [±U5(2)
2(2)◦ SL2(3)]20

∞,2[U5(2)
2(2)
⊗ D8]10 214 · 35 · 5 · 11 [±U5(2)

2(2)
⊗ 21+4

− .Alt5]40

∞,2[S6

2(2)
⊗ SL2(3)]10 28 · 33 · 5 F4

2(2)
⊗ [±S6]10

∞,2[SL2(3)]1 ⊗ [±U4(2)
2
� C3]10 210 · 36 · 5 F4 ⊗ [±U4(2)

2
� C3]10

∞,2[SL2(3)]1 ⊗A10 23 · 3 · 11! A10 ⊗ F4

∞,2[SL2(3)]1 ⊗A
(2)
10 26 · 32 · 5 · 11 A

(2)
10 ⊗ F4

∞,2[SL2(3)]1 ⊗A
(3)
10 26 · 32 · 5 · 11 A

(3)
10 ⊗ F4

∞,2[2
1+4
− .Alt5]2 ⊗A5 27 · 3 · 5 · 6! A5 ⊗E8

∞,3[C3

2(2)
⊃×@ SL2(11)]10 24 · 32 · 5 · 11 [SL2(11)

2(2)◦ SL2(3)]220

∞,3[(C3 ◦ U4(2))
2(2)
⊃×@√
-3
SL2(3)]10 210 · 36 · 5 [±U5(2)

2(2)◦ SL2(3)]220

∞,3[C3

2(2)
⊃×@ ±U5(2)]10 212 · 36 · 5 · 11 [±U5(2)

2(2)◦ SL2(3)]220

∞,3[±U4(2)
2
� C3]10 28 · 35 · 5 [±U4(2)

2
� C3]220

∞,3[2.U4(3).4]10 210 · 36 · 5 · 7 [2.U4(3).4
2(3)◦ S̃3]40

∞,3[SL2(19)]10 23 · 32 · 5 · 19 [SL2(19)
2(3)◦ S̃3]40

∞,3[2.Alt7]10a 24 · 32 · 5 · 7 [2.Alt7
2(3)◦ S̃3]40

∞,3[2.Alt7]10b 24 · 32 · 5 · 7 [2.Alt7 ◦ S̃3]40

∞,3[L2(11)
2(3)
⊗ S̃3]10 25 · 32 · 5 · 11 [L2(11)

2(3)
⊗ D12]220

∞,3[L2(11)
2(3)
⊃×@ S̃3]10 25 · 32 · 5 · 11 [L2(11)

2(3)
⊃×@ D12]220

∞,3[S̃3]1 ⊗A10 22 · 3 · 11! (A10 ⊗A2)2

∞,3[S̃3]1 ⊗A
(2)
10 25 · 32 · 5 · 11 (A

(2)
10 ⊗ A2)2

∞,3[S̃3]1 ⊗A
(3)
10 25 · 32 · 5 · 11 (A

(3)
10 ⊗ A2)2

∞,3[SL2(9)]2 ⊗A5 24 · 32 · 5 · 6! A5 ⊗E8

∞,5[±U3(5) : 3]10 25 · 33 · 53 · 7 [±U3(5) : 3
2
� C3]40

∞,5[±51+2
+ : SL2(5).4]10 26 · 3 · 54 [±51+2

+ : SL2(5).2
2
� SL2(5)]40

∞,5[SL2(5).2]2 ⊗A5 24 · 3 · 5 · 6! A5 ⊗E8

∞,5[SL2(5) : 2]2 ⊗A5 24 · 3 · 5 · 6! A5 ⊗ [(SL2(5)
2
� SL2(5)) : 2]8

∞,7[2.S7]10 25 · 32 · 5 · 7 ((Λ3A6)2)

∞,7[2.L3(4).22]10 29 · 32 · 5 · 7 [2.L3(4).22]220

∞,11[L2(11)
2(2)
⊃×@√
-11

SL2(3)]10 26 · 32 · 5 · 11 [U5(2)
2(2)◦ SL2(3)]220

[(L2(11)⊗√-11
SL2(3)⊗ S3).2]40

∞,11[L2(11)
2(3)
⊃×@ S3]10 25 · 32 · 5 · 11 [L2(11)

2(3)
⊃×@ D12]220

(A
(3)
10 ⊗ A2)2

∞,11[±L2(11).2]5 ⊗A2 25 · 32 · 5 · 11 (A
(3)
10 ⊗ A2)2

[L2(11)
2(3)
⊃×@ D12]220

∞,19[SL2(19).2]10 24 · 32 · 5 · 19 (B40)
(B40)
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The proof is split into lemmata. For the rest of this chapter let Q be a defi-
nite quaternion algebra with center Q and G be a primitive a.i.m.f. subgroup of
GL10(Q).

By Table 9.1 and Lemma 7.2 the possibilities for quasi-semi-simple normal sub-
groupsN ofG are SL2(5), Alt6 (2 matrix groups), SL2(9) (2 matrix groups), L2(11)
(3 matrix groups), SL2(11) (2 matrix groups), Alt7, 2.Alt7 (2 matrix groups),
SL2(19) (2 matrix groups), M11, 2.L3(4), U4(2) (2 matrix groups), 2.U4(2), 2.M12,
U3(5), 2.M22, 2.U4(3), U5(2), and Alt11. By Corollary 7.7, N is not conjugate to
one of M11, 2.M12, or 2.M22.

Lemma 20.2. G has no normal subgroup SL2(11) with character χ10a + χ10b.

Proof. Assume that G has a normal subgroup N conjugate to SL2(11), where the
restriction of the natural character of G to N is χ10a + χ10b. Then G contains
the normal subgroup NCG(N) of index ≤ 2. Since the outer automorphism of
N does not interchange the two Galois conjugate characters χ10a and χ10b, the
character field of the natural character of G is Q[

√
3]. Therefore G is not absolutely

irreducible.

Lemma 20.3. If G contains a normal subgroup N ∼= Alt6 with character χ5,
then G is one of ∞,2[2

1+4
− .Alt5]2 ⊗ A5, ∞,3[SL2(9)]2 ⊗ A5, ∞,5[SL2(5).2]2 ⊗ A5,

or ∞,5[SL2(5) : 2]2 ⊗A5.

Proof. By Corollary 7.6 G is of the form A5 ⊗H , where H ≤ GL2(Q) is a prim-
itive a.i.m.f. group. Hence by Theorem 12.1 H is one of ∞,2[(D8 ⊗ Q8).Alt5]2,

∞,2[SL2(3)]1 ⊗ A2, ∞,3[SL2(9)]2, ∞,3[SL2(3)
2

� C3]2, ∞,5[SL2(5).2]2, or

∞,5[SL2(5) : 2]2. If H = ∞,2[SL2(3)]1 ⊗A2, then G = ∞,2[SL2(3)]1 ⊗ (A2 ⊗A5) is

contained in ∞,2[SL2(3)]1 ⊗ [±U4(2)
2

� C3]10.

If H = ∞,3[SL2(3)
2
� C3]2, one computes that G is a proper subgroup of

∞,3[(C3 ◦ U4(2))
2(2)⊃×@√

-3
SL2(3)]10.

Similarly one gets the next two lemmata:

Lemma 20.4. If G contains a normal subgroup N ∼= Alt11 with character χ10,
then G is one of ∞,2[SL2(3)]1 ⊗A10 or ∞,3[S̃3]1 ⊗A10.

Lemma 20.5. If G contains a normal subgroup N ∼= L2(11) with character χ10a,

then G is one of ∞,2[SL2(3)]1 ⊗A
(2)
10 or ∞,3[S̃3]1 ⊗A

(2)
10 .

Lemma 20.6. If G contains a normal subgroup N ∼= SL2(9) with character χ4,
then G is conjugate to ∞,3[SL2(9)]2 ⊗A5.

Proof. By 2.18 one has Q = Q∞,3 and C := CG(N) embeds into GL5(Q). Since
G contains NC of index ≤ 2, C is an absolutely irreducible subgroup of GL5(Q).
Therefore C(∞) is one of Alt5 or Alt6. Since in the first case C 5 B◦(C), one has

C(∞) = Alt6 and the lemma follows from 20.3.

Similarly one gets

Lemma 20.7. If G contains a normal subgroup N ∼= SL2(5) with character χ2a +
χ2b, then G is conjugate to one of ∞,5[SL2(5) : 2]2 ⊗ A5 or ∞,5[SL2(5).2]2 ⊗A5.
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Proof. Now C := CG(N) is a centrally irreducible subgroup of GL5(Q[
√

5]). Again
C(∞) is one of Alt5 or Alt6 and the Lemma follows from 20.3.

The next lemma deals with the absolutely irreducible candidates for normal
subgroups N .

Lemma 20.8. If G contains a normal subgroup N isomorphic to 2.Alt7 with char-
acter χ20a, 2.Alt7 with character χ20b, SL2(19) with character χ20, 2.U4(2) with
character χ20, U3(5) with character χ20, resp. 2.U4(3) with character χ20, then G
is conjugate to one of ∞,3[2.Alt7]10a, ∞,3[2.Alt7]10b, ∞,3[SL2(19)]10, ∞,2[2.U4(2)]10,

∞,5[±U3(5) : 3]10, resp. ∞,3[2.U4(3).4]10.

Proof. In all cases N is already absolutely irreducible. One finds G = B◦(N).

Next we treat those candidates for normal subgroups N in G, such that CG(N)
has to be contained in B◦(N).

Lemma 20.9. G has no normal subgroup N isomorphic to SL2(9) with character
χ10a +χ10b. If G contains a normal subgroup N isomorphic to Alt7 with character
χ10a + χ10b, SL2(19) with character χ10a + χ10b, 2.L3(4) with character χ10a +
χ10b, resp. U4(2) with character χ10a + χ10b, then G = B◦(N).2 is conjugate to

∞,7[2.S7]10, ∞,19[SL2(19).2]10, ∞,7[2.L3(4).22]10, resp. ∞,3[±U4(2)
2
� C3]10.

Proof. In all cases the centralizer CG(N) embeds into the enveloping algebra of N
and hence is contained in B◦(N). Assume first, that N is isomorphic to SL2(9).
Since the character field of the extension of the character χ10a to 2.PGL2(9) is of
degree 4 over Q (cf. [CCNPW 85]), G is isomorphic to 2.S6. (Note that the outer
automorphism of S6 interchanges the two isoclinism classes of groups 2.S6, so there
is only one group to be considered.) But then G is not maximal finite, since it is
contained in the a.i.m.f. group ∞,2[2.U4(2)]10.

In all the other cases Glide(N) = 1 and there is an automorphism of N inducing
the Galois automorphism of the character field Q[χ]. Since Q[χ] is an imaginary
quadratic number field, Remark (I.13) of [Neb 96] implies that there is a unique
extension G = B◦(N).2 with real Schur index 2. Computing the automorphism
groups of the G-invariant lattices, one finds that in all cases G is a maximal finite
subgroup of GL10(Q).

Lemma 20.10. If G has a normal subgroup N ∼= Alt6 with character χ10, then G

is conjugate to ∞,2[S6

2(2)

⊗ SL2(3)]10.

Proof. By Table 9.1 the group N is nearly tensor decomposing over Q with param-
eter 2. Let B := B◦(N) = ±S6 and C := CG(N) = CG(B). By 10.1 G is either
G = BC where C is an a.i.m.f. subgroup of GL1(Q) such that (C, 2,Q) is not a

maximal triple or of the form B
2(2)⊗ C or B

2(2)⊃×@ C where (C, 2,Q) is a maximal

triple. Table 10.2 G is one of ∞,3[±S6 ⊗ S̃3]10 or ∞,2[±S6

2(2)⊗ SL2(3)]10. The first

group is not maximal finite but contained in ∞,3[±U4(2)
2
� C3]10.

Similarly one finds the next lemma, because ∞,2[L2(11)⊗SL2(3)]10 is contained
in A10 ⊗∞,2[SL2(3)]1.
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Lemma 20.11. If G has a normal subgroup N ∼= L2(11) with character χ10, then

G is conjugate to ∞,3[L2(11)
2(3)⊗ S̃3]10.

The next two lemmata deal with similar situations, where now the enveloping
algebra of N is a matrix ring over a definite quaternion algebra over Q.

Lemma 20.12. If G has a normal subgroup N ∼= SL2(11) with character 2χ10,

then G is conjugate to one of ∞,2[SL2(11)]5 ⊗ A2, ∞,2[SL2(11)
2(2)⊗ D8]10, or

∞,3[C3

2(2)⊃×@ SL2(11)]10.

Proof. By Table 9.1 the group N is nearly tensor decomposing over Q with param-
eter 2. By 10.1 G is either G = NC where C := CG(N) is an a.i.m.f. subgroup of

GL1(D) such that (C, 2,D) is not a maximal triple or of the form N
2(2)⊗ C or N

2(2)⊃×@ C
where (C, 2,D) is a maximal triple and D is an indefinite quaternion algebra over
Q. By Table 10.2 G is one of the three groups in the lemma.

Completely analogously one gets

Lemma 20.13. If G has a normal subgroup N ∼= U5(2) with character 2χ10, then

G is conjugate to one of ∞,2[±U5(2)]5 ⊗ A2, ∞,2[±U5(2)
2(2)⊗ D8]10, or

∞,3[C3

2(2)⊃×@ ±U5(2)]10.

In the last two cases, the center of the enveloping algebra of N is an imaginary
quadratic field. Hence here the situation is not so tight.

Lemma 20.14. If G has a normal subgroup N ∼= L2(11) with character χ5a +χ5b,

then G is conjugate to one of ∞,2[SL2(3)]1 ⊗A
(3)
10 , ∞,3[L2(11)

2(3)⊃×@ S̃3]10, ∞,3[S̃3]1 ⊗
A

(3)
10 , ∞,11[L2(11)

2(2)⊃×@√
-11

SL2(3)]10, ∞,11[L2(11)
2(3)⊃×@ S3]10, or ∞,11[±L2(11).2]5 ⊗A2.

Proof. The centralizer C := CG(N) is a centrally irreducible subgroup of GL1(D)

where D is a quaternion algebra over Q[
√

-11] and G contains NC of index 2. Using
the classification of finite subgroups of GL2(C) in [Bli 17], one finds that C is one

of D8, ±S3, SL2(3), or S̃3. Distinguish 2 cases:
a) CG(C) > ±N . Then G = (±N.2)C is one of ∞,11[±L2(11).2]5 ⊗ [D8]2,

∞,11[±L2(11).2]5 ⊗A2, ∞,2[SL2(3)]1 ⊗A
(3)
10 , or ∞,3[S̃3]1 ⊗A

(3)
10 . In the first case, G

is imprimitive and contained in ∞,11[±L2(11).2]25.
b) CG(C) = ±N . The groups C are nearly tensor decomposing over Q with

parameter 2, 3, 2, resp. 3. Since C = CG(N) Lemma 10.1 implies that G is

one of ∞,2[L2(11)
2(2)⊃×@ D8]10, ∞,11[L2(11)

2(2)⊃×@√
-11

SL2(3)]10, ∞,11[L2(11)
2(3)⊃×@ S3]10, or

∞,3[L2(11)
2(3)⊃×@ S̃3]10. Note that 3 is decomposed and 2 is inert in Q[

√
-11]. The first

group is not maximal finite but contained in ∞,2[±U5(2)
2(2)⊗ D8]10.

Lemma 20.15. If G has a normal subgroup N ∼= U4(2) with character χ5a + χ5b,

then G is conjugate to ∞,2[SL2(3)]1 ⊗ [±U4(2)
2

� C3]10 or ∞,3[(C3 ◦ U4(2))
2(2)⊃×@√
-3

SL2(3)]10.
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Proof. Let B := B◦(N) ∼= ±C3 ◦ N . The centralizer C := CG(N) is a centrally

irreducible subgroup of GL1(D) where D is a quaternion algebra over Q[
√

-3] and

G contains BC of index 2. As in the last lemma C is one of D8, ±S3, SL2(3), or S̃3.

But now O3(B) ∼= C3 and therefore all three groups ∞,3[S̃3]1 ⊗ [±U4(2)
2

� C3]10,

A2⊗∞,3[±U4(2)
2

� C3]5, and D8⊗∞,3[±U4(2)
2

� C3]5 are imprimitive and one only
finds one a.i.m.f. group in the case CG(C) > B. In the case CG(C) = B one again
uses 10.1 to deduce that G is one of

∞,2[±U4(2) ◦ C3

2(2)⊃×@ D8]10, ∞,3[±U4(2) ◦ C3

2(2)⊃×@√
-3
SL2(3)]10,

∞,3[±U4(2) ◦ C3

2(3)⊃×@ S3]10 or ∞,3[±U4(2) ◦ C3

2(3)⊃×@√
-3
S̃3]10.

The first group is not maximal finite but contained in ∞,2[±U5(2)
2(2)⊗ D8]10 and the

last two groups are imprimitive.

For the rest of the proof of 20.1 we assume that G contains no quasi-semi-simple
normal subgroup. Then the Fitting subgroup Fit(G) :=

∏
p||G|Op(G) is a self-

centralizing normal subgroup of G, and hence an irreducible subgroup of GL10(Q)
by Lemma 8.11. From Table 8.7 one gets that Fit(G) is one of ±C25, ±51+2

+ , of
±C11.

The first possibility immediately leads to a contradiction.

Lemma 20.16. If O5(G) = 51+2
+ , then G = ∞,5[±51+2

+ : SL2(5).4]10.

Proof. Then G contains the group B := B◦(O5(G)) = ±51+2
+ : SL2(5) with G/B ∼=

C4(= Gal(Q[ζ5]/Q)). Since the split extension B : C4 has real Schur index 1 one
concludes G = ∞,5[±51+2

+ : SL2(5).4]10.

Lemma 20.17. O11(G) 6= C11.

Proof. The centralizer C := CG(O11(G)) is a centrally irreducible subgroup of
GL(D) where D is a quaternion algebra over Q[ζ11]. As in 20.14 C is one of the

groups D8, ±S3, SL2(3), or S̃3. Since these groups have no automorphism of order
5, G contains the group ±C11 : C5C of index 2. In all cases, G is a proper subgroup
of one of the groups of 20.14.
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21. Appendix

Some invariants of the occurring primitive r.i.m.f. subgroups of GL32(Q), that are
not tensor products:

lattice L det(L) min(L) |Lmin| |Aut(L)| lattice

sparse

[21+10
+ .O+

10(2)]32 1 4 146880 231 · 35 · 52 · 7 · 17 · 31 p 6= 2

[((SL2(5) ◦ SL2(5))
2
�√
5

(SL2(5) ◦ SL2(5))) : S4]32,1

516 8 21600 213 · 35 · 54 +

[((SL2(5) ◦ SL2(5))
2
�√
5

(SL2(5) ◦ SL2(5))) : S4]32,2

1 4
43200+

103680
213 · 35 · 54 p 6= 5

[4.L3(4).22]32,1 516 8 11520+ 210 · 32 · 5 · 7 Q[
√

-5], +

10080 +

[4.L3(4).22]32,2 1 4 8064+ 210 · 32 · 5 · 7 Q[
√

-5]

20160+ +

2 · 23040+
32256+

40320

[SL2(17)
2(3)⊃@ S̃3]32,1 1 4 3 · 4896+ 27 · 33 · 17 p 6= 3, 17

4 · 14688
[SL2(17)

2(3)⊃@ S̃3]32,2 1716 12 1632 27 · 33 · 17 p 6= 3

[(2.Alt7
2
�√
-7

2.Alt7) : 2]32 716 8 5040 29 · 34 · 52 · 72 +

[2.Alt7
2(3)

�√
-7

(SL2(3)
2
� C3)]32 216 · 716 12 6720 28 · 34 · 5 · 7 +

[(Sp4(3)⊗√-3
Sp4(3)) : 2

2
� C3]32 316 6 9600 215 · 39 · 52 +

[SL2(5)
2(2)
⊃×@

∞,2
21+6
− .O−6 (2)]32 516 8 21600 216 · 35 · 52 p 6= 2

[SL2(9).2
2(2)
⊃×@

∞,2
21+4
− .Alt5]32 216 · 316 8 7200 212 · 33 · 52 +

[SL2(5)
2(3)
⊃×@

∞,3
(Sp4(3)

2
� C3)]32 316 · 516 12 4800 211 · 36 · 52 +

[SL2(17)
2(3)◦ S̃3]32 174 6 233376∗ 27 · 33 · 17 p 6= 3

[SL2(7)
2
�√
-7

2.Alt7]32 28 · 716 12 47040 28 · 33 · 5 · 72 +

[SL2(9)⊗D10

2
� SL2(5)]32 316 · 58 8 3600 28 · 33 · 53 p 6= 5

[SL2(7)
2(3)
⊃×@√
-7

(SL2(3)
2
� C3)]32 212 · 716 10 1344 28 · 33 · 7 p 6= 2

[SL2(7)
2(3)
⊗
∞,3

(SL2(3)
2
� C3)]32 216 · 78 6 1344 28 · 33 · 7 p 6= 3

∗ not decomposed into orbits under Aut(L)
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lattice L det(L) min(L) |Lmin| |Aut(L)| lattice
sparse

[(SL2(3) ◦ C4).2
2(3)
⊃×@√
-1
SL2(7)]32 216 · 316 · 78 12 672+ 29 · 32 · 7 +

1344

[SL2(7)
2(3)
⊗
∞,3

SL2(9)]32 78 6 6720+ 28 · 33 · 5 · 7 p 6= 3

20160

[SL2(9)
2
� SL2(5)]32 28 · 58 6 4800 27 · 33 · 52 p 6= 5

[((SL2(5) ◦ SL2(5)) : 2
2(6)
⊃×@√
5

(C3

2(2)
⊃×@ D8)]32,1 216 · 316 8 1440+ 210 · 33 · 52 p 6= 5

2880

[((SL2(5) ◦ SL2(5)) : 2
2(6)
⊃×@√
5

(C3

2(2)
⊃×@ D8)]32,2 216 · 316 · 516 16 1440 210 · 33 · 52 +

[C15 : C4

2(2)
⊃×@ F4]32 316 · 58 8 1440+ 210 · 33 · 5 p 6= 2, 5

2160

[(21+4
− .Alt5⊗∞,2

SL2(5))
2(2)

�√
5
D10]32 216 · 58 8 9600+ 211 · 32 · 53 p 6= 5

12000+
14400

[(SL2(5)⊗√
5
D10)

2(3)
⊃×@

∞,3
(SL2(3)

2
� C3)]32 216 · 316 · 58 12 4800+ 28 · 33 · 52 p 6= 5

5760

[SL2(5) ◦ (C5
2⊃×@ D24)]32 118 6 3 · 1440 26 · 32 · 52 Q[

√
3,
√

5]
+2400 p 6= 5

[SL2(3)
2(2)◦ (C5

2⊃×@ D24)]32 118 6 5 · 720 27 · 32 · 5 Q[
√

3,
√

5]
+960 p 6= 5

[SL2(5) ◦ (C5

2⊃×@√
5
′
Q24)]32 58 · 118 8 1440 26 · 32 · 52 Q[

√
3,
√

5], +

[SL2(3)
2(2)◦ (C5

2⊃×@√
5
′
Q24)]32 58 · 118 8 720 27 · 32 · 5 Q[

√
3,
√

5], +

The tables are organized as follows:
First a name of the rational irreducible maximal finite (r.i.m.f.) subgroup G of

GL32(Q) resp. of a invariant lattice L of minimal determinant is given (cf. Section
5). The next columns indicate the abelian invariants of the discriminant group
L#/L of L, the minimum of the square lengths of the nonzero vectors in L and
the number of these minimal vectors decomposed into orbit lengths under G. The
fourth column gives the order of G and the last column allows one to deduce some
information on the lattice of G-invariant lattices. A + in this column indicates
that G is lattice sparse, that is that all invariant lattices are obtained from L by
multiplying with invertible elements in the commuting algebra of G (which is Q
except for the groups 4 and 5 and the last four groups), taking duals with respect to
positive definite invariant quadratic forms (which are unique up to scalar multiples
except for the last four groups), and taking intersections and sums. If G is not
lattice sparse the primes p are indicated such that all G-sublattices of L of p-power
index can be obtained by a combination of the four operations above.

The next two tables are built up similarly.

Theorem 21.1. The groups in this table are maximal finite subgroups of GL32(Q).
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Proof. For all groups except the last four groups G the theorem follows easily by
showing that G is the automorphism group of all its invariant lattices. Only the
last four groups are not uniform. Let H be a r.i.m.f. supergroup of one of these
groups G. As for the other groups one easily shows that the space of invariant
quadratic forms of H is a proper subspace of F(G). Therefore CQ32×32(H) is iso-

morphic to one of the proper subfields of Q[
√

3,
√

5] and either H is uniform or
dim(F(H)) = 2 and H satisfies the conditions of [NeP 95, Theorem (II.4)]. Thus
there is (F,L) ∈ F>0(H) × Z(H) such that F is integral on L and the prime di-
visors of the determinant det(F,L) of a Gram matrix of F on L divide the group
order |H |. By the formula in [Schu 05] the largest prime which may divide the
order of H is 31. Since the determinants of the integral positive definite lattices
(F,L) ∈ F>0(G) × Z(G) which involve only prime divisors ≤ 31 are divisible by
11, one concludes that 11 divides |H |. Moreover H is primitive, because G is
primitive. Since the possible normal p-subgroups of H do not admit an automor-
phism of order 11 it follows that H has a quasi-semi-simple normal subgroup. Let
(F,L) ∈ F>0(H) × Z(H) be an H-invariant integral lattice of minimal determi-
nant. The 11-modular representation δ : G → GL8(11) obtained from the action
of G on L#/L is faithful because 11 does not divide the order of G and extends
to a representation of H . So H has an image H̄ with G ≤ H̄ ≤ GL8(11). Then
the determination of the minimal degrees of a projective representation of a fi-
nite Chevalley group in nondefining characteristic in [LaS 74] resp. [SeZ 93] show
that the simple composition factors of H are contained in [CCNPW 85]. One now
gets the result from the classification of the nonabelian finite simple groups and
[CCNPW 85].

Only one primitive r.i.m.f. group of GL36(Q) whose lattices are not tensor
products turns up:

lattice L det(L) min(L) |Lmin| |Aut(L)| lattice
sparse

[SL2(19)
2(2)◦ SL2(3)]36 218 · 198 10 4104 26 · 33 · 5 · 19 +
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Some invariants of the occurring primitive r.i.m.f. groups of dimension 40, that
are not tensor products:

lattice L det(L) min(L) |Lmin| |Aut(L)| lattice
sparse

[±U3(5) : 3
2

� C3]40 520 8 10500 26 · 34 · 53 · 7 p 6= 3

[±51+2
+ : SL2(5).2

2

� SL2(5)]40 54 4 3600 28 · 32 · 55 p 6= 5

[SL2(11)
2(2)⊗
∞,2

21+4
− .Alt5]40 118 6 13200 210 · 32 · 52 · 11 p 6= 2

[U5(2)
2(2)⊗
∞,2

21+4
− .Alt5]40 1 4 39600 218 · 36 · 52 · 11 p 6= 2

[2.U4(2)
2(2)◦ SL2(3)]40 28 · 38 6

960+
11520+
12960+
17280+
25920

210 · 35 · 5 p 6= 2

[SL2(11)
2(3)⊃@ C12.C2]40 118 · 220 8 1320 26 · 32 · 5 · 11 p 6= 11

[SL2(11)
2(2)⊃@ SL2(3)]40 118 6

2 · 1320
+3960
+5280
+7920

26 · 32 · 5 · 11 p 6= 2, 11

[SL2(19)
2(3)◦ S̃3]40 320 · 198 10 4104 25 · 33 · 5 · 19 +

[2.Alt7
2(3)◦ S̃3]40 38 · 78 6

5040
+3360

26 · 33 · 5 · 7 p 6= 3

[2.Alt7 ◦ S̃3]40 212 · 38 6
3 · 1680
+10080

25 · 33 · 5 · 7 p 6= 2, 3

[2.U4(3).4
2(3)◦ S̃3]40 320 6 3360 212 · 37 · 5 · 7 +

F4

2(2)⊗ [±S6]10 216 · 316 6
960
+1440

212 · 34 · 5 p 6= 2

[(L2(11)⊗√
-11

SL2(3)⊗ S3).2]40 220 6
2 · 2640
+15840
+2 · 31680

27 · 33 · 5 · 11 p 6= 3, 11

[2.M12.2⊗√-2
GL2(3)]40 220 6

21120
+63360

211 · 34 · 5 · 11 Q[
√

-2]
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