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INTERTWINING OPERATORS INTO COHOMOLOGY
REPRESENTATIONS FOR SEMISIMPLE LIE GROUPS II

ROBERT W. DONLEY, JR.

Abstract. One approach to constructing unitary representations for semisim-
ple Lie groups utilizes analytic cohomology on open orbits of generalized flag
manifolds. This work gives explicit formulas for harmonic cocycles associated
to certain holomorphic homogeneous vector bundles, extending previous re-
sults of the author (Intertwining operators into cohomology representations
for semisimple Lie groups, J. Funct. Anal. 151 (1997), 138–165). The key
step shows that holomorphic discrete series representations and their limits
are well-behaved with respect to restriction to certain submanifolds.

1. Introduction

Two goals of the unitary dual problem for semisimple Lie groups are a clas-
sification and a unified construction for irreducible unitary representations. This
problem is still open, but if one instead considers irreducible admissible represen-
tations, several solutions to the problem occur.

Here we are concerned with the Langlands classification and the Vogan-Zucker-
man classification. The former relies on methods of real analysis, and the lat-
ter is a cohomological construction that produces representations using algebraic
techniques. It is of interest to compare these two classifications.

Placement of Vogan–Zuckerman modules in the Langlands classification is a con-
sequence of results in [Vo2] (see also Theorem 11.216 in [KV]), which are proved
using homological methods. Results of Wong ([Wo]) allow for an analytic interpre-
tation of this result. One can consider using an intertwining operator from a given
nonunitary principal series representation into the Dolbeault cohomology repre-
sentation associated to the corresponding Vogan–Zuckerman module. Many Aq(λ)
cases are handled in this manner in [BKZ] and [Ba], and [Do] generalizes the former
in some RS(W ) cases where W is a nonunitary principal series representation.

One consequence of constructing such operators is the production of strongly
harmonic forms. Harmonic forms have been useful for constructing unitary repre-
sentations; notable instances occur in [S2], [RSW], [Zi], and [BZ].

In this paper we construct intertwining operators as above. The domain for
such operators will be nonunitary principal series representations induced from
irreducible unitary highest weight representations.
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Constructions deviate slightly from [Do]. To use the usual formulations of the
Borel-Weil-Bott Theorem and the construction of holomorphic discrete series repre-
sentations, antiholomorphic tangent spaces are constructed with respect to negative
roots; [Do] uses the set of positive roots.

Let G be a linear connected semisimple Lie group with maximal compact sub-
group K. Associated to Lie(K) = k0 is the Cartan involution θ and Cartan decom-
position

g0 = k0 ⊕ p0.(1.1)

Real Lie algebras are denoted by the German letter with the subscript 0. Their
complexifications are denoted by dropping the subscript. Representations for real
Lie algebras are extended to the complexification complex linearly. Conjugation in
g with respect to g0 will be denoted by bar.

Let h0 = t0⊕a0 be a θ-stable Cartan subalgebra of g0 with associated decompo-
sition according to (1.1). This subalgebra will vary in later sections. Let H = TA
be the associated analytic subgroup.

Linearity assumptions are necessary for invoking results from [Wo] and for con-
structing holomorphic discrete series representations. Otherwise one need only
assume G be semisimple with finite center.

2. Dolbeault cohomology and harmonic forms

Let X be a nonzero element in t0, and let L = ZG(X). Then L is connected.
We assume also that a0 is nonzero unless otherwise specified.

Roots in ∆(g, h) take real values on hR = it0 ⊕ a0. Positivity is determined
lexicographically from a choice of ordered basis for hR. The ordering is determined
by choosing iX as the first element, choosing the following elements such that they
form a basis with iX for it0, and choosing the remaining basis elements from a0.

Form the subalgebra u constructed from the root spaces associated to roots α
such that α(iX) < 0 and let q be the θ-stable parabolic subalgebra of g with Levi
decomposition

q = l⊕ u.(2.1)

Let GC be the complexification of the adjoint group of G and letQ be the analytic
subgroup of GC with Lie algebra q. Then the natural map

G/L ↪→ GC/Q(2.2)

is an open inclusion. The space of antiholomorphic tangent vectors at the identity
coset eQ in GC/Q can be naturally identified with u, and the above inclusion gives
a choice of complex structure for G/L.

For more details on holomorphic vector bundles, the reader is referred to [K5].
Our primary interest lies in defining sections and cohomology in terms of functions
of G.

Let (πL,W ) be a Frechét representation of L. As per [K5] and [TW], we form
the associated homogeneous holomorphic vector bundle LW over G/L.

Smooth sections of this bundle can be interpreted as smooth functions

f : G→W

such that

f(gl) = πL(l)−1f(g);(2.3)
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the space of all such functions is denoted C∞(G/L,W ).
Smooth (0, k)-forms can also be interpreted as smooth functions

ω : G→W ⊗ ∧ku∗(2.4)

such that

ω(gl) = (πL ⊗Ad)−1(l)ω(g);

the space of all such forms is denoted C0,k(G/L,W ).
Associated to LW is the Cauchy-Riemann operator in degree (0, k)

∂̄k : C0,k(G/L,W ) → C0,k+1(G/L,W ),(2.5)

which has the property that

∂̄k ◦ ∂̄k−1 = 0.(2.6)

Define the (0, k)-th Dolbeault cohomology group as

H0,k

∂̄
(G/L,W ) = Ker ∂̄k/ Im ∂̄k−1.(2.7)

Let {Xα} be a basis for u in terms of root vectors, and let {ωα} be the corre-
sponding dual basis for u∗. A formula for ∂̄ (analogous to formula (1.6b) in [GS])
is given by

∂̄(f · ω) =
∑

α∈∆(u)

Xαf · ωα ∧ ω +
1
2

∑
α∈∆(u)

f · ωα ∧Ad(Xα)ω,(2.8)

where f ∈ C∞(G/L,W ) and ω ∈ ∧ku∗.
There exists a corresponding formal adjoint; the operator which acts on the

space C0,k(G/L,W ) is not the formal adjoint to ∂̄ as above. We refer the reader
to section 9 of [Do] for more details. A formula for the operator

∂̄∗ : C0,k(G/L,W ) → C0,k−1(G/L,W )(2.9)

is given by

∂̄∗(f · ω) =
∑

α∈∆(u)

cαXαf · i(θXα)ω +
1
2

∑
α∈∆(u)

f · c′αi(θXα)Ad(Xα)∗ω,(2.10)

where cα, c′α are constants that depend on the choice of basis for u and i(·) denotes
interior product.

Define the space of strongly harmonic (0, k)-forms

H0,k(G/L,W ) = Ker ∂̄k ∩ Ker ∂̄∗k .(2.11)

Because every strongly harmonic form is a cocycle, there is a natural map

Q : H0,k(G/L,W ) → H0,k

∂̄
(G/L,W ).(2.12)

When G is compact and W has finite dimension, the Kodaira-Hodge theorem (The-
orem 3.19 in [Kd]) states that Q is an isomorphism. In the situation for construct-
ing discrete series representations (see [S1],[S2], and [AR]) and with the domain
restricted to square-integrable harmonic forms, Q is a continuous inclusion with
dense image and is an isomorphism at the K-finite level. In general (as in [Zi] or
[BZ]), one hopes for at least surjectivity of Q at the K-finite level.

One serious issue concerning Dolbeault cohomology representations is a well-
defined topology. This problem, known as the Maximal Globalization Conjecture,
was solved by Wong in [Wo]. Among other important facts, this theorem states
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that if W is the maximal globalization of an (l, L∩K)-module of finite length, then
H0,k

∂̄
(G/L,W ) is the maximal globalization of the cohomologically induced (g, K)-

module Rk(W ). The difficult part of the problem lies in showing that Im ∂̄k−1 is
closed. The notion of a maximal globalization was introduced in [S3].

3. The Borel-Weil-Bott Theorem

We recall how to construct intertwining operators in the compact case; the rele-
vant cohomological theory is the Borel-Weil-Bott Theorem. Here one can construct
harmonic forms using irreducible representations obtained through the theory of
Cartan and Weyl.

Let K be a connected compact Lie group with complexification KC and T a
maximal torus. Let

k = t⊕
∑
α∈∆

kα(3.1)

be the root space decomposition and let ∆+ be a choice of positive roots. Let

b = t⊕
∑
α<0

kα(3.2)

be the root space decomposition of the Borel subalgebra associated to the negative
roots and with nilradical n′. Associated to b is the subgroup B ⊂ KC. Here

K/T ∼= KC/B(3.3)

as smooth manifolds. Let WK = NK(T )/T be the Weyl group associated to K and
T . Suppose (χλ,Cλ) is a character of T with differential λ, and let

δ =
1
2

∑
α∈∆+

α.

Borel-Weil-Bott Theorem.
(1) If 〈λ + δ, α〉 = 0 for some α ∈ ∆, then H0,k

∂̄
(K/T,Cλ) = 0 for all k.

(2) If not, there exists a unique w ∈WK such that

µ = w(λ+ δ)− δ(3.4)

is dominant with respect to ∆+. Let

l(w) = #{α ∈ ∆+ | w−1α < 0}.(3.5)

Then

H0,k

∂̄
(K/T,Cλ) =

{
0, k 6= l(w),
V µ, k = l(w),

(3.6)

where V µ is the K-representation with highest weight µ.

Different proofs can be found in [Bo], [Ks], or [GS].
To construct the harmonic forms associated to the above cohomology groups,

we work backwards, following section 6 of [GS]. The construction assigns a har-
monic representative of a given n-cohomology class (explicitly realized in Corol-
lary 5.15 of [Ks]) to a space of harmonic forms. A harmonic representative for
H l(w)(n, (V µ)∗)−λ is evident when one deletes the term σ−1(k)v from (3.11) below.
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Fix a dominant weight µ and associated irreducible K-representation (σ, V µ).
Also fix w ∈ WK . If µ = w(λ+ δ)− δ, then λ = w−1µ+ w−1δ − δ. Set

∆+(w−1) = {α ∈ ∆+ | wα < 0}(3.7)

and

ωw−1 =
∧

α∈∆+(w−1)

ω−α.(3.8)

Define the intertwining operator

S : V µ → H0,l(w)(K/T,Cλ)(3.9)

by

v 7→ fv(3.10)

where

fv(k) = Pµ(σ(w̃)σ−1(k)v) ⊗ ωw−1.(3.11)

Here Pµ is the T -equivariant projection onto the µ-weight space, and w̃ is a repre-
sentative in NK(T ) for w.

Several facts need to be checked. First one must verify that fv actually lies in
the space of cochains. The nontrivial step in showing this is

Ad(t)ωw−1 = χw−1δ−δ(t)−1ωw−1,(3.12)

where χβ denotes the character of T with differential β; this fact occurs as Propo-
sition 3.19 in [K3].

Next one needs to verify the strongly harmonic property. The cocycle property
follows from
(3.13) Pµ(σ(X−wα)V µ) = 0 if α > 0 and wα > 0, and
(3.14) Ad(Xα)ωβ = cαβωβ−α if β − α is a root for n′.
All other terms vanish from wedge products.

Vanishing under ∂̄∗ follows from
(3.15) Pµ(σ(Xwα)V µ) = 0 if α > 0 and wα < 0, and
(3.16) Ad(Xα)∗ωβ = c′αβωβ+α if β + α is a root for n′.
All other terms vanish from interior products.

Finally to see that S is an isomorphism, the Kodaira-Hodge theorem implies
that nonzero harmonic forms are nonzero in cohomology. If φ is a nonzero µ-weight
vector, evaluate fσ(w̃)−1φ at the identity. The Borel-Weil-Bott Theorem now implies
that S is an isomorphism.

We consider the case where T is replaced with L as in section 2. The Borel-
Weil-Bott Theorem in this case is formulated in section 6 of [GS] or Corollary 4.160
in [KV]. We note that the fiber of the bundle is allowed to be finite-dimensional
irreducible.

We choose the parabolic subgroup q = l⊕ u such that

b ⊂ q.(3.17)

The cases of interest are those in the bottom and top degrees of cohomology; in the
latter case, the element ωs (given by any nonzero element in ∧su∗, where s = dim u)
spans a one-dimensional L-representation.

We consider the former case, the Borel-Weil Theorem for K/L. Let V µ be as be-
fore, let (τ, V τ ) be the irreducible L-representation generated by the highest weight
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space, and let Pτ be the L-equivariant projection from V µ to V τ . Holomorphic
sections (elements in H0,0

∂̄
(K/L, V τ )) are given by the formula

fv(k) = Pτ (σ(k)−1v).(3.18)

Proofs are given as before.
Consider the case of top degree, H0,s

∂̄
(K/L, V τ?

). Let (τ, V τ ) be the irreducible
L-representation determined by the u-invariants in V µ. Denote the associated L-
equivariant projection by

Pτ : V µ → V τ .(3.19)

The analog of (3.18) is given as

fv(k) = Pτ (σ−1(k)v)⊗ ωs.(3.20)

The cocycle property holds immediately, and the analogs of (3.15) and (3.16) yield
vanishing under the adjoint. The fiber V τ?

of the vector bundle has L-type

τ? = τ ⊗ χ−2δ(ū).(3.21)

4. Nonunitary principal series representations

The goal of this work is essentially a gross generalization of the Borel-Weil-
Bott Theorem. The substitute for the Cartan-Weyl representation is a nonunitary
principal series representation. These representations and their generalizations are
enough to classify all irreducible admissible representations of G. The question of
classifying irreducible unitary representations is still an open problem.

We outline the general construction. Let h0 = t0 ⊕ ap,0 be a Cartan subalgebra
of g0 with the property that ap,0 is maximal abelian in p0. Let Mp = ZK(ap,0); this
subgroup is compact but not necessarily connected. We assume Mp is connected
for simplicity.

Form the set of restricted roots Σ(g0, ap,0). A choice of positive system Σ+ yields
subalgebras

np,0 =
∑

α∈Σ+

gα(4.1)

and

n−p,0 = θnp,0(4.2)

with associated subgroups Np and N−
p . Now MpApNp is a real parabolic subgroup

of G (given in terms of its Langlands decomposition).
We construct representations of G induced from MpApNp. Let (σ, V σ) be an

irreducible unitary representation of Mp, ν ∈ a∗p, and

ρG =
1
2

∑
α∈Σ+

α.(4.3)

Form the space C∞(G/MpApNp, σ ⊗ eν ⊗ 1) defined by

{smooth f : G→ V σ | f(gman) = e−(ν+ρG) log a σ−1(m)f(g)}(4.4)
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where m ∈Mp, a ∈ Ap and n ∈ Np. The G-action is given by left translation. This
space can be completed with respect to the norm

||f ||2G =
∫
K

|f(k)|2σ dk.(4.5)

Two important theorems pertaining to such representations are the Subrepre-
sentation Theorem ([CM]) and the Langlands classification ([La], [KZ]; see also
Theorem 14.92 of [K2]) as revised by Knapp and Zuckerman. The subrepresen-
tation theorem states that every irreducible admissible representation of G is in-
finitesimally equivalent to a subrepresentation of some nonunitary principal series
representation. To get a parameterization of such representations, one needs the re-
vised Langlands classification. Here one considers a construction analogous to the
one above by replacing MpApNp with a cuspidal real parabolic subgroup MAN
that contains MpApNp (possibly G itself) and letting σ be a discrete series repre-
sentation or limit of such. When ν is suitably restricted, this representation will
have a unique irreducible quotient, and these account for all irreducible admissible
representations in a precise manner.

5. The intertwining operator in the case of compact M

We recall the operator constructed in [Do] and note some important points.
Let (σ, V σ) be an irreducible unitary representation of Mp. The fiber W of the
bundle LW is a nonunitary principal series representation of L induced from the
real parabolic subgroup (L ∩Mp)Ap(L ∩ Np); the parameter τ ′ for the L ∩Mp-
representation comes from (3.21) and (5.4). We construct an operator

S : C∞(G/MpApNp, σ ⊗ eν ⊗ 1) → C0,s(G/L,W )(5.1)

where s = dimC u ∩ k. Here

W = C∞(L/(L ∩Mp)Ap(L ∩Np), τ ′ ⊗ eν ⊗ 1);

we leave it to the reader to compute W in sections 8 and 9.
The intertwining operator S in (3.9) works because the projection operator and

choice of form are chosen compatibly. Such a philosophy persists throughout the
remainder.

The choice of form comes from [BKZ]. Let

∆s = ∆(u ∩mp ∩ k) ∪∆(u ∩ n−p ).(5.2)

(The “k” is redundant here; it becomes necessary later.) Define

ωs =
∧

α∈∆s

ωα.(5.3)

The construction depends on the following two properties of ωs:
(5.4) ωs is a one-dimensional (L ∩Mp)Ap(L ∩ Np)-representation with ap-weight

ρG − ρL and t-weight −δ(u)− δ(u ∩m), and
(5.5) ωs vanishes under Ad(X) when X ∈ u ∩mp ⊕ u ∩ np.

We define the associated projection. Let (τ, V τ ) be the irreducible L ∩ Mp-
representation of u ∩mp-invariants in V σ. Let

Pτ : V σ → V τ(5.6)

be the L ∩Mp-equivariant projection.
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With these definitions in place, define

[Sf(x)](l) = Pτ (f(xl))⊗Ad(l)ωs.(5.7)

This operator is constructed from elementary operations in representation the-
ory; essentially we are combining the Borel-Weil-Bott construction with induction
techniques. An explicit decomposition of S can be found in [Do]. The operator S
has its origins in the “heuristic principle” of [K4].

When ν is sufficiently dominant, we can further apply the Langlands quotient
operator to elements ofW ; we note that in general these elements are not L∩Mp∩K-
finite, but they are always smooth. Details for such operators are in [VW].

6. An example

Let G = SO(4, 1)e, the identity component of SO(4, 1). The latter group is the
subgroup of SL(5,R) whose elements preserve the form

〈x, y〉4,1 = x1 · y1 + · · ·+ x4 · y4 − x5 · y5.(6.1)

Let Eij be the matrix with all entries zero except for a 1 in the (i, j)-th entry.
The Cartan subalgebra h0 is spanned by the elements X = E12 − E21 and

Y = E45 + E54. Let {e1, α} be the dual basis for h∗ corresponding to the basis
{iX, Y } for h. The set of roots is

∆(g, h) = {±e1 ± α,±e1,±α}
and we choose for a positive system

∆+(g, h) = {e1 ± α, e1, α}.
Let L be the centralizer of X ; then

L = S1 × SO(2, 1)e.(6.2)

With the above choices, ∆(l) = {±α} and ∆(u) = {−e1±α,−e1}. The subgroup Q
in SO(5,C) is the stabilizer of the line spanned by (1, i, 0, 0, 0). In fact, GC/Q is the
set of null lines in C5 with respect to the complexification of 〈·, ·〉4,1. Furthermore
(6.3) Mp = SO(3),
(6.4) L ∩Mp = S1,
(6.5) s = dim u ∩ k = 2,
(6.6) Np has dimension 3, and
(6.7) L ∩Np has dimension 1.

Ignoring the S1 factor, W is a nonunitary principal series representation for
PSL(2,R), which is well understood ([K1], [Wa]). In this example, many compu-
tations from [Do] are simplified since u is abelian.

7. Properties of S
In this section we summarize the main points of the proofs in [Do]. Many facts

about the operator S in (5.7) need to be verified.
The right (L ∩Mp)Ap(L ∩ Np)-translation property at the L-variable and the

right L-translation property at the G-variable are handled by Theorem 7.2 of [Do].
The proof of the harmonic property has much in common with the harmonic

property in section 3. The proof occurs in Sections 8 and 9 of [Do]. We reproduce
the main ideas here.
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Let f ∈ C∞(G/MpApNp, σ⊗eν⊗1). The cocycle property relies on two lemmas
(with analogs for ∂̄∗).

Lemma 7.1. For x ∈ G and l ∈ L,

[∂̄|x̃=xSf(x̃)](l) = (1⊗Ad(l))[∂̄|x̃=xlSf(x̃)](e).

Lemma 7.2. For x ∈ G, [∂̄|x̃=xSf(x̃)](e) = 0.

The first lemma follows by conjugating the u basis by l; this works since ∂̄ is
invariant under complex changes of basis. The second lemma is calculus with root
systems; terms not killed by the wedge product vanish by the right invariance of f
under Np and by (5.5). The arguments for ∂̄∗ follow from two similar lemmas, the
second of which uses the analog of (3.15).

Here the harmonic property does not imply nonvanishing as in the Borel-Weil-
Bott Theorem. Instead one uses a nonholomorphic Penrose transform, defined in
[BKZ]; a general account of Penrose transforms in representation theory is given in
[BE]. With V µ a given minimal K-type of the right-hand side of (5.1), this map

P : ker ∂̄s → C∞(G/K, V µ)(7.3)

has the property that P ◦ ∂̄s−1 = 0. Thus P descends to H0,s

∂̄
(G/L,W ). One needs

to find f such that

(PSf)(e) 6= 0;(7.4)

such functions are given in [BKZ] and [Do]. The composition

C∞(G/MpApNp, σ ⊗ eν ⊗ 1) → H0,s

∂̄
(G/L,W ) → C∞(G/K, V µ)(7.5)

is given by the formula

(PSf)(x) =
∫
K

µ(k)Pτ (f(xk)) dk.(7.6)

8. A second case - L ∩M compact

We consider the case where σ is an irreducible unitary highest weight module
and L ∩ M is compact. General details for such representations occur in [EH].
Essentially all constructions from before work with changes as below.

Suppose h0 is chosen such that a0 is no longer maximal abelian in p0 but a0 lies
in ap,0. Let

m0 ⊕ a0 = Zg0(a0)

be the orthogonal decomposition with respect to the Killing form. Since we still
want M connected, we define M to be the analytic subgroup of G with Lie algebra
m0. M is no longer compact, but it contains a compact Cartan subgroup. In fact
T is such a subgroup. Let MAN be the analytic subroup of G corresponding to
the real parabolic subalgebra m0 ⊕ a0 ⊕ n0 containing mp,0 ⊕ ap,0 ⊕ np,0. We are
interested in adjusting the definition of (4.4) for MAN . Reusing notation, let ρG

stand for half the sum of roots of n0.
Form the set of roots ∆(m, t). The choice of Cartan subalgebra t implies that

every root is compact or noncompact; that is, the root space mα satisfies either

mα ⊂ m ∩ k or mα ⊂ m ∩ p.(8.1)
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There are several equivalent conditions necessary for the existence of irreducible
unitary highest weight representations. We impose the condition that ∆(m, t) have
a good ordering; this means that there exists a choice of positive roots such that
every positive noncompact root is greater than every compact root. Note that u is
chosen such that

∆(u ∩m) ⊂ ∆−(m, t).(8.2)

Another consequence of the good ordering is

Proposition 8.3 ([HC3]). Fix a simple ideal mi in m. Then mi∩p decomposes into
two irreducible mi ∩ k-representations, each associated to either the set of positive
or negative roots in ∆(mi∩p). These representations are abelian subalgebras. Thus
adjoining any choice of positive system for ∆(m∩ k) to ∆+(m∩ p) yields a positive
system for ∆(m).

The formula for S in (5.7) is valid if we make the following changes:

(8.4) (σ, V σ) is an irreducible unitary highest weight representation for M , and
(8.5) let (µ, V µ) be theM∩K-representation generated by the highest weight vector

with respect to ∆+(m), let (τ, V τ ) be the irreducible L∩M -subrepresentation
in V σ consisting of u∩m∩k-invariants in V µ, and as before, denote the L∩M -
equivariant projection onto this space by Pτ .

In (8.5), V τ is nonzero.
The proof of the harmonic property is essentially unchanged. Vanishing under

∂̄∗ requires no changes; the “k” in (5.2) is no longer a redundancy.
Terms from u ∩m ∩ p enter into the ∂̄-computation in Lemma 7.2. Vanishing of

these terms follows from two facts:

(8.6) Pτ (σ(Xα) · V σ) = 0 for α ∈ ∆(u ∩m ∩ p), and
(8.7) Ad(X)ωS = 0 for X ∈ u ∩m ∩ p.

The first statement is analogous to (3.13); the second follows since

Ad(Xα)ωβ = cαβωβ−α(8.8)

if β − α is a root. Since u ∩ m normalizes u ∩ n−, we need only consider when
α ∈ ∆(u∩m∩ p) and β ∈ ∆(u∩m∩ k). In this case the good ordering implies that
when β − α is a root, it is not a root in ∆(u ∩m).

9. A third case - L ∩M noncompact

We generalize the situtation of section 8 to include noncompact L∩M . Since our
arguments rely on a concrete realization for σ, we restrict to the case of holomorphic
discrete series representations. Similar arguments apply for limits of holomorphic
discrete series representations [KO].

When L ∩ M is noncompact, the L ∩ M -cyclic span of ωs is no longer one-
dimensional. This difficulty forces the use of an explicit construction; one needs to
give analytic formulas for ū-cohomology.

Define

ωn =
∧

α∈∆(u∩n−)

ωα(9.1)
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and

ωc =
∧

α∈∆(u∩m∩k)

ωα.(9.2)

The L ∩M -cyclic span of ωc is not one-dimensional, but Cωn is a one-dimensional
(L∩M)A(L∩N)-representation with t-parameter δ(u∩m)− δ(u) and a-parameter
ρG − ρL.

Let w−1 be the unique element in WM∩K such that

∆(ū ∩m ∩ k) = ∆+(w−1);

we use the same notation for a fixed representative in NM∩K(T ). If w0, wL denote
the longest elements in WM∩K ,WL∩M∩K respectively, then w−1 = wL · w0. While
w preserves ∆+(m∩p), sends ∆+(l∩m∩ k) into ∆+(m∩ k), and sends ∆+(ū∩m∩ k)
into ∆−(m ∩ k), it need not preserve L ∩M.

Define an intertwining operator

S : C∞(G/MAN, σ ⊗ eν ⊗ 1) → C0,s(G/L,W )(9.3)

by

[Sf(x)(l)](m) = r(σ(w) · f(xl))(Ad(w)m) ⊗Ad(lm) (ωc ∧ ωn),(9.4)

where x ∈ G, l ∈ L and m ∈ L ∩M . The operator r denotes restriction of an
element in the holomorphic discrete series representation for M to an element of
the holomorphic discrete series representation for w(L ∩M)w−1. This operation
will be made explicit in the next section.

Several items need to be checked concerning parameters. The right L-translation
property at the G-variable is as before; the right (L ∩ M)A(L ∩ N)-translation
property at the L-variable uses properties of (9.1) and (9.2). We remark on the
L ∩M -representation used to define W in the next section.

The only changes needed in the proof of the harmonic property in section 8 are
removal of the L∩M -variable, which is essentially the idea in Lemma 7.1, and the
r-analog of (3.13), which occurs as (10.18).

10. Restricting holomorphic discrete series representations

We recall the construction of the holomorphic discrete series and produce an
operator r which behaves the same as Pτ . The construction follows [K2, VI.4].
In (9.4), we implicitly consider elements in these representation spaces as sections
over M/T. Results in this section are related to the general problem of restricting
representations to subgroups, as found in [JV] or [Ko]. Arguments for holomorphic
limits are essentially the same; we refer the reader to [KO] for definitions.

Suppose M is linear connected, (m ∩ k) ∩ i(m ∩ p) = 0, and the roots of m are
given a good ordering. Let

b = t⊕ n̄′(10.1)

be the Borel subalgebra of m associated to the negative roots. Let B and N̄ ′ be
the analytic subgroups in MC associated to b and n̄′, respectively. Let χλ be a
holomorphic one-dimensional representation of TC with differential λ. Extend χλ

to a holomorphic one-dimensional representation of B by defining χλ to be trivial
on N̄ ′. Let δM be half the sum of the positive roots for m.
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Let Vλ(M) be the space of functions F : MB → C such that
(10.2) F is holomorphic,
(10.3) F (xb) = χλ(b)−1F (x) for x ∈MB and b ∈ B, and
(10.4) ||F ||2M =

∫
M

|F (m)|2 dm <∞.

Denote the space of functions satisfying (10.2) and (10.3) by Γ(MB,λ). This
space is Frechét with respect to the topology of uniform convergence on compact
sets.

Let M act on Vλ(M) and Γ(MB,λ) by left translation:

(σ(m)f)(x) = f(m−1x).(10.5)

Theorem 10.6 ([HC2], [HC3]). Suppose λ is dominant with respect to ∆+(m∩ k).
Then Vλ(M) is a Hilbert space and σ is a continuous unitary representation on it.
If

〈λ+ δM , α〉 < 0 for each α ∈ ∆+(m ∩ p),(10.7)

then Vλ(M) is nonzero, σ is irreducible, the irreducible representation of M ∩ K
with highest weight λ occurs in σ|M∩K and, the matrix coefficients of σ are square-
integrable.

We can also construct such representations for L ∩M . In the above theorem,
we replace M with L ∩M and B with LC ∩ B. The latter space is the analytic
subgroup in MC with Lie subalgebra l ∩ b. Define δL∩M analogously, and let δū∩m

be half the sum of the roots for ū ∩m.
If λ yields a nonzero holomorphic discrete series representation for M , it does so

for L ∩M . We need only check that (10.7) holds. If α ∈ ∆+(l ∩m ∩ p), then

〈λ+ δM , α〉 = 〈λ+ δL∩M + δū∩m, α〉(10.8)

= 〈λ+ δL∩M , α〉.
The last line follows because ∧topū ∩m is a one-dimensional L ∩M -representation
with differential 2δū∩m, and the assertion holds.

Theorem 10.9. Restricting the domain of elements in Vλ(M) to (L∩M)(LC∩B)
gives an L ∩M -equivariant operator

r : Vλ(M) → Vλ(L ∩M)(10.10)

with the property that

r(σ(X) · f) = 0 for X ∈ u ∩m.(10.11)

Proof. Instead of using the explicit formula for elements of Vλ(M) (as found in
Lemma 6.7 of [K2]), we represent these functions as extended matrix coefficients.
Let (π, V, 〈·, ·〉) be an abstract irreducible unitary representation of M that is uni-
tarily equivalent to Vλ(M); let φ be a nonzero highest weight vector for V . For
v ∈ V , define

Φ : V → Vλ(M)(10.12)

by

(Φv)(m) = 〈π−1(m)v, φ〉.(10.13)

That Φv is well-defined on MB follows since B = T CN̄ ′, N̄ ′ = exp n̄′, and φ is
a highest weight vector. Properties (10.2)–(10.3) are easily checked; (10.4) follows
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from the Schur orthogonality relations for discrete series. Theorem 10.6 and the
orthogonality relations imply that Φ is a unitary equivalence up to scalar.

Let X ∈ u ∩m and l ∈ L ∩M . Equation (10.11) follows from

r(σ(X)f)(l) =
d

dt
f(exp(−tX) · l)|t=0(10.14)

=
d

dt
f(l · exp(−tAd(l)−1X))|t=0

= 0 by (10.3) and because L ∩M normalizes u ∩m.

Note that r ◦ σ(X) is well-defined when f is not associated to a smooth vector of
V .

Elements in the image of r satisfy the L ∩M -analogs of (10.2) and (10.3) evi-
dently. Square integrability of the image of r occupies the remainder of this section.

To see that r is continuous as a map from Vλ(M) into Γ((L ∩M)(LC ∩ B), λ),
we note two facts. It is well-known [S3] that the inclusion of Vλ(M) into Γ(MB,λ)
is continuous with dense image. Since (L∩M)/T is closed in M/T , r is continuous
as a map between the corresponding spaces of all holomorphic sections equipped
with the topology of uniform convergence on compact supports. (Continuity with
respect to the Hilbert space topology of Vλ(L∩M) occurs at the end of the proof.)

The following decompositions of L ∩M -modules correspond:

Vλ(M) = (ker r) ⊕ (ker r)⊥(10.15)

= σ(u ∩m) · Vλ(M) ⊕ Vλ(M)ū∩m.

The terms in the second line correspond to the closures of the decomposition at
the M ∩K-finite level, where the second term is the closure of the space of ū ∩m-
invariant M ∩K-finite vectors. The M ∩K-finite vectors are smooth and dense in
Vλ(M). This decomposition is the irreducible highest weight module analog of the
well-known decomposition for finite dimensional representations.

Using the unitary structure and (10.11),

(ker r)⊥ ⊆ Vλ(M)ū∩m;(10.16)

the reverse inclusion for the first terms follows from (10.11). Algebraic considera-
tions show that both spaces in (10.16) are infinitesimally equivalent to Vλ(L∩M).
For the former, one uses (10.13) to characterize its Harish-Chandra module as the
highest weight module (for l ∩ m) generated by φ. Setting v = φ in (10.13) gives
an element in both sides of (10.16); the inclusion is a continuous nonzero L ∩M -
equivariant map between irreducible unitary representations. Thus (10.16) is an
equality.

Now r(Φv) is automatically square integrable for any v ∈ V . Let v = v0 + v1 be
the decomposition of v ∈ V corresponding to (10.15). Then

r(Φv) = r(Φ(v0 + v1))

= r(Φv1).

Restricted to L∩M , the last term is a matrix coefficient for an irreducible unitary
representation in the discrete series of L ∩ M. This matrix coefficient is square
integrable by definiton.

We give an argument without using the orthogonality relations. A theorem
of Harish-Chandra [HC1] states that irreducible unitary representations that are
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infinitesimally equivalent are unitarily equivalent. By remarks following (10.16),
there exists a unitary equivalence

E : (ker r)⊥ → Vλ(L ∩M).(10.17)

As above the inclusion

i : Vλ(L ∩M) → Γ((L ∩M)(LC ∩B), λ)

is continuous with dense image; on the level of L ∩M ∩K-finite vectors, one has

(im r)L∩M∩K ⊆ Γ((L ∩M)(LC ∩B), λ)L∩M∩K = (Vλ(L ∩M))L∩M∩K .

Let Pr be the L∩M -equivariant projection from Vλ(M) to (ker r)⊥. On the dense
subset of M∩K-finite vectors, r and i◦E◦Pr agree up to a scalar. Continuity (with
respect to uniform convergence on compact subsets) implies that r and i ◦ E ◦ Pr

agree on all of Vλ(M) after rescaling. Thus the image of r consists of square-
integrable functions. Note that the factorization implies that r is continuous with
respect to the topology on Vλ(L ∩M). QED

Remark. The above proof can be modified for the case of limits of holomorphic
discrete series. Without loss of generality, assume M is simple. The main results
needed are Theorems 4.1 and 4.2 of [KO]. The replacement for condition (10.4)
occurs there as (4.1) and one also has an explicit highest weight vector ψΛ. For
existence of such representations, one adds to (10.7) the condition

〈λ+ δM , α0〉 = 0

where α0 is the highest root in ∆+(m ∩ p). Since α0 is not in ∆+(l ∩ m ∩ p), the
target space is always a holomorphic discrete series representation of L ∩M .

Continuity of r still holds since the space of holomorphic sections is the maximal
globalization of its underlying Harish-Chandra module [S3], which is equivalent to
an irreducible Verma module. The correspondence of decompositions in (10.15) is
valid without reference to matrix coefficients. One finishes the proof by the second
method.

Results on orthogonality relations for matrix coefficients of nonsquare-integrable
representations can be found in [Mi].

We describe the L ∩M -representation that defines W in (9.3). Let r be the
operator defined in Theorem 10.9 with respect to w(L ∩M)w−1.

Vanishing occurs if we take left invariant derivatives in (9.3) at the L∩M -variable
with respect to l∩ b. The terms acting on the form component vanish by (8.7) and
the fact that ωs spans a one-dimensional L ∩M ∩ K-module. For the terms in
the function part, note that w preserves ∆−(m ∩ p) and sends ∆−(l ∩ m ∩ k) into
∆−(m ∩ k). By a similar argument, one has

r(σ(w)σ(X) · Vλ(M))(e) = 0 for X ∈ ū ∩m ∩ k⊕ u ∩m ∩ p.(10.18)

Ignoring the character associated to ωn, the right translation action at the L∩M -
variable with respect to T has differential λ′ = w−1λ+ 2δ(u ∩m ∩ k). Now

〈δ(u ∩m ∩ k), α〉 = 0
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for α ∈ ∆(l ∩ m ∩ k). Hence λ′ is dominant with respect to ∆+(l ∩ m ∩ k). From
Theorem 10.9, we have

〈w−1λ+ δL∩M , α〉 = 〈λ+ wδL∩M , wα〉(10.19)
< 0

when α ∈ ∆+(l ∩ m ∩ p). To satisfy (10.7), we impose a restriction on λ via the
following lemma.

Lemma 10.20. 〈2δ(u ∩m ∩ k), α〉 ≥ 0 for α ∈ ∆+(l ∩m ∩ p).

Proof. Without loss of generality, assume M is simple noncompact and L ∩ M
noncompact. All α of interest are of the form

α = αs +
∑

nββ

where αs is the simple positive noncompact root, nβ ≥ 0, and β ranges over the
compact simple roots in ∆+(l ∩ m). By the paragraph preceding the lemma, it is
enough to consider α = αs.

The good ordering implies that all compact roots in ∆+(m) lie in the integer
span of the simple positive compact roots. Thus we can expand

2δ(u ∩m ∩ k) = −
∑

mββ,

where the β range over the simple compact roots in ∆+(m) and mβ ≥ 0. Since the
inner product of two simple roots is always nonpositive, the lemma follows.

The L ∩M -representation occurring in W has space

Γ((L ∩M)(LC ∩B), λ′)⊗ Cχ,(10.21)

where χ is the one-dimensional L∩M -representation with differential δ(u)−δ(u∩m).
We leave square integrability of these sections as an open problem. QED

This last difficulty can be overcome by lowering the degree of cohomology. In
(9.4), delete ωc and set w = 1. Further details are left to the reader.

11. Another example

One example handles both sections 8 and 9. We retain the matrix notation from
section 6. Let G = SO(3, 4)e, the identity component of the subgroup of SL(7,R)
whose elements preserve the form

〈x, y〉3,4 =
3∑

i=1

xi · yi −
7∑

j=4

xj · yj.(11.1)

Let X = E12 − E21, Y = E34 + E43, and Z = E56 − E65. Let the basis for h∗

dual to {iX, Y, iZ} be given by {e1, α, e3}. Here

t0 = RX ⊕ RZ(11.2)

and

a0 = RY.(11.3)

The set of positive roots is given by

∆+(g, h) = {e1 ± α, e3 ± α, e1 ± e3, e1, e3, α}.
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Now M0 is isomorphic to SO(2, 3)e. The good ordering for ∆+(m, t) has simple
roots given by e1− e3 (noncompact) and e3 (compact). There are two choices of L
which apply to our situation.

First consider the case L = ZG(X). Here L ∩M0 is compact. Then we have (or
choose)
(11.4) L = S1 × SO(4, 1)e,
(11.5) ∆(l, h) = {±α± e3,±α,±e3},
(11.6) ∆(u, h) = {−e1 ± α,−e1 ± e3,−e1},
(11.7) L ∩M0

∼= S1 × SO(3),
(11.8) ∆(l ∩m, t) = {±e3}, and
(11.9) s = dim u ∩ k = 4.
Note that L ∩M0 = K ∩M0 so τ is the minimal K ∩M0-type of σ.

For the noncompact L ∩M0 case, let L = ZG(X + Z). We have
(11.10) ∆(l, h) = {±(e1 − e3),±α},
(11.11) ∆(u, h) = {−e1 ± α,−e3 ± α,−e1,−e3,−e1 − e3},
(11.12) L ∩M0

∼= U(1, 1); specifically (with zero blocks deleted)

l0 ∩m0 =


0 a c d
−a 0 −d c
c −d 0 b
d c −b 0

 (a, b, c, d ∈ R);

exponentiation gives the center of the semisimple part.
(11.13) ∆(l ∩m, t) = {±(e1 − e3)}, and
(11.14) s = dim u ∩ k = 3.
τ is a discrete series representation for U(1, 1); see the references in section 6.

12. The case of disconnected M

To handle disconnected M , we augment the construction in Theorem 10.6 with
the Cartan-Weyl theory for disconnected compact groups. We refer the reader to
chapter 4, section 2 of [KV] for the latter.

Disconnectedness ofM is captured in a way that is compatible with the geometry
of discrete series representations. We construct an irreducible M -subrepresentation
of ind M

M0
(Vλ(M0)). To avoid using another variable, we consider a simultaneous

action of a large Cartan subgroup T on the fibers and complex structure associated
to a holomorphic bundle over M0/T0. A finer analysis of the disconnectedness of
M occurs in [Vo1].

In general, we define

M = ZK(a0)M0(12.1)

whereM0 is the analytic subgroup ofG with Lie algebra m0. SinceM = (M∩K)M0,
the disconnectedness of M is captured by a large Cartan subgroup of M ∩K. Let

T = NM∩K(b ∩ k)(12.2)

be such a subgroup with identity component T0. Proposition 4.22 of [KV] states
(12.3) T0 has finite index in T ,
(12.4) every element of M ∩K lies in T (M0 ∩K), and
(12.5) T0 = T ∩ (M0 ∩K).

Furthermore we note that the Ad-action of T on M0 preserves
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(12.6) the Cartan decomposition of M0,
(12.7) the sets ∆(m, t),∆(m ∩ k), and ∆(m ∩ p),
(12.8) the set of elements in t∗ which are analytically integral with respect to

M0 ∩K, and
(12.9) ∆+(m ∩ k) and the subset of ∆+(m ∩ k)-dominant elements in (12.8) .

In Theorem 10.6, assume λ is associated to an irreducible dominant representa-
tion (πT , V

λ); that is, we assume that the representation space for the T0-character
χλ is a fixed one-dimensional t-weight space Cλ in V λ.

Theorem 4.25 of [KV] states that such representations are in one-to-one corre-
spondence with the irreducible representations of M ∩ K. Let Π denote the set
of t-weights of πT , counted with multiplicity. If v is a t-weight vector of weight λ
and t ∈ T , then πT (t)v is a t-weight vector of weight Ad(t)λ. The action of T is
transitive on Π, and each weight for πT has the same multiplicity.

Fix t ∈ T . We define a map (which is the usual T0-action when t ∈ T0)

σ(t) : Vλ(M0) → V t
λ(M0)(12.10)

by

(σ(t)F )(m) = πT (t) (F (Ad(t−1)m)),(12.11)

where m ∈ M0. The space V t
λ(M0) is a holomorphic discrete series representation

space for M0; the domain for functions in this space is M0(Ad(t)B). We verify that
all assumptions in Theorem 10.6 hold with respect to the parameters Ad(t)λ and
Ad(t)B. When t ∈ T0, we recover the original space Vλ(M0).

First note that for h ∈ T0 and m ∈M0

(σ(t)F )(mh) = πT (t)F (Ad(t−1)(mh))(12.12)

= πT (t)F ((Ad(t−1)m)(Ad(t−1)h))

= χAd(t)λ(h−1)(σ(t)F )(m).

Thus T0 translates from the right with respect to χAd(t)λ. A similar computation
shows that σ(t)F is right-invariant under Ad(t)N̄ ′.

By (12.7) and T -invariance of the Killing form, we have

〈Ad(t)λ +Ad(t)δM0 , Ad(t)α〉 = 〈λ+ δM0 , α〉 < 0(12.13)

for α ∈ ∆+(m ∩ p). Hence (10.7) holds for the positive system associated to t,
and (12.11) is surjective onto the holomorphic discrete series representation of type
σ ◦Ad(t−1).

Let t̄ run over a set of representatives for each element of T/T0, and define VM to
be the external direct sum of the distinct V t̄

λ(M0). The sum is invariant under the T
and M0-actions. Note that (12.11) extends the usual T0-action (with T0 = T ∩M0)
and thus gives an M -action on VM , which we denote by σM .

We give VM the Hilbert space structure as a finite direct sum of Hilbert spaces.
Since T preserves the left-invariant measure on M0, (σM , VM ) is a unitary repre-
sentation with respect to this inner product.

As an M0-representation, VM is infinitesimally equivalent to a finite direct sum
of irreducible discrete series representations for M0. As an M -representation, VM

contains the irreducible M ∩ K-representation associated to V λ; this represen-
tation intersects nontrivially with each irreducible constituent of the underlying
(m,M0 ∩K)-module. Hence VM is irreducible under M .
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13. The operator S for disconnected M

We combine the methods of sections 10 and 12 to construct the analog of (9.3)
when M is disconnected.

Note that TL∩M = L ∩ T is a large Cartan subgroup of L ∩M ∩K. To see that

TL∩M = NL∩M∩K(l ∩ b ∩ k),(13.1)

note that elements in either T ∩ L or L ∩M ∩K normalize ū ∩m ∩ k (⊂ b ∩ k).
Since TL∩M is compact, the space V λ is fully reducible under TL∩M -action. We

choose an irreducible constituent in the decomposition, say V L∩M , and define the
TL∩M -equivariant projection

PL∩M : V λ → V L∩M .(13.2)

We assume that the t-weight space Cλ is contained in V L∩M . This constituent is
an irreducible dominant representation for TL∩M and hence is associated to some
irreducible L∩M∩K-representation. Thus the construction in section 12 allows one
to construct a holomorphic discrete series representation for L∩M , say (τ, VL∩M ),
and the procedure of section 10 can be applied to construct an L ∩M -equivariant
projection

Pτ : VM → VL∩M .

To adjust (9.4) to handle disconnectedness, replace r with the appropriate Pτ for
w(L∩M)w−1. Note that wTL∩Mw−1 = Tw(L∩M)w−1. By (12.9), the TL∩M -span of
ωc∧ωn is one-dimensional. One sorts out the parameters of the L∩M -representation
as in section 10.

14. The nonholomorphic Penrose transform

The proof for nonvanishing in cohomology is almost verbatim from sections 10
and 11 of [Do]. The main facts concerning the relationships between the minimal
K- and L ∩K-types still hold, as does the ability to express the elements of such
types explicitly. In this case one uses the KMAN decomposition for general real
parabolic subgroup MAN .

We indicate the adjustment needed for representing elements in the minimal K-
type of the domain of (9.3). Let (µ, V µ) be an abstract irreducible unitary copy of
the given minimal K-type, and let (µM , V µM ) be the unique minimal M ∩K-type
of σ. By inspection of the proof of Proposition 7.9 in [Vo1], a component of type
µM occurs in the decomposition of µ into M ∩K-types exactly once. Let

Pµ : V µ → V µM

be the M∩K-equivariant composition of the projection from V µ to the µM -isotypic
component followed by the equivalence sending this component onto V µM ⊂ Vλ(M).
With respect to the KMAN decomposition, elements of the minimal K-type µ are
given by

fv(kman) = e−(ν+ρG)(log a)σ(m)−1Pµ(µ−1(k)v)

where v ∈ Vµ.
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