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BASES IN EQUIVARIANT K-THEORY

G. LUSZTIG

ABSTRACT. In this paper we construct a canonical basis for the equivariant
K-theory of the flag manifold of a semisimple simply connected C-algebraic
group with respect to the action of a maximal torus times C*. We relate
this basis to the canonical basis of the “periodic module” for the affine Hecke
algebra. The construction admits a (conjectural) generalization to the case
where the flag manifold is replaced by the zero set of a nilpotent vector field.

0. INTRODUCTION

0.1. A number of objects in representation theory possess canonical bases with
many remarkable properties. This is the case for example for the Hecke algebra
attached to a Coxeter group [KL1] and for the highest weight modules of quan-
tized enveloping algebras [L5], [K]. In these cases, the bases in question can be
constructed either purely algebraically, or geometrically, using perverse sheaves on
an appropriate algebraic variety.

On the other hand, there are other objects in representation theory which seem
to possess canonical bases, although it is not clear how to understand this in terms
of perverse sheaves and using pure algebra seems to be not strong enough either.

0.2. In this paper we experiment with an alternative method to construct canon-
ical bases in which perverse sheaves are replaced by coherent sheaves, equivariant
with respect to a suitable group action. Thus, we try to

(a) interpret the representation theoretic objects as equivariant K-theory Ky (Y)
of a suitable variety ¥ with an action of a reductive group H;
(b) construct an “antilinear involution” =~ : Ky (Y) — Ky (Y);
(¢) define an inner product on Ky (Y).
(Note that ingredients of the same type as (b) or (c¢) were used in the earlier
works [KL1], [L5], [K], but unlike these references, here we use them in a K-theory
context.)

Having done these steps, we can consider the elements in Ky (Y') that are fixed
by the involution (b) and have self-inner product approximately equal to 1 (in a
suitable sense); these elements form a candidate for a “signed basis” of Ky (Y). (A
signed basis consists of £ the elements of a basis.)

The fact that equivariant K-theory can be used to realize geometrically certain
representation theoretic objects was found in [L1] where the principal series rep-
resentations of affine Hecke algebras were treated from this point of view. One of
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the main ideas of [L1] was to interpret the parameter v of the Hecke algebra as the
standard element of the representation ring of C* acting in a natural way on the
equivariant K-theory of a space with C*-action. This turned out to be a common
feature of the subsequent use of equivariant K-theory in the representation theory
of affine Hecke algebras, see [KL2], [G].

Most of this paper is concerned with carrying out steps (b),(c) for the equivari-
ant K-theory of the variety B, of Borel subalgebras of a semisimple Lie algebra
containing a fixed nilpotent element y, with respect to a torus (as large as possible)
that acts on B,,.

We define the involution (b) as a product of three factors: one is the Serre-
Grothendieck duality for coherent sheaves; the second one comes from an involution
(“opposition”) of B, itself; the third one is essentially the action of the longest
element in the Hecke algebra action.

(The first factor is a substitute in our case for the Verdier duality in the theory
of perverse sheaves; the second and third factors are correcting factors.)

Similarly, we define the inner product (c¢) in terms of three ingredients: one is
the Tor-product of sheaves on the smooth variety (Slodowy) in which B, naturally
lies; the other two are the same correcting factors that are used in the definition of
the involution (b).

0.3. As explained above, the involution and the inner product give rise to a can-
didate for a signed basis of our equivariant K-theory space. We can show that this
is indeed a signed basis:

(a) in the case where the nilpotent is 0;
(b) in the case where the nilpotent is subregular (in type D or E);
(c) in the case where the nilpotent is regular.

(The case (c) is trivial.) In the case (a) we show that the signed basis obtained by
the K-theoretic method coincides with the one obtained combinatorially in [L2] for
the “periodic Hecke algebra module”.

0.4. One of the main motivations of this paper came from the desire to understand
geometrically the periodic W-graph constructed in [L6]. In the case where y is a
nilpotent element that is regular inside some Levi subalgebra of a parabolic subal-
gebra, our K-theoretic candidate for a signed basis should conjecturally provide a
geometric interpretation of the periodic W-graph in [L6].

0.5. The paper is organized as follows. In Section 1 we discuss affine Hecke alge-
bras by combining the points of view of [L2] and [L4]. One new result here is Lemma
1.22 which describes the effect of the involution ~ of the affine Hecke algebra H on
the basis of a large commutative subalgebra of H. In Sections 2 and 3 we discuss
the “periodic module” of the affine Hecke algebra (introduced in [L2]), its canonical
basis and its “dual basis”. (There is a slight difference from [L2] in that, here we
consider affine Hecke algebras of simply connected type, while in [L2] we considered
affine Hecke algebras of adjoint type.) In Sections 4 and 5 the periodic module is
described as a tensor product and the natural inner product on it is described from
this point of view. Section 6 is a review of the results about equivariant coherent
sheaves that are needed later on.

In Sections 7 and 8 we establish an isomorphism between the affine Hecke algebra
and an equivariant K-group of the Steinberg variety of triples. The main results
here are 7.25 and 8.6. A result similar to 7.25 and 8.6 appeared in [G] and in [KL2].
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(An exposition can also be found in [CG].) While [G] emphasized the algebra
structure of the K-group given by convolution, [KL2] emphasized the structure
of the K-group as a bimodule over the affine Hecke algebra. Note that [KL2]
used topological K-homology instead of algebraic K-theory (which in the present
case gives the same result) and the definition of the isomorphism was based on a
construction which is not immediately equivalent to the one given here, which is
closer to the one in [G]. But, in contrast to the definition in [G], our definition
of the isomorphism is symmetric in the two factors of B x B and is better suited
for the purposes of this paper. For these reasons, we found it necessary to give
a self-contained proof of 7.25 and 8.6 (which differs significantly from the earlier
proofs).

One of the byproducts of the analysis in Section 8 is Corollary 8.13, which gives
a K-theoretic interpretation of the results in [L3] concerning certain elements of
the basis [KL1] of the affine Hecke algebra (corresponding to dominant weights); it
describes them as explicit coherent sheaves on the Steinberg variety.

In Section 9, we give a K-theoretic interpretation of the involution ~ in [KL1]
of the affine Hecke algebra (Proposition 9.12).

In Section 10, the periodic module and its canonical basis [L2] are interpreted in
K-theoretic terms. This is done along the steps (a),(b),(c) in 0.2. The interpretation
is such that it admits a generalization which corresponds to replacing the nilpotent
0 by an arbitrary nilpotent element. This generalization is discussed in Sections 11
and 12. The main conjecture of the paper is stated in 12.19 (see also 12.22). In
Section 13 we verify that conjecture for a subregular nilpotent in type Dj.

Section 14 contains some speculations on possible connections of the matters dis-
cussed above with the (unrestricted) representations of Lie algebras in characteristic

p.
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1. THE AFFINE HECKE ALGEBRA

1.1.  Let V be an R-vector space with a given basis («;);c; which is the set of simple
roots of a root system R in V. Let (&;);er be the corresponding set of simple coroots
in Hom(V,R). Let RT C V be the set of positive roots and let R™ € Hom(V,R)
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be the set of positive coroots. We denote by & the coroot corresponding to o € Rt
Let

v =|R*|,

Ct={zeV|a(x) >0 Viel},

X ={zeVa(x)eZ Yiel},

Xoa = Pjer Za; C X,

Xy ={x e X|a;(x) e N Viel}

X = X/Xaq (a finite group).
Let E be a principal homogeneous space for V; we write the action of V on E as
(z,e) — x+eforx €V ,ee E. Weregard FE naturally as an affine space over R.
We assume given a subset € of F such that € is a principal homogeneous space for
X, for the restriction of the V-action to X.

For each € € & and each o € RT, let Oc,a : E — E be the reflection z 4 € —
(x — &(r)a) + € for all x € V. Let T be the subgroup of the group of affine
transformations of E generated by the reflections o, for various €, as above.
The action of Z on E is written as (w,e) — “e.

Let H¢ o be the fixed point set of o¢ o. Let F be the set of hyperplanes in E of
the form H, , for some €, o as above. The set of points of E' that are not contained
in any hyperplane in F is a union of connected components called alcoves. Let X
be the set of alcoves.

Let F* be the set of affine hyperplanes of E of the form H, ,, for some ¢ € I,¢e €
€. The set of points of E that are not contained in any hyperplane in F* is a union
of connected components called bozes.

The set of points of E that belong to exactly one hyperplane in F is a union of
connected components called faces. Let S be the set of Z-orbits in the set of faces.
Then S is finite. If s € S and F is a face in the Z-orbit s, we say that F' is of type
s. For any alcove A and any s € S, there is a unique face d5(A) of type s such that
d5(A) is in the closure of A.

1.2. For s € S and A € X we denote by sA the unique alcove # A such that
0s(A) = d5(sA). Then A — sA is an involution of X.

The maps A — sA generate a group of permutations of X which is a Coxeter
group (W4, S) (an affine Weyl group). The action of W® on X is denoted by
(w, A) — w(A). This action is simply transitive and it commutes with the action
of 7T on X (which is also simply transitive). Let [ : W* — N be the standard length
function. Let < be the standard partial order on W7.

1.3. If x € X and A is an alcove, then x + A is an alcove; if F' is a face of type s,
then x + F is face of type, say,  + s, where x + s depends only on z, s, not on F.
Then (z,s) — x + s is an X-action on S; it factors through an X-action on S.

For € € €, let AT (resp. AC) be the unique alcove contained in C* + ¢ (resp. in
—C* +¢€) and having € in its closure. Let Se be the set of all s € S such that there
exists a face of type s which has € in its closure. Let W, be the subgroup of W¢
generated by Se (a finite Coxeter group). Let w, be the unique element of W, such
that w. (A7) = AT.

For H=H., € F,let Ef; = & (0,00) + ¢, By = @' (—00,0) + € be the two
half spaces determined by H. For A € X,s € S, let H be the hyperplane in F that
contains d,(A); we say that A < sAif A C E,sA C E;‘I; we say that A > sA if
AC Ef;,sAC Eyg.
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There is a unique function d : X x X — Z such that d(A,sA) =1if A < sA and
(a) d(A,B)+d(B,C)+d(C,A) =0
for all A,B,C € X. (See [L2, 1.4].)

Let < be the partial order on X generated by the relation A < B if B = 0., A
for some €, « and d(A, B) = 1.

1.4. Let A = Z[v,v™!] where v is an indeterminate. The Hecke algebra Haq
associated to the affine Weyl group W is the associative A-algebra which, as an
A-module, has basis {T',|w € W*} and multiplication defined by the rules

(Ty +v ) (T —v) =0, (se€89),

TwTw = Tww if l(w) 4+ 1(w') = l(ww').

1.5. Let = : Haqg — Haq be the involution of the ring H.q such that %w = T;,ll
for all w € W, and v = v~" for all n € Z.

By [KL1], for any w € W, there is a unique element ), € Haa such that &, = ¢,
and ¢, = 32 cypary <o Tywly Where my, = 1 and m,,, € v Zfv™] for y < w.

1.6. Let p — p° be the ring homomorphism A — A which takes v™ to (—v)™ for
any n. Let x — x° be the involution of the ring H,q which takes T} to 7! for any
s € S and v"™ to (—v)" for any n. This commutes with = : Haq — Had-

1.7.  The action of X on S in 1.3 induces an action of X on W* by Coxeter group
automorphisms (¢, w) — “w. Let  be the image of x € X’ in X. From the definitions
we have (Rw)(z + A) = (r + wA) forw e W* x € X, A € X.

Let W be the semidirect product of X with W%, Thus, an element of W¢ is
a product tw where w € W9, € X and (tw)(/w') = (v + ¢')(" w)w'. We extend
the length function I : W* — N to a function [ : W* — N by [(tw) = I(w) for
L € X,w € W* Then l(wt) = I(w) automatically holds. We have I(:) = 0 for
e X.

1.8.  The Hecke algebra H associated to W is the associative A-algebra defined
by the generators Ty, (w € W*) and the relations

(Ts +v )Ty —v) =0 forseS;
TwTw = Tun  for w,w’ € W with I(w) + I(w') = l(ww').

Then {Tyy|w € W} is an A-basis of H. We identify H,q with the subalgebra of H
generated as an A-module by {Tw|w € We}. We have T, Ty = Ty and Ty T, = Ty,
forLei,wEW“. ~

Let = : H — H be the involution of the ring H such that T,, = T;}l for all

w e W and v = v~ " for all n € Z. For L € X we have TL :TL.

For any w € We we define ¢, = Tbc;,l = c;,zTL € H where + € X,w, €
W, wy € W are such that w = ww; = wyt and ¢, , ¢}, € Haq are as in 1.5. Then
{¢,|w € W9} is an A-basis of H.
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1.9. For €1,e € €& we denote by 7, the unique element of W such that
7'52751142_1 = A;’;. A
From the definitions, for z € X we have a7¢, ¢, (—Z) = Tptey p4+¢, i1 WO

For €1, €2, €3 in € we have Te, ¢, Tes,e; = Tegyer -

Lemma 1.10. Let e € €. For z € X we set 2° = (—&)Tpiecc € WO

(a) The map x — x¢ is an isomorphism of X onto a subgroup of we.
(b) For any x,& € X we have tz(—I) = z*¢.

We prove (a). The injectivity of our map is clear. Let z1, 22 € X. We have

riTh = (—21)7114-575(—22)%24-575 = (=21)(—Z2)Tasta1+emateTuatee

= (=21 — Zy)Tortartee = (T1 + 22)°
This proves (a). We prove (b). We have

ize(_i) = (_ﬁ)iﬂc—ke,e(_i) = (_£)7'5+m+e,i+e = xi-‘,—e.

The lemma is proved.

1.11.  Let W be the subgroup of Aut(V) generated by the reflections o; : V — V,
oi(z) = — &;(z)ay; with ¢ € I. Note that W together with {o;|i € I} is a finite
Coxeter group. We denote the action of W on V by (w,x) — “z.

For w € W let sgn,, = (—1)"*) where [ : W — N is the length function. Let wp
be the longest element of W.

Given € € €, there is a unique group isomorphism W — W, which, for any
i € I, carries 0; to s¢ € S, where s¢ is the type of the unique face of AT contained
in the hyperplane H, ;. It is clear that s depends only on the X,4-orbit of € in €&,
not on e itself. The same holds for z¢ (by 1.10(b)).

Lemma 1.12. Lete€ € i€ I,z € X, and let 2’ =iz € X. Then sfxs§ = 2'¢ in
we.

Let € =z +e€. Let 0 = 0¢.q;, 0" = 0er ;- We have o(€') = 2’ + €. We must prove
that s§(—2)7e 5§ = (—2')75(er),e. We have —2' = —z. If F' is the face of type s of

AT then the type of the face x + F of Aj, is s = zs§(—z). It is enough to prove
that s7e (8§ = T,(cr),e. This follows from

+ e +
STE/,ESSA:_ = ST&',EUA:_ = U(STE/,E(A:_)) = U(SAE/) =7 Ae’ = Ag(el) = Ta(e’),eA+'

€

The lemma is proved.
Lemma 1.13. Letc € €,z € X. For any i € I we have I(s{z€sS) = 1(x°).

From the definitions, I(z¢) is the number of hyperplanes in F that separate AT
from x + Af. This is easily seen to be the number Y . 5, |@(x)|. Similarly, if
x' = %z, so that s§as§ = 2'¢, then I(2'¢) is the number } » |@(z")]. But this
is clearly equal to > ;.4 |@(z)|. The lemma is proved.

Lemma 1.14. Lete € & x € X,.

(a) For any s € Se we have I(z¢s) = l(x€) + 1.
(b) For any s € S such that sz€ # xs, we have I(sz€) = l(z€) — 1.
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We set 7 = Ty1ce. To prove (a), it suffices to show that I(7s) = I(7) + 1. This
follows from [L2, 3.6].

We prove (b). Let s’ = x + s. It suffices to show that I(s'7) = I(7) — 1. By
assumption we have s'7 # 7s. From 1.13, we have that I(s'7s) = (7). It remains to
use the following result. Let w € W, s,s" € S be such that I(s'ws) = l(w), (ws) >
l(w), s'w # ws; then I(s'w) < l(w). (The proof in [DL, 1.6.4] is applicable to any
Coxeter group.) The lemma is proved.

1.15.  In the remainder of this paper we fix an Xyq-orbit s in €.
Following an idea of J. Bernstein, for any = € X we set

O = Ty T
where € € s and x1,22 € X4,z = 1 — 9. (Clearly, such z1,z2 exist.) We show
that 0, is independent of the choices. The independence of ¢ follows from 1.10(b).
To show independence of x1, 2 it is enough to verify the following statement.
Ifx,0' € Xy, then TypeTye = T(z_;’_m/)e,
To show this, it is enough to show that I(z€) 4+ 1(2'¢) = I((x + 2')¢). By [L2, 3.6],
we have

l(xe) = d(AijLe)v l(xle) = d(A:_’ A:’+e) = d(A:+6’A:+z’+e)’
W(z+2")) = d(AF, ALy o),

and it remains to use 1.3(a). The previous argument shows not only that 6, is well
defined, but also that 6,0, = 0, for z,2’ € X. Note that 6, depends on the
choice of s C €.

1.16. Letee€ & x € Xy,i€ I besuch that &;(x) = 1. Let s = s{ € S.. Let
y=2zsxs=2(""2)" = (x + Tx)¢ = (22 — o)".
Lemma 1.17. We have Ty = TweT‘s_lfweTS_l,

(Compare [L4].) From our assumption we have 2z —a; € X Let [:X —Zhbe
the homomorphism given by I(2") = ", 5+ &(2'). As we have seen in the proof
of 1.13, for ' € X, we have I(z') = I(2'¢). Thus we have

I(zfsa°s) = 1((2x — o)) = 1(22 — o) = 21(z) — I(ev;) = 21(x°) — 2.

From 1.14(a) we have

(a) l(zfsxf) = I(xfsxs) + 1 =2l(zf) — 1.
Since z € X4 and sz # 25 (recall that &;(z) = 1), from 1.14(b) we have

(b) I(sx€) =1(zc) — 1.
Hence

(c) U(z€) 4 I(sx) = l(zsx°)
(both sides are 2[(z€) — 1). From (a),(b),(c), we deduce

Twéswés - Nwéswéfs_l - TwETsméj-’s_l - T16TS_1T16T5_1~

The lemma is proved.

Lemma 1.18. Letecs,ic I,z € X. Let s = s5.
(a) If a;(x) =0, then T.0, = ngS )
(b) If ai(x) = 1, then Ooiy = T 10,11,
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We prove (a). We can write x = x1—x2 where 1,2 € X1 and &;(z1) = d;(
0. We are then reduced to the case where x € X1. In this case, [(x°s) = [(z€
hence I(sz€) = I(z€) + 1 (since sx® = x¢s). We then have

T Tye = Tope = Tipes = TieTs.
and (a) follows.

We prove (b). We can write x = z1 — x2 where z1,22 € Xy and &;(z1) =
1,&;(z2) = 0. Using (a), we are then reduced to the case where x = x7. Thus we
may assume that © € Xy. Since 7z = (22 — a;) — & with 2z — a; and x in Xy, we
have, using the definition and 1.17,

oo = T 0y = T Ty TV Tt = T2,

S S

The lemma is proved.

1.19. Let AX be the group algebra of X with coefficients in A. The basis element
of AX corresponding to x € X is denoted by [z]. Let AX, be the quotient field of
AX.
We use the following convention: for p = Y- _, co[z] € AX (finite sum with
cz € A) weset 0, =3 1 cl, €H.
We identify W with a standard parabolic subgroup of W via the homomorphism

o; +— s (see 1.11) where € € s. (This identification depends on s but not on the
choice of € in s.) For w € W we shall denote the corresponding element of W* again
by w. The restriction of the length function of W to W is just the standard length
function of W. Thus, the elements T,, (w € W) of Haq (or H) are well defined.
These elements, and the elements 0, (x € X) satisfy the following relations:

(a) (Tm + v_l)(Tm —v)=0, (i€l);

() TwTw = T if l(ww') = l(w) + 1(w');

(¢) 0.Ty, —Ty,00ip = (v—v"1)0L SubE

1-[-a;

(d) 0202 = 0z 1073

(e) 90 =1.
The only relation that needs comment is (c). In that relation the fraction is taken
in AX,, but it actually belongs to AX. To prove (c) we note that for fixed i € I,
the set of x € X' for which (c) holds is a subgroup of X, as one easily verifies. From
1.18, we see that (c) holds for elements x € X such that &;(z) € {0,1}. Since such
elements generate X as a group, it follows that (c) holds for all z.

1.20. The following result has been stated by J. Bernstein (unpublished; but see
[L4] for a proof).

The elements Ty, (w € W) and 0, (z € X) with the relations 1.19(a)-(e) form a
presentation of the A-algebra H.

1.21. 1In [L4] it is shown that
{Twbolw e W,z € X} and {0,Tw|lw € W,z € X}are A-bases of H.
Lemma 1.22. For any x € X we have 0, = TJ()l@wngwo.

First we note that the set of x € X for which the lemma holds is a subgroup of
X, as an easy verification shows. Hence, it is enough to prove the lemma under the
additional assumption that x € Xy (such x generate the group X).
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Let x € Xy ; then we have also —"°x € Xy. Let ¢ € s. Under our imbedding
W C W, the element wg € W corresponds to we € W?. We have

E = Nwe = T_l 9w0$ — T(_ ‘UOm)e

( )57
We must prove that T(_l) = T T_

( wgm)e u}g

to both sides), that Ty = TwOT(wow) T 1, or that T, T, = TwOT(wgw)e. In this

wo ?

or equivalently (after applying ~

equation, both sides are Tz cw, = T (ox)e, Since

) + 1((02)%) = 1) + Uwe) = 1(we) = (")),
(The first equality follows from 1.13; the second equality follows from 1.14(a); the
third equality is obvious.) The lemma is proved.
1.23. Let p — p' be the involution of the A-algebra AX defined by [z]' = [~z]
for all z € X. We extend this to a field involution T : AX, — AX,.

Let p — p be the involution of the ring AX defined by v*[z] = v~ "[x] for all
ned,xeX. Let

p=5 S acx, 5= [] (o]-1)eax,

aeRt a€eRt
A= [ @-va]) € Ax
aeRt
Then
Al = H (1—v?[-a]) € AX, A= H (1 —2%[a]) € AX,
a€ERT a€ERT
AT = H (1 —v*[~a]) € AX.
aERtT

1.24. Let x — x* be the involutive antiautomorphism of the A-algebra H defined
by T.y — T2 for all w € W,

Let x — x be the involutive antiautomorphism of the A-algebra H which takes
Tgi to itself for any i € I and takes 6, to itself for any x € X.

For i € I, let i* € I be defined by woo;wg = 0-. Let x — x* be the algebra
involution of ‘H which carries T to TG . foralli eI and 0, to O_wo, forall z € X.

Let x — x2 be the algebra automorphlsm of ‘H which carries Tgi to itself for
anyieland@to 0_, for any x € X.

1.25.  We show that

(a) (x*) "= x*

for any x € H. To do this we may assume that x runs through the set of algebra
generators T,,, 0, of H. If x = T,,, we have (x*) "= (T,,) "= T,, = TA If x = 0.,
we have (x2) "= (f_,) . It remains to show that (6_,) "= (6,)4, or equlvalently
(b) 0_, =08

(note that the involutions ~ and * commute). It is easy to check that the set of
2z € X for which (b) holds is a subgroup of X. Hence, it is enough to prove (b)

in the case where —z € A%. In this case, the left hand side of (b) is T, where
w = (—xz)¢. On the other hand, #, = ! = T:>'; hence the right hand side of (b)

is (T ')A = T;,ll = T,,. This proves (b) and hence (a).
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2. THE H-MODULES Mg, Mg

2.1. If My, M5 are H,yq-modules (resp. H-modules), a group homomorphism f :
M, — My is said to be Haq-antilinear (vesp. H-antilinear) if f(xm) = xf(m) for
all m € My and all x € Haq (resp. x € H).

2.2, Let M be the set of all formal sums m =),y maA where ma € A for all
A € X. We regard M as an A-module in the obvious way. For m € M, we set
supp(m) = {A € X|ma # 0}. ) )

For any s € S we define Ts : M — M by T5(>" , maA) =), maTsA where

P sA, if A <sA,
TA =
sA4+(v—vhHA, ifsA<A.

This defines an H,q-module structure on M. We have

Foiy {SA, if sA< A,

S

sA—(v—v1)A, if A <sA.

Let M. be the A-submodule of M consisting of all elements m € M such that
supp(m) is a finite set. Then M, is an Haq-submodule of M.

2.3. For any € € €, we set
. = E/U—d(A,Aj)A € M.,

where ¥/ is sum over (the finite set of) all A € X such that the closure of A contains
€. Let My be the H,q-submodule of M. generated by the elements e, for various
ec €.

By [L2, 2.12], [L6, 4.14], there exists a unique Haq-antilinear map b : My — My
such that b(e.) = e, for any € € €. We have b? = 1.

Let B € X. By [L2, 5.2, 7.3], [L6, 11.2], there exists a unique element B’ =
> aex:a<pa,pA € My such that

(a) b(B’) = B,

(b) Opp=1 Tlap€c€v Zv ' for A< B.

Let B € X. We can find a unique € € € such that AT and B are contained in the
same box and a unique element u € W such that u(A;) = B. By [L2, 5.2], we
have

b -
B’ = Z Tywe,ulyCe-
yeW e y<u,l(ywe)=I(y)+l(we)

By [L2, 8.3],

(c) {B’|B € X} is an A-basis of My.
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2.4. For any € € €, we set
el =% (—v)" MM 4 e M,

where ¥/ is as in 2.3. Let M/, be the Hag-submodule of M, generated by the
elements e, for various € € €.

Given € € €, we define a bijection v : M — M by (3, mad) =3, my(“A)
where w € 7 is the unique element such that “A> = A7.

For any x € Haa,m € M we have ¢(xm) = x°¢¥(m). (Notation of 1.6.) The
proof is entirely similar to that of [L.2, 2.10]. From the definition we have ¢(e) = e,
for any € € €. It follows that 9 restricts to an isomorphism of groups Mg — M),.
We can now transfer the results in 2.3 to M/, via ).

Let B € X. We can find a unique € € & such that AZ and B are contained in
the same box and a unique element v € W such that u(A}) = B. Then

— E o n—1_1
Bb = Wywe,uTy €

yeW e y<u,l(ywe)=l(y)+l(we)

is a finite linear combination of alcoves A > B so that the coefficient of A is in
v Zv7if A> Bandis 1if A= B.

2.5. Let M> be the set of all m € M such that supp(m) is contained in a set of
the form {B € X|Ay < B} for some Ag € X. This is an Haq-submodule of M.
For B < A in X we define 1Ty , € Z[v™'] inductively by II; 5 = 1 and

(a) Z g pllp,c = dp.c
DeX;B<DLC
for B < Cin X. Note that Iy 4, € v~ 'Z[v™!] for B < A.
For B € X let B =Y, v p 415 4A € M>. Let b: M> — M be the
Haq-antilinear map defined in [L6, 9.6]. By [L6, 12.2], we have
(b) b(B*) = B,

2.6. For any k € X,q we define (cf. [L3, 9.3])

P= Y wEmEem ey
ni,...,ny, EN
niai+-+n,a, =K
where aq, ..., q, is a list of the positive roots. For any € € €, we set
€e = Z P(k)ey . € M>.
KEXad

Theorem 2.7. For any € € € we have (A])* = é..
This follows immediately from [L2, 11.9] and [L3, 6.12, 9.2].

Corollary 2.8. Let B € X. We associate € € € and uw € W* to B as in 2.4. We
have

(a) Bt = Z w;wé’uf’_lée.
yeEW sy <u,l(ywe)=1(y)+l(we)
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The proof is by reduction to the special case considered in 2.7. Let B be the
right hand side of (a). Using the definitions we have for any x € X,q

/\o 1 _ 2 : o —1_1
(Cu) e/i—i—e - ‘B 7-‘-y'uuem,T’y e/i-‘ré
yeEW o y<u,l(ywe)=l(y)+l(we)
where

P = Z (—U)Ql(w)_y;

weWe

hence (c},)°€e = PB. Since (c,)° is fixed by = : Haq — Haa and é. :~(Aé_)ﬁ is
fixed by b : M> — M>, it follows that (c})°¢. is fixed by b (recall that b is Haq-
antilinear). Hence, BB is fixed by b. Since B = P, it follows that B is fixed by
b.

From the definitions we have

Using the properties of (k4 B), (see 2.4) and the definition of P(k), we see that
B is a formal linear combination of alcoves A > B so that the coefficient of A is in
v~ 1Z[v™1]if A> B and is 1 if A = B. By the characterization of Bf given in [L6,
12.2], we see that Bf = B. The corollary is proved.

2.9. Let My be the A-submodule of M spanned by {Bf|B € X} (which is then
an A-basis of My). From [L6, 13.10] (which is applicable in the present case) we
see that My is an H,q-submodule of M. From 2.8, we see that My is in fact the
Haa-submodule of M generated by the elements €. for various e €~@.

The restriction of b : M> — M to My will be denoted again by b. It is clear that
b: Mg — My can be characterized as the unique H.q-antilinear map My — My
which maps €. to itself for any ¢ € €. We have

(a) Mgy C M, C M,.

(The first inclusion is obvious; the second inclusion follows from [L6, 13.10(b)] which
is applicable in the present case.)

2.10. Let M = A[X] ® 4 M where A[X] is the group algebra of X over A.

For « € X, m € M we shall write ,m instead of t ® m € M. In the case where
v =z with z € X, we shall sometimes write ,m instead of zm.

Using the definitions, one checks that the operators T, : M — M, (we W*)
and T, : M — M, (/ € X) given by

Tw(bm) = L(T*Lw(m))a TL/(Lm) =+,
(where m € M, € X) define an H-module structure on M. Let
Me=AX] @M., Mg =AX] @4 My, Mg=AX] R4 M,.

Then My C M. C My are H-submodules of M. (See 2.9(a).)

Note that Mg (resp. M) is generated as an H-module by the elements ge.
(resp. oéc) for various € € €.

There is a unique H-antilinear map b: My — My (resp. b: My — M) which
maps e, to itself (resp. o€, to itself) for any € € €. Indeed, the map ,m +— ,(b(m))
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(resp. ,m — ,(b(m))) has the required property. The uniqueness follows from the
previous paragraph.

Let B € X and ¢ € X. There exists a unique element in My which is fixed by b
and is a finite linear combination of elements ,A with A € X, A < B such that the
coefficient of ,A is in v Z[v™1] if A < B and is 1 if A = B. This element is in fact
B

Moreover, there exists a unique element in My which is fixed by b and is a formal
linear combination of elements ,A with A € X, A > B such that the coefficient of
JAisin v™'Z[v™1] if A> B and is 1 if A = B. This element is in fact ,B*.

Clearly, {,B°|B € X,, € X} is an A-basis of My and {,B¥|B € X,1 € X} is an
A-basis of M.

Lemma 2.11. If € = x+ ¢ for some x € Xy, then, with the notation of 1.9, we
have Tr, AY = A7 (equality in M ).

Let w = Ter,n = l(w). By [L2, 3.6] we have d(Al,w(AT)) = n. Hence, there
exists a sequence s1, So, ..., S, in S such that w = sps,_1...51 and

AT < 5147 <5981 AT < - < spspo1 .. 5147 = w(AS).

Then TSIA;‘: = 31542‘,TS2(31A;") = 3251AJ,T53(3231A2‘) = 535951 A7,...; hence
Tw(AD) =T, ... Ts, (AT) = w(AF). The lemma follows.

Lemma 2.12. Let e € €. Let x € X4. In the H-module M, we have
Tmé (OA:_) = —1A:+e'

We set 7 = Tyic. Using the definitions and Lemma 2.11, we have T (0AT)
=T_,T:(0AFT) = _zAzte. The lemma is proved.
Lemma 2.13. For any € € s and any v € X we have in the H-module M:
0:(0AT) = 2 AT ..
We choose =1, 29 € X4 such that x = x; — x5. It is enough to show that
Tas (0AT) = Tog (va—os A, _ayiee):

The left hand side equals _, AY |, (see 2.12). The right hand side equals

‘A + _ T T +
TI§T£2_£1 (OArl—Iz—‘rE) - T£2_£1Tw;1712+5 (OAml—m2+e)
T + _ +
- le—ll (—$2A11+e) - —11A11+e'

(The second equality again follows from 2.12.) The lemma is proved.

2.14. We define an AX-module structure . on M (extending the .A-module struc-
ture) by

(2] . LZmAA = ZmA(;v' + A).
A A

Lemma 2.15. This AX-module structure commutes with the H-module structure

on M.
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Let s € S,z,2/ € X,A € X. We show that [2/] . (TszA) = Ts([z'] + ,A). Let
s',s" € S be defined by x + ¢ = s and x — 2’ + s” = s (hence s =2’ + §).
Assume first that s’A > A (hence s”(x + A) > (z + A)). Then

(2]« (Ts(2A)) = [2] 4 o(s'A) = 4w (2/ + 5 A)
= ow (@ + )@ + A) = Ty(o—u (@’ + A)) = Ts([2] . 5 A).
Next assume that s’A < A (hence s”(z + A) < (z + A)). Then
2]+ (Ts(2A) =[]+ (o(s" A+ (v =071 A))
= o-a (@ +54) + (v =072 + 4))
= o (@ + 8@+ A)+ (v—v (@ + A))

Next assume that z,z’, 2" € X. We have
[x/] . Ty/ (zA) = [517/] catar A= z+r”—r/(x/ + A)

= N&” (z—a (2" + A)) = Tg”([z/] - (24)).
The lemma is proved.

Lemma 2.16. Let 1 € X, ¢’ € €. In M we have A . e = ,e,.

€
This is just a reformulation of the definition of é..

2.17. Letie€ I,z € X. In the following computation (in M4 ) we use the commu-
tation formula 1.19(c), the equality “"p = p — ; and the identity T, (oee) = v(oee):

Toi9m+p(()ee) = ogi(z-l-P)Tai (Oee) + (U - 'U_l)e z+ﬂ1:[ii@]+p) (Oee)

= (v0eiztp—a, + (v — 00 g (7iatpa ) (0€)

—[—a;

= (U_19[0771+P]*[1+0<7:+P] + 0 oz ip)-Zia—as+0 ) (0€€)-

[o]—1 log]—1

2.18. Leti € I,z € X. In the following computation (in M) we use the com-

mutation formula 1.19(c), the equality “ip = p — «; and the identity T,,(0€c) =
_1 ~
—v" " (0€e):

Tm@r(Oée) = Gairfm (0€e) + (v = 0710 a7 (0€c)

T—[—a;

= (—’U_lodiz(()ée) + (U - ’U_l)o[f,i[,[aiﬁ] (Oéé)

= (U_19[f’w1—[z+ai1> F 00 tas)-Fizta;) ) (0€e)-

fog]—1 [o]—1

3. INNER PRODUCT ON My, My

3.1. Note that Mg, M., My are AX-submodules of M (as in 2.14). Indeed, for
Be X and z,2' € X, we have

(a) [2] 2 2B’ = w2’ + B).
(b) [2'] .2 B* = . (2 + B)".

The elements , B” (resp. ,B*) where ¢ runs over X and B runs over the set of alcoves
contained in a fixed box form an AX-basis of Mg (resp. of Mg ); the number of
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such elements is well known to be |W|. For My this follows from (a) and 2.3(c);
for M this is seen in a similar way.
On the other hand, the elements , A where ¢, A run over the same set as above,
clearly form an AX-basis of M. Therefore, we see that
(¢) Mg, M, My are free AX-modules of rank |W|.
Tensoring the inclusions of AX-modules Mgy C M, C My with AX, (over AX)
we obtain inclusions of AX ;-vector spaces of dimension |W|

AXq@)Md/ CAXq®MC CAXq®Md

which are necessarily equalities. We denote the resulting (single) AX ;-vector space
by M,. Note that we have naturally Mgy C M, C My C M,.

From 2.15, we see that the H-module structure on Mg extends by AX ,-linearity
to an ‘H-module structure on the AX,-vector space M,. This can be further
extended to an H-module structure on M, ® AX; where AX] is an algebraic
closure of AX,. This is a “generic principal series representation” of H; hence

(d) any AX;—subspace of Mg ® AX:Z which is an H-submodule is either 0 or
My AX ;,

3.2. Let (,) : M. x M. — A be the A-bilinear form defined by (,A4,,A") =
8,04 4 for e,/ € X and A, A’ € X.

Lemma 3.3. Let m,m' € M., w € W“,x € X. We have
(a) (m,m’) = (m’,m),
(b) ([EC] «m, [55] . m/) - (m, m’),
() (Twm,m’) = (m,Ty-1m').
(a) and (b) are obvious. It is enough to prove (c) when either w € W% or
l(w) =0. If we W, then (c) follows from [L6, 9.2]. It remains to prove (c) in the

case where w = 1" for some ¢/ € X. We may assume that m = ,A,m' = /A’ where
t,t' € X and A, A’ € X. We have

(Tb”m7m/) = (A”—HAa L’AI) = 6A”+L,L’6A,A’ = 5L,—L”+L’5A,A’
= (LA7 —L”—i—L’AI) = (ma T—L”ml)~
The lemma is proved.

3.4. Let (]): M. x M. — AX be the pairing defined by
(mlm') = >~ (m, [2] . m")[a].

zeX
Lemma 3.5. Let m,m’ € M.,w € W,p e AX. We have
(a) (m|m') = (m'|m)",
(b) (p.m|m) = (m|p! .m') = p(m|m’),
(©) (Twm|m') = (m|Ty-m’).
(a),(b) follow immediately from 3.3(a),(b), while (c¢) follows immediately from
3.3(c) together with 2.15.

Lemma 3.6. (a) Let ¢,i/ € X and let A, A" € X. Then (LA|,A") equals [x"] if
there exists x"' € X such that « = —2'",A = 2" + A’ and is equal to 0,
otherwise.

(b) Let A, A" € X be alcoves whose closure contains €. Then (0 A|oA’) = 4, 4r.
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(c) We have (oecloec) = > ew p—2k(w) |
We prove (a). We have
(Al,A") = Z (A, 1—ar (2" + A))[2"] = Z 2]

z''eX 2 ex
1=t —z

A::E”—‘,—Al

and (a) follows. Now (b) follows from (a) since for € Xaq—{0} we have A # z+A’.
This proves (b). Now (c) follows immediately from (b) using the definition of e..
The lemma is proved.

1"

Lemma 3.7. There exists a unique pairing (|) : Mg x Mg — AX, such that

(i) (p.m|m’) = (m|pt.m’) = p(m|m’) for all p € AX,,m,m' € M,,

(ii) (xm|m') = (m|x*m') for all x € H,m,m' € M,

(i) (oecloee) = D e v 21,
(x* as in 1.24.) This pairing satisfies automatically (m|m’) = (m/|m)" for all
m,m’ € My. Moreover, the restriction of this pairing to M. x M, coincides with
the pairing in 3.4.

Let (])1 be the pairing (]) : M, x M, — AX, obtained by extension of scalars
from AX to AX, of the pairing in 3.4. This pairing satisfies (i)-(iii), by 3.5.

Now let (])2 be another pairing (]) : My x M, — AX, that satisfies (1)-(iii).
Since (|)1 is non-singular (see 3.6(b)), there exists an AX ;-linear map ¢ : My, — M,
such that (m|m’)s = (t(m)|m'); for all m,m’ € M,. For any x € H we have

(tOxem)|m )1 = (xmlm')z = (mix*m')2 = (t(m)[x*m')1 = (xt(m)m),
for all m,m’. Since (|); is non-singular, it follows that t(xym) = xt(m) for all
X € H,m € M,. Using 3.1(d), we deduce that there exists { € AX, such that
t(m) = ¢m for all m € M,. Thus, (m|m’)s = ¢((m|m'); for all m,m’ € M,.
Since (iii) holds for (|); and for (|)2, it follows that ( = 1. Thus the existence

and uniqueness of (|) is established. The remaining statements are clear from the
construction. The lemma is proved.

3.8. Let 4 be the ring of power series in v~! with coefficients in the group ring
Z[X]. Note that AX is naturally a subring of {L.

Let pi be a family of elements of AX indexed by a (possibly infinite) set K.
Write px, = >, cz Penv"™ Where py, € Z[X]. We say that the sum ), pr is
convergent in 4 if

(a) for any n € Z there are only finitely many k € K such that py, j # 0;
(b) there exists ng € Z such that p, , =0 for all n < ng and all k € K.

Then we write Y, Pk = p where p=3" (>, cp Pnk)v™ € Lh

Lemma 3.9. Let 1,0/ € X and let m = 3 oy maA,m' =3 oy myA be two
elements of M>. Here ma,m/y, € A. Assume that A.,m € M, A.,m' € M,.
(For example, this assumption is verified if m,m’ € My, by 2.8, 2.16.)

(a) The infinite sum
(Lm|um')’ = Z Z mAml_m//_,’_A[l'//]
' eX =1 —z" AcX

is convergent in ; thus, (,m|,m’) € 4.
(b) We have AAT(,m|,m') € AX.
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(c) We have AAT(,m|,m') = AAT(,m|,m') in AX,.

For any B € X let r(B) = Y, P(k)(k + B) € M>. This extends to an

A-linear map r : M, — M>.

We have A . [z]m = [z]m, A . [2')m = [2']m where m,m € M.. From the
definitions we have m = r(m), m’ = r(m/).

Conversely, if we are given m,m’ € M., then m = r(m), m’ = r(m') satisfy the
assumptions of the lemma. Hence, it is enough to prove the lemma for such m,m’.
We may assume that m = B,m’ = B’ for some B, B’ € X. We have

ma = Z P(k), m'y = Z P(k).

Kk;A=Kk+B k' A=K'+B’

KEXaq

The infinite sum in (a) is then

(d) > Y. PRPH)"].
KK zex

’
L=l —X

k+B=a"+r'+B’

"

This is clearly convergent in i, by the definition of P(k).

We have A =37 P(y)[y] (finite sum) where P(y) € A are such that

ZP(KJ)P(% = Y) = a0

for any 2o € Xaq. Hence, if we multiply the power series (d) (in L) with AAT, we
obtain

Yoo >, PwPE)PWPW)" +y -y

K,k =>4

v,y v=t—z
k+B=z""+r'+B’

"

We make a change of variables (k,’,y,y’,2") — (20, 2(,y,y, ) where zg = Kk +
y, =K +y',z2=2"+y —y'. We obtain the sum

> > P(xo —y)Pxh — ') P(y) P(y')[2]
0,2, EG/X
VY ot B=ztal+ B’

=2 Yo woduolzl= Y [l =(BlB).

0, 2€X z€X
1=t —2z 1=1t'—2

wo+B:z+w6+B' B:z—i—é/
The lemma is proved.

Lemma 3.10. Let 1/’ € X and let B, B’ be two alcoves in the same box. Then

(LBb|L,B/ﬁ) - 6L,L’6B,B’-
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Since both ,B’, s B’ are contained in My, the inner product may be computed
by the method of 3.9. With the notation in 2.3, 2.4 we have

(ABb|L’B/u)
= () TapA) (Y T ,A) = > > Taplp 04z
AeX AeX z''ex AeX
= Z Z A, pI 0y pr al2"] = Z [2"].
z”eX” AeX z''ex ,

1=t —2z' v=1t —z’

B:w”—FB/
(We have used 2.5(a). We have used the convention that Il p = 0 for A £ B
and Il 4, = 0 for B £ A.) Since B, B’ are alcoves in the same box, we have
B=12"+B = 2" =0. The lemma is proved.

Lemma 3.11. (a) Mg ={m € My|(mlm’) € AX VYm' € Mgy};
(b) Mg ={me My|(mm') ¢ AX ¥Ym' e My}.

Let M’ be the right hand side of (a). By 3.1 and 3.10, there exists an AX-basis
(mj) of Mg and an AX-basis (m’) of My such that (m;[m;/) = d;; for all j, j".
Hence, My C M’. Conversely, let m € M’. Since (m;) is an AX ¢-basis of M, we
have m = 3, ¢;m; with ¢; € AXq. We have ¢; = (m|m]) for all j. By assumption,
for any j we have (m}, m) € AX; hence ¢; € AX. Hence, m € Mg . This proves
(a). The proof of (b) is entirely similar. The lemma is proved.

Lemma 3.12. For any m € Mg, m' € My we have
(b(m)m") = (mlb(m")).

It is enough to prove this for m (resp. m’) running through a fixed AX-basis of
Mg (resp. of Mg). The result therefore follows from 3.10.

3.13. Let Z((’U_l)) be the ring of power series in ,U—l with coefficients in Z. Let
p — p© be the group homomorphism Z[X] + Z given by [x] — ds.0.

Let & : 4 — Z((v™')) be the group homomorphism given by Y-, ppo™ —
Ynez pvm; here p, € Z[X).

Lemma 3.14. We have
(a) {m e M. 0(mlm) =1} ={£+,Blt € X,B € X},

(b)  {m € Mglb(m) =m,d(m|m) € 1 +v 1 Z[[v ]} = {£.B*. € X, B € X},

(¢) {me Mglb(m)=m,d(m|m) el +v Z[[v" ]} = {£,B’|re X,Be X}.

Let ¢,// € X, and let B, B’ € X. By 3.6(a), we have d(,B|,B’') =6, 05 5. We
have

O(B[vB") = Tapla po(AlsA) = Tla Iy pb.06a.a
A,A A,A

= ZHA,BH%,B'(SL,U =0,.,0B,B + v 1 Zw™.
A
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Using 3.9 we compute
O(B*|sB") = > Ty 41 4 0(AlA") = Ty Al 4/6,004.a
A, A A, A
= > M 4Tl 48 = 60 + 0™ 2]
A

These computations show that the right hand sides of (a),(b),(c) are contained in
the corresponding left hand sides.

We now show the converse. Let m be in the left hand side of (a). We write
m = ZLGX’AGX m,, a(,A) (finite sum with m, 4 € A. By the earlier part of the
argument we have d(m|m) = 3_, 4 m? 4. Thus, DA m? 4 = 1. This implies that
there exists ' € X, B € X such that m, 4 = £,,/04,5. Thus, (a) holds.

Next, let m be in the left hand side of (b). We write m = 3" .y 4cx m, a(,A).

By the earlier part of the argument we have

d(m|m) = ZmLA mod v~ Z[[v™]].

Thus,

me)A =1 mod v 'Z[v™1]).
LA

This implies that there exists ' € X, B € X such that
m, o= +8,,04p moduv 'Z[v].
But m, 4 € Ais fixed by ~ : A — A. Hence, m, 4 = £0,,,04 5. Thus, (b) holds.

An entirely similar argument shows that (¢) holds. The lemma is proved.

3.15. We have

(a) (0€cloée) = (AAT)! Z p 2 w),

weWw

Indeed, using 2.16, we see that this is equivalent to the identity (pel|oel) =
> wew v 2™ which is proved in the same way as 3.6(c).

4. THE H-MODULES AXS?, AXS?
4.1. W acts on AX by

p= Z cilz] — “p= Z co[Vz] € AX.

TEX TeEX

Let AXY denote the subring of W-invariant elements in AX. The following result
is due to J. Bernstein (unpublished; see [L4] for a proof).
Ifpe AXY, then 0, is contained in the centre of H.
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4.2. Let e € s. For any 2/ € X we have [2/] . Al = 0./ (0A}). (Both sides are
equal to _, A}, see 2.13.) It follows that
Db OA: = 910(014:_)

for any p € AX. Assume now that p € AX" in the previous equality. Apply Tuj 1
(with w € W) to both sides of that equality and use 2.15, 4.1. We obtain

pe (T, (0AD)) = 0,(T, ' (0AT)).

Now T,; AT is equal to A’, the most general alcove whose closure contains €. Since
e is arbitrary in s, we obtain that p.oA’ = 0,(pA’) for any A’ € X. It follows that

(a) p+(om) = Op(om)
for any m € M and p e AXW.
4.3. We set
AX®? = AX @ yow AX.

This is an AX" -algebra in a natural way.
In the remainder of this paper we fir € € s.

Lemma 4.4. There is a unique A-linear map f : AX®* — Mg such that
(a) f([z] @ [2]) = Uyaw-i-p([x/ + ploee)
for any x, 2’ € X. Moreover, f is an isomorphism of A-modules.

The fact that (a) defines a linear map f as claimed follows from 3.1, 4.2. Let
Im(f) be the image of f. Using 1.19(c), we see that for i € I and z,2’ € X, the
element T,,0,.([z'] - pec) is an A-linear combination of

Ooi Ty, ([2'] « 0€) = V0e: o ([2] + 0€c)

and of elements 0z ([2'] . pec). (We use that Ty, (gec) = voee.) Thus,

(b) Ty, (Im(f)) < Im(f).
Since Im(f) is stable under the operators 6,, for x; € X, from (b) it follows that
(c) Im(f) is an H-submodule of Mg .

(Recall that the algebra H is generated by the elements Hml,Tgi.) For any 2/ € X
we have

(d) —w€rte = @] v oee € Im(f).

Applying to the element (d) the operator Tl/ € H, we get the element ge,/ 4. which
by (c¢) must belong to Im(f). Since any element of € is of the form 2’ + € for some
' € X, we see that

(e) o€ € Im(f) for any € € €.

Since the elements (e) generate the H-module My, we see using (d) that Im(f) =
My Thus, f is surjective. We shall regard My as a AX-module under the .-
action; we shall regard AX®? as an AX-module by [z1]([z] ® [2']) = [z] ® [¢/ + z1].
Then f is a homomorphism of AX-modules. Since f is surjective, to show that it
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is an isomorphism, it is enough to show that Mg and AX®? are free AX-modules
of the same (finite) rank. For M, this follows from 3.1(c).

By [P], AX is a free AX"-module of rank |W|. It follows that AX®? is a free
AX-module of rank |W|. Thus, f must be an isomorphism. The lemma is proved.

Lemma 4.5. There is a unique A-linear map f: AX®? — My such that
flz] @ [']) = (=1)"v™ 0. ([2" + 2p] + 0&c)
for any x, 2’ € X. Moreover, f is an isomorphism of A-modules.

The proof is entirely similar to that of the previous lemma; we replace e, v, ...

by é.,—v™', ... respectively.

Lemma 4.6. In the H-module structure on AX®? obtained from that of Mg via
the isomorphism in 4.4, we have, fori € Iz, ', 2" € X:

: _ v (] = o+ ad) + oz +ai = [Tw - i)

@ Toulla] o 1) = o o)
(b) O ([2] ® [2']) =[x + 2"] @ [2'].
This H-module structure on AX®? is denoted by AXG?.
To prove (a) we may assume, by 2.15, that ' = —p. In this case, (a) follows

from the computation in 2.17. The proof of (b) is immediate. The lemma is proved.
Lemma 4.7. In the H-module structure on AX®? obtained from that of Mgy via
the isomorphism in 4.5, we have, fori € I, z,x’', 2" € X:

(a) iﬂﬂ®WD=”"Pﬂ_h+%%$%?+w‘V%+mn

® [2'],

(b) O ([2] @ [2]) = [z + 2"] ® [2].
This H-module structure on AX®? is denoted by AX?2.

To prove (a) we may assume, by 2.15, that ' = —2p. In this case, (a) follows
from the computation in 2.18. The proof of (b) is immediate. The lemma is proved.

4.8. By transferring the H-antilinear map b : Mg — Mg to AX?P via the
isomorphism in 4.4, we obtain an H-antilinear map AX%? — AX$? which is de-
noted again by b. From the definition, this map keeps fixed each of the elements
v Y[—p] @ [2'] (with 2’ € X), which correspond to _g/—p€p/4pte € M.

Similarly, by transferring the H-antilinear map b : My — My to AX ?2 via
the isomorphism in 4.5, we obtain an H-antilinear map AX ?2 — AX ?2 which is

denoted again by b. From the definition, this map keeps fixed each of the elements
(=1)"v*[0] @ [2] (with 2’ € X) which correspond to _;€y/42p+e € Mg.

Lemma 4.9. Let z,7’ € X. We have
(a) b([z] @ [']) = v T (["ox — 20] @ [2])  in AXE?,

(b) B[] @ [2]) = (- )0 Tl ([(a] @ [f]) in AXGE,
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We prove (a). In the H-module AX$? we have Ty, ([—p] ® [2']) = v[—p] @ [2/] for
any ¢ € I. Applying this repeatedly, we see that Ty, ([—p] ® [2']) = v [—p] @ [2'].
Since b is H-antilinear and keeps [—p] ® [2'] fixed, we have
b([2] ® [2']) = b(Or+p([—p] ® ['])) = Ousb([—p] ® [a])
= 072 T 0o (0t p) Ty ([ 9] © [2']) = 072 0 T o ([—p] @ [2'])
— T ([ — 20l @ 1)
where we have used 1.22. This proves (a). The proof of (b) is entirely similar.
Lemma 4.10. (a) The A-linear map h : AXG? — AXS? given by [2] ® [2']
Alz] ® [2] is H-linear. )
(b) The A-linear map h' : AXG? — AXS? given by [z] @ [2] — Afz] @ [2] is
‘H-linear.
To prove (a) it is enough to show that, for any ¢ € I and for any x,2’ € X, we
have
M)t ) olle o] — (e — o)

. o -1 =]
V(A ]~ Alr o) + oA+ o~ Al o)
= ® [z'].
[Oéi] —1
Since 7 A = A%«‘w, this is equivalent to the identity

v ([7a] = [+ i) Fo([r+ai] = [T - a))
_ ol =vai, , G L=, }
=0~} 1= 2[o] [7x] = [z + oi]) + v([z + o] T o] [z + o)

in AX,, which is easily verified. This proves (a). One can prove (b) in the same way
as (a). Alternatively, we can argue as follows. Since AAT € AXW | the composition
hh' @ AXS? — AX$? is the ‘H-linear map given by

[2] © [2'] = (AAz]) @ [2'] = [o] © (AAT)[2].
Hence, for any x € H,m € AX$? we have hh/(xm) = xhh'(m) = h(xh'(m)). (The

last equality follows from (a).) Since h is injective, it follows that h'(xm) = xh'(m).
The lemma is proved.

Lemma 4.11. We have a commutative diagram of H-modules

AXE2 L Ax®?

/| 7|

My — My
where the lower horizontal map is the obvious inclusion, f, f are as in 4.4, 4.5 and
the upper horizontal map is given by [z] ® [2'] — Alz] ® [2/].

An equivalent statement is that
(_1)VU_ZV9591([5C/ +2p] v 0€e) = UV9w+p([x/ + ploee)

for all z,2’ € X. To prove this we may assume that x = 2’ = —p. Thus, we must
prove that the images
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(a) (=1)"v=2"0x 1y ([p] « o), v"0ee
of [—p] ® [—p] under the two possible compositions in the diagram are equal. Since
these compositions are H-linear (see 4.10) and the vector [—p] @ [p] € AXE? is in
the kernel of T,,, — v for any i € I, the first vector in (a) is also in the kernel of
T,, — v for any i € I. Hence,

(b) = B0 ([p] « 08e) = Oa(_([p] + 0Ce)

where ¥ =3 v T and = > wew v 2. To show that the two vectors
in (a) are equal, it is enough to show that they become equal after applying A. to
them. Hence, using 2.16, it is enough to prove that

(=1 =051 (0€r) = v" A[—p] « e,
or equivalently, that
Oa1_p X" (0AT) = v*"S0a 1 (0AT)
(the last expression is equal to v3*X(A[—p] . 0AT) by 4.2). Here,
¥ = Z sgn,v! (WYL
weWw

Hence, it is enough to prove the equality
(c) Oal-p 2" =0T

in H. Now applying A[p]. to the two sides of (b), and using again 2.16, we obtain
w‘lEGA[_p] (06’6) = GA[_p] (062); hence

77_1295[_p]2*(0142') = GA[_p]E*(()A:—)
From this we deduce that
(d) W_IEGA[_,)]E* = 95[_/)]2*

as elements of H. To this equality we apply the antiautomorphism of the ring H
such that 6, — 6, for all z € X, Tgi — TNUI, for all i € T and v™ — (—v)™™ for all
n. This carries 7 to v?¥7, ¥ to v*¥*, ¥* to (—v)YE, and OA[—p) t0 Oa[—,). Hence,
from (d) we get the equality

(e) v‘”w‘lEGA[_p]E* = EGA[_p].
In view of (d),(e), the desired equality (c) is equivalent to:
SO T = v S0A T

To prove this, we set j, = £6,3* for any p € AX. The argument in [L3, 7.3] shows
that ju, = sgnyj, for any w € W,p € AX. In particular, jai_, = (—=1)"juwo(A[—p))-
Hence, to show the desired equality jxj_, = v?j A[-p], it suffices to show that

Y (A[=p]) = (=1)"v* A[-p].

This is immediate from the definitions. The lemma is proved.
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5. INNER PRODUCT ON AX$? AXS?
5.1. Let (,): AX x AX — AX" be the symmetric pairing defined by

(@) (pp) =071 3 ew senw” (o2’ [P))-

(0 is as in 1.23. The fraction in the right hand side is taken in AX,, but in
fact it belongs to AX and even to AX".) This pairing is clearly AX" -bilinear.
Hence, by extending the scalars from AX" to AX we obtain an AX-bilinear pairing
() : AX®? x AX®? — AX such that (pRq: p'@¢) = (p,p')qq for p,p',q,q € AX.
(AX®? is regarded as an AX-module by p'(p ® ¢) = p® (p'q).)

Given x € H, we will sometimes write ¢ y (resp. ?x) for the action of x in AX%?
(resp. AXG?).

Lemma 5.2. For any x € H and £,£' € AX®?, we have
(a) (1R€: &) = (€, 7x¢).
Let Hi be the set of all x € H such that (a) holds for any £,{'. Clearly, Hy is a

subalgebra of H. Therefore, it is enough to show that x; contains 7, for any ¢ € I

and 6, for any z € X. The fact that 0, € H; is immediate. It remains to show that

for i € I, x = T,, satisfies (a). We may assume that £ = [z] ® [y],&’ = [2'] ® [V']

where z,2',y,y € X. The equality to be proved is then

v H([%x] - [+ o)) Fo(fr + o] = [T+ a]) |
o )

v ([T ] — [+ au]) + ol +oa] — [T — o))

[ai] =1

(

= ([=], ).

From the definitions, we see that, if p1, p2, p3, ps are elements of AX, then, in order
to have (p1,p2) = (ps, pa), it is sufficient that
p1p2[p] — p3palp] is fixed by o;.
Hence, it is enough to show that
v ([Tt +pl - [r+a' +pta]) Fo(z+a' +ptai] - [Tr+a’ +p+ i)
[a;] =1
v x4+ % +pl—[r+ 2"+ p+ai])tv(z+ 2+ p+ ] —[r+ T2+ p— i)
[ai] =1

is fixed by oy, or that

v %+ 2+ p) —v[Tiw + 2+ pt o] —v o+ T+ p] F oz + T+ p— ay)
] =1

is fixed by ¢;. This is easily checked. The lemma is proved.
Lemma 5.3. Let x € H and let £,&' € AX®?. Then

(a) (Ae1)(TRE:¢) =(Aa1E: “x¢),

(b) (ATe1)(Tx)E: €)= (AT 1)E: x¢).
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Using 4.10, the identities to be proved can be rewritten as

(XAe1E:¢) = (A 1)E: “x¢),
(Tx(AT @1 ¢) = (AT @ 1)e: yg).

These are special cases of 5.2(a). The lemma is proved.
5.4. Let o: AX®? — AX®? be the A-linear map defined by

o(p1 ®p2) =""p} ® p}

for p1,ps € AX. Clearly, o is AX-semilinear with respect to the involution p — pf
of AX. From the definitions (see 1.24) we have (both in AX$? and in AX$?):

(a) x* o (§) = o(x¢)
for all y € H,& € AX®2. From 1.22, we see that

(b) (9_96)* =0_wog
for all x € X. Hence, (a) implies

(€) O-woy o (&) = o(6:€)
for all 2 € X (both in AX%? and in AXF?).
Lemma 5.5. Let £,& € AX®2. We have (£ : o(€)) = (o(€) : €)T.

We may assume that £ = [z] ® [y],&’ = [2'] ® [y'] where z,2/,y,y’ € X. We have
):

(€:0(€) = ([, [="2Dly — v, (o(§) : &) = ([="2], D=y + ¢/]-

Thus, it is enough to show that ([z], [~*°2']) = ([~*°z], [2'])T. We have
(], [=02]) = 571 D7 sgna"le ="’ +p] =571 Y sgnun, e =02’ + 4]
wew w'eW
=310 3 sam [ w ol 4 gl = (0], )
w' eW

The lemma is proved.

5.6. Let Ty : AXG? — AXG? Ty : AXG? — AXT? be the A-linear maps defined
by

Lar(€) = T 0 (€),  Tal€) = Ty o (€)-
Lemma 5.7. We have
(a) Far("x€) = “X"Twé,  Ta(*x) = X Tat
for all x € H, & € AX®?. (x® as in 1.24.)

To prove (a) for 'y it is enough to consider the case where y = T, or x = 0.
In the first case, we have by 5.4(a) (the H actions are on AX$?):

Ty (Tﬂxf) = Two ¢ (lef) T T (5) = TdiTwo < (f) = Tﬂird/é
In the second case we have by 5.4(c) and 1.22:
L (026) = Ty © (026) = Ty O—woz © (&) = 0_pToy © (€) = 0_oT /€.

This proves (a) for I'y,. The proof for T'y is entirely similar.
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5.8. For £,& € AX®? we set
(a) €] &)a = ()" (A DTa(E)) € AX,

(b) (€ 1€)a=(—v) " (AAT) T (¢ (AT @ D)My(¢)) € AX,.
Lemma 5.9. For £, € AX®?, we have
(AeE| (A1) )a=(E]€)a-

An equivalent statement is:

(o) (AAD) T (A e )¢ (AT @ DRg(A®@1)¢)) = (—v) (€ : (A @ 1)Tw ().
The left hand side equals
(—o)"(AANTH((ATA @ 1)¢: Ta((A @ 1)¢))
(=) (AAN) (1 @ ATA)E : Ty, 0 (A @ 1)E))
(=) (AAN)TIATA( T (A @ 1) 0 (€)
(o) (€ (A @) Ty 0 (€) = (€1 €)a

(The first equality holds since ATA € AXY; the third equality holds due to 4.10
and the identity ATA = v AAT.) The lemma is proved.

Lemma 5.10. For £,¢' € AX®? we have (€ | €)ar = (€' | &), (€1 €)a= (€' |6},
We have
€A1y, () = (A®1)E: Ty o
= ((A®1)¢: Tuy (€)' = (A 1) 0 (€) : Tuo(
= (€ (A1) Ty, 0 (9)

where the action of Two is in AX ?2. (The first and last equalities are obvious.
The second equality follows from 5.4(a). The third equality follows from 5.5. The
fourth equality follows from 5.4(a), since z — —%oz is a permutation of R*. The
fifth equality follows from 5.3.) Thus the lemma is proved in the case of AX 2332.
The proof in the case of AX ?2 is entirely similar. The lemma is proved.

Lemma 5.11. Let p € AX. For &, € AX®? we have

(@) (L@p)|&)a =pE|E)a = (&| 1 @pPHE)a,
(b) (L@p)|&)a=p(E|)a= (| 1@p"E ).

The first equality in (a) is obvious from the definition. The second equality in
(a) follows from the first using 5.10. The same applies to (b).

Lemma 5.12. Let y € H. For any &,& € AX®? we have
(a) €1 xENa = ("X €)ars

(b) (€1X€Na = ("X*¢ [ €)a-
(x* asin 1.24.)
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We prove (a). Using 5.3 and 5.7 we have

(€1 9% e = (=0) (€ (Ae Dl () = (—0) (€ (A@ )X Ta(¢))
(—0)"(x*) ¢ (A Dla(€) = (—v) " ((x*) "€ [ §)-
It remains to use 1.25(a). The proof of (b) is entirely similar. The lemma is proved.

Lemma 5.13. We have in AX:
(a) S sgne(Alp)) = (-1 3 20,

weWw weW

For any subset J of R* we set a; = > ;. From the definition we have
Al=p) = 3 e,la]
reX
where
= Y (R

JERt ;o g=z+p
For any = € X we denote by x( the unique element of Xy in the W-orbit of x. The
properties (b),(c) below are easily verified:

(b) For u € W we have cu, = sgn,, (—1)"v?~2(®),
(c) If ¢z # 0 and &;(zo) > 0 for all ¢, then z = “p for a unique u € W.

The left hand side of (a) is }° ¢ y.,,cy 580w Cz[*2]. Clearly, this is equal to the sum
restricted to o € X NCT. Hence, it is equal to

Y sgupen [l = Y sgn(—1) 0TR[]

u,weW u,weW
= Y s () O ) = (1) 3 S ()
u,w' €W ueW w'eW
= (1) ) v,
weWw

The lemma is proved.
Lemma 5.14. We have
(" [=pl @ [=pl | v [=p] @ [=p))ar = (0€cloee)-
We have in AX$?:

weWw

(We have used 5.13.) We now use 3.6(c). The lemma is proved.
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Proposition 5.15. All maps in the commutative diagram 4.11 respect the inner
products (|)ar on AXG?, (|)a on AXT?, (|) on My in 3.4 and the inner product on
Mg given by the restriction of the one in 3.6.

For the inclusion Mgy — My, this is obvious from 3.6. For the map AX 2332 —
AX ?2, this follows from 5.9. For f this follows from the uniqueness statement
in 3.7, using 5.11, 5.12, 5.14. From these facts, it follows that f is automatically
compatible with the inner products. The proposition is proved.

5.16. From 5.15 and 3.15 we deduce that

(=1)"0*[0] @ [20] | (=1)"0*[0] © [-2p])a = (AAT)TH Y~ w72,
weW

This can also be proved directly by arguments similar to those in 5.14.

Corollary 5.17. For any z € X we have

(0z(0ec)loee) = (1) v~ ([z — p], A[-p]).

= ®
Note that, as in the proof of 5.15, we have (¢ | £)g = (=1)"v~2*([x — p], A[—p]).
On the other hand, (f(£)|f(£)) = (0z(0€e)|oee)-

6. GENERALITIES ON COHERENT SHEAVES

6.1. In this paper, unless otherwise specified, all algebraic varieties are assumed
to be quasiprojective over C and all algebraic groups are assumed to be affine over
C. Let H be an algebraic group. By an H -variety we mean an algebraic variety V'
with a given algebraic action H x V' — V such that there exists a smooth algebraic
variety V'’ with an action of H and an H-equivariant closed imbedding V' — V.

Let V be an H-variety. Let Cohy (V) be the abelian category of H-equivariant
coherent sheaves on V; see [T1]. Let Vecy (V) be the category of H-equivariant
vector bundles on X. Any object in Vecy (V) gives rise to an object of Cohy (V)
(by taking the sheaf of sections) and will often be identified with this object of
Cohp (V)

The trivial line bundle on V as an object of Vecy (V') or Cohy (V) is generally
denoted by C.

Let K (V) be the Grothendieck group of the abelian category Cohy (V). This
is naturally a module over Ry, the Grothendieck group of finite dimensional H-
modules. (We have Ry = Ky (point) in a natural way.)

If f:V — V’'is an H-equivariant morphism of H-varieties, then for any
F € Vecy (V') (resp. F € Cohgy(V’)) the inverse image f*(F) € Vecy (V) (resp.
f*(F) € Cohy(V)) is well defined. If in addition f is smooth, then F' — f*(F) is
exact; hence it induces an Ry-linear map f*: Ky(V') — Ky (V).

If f:V — V'is a proper H-equivariant morphism, then for any F € Cohy (V)
the higher direct image sheaves R"f.(F) are naturally objects of Cohgy(V’) and
are zero for large |n|; moreover, the assignment F' — ) _,(—1)"R" f.(F') defines
an Ry-linear map fy : Kg(V) — Ky (V') (direct image).

If E € Vecy(V), then F — F ® E defines an Ry-linear map Ky (V) — Ky (V).
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6.2. Let V be an H-variety and let V' be a closed H-stable subvariety. Let
f: V' — V be the imbedding. Let Cohy(V;V’) be the subcategory of Cohy (V)
whose objects are those F' € Cohgy (V) such that the support of F' is contained in
V'. Let Kg(V; V') be the Grothendieck group of Cohy (V;V’). If F € Cohgy(V'),
then R"f,(F) = 0 forn # 0 and R f.(F) € Cohy(V;V’). Moreover, F +— R°f.(F)
defines an isomorphism Kz (V') = Ky (V;V'). Hence, in this case f. : Kg(V') —
Ky (V) may be identified with the map Kg(V;V’) — Kg(V) induced by the
obvious inclusion Cohgy (V; V') C Cohgy (V).

6.3. Let V be a smooth H-variety and let V3, Vs be closed H-stable subvarieties
of V. Let Fy € Cohy(V; V1), Fy € Cohy(V;Va). By an H-equivariant version of
the Hilbert syzygy theorem, we can find complexes of locally free sheaves

1
= FP— PP s FP s P

) 9

in Cohy (V) such that FF, FY are zero for p > 0 and for |p| large, and the coho-
mology sheaves are zero except in degree 0 where they are F}, F5 respectively. We
consider the complex of locally free sheaves obtained by taking the tensor product
of the two complexes above:

o RO QF) s PR -0 — ...

The p-th cohomology sheaf EP € Cohgy (V) of this complex satisfies EP = 0 for
p > 0 and for |p| large and the support of E? is contained in V3 N Va; thus, EP €
Cohy (V;ViNVa). Then Fiey Fy = ZpGZ(_l)pEp € K (V;ViNVa) is independent
of the choices made and it extends to an Ry-bilinear pairing

v : Kg(V;Vi) x Kg(V; V) = Ku(V;ViNVa).

6.4. Tor-product. Let V,V;, V5 be as in 6.3. Let F| € Cohy(V1), Fy € Cohy(Va).
Let f1, fo, fi2 be the inclusions of V3, V5, Vi NVs in V. Let Fy = ROf1.(F}), Fo =
RYfo.(F3). Then Fy @y Fy € K (V;ViNVa) is well defined. Applying to it the
inverse of the isomorphism Ky (Vi NVa) = Kg(V; Vi NV3) in 6.2, we obtain an
element

Fl oL Fye Ky(vinWa).
This construction defines an Ry-bilinear pairing
Ku(V1) x Kg(Va) = K (Vi NVa)

denoted by &£,& — £ ®‘L, & and called Tor-product. This definition goes back to
Serre [S2].

6.5. Let V.V’ be smooth H-varieties and let f : V — V' be a smooth H-
equivariant morphism. Let Vi,V be closed subvarieties of V' and let V{, V4§ be
closed subvarieties of V’. Assume that Vo = f=1(V), f(V1) C V{. Let

fiiVi—=V, fo:Va =V, fre: VinVe = V/ N1y
be the restrictions of f. Assume that f; (hence fi2) is proper. Let F € Cohy(V7),
F' € Cohp (V4). We have fi2.(F®%L f5(F')) = f1.(F)®%L, F'. Here F&L f3(F') €

Ku(ViNV) (resp. fi.(F)®L, F' € Kg(V{ NVy)) is relative to V, Vi, Vo (resp. to
Vla Vllv ‘/2/)
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6.6. Let V,V’ be smooth H-varieties and let f : V — V'’ be a smooth H-
equivariant morphism. Let V/, V4 be closed subvarieties of V/ and let Vi = f~1(V7),
V= [ (V). Lt

fi:Vi= Vi fo:Va =V, fro: VinVe = V/NVy
be the restrictions of f. Let F' € Cohy(VY), F’ € Cohy(Vy). We have
f(F @y F') = fiF oy fF.

Here F&L, F' € Ky (V{NVY) isrelative to V', V/, V4 and f; FQL f5F' € Ky (Vinls)
is relative to V, Vq, V5.

6.7. In the setup of 6.4, let us assume that V2 = V and that Fy, € Vecy (V). Let
F3 € Vecy (Vi) be the restriction of Fj to V. Then F| @% Fy = F| ® F}. Here
F ® F} is the usual tensor product of a coherent sheaf with a locally free coherent
sheaf on V7.

6.8. For any smooth H-variety V' we denote by Qv € Vecy (V) the line bundle of
top exterior differential forms on V. (Here the “top degree” of a differential form
may vary from one connected component to another.)

6.9. Let V be a smooth H-variety and let V' be a closed H-stable subvariety of
V. We define a group homomorphism

DV;V’ : KH(V; V/) — KH(V; VI)

as follows. Let F' € Cohy(V;V’). We can find a complex of locally free sheaves
(@) -+ — FP — pPrtl

in Vecy (V) such that FP are zero for p > 0 and for |p| large, and the p-th coho-
mology sheaf is zero except in degree 0 where it is F'. We consider the complex of
locally free sheaves --- — F? — FPt1 — _in Cohy(V) where, for any connected
component V; of V' of dimension n, we have I:"p|vj = Hom(F~"Ply,,Qy,); the
maps in the complex are the transposes of those in (a).

The pth cohomology sheaf EP € Cohpy (V') of this complex satisfies EP = 0 for
|p| large and the support of EP is contained in V'; thus, EP € Cohgy(V;V’). We
set Dy, (F) = > c7(=1)PEP € Ky(V;V’). This is independent of the choices
and defines the required homomorphism.

6.10. Serre-Grothendieck duality. Let V’ be an H-variety. We define a group
homomorphism

DV/ : KH(V/) — KH(V/)

(Serre-Grothendieck duality) as follows. We choose an H-equivariant closed imbed-
ding of V’ into a smooth H-variety V. Let f : V' — V be the inclusion. Let
F' € Cohgy(V'). Let F = ROf,(F') € Ky (V;V"). Then Dy (F) € Ky (V;V') is
well defined. Applying to it the inverse of the isomorphism Ky (V') = Ky (V; V')
in 6.3, we obtain an element of Ky (V;V’) denoted by Dy (F’). One shows that
F’' — Dy (F") is a well defined homomorphism Ky (V') — Kg(V'), independent
of the choice of imbedding V' C V. This definition goes back to [S1], [Gr]; see also
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6.11. Let f:V — V' be a proper H-equivariant morphism of H-varieties. The
following diagram is commutative.

Ky(V) —I— Ky

Dvl Dv/l
Ky(V) —f— Kp(v)

6.12. Let f : V — V’ be a smooth H-equivariant morphism of H-varieties. As-
sume that the fibres of f are connected of dimension n. Let Q2 be the nth exterior
power of the cotangent bundle along the fibres of f (a line bundle in Vecy (V)).
For any ¢’ € Ky (V') we have

Dy (f*§) = (=)"f*(Dv:€) @ Q.

6.13. If V is a smooth connected H-variety of dimension n and if E € Vecy(V),
then Dy (E) = (—1)"Hom(E, Qy ).

6.14. Let V,V;,V5 be as in 6.3. Assume that V has pure dimension n. For
& € Ku(ViVi),& € Kg(V; Vs) we have

(=1)"Dv,vinv, (&1 @y &) @ Qv = (Dvi,&1) ©v (Dvinée) € Kg(ViVin V).

6.15. Let V,V;,V5 be as in 6.3. Assume that V has pure dimension n. For
& € Kp(Wh),& € Ky (Va) we have

(=1)"Dyinv, (€1 @5 &) @ Qv = (D, &1) ®F (D, &) € K (Vi N Va).

6.16. For any H-variety V, the map Dy : Kg(V) — Kg(V) is semilinear with
respect to the involution of Ry which takes any H-module to the dual module.
Moreover, Dy Dy = 1.

7. THE HOMOMORPHISM H — Kg(Z)

7.1. Let G be a connected, semisimple, simply connected algebraic group. Let g
be the Lie algebra of G and let g,, be the variety of nilpotent elements in g. Let B
be the variety of all Borel subalgebras of g.

For any parabolic subalgebra p of g we denote by n, the nil-radical of p.

A parabolic subalgebra p of g is said to be almost minimal if the variety of Borel
subalgebras contained in p is 1-dimensional. Let I be a finite set indexing the G-
orbits on the set of almost minimal parabolic subalgebras (for the adjoint action).
A parabolic subalgebra in the G-orbit indexed by i is said to have type i. Let P; be
the variety of all parabolic subalgebras of type i. Let m; : B — P; be the morphism
defined by m;(b) = p where b € B,p € P;,b C p.

7.2. Let X be the set of isomorphism classes of algebraic G-equivariant line bun-
dles on B where G acts on B by the adjoint action. Then X is a finitely generated
free abelian group under the operation given by tensor product of line bundles. For
L, L’ € X we shall often write LL’ instead of L ® L'; L™ instead of L®" (if n € N);
L™ instead of the dual of L®™" (if n € N). For each i € I, let L; € X be the
tangent bundle along the fibres of m; : B — P;. Then L; !'is the cotangent bundle
along the fibres of 7; : B — P;.

Given ¢ € I and L € X, we define an integer m by the requirement that the Euler
characteristic of any fibre of 7; (a projective line) with coefficients in the restriction
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of L to that fibre (regarded as a coherent sheaf) is m 4+ 1. We set m = &;(L) € Z.
Then &; : X — Z is a group homomorphism such that
(a) for L € X, we have ¢;(L) = 0 if and only if L = 7 (L) for some G-equivariant
line bundle L on P;;
(b) @i(Li) = 2.
Let X be a free abelian group (in additive notation) with a given isomorphism
X = X denoted by @ + L,. (Thus, LyLy = Lyt for z,2’ € X.) Let a; € X
be defined by L,, = L;. Then L_,, = Li_l. The composition X — X N AT
denoted again by &;. Let V =R ® X. Then (V = E, X, I,a; € X,&; : X — Z)
is as in 1.1. Hence, all definitions and results of Sections 1-5 are applicable. (We
take € = 0.) The finite Coxeter group W with its generators {o;|i € I} becomes a
group acting on X by w: L +— "L where © L = LLi_é”(L).
7.3. Let w — O, be the bijection between W and the set of G-orbits on B x B
(diagonal action) characterized by properties (a)-(c) below:
(a) Oy is the diagonal in B x B;
(b) if b,b" € B, we have (b,b") € O,, if and only if b # b’ and m;(b) = m;(b’);
(c) if (b,b") € Oy, (b,0") € Oyr, l(ww') = I(w) + I(w'), then (b,b”) € Oy

7.4. Let w € W. Let p1,p2 : Op — B be the first and second projection. Let
L € X. Then the G-equivariant line bundles piL,p§(w71L) on O, are isomorphic.

7.5. Let
A={(y,b) € g, x Bly € b},
Z={(y,b,b") €g, x Bx Blyebnb'},
A% = {(y, b;9/,b";y",0") € APy =y},
A = {(y, by, b y", b") € A%y’ =y},
© = {(y,b;/,0"59",0") € N’|ly =/ =y},
Gg=GxC*.
We regard B and g,, as G-varieties with G-action
(9,A) : b= Ad(g)b and (g,)) : y— A" 2Ad(g)y

respectively. We regard B x B and g,, X B as G-varieties where G acts simultaneously
on both factors. We regard A as a G-variety with the G-action given by restriction
of the G-action on g,, x B. We regard A x B,A2 A3 as G-varieties where G acts
simultaneously on each factor A. We regard Z as a G-variety with the G-action
given by restriction of the G-action on A x B. (We regard Z as a closed subvariety
of A x B by (y,b,b") — (y,b;b’).) We regard A% A%’ @ as G-varieties with the
G-action given by restriction of the G-action on A3,

7.6. For L € X, we regard L as a G-equivariant line bundle on B with trivial
C*-action. The inverse image of L under the second projection pro : A — B is a
G-equivariant line bundle on B (since that projection is G-equivariant). We denote
this inverse image again by L. For L, L’ € X we denote by L X L’ the external
tensor product of L, L’. This is naturally a G-equivariant line bundle on B x B, or
on A x B, or on A2

The restriction of L X L' from A? (resp. B x B,A x B) to various G-stable
subvarieties of A2 (resp. B x B, A x B) will be denoted again by L X L'.

Similarly, for L, L', L € X we denote by LXK L' L” the external tensor product
of L, L', L". This is naturally a G-equivariant line bundle on B x B x B or on A3.
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The restriction of LXK L' X L” from A3 to various G-stable subvarieties of A® will
be denoted again by L X L' X L".

We always identify Kg(A) with Kg(B) via prj : Kg(B) — Kg(A). Similarly, we
identify K¢(A x B) with K¢(B x B) via the isomorphism (pra x 1)* : Kg(B x B) =
Kg(A x B) induced by pra x 1: A x B — B x B (a G-equivariant vector bundle).

7.7. Forany n € Z, let v : G — C* be the homomorphism (g, \) — A\". If H is a
closed subgroup of G, we denote the restriction of v" : G — C* to H again by v".

We may regard v™ as an H-equivariant line bundle on a point, or as an H-
equivariant line bundle on any H-variety V' (the inverse image under the map
from V’ to the point of the previous line bundle). Hence, for any F € Vecy (V')
(resp. F' € Cohy(V")), the tensor product v F = v"QF is well defined in Vecy (V')
(resp. Cohpy(V”)). In this way Ky (V') becomes an A-module. (Note that, what
in 1.4 was an indeterminate v, now has a concrete K-theoretic meaning.)

7.8.  We have an isomorphism of rings
(a) AX = Kg(B) = Kg(A)
given by v"[x] — v"L, for n € Z,x € X. Here v™[z] is as in 1.19 and v"L, is as

in 7.7. Taking the inverse image under the map of B to the point we obtain an
imbedding Rg — Kg(B) which identifies

(b) Rg = AxXY c Ax.
We have an isomorphism of rings
(¢) AX®? = Kg(B x B) = Kg(A x B)

given by v"[z] ® [2'] — v"L, X L, for n € Z,x € X, 2’ € X. Here, v"L, X L,/ is
as in 7.6, 7.7. The proof of (c) is exactly as in [KL2].

7.9. We define w5 : A% — Z, ma3: AW — Z m3:0 — Z by

7T12(y7 b; y/7 b/; y//7 b//) = (ya [’7 bl)u
ma3(y, b3y, 05 y", ") = (v, b, 0"),
mi3(y, bsy', 05 y", ") = (y,b,0”).
Note that pi2,p13 are smooth morphisms and po3 is a proper morphism; these
morphisms are compatible with the G-actions. For F' € Cohg(Z), F' € Cohg(Z),
we set
(a) F*F" = pi3.(ploF ®k3 P33 F’) € Kg(2).
(The Tor-product is relative to the smooth G-variety A® and its closed subvarieties
Aaab A with intersection ©.)
The convolution product * has first appeared in the work of Kashiwara and

Tanisaki [KT] (in a non-equivariant setting); subsequently, this convolution prod-

uct and variations of it (as in 10.1) have been used in the equivariant setting by
Ginzburg [G].
The assignment F, F’ — F x F' extends to an Rg-bilinear pairing

Kg(Z) x Kg(Z) — Kg(2)

denoted by £,¢&" — £ «£’. This may be regarded as a multiplication law on Kg(Z)
which is associative, as a routine argument using A* shows.
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7.10. For any L € X we regard L as an object in Vecg(A) as in 7.6. Taking its
direct image under the closed imbedding A C Z given by (y,b) — (y, b, b) we obtain
an object 'L € Cohg(Z). From the definitions (and using 6.5) we see that

'LxF=(LKRC)®F, Fx(L)=(CRL®F
for any F' € Cohg(Z). Here LKC, CK L are regarded as G-equivariant line bundles
on Z as in 7.6. In particular, 'C is the unit element of the ring Kg(Z).
7.11. For F € Cohg(Z), F' € Cohg(A x B), we define

FxF' = qua (47, F @25 33F") € Kg(A x B).

(The Tor-product is relative to the smooth G-variety A2 x B and its closed subva-
rieties Z x B, A? x B with intersection Z x B.) Here

G2 Z xB— Zis (y,b,0’;6") — (y,b,0),
q23 1 A2 x B— A x Bis (y,b;9/,b';0") — (y/,b';6"),
q13: ZxB—AxBis (y,b;y,0;06"”) — (y,b;6").

This extends to an Rg-bilinear pairing
T : Kg(Z) X Kg(A X B) — Kg(A X B)

which may be regarded as a Kg(Z)-module structure on Kg(A x B), as a routine
argument using A3 x B shows.

7.12. Let L € X. From the definitions (and using 6.5) we see that
!Lal(F’ =(LRC)® F'

for any F’ € Cohg (A x B). Here the line bundle LK C is regarded as a G-equivariant
line bundle on A x B as in 7.6.

7.13. We regard B x B as a closed subvariety of Z (hence of A%) by (b,b’) —
(0,b,b"). For F € Cohg(Z), F' € Cohg(B x B), we define
Fx F' = ri3.(qfo F @%s m5, F') € Kg(A x A).

(The Tor-product is relative to the smooth G-variety A2 x B and its closed G-stable
subvarieties Z x B, A x B x B with intersection B x B x B.) Here g2 is as in 7.11,
ros A X Bx B — B — Bis (y,b;b',0") — (b',8"),
ri3:BxBxB—BxBis (b,b,6") — (b,b").

This extends to an Rg-bilinear pairing
% Kg(Z) x Kg(B x B) — Kg(B x B)
which may be regarded as a Kg(Z)-module structure on Kg(B x B), as a routine

argument using A3 x B shows.
From the definitions (and using 6.5) we see that, for L € X,

(a) U:;F’: (LRC)® F'
for any F’ € Cohg(B x B).
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7.14. We regard B x B as a closed subvariety of Z as in 7.13 and Z as a closed
subvariety of A2 asin 7.5. Let j: Bx B — Z and j : Z — A x B be the inclusions.
Using the definitions and 6.5 we see that

(a) jix 1 Kg(B x B) — Kg(Z) is Kg(Z)-linear.
(b) ju: Kg(Z) — Kg(A x B) is Kg(Z)-linear.
(Kg(Z) is regarded as a Kg(Z)-module via left multiplication in the ring Kg(Z).)

Lemma 7.15. The maps j. : Kg(B x B) — Kg(Z) and j. : Kg(Z) — Kg(A x B)
i 7.14 are injective.

We fix a Borel subgroup By of G with Lie algebra by. Let T be a maximal torus
in By. Let Zy = {(y,b) € Aly € bo}. Let j' : B — Z be defined by b — (0,b) and
let 5/ : Zo — A be the obvious inclusion. These are closed imbeddings. Note that
Zo, A are T x C*-stable subvarieties of Z, A x B, via (y,b) — (y, b, bp).

By general results in [T1], we have canonically

Kg(Z) = Krxc+(Zo), Kg(A x B) = Krxc+(A)
and j*,j* correspond to
Ji: Krxer(B) = Ky (Zo), Ji : K1+ (Zo) = Krxe-(A).

It is then enough to show that 5,7’ are injective. Now the C*-action on Z, A x B
(restriction of the G-action) leaves Zy, A stable and on these subvarieties has the
same fixed point set, namely {(0, b)|b € B}.

From the concentration theorem [T2], it then follows that j/,j’ become isomor-
phisms after tensoring with the field of fractions of Ry c-. To show that j/, 5’ are
injective, it is therefore enough to show that the R, c~-modules

Krxc-(B), Krxc+(Zy), Krxc-(A)

are projective of rank |TW|. This follows by a standard argument using the decompo-
sition of B into Bg-orbits (Bruhat cells), the decomposition of Zj into T' x C*-stable
cells

Zo= || Zow> Zow=1{(y,b) € Zo|(b,bo) € O}
wew

and the analogous decomposition of A into T x C*-stable cells

A= || Aw, Aw={(y,b) € A[(b,by) € Ou}.
wew

The lemma is proved.

7.16. Let i € I. The smooth subvariety O; = Oy, UO; of B x B is G-stable. Let
7/ O; — P; be the morphism defined by (b, b") = m;(b) = m;(b’).

Let Z; be the set of all triples (y, b, b’) € Z such that (b, b’) € O; and y belongs
to ny, where p = m;(b) = m;(b’). Thus Z; is naturally a line bundle over 0;. In
particular, it is a smooth variety of dimension 2v. Note that Z; is a G-stable closed
subvariety of Z.
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7.17. Let L', L"” € X. We regard L' X L” as a G-equivariant line bundle on Z; (a
closed subvariety of Z C A x B) as in 7.6. Taking its direct image under the closed
imbedding Z; C Z, we obtain an object L' X; L” € Cohg(Z).

Lemma 7.18. Let L,L € X and let LR L € Vecg(A x B) be as in 7.6. In the
Kg(Z)-module Kg(A x B) we have

@ (0, 17)§ (L)~ SO i g

The fraction above (in the quotient field of the group algebra A[X]) is actually
in A[X] and the right hand side of (a) is interpreted as the corresponding Z-linear
combination of elements v*L; K L taken in Kg(A x B).

A similar interpretation holds for the following identity in Kg(B) = Kg(A), in
which L € X and m = &;(L) € Z:

% B it DD 77 Mty et WAL 97 Ay 5
(b) mfmi (L) =1L LL;1—1 =L T =1t

(This follows directly from the definitions.) By definition, we have
(L'R; L") % (LK L)=qz(I'RL"KC) @k, o (CRLKL))
(c) = q3.(RL"RC)® (CRLKL)) = ¢}5. (L’ RL'LKL).

Here 13 : Z x B— A x Bis as in 7.11 and ¢{5 : Z; x B — A x B is the restriction
of 13 under Z; x B C Z x B. The first CX LK L is in Vecg(A? x B), the second
CX LKL is in Vecg(Z x B); the second equality in (c) follows from 6.7.

Let A; be the closed subvariety of A consisting of all (y,b) such that y € n,,
where p = m;(b). We can factor ¢j3 = jp where p: Z; x B — A; x B is given by

p(y,b,b":6") = (y,b;b")
and j: A; x B— A x B is the inclusion. Then
(L' L") % (LW L)=jup. (I’ RL'LRL) = j, (L' ®p' « (CRL'"L)X L)

where p’ : Z; — A; is (y,b,b") — (y,b). We have a cartesian diagram

Z T
B —— P
in which the left vertical arrow is (y,b,b’) — b and the right vertical arrow is

(y,b) — m;(b). The horizontal arrows are proper and the vertical arrows are smooth.
Hence, p,(CX L"L) = nfm;(L"L) and, using (b) for L” L instead of L we have

23 (L/IL)Lz—l —L"L

'(CRL"L) =
P ) Li_l 1
Hence,
. L'((L"L)L;' = L"L) _ =
(L'@iL”)T(L@L) =J.( ( L-_)lil )@L)
L'(%(L"L L-_l —L"L N

L7t -1
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where j' : A; — A is the inclusion. Now 7’ is the imbedding of the zero section of
a line bundle coming from the line bundle on B whose fibre at b is ny/n, where
p = m;(b). Hence, 5. is multiplication by (1 — v2L;). The lemma follows.

7.19. The line bundle £,. We fix i € I. We choose L', L” € X such that &;(L') =
& (L") = =1 and L'L" = L;* € X. We show that the restriction of L' X L” from
B x B to O; is independent of the choice of L', L”.

Another choice for L', L"” is L'L,L" L~ where £ € X is such that &;(L) = 0.
We must show that L'L K L”£~1 = I/ K L” have the same restriction to ©;, or
equivalently, that

(a) (LR L )5, =C.
By 7.2(a), there exists a G-equivariant line bundle L on P; such that £ = 7 L.
The restriction of LR L™ = 77 LR 77 L~ to O; is then
T Lom* Lt =a* (Lo L) =1*C=C
where 7} : O; — P; as in 7.16; our assertion is verified.
The line bundle (L' X L")s. above will be denoted by L;. It is a canonically
defined G-equivariant line bundle (with trivial C*-action). The inverse image of L;

under the canonical map Z; — O; is again denoted by £;. It is the same as the
restriction of L' X L € Vecg(A?) to Z;.

7.20. Taking direct image of the line bundle v~!£; € Vecg(Z;) under the closed

imbedding Z; C Z, we obtain an object a; € Cohg(Z).
We now reformulate Lemma 7.18 in the case where L', L” are as in 7.19.

Lemma 7.21. Let L,L € X and let LR L € Vecg(A x B) be as in 7.6. In the
Kg(Z)-module Kg(A x B) (see 7.11) we have

-1 27 __ 0§ -
v (1 —v?L;) (L L) =i
L;—1

Using 9/ L” = L"L; = L'~!, we have
L' (L)L ' =1"L)  L'L'7'LL;' —L'L’L  °LL;'—LL;' L-°L
L1 - L7 -1 L1 Li-t
Hence, the lemma follows from 7.18.

Lemma 7.22. Let L,L € X and let LR L € Vecg(B x B) be as in 7.6. In the
Kg(Z)-module Kg(B x B) (see 7.13) we have

= v Y (L—v?LL; =i L4v?(“¢ LL;" =
(a) a5 (LRL) = ( sl Ada VR L.

Here the right hand side of (a) is interpreted in a way similar to 7.18(a).

Let k : Bx B — A x B be the closed imbedding given by (b, b’) — (0, b;b’). Now
ke : Kg(B x B) — Kg(A x B) is compatible with the K¢(Z)-module structures in
7.11, 7.13. (We have k. = j.j., where J,, j. are Kg(Z)-module homomorphisms;
see 7.14.) Moreover, k, is injective (see 7.15). Under the identification Kg(A x B) =
Kg(B x B) (see 7.6), the map k. becomes the map K¢g(B x B) — Kg(B x B) given
by multiplication by A X C, where A is as in 1.23. Note that

_ 1 -2t
TN = A
1—’1}2Li

where the W-action on A[X] is given by extending linearly the W-action on X.
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Let 7 be the left hand side of (a). Since k. is Kg-linear, we have
(b) (A&C)fy:aﬁf((AXC)Q@(L&fL)) :aial((AL&i)).
Now using 7.21 to compute the right hand side of (b), we see that
011 — v2L;)(AL — %A% L)

(AR C)y = T XL
vIA(L - 0L (L— LA
- fp— XL
-1 _ 2 .04 2 (o7 _1 -
:(A&C)U (L ULLZL_ Ilz—i-v (7 LL; ))ﬁL.

Since multiplication by AKX C on K¢(B x B) is injective, (see 7.8(c)) it follows that
v ' (L —v?LL; = "L+ v*(“LL; "))
L,—1
(This could have been also deduced from the arguments in 4.10.) The lemma is

proved.

X L.

’y:

Lemma 7.23. There is a unique H-module structure on the A-module Kg(B x B)
given by
(i) (-T,, —v™ 1) - (LRL) = aig(Lﬁf/) foriel and L,L € X;

(ii) Hm-(Lﬁf;):'Lm;(Lﬁi) forz € X and L, L € X.

Using 7.13, 7.22, we see that the following statement is equivalent to the lemma.
There is a unique H-module structure on the A-module Kg(B x B) given by

Ty (LR L) = L b) oL L ) 1 ], for e [ and L, L € X;
0, (LKL)= (L,LRL) forz € X and L, L € X.
This follows immediately from Lemma 4.6, using the identification K¢ (B x B) =

AX®?% in 7.8(c).

Lemma 7.24. There is a unique H-module structure on the A-module Kg(A x B)
given by
(i) (-T,, —v™ Y- (LRL) = aiaf(Lﬁﬂ) foriel and L,L € X;

(ii) Hm-(Lﬁf;):!Lmal((Lﬁi) forz € X and L, L € X.

Using 7.11, 7.12, 7.21, we see that the following statement is equivalent to the
lemma.
There is a unique H-module structure on the A-module Kg(A x B) given by

T, (LRL) = v*1<”'iL—LLgi+_v1<LLf—”LL” XL foriel and L,L € X;

0, (LKL)= (L,LRL) forz € X and L, L € X.
This follows immediately from Lemma 4.7, using the identification Kg(A x B) =
Kg(B x B) = AX®? in 7.6, 7.8(c).

Proposition 7.25. The assignment —T; —v~' + a; € Kg(Z),0, — 'L, € Kg(2)
is a homomorphism of A-algebras H — Kg(Z).

This follows from Lemma 7.24, since the map j, in 7.14 is compatible with the
Kg(Z)-module structures and is injective (see 7.15).
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8. THE ISOMORPHISM H — Kg(Z)

8.1. Wefix i € I. Let 3 be a locally closed G-stable subset of Z. We say that 3
is left i-saturated if the following holds:

(y,0',6") € 3,(y,b) € A, (b,b") € O,, = (y,b,b") € 3.

Assume that 3 is a G-stable, left i-saturated closed subset of Z. We define a
homomorphism r; : Kg(3) — Kg(3) by F — P13« (pio(v™ " Li) @%s 33 F). The Tor-

product is relative to the smooth variety A% and its closed subvarieties Z; x A, A x 3
with intersection
U = {(y,b,b",6")|(y,b,0") € Z;, (y,b",6") € 3}.

Here p1g @ Z; x A — Z;, a3 : Ax 3 — 3 are the obvious projections and pi3 : Y — 3
is given by p13(y, b, b’,6”) = (y, b, 6”) (this is well defined since 3 is left i-saturated).
The imbedding Z; x A C A? is the composition Z; x A C Zx A C A3. The imbedding
A x 3 C Z is the composition A x 3 C A x Z C A3,

The following two properties of the map r; follow using the definition and 6.5.

(a) If 3’,3 are two G-stable, left i-saturated closed subsets of Z with 3’ C 3,
then the maps r; : Kg(3') — Kg(3') and r; : Kg(3) — Kg(3) are compatible with
the direct image map Kg(3') — Kg(3) induced by the inclusion 3’ C 3.

(b) For 3 =2, r; : Kg(Z) — Kg(Z) is just left multiplication by a; (see 7.20).

8.2. Forw e W we set O>uw =050 Ow- We set
Zw = {(yv bv b/) € Z|(ba bl) € Ow}a
ZSw = U Zw’7 Z<w = U Ly
w’;w <w w’;w <w

83. If i € I is such that s;w < w, then Z<,, is left i-saturated; hence r; :
KQ(ZSUJ) — KQ(ZSw) is well defined.

Lemma 8.4. Let ¢ € I be such that s;w < w. Let j : Z<guy — Z<w and h :
Z<w — Zy be the inclusions. Let f: Kg(Z<y,w) — Kg(Zy) be the composition

Kg(Zonw) 5 Ko(Z2w) = Ko(Zew) “ Kg(Zu).
Then f is surjective.

Let L', L” € X be as in 7.19. Since Z,, is a vector bundle over B, the .A-module
Kg(Zy) is generated by {v™'L' K L|L € X}. Hence, it is enough to show that, if
L€ X, then v"!L' X L € Vecg(Z,) is in the image of f.

Let F =L""'R L € Vecg(Z<s;w)-

We shall use the notation of 8.1 with 3 = Z<,,,, except for pi3 which is not

defined since this 3 is not left i-saturated. Instead, the formula which defined pi3
in 8.1, gives a map ¢ : ¥ — Z<,,. In this context, we can form

v RL"KC) @k (CRL''R L) € Kg(D),
(0L RL"RC)@k, (CRL'""'RL)) € Kg(Z<w).
From the definitions we have
(VYL RL'"RC) ok, (CRL'""'RL)) =ri(F)

where 7; is defined as in 8.1 in terms of Y = Z<,, (which is left i-saturated) and
F € CohgZ<,, is the direct image of F' under the closed imbedding Z<,,.w C Z<w-
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Let k : Zy, — Z<,, be the (open) inclusion. Then
Eri(F) = kg Y(I’KL"XC) ok, (CRL'"'K L))
=q¢ki(v (IR L"KC)®%k (CRL'™'R L)),

where ¢’ : V' — Z,, (a proper map) and k; : V' — U (an open imbedding) are
defined by

V' ={(z,b,6",0")|(z,b,b") € Z;, (x,b',0") € Z<s,u, (b,0") € Oy}
= {(z,b,b",0")|(x,b,b") € Z,,, (z,b',0") € Zs, 10},
q (z,0,0",0") = (2,6,0"”), Fki(x,b,b",0") = (z,b,0",0").
Note that ¢’ is in fact an isomorphism. Let
U={(z,b;2',b";2",6") € A%|(b,b') € Oz, (t/,0") € Oz0,u}-
This is an open subset of A3. We have
UN(Z; x A)=Un(Z,, x N),
UNAX Z<oyw) =UNAX Zs),
ung=Vv".
By 6.6, we have
(a) kf(v™H(L'RL"KC)®k,; (CRL"'KL)) = v }(L'RL'"KC)®f (CRL"'KL)
where ®5 is computed in the smooth variety U, relative to its closed subvarieties
UN(Zy; x A),UN (A X Zy,) and we regard
L'RL"®C € Vecg(UN (Zy, x ), CRL''RLE Vecg(UN(AX Zy,u))-
Now the subvarieties U N (Z,, x A), U N (A X Z,,») of the smooth variety U
of dimension 6v are smooth of dimension 4v and intersect transversally in the
smooth variety Z,, of dimension 2v. It follows that the right hand side of (a)
is just the vector bundle obtained by restricting the two vector bundles to the
intersection and then taking the usual tensor product. We obtain the vector bundle

v 'L/ R L € Vecg(Z,). Thus, the last vector bundle is in the image of f. The
lemma is proved.

Lemma 8.5. Assume that o;w < w. Let j,h be as in 8.4, let j' : Zey — Z<y be
the inclusion and let r; : Kg(Z<y) — Kg(Z<w) be as in 8.1. For any & € Kg(Z<y,)
there exists &' € Kg(Z<pw) and £ € Kg(Z<y) such that & = r;(5.(&)) + jL(&").

By Lemma 8.4, there exists ¢’ € Kg(Z<g,w) such that & — 7;(j.(£')) is in the

kernel of Kg(Z<w) LN Kg(Z,); hence in the image of j, : Kg(Z<y) — Kg(Z<w).
(Note that Z.,, is closed in Z<,, with complement Z,,.) The lemma is proved.

Theorem 8.6. The homomorphism H — Kg(Z) in 7.25 is an isomorphism of
A-algebras.

Using 8.5, it follows easily (as in [KL2, 3.21]) that this map is surjective.

We shall regard H as an AX-module by [z] : x — x0,; we shall regard Kg(Z)
as an AX-module by [z] : £ — Ex'L, = ¢ ® (CK L,).

Our map H — Kg(Z) is compatible with these AX-module structures. Hence,
to show that it is an isomorphism, it is enough to show that H and Kg(Z) are
projective AX-modules of the same (finite) rank. Now H is a free AX-module of
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rank |[W| by 1.21. The fact that Kg(Z) is a projective AX-module of rank |W]| is
shown using the partition Z = (J,,cy Zw. The theorem is proved.

Let us identify the algebras H, K¢g(Z) via the isomorphism in the theorem. Then
the element T, € H can be regarded as an element of Kg(Z).

8.7. We assume that we are in the setup of Lemma 8.4. Let

7 = U -

w’ EWiw’ <w;w’ #w;w’ #o;w

Note that Z is a left i-saturated, G-stable closed subset of Z.

In the following arguments we write (), for the direct image map induced by an
obvious closed imbedding and ()* for the inverse image map induced by an obvious
open imbedding. We show that

(a) the composition Kg(Z<y,w) -, K¢(Z<osw) ERN Kg(Zy) is 0.

This equals the composition

Kg(Zeoiw) 25 Kg(2) 25 Kg(Zew) =5 Kg(Z<w) 2 Kg(Zu)

and also the composition

0« SN T S\ O 0"
Kg(Z<oiw) = Kg(Z) — Kg(Z) — Kg(Z<w) — Kg(Zw).
(See 8.1(a).) But the composition of the last two maps is zero since Z N Z,, = 0.
Thus, (a) is verified. Using (a) and the exact sequence

(b) 0= Ko(Zeou) 25 K(Zeoiw) 2 K(Zouw) = 0

we see that there is a unique map f : Kg(Zy,0) — Kg(Zy) such that the compo-
sition
0" i
(c) Kg(Z<oyw) —— Kg(Zoiw) = Kg(Zw)
is equal to f.

Lemma 8.8. Let L € X. The map f takes CR L € Vecg(Zg,w) to v 'CR L €
Vecg(Zy). In particular, it is an isomorphism.

The proof of Lemma 8.4 shows that f takes L” ' X L to v™ L' K L. By 7.4, we
have L' R L = CR (¥ "7 (L"~1) ® L) as objects of Vecg(Zy,,) and L' K L =
CX (v 'L' ® L) as objects of Vecg(Zy,).

It is then enough to show that °i(L”~!) = L’ or that % L” ® L’ = C. But
i ["® L = L"L;L' = C. The lemma is proved.

Lemma 8.9. Let w € W. Let j, : Z<yw — Z be the inclusion.
(@) juws : Kg(Z<w) — Kg(Z) is injective.
(b) Ty is in the image of jus- )
(c) Let & € Kg(Z<w) be the unique element such that ju«(§w) = Tw. The
restriction of &, to the open subset Z,, of Z<y, is (—v)~tw)C.,

(a) is proved by standard arguments (compare [KL2, 3.17]).
We prove (b) and (¢). For w = 1 this is clear. Assume now that I(w) > 1 and
that the result is known for elements of strictly smaller length. Let ¢ € I be such
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that o;w < w. Let w’ = o;w. By the induction hypothesis, T, = Juw« (&) for a
unique &, € Kg(Z<y). Let j, h be as in 8.4. Then

Ty = _U_lfw/ - (_Toil - U_l)Tw’ = _U_ljw’*(gw’) - aijw/*(fw/)
= 0" uedi () = Aijusde(Eur) = =07 Juefn(Gur) = Juos (rige(Eur))-
This shows that (b) holds for w and that &, = —v " j.(£w) — 7ije(Ewr). Since
h*j. = 0, we have h*§, = —h"r;j. (€w') = —f(&w ) where f is as in 8.4. Using the
definition of f in 8.7 and the induction hypothesis, we have

f(éw) = F((=0)"D0);
hence
h €y = _Jz((_v)—l(w/)c) — _U—l(_v)—l(w’)c _ (—v)‘l(w)c,
where the second equality follows from 8.8. The lemma is proved.

Lemma 8.10. Let Hy be the set of all & in H = Kg(Z) such that T,.& = v€ for
alli e l. Letr:Ho — Kg(Zy,) be the restriction of the map Kg(Z) — Kg(Zw,)
(inverse image under the open imbedding Z,, C Z). Then r is an isomorphism.

Let & = > cw V)T, € H. Tt is easy to see, using 1.21, that {£0,]z € X}
is an A-basis of Ho. From 8.9(c) we see that r(0,) = (—1)"(C X L,). Since
{CX L,|z € X} is an A-basis of Kg(Z,,), the lemma follows.

Lemma 8.11. Let j : B X B — Z be the map (b,6’) — (0,b,b"). In H = Kg(Z)
we have

(a) Epew 0Ty = (=1)"ju(L—p K L_,).

Let & (resp. &) be the left (resp. right) hand side of (a). Then £ € Hy and
r(§) = (—1)”C. (See the proof of 8.10.) Using 7.22, 7.23, we have for any i € I:
Ty (L_,®XL_,)=vL_,XL_,
in Kg(B x B). Since j, is H-linear, it follows that T,,&' = v€ in H = Kg(Z). Thus,
& € Ho. Therestriction of £’ to Zy,, = Oy, is just the restriction of (—1)"L_,XL_,
to Oy, and by 7.4, this is

(—1)"CR("L_, & L_,) = (—1)"CR L_y (- = (~1)"CRC = (~1)"C.
Thus, 7(§) =r(¢’). Using 10.1, we deduce that £ = ¢’. The lemma is proved.

8.12. Let x € X;. The space of sections of L, is naturally a (finite dimensional
irreducible) G x C*-module, denoted by E, (the action of C* on E,, is trivial).
Let n, be the unique element of W contained in the double coset Wa¢W, which
has maximal length in that double coset.
The main result of [L3] was the discovery of a very close connection between the
element ¢;, € H (see 1.5, 1.9) and E,. In particular, in [L3, 8.6, 6.12] it is shown
that

(a) c:zm = (U_l/ Z Ul(w)Tw)eEm = eEm (,U—u Z Ul(w)Tw)'
weW weW
Here, E, is regarded as an element of Rg = AX" (see 7.8) so that g, is in the
centre of H.
Combining (a) with 8.11 we obtain a description of ¢], as & a coherent sheaf on
Z supported on B x B.
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Corollary 8.13. In Kg(Z) we have
e = (—v)"j(E, ® (L.,K L_,)),

zs

(j asin 8.11.)

9. K-THEORETIC DESCRIPTION OF THE INVOLUTION : H — H

Lemma 9.1. Let p: Y — Y’ be a vector bundle with Y' irreducible. We regard Y
with the C*-action (\,y) — A\"2y. Let L' be a line bundle on Y’ and let L = p*L’.
The set of C*-equivariant structures on the line bundle L is in natural bijection
with Z: ton € Z corresponds the equivariant structure X : Ly, — Ly-2, given by
multiplication by \". (Here y € Y and we identify Ly, = Ly-2, = L;(y) .)

We fix a C*-equivariant structure on L. If ¢/ € Y’/ A € C* then for any
y€p'(y), A: Ly — Ly-2, or equivalently X : L, — L, is multiplication by
fy) € C*. Now f: C* xY — C* is a morphism of algebraic varieties; hence
we have f(\,y) = >, cz fa(y)A\" where f, : ¥ — C are morphisms which are
identically zero for all but finitely many n.

Assume that for some n’ # n’”, neither f,, or f,~ is identically zero. Since
Y is irreducible, we can find yo € Y such that f./(yo) # 0, fnr(yo) # 0. This
implies that ) . fn(yo)A™ = 0 for some A # 0. This contradicts the fact that
F(C* x {yo}) C C~.

We see that there exists n € Z such that f(A,y) = fn(y)A" for all \;y. Since
f(1,y) = 1, we must have f,(y) = 1 and f(\,y) = A" for all A\,y. The lemma
follows.

Lemma 9.2. Let ¢ € I and let L; € Vng(@i) be as in 7.19. We have L; @ L; =
L7'RL7 in Vecg(O;).
Let L', 1" € X be as in 7.19. We have L'L' = L; 'L, L"L" = L;*£~!, where
L € X is such that &;(£) = 0. Hence,
LioLi=CRL)e(LRL)=LL)RL'L)=(L7'eL)R(L; e L™
= (L7'RL7) @ (LRLTY) = (L7 RLT.
(The last equality uses 7.19(a).)

For any C-vector space V of dimension n we denote by (V) the dual of the nth
exterior power of V.

Lemma 9.3. v*72L; ® L; and Qz, are isomorphic as objects on Vecg(Z;). (See
7.19, 6.8.)

We first show that
(a) L£; ® L; = Qy are isomorphic as objects of Vecg(Z;).
Let (z,b,b") € Z; and let p = m;(b) = 7;(b"). By 9.2, the fibre of £; ® £; at (z, b, b’)
is (p/b)* @ (p/b’)*. The fibre of Q7 at (x,b,b’) is

Q(ny) @ (p/b)" @ (p/b")" @ Qg/p).
It remains to show that Q(n,)®Q(g/p) = C canonically. This follows from the fact
that the vector spaces ny, g/p are naturally in duality (via the Killing form of g).
Thus, (a) is proved.
Next we note that the action of A € C* on the fibres of the two line bundles in
the lemma at (0, b, b’) is by multiplication by A**~2. (For 2z this comes from the
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way that C* acts on the factor €2(n,) which in turn comes from the action of C*
on n, given by multiplication by A72.)
From 9.1 it follows that an isomorphism of G-equivariant line bundles

U2V_2£i QL; — QZ

(see (a)) is automatically an isomorphism of G-equivariant line bundles. The lemma
is proved.

Lemma 9.4. We have Qp = v* in Vecg(A).

As in the proof of 9.3, it is enough to show that Qs = C in Vecg(A). The fibre
of Qp at (y,b) is Q(np) @ Q(g/b). It remains to show that Q(np) @ Q(g/b) = C
canonically. This follows from the fact that the vector spaces ng, g/b are naturally
in duality (via the Killing form of g). The lemma is proved.

Lemma 9.5. For F,F' € Kg(Z) we have Dz(F x F') = v=2*Dz(F) x Dz(F").
Here Dz 1is as in 6.10.

With the notation in 7.9, we have

Dz(F % F') = Dz(p13: (072 F ©Fa p33F")) = p1a«(De (p}oF @5 p33F'))
= 0" P13. (Dpees (P12 F) ©Fs Dparn (D35 F))
= 0™ s, (0 (72D F) @ vpis D F')) = v D(F) # Dy(F').

The first equality holds by definition. The second equality holds by 6.11. The third
equality follows from 6.15 using the equality Qs = v% in Vecg(A?) (a consequence
of 9.4.) The fourth equality holds by 6.12 using the fact that Q,,, (see 6.12) is
isomorphic to v?” in Vecg(A??*) (a consequence of 9.4) and the analogous fact for
pog instead of p12. The lemma is proved.

Lemma 9.6. (a) Let L € X. Then Dz('L) =" (L™ 1)v?".
(b) Leti e I. We have Dz(a;) = v¥a,.

We prove (a). By 6.11, it suffices to show that, if we regard L as an object of
Vecg(A), we have Dp (L) = v? L=, This follows from 6.13 since A is smooth and
QA = U2V.

We prove (b). By 6.11, it suffices to show that Dz (v™'L;) = v*v~1L; in
Kg(Z;). We have

Dy (vL) =vL; @Qy = vl @0 2L @ L; = v (v L).

The first equality holds by 6.13, 6.16, since Z; is smooth, connected, of even dimen-
sion. The second equality holds by 9.3. The lemma is proved.

Lemma 9.7. The map D' : Kg(Z) — Kg(Z) given by D'(€0 = v=2*Dy(&), cor-
responds under the isomorphism H — Kg(Z) in 8.6, to the involution of the ring
‘H which takes Tgi +v 1 to Tgi +ovt foralli eI, 0, tol_, forallz € X, v™ to
v™" for alln € Z.

By 9.5, D' is a ring homomorphism. It remains to use 9.6.
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9.8. A Lie algebra automorphism w : g — g is said to be an opposition (of g) if
there exists a Cartan subalgebra § of g such that w(y) = —y for all y € h. Then w
is the tangent map of a well defined automorphism of G denoted by w : G — G. It
takes any element of the maximal torus corresponding to b to its inverse.

It is well known that for any h as above, there exists at least one opposition w
such that w(y) = —y for all y € b.

If @ is an opposition, then for any ¢ € I and any p € P; we have w(p) € P;-
where i* € I is as in 1.24. It follows that w? is an inner automorphism. More
precisely, ? is the identity map (it is an inner automorphism which is the identity
map on some Cartan subalgebra).

9.9. If @ is an opposition and g € G, then Ad(g)wAd(g~!) is an opposition.
Conversely, if @,w’ are oppositions, we have by a standard argument, @’ =
Ad(g)wAd(g~?) for some g € G.

9.10. Let w be an opposition of g. This induces an involution Z — Z (denoted
again by @) given by (y,b,b") — (—@(y), @ (b),w(b’)). If F € Cohg(Z), then the
coherent sheaf @*(F') is naturally an object of Cohg(Z). We obtain an involution
F— w*(F) of Kg(Z) denoted by w*.

Lemma 9.11. The involution w* : Kg(Z) — Kg(Z) corresponds under the iso-
morphism 8.6 to the involution x — x* of H (see 1.24).

From the definition it is clear that w™* preserves the A-algebra structure of
Kg(Z), that it carries a; to a;» for any ¢ € I, and that it carries 'Li to 'L;»
for any i € I (hence 'L to '(*°L~!) for any L € X). The lemma follows.

Proposition 9.12. Letm: Kg(Z) — Kg(Z) be the A-algebra automorphism given
by & — Tujolgfwo, Let w* : Kg(Z) — Kg(Z) be the A-algebra involution defined in
9.10 in terms of an opposition w. (w* is independent of the choice of w by 9.9.)
Let D' : Kg(Z) — Kg(Z) be the ring involution defined in 9.7.
(a) We have D'w* = w*D',7ww* = w*r, D't =177 1D’.
(b) The ring automorphism Tw* D’ of Kg(Z) corresponds under the isomorphism
H = Kg(Z) to the involution = : H — H in 1.8.

Using 9.11 and 9.7, we see that automorphism of the ring H corresponding to

Tw* D' : Kg(Z) — Kg(Z) takes v to v 1,
T, +v ! to TJ;(T@* + o YTy =Ty, + 071

for all 7 € I, and 6, to Tgolﬁwmfwo =9, forall z € X. (The last equality follows
from 1.22.) (b) follows.

The first equality in (a) follows from the definitions using 6.12. Using 9.11, we
see that the second equality in (a) follows from the fact that x* = x for x = T,
or x = Tl (where x* is as in 1.24). The third equality in (a) follows from the

first two equalities in (a) and the fact that D’,w*, 7ww* D’ are involutions. (The
fact that Teo* D’ is an involution follows from (b).) The proposition is proved.

Corollary 9.13. Let Y be the closure of a G-orbit in g,. Let
Zy ={(y,b,b") € Zly e Y}

Consider the direct image map jY : Kg(Zy) — Kg(Z) induced by the inclusion
jy : Zy C Z. Then the image Im(5Y) of jY¥ is a two-sided ideal of Kg(Z) stable
under the involution =~ of H = Kg(Z).
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The fact that Im(j)) is a two-sided ideal is analogous to [KL2, 3.5]. It can be
proved by the arguments in 10.1. To prove that it is stable under —, it is enough to
check that it is stable under the maps 7,@*, Dz of Kg(Z) into itself. The stability
under 7 follows from the fact that Im(j)) is a two-sided ideal. The stability under
Dy follows from the commutative diagram

Kg(Zy) S Kg(2)

ool ol
Kg(Zy) —2— Kg(2)

(a special case of 6.11). It remains to show that Im(jY) is stable under w*. It is
enough to show that w : Z — Z maps Zy into itself, or that @w : g — g maps Y
into itself. This follows from the well known fact that any nilpotent orbit in g is
stable under any opposition. (A more precise result is proved in 12.1, 12.2.) The
corollary is proved.

9.14. Thez Corollary is evidence for the conjecture that the “canonical” basis
{c,|lw € W} (see 1.5, 1.9) of H = Kg(Z) is compatible with each of the sub-
spaces Im(5)) above.

10. THE H-MODULES K7 (B), K7(A)

10.1. Let H be a closed reductive subgroup of G. Let Y be a closed H-stable
subvariety of g,. Then Y = {(y,b) € Aly € Y} is a closed H-stable subvariety of
A.

We regard Z and A x Y as closed subvarieties of A2 in an obvious way; the
intersection of these subvarieties is ZN (Y x Y). Let p’ : AxY — Y be the second
projection and let p” : ZN (Y xY) — Y be the first projection. Then p’ is a
smooth morphism and p” is a proper morphism. They are compatible with the
natural actions of H. Let F € Cohg(Z), F’ € Cohy(Y). We regard F as an object
of Cohy(Z) and we define

Fxy F' =pl(Fok, p*F') € Kg(Y).

*

(The Tor-product is relative to the smooth H-variety A? and its closed subvarieties
Z and A x Y.) This extends to a bilinear pairing Kg(Z) x Kg(Y) — Ky (Y),
denoted &,¢&" — £ xy &, which may be regarded as a Kg(Z)-module structure on
Ky (Y), as a routine argument using A® shows.

Now let Y, Y’ be two closed H-stable subvarieties of g,, such that Y C Y’. Then
Y C Y’ and this induces a direct image map Kz (Y) — Ky (Y’). This is in fact a
homomorphism of Kg(Z)-modules. (This follows from the definitions using 6.5.)

10.2. In the remainder of this section, we fix a Borel subgroup By of G and a
maximal torus 7" of By. Let 7 =T x C*. Let by € B be the Lie algebra of By and
let ng = np,. We shall regard A as a subvariety of A x B by (y,b) — (y,b,b0). It
is a (Bg x C*)-stable subvariety. Then

Zo ={(y,b) € Alb" = bo}

(see 7.15) is a (By x C*)-stable subvariety of A and B is a (Bg x C*)-stable subvariety
of Z (by b (0,b)).
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If V is one of the (By x C*)-varieties A, Zy, B, {0}, we set
V = (By x C\(G x V)

where (By x C*) acts on G x V by 3 : (7,§) = (871, B€) for B € By x C*,y €
G,£ € V. Note that V is a G-variety, where G acts by left multiplication on the
first factor. By a general result in [T1] we have canonically

(a) Kg(V) = K7(V).

This is defined as follows. We consider F' € Cohg(V). The inverse image of F
under the orbit map G x V. — V is naturally an object F e Cohp,xc+(G x V).
This is then the inverse image of a well defined object F’ € Cohp,xc+(V) under
the second projection G x V' — V. Since T x C* is a subgroup of By x C*, we may
regard F’ as an object of Cohz (V). Then (a) is defined by F — F".

(b) For V = A, Zy, B,{0}, we have canonically V.= Ax B, Z, Bx B, B respectively
(as G-varieties).

For V.=Aor V =Z, this is ((g,\), (y,b)) — (A"2Ad(g)y, Ad(g)b, Ad(g)bo).

For V = B, this is ((g,A),b) — (Ad( )b,Ad( )bo).

For V = {0}, this is ((g, ), {0}) — Ad(g)bo.

10.3. By 10.1 with Y = {0},Y = B (via b~ (0,b)) and H = T, we have a natural
Kg(Z)-module structure on
(a) K7(B) = Kg(B) = Kg(B x B).
(See 10.2(a),(b).) From the definitions, this coincides with the K¢(Z)-module struc-
ture defined in 7.13.
By 10.1 with Y = g,,,Y = A and H = 7, we have a natural Kg(Z)-module
structure on
(b) K7(A) = Kg(A) = Kg(A x B).
(See 10.2(a),(b).) From the definitions, this coincides with the K¢(Z)-module struc-
ture defined in 7.11.
By 10.1 with Y = ng,Y = Zy and H = 7, we have a natural Kg(Z)-module
structure on

(c) K7(Zo) = Kg(Zo) = Kg(2).
(See 10.2(a),(b).) From the definitions, this coincides with the left multiplication
in the ring Kg(Z). From 10.2(a),(b) we have

(d) Rr = K7({0}) = Kg({0}) = Kg(B).
Composing with the identification AX = Kg(B) (see 7.8(a)) we obtain an identifi-
cation of rings

(e) AX = Rt = Kg(B)

10.4. The natural R = AX-module structure on K7 (B), K7(Zy), K7 (A) is de-
noted by [z],§ — [z] . £&. (Here z € X.) We identify K7(B) = K7(A) as AX-
modules via the isomorphism K7 (B) — K7(A) induced by inverse image under
the second projection A — B.

For L € X, we can regard the G-equivariant line bundle L as a 7-equivariant
line bundle on B; hence L may be regarded as an element of K7 (B). If L € X and
x € X, then [z]. L € K7(B) = K7(A) corresponds under 10.3(a) or 10.3(b) to the
element L X L, of Kg(B x B) = Kg(A x B).
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The element of K7(Zy) corresponding to the unit element of the ring Kg(Z) is
denoted by 1.

Lemma 10.5. Let j' : B — Zy be the map b — (0,b). In K1(Zp) we have
(2) Ppew 0" Tw - 1= (=1)"jL([=p] . Lp).
This is a reformulation of 8.11, using the identifications 10.3(a),(c).

10.6. Consider the diagram

2/

Kr(B) —2— Ky (Zy) —— Kr(A)

/| /| d

AxS? . H AX$?

/| | 7|

My — M, — 0 My

where the following notation is used.
j B — Zyis asin 10.5 and 5’ : Zy — A is the obvious inclusion.
a, b are the obvious imbeddings. v is defined by

a2 @ [¢]) = (~1) 620 (3 0T 0,0,
weW

for z,2’ € X.

f, f are the isomorphisms defined in 4.4, 4.5. (They are H-linear by definition;
see 4.6, 4.7.)

[ is defined by x — (=1)"v""x - g At.

g is the inverse of the composition AX®? = Kg(B x B) = K7 (B) (the first
map as in 7.8(c); the second map as in 10.3(a)).

g is the inverse of the composition AX®? =5 Kg(A x B) = K7 (A) (the first
map as in 7.8(c); the second map as in 10.3(b)).

g’ is the inverse of the composition H — Kg(Z) — K1(Zp) (the first map as in
8.6; the second map as in 10.3(c)).

Here K7 (B), K7(A), K7(Zy) are regarded as H = Kg(Z)-modules as in 10.3.

Then g, g are isomorphisms of H-modules by the proof of 7.23, 7.24. Moreover,
4., 7. are H-linear (a reformulation of 7.14).

Proposition 10.7. (a) The diagram in 10.6 is commutative.
(b) All its maps are H = Kg(Z)-linear.
(¢) All its vertical maps are isomorphisms.

We prove (c). We only have to prove that f’ is an isomorphism. Let Im(f’)
be the image of f’. The equality T,0,(0AF) = oAS . for 2 € X shows that
0Ae € Im(f’) for any ¢ € €. Let A € X. We can find ¢ € € so that € is in
the closure of A. Then A = T;'(AY) (equality in M.) for some w € W, . Hence,
0A =T (0As) € Im(f'). Now if 1 € X, we have ,A = T,(oA) € Im(f'). Thus, f’
is surjective.

We can regard H as a left AX-module by [2'] : x — Xx0.-. This module is free
of rank |W| by 1.21. We can regard M. as a left AX-module by the .-action. This
module is also free of rank |W|. (See 3.1(c).) Now f’ respects these AX-module
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structures. Being a surjective map between free modules of the same (finite) rank,
it must be an isomorphism. (c) is proved.

We prove (a). We first show that the lower left square of the diagram is commu-
tative. It is enough to show that, for any =, 2z’ € X, we have

(1) 07 (= 1) 0% 00y (Y 0 T 0040 (0AT) = 0700y ([ + p] « 0ec)-
weWw

The left hand side equals

Vi p( S v OT N ([0 + p] w0 AY)
weW

= 0" Bap[’ + p (D 0T 0AR) = 0¥ By ([a” 4 p] e,
weW

as desired.
Next we show that the upper left square of the diagram is commutative. Since
g,g’ are isomorphisms, it suffices to check that j,g~' = ¢’ ~'u. Thus, it is enough

to show that, for any z, 2’ € X, we have

Ju[#']« Ly) = (_1)Vv2y6‘w+p( Z U_l(w)TJI)%urp -1
weW

in K7(Zy). Since j, is H-linear and AX-linear, we may assume that z = 2/ = —p.
Then the desired formula follows from 10.1, using that

s Z U—l(w)j-;;l — Y Z Ul(w) 7

weWw weW

It remains to show that the right rectangle in our diagram is commutative. We will
deduce this from the commutativity of the squares already considered, together with
the commutativity of the diagram 4.11. Since all our maps are R = AX-linear,
and all the R = AX-modules in the diagram are free of finite rank, it suffices to
show the commutativity of the rectangle after tensoring each module in the diagram
over Ry with the quotient field of Rz. After this tensoring, the maps a,b in the
diagram become isomorphisms (by 4.10); hence j. becomes an isomorphism (by the
commutativity of the two left squares in the diagram). Hence it suffices to show
that bf’g’j. = fgj.j. holds after tensoring. It is also enough to prove that this
holds before tensoring. Since f'¢’j. = f'ug = afg (by the earlier part of the proof),
it is enough to show that bafg = fg]*]* or that baf = fg]*]’ -1

Now j'3' : B — A is the imbedding of the zero section of the vector bundle
A—B (Second projection). It follows that

J23e = (7'3") : K7(B) — K1 (A) = K7(B)

is just multiplication by HaeR+( v?Ly) € K7 (B). Equivalently, §;.j.g~ (&) =
Ox(&1) for all & € AX$?. Thus we are reduced to showing that baf(&) =
f(0a(€1)). This follows from 4.11. This proves (a).

We prove (b). Note that all maps in our diagram are already known to be H-
linear except possibly for u. But then u is automatically H-linear since u = f'~laf
(by (a)) and f'~!,a, f are H-linear. The proposition is proved.
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10.8. We now fix an opposition w : g — g such that @w = —1 on the Lie algebra
of T'. (Note that w is uniquely determined up to composition with Ad(t) for some
teT.)

If FF € Cohr(B) (resp. F € Cohr(A)), then the inverse image w*F under
the involution w : B — B (resp. @w : A — A) given by b — w(b) (resp. by
(y,0) — (w(y),w(b))) is naturally an object of Cohs(B) (resp. Cohr(A)). We
obtain an involution F +— w*(F) of K7(B) (resp. of K7(A)) denoted by w*.
The involutions w* on K7(B) and K7 (A) correspond to each other under the
identification K7 (B) = K7 (A) as A-modules in 10.4. From the definitions we
see that in the Kg(Z)-module structures of K7(B) and K7 (A) (in 10.3) we have
w*(x§) = w*()w* (&) for x € Kg(Z) and £ in K7(B) or K7(A). Moreover, from
the definitions, we see that in the natural Ry = AX-module structures of K7 (B)
and K7(A) (in 10.4) we have w*([z] . &) = [—z] « w*(§) for x € X and £ in K7(B)
or K7(A). (This comes from the fact that w = —1 on the Lie algebra of T.) It
follows that the involution @* on Kr(B) or K7 (A) takes

(a) [2]+ L to [—x] . oL~ for any z € X, L € X.
(It suffices to check this for x = 0, L = C where it is obvious.) Hence, this involution
corresponds to the involution o : AX®? — AX®? in 5.4, under the isomorphism
g: AX®? = K7 (B) or §: AX®? = K7 (A) in 10.6.

10.9. Consider the Rz-bilinear pairing K7 (B) x K7(A) — Ry given by
(F:F')=n.(F &k F.
(The Tor-product is relative to the smooth 7-variety A and its closed subvarieties

B, A with intersection B; 7 is the map from B to the point.)

~

Lemma 10.10. Under the isomorphisms g : AX®* = Kr(B),§ : AX®?* =
K7(A) in 10.6 (that is, [z] ® [2'] — [2'] « Ly) and R — AX in 10.3(e), the
pairing in 10.9 corresponds to the pairing (:) : AX®? x AX®? & AX in 5.1.
Since both pairings are AX = Ry-bilinear, it suffices to show that, for any
z,x' € X, we have
(Lz : Lz’) = (xvx/)

where (z,2') is as in 5.1. Using 6.7, we have (L, : Ly/) = mi(Ly ® Ly ) where L, is
regarded as a line bundle on B in both sides, while L, is regarded as a line bundle
on A in the left hand side and as a line bundle on B, in the right hand side. Setting
7 = x + ', we see that it is enough to show that

me(Lz) =671 Y sen [ + p
weW

for any & € X. (The left hand side is in Ry = AX, the right hand side is in AX"".)
This follows from Weyl’s character formula. The lemma is proved.

10.11. Let k& : B — A be the imbedding b — (0,b). As we have remarked
earlier, the map k. : K7 (B) — Kr(A) corresponds, under the isomorphisms
g: AX®?* 5 K7 (B), : AX®? = K7 (A) in 10.6 to the map AX®? — AX®?
given by multiplication by (A ® 1).

Consider the pairing (, ) : K7(B) x K7(B) — Ry defined by

(a) (F.F)g = (=0)"ma(F @ (Twyw" (F"))).
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(The Tor-product is relative to the smooth 7-variety A and its closed subvarieties
B, B with intersection B.)

Let ?R be the quotient field of Ry. The pairing (a) is Rz-linear in the first
variable and is Rr-semilinear in the second variable, with respect to the involution
T of R = AX. Hence, that pairing extends naturally to a pairing

(R®r, K7(B)) X (R®@r, K7(B)) — R
Composing this with the map
K7r(A) x Kr(A) —» (R®r, K7 (B)) x (R Qpr, K7(B))
given by k7! x k! (recall that k, is an isomorphism over R) we obtain a pairing
(b) () : K7 (A) x K7(A) — R

Let {l be the set of all elements p € U (see 3.8) such that pp € Ry for some
p € Ry —{0}. Then 4 may be regarded as a subring of either i or of the field *R.
From the definitions we see that (,)a takes values in the subring # of fR.

Let (, )z, : K7(Z0) % K1(Zo) — R be the composition K7 (Zo) x K1 (Zo) 222
Kr(A) x Kr(A) 2% ;.

~

Lemma 10.12. (a) Under the isomorphisms g : AX®* = K7(B) in 10.6 and
Rt — AX in 10.5(e), the pairing 10.11(a) corresponds to the pairing (|)a :
AX®? x AX®? - AX in 5.8,

(b) Under the isomorphisms § : AX®* =5 Kz (M) in 10.6 and R = AX, induced
by 10.3(e), the pairing 10.11(b) corresponds to the pairing (|)g : AX®? x
AX®? — AX, in 5.8.

(c) If &, & € K1 (Zy), then O(&,&')z, € A.

Note that F ®@% (T, (F")) in 10.11(a) is equal to F @% k. (T, *(F')) where
the last ®% is relative to the smooth variety A and its closed subvarieties B, A.
Hence, (a) follows from the identifications done earlier in this section. Now (b)
follows from (a) using 5.9. Now (c) follows from (a) and the commutative diagram
10.6, since d(m|m') € A for any m,m’ € M, (see 3.4). The lemma is proved.

Lemma 10.13. Let L € X,x € X,n € Z. We have
Dp(v"[z] . L) = (—=1)"v "[-2] . L™ L_5, € K7(B),

Dp(v™[z]+ L) = v v "[~x] . L™ € K7(A).

This follows from 6.13, 6.16 since B, A are smooth. (We also use 9.4 and the
equality Qp = L_,.)

Proposition 10.14. Let w* be the involution of K7 (B) or Kr(A) described in
10.8.
(a) w* : K7(B) — K7 (B) commutes with Ty, : K7(B) — K7 (B) and with
D : K7(B) — Kr(B). Moreover, D is H-antilinear.
(b) @w* : K7(A) — K7(A) commutes with T, : Kr(A) — Kr(A) and with
Dp : K7(A) — K7(A). Moreover, Dy is H-antilinear.
(¢) The map (—U)_”Tujolw*DB : K7(B) — K7(B) corresponds under fg : K7(B)
= Mg (see 10.6) to b: My — M.
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(d) The map (—v)”TJ{}w*DA : K7(A) — K7(A) corresponds under f§ : K7 (A)
= My (see 10.6) to l:) Mg — My
Let L € X,z € X,n € Z. We have (in K7(B)):
(—0) Ty @ Di(v"[a] « L) = (=) " (= 1) v "I @ (=] . L™ L)
= v_l’v_"i;[)l([:z:] (YO LL_y,)).

The first equality holds by 10.13. The second equality holds by 10.8(a). This shows
that our map corresponds under g : K7(B) — AX ?2 to the map b in 4.9. Hence,
(c) follows from 4.9. We have (in K7(A)):

(—U)”Tujolw*DA(v" [z] . L) = (—v)”vz”v_”Tujolw*([—x] LY
= (—1)”v3”v_"1~“1;01([x] OL).
The first equality holds by 10.13. The second equality holds by 10.8(a). This shows

that our map corresponds under § : K7(A) = AX$? to the map b in 4.9. Hence,
(d) follows from 4.9.

We prove (a). The first assertion of (a) follows from 5.4(a) (using 10.8). The
second assertion of (a) follows from the definitions using 6.12. The third assertion
of (a) follows from (c), using the fact that b is H-antilinear.

The proof of (b) is entirely similar to that of (a). The proposition is proved.

10.15. Let
Bf = {¢ € K7 (B)|(—v) T @ Dp(&) =&, 9(¢,&)p € 1+v 27"},
B = {¢ € Kr(A)|(—0)" T @ Da(§) =€, 0(€.6)r € 1+v ' Z[w "]},
B} = {¢ € K1(Z0)|0(5.€)z, = 1}.

Here (,)s, (,)a; ()7, are as in 10.11 and 9 is as in 3.13. (Note that J(&, §)a is well
defined since (£,&)a € 4 C 4, see 10.11.)

Proposition 10.16. (a) B is a signed basis of the A-module K1(B). Under the
isomorphism
fg : Kr(B) = Ma (see 10.6), By corresponds to the signed basis
{£,B"|. € X, B € X} of the A-module M.

(b) BT is a signed basis of the A-module K7(A). Under the isomorphism f§ :
Kr(A) = Mg (see 10.6), Bi corresponds to the signed basis
{+,B¥1€ X,B € X} of the A-module M.

(c) szco is a signed basis of the A-module K1(Zy). Under the isomorphism f'qg’ :
K1 (Zy) = M, (see 10.6), BZ corresponds to the signed basis {+,B|. €
X,B e X} of the A-module M...

Recall that in 3.14, the signed basis {+,B"|. € X, B € X} of the .A-module M
has been characterized in terms of an inner product (|) on Mgy and an antilinear
map b: My — Myg. Under the isomorphism fg : K7(B) = My, the inner
product (|) on My corresponds to the inner product (,)s on K7 (B) (by 10.12,
5.15) and the antilinear map b : My — Mg corresponds to (—v)_”Tgolw*Dlg :
K7(B) — Kr(B) (by 10.14(c)). Hence, the second assertion of (a) is proved. The
first assertion of (a) clearly follows from the second assertion of (a). Thus, (a) is
proved. The proof of (b) and (c) is entirely similar. The proposition is proved.
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10.17. Let X, be the set of all a € X such that a + € is contained in the closure
of AF. Note that x — z is a bijection X, — X.

Lemma 10.18. Leta € Xyin. Let 7 € W be such that TAT = AT, .. Letl =1(r).
We have 0_q4(pec) = v aee, 0_a(0éc) = (—v)'aée.

From the definitions, for any 7 € W% any x € X and any A € X, we have
Zr(z+ A) =z + 7(B).
We apply this with 7 € W* such that TA} = A}, ., = —a and A = AT. We
see that
(a') _QT(Ai_aJre) = Ag_
Our assumption on a implies that € is in the closure of A_,4.. This, together with
(a) implies that
(b) 27 e W..

By definition we have _, = T(__lg)T =71 Nl. Hence, if m is either e. or é., we
have 0_q(om) = T T, (om) = T

“1(om) = o((T-a,)m). We now use (b) and the
fact that Tye. = v/ (e, Tipé. = —v)_l(“’ é. for any w € W2. The lemma follows.
Lemma 10.19. We preserve the notation in 10.18. Let 2’ € X. We have

(a) v'"¥[2'] L_,—o € BE;
(b) (=1t '] L_, € BE.

We prove (a). Let f be as in 4.4. We have
F=p—a @ [2]) = v'0-a(le’ + p] + oee) = [2" + ]« ace.
We prove (b). Let f be as in 4.5. We have

F((=1) o [=a] . [2])
= (=D (=)o ([2 + 2p] - 0e) = [/ + 2] « abe.

The lemma follows.

10.20. In this and the next subsection we assume that G = SLg with I = {1,2}.
Consider geq+e where d1(a) = 0,d2(a) = 1. Let B = 05(Af,,). We have (B* =
(ng + v_l)(oe:+e). We want to describe the corresponding element of B?.
By 10.19, [a]« 4c = g€qrtc corresponds to v>~3[—p —a] @ [a — p] € AXG?. Hence,

0B® corresponds to

(a) v (Toy +v )[-p—a]@[a—p].
We have

v =pt+az—a+ax] —v—p—a+as] +v[—p—a+ay] —v[—p+az—ad

[aa] =1

=v ! —p+az—ad.

Hence, (a) equals v2[—p+as —a] @ [a — p] +v72[p — a] ® [a — p]. This corresponds
to a direct sum of two line bundles on B.
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10.21. Let so be the unique element of S — S.. Let B = so(AT). Then 0B’ =
(T, + v~ 1) (0ee). We want to describe the correspondlng element of BB
We have 0, = T, T,,T,,Ts,. Hence, T, = T} 1T 1T .10, We compute (in M):

(Too + 0" W [=p) @ [p] = T T, T, 020" [=p] @ [=p] + 0™ 0™ [=p] @ [—p]
— T T 0 @ )+ v o=l © [

= v =p] @ [=plv ™ + v[—p] @ [=plo ™ + v*[-2p] @ [-p]v~?

+o o —pl @ [—p] = v 2 [—p] @ [-p) + [-20] @ [-p).
This corresponds to a direct sum of two line bundles on B.

10.22. Let H be as in 10.1. Let 3 be a closed H-stable subvariety of A. Let i € I.
We say that 3 is i-saturated if the following holds:

(y7 b/) € 3, (yv b) €A, ([’7 b/) €0, = (y, b) € 3.

(Compare 8.1.) Assume that y € g,,, that H is contained in the stabilizer of y in G
and that 3 is an i-saturated closed H-stable subvariety of {y} (see 10.1). Asin 8.1
we see that

(a) the operator T, : Ky ({y}) — Ku({y}) (see 10.1) maps into itself the image
of Ky (3) — Ku({y}) (direct image under the imbedding 3 — {y}).

11. StupY OF Kp(B.), Kr(A.)

11.1.  In this section we fix an slo-triple (e, f, h) in g, that is, three elements (e, f, h)
of g such that [h,e] = 2e¢,[h, f] = —2f,[e,f] = h. Let ( : SLy — G be the
homomorphism of algebraic groups whose tangent map at 1 carries () to e,
(99) to f, (0_1)toh Let
= {9 € G|Ad(g)(e) = e, Ad(g)(f) = [, Ad(g)(h) = h},
6= {(9, ) € GlAd(g)(e) = Ne, Ad(g)(f) = A\72 f, Ad(g)(h) = h}.
These are closed, reductive subgroups of G, G respectively. The map

( ) (QC(O)\ 1)7/\)

~

is an isomorphism of algebraic groups & x C* = &. Let C be a maximal torus
of & and let H = C' x C*. We will identify H with a subgroup of & (a maximal
torus) via
( ) (CC(OA 1)7/\)'
Let s = {y € glly, €] = [y, f] = [y, h] = 0}. This is a reductive Lie algebra. Let ¢
be the Lie algebra of C' (a Cartan subalgebra of 5). Let [ be the centralizer of ¢ in

g. Clearly,
(a)eclfelbhel

11.2. Let
B. ={b € Ble € b}.

Note that B, may be identified with {e} (see 10.1) by b — (e, b).
Let 3(f) the centralizer of f in g and let

Se={ycamly—eci(f)}, Ac=3c={(y.b) € AlyeZ.}.

According to Slodowy (see [S]]), A, is irreducible, smooth, of dimension 2 dim ..
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. Note that {e} and X. are G-stable subvarieties of gn. Hence, B, and A, are
G-stable subvarieties of A. In particular, B, and A, are H-stable subvarieties of A.

11.3.  Consider the action of C* (a subgroup of H via A — (1,)) on B, and A..
These actions on B, A, have the same fixed point set:

BE =AS ={(0,b) e Alec b,h eb}.

This fixed point set is smooth, since A, is smooth and is a projective variety, since
B, is a projective variety.

For any connected component i of BE™, let Be, be the set of all b € B, such
that limy,_.o Ad¢ (é A91 ) b belongs to p. The limit above is denoted by 7, (b).

For any connected component p of B = AS”, let A, , be the set of all (y, b) €
A, such that limy oo (A72AdC¢ (%) y, Ad¢ () ,%1) b) is defined and belongs to
p. The limit above is denoted by ), (y, b).

Lemma 11.4. Let u be a connected component p of BE*.

(a) Be, is a smooth subvariety of Be and m, : BS — u is naturally a vector

e
bundle.
b) A., is a smooth subvariety of A, and 7!, : AS, — p is naturally a vector
N 7 e,u
bundle.

(c) The subvarieties Be,, (resp. Ae,,) for various p as above form an a-partition
(see [DLP, 1.3]) of B. (resp. A.).

The assertions relative to B. , are proved in [DLP]. The assertions relative to
A.,,, are proved in [KL2, 4.6] using Hironaka’s theorem on resolutions of singulari-
ties.

Lemma 11.5. The Ry-modules Ky (1), Ku(Be,u), Ki(Ae,,) have finite rank.

From 11.4 we see that it suffices to prove the assertion concerning Kp(u). Since,
u is smooth, projective, it can be partitioned (Bialynicky-Birula) into locally closed
H-stable pieces which are vector bundles over the various components of the fixed
point set of H. It is then enough to show that for each of these pieces, the cor-
responding K g has finite rank over Ry, or that, for any connected component of
the fixed point set, the corresponding Ky has finite rank over Ry. Since H acts
trivially on that component, it is enough to show that the non-equivariant K group
of the component is a finitely generated abelian group. This follows from [DLP,
3.9]. The lemma is proved.

Lemma 11.6. The Ry-modules Ky (B.), Kg(Ae) have finite rank.
This follows from 11.5 using the a-partitions B, = Uu Be,y, Ae = Uu Acp.

11.7.  Assume now that e is a regular nilpotent element of [. Then ng{l} is a
finite set; hence the fixed point set of H in the proof of 11.5 is finite. In this case,
the argument in 11.5 shows that the Ry-modules Ky (1), K (Be,u), Ku(Ae,,) are
free (of finite rank) and then the argument in 11.6 shows that the Rp-modules
Ku(B.), Ku(A.) are free (of finite rank).

The same holds in the case where G is a classical group and e is arbitrary since in
this case, the fixed point sets in the proof of 11.5 admit algebraic cell decompositions
(see [DLP, 3.9]).

We return to the general case. It is likely that the Ry-modules above are again
free. Moreover, it should be possible to deduce this from the analysis in [DLP, 3.9].
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Lemma 11.8. Let SR be the quotient field of Ry. The direct image maps
Ku(BS) = Ku(B.), Ku(AS) = Ku(Ao), Ku(Be) — Ku(A.)

induced by the inclusions BS* C B., AS* C Ae, Be C Ae, become isomorphisms
after tensoring with R over Ry .

It is enough to consider the first two maps in the lemma (since BS~ = AS"). This
follows from the concentration theorem [T2] applied to the C*-action on B, A..

11.9. In the special cases mentioned in 11.7, we deduce from 11.8 that the map
Ky(B.) — Kg(Ae) is injective. Again, this should be true in general.

Proposition 11.10. Let b(e) = dim B.. We have Q5, = v?(¢) € Vecy, .

We have a cartesian diagram
GxAe —— Gx(e+3(f))

‘| a

A — g

where a,b are given by (g;y,b) — (Ad(9)y, Ad(g)b), (g,y) — Ad(g)y and the
lower horizontal map is ((y,b) — y. According to [Sl], b is smooth; hence a must
be also smooth. Moreover, if (y,b) € A, the tangent space along the fibres of a
at (1;y,b) can be identified with the tangent space along the fibres of b at (1,y).
Hence, (QaxA.)1,y,6 @ (QA)?y,b) = (o (er3(f)))1,y @ Qg)* where * denotes a dual
space. Since Q4 = v?” canonically, it follows that Q(g) ® (2, )y.6 = v* @ Q(g) @
(Qets())y @ Qg)*. We have (Qeiyip))y = Q3(f)). Hence, Qa, = v* @ QG(f)) ®
Qg)* = v* @ Qg/3(f))*. Now g/3(f) has a non-degenerate symplectic form
(Kirillov) 2,y — (z,[f,y]). Here (,) is the Killing form on g. Hence, Q(g/3(f)) =
v2dima/5(f) and Qp, = p2v—2dim 9/3(f) = y2b(€) | The proposition is proved.

12. THE INVOLUTION ~ AND INNER PRODUCT ON Ky (B.), Krg(A.)

12.1. Let A(g) be the group of automorphisms of the Lie algebra g. Let O(g) be
the set of oppositions of g. Let A°(g) be the identity component of A(g) and let
Al(g) be the connected component of A(g) that contains O(g).

We fix an slp-triple (e, f, h) in g such that

yeglyel=1[yfl=h=0= y=0
(That is, (e, f, h) is distinguished in g.) Let
R={C € A(g)lC(e) = e,((f) = f,¢(h) = h},
For any j € Z we set g; = {y € g|[h,y] = jy}. It is well known (Bala-Carter) that
9=B;cz9 .

We attach to (e, f, h) a linear map ' : g — g by «'(y) = (—1)y fory € g;. It is
clear that k¥ € R' N A%(g).

We also attach to (e, f, h) an automorphism x € RN Al(g), as follows. Assume
that this has been done when g is simple. In the general case we write g canonically
as a direct sum of simple Lie algebra and (e, f, h) as a corresponding direct sum of
slo-triples. We then take the direct sum of the automorphisms x attached to the
various simple components; this will be x for g. We now assume that g is simple.
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In the case where wy is in the centre of W that is, when Al(g) = A%(g), or
equivalently, in type B,,C,, Da,, G2, Fy, E7, Es, we define k to be the identity
automorphism.

In the case where g is of type Dan41,n > 2, we consider the standard 4n + 2
dimensional representation E of g. As an slp-module it is canonically a direct sum
of irreducible modules of distinct, odd dimensions. Consider the automorphism of
E which equals —1 on the smallest of these irreducible sls-submodules and is 41
on all the others. This gives rise to an automorphism of g that is denoted by k.
Note that k € RN Al(g).

In the case where g is of type A,,n > 2, (so that e is regular nilpotent) we
note that, as an sl,-module, g is a direct sum of irreducible modules of distinct
dimensions: 3,5,7,...,2n 4+ 1. We define a linear map k : g — g to be +1 on the
submodules of dimension 3,7,11,... and to be —1 on the submodules of dimension
5,9,13,.... Note that x € RN Al(g).

Assume now that g is of type Fg. If e is regular nilpotent, we note that, as
an slp-module, g is a direct sum of irreducible modules of distinct dimensions:
3,9,11,15,17,23. We define a linear map k : g — g to be +1 on the submodules
of dimension 3,11,15,23 and to be —1 on the submodules of dimension 9,17. If
e is subregular nilpotent, we define x to be the unique element of RN Al(g). If
e is neither regular nor subregular, then R N A(g) consists of four elements, all
involutions. The three non-identity elements v have fixed point set g of type
As x Ay, Cy, Fy respectively. (The first one is in A°(g), the other two are in A'(g).)
We define k to be that « for which g7 is of type Fj.

This completes the definition of « in all cases.

In all cases, x can be characterized as the involution in RN A!(g) whose fixed
point set on go has maximum possible dimension.

12.2. For a general g and a distinguished sly-triple (e, f, h) of g, we define w :
g — g as the composition kk’ = k’'x € R'. One can check that w is an opposition
of g. Note that w is canonically attached to (e, f,h). One can characterize w
as the unique opposition in R’ whose fixed point set on gg has maximum possi-
ble dimension (or equivalently, whose —1 eigenspace on go has maximum possible
dimension).

12.3. In the remainder of this section we fix (e, f,h),C,¢ as in 11.1. Asin 11.1,
we set H = C x C*.

Let [ be the centralizer of ¢ in g. This is a Levi subalgebra of a parabolic
subalgebra of g. Let 3 be the centre of . Clearly, ¢ C 3. (The reverse inclusion is
also true.) Let I’ be the derived subalgebra of I. From 11.1(a) and the relations of
sly, we see that e, f, h are contained in I'. If y € I satisfies [y, e] = [y, f] = [y, h] =0,
then y € I'Ns. Thus, y is in the centralizer of ¢ in s, that is, y € ¢. Thus, y € 3 and
y € U'; hence y € 3N = 0. Thus, (e, f,h) is distinguished in I'. Let wg : ! — I
be the opposition of I" attached in 12.2 to (e, f, h), relative to I'. In particular, we
have wg(e) = —e, wo(f) = —f, wo(h) = h.

By a standard argument we can find an opposition @ of g such that w|y = wy
and w(y) = —y for ally € 3. We show that w is uniquely determined up to replacing
Ad(c)wAd(c™!) with ¢ € C (this is an opposition with the same property as w).
Indeed, if @’ is another opposition of g with the same property as w, then @’ is of
the form Ad(g)w where g is in the centralizer of L in G. Hence, g = z¢ where ¢ € C
and z is in the centre of G. Replacing g by 271g, we see that we may assume that
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g =c. Let ¢; € C be such that ¢} = c¢. Then @’ = Ad(c})w = Ad(c1)wAd(g; ),
as claimed.

12.4. Thus, to (e, f,h),C,c we have associated in an essentially canonical way
(that is up to conjugation by C') an opposition w of g such that w(e) = —e, w(f) =
—f,w(h) = h and w(y) = —y for all y € 3 = ¢. In the remainder of this section we
fix such a .

12.5. Let k: B. — A, be the imbedding b — (e, b). Applying 10.1 with YV equal
to {e} or 3., we obtain Kg(Z)-module structures on Kp(B.) and Kg(A.). By
10.1, the Ry-linear map k. : Ky (Be) — Kg(A.) is H-linear.

12.6. The involution A — A given by (y,b) — (—w(y), w (b)) maps B. = {e} into
itself and A, into itself; the resulting involutions of A, B., A, are denoted again by
w. The involution on A (hence its restriction to B, or A.) is compatible with the
action of C' x C* = H in the following way:

@((c,\)(y,0)) = (¢}, Nw(y,b) for (c,\) € C x C*,(y,b) € A.

(We use that w(c) = ¢! for ¢ € C and @w(( (é /\91 ) = C(é /\91) which follows
from w(h) = h.)

Hence, if F' € Cohy(B.) (resp. F' € Cohp(Ae)), then we have naturally w*F €
Cohp(B.) (resp. w*F € Cohy(A.)) and F — w*F defines an involution w* :
KH(Be) - KH(Be) (resp. w" KH(Ae) - KH(Ae))'

This involution is semilinear with respect to the involution of Ry = Roxc+
induced by the involution (¢, \) — (¢71,\) of C' x C*.

Using the definitions, we see that the involutions w* of Kg(Z) (see 9.10) and
w* of Ki(B.) (resp. Kr(A.)) are compatible with the Kg(Z)-module structures.
Thus, if £ € Kg(Z) and &' € Ky (B.) (resp. & € Ky (A.)), then

(a) @"(68) = @ (@™ ().
12.7. Using 6.12, we see that

Dp.w* =w*Dpg, : Ku(Be) — Ku(B.),
Dpyw* =w" Dy, : Kp(Ae) — Kg(Ae).

Lemma 12.8. Let Y be either {e} or X.. For any F € Kg(Z) and F' € Kg(Y)
we have
Dy (Fxy F') = v Dz(F) xy Dy (F').
With the notation in 10.1, we have by arguments similar to those in 9.5:
Dy (Fxy F') = Dy (p2(F & " F')) = gD gy (F 9% p/ )
= v pl(Dz(F) @F2 Dy oy (0 F") = o™ p (D2 (F) @2 v*'p'* (Dy F'))
= v Dy (F) xy Dy (F').

The lemma is proved.
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12.9. Let L be the closed subgroup of G whose Lie algebra is [. Let Ad(L)e C [
be the orbit of e under Ad(L) and let d(e) = (1/2) dim Ad(L)e. We define a map
“:Ky(B.) — Ku(B.) by
¢ (—0) Ty w" Dp, (€).
We define a map ~ : Ky (A.) — Kg(Ae) by
é-/ s (_v)u—2d(e)T;01w*DAe (é-l)

Proposition 12.10. Let Y be either {e} or X.. The map = : Ky(Y) — Ky (Y)
i 12.9 is an H-antilinear involution.

In the following proof we write D instead of Dy, ¢ instead of T, , and will omit
the x signs. We show that our map is H-antilinear. Using 9.12, we see that it is

enough to verify that for any £ € Kg(Z),¢ € Ky (Y) we have
1 D(EE) = vtV (D (€) V" (D(E)

or equivalently (see 12.8), w*(Dz(§)D(§') = w*(Dz(§))w*(D(£')). But this follows
from 12.6(a).
We show that our map is an involution. It is enough to verify that for any

¢ € Ky (Y) and any integer n, we have
(—v)"t ' D((~v)"t '@ D(¢) = €.
By the H-antilinearity of our map, the left hand side is equal to
(—0)7"t(~v)"t '@ D(@" D(€')) = @ D(w* D(£)).
By 12.7, this equals w*@w*DD(¢') = DD(¢') = &' (see 6.16). The proposition is

proved.

12.11. Consider the Rpg-bilinear pairing Kg(B.) X Kg(Ae) — Rpg given by
(F: F') = m.(F @ F'). (The Tor-product is relative to the smooth H-variety A,
and its closed subvarieties Be, A, with intersection B.; 7 is the map from B, to the
point.)

Let p — p' be the involution of Ry induced by the automorphism of H = C x C*
given by (¢, \) = (¢71, ).

Lemma 12.12. For { € Ky(B.),&' € Ku(Ae), x € H, we have
(a) (€:w"(€) = (@ (&) : &),

(b) (x§: &) = (£:x¢),
where X is as in 1.24.

(a) follows directly from the definitions. To prove (b), we note that x — ¥ can be
interpreted geometrically as the map Kg(Z) — Kg(Z) induced by the involution
(y,b,0") — (y,b’,b) of Z. With this interpretation, the proof of (b) is routine.

Lemma 12.13. For £, &' € Ky (B.), we have (€ : k(&) = (& : k. (€)).

Using 6.5, we see that both sides are equal to m, (£ @ £) where the Tor-product
is relative to the smooth H-variety A, and its closed subvarieties Be, B.. The lemma
is proved.
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12.14. We define a pairing (||) : Kg(Be) X Ku(Ae) — Ry by
(a) (€ll") = (=) "7 (& : Ty (€)-
Lemma 12.15. Let £ € Ky (Be), &' € Ku(A.). We have (€]|€) = (£]|€").
This is equivalent to
(=)= (—0) T ™ D, (€) : T @™ (1))
= (—0) 4= (€ ¢ (—0)r 2O w* Ty w* Da, (1))

or to
(=) (—v) Y@ Dp, () : @*(£))
= (—o) =M (& ()72 Dy (1)),
or to (—0) =M (~v) D () < (¢1)) = (—0) 7O HO(E : (—v) 2@ Dy (€)) ,
or to (—v)~2() (D, (€) : (¢)) = (€< Da,(€)) . We have
€ Da.(@))' = Dyoine (- (€ &%, Da, (€)))
= m(Dp. (€ @K, Da. () = m((D5.&) @F, (Da,Da.(€))(—v)7>")
= m((Dp.€) @F, €)(—v) ) = (=0) V(D (€) : (£)).
The lemma is proved.
12.16. We define a pairing (|)p, : Kg(Be) X Kg(B.) — Ru by
(€168, = (&llk+(£))-
We define a pairing (|)a, : Kg(Ae) X Kg(Ae) — R (R as in 11.8) by
(€€, = (kTElE).

Here k1€ and ¢ are regarded as elements of R ®p,, Ky (B.) (see 11.8) and the
pairing 12.14(a) is extended in an obvious way to a pairing (||) : R Qgr, K (B.) x
RQr, Ku(Ae) — R.

Lemma 12.17. For £,¢ € Ky(B.) and x € H, we have
(a) (€1¢)s. = (€19,

(b) (1€ ). = (€Ix*¢)s..
This follows from 12.12, 12.13, by arguments similar to those in 5.10, 5.12.

12.18. Let Uz be the ring of power series in v~! with coefficients in the ring Rc¢.
Then Ry = Rclv,v1] is naturally a subring of {z. Let Uy be the set of all
elements p € Uy such that pp € Ry for some p € Ry — {0}. Then £z may be
regarded as a subring of either Uz or of the field K. Let p — p(® be the group
homomorphism Rc — Z which sends a non-trivial irreducible representation of C'
to 0 and sends the unit representation of C' to 1.

Let 0 : Uy — Z((v™')) be the group homomorphism defined by >, 7 pnv™ —

ZneZ pv(zo)’l)n. Let
B ={¢€ Ku(B)IE=¢, 0(&l¢)s, € 1+v 27"},
Bi ={¢cKuyA)E=¢ (), €Um, I(ElE)a, € 1+v 2w "]}
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Conjecture 12.19. (a) B?E is a signed basis of the A-module Ky (Be).
(b) If&,& € By, and & # +¢, then (¢|¢')p, € v Z[v™Y].
(c) Bj\: is a signed basis of the A-module Kg(A.).
(d) I/&,€" € Ag, and € # £€, then (£[¢)a, € Uu and O(E[¢)a, € v Z[v1]].
(e) For any € € Ba there exists € € Bi such that d(€||€) = 1 and (£'||€) = 0
for all ¢ € By, — {*£}.
(£) € in (e) is unique and & — € is a bijection Bge = Bi.

For e = 0, this holds by 10.16 and 3.14.
Now Ry has an obvious A-basis (A) where A runs over the one-dimensional
representations of C'. For A\ as above we have from the definition:

£eBj = M €eBj,
£eBy = M e€Bj}.

12.20. Assuming the conjecture, we see that {& € Ky (B.)|0(£|€)s. € Z[v~!]} is a
Z[v~!]-submodule of K (B.) and that Bge is a signed basis for it.

On the other hand, assuming only that 12.19(b) holds and that there exists a
basis  of the A-module K (B.) such that 8 C Bge, we can show that Bge is equal
to the signed basis +0 (so that 12.19(a) holds).

Indeed, let £ € Bge. By our assumption, we have £ = Zbeﬁ cyb where ¢, € A
are zero for all but finitely many b. Since not all ¢; are 0, we can find n € Z such
that ¢, € v"Z[v™}] for all b and ¢, ¢ v 1Z[v] for some b. Let ¢, € Z be such
that ¢, = ¢p,v"™ mod v *Z[v~1 for all b. We have ¢, # 0 for some b. Hence,
> €. > 0. Using our assumptions we see that

0(ElE)s, = v Y cp, mod v 2],
b
On the other hand, 9(¢|¢)s, = 1 mod v~'Z[v~!']. It follows that n = 0 and
> Cl27,n = 1. In particular, we have ¢, € Z[v=!] for all b. Since £ = &£, we must have
Cy = cp; hence ¢, € Z for all b. We then have ), cg = 1; hence ¢, = 0 for all b but
one for which ¢, = +1. Thus, £ € £ as claimed.

12.21. We consider the example where e is a regular nilpotent element. Let by
be the unique Borel subalgebra that contains e. In this case B, = {bo} and A, =
{(e,b0)} are points. We have C = 1 and H = C*. Hence, Ky(B.) = A. If
L € Vecg(B), then the restriction of L to {bo} is v"(X) € Vecc-(point) where
n(L) € Z. Note that L — n(L) is a group homomorphism X — Z. For any A € C*,
¢ () ,21) acts on the fibre Ly, by A", If L = L;, then L, = p/bo where p € P;
contains bg. Since Ad¢ () ,% ) (f) = A72f, we must have n(L;) = —2 for any
1. This condition determines completely the homomorphism n. If i € I, then Tgi
acts on Kp(B.) as multiplication by some element a € A (necessarily v or —v™1).
From the relation 1.18(b) we see that we must have v™EsLi) = g=lyn(La)g=1 if
&;(z) = 1. Thus, a=2 = v™L) = v2; hence a = —v~L. It follows that T,!
acts on Ky (B.) as multiplication by (—v)”. Note that @w* is the identity map on
Kp(Be) and Dp, : A — A takes v™ — v~" for all n. It follows that in this case
~: Ky(Be) = Ku(Be) is the homomorphism A — A which takes v™ — v~" for all
n. In this case, Conjecture 12.19 holds trivially; B?E = ch consists of +1 € A.
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12.22. Let C be the image of C in the adjoint group of G and let H=C x C*.
The action of H on B, A, factors through the quotient H of H.
Let nge)ad be the set of all £ € B%:e which are in the image of the obvious

homomorphism Kg(B.) — Kg(B.). Let Bt’ad be the set of all £ € Bi which
are in the image of the obvious homomorphism K5 (A.) — Kg(A.). We now state
a conjecture that complements 12.19.

Conjecture 12.23. (a) B;;mad is a signed basis of the A-module Im(K z(B.) —
Ky(B.)); Bi’ad is a signed basis of the A-module Im(K z(Ae) — Kp(Ae)).
(b) From B;e’ad one can extract uniquely a basis Bp, .qa of the A-module

Im(Kgz(Be) — Ku(B.)) and from Bi)ad one can extract uniquely a basis
B, ad of the A-module Im(K 5 (Ae) — Ku(Ae)) so that the following hold:

(_1)b(e)v2b(@)c € By, ad;

Bg. ad, Ba.,ad correspond to each other under the bijection 12.19(f); for
any (3,3 in Bp, aa, we have d(B, )5, € N[v,v7"].

Again, this holds for e = 0.

13. AN EXAMPLE IN Dy

13.1. In this section we assume that G is almost simple of type D4. The elements
of I are denoted 0,1, 2,3 where o1, 02,03 commute with each other.

We fix (e, f,h),C,casin 11.1; we assume that e is a subregular nilpotent element
of g. Hence, (e, f, h) is distinguished, C = {1},¢ = 0 and H = C*. In this case, B.
has irreducible components V; (indexed by i € I). Moreover, V; is a single fibre of
m; : B — P; (hence is a P'). If i € I — {0}, then Vp, V; intersect in a unique point
poi- The H-action on B, is trivial on V. For each ¢ € I — {0}, the H-action on
V; has exactly two fixed points. These are p;o,q;. We have BY = Vy U {q1,q2,q3}-
Consider the homomorphism

@ Kru(pio) = @:Ku(V;)
i#0

with components K (pio) — Kg(V;) for any i # 0 and Kg(pio) — Ku(Vp). (One
is the direct image map, the other is minus the direct image map.)

Lemma 13.2. a is injective and Kg(B.) = coker(a).

This is easily checked.

13.3. For any i € I, we define a homomorphism n; : X — Z and a connected
component y; of BX as follows.

no(oy) = =21if j #0; no(ag) =0; o = Vo.
ni(z) =no(%x); w; = q; for i #0.

Lemma 13.4. Let L=L, € X and let b € u; C Bf. We have Ly = pni(@),

This is easily checked.
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13.5. Let C be a curve isomorphic to P! with an action of C*. Let p # p’ be fixed
points for this action. Assume that the weight of the tangent action at p (resp. p’)
isn >0 (resp. —n).

For m > 0, let O™ be the line bundle on C whose space of sections has dimension
m + 1. For m < 0 let O™ be the dual of O; ™.

If mn is even, we can regard O™ has an object of Vecc~(C) such that the weight
of C* on the fibre O} (resp. on the fibre O}}) is nm/2 (vesp. —nm/2).

Let us identify Rc+ = A in such a way that v corresponds to the one-
dimensional representation of weight m of C*.

Let j7 : {p} — C,j7 : {p'} — C be the inclusions. If n is even, we have exact
sequences of coherent sheaves

’

0— v 207" - 0% = j#(C) =0, 0—v"207" - 0°— j¥(C)—0,

Hence,

’

JP(C) = 0° — o207 € Ke-(C), 7 (C) =0 —v"207! € K¢-(C).
We have O° + O—% = v"s/2 4 =75/,
13.6. The discussion in 13.5 can be applied to C = V;. In this case we write O}"
instead of O™.
Assume that ¢ # 0. We have n = 2; hence Of + O;° = v® + v~°. The weight of

the H-action on the tangent space at ¢; is 2 and on the tangent space at p;g is —2.
Hence,

J(C) = 00 =710 € Ko (V),  j20(C) = 00 =0, € Ko (Va).
Now assume that i = 0. Then j2°(C) = 0) — Oy' € Ko+ (Vo).
13.7.  Let o™ € Cohg(B.) be the image of O under the direct image map induced

by the inclusion V; C B.. From 13.2 we see that Ky (B.) is the A-module with
generators of* (i € I,m € Z) and relations:

voi_l fori=1,2,3,
fori=1,2,3,

m+1 m—1 __ m
oy T +o5 T =20

o' = of -

R (R

In fact, an A-basis is given by oi_l, i=0,1,2,3 and p = 0 — 051.

13.8. For x € X the restriction of L, to V; is vSOf”(w) where s is determined as
follows.

If i # 0, then (L)p,, = v = v*0v~%(); hence s = ng(z) + @;(z).

If i = 0, then (Ly)p,, = v™@ = v*; hence s = ng(x).

Thus, the restriction of L, on V; is

pro@) @O ey 93,
G oLl )}

Lemma 13.9. (a) 0,p = v™@p.
(b) Assume that i # 0 and &;(z) = 1. We have

Gmoi_l = vm’(g”)“(voi_1 +p), Gz_aioi_l = U”O(I)H(v_lo;l —p).
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(c) Assume that i =0 and &o(z) = 1. We have
9m051 = Uno(m)(oo—l +p), 91_%061 _ ,Uno(z)(oo—l ).

(a) follows from the fact that p = j.C where j : {p;o} — B. is the inclusion. In
the case (b) we have

-1 _ no(z)+ay(z) —1+ai(x) _  no(z)+1.0 _  no(z)+1 —1
00, = o(@)+di( )oi = 0@ 0;, =V o(x) (vo; = +p),
ew—aioi_l _ ,Uno(m—a,i)-l—di(w—aqy)oi—l-i-di(1_011‘)

— ,Ung(z)+10i—2 — Uno(r)—i-l(_oé) + (U + ,U—l)oi—l) — Uno(gc)—i-l(v—loi—l _p).

In the case (c¢) we have
emoi_l = U”O(m)oal-"—ao(m) = U"O(ﬂﬂ)og = Uno(w)(oi—l +p),
Om_aooi_l = ,Uno(r—ao)oal‘f‘ao(w—ao) — Uno(m)OEQ — ynol@) (051 —p).

Lemma 13.10. Tgioi_l = voi_l fori=0,1,2,3.

This can be deduced from the knowledge (Section 10) of the action of T, on

Kg(B).
Lemma 13.11. Fori # 0 we have Tg,ip =—v 1p.
By 10.22(a), the image of Kc-(Vi) — Kc-(Be) (direct image) is stable under
T,,. Hence, T,,p = ap + bo; * for some a,b € A. Let x be such that ¢;(z) = 1. We
have 0, o, T5,p = (T,, + v~ 1 — v)0,p. Hence,

By, P+ 00y _o,07 = (T, + v —v)o™@p,

av™ @)y 4 pyro@F (ot py = 0@ (ap 4 ot + v p — vp),
av’p + bv(v_loi_1 —p)=ap+ boi_1 +v7p — up,
av? —bv=a+v ' -

From 13.10 we see that Tgi acts as a triangular matrix with respect to p, 0;1. This
forces a = —v~! (hence b = 0) or @ = v (hence b = v? — v=2). This last case is
impossible since it would imply that T,, acts as a non-semisimple 2 x 2 matrix.
Hence, ¢ = —v~1.

Lemma 13.12. We have Tgop =—vlp+(v— v_l)oo_l,

By 10.22(a), the image of Kc+(Vo) — Ko~ (Be) (direct image) is stable under
T,,. Hence, T,,p = ap+boy ! for some a,b € A. Let x be such that dg(z) = 1. We
have 0oy Toop = (Toy + v~ ! — v)0,p. Hence,

aem—aop + baw_o‘ooal = (Tm + U_l - 'U)'Uno(w)pa
&U”O(m—ao)p + bvno(z) (00—1 _ p) — ,Ung(z) (ap + bOO_l i U_lp B ’Up)’
ap+b(oy! —p) = ap +boy ' + v 'p — vp.

Hence, b=v — v~!. As in the proof of 13.11, we must have a = v or a = —v~ L. If
a = v, then Ty, would act as a non-semisimple 2 x 2 matrix (since b # 0). This is
impossible. Thus a = —v~!.

Lemma 13.13. For i # 0 we have Tgooi_l = —v_loi_1 - 051.
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_ By 10.22(a), the i 1mage of Kc- (VOUV) — K¢+ (Be) (direct image) is stable under
Ty,. Hence, Tyo0; ' = '+ bp+ coy ! for some a,b,c € A. Let x be such that
ao(x) = 1,0@( )=1. We have

0o Tro0; L = Ty + vt —v)0,0; L,
02— ap (a0t 4 bp + cog ') = v @FHT, o™t — ) (vo;t + p).

K3

Now

Hw_aooi_l = awe—aooi_l _ awvno(—ao)-‘rl(voi—l +p)
= U(Uno(w)+1(y2oi_1 + up) + ,Uno(w)p) — Mo (@) (U40i_1 4 ng +op),

avno(m)( 4 _—1 +’U3p+1}p> +bvno(1—ao)p+ cvng(m)( -1 _p) _ ,Uno(w)-i-l

2_1 —v- p+(v—v )oal—i—v_lp—vp),

x (avo; ™ + bup + cvoyt + o
a(vto; ! +vp+up) +bp + c(op! —p)
= v(avo; ' 4+ bup + cvog ' 4+ 07t —v20;t — v p 4 (v —v oyt + o p — wp).

The lemma follows.

Lemma 13.14. For i # 0 we have Ty,05" = —v"log ' — o7 L.

~ By 10.22(a), the i 1mage of Ko« (VoUV;) — K- (Be) (direct image) is stable under
T Hence, T,,00" = aoy ' + bp + co; * for some a,b,c € A. Let x be such that

g

ao(z) =1, al( ) = 1. We have

oz—aiTo‘ioo_l = (Tm; + U_l - U)910617
Op—a;(a0yt 4+ bp + co; b)) = v™EN(T, + v —v) (05! + p).

Now

00,05 = 000,05 = 0,0" ) (05" +p)
=2 (vno(m) (051 +p)+ Ung(z)p) — pro(@) (Uzoal n 2v2p)7

av”o(w)(v%al + 20%p) + by @)y 4 cv”o(w)"’l(v_loi_1 - p)
= v"o(””)(aoo_1 +bp + coi_1 + v_logl — vogl — v+ o p —up),
a(v?oyt + 20%p) + bv*p + cv(v oyt — p)

= aoo_1 —i—bp—i—col-_1 —i—v_loo_1 —Uoo_l —vlp+uTip —wup.

It follows that @ = —v~! and ¢ = b(v —v™1) — 1.

The endomorphism T}, of our module of rank 3 modulo the span of o; ! is of
the form p — —v~!p, 00_1 — —v_loo_l + bp. But it must be given by a semisimple
2 x 2-matrix. Hence, b = 0. It follows that ¢ = —1. The lemma is proved.

Lemma 13.15. Ifi,4,0 are distinct, we have qu oj v_loj_l.

By 10.22(a), the image of K¢+ (V;UV;) — Kc+(B.) (direct image) is stable under
T,,. Hence, T,,0;' = ao; ' 4 bp + co; ! for some a,b,c € A. Let x be such that

‘71’]
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&;(z) =1,a;(z) = 1. We have
O, Tp,0; = (T, +07 1 — v)ﬁmoj_l,

7 9;
Os—a,(a0; " +bp+coy ') = o™ T, + vt —v)(vo; " +p),
av""(z_o"')ﬂ(voj_l +p) + bu@=adp L eyro@Flpmloml )

_ .no(z)+1 -1 -1 -1 _ 2 -1
=" (vao; "~ +vbp +veo; ~ +o0; " —v70;
av2(v0j_1 +p) +bop+c(vlo;t —p)

2

— v 'p+vp—vp),

1

= vaoj_l + vbp + vcol-_1 + oj_1 —v oj_ — v_lp + v_lp — vp.
It follows that @ = —v~!,¢ = 0. The endomorphism T, of our module of rank 3
modulo the span of oi_1 is of the form p — —v='p,0;! — —v~lo: ! + bp. But it

must be given by a semisimple 2 x 2-matrix. Hence, b = 0. The lemma is proved.

Lemma 13.16. The action of Tijol on Ky (B.) is given as follows.
(a) Tt (o7 ") = —vl0; ! fori=0,1,2,3,

wo

(b) Tgol(p) =0 2p+ 002 +1)(1— ooyt + 00 (02 +1) (v —v3) (o] + 05t +031).

The A-submodule (of rank 4) spanned by o; (i € I) is stable under T}, for i =
0,1,2,3. Under the specialization v = 1 this becomes the reflection representation
of W tensor the sign representation. On this module, T 01 must act as a scalar and
we clearly have det Ty, = (—v72)'2 = v~24; hence TJ; = +0%. Setting v = 1 we
see that £ = —1. Hence, (a) follows.

We can find uniquely a,b € Q(v) so that the vector

E=p+aoy’ +blo" +03" +057)
satisfies T,,, € = —v ¢ for i € I (after extending the scalars to Q(v)). Indeed, the
condition that
Toy(p+aoy® 4 boy ! +boy ' +bog ')
= v+ (w—vHoy! + avoy!
+o(—vtort —ogt —v oyt —opt —vTlogt —opt)
= —v Y p+aoy' +boyt +boy ! +bo3t)
and
Ty, (p + aoy* + bo7 ' + boy * 4 boz 1)
=-—v'p—avloy! — a0yt +bvoyt —v oyt — v oyt
= v 'p—vtaoyt — v tbo;t — v hoy b — v hog
is that (v —v™!) + av — 3b= —v~ta and —a + bv = —v~1b, so that
1—o? v—v3
a=—— = — .
vi—v2 41’ vi—vZ2+1
We have Tujolﬁ = p12¢. Hence,
Zf’;j(p + aogl +blo7t + o0yt + 03_1)) =% (p+ aogl +blort + o0yt + 03_1))
=T, p) —vO(aog " +b(o7 " + 05" +031)),

T;; (p) = v'?p+ (v + v6)a051 + (02 b0yt + 05t + ogl).
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The lemma follows.

13.17. If a,b are as in 13.16, we have
Tuy(p+ a0y + 007" + 03" +03")) =v 2 (p+aoy ' +bloy " +03" +05))
= Too (p) — v~ %(aoy* + b0yt + 05" +031)),

(p) =v " 2p+ (2 + v %aog !t + (v + 07 O)b(ort + 03t +031),

Towo (@) = v 2p+ 0 202+ 1)(1 — v?)oy*

+ o 2 4 1) (v —0*) (o7 + 05t +031).

Lemma 13.18. Consider an Rpy-bilinear inner product (,) on Kg(B.) such that
(X§,€) = (£, x*¢) and (§,&) = (£,€) for £,& € Ku(Be),x € H. There exists
c € A such that
(a) (ogt,0;Y)y=c fori=1,2,3,
o;torh) = —c(v+vt) fori=0,1,2,3,
) =0 fori,j,0 distinct,
=0 fori=1,2,3,

(0 50
(07 0
(05,07
(p,o; )=
(p,0p ") = —c(lv—v~ 1);
(p,p) = cv™%(v* + 1)(1 —v*)(v —v7).
For i # 0 we have (T,,05*,0; ') = (0 ,Tg 1); hence
(0
s

-1 -1 -1 —1) ( —1

oy ' vo; ), 0; ) =—(+v) (05", 07).

(a),( ) follow.

(—v" 05" —o0; ",0

]

Similarly, (05!, 05%) = —(v4+v"") (05", 0
For i, j,0 distinct we have

(Tgloj 00t = (oj_l,j}ioi_l), (—v_loj_l,oi_l) = (oj_l,voi_l).
Hence, (v + v~ )(oj_l, 0; ') = 0 and (c) follows. For i = 1,2, 3, we have
(Tmpﬂoi_l) = (p Taqzoi_l)v (_U_lpv Oi_l) = (p,’UOl-_l)
and (d) follows. We have
(Toop:05") = (0, Topop ), (—v™'p+ (v =v"og ' 05") = (p,vog ).
Hence,
(0+v)(p0g") = (0 —v")(05" 05") = —c(v—v ) (v +v7)

and (e) follows.
Assume that éo(z) = 1. Then

(0.p,05") = (p, ~_19 e Two0pt) = (Tujolp, —0,0 %5 1),

o) = @p+ 0% + 1)1 —v')oy !

v(©® + 1) (v =) (o1 + 03" +ogh), —vT @ (o5 +p)),

- c(v —v ) = (v—v) + e + 1)1 — v (v —vt) =2 (p, p)
+ (v + D)1 — oM (v +v7) = 3e(v? + 1) (v —v*)

™o (z) (p g

and (f) follows. The lemma is proved.

Lemma 13.19. We have (,)5, = (,) with ¢ = —v°.



BASES IN EQUIVARIANT K-THEORY 365

By 13.18, it is enough to show that (o5',0; '), = —v® for i = 1,2,3. Since

Vo, Vi intersect transversally (at pjo) in A, we have (05" : k. (0; ') = vV where N

is the weight of the C*-action on (0 ')p,, @ (0] ')ps, that is N =0+ 1 = 1. We

7=l _ 6
have Ty,0; * = —v

(03,07 ), = (o)1 (o5 s (0 0)o) ) =~ = =07,

0; !5 hence

since d(e) = 11,b(e) =

Proposition 13.20. BﬂB:e is the signed basis of the A-module Ky (B.) consisting
of = the elements

v30;t foricI, andp—(1+v 3oyt —v o + 05t +03h).

In this proof we write (,) instead of (,)g,. We have

0T = () Tk (o) = () () oy ) = v 0o
hence v=30; ' = v=30; 1. We have (v"30; *,v730; 1) = v 60 (v +0v71) = 1+ 072
Hence, v=30; " € Bic. We have

= —12p—1

p=(=v)" Ty, p

=p+v (W + 1)1 — ooyt + 070" + 1) (v —v?) (07! + 03t +03)
=p+ Wt +v 1 —v oyt + (v —v (o] + 05t + 03 h).

Hence, p— (1+v"2)oy ' —v~ (01_1 40y  +03") is fixed by ~. The self-inner product

of p—(1+v2)o; ! — v_l(o1 405! +o03') is again 1+v~2 (by calculation). Thus
the elements described in the proposition belong to B%:e. They form an A-basis of
K+ (B.). Next note that

(v_30i_1,v 30;1) = 0 for 1, 7,0 distinct,

(v=30; v 305 ) = vt for i £ 0,

(v=30; ,p— (1 + 11_2)00 - v_l(o1 + 02 Yro3h) =0fori #0,
(v™205 ! ,p (140205t —v oy + 03" +051)) = —vl.

Now the proposition follows from the argument in 12.20.

13.21. Let Vi = A¢ - (See 13.3, 11.3.) Then V{ is naturally a line bundle over
Vo (see 11.4(b)). For i =1,2,3, let V/ be the C*-stable line in A, that flows to ¢;
for A — oo (see 11.4(b)). Let j! : V/ C A, be the inclusion. We define a line bundle
D; € Vecy (A.) such that there is an exact sequence in Cohg(A,)

0—>Di—>C—>j£*C—>O.

If x € X, we can regard L, as an object of Vecy(A.) via inverse image under
Ae — B, (y,b) — b.

Let zyp € X be such that dg(zg) = —1,a&;(zg) = 0 for ¢ # 0. Then zy =
—2a9 — a1 — ag — az; hence ng(xg) = 6.

Lemma 13.22. Ky (A.) has an A-basis consisting of D; (i =1,2,3),C, Ly,.
This follows easily from 11.4(c).
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13.23. Let d; = j.,C € Ky(A.). We have

(p : dl) = 07

(oj_1 :d;) =0 for j € I — {i} (since supports are disjoint),

(oi_1 :d;) = v, (since V;, V7 intersect transversally at g¢; in A.),
(p:C) =1,

(o;':C) =0,

(we use 6.7 and the fact that the cohomology of P! with coefficients in

O~ is zero.) We have
(p: Ly,) = v"™0(@0) = 48
(0; ' : Ly,) =0fori#0,

1
(061 : Lio) = _Uﬁ;

(we use 6.7 and the fact that the cohomology of P! with coefficients in O~2 is —C).
13.24.  We have

(#lIC) = v'(Twyp : C) =v72,

(0;']|C) =0, fori € I,

(p— (1 +v72)op" —vHor " + 05" +051)[|C) = v

13.25. For i =1,2,3, we compute (using 13.16, 13.17)
(pl|di) = V" (Tuep : di) = 0" (™2p+ 072 (0% + 1)(1 = v*)og !
+ o 2+ ) (v —0*) (o7 + 03t +o3t) 1 di) = v (0 + 1) (v —0?),

(07 Mldi) = v (Twy0; [ldi) = v'(—v %0 ||di) = 0, if j #1,
(07 M1di) = v (Tuwo0; |di) = v™(=v % !||d;) = —v'0707 = =0,
(p—(L+v 2oyt —v™ o7 + 03t o5 )[|di) = v (0 + 1) (v —0%) +0* =072

Since D; = C — d;, we have
(p— (L w0y’ —v7Ho" + 05" +05)[I1Ds) = 0,
(0; "I|D;) = 0if j # 1,
(07 | D) = v®.
13.26. We have
(Pl Lay) = 0" (Tuwop : Lag) = 007 Pp+ 072 (0% +1)(1 = v*)oy !
+o (0P + ) =) (o7 + oyt o5 h) 1 Lyy)
=% (1 = (W + 1)1 —v*)) = v (0% + vt —v?) =010 o8 —0F,
(07 M| L) = 0 for i 0,
(09 | Lag) = 010(Twy0p "+ Lay) = v'0(=v76) (—05) = 017,
(p— (L +v oy —v™ oy " + 03" +05")|| L)
=010 ¥ 08— (1o 2)0l0 = 10 4 of — B 10 B = 4,

Hence,
(p—(L+v")og" —o7 o7 + 03" +031)[Jv™7 Ly, + vC) =0,
(05 [0 Ly +vC) = 05,
(0] '|[v™"Lyy +vC) = 0 for i # 0.
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Proposition 13.27. Bi is the signed basis of the A-module K (A.) consisting
of £ the line bundles D; (i = 1,2,3), v2C and the two-dimensional vector bundle
v "Ly, +vC.

We identify Kgy(A.) with an A-lattice in the Q(v)-vector space
E = Q) @4 Kg(Ae) (see 13.22) and Ky (B.) with a sublattice of Ky (A.) via
k. (see 12.5, 11.8). There is a well defined symmetric Q(v)-bilinear form (,) on E
whose restriction to Ky (A.) (resp. Kp(Be)) is (,)a, (resp. (,)g.). Using 13.24,
13.25, 13.26, we see that the elements

(a) D;(i=1,2,3),v>C,v" "Ly, +vC
form the basis of E dual to the basis

(b) v30; (i =1,2,3),p— (L +v 2oy ' —v (o] + 05! +031),v 730!
with respect to (,). (In particular, (,) is non-singular on E.) Since the matrix of (,)
with respect to the basis (b) is congruent to the identity matrix modulo v=1Z[v~!]
(by 13.18, 13.19), its inverse, that is the matrix of (,) with respect to the basis (a),
is congruent to the identity matrix modulo v~1Z[[v™!]].

In particular, (§,€) € 1+ v~ Z[[v™!]] for all £ in (a).

Using 12.14, we see that the elements & with ¢ in (a) form again the basis of £
dual to the basis (b) with respect to (,). Since (,) is non-singular on E, we must
have & = ¢ for ¢ in (a).

We see therefore that & € ch for all £ in (a). The elements (a) form a basis of
the A-module Kg(A.), by 13.22. By an argument similar to that in 12.20, we see
that any element in ch is, up to sign, as in (a). The proposition is proved.

13.28. We see that in our case, Conjecture 12.19 holds. Note that Conjecture
12.23 also holds in our case: Bp_ a4 consists of

E=—v301(i=1,2,3),—p+ (1 +v og t +v oy + o5t +031), v 305
B, aa consists of —D;(i = 1,2,3), —v?>C,v~ "L, + vC.

13.29. The results of this section can be generalized to the case where G is of type
D,, or E, and (e, f, h) is subregular. This will be discussed elsewhere.

14. COMMENTS

14.1. This section contains a (non-rigorous) discussion of possible connections
with the theory [J1],[J2],[J3] of unrestricted representations of Lie algebras over k,
an algebraic closure of the field with p elements.

We assume that p is large enough. Let g’ be the Lie algebra of a semisimple
simply connected algebraic group G’ over k of the same type as G. For any linear
form x on g’, let U, be the quotient of the enveloping algebra of g’ by the ideal
generated by the elements 2P — z[P) — y(z)? with = € g’. (Here z — z[” is the
pth power map of g’ into itself.) Then U, is a finite dimensional algebra and any
simple g’-module can be regarded as a module over U, for a unique x as above
(Kac-Weisfeiler). We fix x and identify it with an element of g’ via the Killing
form. We assume that y is nilpotent. Let C” be a maximal torus of the centralizer
of x in G’ and let C’ be the image of C’ in the adjoint group of G’. Let C,
be the category of Uy-modules (of finite dimension over k) which are also C’-
modules in a compatible way (as explained in [J1]). We fix a “generic block” of this
category. Let I be an indexing set for the simple objects in this block. For i € I,
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let L; be the corresponding simple object of C, and let @); be the corresponding
indecomposable projective object. For i € I we have Q; = >,y ni Ly in the
appropriate Grothendieck group, where n; ;v € IN are zero for all but finitely many

i’

14.2. Let (e, f,h) be an slp-triple in g. Let C and H = C x C* be as in 11.1.
We assume that the nilpotent element e € g is of the same type as the nilpotent
element x € g’. We assume that Conjectures 12.19, 12.23 hold in our case. Let B
be an indexing set for Bp, a4 and for B, aq4. For b € B let 3y be the corresponding
element of Bg_ .q and let Bb be the corresponding element of By, »q. For b € B we
can write k. (Op) = Y prcn Nb)blﬁb/ where k, is as in 12.5 and Np ' € A are zero
for all but finitely many b’. The sum is taken in Ky (A.). From 12.23(b) (which
we assume) it follows that Ny, ' € N[v, v,

14.3. In the case where x = 0, one can combine the known results on restricted
representations of g’ with the K-theory constructions in this paper to deduce that

(a) there exists a natural bijection ¢ : 1 =B such that niy = Neg) c(irylv=1 for
alli,i’ € I.

14.4. Let us now assume that y is a nilpotent element of g’ which is regular inside
some Levi subalgebra [ of a parabolic algebra of g’. Let W be the Weyl group of [.
It seems likely that the following generalization of 14.3(a) continues to hold:

(a) there exists a natural bijection ¢ : I = B such that niy = |Wi|N¢a). e o=t
for alli,i’ € L.
The factor |Wy| is needed in view of [J3, 11.18].
(Note that both I and B have natural actions of a free abelian group of rank
dim C” (with finitely many orbits) and the bijection ¢ should be compatible with
these actions.)

14.5.  One could hope that the statement 14.4(a) remains true when x is any
nilpotent element of g’ which is distinguished inside [ (with [, |[W(| as in 14.4).

This would predict for example that, if g’ is of type D4 and  is subregular, then
II| = 5.
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