
REPRESENTATION THEORY
An Electronic Journal of the American Mathematical Society
Volume 2, Pages 298–369 (August 19, 1998)
S 1088-4165(98)00054-5

BASES IN EQUIVARIANT K-THEORY

G. LUSZTIG

Abstract. In this paper we construct a canonical basis for the equivariant
K-theory of the flag manifold of a semisimple simply connected C-algebraic
group with respect to the action of a maximal torus times C∗. We relate
this basis to the canonical basis of the “periodic module” for the affine Hecke
algebra. The construction admits a (conjectural) generalization to the case
where the flag manifold is replaced by the zero set of a nilpotent vector field.

0. Introduction

0.1. A number of objects in representation theory possess canonical bases with
many remarkable properties. This is the case for example for the Hecke algebra
attached to a Coxeter group [KL1] and for the highest weight modules of quan-
tized enveloping algebras [L5], [K]. In these cases, the bases in question can be
constructed either purely algebraically, or geometrically, using perverse sheaves on
an appropriate algebraic variety.

On the other hand, there are other objects in representation theory which seem
to possess canonical bases, although it is not clear how to understand this in terms
of perverse sheaves and using pure algebra seems to be not strong enough either.

0.2. In this paper we experiment with an alternative method to construct canon-
ical bases in which perverse sheaves are replaced by coherent sheaves, equivariant
with respect to a suitable group action. Thus, we try to

(a) interpret the representation theoretic objects as equivariant K-theory KH(Y )
of a suitable variety Y with an action of a reductive group H ;

(b) construct an “antilinear involution” − : KH(Y ) → KH(Y );
(c) define an inner product on KH(Y ).

(Note that ingredients of the same type as (b) or (c) were used in the earlier
works [KL1], [L5], [K], but unlike these references, here we use them in a K-theory
context.)

Having done these steps, we can consider the elements in KH(Y ) that are fixed
by the involution (b) and have self-inner product approximately equal to 1 (in a
suitable sense); these elements form a candidate for a “signed basis” of KH(Y ). (A
signed basis consists of ± the elements of a basis.)

The fact that equivariant K-theory can be used to realize geometrically certain
representation theoretic objects was found in [L1] where the principal series rep-
resentations of affine Hecke algebras were treated from this point of view. One of
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the main ideas of [L1] was to interpret the parameter v of the Hecke algebra as the
standard element of the representation ring of C∗ acting in a natural way on the
equivariant K-theory of a space with C∗-action. This turned out to be a common
feature of the subsequent use of equivariant K-theory in the representation theory
of affine Hecke algebras, see [KL2], [G].

Most of this paper is concerned with carrying out steps (b),(c) for the equivari-
ant K-theory of the variety By of Borel subalgebras of a semisimple Lie algebra
containing a fixed nilpotent element y, with respect to a torus (as large as possible)
that acts on By.

We define the involution (b) as a product of three factors: one is the Serre-
Grothendieck duality for coherent sheaves; the second one comes from an involution
(“opposition”) of By itself; the third one is essentially the action of the longest
element in the Hecke algebra action.

(The first factor is a substitute in our case for the Verdier duality in the theory
of perverse sheaves; the second and third factors are correcting factors.)

Similarly, we define the inner product (c) in terms of three ingredients: one is
the Tor-product of sheaves on the smooth variety (Slodowy) in which By naturally
lies; the other two are the same correcting factors that are used in the definition of
the involution (b).

0.3. As explained above, the involution and the inner product give rise to a can-
didate for a signed basis of our equivariant K-theory space. We can show that this
is indeed a signed basis:

(a) in the case where the nilpotent is 0;
(b) in the case where the nilpotent is subregular (in type D or E);
(c) in the case where the nilpotent is regular.

(The case (c) is trivial.) In the case (a) we show that the signed basis obtained by
the K-theoretic method coincides with the one obtained combinatorially in [L2] for
the “periodic Hecke algebra module”.

0.4. One of the main motivations of this paper came from the desire to understand
geometrically the periodic W -graph constructed in [L6]. In the case where y is a
nilpotent element that is regular inside some Levi subalgebra of a parabolic subal-
gebra, our K-theoretic candidate for a signed basis should conjecturally provide a
geometric interpretation of the periodic W -graph in [L6].

0.5. The paper is organized as follows. In Section 1 we discuss affine Hecke alge-
bras by combining the points of view of [L2] and [L4]. One new result here is Lemma
1.22 which describes the effect of the involution − of the affine Hecke algebra H on
the basis of a large commutative subalgebra of H. In Sections 2 and 3 we discuss
the “periodic module” of the affine Hecke algebra (introduced in [L2]), its canonical
basis and its “dual basis”. (There is a slight difference from [L2] in that, here we
consider affine Hecke algebras of simply connected type, while in [L2] we considered
affine Hecke algebras of adjoint type.) In Sections 4 and 5 the periodic module is
described as a tensor product and the natural inner product on it is described from
this point of view. Section 6 is a review of the results about equivariant coherent
sheaves that are needed later on.

In Sections 7 and 8 we establish an isomorphism between the affine Hecke algebra
and an equivariant K-group of the Steinberg variety of triples. The main results
here are 7.25 and 8.6. A result similar to 7.25 and 8.6 appeared in [G] and in [KL2].
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(An exposition can also be found in [CG].) While [G] emphasized the algebra
structure of the K-group given by convolution, [KL2] emphasized the structure
of the K-group as a bimodule over the affine Hecke algebra. Note that [KL2]
used topological K-homology instead of algebraic K-theory (which in the present
case gives the same result) and the definition of the isomorphism was based on a
construction which is not immediately equivalent to the one given here, which is
closer to the one in [G]. But, in contrast to the definition in [G], our definition
of the isomorphism is symmetric in the two factors of B × B and is better suited
for the purposes of this paper. For these reasons, we found it necessary to give
a self-contained proof of 7.25 and 8.6 (which differs significantly from the earlier
proofs).

One of the byproducts of the analysis in Section 8 is Corollary 8.13, which gives
a K-theoretic interpretation of the results in [L3] concerning certain elements of
the basis [KL1] of the affine Hecke algebra (corresponding to dominant weights); it
describes them as explicit coherent sheaves on the Steinberg variety.

In Section 9, we give a K-theoretic interpretation of the involution − in [KL1]
of the affine Hecke algebra (Proposition 9.12).

In Section 10, the periodic module and its canonical basis [L2] are interpreted in
K-theoretic terms. This is done along the steps (a),(b),(c) in 0.2. The interpretation
is such that it admits a generalization which corresponds to replacing the nilpotent
0 by an arbitrary nilpotent element. This generalization is discussed in Sections 11
and 12. The main conjecture of the paper is stated in 12.19 (see also 12.22). In
Section 13 we verify that conjecture for a subregular nilpotent in type D4.

Section 14 contains some speculations on possible connections of the matters dis-
cussed above with the (unrestricted) representations of Lie algebras in characteristic
p.
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1. The affine Hecke algebra

1.1. Let V be an R-vector space with a given basis (αi)i∈I which is the set of simple
roots of a root systemR in V . Let (α̌i)i∈I be the corresponding set of simple coroots
in Hom(V ,R). Let R+ ⊂ V be the set of positive roots and let Ř+ ⊂ Hom(V ,R)
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be the set of positive coroots. We denote by α̌ the coroot corresponding to α ∈ Ř+.
Let

ν = |R+|,
C+ = {x ∈ V|α̌i(x) > 0 ∀i ∈ I},
X = {x ∈ V|α̌i(x) ∈ Z ∀i ∈ I},
Xad =

⊕
i∈I Zαi ⊂ X ,

X+ = {x ∈ X|α̌i(x) ∈ N ∀i ∈ I},
X = X/Xad (a finite group).

Let E be a principal homogeneous space for V ; we write the action of V on E as
(x, e) 7→ x + e for x ∈ V , e ∈ E. We regard E naturally as an affine space over R.
We assume given a subset E of E such that E is a principal homogeneous space for
X , for the restriction of the V-action to X .

For each ε ∈ E and each α ∈ R+, let σε,α : E → E be the reflection x + ε 7→
(x − α̌(x)α) + ε for all x ∈ V . Let I be the subgroup of the group of affine
transformations of E generated by the reflections σε,α for various ε, α as above.
The action of I on E is written as (ω, e) 7→ ωe.

Let Hε,α be the fixed point set of σε,α. Let F be the set of hyperplanes in E of
the form Hε,α for some ε, α as above. The set of points of E that are not contained
in any hyperplane in F is a union of connected components called alcoves. Let X
be the set of alcoves.

Let F∗ be the set of affine hyperplanes of E of the form Hε,αi for some i ∈ I, ε ∈
E. The set of points of E that are not contained in any hyperplane in F∗ is a union
of connected components called boxes.

The set of points of E that belong to exactly one hyperplane in F is a union of
connected components called faces. Let S be the set of I-orbits in the set of faces.
Then S is finite. If s ∈ S and F is a face in the I-orbit s, we say that F is of type
s. For any alcove A and any s ∈ S, there is a unique face δs(A) of type s such that
δs(A) is in the closure of A.

1.2. For s ∈ S and A ∈ X we denote by sA the unique alcove 6= A such that
δs(A) = δs(sA). Then A 7→ sA is an involution of X .

The maps A → sA generate a group of permutations of X which is a Coxeter
group (W a, S) (an affine Weyl group). The action of W a on X is denoted by
(w,A) 7→ w(A). This action is simply transitive and it commutes with the action
of I on X (which is also simply transitive). Let l : W a → N be the standard length
function. Let ≤ be the standard partial order on W a.

1.3. If x ∈ X and A is an alcove, then x+A is an alcove; if F is a face of type s,
then x+ F is face of type, say, x+ s, where x+ s depends only on x, s, not on F .
Then (x, s) 7→ x+ s is an X -action on S; it factors through an X -action on S.

For ε ∈ E, let A+
ε (resp. A−ε ) be the unique alcove contained in C+ + ε (resp. in

−C+ + ε) and having ε in its closure. Let Sε be the set of all s ∈ S such that there
exists a face of type s which has ε in its closure. Let Wε be the subgroup of W a

generated by Sε (a finite Coxeter group). Let wε be the unique element of Wε such
that wε(A−ε ) = A+

ε .
For H = Hε,α ∈ F , let E+

H = α̌−1(0,∞) + ε, E−H = α̌−1(−∞, 0) + ε be the two
half spaces determined by H . For A ∈ X, s ∈ S, let H be the hyperplane in F that
contains δs(A); we say that A < sA if A ⊂ E−H , sA ⊂ E+

H ; we say that A > sA if
A ⊂ E+

H , sA ⊂ E−H .
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There is a unique function d : X×X → Z such that d(A, sA) = 1 if A < sA and

(a) d(A,B) + d(B,C) + d(C,A) = 0

for all A,B,C ∈ X . (See [L2, 1.4].)
Let ≤ be the partial order on X generated by the relation A ≤ B if B = σε,αA

for some ε, α and d(A,B) = 1.

1.4. Let A = Z[v, v−1] where v is an indeterminate. The Hecke algebra Had

associated to the affine Weyl group W a is the associative A-algebra which, as an
A-module, has basis {T̃w|w ∈W a} and multiplication defined by the rules

(T̃s + v−1)(T̃s − v) = 0, (s ∈ S),

T̃wT̃w′ = T̃ww′ if l(w) + l(w′) = l(ww′).

1.5. Let − : Had → Had be the involution of the ring Had such that ¯̃Tw = T̃−1
w−1

for all w ∈Wa and vn = v−n for all n ∈ Z.
By [KL1], for any w ∈ W a, there is a unique element c′w ∈ Had such that c̄′w = c′w

and c′w =
∑

y∈W a;y≤w πy,wT̃y where πw,w = 1 and πy,w ∈ v−1Z[v−1] for y < w.

1.6. Let p 7→ p◦ be the ring homomorphism A → A which takes vn to (−v)n for
any n. Let χ 7→ χ◦ be the involution of the ring Had which takes T̃s to T̃−1

s for any
s ∈ S and vn to (−v)n for any n. This commutes with − : Had → Had.

1.7. The action of X on S in 1.3 induces an action of X on W a by Coxeter group
automorphisms (ι, w) 7→ ιw. Let x be the image of x ∈ X in X . From the definitions
we have (xw)(x +A) = (x+ wA) for w ∈W a, x ∈ X , A ∈ X .

Let Ŵ a be the semidirect product of X with W a. Thus, an element of Ŵ a is
a product ιw where w ∈ W a, ι ∈ X and (ιw)(ι′w′) = (ι + ι′)(−ι′w)w′. We extend
the length function l : W a → N to a function l : Ŵ a → N by l(ιw) = l(w) for
ι ∈ X , w ∈ W a. Then l(wι) = l(w) automatically holds. We have l(ι) = 0 for
ι ∈ X .

1.8. The Hecke algebra H associated to Ŵ a is the associative A-algebra defined
by the generators T̃w (w ∈ Ŵ a) and the relations

(T̃s + v−1)(T̃s − v) = 0 for s ∈ S;

T̃wT̃w′ = T̃ww′ for w,w′ ∈ Ŵ a with l(w) + l(w′) = l(ww′).

Then {T̃w|w ∈ Ŵ a} is an A-basis of H. We identify Had with the subalgebra of H
generated as an A-module by {T̃w|w ∈W a}. We have T̃ιT̃w = T̃ιw and T̃wT̃ι = T̃wι

for ι ∈ X , w ∈ Ŵ a.
Let − : H → H be the involution of the ring H such that ¯̃Tw = T̃−1

w−1 for all

w ∈ Ŵ a and vn = v−n for all n ∈ Z. For ι ∈ X we have T̃ι = T̃ι.
For any w ∈ Ŵ a we define c′w = T̃ιc

′
w1

= c′w2
T̃ι ∈ H where ι ∈ X , w1 ∈

W a, w2 ∈ W a are such that w = ιw1 = w2ι and c′w1
, c′w2

∈ Had are as in 1.5. Then
{c′w|w ∈ Ŵ a} is an A-basis of H.
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1.9. For ε1, ε2 ∈ E we denote by τε2,ε1 the unique element of W a such that
τε2,ε1A

+
ε1 = A+

ε2 .
From the definitions, for x ∈ X we have xτε2,ε1(−x) = τx+ε2,x+ε1 in Ŵ a.
For ε1, ε2, ε3 in E we have τε3,ε2τε2,ε1 = τε3,ε1 .

Lemma 1.10. Let ε ∈ E. For x ∈ X we set xε = (−x)τx+ε,ε ∈ Ŵ a.

(a) The map x 7→ xε is an isomorphism of X onto a subgroup of Ŵ a.
(b) For any x, x̃ ∈ X we have x̃xε(−x̃) = xx̃+ε.

We prove (a). The injectivity of our map is clear. Let x1, x2 ∈ X . We have

xε
1x

ε
2 = (−x1)τx1+ε,ε(−x2)τx2+ε,ε = (−x1)(−x2)τx2+x1+ε,x2+ετx2+ε,ε

= (−x1 − x2)τx2+x1+ε,ε = (x1 + x2)ε.

This proves (a). We prove (b). We have

x̃xε(−x̃) = (−x)x̃τx+ε,ε(−x̃) = (−x)τx̃+x+ε,x̃+ε = xx̃+ε.

The lemma is proved.

1.11. Let W be the subgroup of Aut(V) generated by the reflections σi : V → V ,
σi(x) = x − α̌i(x)αi with i ∈ I. Note that W together with {σi|i ∈ I} is a finite
Coxeter group. We denote the action of W on V by (w, x) 7→ wx.

For w ∈W let sgnw = (−1)l(w) where l : W → N is the length function. Let w0

be the longest element of W .
Given ε ∈ E, there is a unique group isomorphism W

∼−→ Wε which, for any
i ∈ I, carries σi to sε

i ∈ Sε where sε
i is the type of the unique face of A+

ε contained
in the hyperplane Hε,αi . It is clear that sε

i depends only on the Xad-orbit of ε in E,
not on ε itself. The same holds for xε (by 1.10(b)).

Lemma 1.12. Let ε ∈ E, i ∈ I, x ∈ X , and let x′ = σix ∈ X . Then sε
ix

εsε
i = x′ε in

Ŵ a.

Let ε′ = x+ ε. Let σ = σε,αi , σ
′ = σε′,αi . We have σ(ε′) = x′+ ε. We must prove

that sε
i(−x)τε′,εsε

i = (−x′)τσ(ε′),ε. We have −x′ = −x. If F is the face of type sε
i of

A+
ε , then the type of the face x + F of A+

ε′ is s = xsε
i(−x). It is enough to prove

that sτε′,εsε
i = τσ(ε′),ε. This follows from

sτε′,εs
ε
iA

+
ε = sτε′,ε

σA+
ε = σ(sτε′,ε(A+

ε )) = σ(sA+
ε′ ) = σσ′A+

ε′ = A+
σ(ε′) = τσ(ε′),εA

+
ε .

The lemma is proved.

Lemma 1.13. Let ε ∈ E, x ∈ X . For any i ∈ I we have l(sε
ix

εsε
i) = l(xε).

From the definitions, l(xε) is the number of hyperplanes in F that separate A+
ε

from x + A+
ε . This is easily seen to be the number

∑
α̌∈Ř+ |α̌(x)|. Similarly, if

x′ = σix, so that sε
ix

εsε
i = x′ε, then l(x′ε) is the number

∑
α̌∈Ř+ |α̌(x′)|. But this

is clearly equal to
∑

α̌∈Ř+ |α̌(x)|. The lemma is proved.

Lemma 1.14. Let ε ∈ E, x ∈ X+.

(a) For any s ∈ Sε we have l(xεs) = l(xε) + 1.
(b) For any s ∈ Sε such that sxε 6= xεs, we have l(sxε) = l(xε)− 1.
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We set τ = τx+ε,ε. To prove (a), it suffices to show that l(τs) = l(τ) + 1. This
follows from [L2, 3.6].

We prove (b). Let s′ = x + s. It suffices to show that l(s′τ) = l(τ) − 1. By
assumption we have s′τ 6= τs. From 1.13, we have that l(s′τs) = l(τ). It remains to
use the following result. Let w ∈W a, s, s′ ∈ S be such that l(s′ws) = l(w), l(ws) >
l(w), s′w 6= ws; then l(s′w) < l(w). (The proof in [DL, 1.6.4] is applicable to any
Coxeter group.) The lemma is proved.

1.15. In the remainder of this paper we fix an Xad-orbit s in E.
Following an idea of J. Bernstein, for any x ∈ X we set

θx = T̃−1
xε
2
T̃xε

1

where ε ∈ s and x1, x2 ∈ X+, x = x1 − x2. (Clearly, such x1, x2 exist.) We show
that θx is independent of the choices. The independence of ε follows from 1.10(b).
To show independence of x1, x2 it is enough to verify the following statement.

If x, x′ ∈ X+, then T̃xε T̃x′ε = T̃(x+x′)ε .
To show this, it is enough to show that l(xε)+ l(x′ε) = l((x+x′)ε). By [L2, 3.6],

we have

l(xε) = d(A+
ε , A

+
x+ε), l(x′ε) = d(A+

ε , A
+
x′+ε) = d(A+

x+ε, A
+
x+x′+ε),

l((x+ x′)ε) = d(A+
ε , A

+
x+x′+ε),

and it remains to use 1.3(a). The previous argument shows not only that θx is well
defined, but also that θxθx′ = θx+x′ for x, x′ ∈ X . Note that θx depends on the
choice of s ⊂ E.

1.16. Let ε ∈ E, x ∈ X+, i ∈ I be such that α̌i(x) = 1. Let s = sε
i ∈ Sε. Let

y = xεsxεs = xε(σix)ε = (x+ σix)ε = (2x− αi)ε.

Lemma 1.17. We have T̃y = T̃xε T̃−1
s T̃xε T̃−1

s .

(Compare [L4].) From our assumption we have 2x− αi ∈ X+. Let l̃ : X → Z be
the homomorphism given by l̃(x′) =

∑
α̌∈Ř+ α̌(x′). As we have seen in the proof

of 1.13, for x′ ∈ X+ we have l̃(x′) = l(x′ε). Thus we have

l(xεsxεs) = l((2x− αi)ε) = l̃(2x− αi) = 2l̃(x) − l̃(αi) = 2l(xε)− 2.

From 1.14(a) we have
(a) l(xεsxε) = l(xεsxεs) + 1 = 2l(xε)− 1.

Since x ∈ X+ and sxε 6= xεs (recall that α̌i(x) = 1), from 1.14(b) we have
(b) l(sxε) = l(xε)− 1.

Hence
(c) l(xε) + l(sxε) = l(xεsxε)

(both sides are 2l(xε)− 1). From (a),(b),(c), we deduce

T̃xεsxεs = T̃xεsxε T̃−1
s = T̃xε T̃sxε T̃−1

s = T̃xε T̃−1
s T̃xεT̃−1

s .

The lemma is proved.

Lemma 1.18. Let ε ∈ s, i ∈ I, x ∈ X . Let s = sε
i .

(a) If α̌i(x) = 0, then T̃sθx = θxT̃s.
(b) If α̌i(x) = 1, then θσix = T̃−1

s θxT̃
−1
s .
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We prove (a). We can write x = x1−x2 where x1, x2 ∈ X+ and α̌i(x1) = α̌i(x2) =
0. We are then reduced to the case where x ∈ X+. In this case, l(xεs) = l(xε) + 1;
hence l(sxε) = l(xε) + 1 (since sxε = xεs). We then have

T̃sT̃xε = T̃sxε = T̃xεs = T̃xε T̃s.

and (a) follows.
We prove (b). We can write x = x1 − x2 where x1, x2 ∈ X+ and α̌i(x1) =

1, α̌i(x2) = 0. Using (a), we are then reduced to the case where x = x1. Thus we
may assume that x ∈ X+. Since σix = (2x− αi)− x with 2x− αi and x in X+, we
have, using the definition and 1.17,

θσix = T̃−1
xε T̃(2x−αi)ε = T̃−1

xε T̃xε T̃−1
s T̃xε T̃−1

s = T̃−1
s θxT̃

−1
s .

The lemma is proved.

1.19. Let AX be the group algebra of X with coefficients in A. The basis element
of AX corresponding to x ∈ X is denoted by [x]. Let AX q be the quotient field of
AX .

We use the following convention: for p =
∑

x∈X cx[x] ∈ AX (finite sum with
cx ∈ A) we set θp =

∑
x∈X cxθx ∈ H.

We identifyW with a standard parabolic subgroup ofW a via the homomorphism
σi 7→ sε

i (see 1.11) where ε ∈ s. (This identification depends on s but not on the
choice of ε in s.) For w ∈W we shall denote the corresponding element of W a again
by w. The restriction of the length function of W a to W is just the standard length
function of W . Thus, the elements T̃w (w ∈ W ) of Had (or H) are well defined.
These elements, and the elements θx (x ∈ X ) satisfy the following relations:

(a) (T̃σi + v−1)(T̃σi − v) = 0, (i ∈ I);
(b) T̃wT̃w′ = T̃ww′ if l(ww′) = l(w) + l(w′);
(c) θxT̃σi − T̃σiθσi x = (v − v−1)θ [x]−[σix]

1−[−αi]
;

(d) θxθx′ = θx+x′ ;
(e) θ0 = 1.

The only relation that needs comment is (c). In that relation the fraction is taken
in AX q, but it actually belongs to AX . To prove (c) we note that for fixed i ∈ I,
the set of x ∈ X for which (c) holds is a subgroup of X , as one easily verifies. From
1.18, we see that (c) holds for elements x ∈ X such that α̌i(x) ∈ {0, 1}. Since such
elements generate X as a group, it follows that (c) holds for all x.

1.20. The following result has been stated by J. Bernstein (unpublished; but see
[L4] for a proof).

The elements T̃w (w ∈ W ) and θx (x ∈ X ) with the relations 1.19(a)-(e) form a
presentation of the A-algebra H.

1.21. In [L4] it is shown that

{T̃wθx|w ∈ W,x ∈ X} and {θxT̃w|w ∈W,x ∈ X}are A-bases of H.

Lemma 1.22. For any x ∈ X we have θx = T̃−1
w0
θw0xT̃w0 .

First we note that the set of x ∈ X for which the lemma holds is a subgroup of
X , as an easy verification shows. Hence, it is enough to prove the lemma under the
additional assumption that x ∈ X+ (such x generate the group X ).
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Let x ∈ X+; then we have also −w0x ∈ X+. Let ε ∈ s. Under our imbedding
W ⊂W a, the element w0 ∈W corresponds to wε ∈W a. We have

θx = T̃xε = T̃−1
(−x)ε, θw0x = T̃−1

(−w0x)ε .

We must prove that T̃−1
(−x)ε = T̃−1

w0
T̃−1

(−w0x)ε T̃w0 or equivalently (after applying −

to both sides), that T̃xε = T̃w0 T̃(w0x)ε T̃−1
w0

, or that T̃xε T̃w0 = T̃w0 T̃(w0x)ε . In this
equation, both sides are T̃xεwε = T̃wε(w0x)ε , since

l(wε) + l((w0x)ε) = l(xε) + l(wε) = l(xεwε) = l(wε(w0x)ε).

(The first equality follows from 1.13; the second equality follows from 1.14(a); the
third equality is obvious.) The lemma is proved.

1.23. Let p 7→ p† be the involution of the A-algebra AX defined by [x]† = [−x]
for all x ∈ X . We extend this to a field involution † : AX q → AX q.

Let p 7→ p̄ be the involution of the ring AX defined by vn[x] = v−n[x] for all
n ∈ Z, x ∈ X . Let

ρ =
1
2

∑
α∈R+

α ∈ X , δ = [−ρ]
∏

α∈R+

([α]− 1) ∈ AX ,

∆ =
∏

α∈R+

(1− v−2[α]) ∈ AX .

Then

∆† =
∏

α∈R+

(1− v−2[−α]) ∈ AX , ∆̄ =
∏

α∈R+

(1− v2[α]) ∈ AX ,

∆̄† =
∏

α∈R+

(1− v2[−α]) ∈ AX .

1.24. Let χ 7→ χN be the involutive antiautomorphism of the A-algebra H defined
by T̃w 7→ T̃w−1 for all w ∈ Ŵ a.

Let χ 7→ χ̂ be the involutive antiautomorphism of the A-algebra H which takes
T̃σi to itself for any i ∈ I and takes θx to itself for any x ∈ X .

For i ∈ I, let i∗ ∈ I be defined by w0σiw0 = σi∗ . Let χ 7→ χ> be the algebra
involution of H which carries T̃σi to T̃σi∗ for all i ∈ I and θx to θ−w0x for all x ∈ X .

Let χ 7→ χM be the algebra automorphism of H which carries T̃σi to itself for
any i ∈ I and θx to θ−x for any x ∈ X .

1.25. We show that

(χM)̂= χN(a)

for any χ ∈ H. To do this we may assume that χ runs through the set of algebra
generators T̃σi , θx of H. If χ = T̃σi , we have (χM)̂= (T̃σi)̂= T̃σi = T̃N

σi
. If χ = θx,

we have (χM)̂= (θ−x) .̂ It remains to show that (θ−x)̂= (θx)N, or equivalently

θ−x = θN
x(b)

(note that the involutions − and N commute). It is easy to check that the set of
x ∈ X for which (b) holds is a subgroup of X . Hence, it is enough to prove (b)
in the case where −x ∈ X+. In this case, the left hand side of (b) is T̃w, where
w = (−x)ε. On the other hand, θx = θ−1

−x = T̃−1
w ; hence the right hand side of (b)

is (T̃−1
w )N = T̃−1

w−1 = T̃w. This proves (b) and hence (a).
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2. The H-modules Md,Md′

2.1. If M1,M2 are Had-modules (resp. H-modules), a group homomorphism f :
M1 → M2 is said to be Had-antilinear (resp. H-antilinear) if f(χm) = χ̄f(m) for
all m ∈M1 and all χ ∈ Had (resp. χ ∈ H).

2.2. Let M be the set of all formal sums m =
∑

A∈X mAA where mA ∈ A for all
A ∈ X . We regard M as an A-module in the obvious way. For m ∈ M , we set
supp(m) = {A ∈ X |mA 6= 0}.

For any s ∈ S we define T̃s : M →M by T̃s(
∑

AmAA) =
∑

AmAT̃sA where

T̃sA =

{
sA, if A < sA,

sA+ (v − v−1)A, if sA < A.

This defines an Had-module structure on M . We have

T̃−1
s A =

{
sA, if sA < A,

sA− (v − v−1)A, if A < sA.

Let Mc be the A-submodule of M consisting of all elements m ∈ M such that
supp(m) is a finite set. Then Mc is an Had-submodule of M .

2.3. For any ε ∈ E, we set

eε = Σ′v−d(A,A+
ε )A ∈Mc,

where Σ′ is sum over (the finite set of) all A ∈ X such that the closure of A contains
ε. Let Md′ be the Had-submodule of Mc generated by the elements eε for various
ε ∈ E.

By [L2, 2.12], [L6, 4.14], there exists a unique Had-antilinear map b : Md′ →Md′

such that b(eε) = eε for any ε ∈ E. We have b2 = 1.
Let B ∈ X . By [L2, 5.2, 7.3], [L6, 11.2], there exists a unique element B[ =∑
A∈X;A≤B ΠA,BA ∈Md′ such that

b(B[) = B[,(a)

ΠB,B = 1, ΠA,B ∈ v−1Z[v−1] for A < B.(b)

Let B ∈ X . We can find a unique ε ∈ E such that A+
ε and B are contained in the

same box and a unique element u ∈ W a such that u(A−ε ) = B. By [L2, 5.2], we
have

B[ =
∑

y∈W a;y≤u,l(ywε)=l(y)+l(wε)

πywε,uT̃yeε.

By [L2, 8.3],

{B[|B ∈ X} is an A-basis of Md′ .(c)
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2.4. For any ε ∈ E, we set

e′ε = Σ′(−v)−d(A−
ε ,A)A ∈Mc

where Σ′ is as in 2.3. Let M ′
d′ be the Had-submodule of Mc generated by the

elements e′ε for various ε ∈ E.
Given ε̃ ∈ E, we define a bijection ψ : M → M by ψ(

∑
AmAA) =

∑
Am

◦
A(ωA)

where ω ∈ I is the unique element such that ωA−ε̃ = A+
ε̃ .

For any χ ∈ Had,m ∈ M we have ψ(χm) = χ◦ψ(m). (Notation of 1.6.) The
proof is entirely similar to that of [L2, 2.10]. From the definition we have ψ(eε) = e′ωε

for any ε ∈ E. It follows that ψ restricts to an isomorphism of groups Md′
∼−→M ′

d′.
We can now transfer the results in 2.3 to M ′

d′ via ψ.
Let B ∈ X . We can find a unique ε ∈ E such that A−ε and B are contained in

the same box and a unique element u ∈ W a such that u(A+
ε ) = B. Then

B[ :=
∑

y∈W a;y≤u,l(ywε)=l(y)+l(wε)

π◦ywε,uT̃
−1
y e′ε

is a finite linear combination of alcoves A ≥ B so that the coefficient of A is in
v−1Z[v−1] if A > B and is 1 if A = B.

2.5. Let M≥ be the set of all m ∈ M such that supp(m) is contained in a set of
the form {B ∈ X |A0 ≤ B} for some A0 ∈ X . This is an Had-submodule of M .

For B ≤ A in X we define Π′
B,A ∈ Z[v−1] inductively by Π′

B,B = 1 and∑
D∈X;B≤D≤C

Π′
B,DΠD,C = δB,C(a)

for B ≤ C in X . Note that Π′
B,A ∈ v−1Z[v−1] for B < A.

For B ∈ X let B] =
∑

A∈X;B≤A Π′
B,AA ∈ M≥. Let b̃ : M≥ → M≥ be the

Had-antilinear map defined in [L6, 9.6]. By [L6, 12.2], we have
(b) b̃(B]) = B].

2.6. For any κ ∈ Xad we define (cf. [L3, 9.3])

P̂ (κ) =
∑

n1,...,nν∈N
n1α1+···+nναν=κ

v−2(n1+···+nν) ∈ A

where α1, . . . , αν is a list of the positive roots. For any ε ∈ E, we set

ẽε =
∑

κ∈Xad

P̂ (κ)e′κ+ε ∈M≥.

Theorem 2.7. For any ε ∈ E we have (A−ε )] = ẽε.

This follows immediately from [L2, 11.9] and [L3, 6.12, 9.2].

Corollary 2.8. Let B ∈ X. We associate ε ∈ E and u ∈ W a to B as in 2.4. We
have

B] =
∑

y∈W a;y≤u,l(ywε)=l(y)+l(wε)

π◦ywε,uT̃
−1
y ẽε.(a)
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The proof is by reduction to the special case considered in 2.7. Let B̃ be the
right hand side of (a). Using the definitions we have for any κ ∈ Xad

(c′u)◦e′κ+ε = P
∑

y∈W a;y≤u,l(ywε)=l(y)+l(wε)

π◦ywε,uT̃
−1
y e′κ+ε

where

P =
∑

w∈Wε

(−v)2l(w)−ν ;

hence (c′u)◦ẽε = PB̃. Since (c′u)◦ is fixed by − : Had → Had and ẽε = (A−ε )] is
fixed by b̃ : M≥ → M≥, it follows that (c′u)◦ẽε is fixed by b̃ (recall that b̃ is Had-
antilinear). Hence, PB̃ is fixed by b̃. Since P̄ = P, it follows that B̃ is fixed by
b̃.

From the definitions we have

B̃ =
∑

κ∈Xad

P̂ (κ)(κ+B)[.

Using the properties of (κ + B)[ (see 2.4) and the definition of P̂ (κ), we see that
B̃ is a formal linear combination of alcoves A ≥ B so that the coefficient of A is in
v−1Z[v−1] if A > B and is 1 if A = B. By the characterization of B] given in [L6,
12.2], we see that B] = B̃. The corollary is proved.

2.9. Let Md be the A-submodule of M spanned by {B]|B ∈ X} (which is then
an A-basis of Md). From [L6, 13.10] (which is applicable in the present case) we
see that Md is an Had-submodule of M . From 2.8, we see that Md is in fact the
Had-submodule of M generated by the elements ẽε for various ε ∈ E.

The restriction of b̃ : M≥ →M≥ to Md will be denoted again by b̃. It is clear that
b̃ : Md → Md can be characterized as the unique Had-antilinear map Md → Md

which maps ẽε to itself for any ε ∈ E. We have

Md′ ⊂Mc ⊂Md.(a)

(The first inclusion is obvious; the second inclusion follows from [L6, 13.10(b)] which
is applicable in the present case.)

2.10. Let M = A[X ]⊗AM where A[X ] is the group algebra of X over A.
For ι ∈ X ,m ∈ M we shall write ιm instead of ι ⊗m ∈ M. In the case where

ι = x with x ∈ X , we shall sometimes write xm instead of xm.
Using the definitions, one checks that the operators T̃w : M → M, (w ∈ W a)

and T̃ι′ : M→M, (ι′ ∈ X ) given by

T̃w(ιm) = ι(T̃−ιw(m)), T̃ι′(ιm) = ι+ι′m,

(where m ∈M, ι ∈ X ) define an H-module structure on M. Let

Mc = A[X ]⊗AMc, Md′ = A[X ]⊗AMd′ , Md = A[X ]⊗AMd.

Then Md′ ⊂Mc ⊂Md are H-submodules of M. (See 2.9(a).)
Note that Md′ (resp. Md) is generated as an H-module by the elements 0eε

(resp. 0ẽε) for various ε ∈ E.

There is a unique H-antilinear map b̂ : Md′ →Md′ (resp. ˆ̃
b : Md →Md) which

maps 0eε to itself (resp. 0ẽε to itself) for any ε ∈ E. Indeed, the map ιm 7→ ι(b(m))
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(resp. ιm 7→ ι(b̃(m))) has the required property. The uniqueness follows from the
previous paragraph.

Let B ∈ X and ι ∈ X . There exists a unique element in Md′ which is fixed by b̂
and is a finite linear combination of elements ιA with A ∈ X,A ≤ B such that the
coefficient of ιA is in v−1Z[v−1] if A < B and is 1 if A = B. This element is in fact
ιB

[.
Moreover, there exists a unique element in Md which is fixed by ˆ̃

b and is a formal
linear combination of elements ιA with A ∈ X,A ≥ B such that the coefficient of
ιA is in v−1Z[v−1] if A > B and is 1 if A = B. This element is in fact ιB

].
Clearly, {ιB

[|B ∈ X, ι ∈ X} is an A-basis of Md′ and {ιB
]|B ∈ X, ι ∈ X} is an

A-basis of Md.

Lemma 2.11. If ε′ = x + ε for some x ∈ X+, then, with the notation of 1.9, we
have T̃τε′,εA

+
ε = A+

ε′ (equality in M).

Let w = τε′,ε, n = l(w). By [L2, 3.6] we have d(A+
ε , w(A+

ε )) = n. Hence, there
exists a sequence s1, s2, . . . , sn in S such that w = snsn−1 . . . s1 and

A+
ε < s1A

+
ε < s2s1A

+
ε < · · · < snsn−1 . . . s1A

+
ε = w(A+

ε ).

Then T̃s1A
+
ε = s1A

+
ε , T̃s2(s1A+

ε ) = s2s1A
+
ε , T̃s3(s2s1A+

ε ) = s3s2s1A
+
ε , . . . ; hence

T̃w(A+
ε ) = T̃sn . . . T̃s1(A+

ε ) = w(A+
ε ). The lemma follows.

Lemma 2.12. Let ε ∈ E. Let x ∈ X+. In the H-module M, we have

T̃xε(0A+
ε ) = −xA

+
x+ε.

We set τ = τx+ε,ε. Using the definitions and Lemma 2.11, we have T̃xε(0A+
ε )

= T̃−xT̃τ (0A+
ε ) = −xAx+ε. The lemma is proved.

Lemma 2.13. For any ε ∈ s and any x ∈ X we have in the H-module M:

θx(0A+
ε ) = −xA

+
x+ε.

We choose x1, x2 ∈ X+ such that x = x1 − x2. It is enough to show that

T̃xε
1
(0A+

ε ) = T̃xε
2
(x2−x1A

+
x1−x2+ε).

The left hand side equals −x1A
+
x1+ε (see 2.12). The right hand side equals

T̃xε
2
T̃x2−x1

(0A+
x1−x2+ε) = T̃x2−x1

T̃
x

x1−x2+ε
2

(0A+
x1−x2+ε)

= T̃x2−x1
(−x2A

+
x1+ε) = −x1A

+
x1+ε.

(The second equality again follows from 2.12.) The lemma is proved.

2.14. We define an AX -module structure � on M (extending the A-module struc-
ture) by

[x′] � ι

∑
A

mAA = ι−x′
∑
A

mA(x′ +A).

Lemma 2.15. This AX -module structure commutes with the H-module structure
on M.
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Let s ∈ S, x, x′ ∈ X , A ∈ X . We show that [x′] � (T̃sxA) = T̃s([x′] � xA). Let
s′, s′′ ∈ S be defined by x+ s′ = s and x− x′ + s′′ = s (hence s′′ = x′ + s′).

Assume first that s′A > A (hence s′′(x +A) > (x+A)). Then

[x′] � (T̃s(xA)) = [x′] � x(s′A) = x−x′(x′ + s′A)

= x−x′(x′ + s′)(x′ +A) = T̃s(x−x′(x′ +A)) = T̃s([x′] � xA).

Next assume that s′A < A (hence s′′(x+A) < (x+A)). Then

[x′] � (T̃s(xA)) = [x′] � (x(s′A+ (v − v−1)A))

= x−x′((x′ + s′A) + (v − v−1)(x′ +A))

= x−x′((x′ + s′)(x′ +A) + (v − v−1)(x′ +A))

= T̃s(x−x′(x′ +A)) = T̃s([x′] � xA).

Next assume that x, x′, x′′ ∈ X . We have

[x′] � T̃x′′(xA) = [x′] � x+x′′A = x+x′′−x′(x′ +A)

= T̃x′′(x−x′(x′ +A)) = T̃x′′([x′] � (xA)).

The lemma is proved.

Lemma 2.16. Let ι ∈ X , ε′ ∈ E. In M we have ∆ � ιẽε′ = ιe
′
ε′ .

This is just a reformulation of the definition of ẽε′ .

2.17. Let i ∈ I, x ∈ X . In the following computation (in Md′) we use the commu-
tation formula 1.19(c), the equality σiρ = ρ−αi and the identity T̃σi(0eε) = v(0eε):

T̃σiθx+ρ(0eε) = θσi (x+ρ)T̃σi(0eε) + (v − v−1)θ [x+ρ]−[σi (x+ρ)]
1−[−αi]

(0eε)

= (vθσi x+ρ−αi + (v − v−1)θ [x+ρ]−[σix+ρ−αi]
1−[−αi]

)(0eε)

= (v−1θ [σix+ρ]−[x+αi+ρ]
[αi]−1

+ vθ [x+αi+ρ]−[σi x−αi+ρ]
[αi]−1

)(0eε).

2.18. Let i ∈ I, x ∈ X . In the following computation (in Md) we use the com-
mutation formula 1.19(c), the equality σiρ = ρ − αi and the identity T̃σi(0ẽε) =
−v−1(0ẽε):

T̃σiθx(0ẽε) = θσixT̃σi(0ẽε) + (v − v−1)θ [x]−[σix]
1−[−αi]

(0ẽε)

= (−v−1θσix(0ẽε) + (v − v−1)θ [x]−[σix]
1−[−αi]

(0ẽε)

= (v−1θ [σi x]−[x+αi])
[αi]−1

+ vθ [x+αi]−[σix+αi]
[αi]−1

)(0ẽε).

3. Inner product on Md,Md′

3.1. Note that Md′ ,Mc,Md are AX -submodules of M (as in 2.14). Indeed, for
B ∈ X and x, x′ ∈ X , we have

[x′] � xB
[ = x−x′(x′ +B)[.(a)

[x′] � xB
] = x−x′(x′ +B)].(b)

The elements ιB
[ (resp. ιB

]) where ι runs over X and B runs over the set of alcoves
contained in a fixed box form an AX -basis of Md′ (resp. of Md); the number of
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such elements is well known to be |W |. For Md′ this follows from (a) and 2.3(c);
for Md this is seen in a similar way.

On the other hand, the elements ιA where ι, A run over the same set as above,
clearly form an AX -basis of Mc. Therefore, we see that

(c) Md′ ,Mc,Md are free AX -modules of rank |W |.
Tensoring the inclusions of AX -modules Md′ ⊂Mc ⊂Md with AX q (over AX )

we obtain inclusions of AX q-vector spaces of dimension |W |
AX q ⊗Md′ ⊂ AX q ⊗Mc ⊂ AX q ⊗Md

which are necessarily equalities. We denote the resulting (single) AX q-vector space
by Mq. Note that we have naturally Md′ ⊂Mc ⊂Md ⊂Mq.

From 2.15, we see that the H-module structure on Md extends by AX q-linearity
to an H-module structure on the AX q-vector space Mq. This can be further
extended to an H-module structure on Mq ⊗ AX ′

q where AX ′
q is an algebraic

closure of AX q. This is a “generic principal series representation” of H; hence
(d) any AX ′

q-subspace of Mq ⊗ AX ′
q which is an H-submodule is either 0 or

Mq ⊗AX ′
q.

3.2. Let (, ) : Mc × Mc → A be the A-bilinear form defined by (ιA, ι′A
′) =

δι,ι′δA,A′ for ι, ι′ ∈ X and A,A′ ∈ X .

Lemma 3.3. Let m,m′ ∈Mc, w ∈ Ŵ a, x ∈ X . We have
(a) (m,m′) = (m′,m),
(b) ([x] �m, [x] �m′) = (m,m′),
(c) (T̃wm,m

′) = (m, T̃w−1m′).

(a) and (b) are obvious. It is enough to prove (c) when either w ∈ W a or
l(w) = 0. If w ∈W a, then (c) follows from [L6, 9.2]. It remains to prove (c) in the
case where w = ι′′ for some ι′′ ∈ X . We may assume that m = ιA,m

′ = ι′A
′ where

ι, ι′ ∈ X and A,A′ ∈ X . We have

(T̃ι′′m,m
′) = (ι′′+ιA, ι′A

′) = δι′′+ι,ι′δA,A′ = δι,−ι′′+ι′δA,A′

= (ιA,−ι′′+ι′A
′) = (m, T̃−ι′′m

′).

The lemma is proved.

3.4. Let (|) : Mc ×Mc → AX be the pairing defined by

(m|m′) =
∑
x∈X

(m, [x] �m′)[x].

Lemma 3.5. Let m,m′ ∈Mc, w ∈ Ŵ , p ∈ AX . We have
(a) (m|m′) = (m′|m)†,
(b) (p �m|m′) = (m|p† �m′) = p(m|m′),
(c) (T̃wm|m′) = (m|T̃w−1m′).

(a),(b) follow immediately from 3.3(a),(b), while (c) follows immediately from
3.3(c) together with 2.15.

Lemma 3.6. (a) Let ι, ι′ ∈ X and let A,A′ ∈ X. Then (ιA|ι′A′) equals [x′′] if
there exists x′′ ∈ X such that ι = ι′ − x′′, A = x′′ + A′ and is equal to 0,
otherwise.

(b) Let A,A′ ∈ X be alcoves whose closure contains ε. Then (0A|0A′) = δA,A′ .
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(c) We have (0eε|0eε) =
∑

w∈W v−2l(w).

We prove (a). We have

(ιA|ι′A′) =
∑

x′′∈X
(ιA, ι−x′′(x′′ +A′))[x′′] =

∑
x′′∈X

ι=ι′−x′′

A=x′′+A′

[x′′]

and (a) follows. Now (b) follows from (a) since for x ∈ Xad−{0} we have A 6= x+A′.
This proves (b). Now (c) follows immediately from (b) using the definition of eε.
The lemma is proved.

Lemma 3.7. There exists a unique pairing (|) : Mq ×Mq → AX q such that
(i) (p �m|m′) = (m|p† �m′) = p(m|m′) for all p ∈ AX q,m,m

′ ∈ Mq,
(ii) (χm|m′) = (m|χNm′) for all χ ∈ H,m,m′ ∈Mq,
(iii) (0eε|0eε) =

∑
w∈W v−2l(w).

(χN as in 1.24.) This pairing satisfies automatically (m|m′) = (m′|m)† for all
m,m′ ∈ Mq. Moreover, the restriction of this pairing to Mc ×Mc coincides with
the pairing in 3.4.

Let (|)1 be the pairing (|) : Mq ×Mq → AX q obtained by extension of scalars
from AX to AX q of the pairing in 3.4. This pairing satisfies (i)-(iii), by 3.5.

Now let (|)2 be another pairing (|) : Mq ×Mq → AX q that satisfies (i)-(iii).
Since (|)1 is non-singular (see 3.6(b)), there exists an AX q-linear map t : Mq →Mq

such that (m|m′)2 = (t(m)|m′)1 for all m,m′ ∈Mq. For any χ ∈ H we have

(t(χm)|m′)1 = (χm|m′)2 = (m|χNm′)2 = (t(m)|χNm′)1 = (χt(m)|m′)1

for all m,m′. Since (|)1 is non-singular, it follows that t(χm) = χt(m) for all
χ ∈ H,m ∈ Mq. Using 3.1(d), we deduce that there exists ζ ∈ AX q such that
t(m) = ζm for all m ∈ Mq. Thus, (m|m′)2 = ζ(m|m′)1 for all m,m′ ∈ Mq.
Since (iii) holds for (|)1 and for (|)2, it follows that ζ = 1. Thus the existence
and uniqueness of (|) is established. The remaining statements are clear from the
construction. The lemma is proved.

3.8. Let U be the ring of power series in v−1 with coefficients in the group ring
Z[X ]. Note that AX is naturally a subring of U.

Let pk be a family of elements of AX indexed by a (possibly infinite) set K.
Write pk =

∑
n∈Z pk,nv

n where pk,n ∈ Z[X ]. We say that the sum
∑

k∈K pk is
convergent in U if

(a) for any n ∈ Z there are only finitely many k ∈ K such that pn,k 6= 0;
(b) there exists n0 ∈ Z such that pn,k = 0 for all n < n0 and all k ∈ K.

Then we write
∑

k∈K pk = p where p =
∑

n∈Z(
∑

k∈K pn,k)vn ∈ U.

Lemma 3.9. Let ι, ι′ ∈ X and let m =
∑

A∈X mAA,m
′ =

∑
A∈X m′

AA be two
elements of M≥. Here mA,m

′
A ∈ A. Assume that ∆ � ιm ∈ Mc,∆ � ι′m

′ ∈ Mc.
(For example, this assumption is verified if m,m′ ∈Md, by 2.8, 2.16.)

(a) The infinite sum

(ιm|ι′m′)′ =
∑

x′′∈X ;ι=ι′−x′′

∑
A∈X

mAm
′
−x′′+A[x′′]

is convergent in U; thus, (ιm|ι′m′)′ ∈ U.
(b) We have ∆∆†(ιm|ι′m′)′ ∈ AX .
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(c) We have ∆∆†(ιm|ι′m′)′ = ∆∆†(ιm|ι′m′) in AX q.

For any B ∈ X let r(B) =
∑

κ∈Xad
P̂ (κ)(κ + B) ∈ M≥. This extends to an

A-linear map r : Mc →M≥.
We have ∆ � [x]m = [x]m̃,∆ � [x′]m′ = [x′]m̃′ where m̃, m̃′ ∈ Mc. From the

definitions we have m = r(m̃),m′ = r(m̃′).
Conversely, if we are given m̃, m̃′ ∈ Mc, then m = r(m̃),m′ = r(m̃′) satisfy the

assumptions of the lemma. Hence, it is enough to prove the lemma for such m,m′.
We may assume that m̃ = B, m̃′ = B′ for some B,B′ ∈ X . We have

mA =
∑

κ;A=κ+B

P̂ (κ), m′
A =

∑
κ′;A=κ′+B′

P̂ (κ′).

The infinite sum in (a) is then∑
κ,κ′

∑
x′′∈X

ι=ι′−x′′

κ+B=x′′+κ′+B′

P̂ (κ)P̂ (κ′)[x′′].(d)

This is clearly convergent in U, by the definition of P̂ (κ).
We have ∆ =

∑
y∈Xad

P̃ (y)[y] (finite sum) where P̃ (y) ∈ A are such that∑
y

P̃ (y)P̂ (x0 − y) = δx0,0

for any x0 ∈ Xad. Hence, if we multiply the power series (d) (in U) with ∆∆†, we
obtain ∑

κ,κ′

y,y′

∑
x′′∈X

ι=ι′−x′′

κ+B=x′′+κ′+B′

P̂ (κ)P̂ (κ′)P̃ (y)P̃ (y′)[x′′ + y − y′].

We make a change of variables (κ, κ′, y, y′, x′′) 7→ (x0, x
′
0, y, y

′, z) where x0 = κ +
y, x′0 = κ′ + y′, z = x′′ + y − y′. We obtain the sum∑

x0,x′0
y,y′

∑
z∈X

ι=ι′−z
x0+B=z+x′0+B′

P̂ (x0 − y)P̂ (x′0 − y′)P̃ (y)P̃ (y′)[z]

=
∑

x0,x′0

∑
z∈X

ι=ι′−z
x0+B=z+x′0+B′

δx0,0δx′0,0[z] =
∑
z∈X

ι=ι′−z
B=z+B′

[z] = (ιB|ι′B′).

The lemma is proved.

Lemma 3.10. Let ι, ι′ ∈ X and let B,B′ be two alcoves in the same box. Then

(ιB
[|ι′B′]) = δι,ι′δB,B′ .
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Since both ιB
[, ι′B

′] are contained in Md, the inner product may be computed
by the method of 3.9. With the notation in 2.3, 2.4 we have

(ιB
[|ι′B′])

= (ι(
∑
A∈X

ΠA,BA)|ι′(
∑
A∈X

Π′
B,AA)) =

∑
x′′∈X

ι=ι′−x′′

∑
A∈X

ΠA,BΠ′
B′,−x′′+A[x′′]

=
∑

x′′∈X
ι=ι′−x′′

∑
A∈X

ΠA,BΠ′
x′′+B′,A[x′′] =

∑
x′′∈X

ι=ι′−x′′

B=x′′+B′

[x′′].

(We have used 2.5(a). We have used the convention that ΠA,B = 0 for A 6≤ B
and Π′

B,A = 0 for B 6≤ A.) Since B,B′ are alcoves in the same box, we have
B = x′′ +B′ =⇒ x′′ = 0. The lemma is proved.

Lemma 3.11. (a) Md′ = {m ∈Mq|(m|m′) ∈ AX ∀m′ ∈Md};
(b) Md = {m ∈Mq|(m|m′) ∈ AX ∀m′ ∈Md′}.

Let M′ be the right hand side of (a). By 3.1 and 3.10, there exists an AX -basis
(mj) of Md′ and an AX -basis (m′

j) of Md such that (mj |mj′ ) = δjj′ for all j, j′.
Hence, Md′ ⊂M′. Conversely, let m ∈M′. Since (mj) is an AX q-basis of Mq, we
have m =

∑
j cjmj with cj ∈ AX q. We have cj = (m|m′

j) for all j. By assumption,
for any j we have (m′

j ,m) ∈ AX ; hence cj ∈ AX . Hence, m ∈ Md′ . This proves
(a). The proof of (b) is entirely similar. The lemma is proved.

Lemma 3.12. For any m ∈Md′ ,m
′ ∈ Md we have

(b(m)|m′) = (m|b̃(m′)).

It is enough to prove this for m (resp. m′) running through a fixed AX -basis of
Md′ (resp. of Md). The result therefore follows from 3.10.

3.13. Let Z((v−1)) be the ring of power series in v−1 with coefficients in Z. Let
p 7→ p(0) be the group homomorphism Z[X ] 7→ Z given by [x] 7→ δx,0.

Let ∂ : U 7→ Z((v−1)) be the group homomorphism given by
∑

n∈Z pnv
n 7→∑

n∈Z p
(0)
n vn; here pn ∈ Z[X ].

Lemma 3.14. We have

{m ∈Mc|∂(m|m) = 1} = {±ιB|ι ∈ X , B ∈ X},(a)

{m ∈Md|b̃(m) = m, ∂(m|m) ∈ 1 + v−1Z[[v−1]]} = {±ιB
]|ι ∈ X , B ∈ X},(b)

{m ∈Md′ |b(m) = m, ∂(m|m) ∈ 1 + v−1Z[[v−1]]} = {±ιB
[|ι ∈ X , B ∈ X}.(c)

Let ι, ι′ ∈ X , and let B,B′ ∈ X . By 3.6(a), we have ∂(ιB|ι′B′) = δι,ι′δB,B′ . We
have

∂(ιB
[|ι′B′[) =

∑
A,A′

ΠA,BΠA′,B′∂(ιA|ι′A′) =
∑
A,A′

ΠA,BΠ′
A′,B′δι,ι′δA,A′

=
∑
A

ΠA,BΠ′
A,B′δι,ι′ = δι,ι′δB,B′ + v−1Z[v−1].
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Using 3.9 we compute

∂(ιB
]|ι′B′]) =

∑
A,A′

Π′
B,AΠ′

B′,A′∂(ιA|ι′A′) =
∑
A,A′

Π′
B,AΠ′

B′,A′δι,ι′δA,A′

=
∑
A

Π′
B,AΠ′

B′,Aδι,ι′ = δι,ι′δB,B′ + v−1Z[[v−1]].

These computations show that the right hand sides of (a),(b),(c) are contained in
the corresponding left hand sides.

We now show the converse. Let m be in the left hand side of (a). We write
m =

∑
ι∈X ,A∈X mι,A(ιA) (finite sum with mι,A ∈ A. By the earlier part of the

argument we have ∂(m|m) =
∑

ι,Am
2
ι,A. Thus,

∑
ι,Am

2
ι,A = 1. This implies that

there exists ι′ ∈ X , B ∈ X such that mι,A = ±δι,ι′δA,B. Thus, (a) holds.
Next, let m be in the left hand side of (b). We write m =

∑
ι∈X ,A∈X mι,A(ιA

]).
By the earlier part of the argument we have

∂(m|m) =
∑
ι,A

m2
ι,A mod v−1Z[[v−1]].

Thus, ∑
ι,A

m2
ι,A = 1 mod v−1Z[[v−1]].

This implies that there exists ι′ ∈ X , B ∈ X such that

mι,A = ±δι,ι′δA,B mod v−1Z[[v−1]].

But mι,A ∈ A is fixed by − : A → A. Hence, mι,A = ±δι,ι′δA,B. Thus, (b) holds.
An entirely similar argument shows that (c) holds. The lemma is proved.

3.15. We have

(0ẽε|0ẽε) = (∆∆†)−1
∑

w∈W

v−2l(w).(a)

Indeed, using 2.16, we see that this is equivalent to the identity (0e′ε|0e′ε) =∑
w∈W v−2l(w) which is proved in the same way as 3.6(c).

4. The H-modules AX⊗2
d′ ,AX

⊗2
d

4.1. W acts on AX by

p =
∑
x∈X

cx[x] 7→ wp =
∑
x∈X

cx[wx] ∈ AX .

Let AXW denote the subring of W -invariant elements in AX . The following result
is due to J. Bernstein (unpublished; see [L4] for a proof).

If p ∈ AXW , then θp is contained in the centre of H.
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4.2. Let ε ∈ s. For any x′ ∈ X we have [x′] � 0A
+
ε = θx′(0A+

ε ). (Both sides are
equal to −x′A

+
x′+ε, see 2.13.) It follows that

p � 0A
+
ε = θp(0A+

ε )

for any p ∈ AX . Assume now that p ∈ AXW in the previous equality. Apply T̃−1
w

(with w ∈W ) to both sides of that equality and use 2.15, 4.1. We obtain

p � (T̃−1
w (0A+

ε )) = θp(T̃−1
w (0A+

ε )).

Now T−1
w A+

ε is equal to A′, the most general alcove whose closure contains ε. Since
ε is arbitrary in s, we obtain that p � 0A

′ = θp(0A′) for any A′ ∈ X . It follows that

p � (0m) = θp(0m)(a)

for any m ∈M and p ∈ AXW .

4.3. We set

AX⊗2 = AX ⊗AXW AX .

This is an AXW -algebra in a natural way.
In the remainder of this paper we fix ε ∈ s.

Lemma 4.4. There is a unique A-linear map f : AX⊗2 →Md′ such that

f([x]⊗ [x′]) = vνθx+ρ([x′ + ρ] � 0eε)(a)

for any x, x′ ∈ X . Moreover, f is an isomorphism of A-modules.

The fact that (a) defines a linear map f as claimed follows from 3.1, 4.2. Let
Im(f) be the image of f . Using 1.19(c), we see that for i ∈ I and x, x′ ∈ X , the
element T̃σiθx([x′] � 0eε) is an A-linear combination of

θσixT̃σi([x
′] � 0eε) = vθσi x([x′] � 0eε)

and of elements θx̃([x′] � 0eε). (We use that T̃σi(0eε) = v0eε.) Thus,

T̃σi(Im(f)) ⊂ Im(f).(b)

Since Im(f) is stable under the operators θx1 for x1 ∈ X , from (b) it follows that

Im(f) is an H-submodule of Md′ .(c)

(Recall that the algebra H is generated by the elements θx1 , T̃σi .) For any x′ ∈ X
we have

−x′ex′+ε = [x′] � 0eε ∈ Im(f).(d)

Applying to the element (d) the operator T̃x′ ∈ H, we get the element 0ex′+ε which
by (c) must belong to Im(f). Since any element of E is of the form x′ + ε for some
x′ ∈ X , we see that

0eε′ ∈ Im(f) for any ε′ ∈ E.(e)

Since the elements (e) generate the H-module Md′ , we see using (d) that Im(f) =
Md′. Thus, f is surjective. We shall regard Md′ as a AX -module under the �-
action; we shall regard AX⊗2 as an AX -module by [x1]([x]⊗ [x′]) = [x]⊗ [x′ + x1].
Then f is a homomorphism of AX -modules. Since f is surjective, to show that it
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is an isomorphism, it is enough to show that Md′ and AX⊗2 are free AX -modules
of the same (finite) rank. For Md′ , this follows from 3.1(c).

By [P], AX is a free AXW -module of rank |W |. It follows that AX⊗2 is a free
AX -module of rank |W |. Thus, f must be an isomorphism. The lemma is proved.

Lemma 4.5. There is a unique A-linear map f̃ : AX⊗2 →Md such that

f̃([x]⊗ [x′]) = (−1)νv−2νθx([x′ + 2ρ] � 0ẽε)

for any x, x′ ∈ X . Moreover, f̃ is an isomorphism of A-modules.

The proof is entirely similar to that of the previous lemma; we replace eε, v, . . .
by ẽε,−v−1, . . . respectively.

Lemma 4.6. In the H-module structure on AX⊗2 obtained from that of Md′ via
the isomorphism in 4.4, we have, for i ∈ I, x, x′, x′′ ∈ X :

T̃σi([x]⊗ [x′]) =
v−1([σix]− [x+ αi]) + v([x+ αi]− [σix− αi])

[αi]− 1
⊗ [x′],(a)

θx′′([x]⊗ [x′]) = [x+ x′′]⊗ [x′].(b)

This H-module structure on AX⊗2 is denoted by AX⊗2
d′ .

To prove (a) we may assume, by 2.15, that x′ = −ρ. In this case, (a) follows
from the computation in 2.17. The proof of (b) is immediate. The lemma is proved.

Lemma 4.7. In the H-module structure on AX⊗2 obtained from that of Md via
the isomorphism in 4.5, we have, for i ∈ I, x, x′, x′′ ∈ X :

T̃σi([x]⊗ [x′]) =
v−1([σix]− [x+ αi]) + v([x+ αi]− [σix+ αi])

[αi]− 1
⊗ [x′],(a)

θx′′([x]⊗ [x′]) = [x+ x′′]⊗ [x′].(b)

This H-module structure on AX⊗2 is denoted by AX⊗2
d .

To prove (a) we may assume, by 2.15, that x′ = −2ρ. In this case, (a) follows
from the computation in 2.18. The proof of (b) is immediate. The lemma is proved.

4.8. By transferring the H-antilinear map b̂ : Md′ → Md′ to AX⊗2
d′ via the

isomorphism in 4.4, we obtain an H-antilinear map AX⊗2
d′ → AX⊗2

d′ which is de-
noted again by b̂. From the definition, this map keeps fixed each of the elements
v−ν [−ρ]⊗ [x′] (with x′ ∈ X ), which correspond to −x′−ρex′+ρ+ε ∈ Md′.

Similarly, by transferring the H-antilinear map ˆ̃
b : Md → Md to AX⊗2

d via
the isomorphism in 4.5, we obtain an H-antilinear map AX⊗2

d → AX⊗2
d which is

denoted again by ˆ̃
b. From the definition, this map keeps fixed each of the elements

(−1)νv2ν [0]⊗ [x′] (with x′ ∈ X ) which correspond to −x′ ẽx′+2ρ+ε ∈Md.

Lemma 4.9. Let x, x′ ∈ X . We have

b̂([x] ⊗ [x′]) = v−ν T̃−1
w0

([w0x− 2ρ]⊗ [x′]) in AX⊗2
d′ ,(a)

ˆ̃
b([x]⊗ [x′]) = (−1)νv3ν T̃−1

w0
([w0x]⊗ [x′]) in AX⊗2

d .(b)
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We prove (a). In the H-module AX⊗2
d′ we have T̃σi([−ρ]⊗ [x′]) = v[−ρ]⊗ [x′] for

any i ∈ I. Applying this repeatedly, we see that T̃w0([−ρ]⊗ [x′]) = vν [−ρ]⊗ [x′].
Since b̂ is H-antilinear and keeps [−ρ]⊗ [x′] fixed, we have

b̂([x]⊗ [x′]) = b̂(θx+ρ([−ρ]⊗ [x′])) = θx+ρb̂([−ρ]⊗ [x′])

= v−2ν T̃−1
w0
θw0(x+ρ)T̃w0([−ρ]⊗ [x′]) = v−2νvν T̃−1

w0
θw0x−ρ([−ρ]⊗ [x′])

= v−ν T̃−1
w0

([w0x− 2ρ]⊗ [x′])

where we have used 1.22. This proves (a). The proof of (b) is entirely similar.

Lemma 4.10. (a) The A-linear map h : AX⊗2
d′ → AX⊗2

d given by [x] ⊗ [x′] 7→
∆̄[x] ⊗ [x′] is H-linear.

(b) The A-linear map h′ : AX⊗2
d → AX⊗2

d′ given by [x] ⊗ [x′] 7→ ∆̄†[x] ⊗ [x′] is
H-linear.

To prove (a) it is enough to show that, for any i ∈ I and for any x, x′ ∈ X , we
have

∆̄
v−1([σix]− [x+ αi]) + v([x + αi]− [σix− αi])

[αi]− 1
⊗ [x′]

=
v−1(σi∆̄[σix]− ∆̄[x+ αi]) + v(∆̄[x+ αi]− σi∆̄[σix+ αi])

[αi]− 1
⊗ [x′].

Since σi∆̄ = ∆̄1−v2[−αi]
1−v2[αi]

, this is equivalent to the identity

v−1([σix]− [x+ αi]) + v([x+ αi]− [σix− αi])

= v−1(
1− v2[−αi]
1− v2[αi]

[σix]− [x+ αi]) + v([x+ αi]−
1− v2[−αi]
1− v2[αi]

[σix+ αi])

in AX q, which is easily verified. This proves (a). One can prove (b) in the same way
as (a). Alternatively, we can argue as follows. Since ∆̄∆̄† ∈ AXW , the composition
hh′ : AX⊗2

d → AX⊗2
d is the H-linear map given by

[x]⊗ [x′] 7→ (∆̄∆̄†[x]) ⊗ [x′] = [x]⊗ (∆̄∆̄†)[x′].

Hence, for any χ ∈ H,m ∈ AX⊗2
d we have hh′(χm) = χhh′(m) = h(χh′(m)). (The

last equality follows from (a).) Since h is injective, it follows that h′(χm) = χh′(m).
The lemma is proved.

Lemma 4.11. We have a commutative diagram of H-modules

AX⊗2
d′ −−−−→ AX⊗2

d

f

y f̃

y
Md′ −−−−→ Md

where the lower horizontal map is the obvious inclusion, f, f̃ are as in 4.4, 4.5 and
the upper horizontal map is given by [x]⊗ [x′] 7→ ∆̄[x]⊗ [x′].

An equivalent statement is that

(−1)νv−2νθ∆̄θx([x′ + 2ρ] � 0ẽε) = vνθx+ρ([x′ + ρ] � 0eε)

for all x, x′ ∈ X . To prove this we may assume that x = x′ = −ρ. Thus, we must
prove that the images
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(a) (−1)νv−2νθ∆̄[−ρ]([ρ] � 0ẽε), vν
0eε

of [−ρ]⊗ [−ρ] under the two possible compositions in the diagram are equal. Since
these compositions are H-linear (see 4.10) and the vector [−ρ]⊗ [ρ] ∈ AX⊗2

d′ is in
the kernel of T̃σi − v for any i ∈ I, the first vector in (a) is also in the kernel of
T̃σi − v for any i ∈ I. Hence,

(b) π−1Σθ∆̄[−ρ]([ρ] � 0ẽε) = θ∆̄[−ρ]([ρ] � 0ẽε)

where Σ =
∑

w∈W v−l(w)T̃−1
w and π =

∑
w∈W v−2l(w). To show that the two vectors

in (a) are equal, it is enough to show that they become equal after applying ∆� to
them. Hence, using 2.16, it is enough to prove that

(−1)νv−2νθ∆̄[−ρ](0e
′
ε) = vν∆[−ρ] � 0eε,

or equivalently, that

θ∆̄[−ρ]Σ
∗(0A+

ε ) = v3νΣθ∆[−ρ](0A+
ε )

(the last expression is equal to v3νΣ(∆[−ρ] � 0A
+
ε ) by 4.2). Here,

Σ∗ =
∑

w∈W

sgnwv
l(w)−ν T̃−1

w .

Hence, it is enough to prove the equality

θ∆̄[−ρ]Σ
∗ = v3νΣθ∆[−ρ](c)

in H. Now applying ∆[ρ]� to the two sides of (b), and using again 2.16, we obtain
π−1Σθ∆̄[−ρ](0e′ε) = θ∆̄[−ρ](0e′ε); hence

π−1Σθ∆̄[−ρ]Σ
∗(0A+

ε ) = θ∆̄[−ρ]Σ
∗(0A+

ε ).

From this we deduce that

(d) π−1Σθ∆̄[−ρ]Σ∗ = θ∆̄[−ρ]Σ∗

as elements of H. To this equality we apply the antiautomorphism of the ring H
such that θx 7→ θx for all x ∈ X , T̃σi 7→ T̃σi for all i ∈ I and vn 7→ (−v)−n for all
n. This carries π to v2νπ, Σ to vνΣ∗, Σ∗ to (−v)νΣ, and θ∆̄[−ρ] to θ∆[−ρ]. Hence,
from (d) we get the equality

(e) v−νπ−1Σθ∆[−ρ]Σ∗ = Σθ∆[−ρ].

In view of (d),(e), the desired equality (c) is equivalent to:

Σθ∆̄[−ρ]Σ
∗ = v2νΣθ∆[−ρ]Σ∗.

To prove this, we set jp = ΣθpΣ∗ for any p ∈ AX . The argument in [L3, 7.3] shows
that jwp = sgnwjp for any w ∈W, p ∈ AX . In particular, j∆̄[−ρ] = (−1)νjw0 (∆̄[−ρ]).
Hence, to show the desired equality j∆̄[−ρ] = v2νj∆[−ρ], it suffices to show that

w0(∆̄[−ρ]) = (−1)νv2ν∆[−ρ].

This is immediate from the definitions. The lemma is proved.
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5. Inner product on AX⊗2
d′ ,AX

⊗2
d

5.1. Let (, ) : AX ×AX → AXW be the symmetric pairing defined by

(a) (p, p′) = δ−1
∑

w∈W sgnw
w(pp′[ρ]).

(δ is as in 1.23. The fraction in the right hand side is taken in AX q, but in
fact it belongs to AX and even to AXW .) This pairing is clearly AXW -bilinear.
Hence, by extending the scalars fromAXW toAX we obtain anAX -bilinear pairing
(:) : AX⊗2×AX⊗2 → AX such that (p⊗q : p′⊗q′) = (p, p′)qq′ for p, p′, q, q′ ∈ AX .
(AX⊗2 is regarded as an AX -module by p′(p⊗ q) = p⊗ (p′q).)

Given χ ∈ H, we will sometimes write d′χ (resp. dχ) for the action of χ in AX⊗2
d′

(resp. AX⊗2
d ).

Lemma 5.2. For any χ ∈ H and ξ, ξ′ ∈ AX⊗2, we have

(dχ̂ξ : ξ′) = (ξ, d
′
χξ′).(a)

Let H1 be the set of all χ ∈ H such that (a) holds for any ξ, ξ′. Clearly, H1 is a
subalgebra of H. Therefore, it is enough to show that χ1 contains T̃σi for any i ∈ I
and θx for any x ∈ X . The fact that θx ∈ H1 is immediate. It remains to show that
for i ∈ I, χ = T̃σi satisfies (a). We may assume that ξ = [x] ⊗ [y], ξ′ = [x′] ⊗ [y′]
where x, x′, y, y′ ∈ X . The equality to be proved is then

(
v−1([σix]− [x+ αi]) + v([x + αi]− [σix+ αi])

[αi]− 1
, [x′])

= ([x],
v−1([σix′]− [x′ + αi]) + v([x′ + αi]− [σix′ − αi])

[αi]− 1
).

From the definitions, we see that, if p1, p2, p3, p4 are elements of AX , then, in order
to have (p1, p2) = (p3, p4), it is sufficient that

p1p2[ρ]− p3p4[ρ] is fixed by σi.

Hence, it is enough to show that

v−1([σix+ x′ + ρ]− [x+ x′ + ρ+ αi]) + v([x+ x′ + ρ+ αi]− [σix+ x′ + ρ+ αi])
[αi]− 1

− v−1([x + σix′ + ρ]−[x+ x′ + ρ+ αi])+v([x+ x′ + ρ+ αi]−[x+ σix′ + ρ− αi])
[αi]− 1

is fixed by σi, or that

v−1[σix+ x′ + ρ]− v[σix+ x′ + ρ+ αi]− v−1[x+ σix′ + ρ] + v[x+ σix′ + ρ− αi]
[αi]− 1

is fixed by σi. This is easily checked. The lemma is proved.

Lemma 5.3. Let χ ∈ H and let ξ, ξ′ ∈ AX⊗2. Then

((∆̄⊗ 1)(d′χ̂)ξ : ξ′) = ((∆̄⊗ 1)ξ : d′χξ′),(a)

((∆̄† ⊗ 1)(dχ̂)ξ : ξ′) = ((∆̄† ⊗ 1)ξ : dχξ′).(b)
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Using 4.10, the identities to be proved can be rewritten as

(dχ̂(∆̄⊗ 1)ξ : ξ′) = ((∆̄⊗ 1)ξ : d′χξ′),

(d′χ̂(∆̄† ⊗ 1)ξ : ξ′) = ((∆̄† ⊗ 1)ξ : dχξ′).

These are special cases of 5.2(a). The lemma is proved.

5.4. Let � : AX⊗2 → AX⊗2 be the A-linear map defined by

�(p1 ⊗ p2) = w0p†1 ⊗ p†2

for p1, p2 ∈ AX . Clearly, � is AX -semilinear with respect to the involution p 7→ p†

of AX . From the definitions (see 1.24) we have (both in AX⊗2
d′ and in AX⊗2

d ):
(a) χ> � (ξ) = �(χξ)

for all χ ∈ H, ξ ∈ AX⊗2. From 1.22, we see that
(b) (θ̄x)> = θ−w0x

for all x ∈ X . Hence, (a) implies
(c) θ−w0x � (ξ) = �(θ̄xξ)

for all x ∈ X (both in AX⊗2
d′ and in AX⊗2

d ).

Lemma 5.5. Let ξ, ξ′ ∈ AX⊗2. We have (ξ : �(ξ′)) = (�(ξ) : ξ′)†.

We may assume that ξ = [x]⊗ [y], ξ′ = [x′]⊗ [y′] where x, x′, y, y′ ∈ X . We have

(ξ : �(ξ′)) = ([x], [−w0x′])[y − y′], (�(ξ) : ξ′) = ([−w0x], [x′])[−y + y′].

Thus, it is enough to show that ([x], [−w0x′]) = ([−w0x], [x′])†. We have

([x], [−w0x′]) = δ−1
∑

w∈W

sgnw
w[x− w0x′ + ρ] = δ−1

∑
w′∈W

sgnw′w0
w′w0 [x− w0x′ + ρ]

= δ†−1
∑

w′∈W

sgnw′
w′

[−w0x+ x′ + ρ]† = ([−w0x], [x′])†.

The lemma is proved.

5.6. Let Γd′ : AX⊗2
d′ → AX⊗2

d′ ,Γd : AX⊗2
d → AX⊗2

d be the A-linear maps defined
by

Γd′(ξ) = d′ T̃w0 � (ξ), Γd(ξ) = dT̃w0 � (ξ).

Lemma 5.7. We have

Γd′(d′χξ) = d′χMΓd′ξ, Γd(dχξ) = dχMΓdξ(a)

for all χ ∈ H, ξ ∈ AX⊗2. (χM as in 1.24.)

To prove (a) for Γd′ it is enough to consider the case where χ = T̃σi or χ = θx.
In the first case, we have by 5.4(a) (the H actions are on AX⊗2

d′ ):

Γd′(T̃σiξ) = T̃w0 � (T̃σiξ) = T̃w0 T̃σi∗ � (ξ) = T̃σi T̃w0 � (ξ) = T̃σiΓd′ξ.

In the second case we have by 5.4(c) and 1.22:

Γd′(θxξ) = T̃w0 � (θxξ) = T̃w0θ−w0x � (ξ) = θ−xT̃w0 � (ξ) = θ−xΓd′ξ.

This proves (a) for Γd′ . The proof for Γd is entirely similar.
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5.8. For ξ, ξ′ ∈ AX⊗2 we set

(ξ | ξ′)d′ = (−v)−ν(ξ : (∆̄⊗ 1)Γd′(ξ′)) ∈ AX ,(a)

(ξ | ξ′)d = (−v)−5ν(∆∆†)−1(ξ : (∆̄† ⊗ 1)Γd(ξ′)) ∈ AX q.(b)

Lemma 5.9. For ξ, ξ′ ∈ AX⊗2, we have

((∆̄⊗ 1)ξ | (∆̄⊗ 1)ξ′)d = (ξ | ξ′)d′ .

An equivalent statement is:

(−v)−5ν(∆∆†)−1((∆̄ ⊗ 1)ξ : (∆̄† ⊗ 1)Γd((∆̄⊗ 1)ξ′)) = (−v)−ν(ξ : (∆̄⊗ 1)Γd′(ξ′)).

The left hand side equals

(−v)−5ν(∆∆†)−1((∆̄†∆̄⊗ 1)ξ : Γd((∆̄ ⊗ 1)ξ′))

= (−v)−5ν(∆∆†)−1((1 ⊗ ∆̄†∆̄)ξ : dT̃w0 � ((∆̄⊗ 1)ξ′))

= (−v)−5ν(∆∆†)−1∆̄†∆̄(ξ : dT̃w0(∆̄⊗ 1) � (ξ′))

= (−v)−5νv4ν(ξ : (∆̄⊗ 1)d′ T̃w0 � (ξ′)) = (ξ | ξ′)d′ .

(The first equality holds since ∆̄†∆̄ ∈ AXW ; the third equality holds due to 4.10
and the identity ∆̄†∆̄ = v4ν∆∆†.) The lemma is proved.

Lemma 5.10. For ξ, ξ′ ∈ AX⊗2 we have (ξ | ξ′)d′ = (ξ′ | ξ)†d′ , (ξ | ξ′)d = (ξ′ | ξ)†d,

We have

(ξ : (∆̄⊗ 1)T̃w0 � (ξ′)) = ((∆̄⊗ 1)ξ : T̃w0 � (ξ′)) = ((∆̄⊗ 1)ξ : �T̃w0(ξ
′))

= (�(∆̄⊗ 1)ξ : T̃w0(ξ
′))† = ((∆̄⊗ 1) � (ξ) : T̃w0(ξ

′))† = ((∆̄⊗ 1)T̃w0 � (ξ) : ξ′)†

= (ξ′ : (∆̄⊗ 1)T̃w0 � (ξ))†

where the action of T̃w0 is in AX⊗2
d′ . (The first and last equalities are obvious.

The second equality follows from 5.4(a). The third equality follows from 5.5. The
fourth equality follows from 5.4(a), since x 7→ −w0x is a permutation of R+. The
fifth equality follows from 5.3.) Thus the lemma is proved in the case of AX⊗2

d′ .
The proof in the case of AX⊗2

d is entirely similar. The lemma is proved.

Lemma 5.11. Let p ∈ AX . For ξ, ξ′ ∈ AX⊗2 we have
(a) ((1 ⊗ p)ξ | ξ′)d′ = p(ξ | ξ′)d′ = (ξ | (1 ⊗ p†)ξ′)d′ ,
(b) ((1 ⊗ p)ξ | ξ′)d = p(ξ | ξ′)d = (ξ | (1⊗ p†)ξ′)d.

The first equality in (a) is obvious from the definition. The second equality in
(a) follows from the first using 5.10. The same applies to (b).

Lemma 5.12. Let χ ∈ H. For any ξ, ξ′ ∈ AX⊗2 we have

(ξ | d′χξ′)d′ = (d′χNξ | ξ′)d′ ,(a)

(ξ | dχξ′)d = (dχNξ | ξ′)d.(b)

(χN as in 1.24.)
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We prove (a). Using 5.3 and 5.7 we have

(ξ | d′χξ′)d′ = (−v)−ν(ξ : (∆̄⊗ 1)Γd′(χξ′)) = (−v)−ν(ξ : (∆̄⊗ 1)χMΓd′(ξ′))

= (−v)−ν((χM)̂ξ : (∆̄⊗ 1)Γd′(ξ′)) = (−v)−ν((χM)̂ξ | ξ′).
It remains to use 1.25(a). The proof of (b) is entirely similar. The lemma is proved.

Lemma 5.13. We have in AX :∑
w∈W

sgnw
w(∆̄[−ρ]) = (−1)ν

∑
w∈W

v2l(w)δ.(a)

For any subset J of R+ we set αJ =
∑

α∈J α. From the definition we have

∆̄[−ρ] =
∑
x∈X

cx[x]

where

cx =
∑

J∈R+;αJ=x+ρ

(−1)|J|v2|J|.

For any x ∈ X we denote by x0 the unique element of X+ in the W -orbit of x. The
properties (b),(c) below are easily verified:
(b) For u ∈W we have cuρ = sgnu(−1)νv2ν−2l(u).
(c) If cx 6= 0 and α̌i(x0) > 0 for all i, then x = uρ for a unique u ∈W .

The left hand side of (a) is
∑

x∈X ;w∈W sgnwcx[wx]. Clearly, this is equal to the sum
restricted to x ∈ X ∩ C+. Hence, it is equal to∑

u,w∈W

sgnwcuρ[wuρ] =
∑

u,w∈W

sgnwu(−1)νv2ν−2l(u)[wuρ]

=
∑

u,w′∈W

sgnw′(−1)νv2ν−2l(u)[w
′
ρ] = (−1)ν

∑
u∈W

v2ν−2l(u)
∑

w′∈W

sgnw′ [w
′
ρ]

= (−1)ν
∑

w∈W

v2l(w)δ.

The lemma is proved.

Lemma 5.14. We have

(v−ν [−ρ]⊗ [−ρ] | v−ν [−ρ]⊗ [−ρ])d′ = (0eε|0eε).

We have in AX⊗2
d′ :

(v−ν [−ρ]⊗ [−ρ] | v−ν [−ρ]⊗ [−ρ])d′

= v−2ν(−v)−ν([−ρ]⊗ [−ρ] : (∆̄⊗ 1)T̃w0 � ([−ρ]⊗ [−ρ]))
= (−v)−3ν([−ρ]⊗ [−ρ] : (∆̄⊗ 1)T̃w0([−ρ]⊗ [ρ]))

= (−v)−3νvν([−ρ]⊗ [−ρ] : (∆̄⊗ 1)[−ρ]⊗ [ρ])

= (−1)νv−2ν([−ρ], ∆̄[−ρ]) = (−1)νv−2νδ−1
∑

w∈W

sgnw
w(∆̄[−ρ])

= v−2ν
∑

w∈W

v2l(w).

(We have used 5.13.) We now use 3.6(c). The lemma is proved.
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Proposition 5.15. All maps in the commutative diagram 4.11 respect the inner
products (|)d′ on AX⊗2

d′ , (|)d on AX⊗2
d , (|) on Md′ in 3.4 and the inner product on

Md given by the restriction of the one in 3.6.

For the inclusion Md′ →Md, this is obvious from 3.6. For the map AX⊗2
d′ →

AX⊗2
d , this follows from 5.9. For f this follows from the uniqueness statement

in 3.7, using 5.11, 5.12, 5.14. From these facts, it follows that f̃ is automatically
compatible with the inner products. The proposition is proved.

5.16. From 5.15 and 3.15 we deduce that

((−1)νv2ν [0]⊗ [−2ρ] | (−1)νv2ν [0]⊗ [−2ρ])d = (∆∆†)−1
∑

w∈W

v−2l(w).

This can also be proved directly by arguments similar to those in 5.14.

Corollary 5.17. For any x ∈ X we have

(θx(0eε)|0eε) = (−1)νv−2ν([x− ρ], ∆̄[−ρ]).

We apply the identity 5.15(a) with ξ = v−ν [x − ρ] ⊗ [−ρ], ξ′ = v−ν [−ρ]⊗ [−ρ].
Note that, as in the proof of 5.15, we have (ξ | ξ′)d = (−1)νv−2ν([x − ρ], ∆̄[−ρ]).
On the other hand, (f(ξ)|f(ξ′)) = (θx(0eε)|0eε).

6. Generalities on coherent sheaves

6.1. In this paper, unless otherwise specified, all algebraic varieties are assumed
to be quasiprojective over C and all algebraic groups are assumed to be affine over
C. Let H be an algebraic group. By an H-variety we mean an algebraic variety V
with a given algebraic action H ×V → V such that there exists a smooth algebraic
variety V ′ with an action of H and an H-equivariant closed imbedding V ′ → V .

Let V be an H-variety. Let CohH(V ) be the abelian category of H-equivariant
coherent sheaves on V ; see [T1]. Let VecH(V ) be the category of H-equivariant
vector bundles on X . Any object in VecH(V ) gives rise to an object of CohH(V )
(by taking the sheaf of sections) and will often be identified with this object of
CohH(V ).

The trivial line bundle on V as an object of VecH(V ) or CohH(V ) is generally
denoted by C.

Let KH(V ) be the Grothendieck group of the abelian category CohH(V ). This
is naturally a module over RH , the Grothendieck group of finite dimensional H-
modules. (We have RH = KH(point) in a natural way.)

If f : V → V ′ is an H-equivariant morphism of H-varieties, then for any
F ∈ VecH(V ′) (resp. F ∈ CohH(V ′)) the inverse image f∗(F ) ∈ VecH(V ) (resp.
f∗(F ) ∈ CohH(V )) is well defined. If in addition f is smooth, then F 7→ f∗(F ) is
exact; hence it induces an RH -linear map f∗ : KH(V ′) → KH(V ).

If f : V → V ′ is a proper H-equivariant morphism, then for any F ∈ CohH(V )
the higher direct image sheaves Rnf∗(F ) are naturally objects of CohH(V ′) and
are zero for large |n|; moreover, the assignment F 7→

∑
n∈Z(−1)nRnf∗(F ) defines

an RH -linear map f∗ : KH(V ) → KH(V ′) (direct image).
If E ∈ VecH(V ), then F 7→ F ⊗E defines an RH -linear map KH(V ) → KH(V ).
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6.2. Let V be an H-variety and let V ′ be a closed H-stable subvariety. Let
f : V ′ → V be the imbedding. Let CohH(V ;V ′) be the subcategory of CohH(V )
whose objects are those F ∈ CohH(V ) such that the support of F is contained in
V ′. Let KH(V ;V ′) be the Grothendieck group of CohH(V ;V ′). If F ∈ CohH(V ′),
then Rnf∗(F ) = 0 for n 6= 0 and R0f∗(F ) ∈ CohH(V ;V ′). Moreover, F 7→ R0f∗(F )
defines an isomorphism KH(V ′) ∼−→ KH(V ;V ′). Hence, in this case f∗ : KH(V ′) →
KH(V ) may be identified with the map KH(V ;V ′) → KH(V ) induced by the
obvious inclusion CohH(V ;V ′) ⊂ CohH(V ).

6.3. Let V be a smooth H-variety and let V1, V2 be closed H-stable subvarieties
of V . Let F1 ∈ CohH(V ;V1), F2 ∈ CohH(V ;V2). By an H-equivariant version of
the Hilbert syzygy theorem, we can find complexes of locally free sheaves

· · · → F p
1 → F p+1

1 → . . . , · · · → F p
2 → F2

p+1 → . . . ,

in CohH(V ) such that F p
1 , F

p
2 are zero for p > 0 and for |p| large, and the coho-

mology sheaves are zero except in degree 0 where they are F1, F2 respectively. We
consider the complex of locally free sheaves obtained by taking the tensor product
of the two complexes above:

· · · → F 0
1 ⊗ F−1

2 ⊕ F−1
1 ⊗ F 0

2 → F 0
1 ⊗ F2

0 → 0 → . . . .

The p-th cohomology sheaf Ep ∈ CohH(V ) of this complex satisfies Ep = 0 for
p > 0 and for |p| large and the support of Ep is contained in V1 ∩ V2; thus, Ep ∈
CohH(V ;V1∩V2). Then F1}V F2 =

∑
p∈Z(−1)pEp ∈ KH(V ;V1∩V2) is independent

of the choices made and it extends to an RH -bilinear pairing

}V : KH(V ;V1)×KH(V ;V2) → KH(V ;V1 ∩ V2).

6.4. Tor-product. Let V, V1, V2 be as in 6.3. Let F ′1 ∈ CohH(V1), F ′2 ∈ CohH(V2).
Let f1, f2, f12 be the inclusions of V1, V2, V1 ∩ V2 in V . Let F1 = R0f1∗(F ′1), F2 =
R0f2∗(F ′2). Then F1 }V F2 ∈ KH(V ;V1 ∩ V2) is well defined. Applying to it the
inverse of the isomorphism KH(V1 ∩ V2)

∼−→ KH(V ;V1 ∩ V2) in 6.2, we obtain an
element

F ′1 ⊗L
V F ′2 ∈ KH(V1 ∩ V2).

This construction defines an RH -bilinear pairing

KH(V1)×KH(V2) → KH(V1 ∩ V2)

denoted by ξ, ξ′ 7→ ξ ⊗L
V ξ′ and called Tor-product. This definition goes back to

Serre [S2].

6.5. Let V, V ′ be smooth H-varieties and let f : V → V ′ be a smooth H-
equivariant morphism. Let V1, V2 be closed subvarieties of V and let V ′1 , V

′
2 be

closed subvarieties of V ′. Assume that V2 = f−1(V ′2 ), f(V1) ⊂ V ′1 . Let

f1 : V1 → V ′1 , f2 : V2 → V ′2 , f12 : V1 ∩ V2 → V ′1 ∩ V ′2
be the restrictions of f . Assume that f1 (hence f12) is proper. Let F ∈ CohH(V1),
F ′ ∈ CohH(V ′2). We have f12∗(F ⊗L

V f
∗
2 (F ′)) = f1∗(F )⊗L

V ′ F ′. Here F ⊗L
V f

∗
2 (F ′) ∈

KH(V1 ∩ V2) (resp. f1∗(F )⊗L
V ′ F ′ ∈ KH(V ′1 ∩ V ′2)) is relative to V, V1, V2 (resp. to

V ′, V ′1 , V
′
2).
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6.6. Let V, V ′ be smooth H-varieties and let f : V → V ′ be a smooth H-
equivariant morphism. Let V ′1 , V ′2 be closed subvarieties of V ′ and let V1 = f−1(V ′1),
V2 = f−1(V ′2). Let

f1 : V1 → V ′1 , f2 : V2 → V ′2 , f12 : V1 ∩ V2 → V ′1 ∩ V ′2
be the restrictions of f . Let F ∈ CohH(V ′1), F ′ ∈ CohH(V ′2). We have

f∗12(F ⊗L
V ′ F ′) = f∗1F ⊗L

V f∗2F
′.

Here F⊗L
V ′F ′ ∈ KH(V ′1∩V ′2 ) is relative to V ′, V ′1 , V

′
2 and f∗1F⊗L

V f
∗
2F

′ ∈ KH(V1∩V2)
is relative to V, V1, V2.

6.7. In the setup of 6.4, let us assume that V2 = V and that F ′2 ∈ VecH(V ). Let
F̃ ′2 ∈ VecH(V1) be the restriction of F ′2 to V1. Then F ′1 ⊗L

V F ′2 = F ′1 ⊗ F̃ ′2. Here
F ′1 ⊗ F̃ ′2 is the usual tensor product of a coherent sheaf with a locally free coherent
sheaf on V1.

6.8. For any smooth H-variety V we denote by ΩV ∈ VecH(V ) the line bundle of
top exterior differential forms on V . (Here the “top degree” of a differential form
may vary from one connected component to another.)

6.9. Let V be a smooth H-variety and let V ′ be a closed H-stable subvariety of
V . We define a group homomorphism

DV ;V ′ : KH(V ;V ′) → KH(V ;V ′)

as follows. Let F ∈ CohH(V ;V ′). We can find a complex of locally free sheaves

(a) · · · → F p → F p+1 → . . .

in VecH(V ) such that F p are zero for p > 0 and for |p| large, and the p-th coho-
mology sheaf is zero except in degree 0 where it is F . We consider the complex of
locally free sheaves · · · → F̃ p → F̃ p+1 → . . . in CohH(V ) where, for any connected
component Vj of V of dimension n, we have F̃ p|Vj = Hom(F−n−p|Vj ,ΩVj ); the
maps in the complex are the transposes of those in (a).

The pth cohomology sheaf Ep ∈ CohH(V ) of this complex satisfies Ep = 0 for
|p| large and the support of Ep is contained in V ′; thus, Ep ∈ CohH(V ;V ′). We
set DV ;V ′(F ) =

∑
p∈Z(−1)pEp ∈ KH(V ;V ′). This is independent of the choices

and defines the required homomorphism.

6.10. Serre-Grothendieck duality. Let V ′ be an H-variety. We define a group
homomorphism

DV ′ : KH(V ′) → KH(V ′)

(Serre-Grothendieck duality) as follows. We choose an H-equivariant closed imbed-
ding of V ′ into a smooth H-variety V . Let f : V ′ → V be the inclusion. Let
F ′ ∈ CohH(V ′). Let F = R0f∗(F ′) ∈ KH(V ;V ′). Then DV ;V ′(F ) ∈ KH(V ;V ′) is
well defined. Applying to it the inverse of the isomorphism KH(V ′) ∼−→ KH(V ;V ′)
in 6.3, we obtain an element of KH(V ;V ′) denoted by DV ′(F ′). One shows that
F ′ 7→ DV ′(F ′) is a well defined homomorphism KH(V ′) → KH(V ′), independent
of the choice of imbedding V ′ ⊂ V . This definition goes back to [S1], [Gr]; see also
[Ha].
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6.11. Let f : V → V ′ be a proper H-equivariant morphism of H-varieties. The
following diagram is commutative.

KH(V ) f∗−−−−→ KH(V ′)

DV

y DV ′

y
KH(V )

f∗−−−−→ KH(V ′)

6.12. Let f : V → V ′ be a smooth H-equivariant morphism of H-varieties. As-
sume that the fibres of f are connected of dimension n. Let Ωf be the nth exterior
power of the cotangent bundle along the fibres of f (a line bundle in VecH(V )).
For any ξ′ ∈ KH(V ′) we have

DV (f∗ξ) = (−)nf∗(DV ′ξ)⊗ Ωf .

6.13. If V is a smooth connected H-variety of dimension n and if E ∈ VecH(V ),
then DV (E) = (−1)nHom(E,ΩV ).

6.14. Let V, V1, V2 be as in 6.3. Assume that V has pure dimension n. For
ξ1 ∈ KH(V ;V1), ξ2 ∈ KH(V ;V2) we have

(−1)nDV ;V1∩V2(ξ1 }V ξ2)⊗ ΩV = (DV ;V1ξ1) }V (DV ;V2ξ2) ∈ KH(V ;V1 ∩ V2).

6.15. Let V, V1, V2 be as in 6.3. Assume that V has pure dimension n. For
ξ1 ∈ KH(V1), ξ2 ∈ KH(V2) we have

(−1)nDV1∩V2(ξ1 ⊗L
V ξ2)⊗ ΩV = (DV1ξ1)⊗L

V (DV2ξ2) ∈ KH(V1 ∩ V2).

6.16. For any H-variety V , the map DV : KH(V ) → KH(V ) is semilinear with
respect to the involution of RH which takes any H-module to the dual module.
Moreover, DVDV = 1.

7. The homomorphism H → KG(Z)

7.1. Let G be a connected, semisimple, simply connected algebraic group. Let g
be the Lie algebra of G and let gn be the variety of nilpotent elements in g. Let B
be the variety of all Borel subalgebras of g.

For any parabolic subalgebra p of g we denote by np the nil-radical of p.
A parabolic subalgebra p of g is said to be almost minimal if the variety of Borel

subalgebras contained in p is 1-dimensional. Let I be a finite set indexing the G-
orbits on the set of almost minimal parabolic subalgebras (for the adjoint action).
A parabolic subalgebra in the G-orbit indexed by i is said to have type i. Let Pi be
the variety of all parabolic subalgebras of type i. Let πi : B → Pi be the morphism
defined by πi(b) = p where b ∈ B, p ∈ Pi, b ⊂ p.

7.2. Let X be the set of isomorphism classes of algebraic G-equivariant line bun-
dles on B where G acts on B by the adjoint action. Then X is a finitely generated
free abelian group under the operation given by tensor product of line bundles. For
L,L′ ∈ X we shall often write LL′ instead of L⊗L′; Ln instead of L⊗n (if n ∈ N);
L−n instead of the dual of L⊗n (if n ∈ N). For each i ∈ I, let Li ∈ X be the
tangent bundle along the fibres of πi : B → Pi. Then L−1

i is the cotangent bundle
along the fibres of πi : B → Pi.

Given i ∈ I and L ∈ X, we define an integer m by the requirement that the Euler
characteristic of any fibre of πi (a projective line) with coefficients in the restriction
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of L to that fibre (regarded as a coherent sheaf) is m+ 1. We set m = α̌i(L) ∈ Z.
Then α̌i : X → Z is a group homomorphism such that

(a) for L ∈ X, we have α̌i(L) = 0 if and only if L = π∗i (L̃) for some G-equivariant
line bundle L̃ on Pi;

(b) α̌i(Li) = 2.
Let X be a free abelian group (in additive notation) with a given isomorphism
X ∼−→ X denoted by x 7→ Lx. (Thus, LxLx′ = Lx+x′ for x, x′ ∈ X .) Let αi ∈ X
be defined by Lαi = Li. Then L−αi = L−1

i . The composition X → X α̌i−→ Z is
denoted again by α̌i. Let V = R ⊗ X . Then (V = E,X , I, αi ∈ X , α̌i : X → Z)
is as in 1.1. Hence, all definitions and results of Sections 1-5 are applicable. (We
take ε = 0.) The finite Coxeter group W with its generators {σi|i ∈ I} becomes a
group acting on X by w : L 7→ wL where σiL = LL

−α̌i(L)
i .

7.3. Let w 7→ Ow be the bijection between W and the set of G-orbits on B × B
(diagonal action) characterized by properties (a)-(c) below:

(a) O1 is the diagonal in B × B;
(b) if b, b′ ∈ B, we have (b, b′) ∈ Oσi if and only if b 6= b′ and πi(b) = πi(b′);
(c) if (b, b′) ∈ Ow, (b′, b′′) ∈ Ow′ , l(ww′) = l(w) + l(w′), then (b, b′′) ∈ Oww′.

7.4. Let w ∈ W . Let p1, p2 : Ow → B be the first and second projection. Let
L ∈ X. Then the G-equivariant line bundles p∗1L, p

∗
2(

w−1
L) on Ow are isomorphic.

7.5. Let
Λ = {(y, b) ∈ gn × B|y ∈ b},
Z = {(y, b, b′) ∈ gn × B × B|y ∈ b ∩ b′},
Λaab = {(y, b; y′, b′; y′′, b′′) ∈ Λ3|y = y′},
Λabb = {(y, b; y′, b′; y′′, b′′) ∈ Λ3|y′ = y′′},
Θ = {(y, b; y′, b′; y′′, b′′) ∈ Λ3|y = y′ = y′′},
G = G×C∗.

We regard B and gn as G-varieties with G-action

(g, λ) : b 7→ Ad(g)b and (g, λ) : y 7→ λ−2Ad(g)y

respectively. We regard B×B and gn×B as G-varieties where G acts simultaneously
on both factors. We regard Λ as a G-variety with the G-action given by restriction
of the G-action on gn × B. We regard Λ × B,Λ2,Λ3 as G-varieties where G acts
simultaneously on each factor Λ. We regard Z as a G-variety with the G-action
given by restriction of the G-action on Λ×B. (We regard Z as a closed subvariety
of Λ × B by (y, b, b′) 7→ (y, b; b′).) We regard Λaab,Λabb,Θ as G-varieties with the
G-action given by restriction of the G-action on Λ3.

7.6. For L ∈ X, we regard L as a G-equivariant line bundle on B with trivial
C∗-action. The inverse image of L under the second projection pr2 : Λ → B is a
G-equivariant line bundle on B (since that projection is G-equivariant). We denote
this inverse image again by L. For L,L′ ∈ X we denote by L � L′ the external
tensor product of L,L′. This is naturally a G-equivariant line bundle on B × B, or
on Λ× B, or on Λ2.

The restriction of L � L′ from Λ2 (resp. B × B,Λ × B) to various G-stable
subvarieties of Λ2 (resp. B × B,Λ× B) will be denoted again by L� L′.

Similarly, for L,L′, L′′ ∈ X we denote by L�L′�L′′ the external tensor product
of L,L′, L′′. This is naturally a G-equivariant line bundle on B × B × B or on Λ3.
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The restriction of L�L′�L′′ from Λ3 to various G-stable subvarieties of Λ3 will
be denoted again by L� L′ � L′′.

We always identify KG(Λ) with KG(B) via pr∗2 : KG(B) ∼−→ KG(Λ). Similarly, we
identify KG(Λ×B) with KG(B×B) via the isomorphism (pr2×1)∗ : KG(B×B) ∼−→
KG(Λ× B) induced by pr2 × 1 : Λ× B → B × B (a G-equivariant vector bundle).

7.7. For any n ∈ Z, let vn : G → C∗ be the homomorphism (g, λ) 7→ λn. If H is a
closed subgroup of G, we denote the restriction of vn : G → C∗ to H again by vn.

We may regard vn as an H-equivariant line bundle on a point, or as an H-
equivariant line bundle on any H-variety V ′ (the inverse image under the map
from V ′ to the point of the previous line bundle). Hence, for any F ∈ VecH(V ′)
(resp. F ∈ CohH(V ′)), the tensor product vnF = vn⊗F is well defined in VecH(V ′)
(resp. CohH(V ′)). In this way KH(V ′) becomes an A-module. (Note that, what
in 1.4 was an indeterminate v, now has a concrete K-theoretic meaning.)

7.8. We have an isomorphism of rings

(a) AX ∼−→ KG(B) = KG(Λ)

given by vn[x] 7→ vnLx for n ∈ Z, x ∈ X . Here vn[x] is as in 1.19 and vnLx is as
in 7.7. Taking the inverse image under the map of B to the point we obtain an
imbedding RG → KG(B) which identifies

(b) RG = AXW ⊂ AX .

We have an isomorphism of rings

(c) AX⊗2 ∼−→ KG(B × B) = KG(Λ× B)

given by vn[x] ⊗ [x′] 7→ vnLx � Lx′ for n ∈ Z, x ∈ X , x′ ∈ X . Here, vnLx � Lx′ is
as in 7.6, 7.7. The proof of (c) is exactly as in [KL2].

7.9. We define π12 : Λaab → Z, π23 : Λabb → Z, π13 : Θ → Z by

π12(y, b; y′, b′; y′′, b′′) = (y, b, b′),

π23(y, b; y′, b′; y′′, b′′) = (y′′, b′, b′′),

π13(y, b; y′, b′; y′′, b′′) = (y, b, b′′).

Note that p12, p13 are smooth morphisms and p23 is a proper morphism; these
morphisms are compatible with the G-actions. For F ∈ CohG(Z), F ′ ∈ CohG(Z),
we set

(a) F ? F ′ = p13∗(p∗12F ⊗L
Λ3 p∗23F

′) ∈ KG(Z).

(The Tor-product is relative to the smooth G-variety Λ3 and its closed subvarieties
Λaab,Λabb with intersection Θ.)

The convolution product ? has first appeared in the work of Kashiwara and
Tanisaki [KT] (in a non-equivariant setting); subsequently, this convolution prod-
uct and variations of it (as in 10.1) have been used in the equivariant setting by
Ginzburg [G].

The assignment F, F ′ 7→ F ? F ′ extends to an RG-bilinear pairing

KG(Z)×KG(Z) → KG(Z)

denoted by ξ, ξ′ 7→ ξ ∗ ξ′. This may be regarded as a multiplication law on KG(Z)
which is associative, as a routine argument using Λ4 shows.
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7.10. For any L ∈ X we regard L as an object in VecG(Λ) as in 7.6. Taking its
direct image under the closed imbedding Λ ⊂ Z given by (y, b) 7→ (y, b, b) we obtain
an object !L ∈ CohG(Z). From the definitions (and using 6.5) we see that

!L ? F = (L � C)⊗ F, F ? (!L) = (C � L)⊗ F

for any F ∈ CohG(Z). Here L�C,C�L are regarded as G-equivariant line bundles
on Z as in 7.6. In particular, !C is the unit element of the ring KG(Z).

7.11. For F ∈ CohG(Z), F ′ ∈ CohG(Λ× B), we define

F ?
1
F ′ = q13∗(q∗12F ⊗L

Λ2×B q
∗
23F

′) ∈ KG(Λ × B).

(The Tor-product is relative to the smooth G-variety Λ2 × B and its closed subva-
rieties Z × B,Λ2 × B with intersection Z × B.) Here

q12 : Z × B → Z is (y, b, b′; b′′) 7→ (y, b, b′),
q23 : Λ2 × B → Λ× B is (y, b; y′, b′; b′′) 7→ (y′, b′; b′′),
q13 : Z × B → Λ× B is (y, b; y, b′; b′′) 7→ (y, b; b′′).

This extends to an RG-bilinear pairing

?
1

: KG(Z)×KG(Λ × B) → KG(Λ × B)

which may be regarded as a KG(Z)-module structure on KG(Λ × B), as a routine
argument using Λ3 × B shows.

7.12. Let L ∈ X. From the definitions (and using 6.5) we see that
!L ?

1
F ′ = (L� C)⊗ F ′

for any F ′ ∈ CohG(Λ×B). Here the line bundle L�C is regarded as a G-equivariant
line bundle on Λ× B as in 7.6.

7.13. We regard B × B as a closed subvariety of Z (hence of Λ2) by (b, b′) 7→
(0, b, b′). For F ∈ CohG(Z), F ′ ∈ CohG(B × B), we define

F ?
2
F ′ = r13∗(q∗12F ⊗L

Λ3 r∗23F
′) ∈ KG(Λ× Λ).

(The Tor-product is relative to the smooth G-variety Λ2×B and its closed G-stable
subvarieties Z ×B,Λ× B × B with intersection B × B × B.) Here q12 is as in 7.11,

r23 : Λ× B × B → B → B is (y, b; b′, b′′) 7→ (b′, b′′),

r13 : B × B × B → B × B is (b, b′, b′′) 7→ (b, b′′).

This extends to an RG-bilinear pairing

?
2

: KG(Z)×KG(B × B) → KG(B × B)

which may be regarded as a KG(Z)-module structure on KG(B × B), as a routine
argument using Λ3 × B shows.

From the definitions (and using 6.5) we see that, for L ∈ X,

(a) !L ?
2
F ′ = (L� C)⊗ F ′

for any F ′ ∈ CohG(B × B).
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7.14. We regard B × B as a closed subvariety of Z as in 7.13 and Z as a closed
subvariety of Λ2 as in 7.5. Let j : B ×B → Z and j̃ : Z → Λ×B be the inclusions.
Using the definitions and 6.5 we see that

(a) j∗ : KG(B × B) → KG(Z) is KG(Z)-linear.
(b) j̃∗ : KG(Z) → KG(Λ× B) is KG(Z)-linear.

(KG(Z) is regarded as a KG(Z)-module via left multiplication in the ring KG(Z).)

Lemma 7.15. The maps j∗ : KG(B × B) → KG(Z) and j̃∗ : KG(Z) → KG(Λ × B)
in 7.14 are injective.

We fix a Borel subgroup B0 of G with Lie algebra b0. Let T be a maximal torus
in B0. Let Z0 = {(y, b) ∈ Λ|y ∈ b0}. Let j′ : B → Z0 be defined by b 7→ (0, b) and
let j̃′ : Z0 → Λ be the obvious inclusion. These are closed imbeddings. Note that
Z0,Λ are T ×C∗-stable subvarieties of Z,Λ× B, via (y, b) 7→ (y, b, b0).

By general results in [T1], we have canonically

KG(Z) = KT×C∗(Z0), KG(Λ× B) = KT×C∗(Λ)

and j∗, j̃∗ correspond to

j′∗ : KT×C∗(B) → KT×C∗(Z0), j̃′∗ : KT×C∗(Z0) → KT×C∗(Λ).

It is then enough to show that j′∗, j̃
′
∗ are injective. Now the C∗-action on Z,Λ× B

(restriction of the G-action) leaves Z0,Λ stable and on these subvarieties has the
same fixed point set, namely {(0, b)|b ∈ B}.

From the concentration theorem [T2], it then follows that j′∗, j̃′∗ become isomor-
phisms after tensoring with the field of fractions of RT×C∗ . To show that j′∗, j̃

′
∗ are

injective, it is therefore enough to show that the RT×C∗ -modules

KT×C∗(B), KT×C∗(Z0), KT×C∗(Λ)

are projective of rank |W |. This follows by a standard argument using the decompo-
sition of B into B0-orbits (Bruhat cells), the decomposition of Z0 into T ×C∗-stable
cells

Z0 =
⊔

w∈W

Z0,w, Z0,w = {(y, b) ∈ Z0|(b, b0) ∈ Ow}

and the analogous decomposition of Λ into T ×C∗-stable cells

Λ =
⊔

w∈W

Λw, Λw = {(y, b) ∈ Λ|(b, b0) ∈ Ow}.

The lemma is proved.

7.16. Let i ∈ I. The smooth subvariety Ōi = Oσi ∪ O1 of B × B is G-stable. Let
π′i : Ōi → Pi be the morphism defined by π′i(b, b

′) = πi(b) = πi(b′).
Let Z̄i be the set of all triples (y, b, b′) ∈ Z such that (b, b′) ∈ Ōi and y belongs

to np, where p = πi(b) = πi(b′). Thus Z̄i is naturally a line bundle over Ōi. In
particular, it is a smooth variety of dimension 2ν. Note that Z̄i is a G-stable closed
subvariety of Z.
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7.17. Let L′, L′′ ∈ X. We regard L′ � L′′ as a G-equivariant line bundle on Z̄i (a
closed subvariety of Z ⊂ Λ×B) as in 7.6. Taking its direct image under the closed
imbedding Z̄i ⊂ Z, we obtain an object L′ �i L

′′ ∈ CohG(Z).

Lemma 7.18. Let L, L̃ ∈ X and let L � L̃ ∈ VecG(Λ × B) be as in 7.6. In the
KG(Z)-module KG(Λ× B) we have

(a) (L′ �i L
′′) ?

1
(L� L̃) = (1−vLi)L

′(σi (L′′L)L−1
i −L′′L)

L−1
i −1

� L̃.

The fraction above (in the quotient field of the group algebra A[X]) is actually
in A[X] and the right hand side of (a) is interpreted as the corresponding Z-linear
combination of elements vkL1 � L̃ taken in KG(Λ× B).

A similar interpretation holds for the following identity in KG(B) = KG(Λ), in
which L ∈ X and m = α̌i(L) ∈ Z:

(b) π∗i πi∗(L) = LLi
−m−1−1

L−1
i −1

= L
σiLL−1L−1

i −1

L−1
i −1

=
σiLL−1

i −L

L−1
i −1

.

(This follows directly from the definitions.) By definition, we have

(L′ �i L
′′) ?

1
(L � L̃) = q13∗((L′ � L′′ � C)⊗L

Λ2×C (C � L� L̃))

= q13∗((L′ � L′′ � C)⊗ (C � L� L̃)) = q′13∗(L
′ � L′′L� L̃).(c)

Here q13 : Z × B → Λ× B is as in 7.11 and q′13 : Z̄i × B → Λ× B is the restriction
of q13 under Z̄i × B ⊂ Z × B. The first C � L� L̃ is in VecG(Λ2 × B), the second
C � L� L̃ is in VecG(Z × B); the second equality in (c) follows from 6.7.

Let Λi be the closed subvariety of Λ consisting of all (y, b) such that y ∈ np,
where p = πi(b). We can factor q′13 = jp where p : Z̄i × B → Λi × B is given by

p(y, b, b′; b′′) = (y, b; b′′)

and j : Λi × B → Λ× B is the inclusion. Then

(L′ �i L
′′) ?

1
(L � L̃) = j∗p∗(L′ � L′′L� L̃) = j∗(L′ ⊗ p′ ∗ (C � L′′L) � L̃)

where p′ : Z̄i → Λi is (y, b, b′) 7→ (y, b). We have a cartesian diagram

Z̄i
p′−−−−→ Λiy y

B πi−−−−→ Pi

in which the left vertical arrow is (y, b, b′) 7→ b and the right vertical arrow is
(y, b) 7→ πi(b). The horizontal arrows are proper and the vertical arrows are smooth.
Hence, p′∗(C � L′′L) = π∗i πi∗(L′′L) and, using (b) for L′′L instead of L we have

p′∗(C � L′′L) =
σi(L′′L)L−1

i − L′′L

L−1
i − 1

.

Hence,

(L′ �i L
′′) ?

1
(L � L̃) =j∗(

L′(σi (L′′L)L−1
i − L′′L)

L−1
i − 1

� L̃)

= j′∗(
L′(σi(L′′L)L−1

i − L′′L)
L−1

i − 1
) � L̃
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where j′ : Λi → Λ is the inclusion. Now j′ is the imbedding of the zero section of
a line bundle coming from the line bundle on B whose fibre at b is nb/np where
p = πi(b). Hence, j′∗ is multiplication by (1 − v2Li). The lemma follows.

7.19. The line bundle Li. We fix i ∈ I. We choose L′, L′′ ∈ X such that α̌i(L′) =
α̌i(L′′) = −1 and L′L′′ = L−1

i ∈ X. We show that the restriction of L′ � L′′ from
B × B to Ōi is independent of the choice of L′, L′′.

Another choice for L′, L′′ is L′L, L′′L−1 where L ∈ X is such that α̌i(L) = 0.
We must show that L′L � L′′L−1 = L′ � L′′ have the same restriction to Ōi, or
equivalently, that

(a) (L� L−1)Ōi
= C.

By 7.2(a), there exists a G-equivariant line bundle L̃ on Pi such that L = π∗i L̃.
The restriction of L� L−1 = π∗i L̃� π∗i L̃−1 to Ōi is then

π′i
∗L̃ ⊗ π′i

∗L̃−1 = π′i
∗(L̃ ⊗ L̃−1) = π′i

∗C = C

where π′i : Ōi → Pi as in 7.16; our assertion is verified.
The line bundle (L′ � L′′)Ōi

above will be denoted by Li. It is a canonically
defined G-equivariant line bundle (with trivial C∗-action). The inverse image of Li

under the canonical map Z̄i → Ōi is again denoted by Li. It is the same as the
restriction of L′ � L′′ ∈ VecG(Λ2) to Zi.

7.20. Taking direct image of the line bundle v−1Li ∈ VecG(Z̄i) under the closed
imbedding Z̄i ⊂ Z, we obtain an object ai ∈ CohG(Z).

We now reformulate Lemma 7.18 in the case where L′, L′′ are as in 7.19.

Lemma 7.21. Let L, L̃ ∈ X and let L � L̃ ∈ VecG(Λ × B) be as in 7.6. In the
KG(Z)-module KG(Λ× B) (see 7.11) we have

ai ?
1

(L� L̃) =
v−1(1− v2Li)(L− σiL)

Li − 1
� L̃.

Using σiL′′ = L′′Li = L′−1, we have

L′(σi(L′′L)L−1
i − L′′L)

L−1
i − 1

=
L′L′−1σiLL−1

i − L′L′′L

L−1
i − 1

=
σiLL−1

i − LL−1
i

L−1
i − 1

=
L− σiL

Li − 1
.

Hence, the lemma follows from 7.18.

Lemma 7.22. Let L, L̃ ∈ X and let L � L̃ ∈ VecG(B × B) be as in 7.6. In the
KG(Z)-module KG(B × B) (see 7.13) we have

(a) ai ?
2

(L� L̃) = v−1(L−v2LLi−σiL+v2(σiLL−1
i ))

Li−1 � L̃.

Here the right hand side of (a) is interpreted in a way similar to 7.18(a).
Let k : B×B → Λ×B be the closed imbedding given by (b, b′) 7→ (0, b; b′). Now

k∗ : KG(B × B) → KG(Λ × B) is compatible with the KG(Z)-module structures in
7.11, 7.13. (We have k∗ = j̃∗j∗, where j̃∗, j∗ are KG(Z)-module homomorphisms;
see 7.14.) Moreover, k∗ is injective (see 7.15). Under the identification KG(Λ×B) =
KG(B ×B) (see 7.6), the map k∗ becomes the map KG(B ×B) → KG(B ×B) given
by multiplication by ∆̄ � C, where ∆̄ is as in 1.23. Note that

σi∆̄ = ∆̄
1− v2L−1

i

1− v2Li
.

where the W -action on A[X] is given by extending linearly the W -action on X.
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Let γ be the left hand side of (a). Since k∗ is KG-linear, we have
(b) (∆̄ � C)γ = ai ?

1
((∆̄ � C)⊗ (L� L̃)) = ai ?

1
(∆̄L� L̃)).

Now using 7.21 to compute the right hand side of (b), we see that

(∆̄ � C)γ =
v−1(1− v2Li)(∆̄L− σi∆̄σiL)

Li − 1
� L̃

=
v−1∆̄(1− v2Li)(L− σiL

1−v2L−1
i

1−v2Li
)

Li − 1
� L̃

= (∆̄ � C)
v−1(L− v2LLi − σiL+ v2(σiLL−1

i ))
Li − 1

� L̃.

Since multiplication by ∆̄�C on KG(B×B) is injective, (see 7.8(c)) it follows that

γ =
v−1(L− v2LLi − σiL+ v2(σiLL−1

i ))
Li − 1

� L̃.

(This could have been also deduced from the arguments in 4.10.) The lemma is
proved.

Lemma 7.23. There is a unique H-module structure on the A-module KG(B×B)
given by

(i) (−T̃σi − v−1) · (L� L̃) = ai ?
2

(L� L̃) for i ∈ I and L, L̃ ∈ X;

(ii) θx · (L� L̃) = !Lx ?
2
(L � L̃) for x ∈ X and L, L̃ ∈ X.

Using 7.13, 7.22, we see that the following statement is equivalent to the lemma.
There is a unique H-module structure on the A-module KG(B × B) given by

T̃i · (L � L̃) = v−1(σiL−LLi)+v(LLi−σi LL−1
i )

Li−1 � L̃ for i ∈ I and L, L̃ ∈ X;
θx · (L� L̃) = (LxL� L̃) for x ∈ X and L, L̃ ∈ X.

This follows immediately from Lemma 4.6, using the identification KG(B×B) =
AX⊗2 in 7.8(c).

Lemma 7.24. There is a unique H-module structure on the A-module KG(Λ×B)
given by

(i) (−T̃σi − v−1) · (L� L̃) = ai ?
1

(L� L̃) for i ∈ I and L, L̃ ∈ X;

(ii) θx · (L� L̃) = !Lx ?
1
(L � L̃) for x ∈ X and L, L̃ ∈ X.

Using 7.11, 7.12, 7.21, we see that the following statement is equivalent to the
lemma.

There is a unique H-module structure on the A-module KG(Λ × B) given by

T̃i · (L � L̃) = v−1(σiL−LLi)+v(LLi−σi LLi)
Li−1 � L̃ for i ∈ I and L, L̃ ∈ X;

θx · (L� L̃) = (LxL� L̃) for x ∈ X and L, L̃ ∈ X.
This follows immediately from Lemma 4.7, using the identification KG(Λ×B) =

KG(B × B) = AX⊗2 in 7.6, 7.8(c).

Proposition 7.25. The assignment −T̃i − v−1 7→ ai ∈ KG(Z), θx 7→ !Lx ∈ KG(Z)
is a homomorphism of A-algebras H → KG(Z).

This follows from Lemma 7.24, since the map j̃∗ in 7.14 is compatible with the
KG(Z)-module structures and is injective (see 7.15).
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8. The isomorphism H ∼−→ KG(Z)

8.1. We fix i ∈ I. Let Z be a locally closed G-stable subset of Z. We say that Z
is left i-saturated if the following holds:

(y, b′, b′′) ∈ Z, (y, b) ∈ Λ, (b, b′) ∈ Oσi =⇒ (y, b, b′′) ∈ Z.

Assume that Z is a G-stable, left i-saturated closed subset of Z. We define a
homomorphism ri : KG(Z) → KG(Z) by F 7→ p̃13∗(p̃∗12(v

−1Li)⊗L
Λ3 p̃∗23F ). The Tor-

product is relative to the smooth variety Λ3 and its closed subvarieties Z̄i×Λ,Λ×Z
with intersection

V = {(y, b, b′, b′′)|(y, b, b′) ∈ Z̄i, (y, b′, b′′) ∈ Z}.
Here p̃12 : Z̄i×Λ → Z̄i, p̃23 : Λ×Z → Z are the obvious projections and p̃13 : V → Z
is given by p̃13(y, b, b′, b′′) = (y, b, b′′) (this is well defined since Z is left i-saturated).
The imbedding Z̄i×Λ ⊂ Λ3 is the composition Z̄i×Λ ⊂ Z×Λ ⊂ Λ3. The imbedding
Λ× Z ⊂ Z is the composition Λ× Z ⊂ Λ× Z ⊂ Λ3.

The following two properties of the map ri follow using the definition and 6.5.
(a) If Z′,Z are two G-stable, left i-saturated closed subsets of Z with Z′ ⊂ Z,

then the maps ri : KG(Z′) → KG(Z′) and ri : KG(Z) → KG(Z) are compatible with
the direct image map KG(Z′) → KG(Z) induced by the inclusion Z′ ⊂ Z.

(b) For Z = Z, ri : KG(Z) → KG(Z) is just left multiplication by ai (see 7.20).

8.2. For w ∈W we set O≥w =
⋃

w′;w′≥w Ow. We set

Zw = {(y, b, b′) ∈ Z|(b, b′) ∈ Ow},

Z≤w =
⋃

w′;w′≤w

Zw′ , Z<w =
⋃

w′;w′<w

Zw′ .

8.3. If i ∈ I is such that siw < w, then Z≤w is left i-saturated; hence ri :
KG(Z≤w) → KG(Z≤w) is well defined.

Lemma 8.4. Let i ∈ I be such that siw < w. Let j : Z≤σiw → Z≤w and h :
Z≤w → Zw be the inclusions. Let f : KG(Z≤σiw) → KG(Zw) be the composition

KG(Z≤σiw)
j∗−→ KG(Z≤w) ri−→ KG(Z≤w) h∗−→ KG(Zw).

Then f is surjective.

Let L′, L′′ ∈ X be as in 7.19. Since Zw is a vector bundle over B, the A-module
KG(Zw) is generated by {v−1L′ � L|L ∈ X}. Hence, it is enough to show that, if
L ∈ X , then v−1L′ � L ∈ VecG(Zw) is in the image of f .

Let F = L′′−1 � L ∈ VecG(Z≤siw).
We shall use the notation of 8.1 with Z = Z≤σiw except for p̃13 which is not

defined since this Z is not left i-saturated. Instead, the formula which defined p̃13

in 8.1, gives a map q : V → Z≤w. In this context, we can form

v−1(L′ � L′′ � C)⊗L
Λ3 (C � L′′−1 � L) ∈ KG(V),

q∗(v−1(L′ � L′′ � C)⊗L
Λ3 (C � L′′−1 � L)) ∈ KG(Z≤w).

From the definitions we have

q∗(v−1(L′ � L′′ � C)⊗L
Λ3 (C � L′′−1 � L)) = ri(F̃ )

where ri is defined as in 8.1 in terms of Y = Z≤w (which is left i-saturated) and
F̃ ∈ CohGZ≤w is the direct image of F under the closed imbedding Z≤siw ⊂ Z≤w.
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Let k : Zw → Z≤w be the (open) inclusion. Then

k∗ri(F̃ ) = k∗q∗(v−1(L′ � L′′ � C)⊗L
Λ3 (C � L′′−1 � L))

= q′∗k
∗
1(v−1(L′ � L′′ � C)⊗L

Λ3 (C � L′′−1 � L)),

where q′ : V ′ → Zw (a proper map) and k1 : V ′ → V (an open imbedding) are
defined by

V ′ = {(x, b, b′, b′′)|(x, b, b′) ∈ Z̄i, (x, b′, b′′) ∈ Z≤σiw, (b, b
′′) ∈ Ow}

= {(x, b, b′, b′′)|(x, b, b′) ∈ Zσi , (x, b
′, b′′) ∈ Zσiw},

q′(x, b, b′, b′′) = (x, b, b′′), k1(x, b, b′, b′′) = (x, b, b′, b′′).

Note that q′ is in fact an isomorphism. Let

U = {(x, b;x′, b′;x′′, b′′) ∈ Λ3|(b, b′) ∈ O≥si , (b
′, b′′) ∈ O≥σiw}.

This is an open subset of Λ3. We have

U ∩ (Z̄i × Λ) = U ∩ (Zσi × Λ),

U ∩ (Λ × Z≤σiw) = U ∩ (Λ× Zσiw),

U ∩V = V ′.

By 6.6, we have
(a) k∗1(v−1(L′�L′′�C)⊗L

Λ3 (C�L′′−1�L)) = v−1(L′�L′′�C)⊗L
U (C�L′′−1�L)

where ⊗L
U is computed in the smooth variety U , relative to its closed subvarieties

U ∩ (Zσi × Λ), U ∩ (Λ× Zσiw) and we regard

L′ � L′′ � C ∈ VecG(U ∩ (Zσi × Λ)), C � L′′−1 � L ∈ VecG(U ∩ (Λ× Zσiw)).

Now the subvarieties U ∩ (Zσi × Λ), U ∩ (Λ × Zσiw) of the smooth variety U
of dimension 6ν are smooth of dimension 4ν and intersect transversally in the
smooth variety Zw of dimension 2ν. It follows that the right hand side of (a)
is just the vector bundle obtained by restricting the two vector bundles to the
intersection and then taking the usual tensor product. We obtain the vector bundle
v−1L′ � L ∈ VecG(Zw). Thus, the last vector bundle is in the image of f . The
lemma is proved.

Lemma 8.5. Assume that σiw < w. Let j, h be as in 8.4, let j′ : Z<w → Z≤w be
the inclusion and let ri : KG(Z≤w) → KG(Z≤w) be as in 8.1. For any ξ ∈ KG(Z≤w)
there exists ξ′ ∈ KG(Z≤σiw) and ξ′′ ∈ KG(Z<w) such that ξ = ri(j∗(ξ′)) + j′∗(ξ′′).

By Lemma 8.4, there exists ξ′ ∈ KG(Z≤σiw) such that ξ − ri(j∗(ξ′)) is in the

kernel of KG(Z≤w) h∗−→ KG(Zw); hence in the image of j′∗ : KG(Z<w) → KG(Z≤w).
(Note that Z<w is closed in Z≤w with complement Zw.) The lemma is proved.

Theorem 8.6. The homomorphism H → KG(Z) in 7.25 is an isomorphism of
A-algebras.

Using 8.5, it follows easily (as in [KL2, 3.21]) that this map is surjective.
We shall regard H as an AX -module by [x] : χ 7→ χθx; we shall regard KG(Z)

as an AX -module by [x] : ξ 7→ ξ ? !Lx = ξ ⊗ (C � Lx).
Our map H → KG(Z) is compatible with these AX -module structures. Hence,

to show that it is an isomorphism, it is enough to show that H and KG(Z) are
projective AX -modules of the same (finite) rank. Now H is a free AX -module of
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rank |W | by 1.21. The fact that KG(Z) is a projective AX -module of rank |W | is
shown using the partition Z =

⋃
w∈W Zw. The theorem is proved.

Let us identify the algebrasH, KG(Z) via the isomorphism in the theorem. Then
the element T̃w ∈ H can be regarded as an element of KG(Z).

8.7. We assume that we are in the setup of Lemma 8.4. Let

Z̃ =
⋃

w′∈W ;w′≤w;w′ 6=w;w′ 6=σiw

Zw.

Note that Z̃ is a left i-saturated, G-stable closed subset of Z.
In the following arguments we write ()∗ for the direct image map induced by an

obvious closed imbedding and ()∗ for the inverse image map induced by an obvious
open imbedding. We show that

(a) the composition KG(Z<σiw)
()∗−−→ KG(Z≤σiw)

f−→ KG(Zw) is 0.

This equals the composition

KG(Z<σiw)
()∗−−→ KG(Z̃)

()∗−−→ KG(Z≤w) ri−→ KG(Z≤w) h∗−→ KG(Zw)

and also the composition

KG(Z<σiw)
()∗−−→ KG(Z̃) ri−→ KG(Z̃)

()∗−−→ KG(Z≤w)
()∗−−→ KG(Zw).

(See 8.1(a).) But the composition of the last two maps is zero since Z̃ ∩ Zw = ∅.
Thus, (a) is verified. Using (a) and the exact sequence

(b) 0 → KG(Z<σiw)
()∗−−→ KG(Z≤σiw)

()∗−−→ K(Zσiw) → 0

we see that there is a unique map f̃ : KG(Zσiw) → KG(Zw) such that the compo-
sition

(c) KG(Z≤σiw)
()∗−−→ KG(Zσiw)

f̃−→ KG(Zw)

is equal to f .

Lemma 8.8. Let L ∈ X. The map f̃ takes C � L ∈ VecG(Zσiw) to v−1C � L ∈
VecG(Zw). In particular, it is an isomorphism.

The proof of Lemma 8.4 shows that f̃ takes L′′−1 �L to v−1L′ �L. By 7.4, we
have L′′−1 � L = C � (w−1σi(L′′−1) ⊗ L) as objects of VecG(Zσiw) and L′ � L =
C � (w−1

L′ ⊗ L) as objects of VecG(Zw).
It is then enough to show that σi(L′′−1) = L′ or that σiL′′ ⊗ L′ = C. But

σiL′′ ⊗ L′ = L′′LiL
′ = C. The lemma is proved.

Lemma 8.9. Let w ∈ W . Let jw : Z≤w → Z be the inclusion.

(a) jw∗ : KG(Z≤w) → KG(Z) is injective.
(b) T̃w is in the image of jw∗.
(c) Let ξw ∈ KG(Z≤w) be the unique element such that jw∗(ξw) = T̃w. The

restriction of ξw to the open subset Zw of Z≤w is (−v)−l(w)C.

(a) is proved by standard arguments (compare [KL2, 3.17]).
We prove (b) and (c). For w = 1 this is clear. Assume now that l(w) ≥ 1 and

that the result is known for elements of strictly smaller length. Let i ∈ I be such
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that σiw < w. Let w′ = σiw. By the induction hypothesis, T̃w′ = jw′∗(ξw′) for a
unique ξw′ ∈ KG(Z≤w′). Let j, h be as in 8.4. Then

T̃w = −v−1T̃w′ − (−T̃σi1
− v−1)T̃w′ = −v−1jw′∗(ξw′)− aijw′∗(ξw′)

= −v−1jw∗j∗(ξw′)− aijw∗j∗(ξw′) = −v−1jw∗j∗(ξw′)− jw∗(rij∗(ξw′)).

This shows that (b) holds for w and that ξw = −v−1j∗(ξw′) − rij∗(ξw′). Since
h∗j∗ = 0, we have h∗ξw = −h∗rij∗(ξw′) = −f(ξw′) where f is as in 8.4. Using the
definition of f̃ in 8.7 and the induction hypothesis, we have

f(ξw′) = f̃((−v)−l(w′)C);

hence

h∗ξw = −f̃((−v)−l(w′)C) = −v−1(−v)−l(w′)C = (−v)−l(w)C,

where the second equality follows from 8.8. The lemma is proved.

Lemma 8.10. Let H0 be the set of all ξ in H = KG(Z) such that T̃σiξ = vξ for
all i ∈ I. Let r : H0 → KG(Zw0) be the restriction of the map KG(Z) → KG(Zw0)
(inverse image under the open imbedding Zw0 ⊂ Z). Then r is an isomorphism.

Let ξ =
∑

w∈W vl(w)T̃w ∈ H. It is easy to see, using 1.21, that {ξθx|x ∈ X}
is an A-basis of H0. From 8.9(c) we see that r(ξθx) = (−1)ν(C � Lx). Since
{C � Lx|x ∈ X} is an A-basis of KG(Zw0), the lemma follows.

Lemma 8.11. Let j : B × B → Z be the map (b, b′) 7→ (0, b, b′). In H = KG(Z)
we have

(a)
∑

w∈W vl(w)T̃w = (−1)νj∗(L−ρ � L−ρ).

Let ξ (resp. ξ′) be the left (resp. right) hand side of (a). Then ξ ∈ H0 and
r(ξ) = (−1)νC. (See the proof of 8.10.) Using 7.22, 7.23, we have for any i ∈ I:

T̃σi(L−ρ � L−ρ) = vL−ρ � L−ρ

in KG(B×B). Since j∗ is H-linear, it follows that T̃σiξ
′ = vξ in H = KG(Z). Thus,

ξ′ ∈ H0. The restriction of ξ′ to Zw0 = Ow0 is just the restriction of (−1)νL−ρ�L−ρ

to Ow0 and by 7.4, this is

(−1)νC � (w0L−ρ ⊗ L−ρ) = (−1)νC � L−w0(ρ)−ρ = (−1)νC � C = (−1)νC.

Thus, r(ξ) = r(ξ′). Using 10.1, we deduce that ξ = ξ′. The lemma is proved.

8.12. Let x ∈ X+. The space of sections of Lx is naturally a (finite dimensional
irreducible) G×C∗-module, denoted by Ex (the action of C∗ on Ex is trivial).

Let nx be the unique element of Ŵ a contained in the double coset WxεW , which
has maximal length in that double coset.

The main result of [L3] was the discovery of a very close connection between the
element c′nx

∈ H (see 1.5, 1.9) and Ex. In particular, in [L3, 8.6, 6.12] it is shown
that

c′nx
= (v−ν

∑
w∈W

vl(w)T̃w)θEx = θEx(v−ν
∑

w∈W

vl(w)T̃w).(a)

Here, Ex is regarded as an element of RG = AXW (see 7.8) so that θEx is in the
centre of H.

Combining (a) with 8.11 we obtain a description of c′nx
as ± a coherent sheaf on

Z supported on B × B.
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Corollary 8.13. In KG(Z) we have

c′nx
= (−v)−νj∗(Ex ⊗ (L−ρ � L−ρ)),

(j as in 8.11.)

9. K-theoretic description of the involution¯: H → H

Lemma 9.1. Let p : Y → Y ′ be a vector bundle with Y ′ irreducible. We regard Y
with the C∗-action (λ, y) 7→ λ−2y. Let L′ be a line bundle on Y ′ and let L = p∗L′.

The set of C∗-equivariant structures on the line bundle L is in natural bijection
with Z: to n ∈ Z corresponds the equivariant structure λ : Ly → Lλ−2y given by
multiplication by λn. (Here y ∈ Y and we identify Ly = Lλ−2y = L′p(y).)

We fix a C∗-equivariant structure on L. If y′ ∈ Y ′, λ ∈ C∗, then for any
y ∈ p−1(y′), λ : Ly → Lλ−2y or equivalently λ : L′y′ → L′y′ is multiplication by
f(λ, y) ∈ C∗. Now f : C∗ × Y → C∗ is a morphism of algebraic varieties; hence
we have f(λ, y) =

∑
n∈Z fn(y)λn where fn : Y → C are morphisms which are

identically zero for all but finitely many n.
Assume that for some n′ 6= n′′, neither fn′ or fn′′ is identically zero. Since

Y is irreducible, we can find y0 ∈ Y such that fn′(y0) 6= 0, fn′′(y0) 6= 0. This
implies that

∑
n∈Z fn(y0)λn = 0 for some λ 6= 0. This contradicts the fact that

f(C∗ × {y0}) ⊂ C∗.
We see that there exists n ∈ Z such that f(λ, y) = fn(y)λn for all λ, y. Since

f(1, y) = 1, we must have fn(y) = 1 and f(λ, y) = λn for all λ, y. The lemma
follows.

Lemma 9.2. Let i ∈ I and let Li ∈ VecG(Ōi) be as in 7.19. We have Li ⊗ Li =
L−1

i � L−1
i in VecG(Ōi).

Let L′, L′′ ∈ X be as in 7.19. We have L′L′ = L−1
i L, L′′L′′ = L−1

i L−1, where
L ∈ X is such that α̌i(L) = 0. Hence,

Li ⊗ Li = (L′ � L′′)⊗ (L′ � L′′) = (L′L′) � (L′′L′′) = (L−1
i ⊗ L) � (L−1

i ⊗ L−1)

= (L−1
i � L−1

i )⊗ (L� L−1) = (L−1
i � L−1

i ).

(The last equality uses 7.19(a).)
For any C-vector space V of dimension n we denote by Ω(V) the dual of the nth

exterior power of V .

Lemma 9.3. v2ν−2Li ⊗ Li and ΩZ̄i
are isomorphic as objects on VecG(Z̄i). (See

7.19, 6.8.)

We first show that
(a) Li ⊗ Li

∼= ΩZ̄i
are isomorphic as objects of VecG(Z̄i).

Let (x, b, b′) ∈ Z̄i and let p = πi(b) = πi(b′). By 9.2, the fibre of Li⊗Li at (x, b, b′)
is (p/b)∗ ⊗ (p/b′)∗. The fibre of ΩZ̄i

at (x, b, b′) is

Ω(np)⊗ (p/b)∗ ⊗ (p/b′)∗ ⊗ Ω(g/p).

It remains to show that Ω(np)⊗Ω(g/p) = C canonically. This follows from the fact
that the vector spaces np, g/p are naturally in duality (via the Killing form of g).
Thus, (a) is proved.

Next we note that the action of λ ∈ C∗ on the fibres of the two line bundles in
the lemma at (0, b, b′) is by multiplication by λ2ν−2. (For ΩZ̄i

this comes from the
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way that C∗ acts on the factor Ω(np) which in turn comes from the action of C∗

on np given by multiplication by λ−2.)
From 9.1 it follows that an isomorphism of G-equivariant line bundles

v2ν−2Li ⊗ Li → ΩZ̄i

(see (a)) is automatically an isomorphism of G-equivariant line bundles. The lemma
is proved.

Lemma 9.4. We have ΩΛ
∼= v2ν in VecG(Λ).

As in the proof of 9.3, it is enough to show that ΩΛ
∼= C in VecG(Λ). The fibre

of ΩΛ at (y, b) is Ω(nb) ⊗ Ω(g/b). It remains to show that Ω(nb) ⊗ Ω(g/b) = C
canonically. This follows from the fact that the vector spaces nb, g/b are naturally
in duality (via the Killing form of g). The lemma is proved.

Lemma 9.5. For F, F ′ ∈ KG(Z) we have DZ(F ? F ′) = v−2νDZ(F ) ? DZ(F ′).
Here DZ is as in 6.10.

With the notation in 7.9, we have

DZ(F ? F ′) = DZ(p13∗(p∗12F ⊗L
Λ3 p∗23F

′)) = p13∗(DΘ(p∗12F ⊗L
Λ3 p∗23F

′))

= v−6νp13∗(DΛaab (p∗12F )⊗L
Λ3 DΛabb(p∗23F

′))

= v−6νp13∗(v2ν(p∗12DZF )⊗L
Λ3 v2νp∗23DZF

′)) = v−2νDZ(F ) ? DZ(F ′).

The first equality holds by definition. The second equality holds by 6.11. The third
equality follows from 6.15 using the equality ΩΛ3 = v6ν in VecG(Λ3) (a consequence
of 9.4.) The fourth equality holds by 6.12 using the fact that Ωp12 (see 6.12) is
isomorphic to v2ν in VecG(Λaab) (a consequence of 9.4) and the analogous fact for
p23 instead of p12. The lemma is proved.

Lemma 9.6. (a) Let L ∈ X. Then DZ(!L) = !(L−1)v2ν .
(b) Let i ∈ I. We have DZ(ai) = v2νai.

We prove (a). By 6.11, it suffices to show that, if we regard L as an object of
VecG(Λ), we have DΛ(L) = v2νL−1. This follows from 6.13 since Λ is smooth and
ΩΛ = v2ν .

We prove (b). By 6.11, it suffices to show that DZ̄i
(v−1Li) = v2νv−1Li in

KG(Z̄i). We have

DZ̄i
(v−1Li) = vL∗i ⊗ ΩZ̄i

= vL−1
i ⊗ v2ν−2Li ⊗ Li = v2ν(v−1Li).

The first equality holds by 6.13, 6.16, since Z̄i is smooth, connected, of even dimen-
sion. The second equality holds by 9.3. The lemma is proved.

Lemma 9.7. The map D′ : KG(Z) → KG(Z) given by D′(ξ0 = v−2νDZ(ξ), cor-
responds under the isomorphism H ∼−→ KG(Z) in 8.6, to the involution of the ring
H which takes T̃σi + v−1 to T̃σi + v−1 for all i ∈ I, θx to θ−x for all x ∈ X , vn to
v−n for all n ∈ Z.

By 9.5, D′ is a ring homomorphism. It remains to use 9.6.
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9.8. A Lie algebra automorphism $ : g → g is said to be an opposition (of g) if
there exists a Cartan subalgebra h of g such that $(y) = −y for all y ∈ h. Then $
is the tangent map of a well defined automorphism of G denoted by $ : G→ G. It
takes any element of the maximal torus corresponding to h to its inverse.

It is well known that for any h as above, there exists at least one opposition $
such that $(y) = −y for all y ∈ h.

If $ is an opposition, then for any i ∈ I and any p ∈ Pi we have $(p) ∈ Pi∗

where i∗ ∈ I is as in 1.24. It follows that $2 is an inner automorphism. More
precisely, $2 is the identity map (it is an inner automorphism which is the identity
map on some Cartan subalgebra).

9.9. If $ is an opposition and g ∈ G, then Ad(g)$Ad(g−1) is an opposition.
Conversely, if $,$′ are oppositions, we have by a standard argument, $′ =
Ad(g)$Ad(g−1) for some g ∈ G.

9.10. Let $ be an opposition of g. This induces an involution Z → Z (denoted
again by $) given by (y, b, b′) 7→ (−$(y), $(b), $(b′)). If F ∈ CohG(Z), then the
coherent sheaf $∗(F ) is naturally an object of CohG(Z). We obtain an involution
F 7→ $∗(F ) of KG(Z) denoted by $∗.

Lemma 9.11. The involution $∗ : KG(Z) → KG(Z) corresponds under the iso-
morphism 8.6 to the involution χ 7→ χ> of H (see 1.24).

From the definition it is clear that $∗ preserves the A-algebra structure of
KG(Z), that it carries ai to ai∗ for any i ∈ I, and that it carries !Li to !Li∗

for any i ∈ I (hence !L to !(w0L−1) for any L ∈ X). The lemma follows.

Proposition 9.12. Let τ : KG(Z) → KG(Z) be the A-algebra automorphism given
by ξ 7→ T̃−1

w0
ξT̃w0 . Let $∗ : KG(Z) → KG(Z) be the A-algebra involution defined in

9.10 in terms of an opposition $. ($∗ is independent of the choice of $ by 9.9.)
Let D′ : KG(Z) → KG(Z) be the ring involution defined in 9.7.

(a) We have D′$∗ = $∗D′, τ$∗ = $∗τ,D′τ = τ−1D′.
(b) The ring automorphism τ$∗D′ of KG(Z) corresponds under the isomorphism

H ∼−→ KG(Z) to the involution − : H → H in 1.8.

Using 9.11 and 9.7, we see that automorphism of the ring H corresponding to
τ$∗D′ : KG(Z) → KG(Z) takes v to v−1,

T̃σi + v−1 to T̃−1
w0

(T̃σi∗ + v−1)T̃w0 = T̃σi + v−1

for all i ∈ I, and θx to T̃−1
w0
θw0xT̃w0 = θx for all x ∈ X . (The last equality follows

from 1.22.) (b) follows.
The first equality in (a) follows from the definitions using 6.12. Using 9.11, we

see that the second equality in (a) follows from the fact that χ> = χ for χ = T̃w0

or χ = T̃−1
w0

(where χ> is as in 1.24). The third equality in (a) follows from the
first two equalities in (a) and the fact that D′, $∗, τ$∗D′ are involutions. (The
fact that τ$∗D′ is an involution follows from (b).) The proposition is proved.

Corollary 9.13. Let Y be the closure of a G-orbit in gn. Let

ZY = {(y, b, b′) ∈ Z|y ∈ Y }.
Consider the direct image map jY

∗ : KG(ZY ) → KG(Z) induced by the inclusion
jY : ZY ⊂ Z. Then the image Im(jY

∗ ) of jY
∗ is a two-sided ideal of KG(Z) stable

under the involution − of H = KG(Z).
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The fact that Im(jY
∗ ) is a two-sided ideal is analogous to [KL2, 3.5]. It can be

proved by the arguments in 10.1. To prove that it is stable under −, it is enough to
check that it is stable under the maps τ,$∗, DZ of KG(Z) into itself. The stability
under τ follows from the fact that Im(jY

∗ ) is a two-sided ideal. The stability under
DZ follows from the commutative diagram

KG(ZY )
jY
∗−−−−→ KG(Z)

DZY

y DZ

y
KG(ZY )

jY
∗−−−−→ KG(Z)

(a special case of 6.11). It remains to show that Im(jY
∗ ) is stable under $∗. It is

enough to show that $ : Z → Z maps ZY into itself, or that $ : g → g maps Y
into itself. This follows from the well known fact that any nilpotent orbit in g is
stable under any opposition. (A more precise result is proved in 12.1, 12.2.) The
corollary is proved.

9.14. The Corollary is evidence for the conjecture that the “canonical” basis
{c′w|w ∈ Ŵ a} (see 1.5, 1.9) of H = KG(Z) is compatible with each of the sub-
spaces Im(jY

∗ ) above.

10. The H-modules KT (B), KT (Λ)

10.1. Let H be a closed reductive subgroup of G. Let Y be a closed H-stable
subvariety of gn. Then Ẏ = {(y, b) ∈ Λ|y ∈ Y } is a closed H-stable subvariety of
Λ.

We regard Z and Λ × Ẏ as closed subvarieties of Λ2 in an obvious way; the
intersection of these subvarieties is Z ∩ (Ẏ × Ẏ ). Let p′ : Λ× Ẏ → Ẏ be the second
projection and let p′′ : Z ∩ (Ẏ × Ẏ ) → Ẏ be the first projection. Then p′ is a
smooth morphism and p′′ is a proper morphism. They are compatible with the
natural actions of H . Let F ∈ CohG(Z), F ′ ∈ CohH(Ẏ ). We regard F as an object
of CohH(Z) and we define

F ?Y F ′ = p′′∗(F ⊗L
Λ2 p′∗F ′) ∈ KH(Ẏ ).

(The Tor-product is relative to the smooth H-variety Λ2 and its closed subvarieties
Z and Λ × Ẏ .) This extends to a bilinear pairing KG(Z) × KH(Ẏ ) → KH(Ẏ ),
denoted ξ, ξ′ 7→ ξ ?Y ξ′, which may be regarded as a KG(Z)-module structure on
KH(Ẏ ), as a routine argument using Λ3 shows.

Now let Y, Y ′ be two closed H-stable subvarieties of gn such that Y ⊂ Y ′. Then
Ẏ ⊂ Ẏ ′ and this induces a direct image map KH(Ẏ ) → KH(Ẏ ′). This is in fact a
homomorphism of KG(Z)-modules. (This follows from the definitions using 6.5.)

10.2. In the remainder of this section, we fix a Borel subgroup B0 of G and a
maximal torus T of B0. Let T = T ×C∗. Let b0 ∈ B be the Lie algebra of B0 and
let n0 = nb0 . We shall regard Λ as a subvariety of Λ × B by (y, b) 7→ (y, b, b0). It
is a (B0 ×C∗)-stable subvariety. Then

Z0 = {(y, b) ∈ Λ|b′ = b0}

(see 7.15) is a (B0×C∗)-stable subvariety of Λ and B is a (B0×C∗)-stable subvariety
of Z (by b 7→ (0, b)).
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If V is one of the (B0 ×C∗)-varieties Λ, Z0,B, {0}, we set

Ṽ = (B0 ×C∗)\(G × V )

where (B0 × C∗) acts on G × V by β : (γ, ξ) 7→ (γβ−1, βξ) for β ∈ B0 × C∗, γ ∈
G, ξ ∈ V . Note that Ṽ is a G-variety, where G acts by left multiplication on the
first factor. By a general result in [T1] we have canonically

KG(Ṽ ) ∼−→ KT (V ).(a)

This is defined as follows. We consider F ∈ CohG(Ṽ ). The inverse image of F
under the orbit map G × V → Ṽ is naturally an object F̃ ∈ CohB0×C∗(G × V ).
This is then the inverse image of a well defined object F ′ ∈ CohB0×C∗(V ) under
the second projection G × V → V . Since T ×C∗ is a subgroup of B0×C∗, we may
regard F ′ as an object of CohT (V ). Then (a) is defined by F 7→ F ′.

(b) For V = Λ, Z0,B, {0}, we have canonically Ṽ = Λ×B, Z,B×B,B respectively
(as G-varieties).

For V = Λ or V = Z, this is ((g, λ), (y, b)) 7→ (λ−2Ad(g)y,Ad(g)b, Ad(g)b0).
For V = B, this is ((g, λ), b) 7→ (Ad(g)b, Ad(g)b0).
For V = {0}, this is ((g, λ), {0}) 7→ Ad(g)b0.

10.3. By 10.1 with Y = {0}, Ẏ = B (via b 7→ (0, b)) and H = T , we have a natural
KG(Z)-module structure on

(a) KT (B) = KG(B̃) = KG(B × B).
(See 10.2(a),(b).) From the definitions, this coincides with theKG(Z)-module struc-
ture defined in 7.13.

By 10.1 with Y = gn, Ẏ = Λ and H = T , we have a natural KG(Z)-module
structure on
(b) KT (Λ) = KG(Λ̃) = KG(Λ× B).

(See 10.2(a),(b).) From the definitions, this coincides with theKG(Z)-module struc-
ture defined in 7.11.

By 10.1 with Y = n0, Ẏ = Z0 and H = T , we have a natural KG(Z)-module
structure on

(c) KT (Z0) = KG(Z̃0) = KG(Z).
(See 10.2(a),(b).) From the definitions, this coincides with the left multiplication
in the ring KG(Z). From 10.2(a),(b) we have

(d) RT = KT ({0}) = KG( ˜{0}) = KG(B).
Composing with the identification AX = KG(B) (see 7.8(a)) we obtain an identifi-
cation of rings

(e) AX = RT = KG(B).

10.4. The natural RT = AX -module structure on KT (B), KT (Z0), KT (Λ) is de-
noted by [x], ξ 7→ [x] � ξ. (Here x ∈ X .) We identify KT (B) = KT (Λ) as AX -
modules via the isomorphism KT (B) 7→ KT (Λ) induced by inverse image under
the second projection Λ → B.

For L ∈ X, we can regard the G-equivariant line bundle L as a T -equivariant
line bundle on B; hence L may be regarded as an element of KT (B). If L ∈ X and
x ∈ X , then [x] � L ∈ KT (B) = KT (Λ) corresponds under 10.3(a) or 10.3(b) to the
element L� Lx of KG(B × B) = KG(Λ× B).
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The element of KT (Z0) corresponding to the unit element of the ring KG(Z) is
denoted by 1.

Lemma 10.5. Let j′ : B → Z0 be the map b 7→ (0, b). In KT (Z0) we have
(a)

∑
w∈W vl(w)T̃w · 1 = (−1)νj′∗([−ρ] � L−ρ).

This is a reformulation of 8.11, using the identifications 10.3(a),(c).

10.6. Consider the diagram

KT (B)
j′∗−−−−→ KT (Z0)

j̃′∗−−−−→ KT (Λ)

g

y g′
y g̃

y
AX⊗2

d′
u−−−−→ H AX⊗2

d

f

y f ′
y f̃

y
Md′

a−−−−→ Mc
b−−−−→ Md

where the following notation is used.
j′ : B → Z0 is as in 10.5 and j̃′ : Z0 → Λ is the obvious inclusion.
a, b are the obvious imbeddings. u is defined by

u([x]⊗ [x′]) = (−1)νv2νθx+ρ(
∑

w∈W

v−l(w)T̃−1
w )θx′+ρ

for x, x′ ∈ X .
f, f̃ are the isomorphisms defined in 4.4, 4.5. (They are H-linear by definition;

see 4.6, 4.7.)
f ′ is defined by χ 7→ (−1)νv−νχ · 0A

+
ε .

g is the inverse of the composition AX⊗2 ∼−→ KG(B × B) ∼−→ KT (B) (the first
map as in 7.8(c); the second map as in 10.3(a)).
g̃ is the inverse of the composition AX⊗2 ∼−→ KG(Λ × B) ∼−→ KT (Λ) (the first

map as in 7.8(c); the second map as in 10.3(b)).
g′ is the inverse of the composition H ∼−→ KG(Z) → KT (Z0) (the first map as in

8.6; the second map as in 10.3(c)).
Here KT (B), KT (Λ), KT (Z0) are regarded as H = KG(Z)-modules as in 10.3.
Then g, g̃ are isomorphisms of H-modules by the proof of 7.23, 7.24. Moreover,

j′∗, j̃
′
∗ are H-linear (a reformulation of 7.14).

Proposition 10.7. (a) The diagram in 10.6 is commutative.
(b) All its maps are H = KG(Z)-linear.
(c) All its vertical maps are isomorphisms.

We prove (c). We only have to prove that f ′ is an isomorphism. Let Im(f ′)
be the image of f ′. The equality T̃xθx(0A+

ε ) = 0A
+
x+ε for x ∈ X shows that

0Aε′ ∈ Im(f ′) for any ε′ ∈ E. Let A ∈ X . We can find ε′ ∈ E so that ε′ is in
the closure of A. Then A = T̃−1

w (A+
ε′) (equality in Mc) for some w ∈ Wε′ . Hence,

0A = T̃−1
w (0Aε′) ∈ Im(f ′). Now if ι ∈ X , we have ιA = T̃ι(0A) ∈ Im(f ′). Thus, f ′

is surjective.
We can regard H as a left AX -module by [x′] : χ 7→ χθx′ . This module is free

of rank |W | by 1.21. We can regard Mc as a left AX -module by the �-action. This
module is also free of rank |W |. (See 3.1(c).) Now f ′ respects these AX -module
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structures. Being a surjective map between free modules of the same (finite) rank,
it must be an isomorphism. (c) is proved.

We prove (a). We first show that the lower left square of the diagram is commu-
tative. It is enough to show that, for any x, x′ ∈ X , we have

(−1)νv−ν(−1)νv2νθx+ρ(
∑

w∈W

v−l(w)T̃−1
w )θx′+ρ(0A+

ε ) = vνθx+ρ([x′ + ρ] � 0eε).

The left hand side equals

vνθx+ρ(
∑

w∈W

v−l(w)T̃−1
w )([x′ + ρ] � 0A

+
ε )

= vνθx+ρ([x′ + ρ] � (
∑

w∈W

v−l(w)T̃−1
w 0A

+
ε ) = vνθx+ρ([x′ + ρ] � 0eε,

as desired.
Next we show that the upper left square of the diagram is commutative. Since

g, g′ are isomorphisms, it suffices to check that j∗g−1 = g′−1u. Thus, it is enough
to show that, for any x, x′ ∈ X , we have

j′∗([x
′] � Lx) = (−1)νv2νθx+ρ(

∑
w∈W

v−l(w)T̃−1
w )θx′+ρ · 1

in KT (Z0). Since j′∗ is H-linear and AX -linear, we may assume that x = x′ = −ρ.
Then the desired formula follows from 10.1, using that

vν
∑

w∈W

v−l(w)T̃−1
w = v−ν

∑
w∈W

vl(w)T̃w.

It remains to show that the right rectangle in our diagram is commutative. We will
deduce this from the commutativity of the squares already considered, together with
the commutativity of the diagram 4.11. Since all our maps are RT = AX -linear,
and all the RT = AX -modules in the diagram are free of finite rank, it suffices to
show the commutativity of the rectangle after tensoring each module in the diagram
over RT with the quotient field of RT . After this tensoring, the maps a, b in the
diagram become isomorphisms (by 4.10); hence j′∗ becomes an isomorphism (by the
commutativity of the two left squares in the diagram). Hence it suffices to show
that bf ′g′j′∗ = f̃ g̃j̃′∗j

′
∗ holds after tensoring. It is also enough to prove that this

holds before tensoring. Since f ′g′j′∗ = f ′ug = afg (by the earlier part of the proof),
it is enough to show that bafg = f̃ g̃j̃′∗j

′
∗ or that baf = f̃ g̃j̃′∗j

′
∗g
−1.

Now j̃′j′ : B → Λ is the imbedding of the zero section of the vector bundle
Λ → B (second projection). It follows that

j̃′∗j
′
∗ = (j̃′j′)∗ : KT (B) → KT (Λ) = KT (B)

is just multiplication by
∏

α∈R+(1− v2Lα) ∈ KT (B). Equivalently, g̃j̃′∗j
′
∗g
−1(ξ1) =

θ∆̄(ξ1) for all ξ1 ∈ AX⊗2
d′ . Thus we are reduced to showing that baf(ξ1) =

f̃(θ∆̄(ξ1)). This follows from 4.11. This proves (a).
We prove (b). Note that all maps in our diagram are already known to be H-

linear except possibly for u. But then u is automatically H-linear since u = f ′−1af
(by (a)) and f ′−1, a, f are H-linear. The proposition is proved.
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10.8. We now fix an opposition $ : g → g such that $ = −1 on the Lie algebra
of T . (Note that $ is uniquely determined up to composition with Ad(t) for some
t ∈ T .)

If F ∈ CohT (B) (resp. F ∈ CohT (Λ)), then the inverse image $∗F under
the involution $ : B → B (resp. $ : Λ → Λ) given by b 7→ $(b) (resp. by
(y, b) 7→ ($(y), $(b))) is naturally an object of CohT (B) (resp. CohT (Λ)). We
obtain an involution F 7→ $∗(F ) of KT (B) (resp. of KT (Λ)) denoted by $∗.
The involutions $∗ on KT (B) and KT (Λ) correspond to each other under the
identification KT (B) = KT (Λ) as A-modules in 10.4. From the definitions we
see that in the KG(Z)-module structures of KT (B) and KT (Λ) (in 10.3) we have
$∗(χξ) = $∗(χ)$∗(ξ) for χ ∈ KG(Z) and ξ in KT (B) or KT (Λ). Moreover, from
the definitions, we see that in the natural RT = AX -module structures of KT (B)
and KT (Λ) (in 10.4) we have $∗([x] � ξ) = [−x] �$∗(ξ) for x ∈ X and ξ in KT (B)
or KT (Λ). (This comes from the fact that $ = −1 on the Lie algebra of T .) It
follows that the involution $∗ on KT (B) or KT (Λ) takes

(a) [x] � L to [−x] � w0L−1 for any x ∈ X , L ∈ X.
(It suffices to check this for x = 0, L = C where it is obvious.) Hence, this involution
corresponds to the involution � : AX⊗2 → AX⊗2 in 5.4, under the isomorphism
g : AX⊗2 ∼−→ KT (B) or g̃ : AX⊗2 ∼−→ KT (Λ) in 10.6.

10.9. Consider the RT -bilinear pairing KT (B)×KT (Λ) → RT given by

(F : F ′) = π∗(F ⊗L
Λ F

′).

(The Tor-product is relative to the smooth T -variety Λ and its closed subvarieties
B,Λ with intersection B; π is the map from B to the point.)

Lemma 10.10. Under the isomorphisms g : AX⊗2 ∼−→ KT (B), g̃ : AX⊗2 ∼−→
KT (Λ) in 10.6 (that is, [x] ⊗ [x′] 7→ [x′] � Lx′) and RT

∼−→ AX in 10.3(e), the
pairing in 10.9 corresponds to the pairing (:) : AX⊗2 ×AX⊗2 → AX in 5.1.

Since both pairings are AX = RT -bilinear, it suffices to show that, for any
x, x′ ∈ X , we have

(Lx : Lx′) = (x, x′)

where (x, x′) is as in 5.1. Using 6.7, we have (Lx : Lx′) = π∗(Lx⊗Lx′) where Lx is
regarded as a line bundle on B in both sides, while Lx′ is regarded as a line bundle
on Λ in the left hand side and as a line bundle on B, in the right hand side. Setting
x̃ = x+ x′, we see that it is enough to show that

π∗(Lx̃) = δ−1
∑

w∈W

sgnw
w[x̃+ ρ]

for any x̃ ∈ X . (The left hand side is in RT = AX , the right hand side is in AXW .)
This follows from Weyl’s character formula. The lemma is proved.

10.11. Let k : B → Λ be the imbedding b 7→ (0, b). As we have remarked
earlier, the map k∗ : KT (B) → KT (Λ) corresponds, under the isomorphisms
g : AX⊗2 ∼−→ KT (B), g̃ : AX⊗2 ∼−→ KT (Λ) in 10.6 to the map AX⊗2 → AX⊗2

given by multiplication by (∆̄⊗ 1).
Consider the pairing (, )B : KT (B)×KT (B) → RT defined by

(F, F ′)B = (−v)−νπ∗(F ⊗L
Λ (T̃w0$

∗(F ′))).(a)
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(The Tor-product is relative to the smooth T -variety Λ and its closed subvarieties
B,B with intersection B.)

Let R be the quotient field of RT . The pairing (a) is RT -linear in the first
variable and is RT -semilinear in the second variable, with respect to the involution
† of RT = AX . Hence, that pairing extends naturally to a pairing

(R⊗RT KT (B))× (R⊗RT KT (B)) → R.

Composing this with the map

KT (Λ)×KT (Λ) → (R⊗RT KT (B))× (R⊗RT KT (B))

given by k−1
∗ × k−1

∗ (recall that k∗ is an isomorphism over R) we obtain a pairing

(, )Λ : KT (Λ)×KT (Λ) → R.(b)

Let Ũ be the set of all elements p̃ ∈ U (see 3.8) such that pp̃ ∈ RT for some
p ∈ RT − {0}. Then Ũ may be regarded as a subring of either U or of the field R.
From the definitions we see that (, )Λ takes values in the subring Ũ of R.

Let (, )Z0 : KT (Z0)×KT (Z0) → R be the composition KT (Z0)×KT (Z0)
j̃′∗×j̃′∗−−−−→

KT (Λ)×KT (Λ)
(,)Λ−−→ R.

Lemma 10.12. (a) Under the isomorphisms g : AX⊗2 ∼−→ KT (B) in 10.6 and
RT

∼−→ AX in 10.3(e), the pairing 10.11(a) corresponds to the pairing (|)d′ :
AX⊗2 ×AX⊗2 → AX in 5.8.

(b) Under the isomorphisms g̃ : AX⊗2 ∼−→ KT (Λ) in 10.6 and R
∼−→ AX q induced

by 10.3(e), the pairing 10.11(b) corresponds to the pairing (|)d : AX⊗2 ×
AX⊗2 → AX q in 5.8.

(c) If ξ, ξ′ ∈ KT (Z0), then ∂(ξ, ξ′)Z0 ∈ A.

Note that F ⊗L
Λ (T̃w0$

∗(F ′)) in 10.11(a) is equal to F ⊗L
Λ k∗(T̃w0$

∗(F ′)) where
the last ⊗L

Λ is relative to the smooth variety Λ and its closed subvarieties B,Λ.
Hence, (a) follows from the identifications done earlier in this section. Now (b)
follows from (a) using 5.9. Now (c) follows from (a) and the commutative diagram
10.6, since ∂(m|m′) ∈ A for any m,m′ ∈ Mc (see 3.4). The lemma is proved.

Lemma 10.13. Let L ∈ X, x ∈ X , n ∈ Z. We have

DB(vn[x] � L) = (−1)νv−n[−x] � L−1L−2ρ ∈ KT (B),

DΛ(vn[x] � L) = v2νv−n[−x] � L−1 ∈ KT (Λ).

This follows from 6.13, 6.16 since B,Λ are smooth. (We also use 9.4 and the
equality ΩB = L−2ρ.)

Proposition 10.14. Let $∗ be the involution of KT (B) or KT (Λ) described in
10.8.

(a) $∗ : KT (B) → KT (B) commutes with T̃w0 : KT (B) → KT (B) and with
DB : KT (B) → KT (B). Moreover, DB is H-antilinear.

(b) $∗ : KT (Λ) → KT (Λ) commutes with T̃w0 : KT (Λ) → KT (Λ) and with
DΛ : KT (Λ) → KT (Λ). Moreover, DΛ is H-antilinear.

(c) The map (−v)−ν T̃−1
w0
$∗DB : KT (B) → KT (B) corresponds under fg : KT (B)

∼−→Md′ (see 10.6) to b̂ : Md′ →Md′ .
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(d) The map (−v)ν T̃−1
w0
$∗DΛ : KT (Λ) → KT (Λ) corresponds under f̃ g̃ : KT (Λ)

∼−→Md (see 10.6) to ˆ̃
b : Md →Md.

Let L ∈ X, x ∈ X , n ∈ Z. We have (in KT (B)):

(−v)−ν T̃−1
w0
$∗DB(vn[x] � L) = (−v)−ν(−1)νv−nT̃−1

w0
$∗([−x] � L−1L−2ρ)

= v−νv−nT̃−1
w0

([x] � (w0LL−2ρ)).

The first equality holds by 10.13. The second equality holds by 10.8(a). This shows
that our map corresponds under g : KT (B) ∼−→ AX⊗2

d′ to the map b̂ in 4.9. Hence,
(c) follows from 4.9. We have (in KT (Λ)):

(−v)ν T̃−1
w0
$∗DΛ(vn[x] � L) = (−v)νv2νv−nT̃−1

w0
$∗([−x] � L−1)

= (−1)νv3νv−nT̃−1
w0

([x] � w0L).

The first equality holds by 10.13. The second equality holds by 10.8(a). This shows

that our map corresponds under g̃ : KT (Λ) ∼−→ AX⊗2
d to the map ˆ̃

b in 4.9. Hence,
(d) follows from 4.9.

We prove (a). The first assertion of (a) follows from 5.4(a) (using 10.8). The
second assertion of (a) follows from the definitions using 6.12. The third assertion
of (a) follows from (c), using the fact that b̂ is H-antilinear.

The proof of (b) is entirely similar to that of (a). The proposition is proved.

10.15. Let

B±
B = {ξ ∈ KT (B)|(−v)−ν T̃−1

w0
$∗DB(ξ) = ξ, ∂(ξ, ξ)B ∈ 1 + v−1Z[v−1]},

B±
Λ = {ξ ∈ KT (Λ)|(−v)ν T̃−1

w0
$∗DΛ(ξ) = ξ, ∂(ξ, ξ)Λ ∈ 1 + v−1Z[[v−1]]},

B±
Z0

= {ξ ∈ KT (Z0)|∂(ξ, ξ)Z0 = 1}.
Here (, )B, (, )Λ, ()Z0 are as in 10.11 and ∂ is as in 3.13. (Note that ∂(ξ, ξ)Λ is well
defined since (ξ, ξ)Λ ∈ Ũ ⊂ U, see 10.11.)

Proposition 10.16. (a) B±
B is a signed basis of the A-module KT (B). Under the

isomorphism
fg : KT (B) ∼−→ Md′ (see 10.6), B±

B corresponds to the signed basis
{±ιB

[|ι ∈ X , B ∈ X} of the A-module Md′ .
(b) B±

Λ is a signed basis of the A-module KT (Λ). Under the isomorphism f̃ g̃ :
KT (Λ) ∼−→ Md (see 10.6), B±

Λ corresponds to the signed basis
{±ιB

]|ι ∈ X , B ∈ X} of the A-module Md.
(c) B±

Z0
is a signed basis of the A-module KT (Z0). Under the isomorphism f ′g′ :

KT (Z0)
∼−→ Mc (see 10.6), B±

Z0
corresponds to the signed basis {±ιB|ι ∈

X , B ∈ X} of the A-module Mc.

Recall that in 3.14, the signed basis {±ιB
[|ι ∈ X , B ∈ X} of the A-module Md′

has been characterized in terms of an inner product (|) on Md′ and an antilinear
map b̂ : Md′ → Md′ . Under the isomorphism fg : KT (B) ∼−→ Md′ , the inner
product (|) on Md′ corresponds to the inner product (, )B on KT (B) (by 10.12,
5.15) and the antilinear map b̂ : Md′ → Md′ corresponds to (−v)−ν T̃−1

w0
$∗DB :

KT (B) → KT (B) (by 10.14(c)). Hence, the second assertion of (a) is proved. The
first assertion of (a) clearly follows from the second assertion of (a). Thus, (a) is
proved. The proof of (b) and (c) is entirely similar. The proposition is proved.
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10.17. Let Xmin be the set of all a ∈ X such that a+ ε is contained in the closure
of A+

ε . Note that x 7→ x is a bijection Xmin
∼−→ X .

Lemma 10.18. Let a ∈ Xmin. Let τ ∈ W a be such that τA+
ε = A+

a+ε. Let l = l(τ).
We have θ−a(0eε) = v−l

aeε, θ−a(0ẽε) = (−v)l
aẽε.

From the definitions, for any τ ∈ W a, any x ∈ X and any A ∈ X , we have
xτ(x +A) = x+ τ(B).

We apply this with τ ∈ W a such that τA+
ε = A+

a+ε, x = −a and A = A+
ε . We

see that

(a) −aτ(A+
−a+ε) = A+

ε .

Our assumption on a implies that ε is in the closure of A−a+ε. This, together with
(a) implies that

(b) −aτ ∈ Wε.

By definition we have θ−a = T̃−1
(−a)τ = T̃−1

τ T̃a. Hence, if m is either eε or ẽε, we

have θ−a(0m) = T̃−1
τ T̃a(0m) = T̃−1

τ (am) = a((T̃−aτ )m). We now use (b) and the
fact that T̃weε = vl(w)eε, T̃wẽε = (−v)−l(w)ẽε for any w ∈ W a

ε . The lemma follows.

Lemma 10.19. We preserve the notation in 10.18. Let x′ ∈ X . We have

(a) vl−ν [x′] � L−ρ−a ∈ B±
B ;

(b) (−1)ν+lv2ν−l[x′] � L−a ∈ B±
Λ .

We prove (a). Let f be as in 4.4. We have

f(vl−ν [−ρ− a]⊗ [x′]) = vlθ−a([x′ + ρ] � 0eε) = [x′ + ρ] � aeε.

We prove (b). Let f̃ be as in 4.5. We have

f̃((−1)ν+lv2ν−l[−a] � [x′])
= (−1)νv−2ν(−1)l+νv2ν−lθ−a([x′ + 2ρ] � 0ẽε) = [x′ + 2ρ] � aẽε.

The lemma follows.

10.20. In this and the next subsection we assume that G = SL3 with I = {1, 2}.
Consider 0ea+ε where α̌1(a) = 0, α̌2(a) = 1. Let B = σ2(A+

a+ε). We have 0B
[ =

(T̃σ2 + v−1)(0e+a+ε). We want to describe the corresponding element of B±
B .

By 10.19, [a] � aeε = 0ea+ε corresponds to v2−3[−ρ− a]⊗ [a− ρ] ∈ AX⊗2
d′ . Hence,

0B
[ corresponds to

(a) v−1(T̃σ2 + v−1)[−ρ− a]⊗ [a− ρ].

We have

v−1[−ρ+ α2 − a+ α2]− v−1[−ρ− a+ α2] + v[−ρ− a+ α2]− v[−ρ+ α2 − a]
[α2]− 1

= v−1[−ρ+ α2 − a].

Hence, (a) equals v−2[−ρ+α2− a]⊗ [a− ρ]+ v−2[ρ− a]⊗ [a− ρ]. This corresponds
to a direct sum of two line bundles on B.
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10.21. Let s0 be the unique element of S − Sε. Let B = s0(A+
ε ). Then 0B

[ =
(T̃s0 + v−1)(0eε). We want to describe the corresponding element of B±

B .
We have θρ = T̃σ1 T̃σ2 T̃σ2 T̃s0 . Hence, T̃s0 = T̃−1

σ1
T̃−1

σ2
T̃−1

σ2
θρ. We compute (in M):

(T̃s0 + v−1)v−ν [−ρ]⊗ [−ρ] = T̃−1
σ1
T̃−1

σ2
T̃−1

σ2
θ2ρv

−ν [−ρ]⊗ [−ρ] + v−1v−ν [−ρ]⊗ [−ρ]
= T̃−1

σ1
T̃−1

σ2
T̃−1

σ2
v−3[0]⊗ [−ρ] + v−1v−3[−ρ]⊗ [−ρ]

= −v−1[−ρ]⊗ [−ρ]v−3 + v[−ρ]⊗ [−ρ]v−3 + v3[−2ρ]⊗ [−ρ]v−3

+ v−1v−3[−ρ]⊗ [−ρ] = v−2[−ρ]⊗ [−ρ] + [−2ρ]⊗ [−ρ].
This corresponds to a direct sum of two line bundles on B.

10.22. Let H be as in 10.1. Let Z be a closed H-stable subvariety of Λ. Let i ∈ I.
We say that Z is i-saturated if the following holds:

(y, b′) ∈ Z, (y, b) ∈ Λ, (b, b′) ∈ Oσi =⇒ (y, b) ∈ Z.

(Compare 8.1.) Assume that y ∈ gn, that H is contained in the stabilizer of y in G
and that Z is an i-saturated closed H-stable subvariety of {y}̇ (see 10.1). As in 8.1
we see that

(a) the operator T̃σi : KH({y}̇) → KH({y}̇) (see 10.1) maps into itself the image
of KH(Z) → KH({y}̇) (direct image under the imbedding Z → {y}̇).

11. Study of KH(Be), KH(Λe)

11.1. In this section we fix an sl2-triple (e, f, h) in g, that is, three elements (e, f, h)
of g such that [h, e] = 2e, [h, f ] = −2f, [e, f ] = h. Let ζ : SL2 → G be the
homomorphism of algebraic groups whose tangent map at 1 carries ( 0 1

0 0 ) to e,
( 0 0

1 0 ) to f ,
(

1 0
0 −1

)
to h. Let

S = {g ∈ G|Ad(g)(e) = e, Ad(g)(f) = f,Ad(g)(h) = h},
S̃ = {(g, λ) ∈ G|Ad(g)(e) = λ2e, Ad(g)(f) = λ−2f,Ad(g)(h) = h}.

These are closed, reductive subgroups of G,G respectively. The map

(g, λ) 7→ (gζ
(

λ 0
0 λ−1

)
, λ)

is an isomorphism of algebraic groups S × C∗ ∼−→ S̃. Let C be a maximal torus
of S and let H = C ×C∗. We will identify H with a subgroup of S̃ (a maximal
torus) via

(c, λ) 7→ (cζ
(

λ 0
0 λ−1

)
, λ).

Let s = {y ∈ g|[y, e] = [y, f ] = [y, h] = 0}. This is a reductive Lie algebra. Let c
be the Lie algebra of C (a Cartan subalgebra of s). Let l be the centralizer of c in
g. Clearly,

(a) e ∈ l, f ∈ l, h ∈ l.

11.2. Let

Be = {b ∈ B|e ∈ b}.
Note that Be may be identified with {e}̇ (see 10.1) by b 7→ (e, b).

Let z(f) the centralizer of f in g and let

Σe = {y ∈ gn|y − e ∈ z(f)}, Λe = Σ̇e = {(y, b) ∈ Λ|y ∈ Σe}.
According to Slodowy (see [Sl]), Λe is irreducible, smooth, of dimension 2 dimBe.
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Note that {e} and Σe are S̃-stable subvarieties of gn. Hence, Be and Λe are
S̃-stable subvarieties of Λ. In particular, Be and Λe are H-stable subvarieties of Λ.

11.3. Consider the action of C∗ (a subgroup of H via λ 7→ (1, λ)) on Be and Λe.
These actions on Be,Λe have the same fixed point set:

BC∗

e = ΛC∗

e = {(0, b) ∈ Λ|e ∈ b, h ∈ b}.
This fixed point set is smooth, since Λe is smooth and is a projective variety, since
Be is a projective variety.

For any connected component µ of BC∗

e , let Be,µ be the set of all b ∈ Be such
that limt7→0Adζ

(
λ 0
0 λ−1

)
b belongs to µ. The limit above is denoted by πµ(b).

For any connected component µ of BC∗

e = ΛC∗

e , let Λe,µ be the set of all (y, b) ∈
Λe such that limt7→∞(λ−2Adζ

(
λ 0
0 λ−1

)
y,Adζ

(
λ 0
0 λ−1

)
b) is defined and belongs to

µ. The limit above is denoted by π′µ(y, b).

Lemma 11.4. Let µ be a connected component µ of BC∗

e .
(a) Be,µ is a smooth subvariety of Be and πµ : BC∗

e,µ → µ is naturally a vector
bundle.

(b) Λe,µ is a smooth subvariety of Λe and π′µ : ΛC∗

e,µ → µ is naturally a vector
bundle.

(c) The subvarieties Be,µ (resp. Λe,µ) for various µ as above form an α-partition
(see [DLP, 1.3]) of Be (resp. Λe).

The assertions relative to Be,µ are proved in [DLP]. The assertions relative to
Λe,µ are proved in [KL2, 4.6] using Hironaka’s theorem on resolutions of singulari-
ties.

Lemma 11.5. The RH-modules KH(µ), KH(Be,µ), KH(Λe,µ) have finite rank.

From 11.4 we see that it suffices to prove the assertion concerning KH(µ). Since,
µ is smooth, projective, it can be partitioned (Bialynicky-Birula) into locally closed
H-stable pieces which are vector bundles over the various components of the fixed
point set of H . It is then enough to show that for each of these pieces, the cor-
responding KH has finite rank over RH , or that, for any connected component of
the fixed point set, the corresponding KH has finite rank over RH . Since H acts
trivially on that component, it is enough to show that the non-equivariant K group
of the component is a finitely generated abelian group. This follows from [DLP,
3.9]. The lemma is proved.

Lemma 11.6. The RH-modules KH(Be), KH(Λe) have finite rank.

This follows from 11.5 using the α-partitions Be =
⋃

µ Be,µ,Λe =
⋃

µ Λe,µ.

11.7. Assume now that e is a regular nilpotent element of l. Then BC×{1}
e is a

finite set; hence the fixed point set of H in the proof of 11.5 is finite. In this case,
the argument in 11.5 shows that the RH -modules KH(µ), KH(Be,µ), KH(Λe,µ) are
free (of finite rank) and then the argument in 11.6 shows that the RH -modules
KH(Be), KH(Λe) are free (of finite rank).

The same holds in the case where G is a classical group and e is arbitrary since in
this case, the fixed point sets in the proof of 11.5 admit algebraic cell decompositions
(see [DLP, 3.9]).

We return to the general case. It is likely that the RH -modules above are again
free. Moreover, it should be possible to deduce this from the analysis in [DLP, 3.9].
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Lemma 11.8. Let R be the quotient field of RH . The direct image maps

KH(BC∗

e ) → KH(Be), KH(ΛC∗

e ) → KH(Λe), KH(Be) 7→ KH(Λe)

induced by the inclusions BC∗

e ⊂ Be, ΛC∗

e ⊂ Λe, Be ⊂ Λe, become isomorphisms
after tensoring with R over RH .

It is enough to consider the first two maps in the lemma (since BC∗

e = ΛC∗

e ). This
follows from the concentration theorem [T2] applied to the C∗-action on Be,Λe.

11.9. In the special cases mentioned in 11.7, we deduce from 11.8 that the map
KH(Be) 7→ KH(Λe) is injective. Again, this should be true in general.

Proposition 11.10. Let b(e) = dimBe. We have ΩΛe = v2b(e) ∈ VecΛe .

We have a cartesian diagram
G× Λe −−−−→ G× (e+ z(f))

a

y b

y
Λ −−−−→ g

where a, b are given by (g; y, b) 7→ (Ad(g)y,Ad(g)b), (g, y) 7→ Ad(g)y and the
lower horizontal map is ((y, b) 7→ y. According to [Sl], b is smooth; hence a must
be also smooth. Moreover, if (y, b) ∈ Λe, the tangent space along the fibres of a
at (1; y, b) can be identified with the tangent space along the fibres of b at (1, y).
Hence, (ΩG×Λe)1,y,b ⊗ (ΩΛ)∗(y,b) = (ΩG×(e+z(f)))1,y ⊗Ω(g)∗ where ∗ denotes a dual
space. Since ΩΛ = v2ν canonically, it follows that Ω(g)⊗ (ΩΛe)y,b = v2ν ⊗ Ω(g) ⊗
(Ωe+z(f))y ⊗ Ω(g)∗. We have (Ωe+z(f))y = Ω(z(f)). Hence, ΩΛe = v2ν ⊗ Ω(z(f)) ⊗
Ω(g)∗ = v2ν ⊗ Ω(g/z(f))∗. Now g/z(f) has a non-degenerate symplectic form
(Kirillov) x, y 7→ 〈x, [f, y]〉. Here 〈, 〉 is the Killing form on g. Hence, Ω(g/z(f)) =
v2 dim g/z(f) and ΩΛe = v2ν−2 dim g/z(f) = v2b(e). The proposition is proved.

12. The involution
−

and inner product on KH(Be), KH(Λe)

12.1. Let A(g) be the group of automorphisms of the Lie algebra g. Let O(g) be
the set of oppositions of g. Let A0(g) be the identity component of A(g) and let
A1(g) be the connected component of A(g) that contains O(g).

We fix an sl2-triple (e, f, h) in g such that

y ∈ g, [y, e] = [y, f ] = [y, h] = 0 =⇒ y = 0.

(That is, (e, f, h) is distinguished in g.) Let

R = {ζ ∈ A(g)|ζ(e) = e, ζ(f) = f, ζ(h) = h},
R′ = {ζ ∈ A(g)|ζ(e) = −e, ζ(f) = −f, ζ(h) = h}.

For any j ∈ Z we set gj = {y ∈ g|[h, y] = jy}. It is well known (Bala-Carter) that
g =

⊕
j∈2Z gj .

We attach to (e, f, h) a linear map κ′ : g → g by κ′(y) = (−1)jy for y ∈ gj . It is
clear that κ′ ∈ R′ ∩A0(g).

We also attach to (e, f, h) an automorphism κ ∈ R ∩ A1(g), as follows. Assume
that this has been done when g is simple. In the general case we write g canonically
as a direct sum of simple Lie algebra and (e, f, h) as a corresponding direct sum of
sl2-triples. We then take the direct sum of the automorphisms κ attached to the
various simple components; this will be κ for g. We now assume that g is simple.
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In the case where w0 is in the centre of W that is, when A1(g) = A0(g), or
equivalently, in type Bn, Cn, D2n, G2, F4, E7, E8, we define κ to be the identity
automorphism.

In the case where g is of type D2n+1, n ≥ 2, we consider the standard 4n + 2
dimensional representation E of g. As an sl2-module it is canonically a direct sum
of irreducible modules of distinct, odd dimensions. Consider the automorphism of
E which equals −1 on the smallest of these irreducible sl2-submodules and is +1
on all the others. This gives rise to an automorphism of g that is denoted by κ.
Note that κ ∈ R ∩A1(g).

In the case where g is of type An, n ≥ 2, (so that e is regular nilpotent) we
note that, as an sl2-module, g is a direct sum of irreducible modules of distinct
dimensions: 3, 5, 7, . . . , 2n + 1. We define a linear map κ : g → g to be +1 on the
submodules of dimension 3, 7, 11, . . . and to be −1 on the submodules of dimension
5, 9, 13, . . . . Note that κ ∈ R ∩ A1(g).

Assume now that g is of type E6. If e is regular nilpotent, we note that, as
an sl2-module, g is a direct sum of irreducible modules of distinct dimensions:
3, 9, 11, 15, 17, 23. We define a linear map κ : g → g to be +1 on the submodules
of dimension 3, 11, 15, 23 and to be −1 on the submodules of dimension 9, 17. If
e is subregular nilpotent, we define κ to be the unique element of R ∩ A1(g). If
e is neither regular nor subregular, then R ∩ A(g) consists of four elements, all
involutions. The three non-identity elements γ have fixed point set gγ of type
A5×A1, C4, F4 respectively. (The first one is in A0(g), the other two are in A1(g).)
We define κ to be that γ for which gγ is of type F4.

This completes the definition of κ in all cases.
In all cases, κ can be characterized as the involution in R ∩ A1(g) whose fixed

point set on g0 has maximum possible dimension.

12.2. For a general g and a distinguished sl2-triple (e, f, h) of g, we define $ :
g → g as the composition κκ′ = κ′κ ∈ R′. One can check that $ is an opposition
of g. Note that $ is canonically attached to (e, f, h). One can characterize $
as the unique opposition in R′ whose fixed point set on g0 has maximum possi-
ble dimension (or equivalently, whose −1 eigenspace on g2 has maximum possible
dimension).

12.3. In the remainder of this section we fix (e, f, h), C, c as in 11.1. As in 11.1,
we set H = C ×C∗.

Let l be the centralizer of c in g. This is a Levi subalgebra of a parabolic
subalgebra of g. Let z be the centre of l. Clearly, c ⊂ z. (The reverse inclusion is
also true.) Let l′ be the derived subalgebra of l. From 11.1(a) and the relations of
sl2, we see that e, f, h are contained in l′. If y ∈ l′ satisfies [y, e] = [y, f ] = [y, h] = 0,
then y ∈ l′ ∩ s. Thus, y is in the centralizer of c in s, that is, y ∈ c. Thus, y ∈ z and
y ∈ l′; hence y ∈ z ∩ l′ = 0. Thus, (e, f, h) is distinguished in l′. Let $0 : l′ → l′

be the opposition of l′ attached in 12.2 to (e, f, h), relative to l′. In particular, we
have $0(e) = −e,$0(f) = −f,$0(h) = h.

By a standard argument we can find an opposition $ of g such that $|l′ = $0

and$(y) = −y for all y ∈ z. We show that$ is uniquely determined up to replacing
Ad(c)$Ad(c−1) with c ∈ C (this is an opposition with the same property as $).
Indeed, if $′ is another opposition of g with the same property as $, then $′ is of
the form Ad(g)$ where g is in the centralizer of L in G. Hence, g = zc where c ∈ C
and z is in the centre of G. Replacing g by z−1g, we see that we may assume that
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g = c. Let c1 ∈ C be such that c21 = c. Then $′ = Ad(c21)$ = Ad(c1)$Ad(g−1
1 ),

as claimed.

12.4. Thus, to (e, f, h), C, c we have associated in an essentially canonical way
(that is up to conjugation by C) an opposition $ of g such that $(e) = −e,$(f) =
−f,$(h) = h and $(y) = −y for all y ∈ z = c. In the remainder of this section we
fix such a $.

12.5. Let k : Be → Λe be the imbedding b 7→ (e, b). Applying 10.1 with Y equal
to {e} or Σe, we obtain KG(Z)-module structures on KH(Be) and KH(Λe). By
10.1, the RH -linear map k∗ : KH(Be) → KH(Λe) is H-linear.

12.6. The involution Λ → Λ given by (y, b) 7→ (−$(y), $(b)) maps Be = {e}̇ into
itself and Λe into itself; the resulting involutions of Λ,Be,Λe are denoted again by
$. The involution on Λ (hence its restriction to Be or Λe) is compatible with the
action of C ×C∗ = H in the following way:

$((c, λ)(y, b)) = (c−1, λ)$(y, b) for (c, λ) ∈ C ×C∗, (y, b) ∈ Λ.

(We use that $(c) = c−1 for c ∈ C and $(ζ
(

λ 0
0 λ−1

)
) = ζ

(
λ 0
0 λ−1

)
which follows

from $(h) = h.)
Hence, if F ∈ CohH(Be) (resp. F ∈ CohH(Λe)), then we have naturally $∗F ∈

CohH(Be) (resp. $∗F ∈ CohH(Λe)) and F 7→ $∗F defines an involution $∗ :
KH(Be) → KH(Be) (resp. $∗ : KH(Λe) → KH(Λe)).

This involution is semilinear with respect to the involution of RH = RC×C∗

induced by the involution (c, λ) 7→ (c−1, λ) of C ×C∗.
Using the definitions, we see that the involutions $∗ of KG(Z) (see 9.10) and

$∗ of KH(Be) (resp. KH(Λe)) are compatible with the KG(Z)-module structures.
Thus, if ξ ∈ KG(Z) and ξ′ ∈ KH(Be) (resp. ξ′ ∈ KH(Λe)), then

$∗(ξξ′) = $∗(ξ)$∗(ξ′).(a)

12.7. Using 6.12, we see that

DBe$
∗ = $∗DBe : KH(Be) → KH(Be),

DΛe$
∗ = $∗DΛe : KH(Λe) → KH(Λe).

Lemma 12.8. Let Y be either {e} or Σe. For any F ∈ KG(Z) and F ′ ∈ KH(Ẏ )
we have

DẎ (F ?Y F ′) = v−2νDZ(F ) ?Y DẎ (F ′).

With the notation in 10.1, we have by arguments similar to those in 9.5:

DẎ (F ?Y F ′) = DẎ (p′′∗(F ⊗L
Λ2 p′∗F ′)) = p′′∗(DZ∩Ẏ×Ẏ (F ⊗L

Λ2 p′∗F ′))

= v−4νp′′∗(DZ(F )⊗L
Λ2 DΛ×Ẏ (p′∗F ′)) = v−4νp′′∗(DZ(F )⊗L

Λ2 v2νp′∗(DẎ F
′))

= v−2νDZ(F ) ?Y DẎ (F ′).

The lemma is proved.
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12.9. Let L be the closed subgroup of G whose Lie algebra is l. Let Ad(L)e ⊂ l
be the orbit of e under Ad(L) and let d(e) = (1/2) dimAd(L)e. We define a map
− : KH(Be) → KH(Be) by

ξ′ 7→ (−v)−ν T̃−1
w0
$∗DBe(ξ

′).

We define a map − : KH(Λe) → KH(Λe) by

ξ′ 7→ (−v)ν−2d(e)T̃−1
w0
$∗DΛe(ξ

′).

Proposition 12.10. Let Y be either {e} or Σe. The map − : KH(Ẏ ) → KH(Ẏ )
in 12.9 is an H-antilinear involution.

In the following proof we write D instead of DẎ , t instead of T̃w0 , and will omit
the ? signs. We show that our map is H-antilinear. Using 9.12, we see that it is
enough to verify that for any ξ ∈ KG(Z), ξ′ ∈ KH(Ẏ ) we have

t−1$∗D(ξξ′) = v−2νt−1$∗(DZ(ξ))tt−1$∗(D(ξ′))

or equivalently (see 12.8),$∗(DZ(ξ)D(ξ′) = $∗(DZ(ξ))$∗(D(ξ′)). But this follows
from 12.6(a).

We show that our map is an involution. It is enough to verify that for any
ξ′ ∈ KH(Ẏ ) and any integer n, we have

(−v)nt−1$∗D((−v)nt−1$∗D(ξ′)) = ξ′.

By the H-antilinearity of our map, the left hand side is equal to

(−v)−nt(−v)nt−1$∗D($∗D(ξ′)) = $∗D($∗D(ξ′)).

By 12.7, this equals $∗$∗DD(ξ′) = DD(ξ′) = ξ′ (see 6.16). The proposition is
proved.

12.11. Consider the RH -bilinear pairing KH(Be) × KH(Λe) → RH given by
(F : F ′) = π∗(F ⊗L

Λe
F ′). (The Tor-product is relative to the smooth H-variety Λe

and its closed subvarieties Be,Λe with intersection Be; π is the map from Be to the
point.)

Let p 7→ p† be the involution of RH induced by the automorphism ofH = C×C∗

given by (c, λ) 7→ (c−1, λ).

Lemma 12.12. For ξ ∈ KH(Be), ξ′ ∈ KH(Λe), χ ∈ H, we have

(ξ : $∗(ξ′)) = ($∗(ξ) : ξ′)†,(a)

(χξ : ξ′) = (ξ : χ̂ξ′),(b)

where χ̂ is as in 1.24.

(a) follows directly from the definitions. To prove (b), we note that χ 7→ χ̂ can be
interpreted geometrically as the map KG(Z) → KG(Z) induced by the involution
(y, b, b′) 7→ (y, b′, b) of Z. With this interpretation, the proof of (b) is routine.

Lemma 12.13. For ξ, ξ′ ∈ KH(Be), we have (ξ : k∗(ξ′)) = (ξ′ : k∗(ξ)).

Using 6.5, we see that both sides are equal to π∗(ξ⊗L
Λe
ξ′) where the Tor-product

is relative to the smooth H-variety Λe and its closed subvarieties Be,Be. The lemma
is proved.
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12.14. We define a pairing (||) : KH(Be)×KH(Λe) → RH by

(ξ||ξ′) = (−v)d(e)−b(e)(ξ : T̃w0$
∗(ξ′)).(a)

Lemma 12.15. Let ξ ∈ KH(Be), ξ′ ∈ KH(Λe). We have (ξ̄||ξ′) = (ξ||ξ̄′).
This is equivalent to

(−v)d(e)−b(e)((−v)−ν T̃−1
w0
$∗DBe(ξ) : T̃w0$

∗(ξ′))

= (−v)d(e)−b(e)(ξ : (−v)ν−2d(e)T̃w0$
∗T̃−1

w0 $
∗DΛe(ξ′))

or to

(−v)d(e)−b(e)((−v)−ν$∗DBe(ξ) : $∗(ξ′))

= (−v)d(e)−b(e)(ξ : (−v)ν−2d(e)DΛe(ξ′)),

or to (−v)d(e)−b(e)((−v)−νDBe(ξ) : (ξ′)) = (−v)d(e)−b(e)(ξ : (−v)ν−2d(e)DΛe(ξ′))
†
,

or to (−v)−2b(e)(DBe(ξ) : (ξ′)) = (ξ : DΛe(ξ′))
†
. We have

(ξ : DΛe(ξ′))
†

= Dpoint(π∗(ξ ⊗L
Λe
DΛe(ξ

′)))

= π∗(DBe(ξ ⊗L
Λe
DΛe(ξ

′))) = π∗((DBeξ)⊗L
Λe

(DΛeDΛe(ξ
′))(−v)−2b(e))

= π∗((DBeξ)⊗L
Λe
ξ′)(−v)−2b(e) = (−v)−2b(e)(DBe(ξ) : (ξ′)).

The lemma is proved.

12.16. We define a pairing (|)Be : KH(Be)×KH(Be) → RH by

(ξ|ξ′)Be = (ξ||k∗(ξ′)).
We define a pairing (|)Λe : KH(Λe)×KH(Λe) → R (R as in 11.8) by

(ξ|ξ′)Λe = (k−1
∗ ξ||ξ′).

Here k−1
∗ ξ and ξ′ are regarded as elements of R ⊗RH KH(Be) (see 11.8) and the

pairing 12.14(a) is extended in an obvious way to a pairing (||) : R⊗RH KH(Be)×
R⊗RH KH(Λe) → R.

Lemma 12.17. For ξ, ξ′ ∈ KH(Be) and χ ∈ H, we have

(ξ|ξ′)Be = (ξ′|ξ)†Be
,(a)

(χξ|ξ′)Be = (ξ|χNξ′)Be .(b)

This follows from 12.12, 12.13, by arguments similar to those in 5.10, 5.12.

12.18. Let UH be the ring of power series in v−1 with coefficients in the ring RC .
Then RH = RC [v, v−1] is naturally a subring of UH . Let ŨH be the set of all
elements p̃ ∈ UH such that pp̃ ∈ RH for some p ∈ RH − {0}. Then ŨH may be
regarded as a subring of either UH or of the field R. Let p 7→ p(0) be the group
homomorphism RC → Z which sends a non-trivial irreducible representation of C
to 0 and sends the unit representation of C to 1.

Let ∂ : UH → Z((v−1)) be the group homomorphism defined by
∑

n∈Z pnv
n 7→∑

n∈Z p
(0)
n vn. Let

B±
Be

= {ξ ∈ KH(Be)|ξ̄ = ξ, ∂(ξ|ξ)Be ∈ 1 + v−1Z[v−1]},
B±

Λe
= {ξ ∈ KH(Λe)|ξ̄ = ξ, (ξ|ξ)Λe ∈ ŨH , ∂(ξ|ξ)Λe ∈ 1 + v−1Z[[v−1]]}.
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Conjecture 12.19. (a) B±
Be

is a signed basis of the A-module KH(Be).
(b) If ξ, ξ′ ∈ B±

Be
and ξ′ 6= ±ξ, then ∂(ξ|ξ′)Be ∈ v−1Z[v−1].

(c) B±
Λe

is a signed basis of the A-module KH(Λe).
(d) If ξ, ξ′ ∈ ΛBe and ξ′ 6= ±ξ, then (ξ|ξ′)Λe ∈ ŨH and ∂(ξ|ξ′)Λe ∈ v−1Z[[v−1]].
(e) For any ξ ∈ B±

Be
there exists ξ̃ ∈ B±

Λe
such that ∂(ξ||ξ̃) = 1 and ∂(ξ′||ξ̃) = 0

for all ξ′ ∈ B±
Be
− {±ξ}.

(f) ξ̃ in (e) is unique and ξ 7→ ξ̃ is a bijection B±
Be

∼−→ B±
Λe

.

For e = 0, this holds by 10.16 and 3.14.
Now RH has an obvious A-basis (λ) where λ runs over the one-dimensional

representations of C. For λ as above we have from the definition:

ξ ∈ B±
Be

=⇒ λξ ∈ B±
Be
,

ξ ∈ B±
Λe

=⇒ λξ ∈ B±
Λe
.

12.20. Assuming the conjecture, we see that {ξ ∈ KH(Be)|∂(ξ|ξ)Be ∈ Z[v−1]} is a
Z[v−1]-submodule of KH(Be) and that B±

Be
is a signed basis for it.

On the other hand, assuming only that 12.19(b) holds and that there exists a
basis β of the A-module KH(Be) such that β ⊂ B±

Be
, we can show that B±

Be
is equal

to the signed basis ±β (so that 12.19(a) holds).
Indeed, let ξ ∈ B±

Be
. By our assumption, we have ξ =

∑
b∈β cbb where cb ∈ A

are zero for all but finitely many b. Since not all cb are 0, we can find n ∈ Z such
that cb ∈ vnZ[v−1] for all b and cb /∈ vn−1Z[v] for some b. Let cb,n ∈ Z be such
that cb = cb,nv

n mod vn−1Z[v−1] for all b. We have cb,n 6= 0 for some b. Hence,∑
b c

2
b,n > 0. Using our assumptions we see that

∂(ξ|ξ)Be = v2n
∑

b

c2b,n mod v2n−1Z[v−1].

On the other hand, ∂(ξ|ξ)Be = 1 mod v−1Z[v−1]. It follows that n = 0 and∑
b c

2
b,n = 1. In particular, we have cb ∈ Z[v−1] for all b. Since ξ̄ = ξ, we must have

c̄b = cb; hence cb ∈ Z for all b. We then have
∑

b c
2
b = 1; hence cb = 0 for all b but

one for which cb = ±1. Thus, ξ ∈ ±β as claimed.

12.21. We consider the example where e is a regular nilpotent element. Let b0

be the unique Borel subalgebra that contains e. In this case Be = {b0} and Λe =
{(e, b0)} are points. We have C = 1 and H = C∗. Hence, KH(Be) = A. If
L ∈ VecG(B), then the restriction of L to {b0} is vn(L) ∈ VecC∗(point) where
n(L) ∈ Z. Note that L 7→ n(L) is a group homomorphism X → Z. For any λ ∈ C∗,
ζ

(
λ 0
0 λ−1

)
acts on the fibre Lb0 by λn(L). If L = Li, then Lb0 = p/b0 where p ∈ Pi

contains b0. Since Adζ
(

λ 0
0 λ−1

)
(f) = λ−2f , we must have n(Li) = −2 for any

i. This condition determines completely the homomorphism n. If i ∈ I, then T̃σi

acts on KH(Be) as multiplication by some element a ∈ A (necessarily v or −v−1).
From the relation 1.18(b) we see that we must have vn(LxL−1

i ) = a−1vn(Lx)a−1 if
α̌i(x) = 1. Thus, a−2 = vn(L−1

i ) = v2; hence a = −v−1. It follows that T̃−1
w0

acts on KH(Be) as multiplication by (−v)ν . Note that $∗ is the identity map on
KH(Be) and DBe : A → A takes vn → v−n for all n. It follows that in this case
− : KH(Be) → KH(Be) is the homomorphism A → A which takes vn → v−n for all
n. In this case, Conjecture 12.19 holds trivially; B±

Be
= B±

Λe
consists of ±1 ∈ A.
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12.22. Let C̄ be the image of C in the adjoint group of G and let H̄ = C̄ ×C∗.
The action of H on Be,Λe factors through the quotient H̄ of H .

Let B±
Be,ad be the set of all ξ ∈ B±

Be
which are in the image of the obvious

homomorphism KH̄(Be) → KH(Be). Let B±
Λe,ad be the set of all ξ ∈ B±

Λe
which

are in the image of the obvious homomorphism KH̄(Λe) → KH(Λe). We now state
a conjecture that complements 12.19.

Conjecture 12.23. (a) B±
Be,ad is a signed basis of the A-module Im(KH̄(Be) →

KH(Be)); B±
Λe,ad is a signed basis of the A-module Im(KH̄(Λe) → KH(Λe)).

(b) From B±
Be,ad one can extract uniquely a basis BBe,ad of the A-module

Im(KH̄(Be) → KH(Be)) and from B±
Λe,ad one can extract uniquely a basis

BΛe,ad of the A-module Im(KH̄(Λe) → KH(Λe)) so that the following hold:

(−1)b(e)v2b(e)C ∈ BΛe,ad;

BBe,ad,BΛe,ad correspond to each other under the bijection 12.19(f); for
any β, β′ in BBe,ad, we have ∂(β, β′)Be ∈ N[v, v−1].

Again, this holds for e = 0.

13. An example in D4

13.1. In this section we assume that G is almost simple of type D4. The elements
of I are denoted 0, 1, 2, 3 where σ1, σ2, σ3 commute with each other.

We fix (e, f, h), C, c as in 11.1; we assume that e is a subregular nilpotent element
of g. Hence, (e, f, h) is distinguished, C = {1}, c = 0 and H = C∗. In this case, Be

has irreducible components Vi (indexed by i ∈ I). Moreover, Vi is a single fibre of
πi : B → Pi (hence is a P 1). If i ∈ I − {0}, then V0, Vi intersect in a unique point
p0i. The H-action on Be is trivial on V0. For each i ∈ I − {0}, the H-action on
Vi has exactly two fixed points. These are pi0, qi. We have BH

e = V0 ∪ {q1, q2, q3}.
Consider the homomorphism⊕

i6=0

KH(pi0)
a−→ ⊕iKH(Vi)

with components KH(pi0) → KH(Vi) for any i 6= 0 and KH(pi0) → KH(V0). (One
is the direct image map, the other is minus the direct image map.)

Lemma 13.2. a is injective and KH(Be) = coker(a).

This is easily checked.

13.3. For any i ∈ I, we define a homomorphism ni : X → Z and a connected
component µi of BH

e as follows.

n0(αj) = −2 if j 6= 0; n0(α0) = 0; µ0 = V0.

ni(x) = n0(σix); µi = qi for i 6= 0.

Lemma 13.4. Let L = Lx ∈ X and let b ∈ µi ⊂ BH
e . We have Lb = vni(x).

This is easily checked.
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13.5. Let C be a curve isomorphic to P 1 with an action of C∗. Let p 6= p′ be fixed
points for this action. Assume that the weight of the tangent action at p (resp. p′)
is n ≥ 0 (resp. −n).

For m ≥ 0, let Om be the line bundle on C whose space of sections has dimension
m+ 1. For m < 0 let Om be the dual of O−m

i .
If mn is even, we can regard Om has an object of VecC∗(C) such that the weight

of C∗ on the fibre Om
p (resp. on the fibre Om

p′ ) is nm/2 (resp. −nm/2).
Let us identify RC∗ = A in such a way that vm corresponds to the one-

dimensional representation of weight m of C∗.
Let jp : {p} → C, jp′ : {p′} → C be the inclusions. If n is even, we have exact

sequences of coherent sheaves

0 → v−n/2O−1 → O0 → jp
∗(C) → 0, 0 → vn/2O−1 → O0 → jp′

∗ (C) → 0,

Hence,

jp
∗(C) = O0 − v−n/2O−1 ∈ KC∗(C), jp′

∗ (C) = O0 − vn/2O−1 ∈ KC∗(C).

We have Os +O−s = vns/2 + v−ns/2.

13.6. The discussion in 13.5 can be applied to C = Vi. In this case we write Om
i

instead of Om.
Assume that i 6= 0. We have n = 2; hence Os

i + O−s
i = vs + v−s. The weight of

the H-action on the tangent space at qi is 2 and on the tangent space at pi0 is −2.
Hence,

jqi
∗ (C) = O0

i − v−1O−1
i ∈ KC∗(Vi), jpi0

∗ (C) = O0
i − vO−1

i ∈ KC∗(Vi).

Now assume that i = 0. Then jpi0
∗ (C) = O0

0 −O−1
0 ∈ KC∗(V0).

13.7. Let om
i ∈ CohH(Be) be the image of Om

i under the direct image map induced
by the inclusion Vi ⊂ Be. From 13.2 we see that KH(Be) is the A-module with
generators om

i (i ∈ I,m ∈ Z) and relations:

o00 − o−1
0 = o0i − vo−1

i for i = 1, 2, 3,

om+1
i + om−1

i = (v + v−1)om
i for i = 1, 2, 3,

om+1
0 + om−1

0 = 2om
0 .

In fact, an A-basis is given by o−1
i , i = 0, 1, 2, 3 and p = o00 − o−1

0 .

13.8. For x ∈ X the restriction of Lx to Vi is vsO
α̌i(x)
i where s is determined as

follows.
If i 6= 0, then (Lx)pi0 = vn0(x) = vsv−α̌i(x); hence s = n0(x) + α̌i(x).
If i = 0, then (Lx)p10 = vn0(x) = vs; hence s = n0(x).
Thus, the restriction of Lx on Vi is

vn0(x)+α̌i(x)O
α̌i(x)
i if i = 1, 2, 3,

vn0(x)O
α̌0(x)
0 if i = 0.

Lemma 13.9. (a) θxp = vn0(x)p.
(b) Assume that i 6= 0 and α̌i(x) = 1. We have

θxo
−1
i = vn0(x)+1(vo−1

i + p), θx−αio
−1
i = vn0(x)+1(v−1o−1

i − p).
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(c) Assume that i = 0 and α̌0(x) = 1. We have

θxo
−1
0 = vn0(x)(o−1

0 + p), θx−α0o
−1
0 = vn0(x)(o−1

0 − p).

(a) follows from the fact that p = j∗C where j : {pi0} → Be is the inclusion. In
the case (b) we have

θxo
−1
i = vn0(x)+α̌i(x)o

−1+α̌i(x)
i = vn0(x)+1o0i = vn0(x)+1(vo−1

i + p),

θx−αio
−1
i = vn0(x−αi)+α̌i(x−αi)o

−1+α̌i(x−αi)
i

= vn0(x)+1o−2
i = vn0(x)+1(−o0i + (v + v−1)o−1

i ) = vn0(x)+1(v−1o−1
i − p).

In the case (c) we have
θxo

−1
i = vn0(x)o

−1+α̌0(x)
0 = vn0(x)o00 = vn0(x)(o−1

i + p),
θx−α0o

−1
i = vn0(x−α0)o

−1+α̌0(x−α0)
0 = vn0(x)o−2

0 = vn0(x)(o−1
0 − p).

Lemma 13.10. T̃σio
−1
i = vo−1

i for i = 0, 1, 2, 3.

This can be deduced from the knowledge (Section 10) of the action of T̃σi on
KG(B).

Lemma 13.11. For i 6= 0 we have T̃σip = −v−1p.

By 10.22(a), the image of KC∗(Vi) → KC∗(Be) (direct image) is stable under
T̃σi . Hence, T̃σip = ap+ bo−1

i for some a, b ∈ A. Let x be such that α̌i(x) = 1. We
have θx−αi T̃σip = (T̃σi + v−1 − v)θxp. Hence,

aθx−αip+ bθx−αio
−1
i = (T̃σi + v−1 − v)vn0(x)p,

avn0(x−αi)p+ bvn0(x)+1(v−1o−1
i − p) = vn0(x)(ap+ bo−1

i + v−1p− vp),

av2p+ bv(v−1o−1
i − p) = ap+ bo−1

i + v−1p− vp,

av2 − bv = a+ v−1 − v.

From 13.10 we see that T̃σi acts as a triangular matrix with respect to p, o−1
i . This

forces a = −v−1 (hence b = 0) or a = v (hence b = v2 − v−2). This last case is
impossible since it would imply that T̃σi acts as a non-semisimple 2 × 2 matrix.
Hence, a = −v−1.

Lemma 13.12. We have T̃σ0p = −v−1p+ (v − v−1)o−1
0 .

By 10.22(a), the image of KC∗(V0) → KC∗(Be) (direct image) is stable under
T̃σ0 . Hence, T̃σ0p = ap+ bo−1

0 for some a, b ∈ A. Let x be such that α̌0(x) = 1. We
have θx−α0 T̃σ0p = (T̃σ0 + v−1 − v)θxp. Hence,

aθx−α0p+ bθx−α0o
−1
0 = (T̃σi + v−1 − v)vn0(x)p,

avn0(x−α0)p+ bvn0(x)(o−1
0 − p) = vn0(x)(ap+ bo−1

0 + v−1p− vp),

ap+ b(o−1
0 − p) = ap+ bo−1

0 + v−1p− vp.

Hence, b = v − v−1. As in the proof of 13.11, we must have a = v or a = −v−1. If
a = v, then T̃σ0 would act as a non-semisimple 2× 2 matrix (since b 6= 0). This is
impossible. Thus a = −v−1.

Lemma 13.13. For i 6= 0 we have T̃σ0o
−1
i = −v−1o−1

i − o−1
0 .
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By 10.22(a), the image ofKC∗(V0∪Vi) → KC∗(Be) (direct image) is stable under
T̃σ0 . Hence, T̃σ0o

−1
i = ao−1

i + bp + co−1
0 for some a, b, c ∈ A. Let x be such that

α̌0(x) = 1, α̌i(x) = 1. We have

θx−α0 T̃σ0o
−1
i = (T̃σ0 + v−1 − v)θxo

−1
i ,

θx−α0(ao
−1
i + bp+ co−1

0 ) = vn0(x)+1(T̃σ0 + v−1 − v)(vo−1
i + p).

Now

θx−α0o
−1
i = θxθ−α0o

−1
i = θxv

n0(−α0)+1(vo−1
i + p)

= v(vn0(x)+1(v2o−1
i + vp) + vn0(x)p) = vn0(x)(v4o−1

i + v3p+ vp),

avn0(x)(v4o−1
i + v3p+ vp) + bvn0(x−α0)p+ cvn0(x)(o−1

0 − p) = vn0(x)+1

× (avo−1
i + bvp+ cvo−1

0 + o−1
i − v2o−1

i − v−1p+ (v − v−1)o−1
0 + v−1p− vp),

a(v4o−1
i + v3p+ vp) + bp+ c(o−1

0 − p)

= v(avo−1
i + bvp+ cvo−1

0 + o−1
i − v2o−1

i − v−1p+ (v − v−1)o−1
0 + v−1p− vp).

The lemma follows.

Lemma 13.14. For i 6= 0 we have T̃σio
−1
0 = −v−1o−1

0 − o−1
i .

By 10.22(a), the image ofKC∗(V0∪Vi) → KC∗(Be) (direct image) is stable under
T̃σi . Hence, T̃σio

−1
0 = ao−1

0 + bp + co−1
i for some a, b, c ∈ A. Let x be such that

α̌0(x) = 1, α̌i(x) = 1. We have

θx−αi T̃σio
−1
0 = (T̃σi + v−1 − v)θxo

−1
0 ,

θx−αi(ao
−1
0 + bp+ co−1

i ) = vn0(x)(T̃σi + v−1 − v)(o−1
0 + p).

Now

θx−αio
−1
0 = θxθ−αio

−1
0 = θxv

n0(−αi)(o−1
0 + p)

= v2(vn0(x)(o−1
0 + p) + vn0(x)p) = vn0(x)(v2o−1

0 + 2v2p),

avn0(x)(v2o−1
0 + 2v2p) + bvn0(x−αi)p+ cvn0(x)+1(v−1o−1

i − p)

= vn0(x)(ao−1
0 + bp+ co−1

i + v−1o−1
0 − vo−1

0 − v−1p+ v−1p− vp),

a(v2o−1
0 + 2v2p) + bv2p+ cv(v−1o−1

i − p)

= ao−1
0 + bp+ co−1

i + v−1o−1
0 − vo−1

0 − v−1p+ v−1p− vp.

It follows that a = −v−1 and c = b(v − v−1)− 1.
The endomorphism T̃σi of our module of rank 3 modulo the span of o−1

i is of
the form p 7→ −v−1p, o−1

0 7→ −v−1o−1
0 + bp. But it must be given by a semisimple

2× 2-matrix. Hence, b = 0. It follows that c = −1. The lemma is proved.

Lemma 13.15. If i, j, 0 are distinct, we have T̃σio
−1
j = −v−1o−1

j .

By 10.22(a), the image ofKC∗(Vi∪Vj) → KC∗(Be) (direct image) is stable under
T̃σi . Hence, T̃σio

−1
j = ao−1

j + bp + co−1
i for some a, b, c ∈ A. Let x be such that
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α̌i(x) = 1, α̌j(x) = 1. We have

θx−αi T̃σio
−1
j = (T̃σi + v−1 − v)θxo

−1
j ,

θx−αi(ao
−1
j + bp+ co−1

i ) = vn0(x)+1(T̃σi + v−1 − v)(vo−1
j + p),

avn0(x−αi)+1(vo−1
j + p) + bvn0(x−αi)p+ cvn0(x)+1(v−1o−1

i − p)

= vn0(x)+1(vao−1
j + vbp+ vco−1

i + o−1
j − v2o−1

j − v−1p+ v−1p− vp),

av2(vo−1
j + p) + bvp+ c(v−1o−1

i − p)

= vao−1
j + vbp+ vco−1

i + o−1
j − v2o−1

j − v−1p+ v−1p− vp.

It follows that a = −v−1, c = 0. The endomorphism T̃σi of our module of rank 3
modulo the span of o−1

i is of the form p 7→ −v−1p, o−1
j 7→ −v−1o−1

j + bp. But it
must be given by a semisimple 2× 2-matrix. Hence, b = 0. The lemma is proved.

Lemma 13.16. The action of T̃−1
w0

on KH(Be) is given as follows.

(a) T̃−1
w0

(o−1
i ) = −v6o−1

i for i = 0, 1, 2, 3,
(b) T̃−1

w0
(p) = v12p+ v6(v2 +1)(1− v4)o−1

0 + v6(v2 + 1)(v− v3)(o−1
1 + o−1

2 + o−1
3 ).

The A-submodule (of rank 4) spanned by o−1
i (i ∈ I) is stable under T̃σi for i =

0, 1, 2, 3. Under the specialization v = 1 this becomes the reflection representation
of W tensor the sign representation. On this module, T̃−1

w0
must act as a scalar and

we clearly have det T̃w0 = (−v−2)12 = v−24; hence T̃−1
w0

= ±v6. Setting v = 1 we
see that ± = −1. Hence, (a) follows.

We can find uniquely a, b ∈ Q(v) so that the vector

ξ = p+ ao−1
0 + b(o−1

1 + o−1
2 + o−1

3 )

satisfies T̃σiξ = −v−1ξ for i ∈ I (after extending the scalars to Q(v)). Indeed, the
condition that

T̃σ0(p+ ao−1
0 + bo−1

1 + bo−1
2 + bo−1

3 )

= −v−1p+ (v − v−1)o−1
0 + avo−1

0

+ b(−v−1o−1
1 − o−1

0 − v−1o−1
2 − o−1

0 − v−1o−1
3 − o−1

0 )

= −v−1(p+ ao−1
0 + bo−1

1 + bo−1
2 + bo−1

3 )

and

T̃σ1(p+ ao−1
0 + bo−1

1 + bo−1
2 + bo−1

3 )

= −v−1p− av−1o−1
0 − ao−1

1 + bvo−1
1 − v−1bo−1

2 − v−1bo−1
3

= −v−1p− v−1ao−1
0 − v−1bo−1

1 − v−1bo−1
2 − v−1bo−1

3

is that (v − v−1) + av − 3b = −v−1a and −a+ bv = −v−1b, so that

a =
1− v4

v4 − v2 + 1
, b =

v − v3

v4 − v2 + 1
.

We have T̃−1
w0
ξ = v12ξ. Hence,

T̃−1
w0

(p+ ao−1
0 + b(o−1

1 + o−1
2 + o−1

3 )) = v12(p+ ao−1
0 + b(o−1

1 + o−1
2 + o−1

3 ))

= T̃−1
w0

(p)− v6(ao−1
0 + b(o−1

1 + o−1
2 + o−1

3 )),

T̃−1
w0

(p) = v12p+ (v12 + v6)ao−1
0 + (v12 + v6)b(o−1

1 + o−1
2 + o−1

3 ).
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The lemma follows.

13.17. If a, b are as in 13.16, we have

T̃w0(p+ ao−1
0 + b(o−1

1 + o−1
2 + o−1

3 )) = v−12(p+ ao−1
0 + b(o−1

1 + o−1
2 + o−1

3 ))

= T̃w0(p)− v−6(ao−1
0 + b(o−1

1 + o−1
2 + o−1

3 )),

T̃w0(p) = v−12p+ (v−12 + v−6)ao−1
0 + (v−12 + v−6)b(o−1

1 + o−1
2 + o−1

3 ),

T̃w0(p) = v−12p+ v−12(v2 + 1)(1− v4)o−1
0

+ v−12(v2 + 1)(v − v3)(o−1
1 + o−1

2 + o−1
3 ).

Lemma 13.18. Consider an RH-bilinear inner product (, ) on KH(Be) such that
(χξ, ξ′) = (ξ, χNξ′) and (ξ, ξ′) = (ξ′, ξ) for ξ, ξ′ ∈ KH(Be), χ ∈ H. There exists
c ∈ A such that

(a) (o−1
0 , o−1

i ) = c for i = 1, 2, 3,
(b) (o−1

i , o−1
i ) = −c(v + v−1) for i = 0, 1, 2, 3,

(c) (o−1
j , o−1

i ) = 0 for i, j, 0 distinct,
(d) (p, o−1

i ) = 0 for i = 1, 2, 3,
(e) (p, o−1

0 ) = −c(v − v−1),
(f) (p, p) = cv−6(v2 + 1)(1− v4)(v − v−1).

For i 6= 0 we have (T̃σio
−1
0 , o−1

i ) = (o−1
0 , T̃σio

−1
i ); hence

(−v−1o−1
0 − o−1

i , o−1
i ) = (o−1

0 , vo−1
i ), (o−1

i , o−1
i ) = −(v + v−1)(o−1

0 , o−1
i ).

Similarly, (o−1
0 , o−1

0 ) = −(v + v−1)(o−1
0 , o−1

i ); (a),(b) follow.
For i, j, 0 distinct we have

(T̃σio
−1
j , o−1

i ) = (o−1
j , T̃σio

−1
i ), (−v−1o−1

j , o−1
i ) = (o−1

j , vo−1
i ).

Hence, (v + v−1)(o−1
j , o−1

i ) = 0 and (c) follows. For i = 1, 2, 3, we have

(T̃σip, o
−1
i ) = (p, T̃σio

−1
i ), (−v−1p, o−1

i ) = (p, vo−1
i )

and (d) follows. We have

(T̃σ0p, o
−1
0 ) = (p, T̃σ0o

−1
0 ), (−v−1p+ (v − v−1)o−1

0 , o−1
0 ) = (p, vo−1

0 ).

Hence,

(v + v−1)(p, o−1
0 ) = (v − v−1)(o−1

0 , o−1
0 ) = −c(v − v−1)(v + v−1)

and (e) follows.
Assume that α̌0(x) = 1. Then

(θxp, o
−1
0 ) = (p, T̃−1

w0
θxT̃w0o

−1
0 ) = (T̃−1

w0
p,−θxv

−6o−1
0 ),

vn0(x)(p, o−1
0 ) = (v12p+ v6(v2 + 1)(1− v4)o−1

0

+ v6(v2 + 1)(v − v3)(o−1
1 + o−1

2 + o−1
3 ),−v−6vn0(x)(o−1

0 + p)),

− c(v − v−1) = cv6(v − v−1) + c(v2 + 1)(1 − v4)(v − v−1)− v6(p, p)

+ c(v2 + 1)(1− v4)(v + v−1)− 3c(v2 + 1)(v − v3)

and (f) follows. The lemma is proved.

Lemma 13.19. We have (, )Be = (, ) with c = −v5.
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By 13.18, it is enough to show that (o−1
0 , o−1

i )Be = −v5 for i = 1, 2, 3. Since
V0, Vi intersect transversally (at pi0) in Λe, we have (o−1

0 : k∗(o−1
i )) = vN where N

is the weight of the C∗-action on (o−1
0 )pi0 ⊗ (o−1

i )pi0 , that is N = 0 + 1 = 1. We
have T̃w0o

−1
i = −v−6o−1

i ; hence

(o−1
0 , o−1

i )Be = (−v)11−1(o−1
0 : (−v−6)o−1

i ) = −v4vN = −v5,

since d(e) = 11, b(e) = 1.

Proposition 13.20. B±
Be

is the signed basis of the A-module KH(Be) consisting
of ± the elements

v−3o−1
i for i ∈ I, and p− (1 + v−2)o−1

0 − v−1(o−1
1 + o−1

2 + o−1
3 ).

In this proof we write (, ) instead of (, )Be . We have

o−1
i = (−v)−12T̃−1

w0
(−o−1

i ) = (−v)−12(−v6)(−o−1
i ) = v−6o−1

i ;

hence v−3o−1
i = v−3o−1

i . We have (v−3o−1
i , v−3o−1

i ) = v−6v5(v + v−1) = 1 + v−2.
Hence, v−3o−1

i ∈ B±
Be

. We have

p̄ = (−v)−12T̃−1
w0
p

= p+ v−6(v2 + 1)(1− v4)o−1
0 + v−6(v2 + 1)(v − v3)(o−1

1 + o−1
2 + o−1

3 )

= p+ (v−4 + v−6 − 1− v−2)o−1
0 + (v−5 − v−1)(o−1

1 + o−1
2 + o−1

3 ).

Hence, p−(1+v−2)o−1
0 −v−1(o−1

1 +o−1
2 +o−1

3 ) is fixed by −. The self-inner product
of p− (1 + v−2)o−1

0 − v−1(o−1
1 + o−1

2 + o−1
3 ) is again 1 + v−2 (by calculation). Thus

the elements described in the proposition belong to B±
Be

. They form an A-basis of
KC∗(Be). Next note that

(v−3o−1
i , v−3o−1

j ) = 0 for i, j, 0 distinct,
(v−3o−1

i , v−3o−1
0 ) = −v−1 for i 6= 0,

(v−3o−1
i , p− (1 + v−2)o−1

0 − v−1(o−1
1 + o−1

2 + o−1
3 )) = 0 for i 6= 0,

(v−3o−1
0 , p− (1 + v−2)o−1

0 − v−1(o−1
1 + o−1

2 + o−1
3 )) = −v−1.

Now the proposition follows from the argument in 12.20.

13.21. Let V ′0 = Λe,µ0 . (See 13.3, 11.3.) Then V ′0 is naturally a line bundle over
V0 (see 11.4(b)). For i = 1, 2, 3, let V ′i be the C∗-stable line in Λe that flows to qi
for λ→∞ (see 11.4(b)). Let j′i : V ′i ⊂ Λe be the inclusion. We define a line bundle
Di ∈ VecH(Λe) such that there is an exact sequence in CohH(Λe)

0 → Di → C → j′i∗C → 0.

If x ∈ X , we can regard Lx as an object of VecH(Λe) via inverse image under
Λe → B, (y, b) 7→ b.

Let x0 ∈ X be such that α̌0(x0) = −1, α̌i(x0) = 0 for i 6= 0. Then x0 =
−2α0 − α1 − α2 − α3; hence n0(x0) = 6.

Lemma 13.22. KH(Λe) has an A-basis consisting of Di (i = 1, 2, 3),C, Lx0.

This follows easily from 11.4(c).
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13.23. Let di = j′i∗C ∈ KH(Λe). We have
(p : di) = 0,
(o−1

j : di) = 0 for j ∈ I − {i} (since supports are disjoint),
(o−1

i : di) = v−1, (since Vi, V
′
i intersect transversally at qi in Λe),

(p : C) = 1,
(o−1

i : C) = 0,
(we use 6.7 and the fact that the cohomology of P 1 with coefficients in

O−1 is zero.) We have
(p : Lx0) = vn0(x0) = v6,
(o−1

i : Lx0) = 0 for i 6= 0,
(o−1

0 : Lx0) = −v6;
(we use 6.7 and the fact that the cohomology of P 1 with coefficients in O−2 is −C).

13.24. We have
(p||C) = v10(T̃w0p : C) = v−2,
(o−1

i ||C) = 0, for i ∈ I,
(p− (1 + v−2)o−1

0 − v−1(o−1
1 + o−1

2 + o−1
3 )||C) = v−2.

13.25. For i = 1, 2, 3, we compute (using 13.16, 13.17)

(p||di) = v10(T̃w0p : di) = v10(v−12p+ v−12(v2 + 1)(1− v4)o−1
0

+ v−12(v2 + 1)(v − v3)(o−1
1 + o−1

2 + o−1
3 ) : di) = v−3(v2 + 1)(v − v3),

(o−1
j ||di) = v10(T̃w0o

−1
j ||di) = v10(−v−6o−1

j ||di) = 0, if j 6= i,

(o−1
i ||di) = v10(T̃w0o

−1
i ||di) = v10(−v−6o−1

i ||di) = −v10−6−1 = −v3,

(p− (1 + v−2)o−1
0 − v−1(o−1

1 + o−1
2 + o−1

3 )||di) = v−3(v2 + 1)(v − v3) + v2 = v−2.

Since Di = C− di, we have
(p− (1 + v−2)o−1

0 − v−1(o−1
1 + o−1

2 + o−1
3 )||Di) = 0,

(o−1
j ||Di) = 0 if j 6= i,

(o−1
i ||Di) = v3.

13.26. We have

(p||Lx0) = v10(T̃w0p : Lx0) = v10(v−12p+ v−12(v2 + 1)(1− v4)o−1
0

+ v−12(v2 + 1)(v − v3)(o−1
1 + o−1

2 + o−1
3 ) : Lx0)

= v6v−2(1 − (v2 + 1)(1− v4)) = v4(v6 + v4 − v2) = v10 + v8 − v6,

(o−1
i ||Lx0) = 0 for i 6= 0,

(o−1
0 ||Lx0) = v10(T̃w0o

−1
0 : Lx0) = v10(−v−6)(−v6) = v10,

(p− (1 + v−2)o−1
0 − v−1(o−1

1 + o−1
2 + o−1

3 )||Lx0)

= v10 + v8 − v6 − (1 + v−2)v10 = v10 + v8 − v6 − v10 − v8 = −v6.

Hence,
(p− (1 + v−2)o−1

0 − v−1(o−1
1 + o−1

2 + o−1
3 )||v−7Lx0 + vC) = 0,

(o−1
0 ||v−7Lx0 + vC) = v3,

(o−1
i ||v−7Lx0 + vC) = 0 for i 6= 0.
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Proposition 13.27. B±
Λe

is the signed basis of the A-module KH(Λe) consisting
of ± the line bundles Di (i = 1, 2, 3), v2C and the two-dimensional vector bundle
v−7Lx0 + vC.

We identify KH(Λe) with an A-lattice in the Q(v)-vector space
E = Q(v) ⊗A KH(Λe) (see 13.22) and KH(Be) with a sublattice of KH(Λe) via
k∗ (see 12.5, 11.8). There is a well defined symmetric Q(v)-bilinear form (, ) on E
whose restriction to KH(Λe) (resp. KH(Be)) is (, )Λe (resp. (, )Be). Using 13.24,
13.25, 13.26, we see that the elements

(a) Di(i = 1, 2, 3), v2C, v−7Lx0 + vC
form the basis of E dual to the basis
(b) v−3o−1

i (i = 1, 2, 3), p− (1 + v−2)o−1
0 − v−1(o−1

1 + o−1
2 + o−1

3 ), v−3o−1
0

with respect to (, ). (In particular, (, ) is non-singular on E.) Since the matrix of (, )
with respect to the basis (b) is congruent to the identity matrix modulo v−1Z[v−1]
(by 13.18, 13.19), its inverse, that is the matrix of (, ) with respect to the basis (a),
is congruent to the identity matrix modulo v−1Z[[v−1]].

In particular, (ξ, ξ) ∈ 1 + v−1Z[[v−1]] for all ξ in (a).
Using 12.14, we see that the elements ξ̄ with ξ in (a) form again the basis of E

dual to the basis (b) with respect to (, ). Since (, ) is non-singular on E, we must
have ξ̄ = ξ for ξ in (a).

We see therefore that ξ ∈ B±
Λe

for all ξ in (a). The elements (a) form a basis of
the A-module KH(Λe), by 13.22. By an argument similar to that in 12.20, we see
that any element in B±

Λe
is, up to sign, as in (a). The proposition is proved.

13.28. We see that in our case, Conjecture 12.19 holds. Note that Conjecture
12.23 also holds in our case: BBe,ad consists of

ξ = −v−3o−1
i (i = 1, 2, 3),−p+ (1 + v−2)o−1

0 + v−1(o−1
1 + o−1

2 + o−1
3 ), v−3o−1

0 ;

BΛe,ad consists of −Di(i = 1, 2, 3),−v2C, v−7Lx0 + vC.

13.29. The results of this section can be generalized to the case where G is of type
Dn or En and (e, f, h) is subregular. This will be discussed elsewhere.

14. Comments

14.1. This section contains a (non-rigorous) discussion of possible connections
with the theory [J1],[J2],[J3] of unrestricted representations of Lie algebras over k,
an algebraic closure of the field with p elements.

We assume that p is large enough. Let g′ be the Lie algebra of a semisimple
simply connected algebraic group G′ over k of the same type as G. For any linear
form χ on g′, let Uχ be the quotient of the enveloping algebra of g′ by the ideal
generated by the elements xp − x[p] − χ(x)p with x ∈ g′. (Here x 7→ x[p] is the
pth power map of g′ into itself.) Then Uχ is a finite dimensional algebra and any
simple g′-module can be regarded as a module over Uχ for a unique χ as above
(Kac-Weisfeiler). We fix χ and identify it with an element of g′ via the Killing
form. We assume that χ is nilpotent. Let C′ be a maximal torus of the centralizer
of χ in G′ and let C̄′ be the image of C′ in the adjoint group of G′. Let Cχ

be the category of Uχ-modules (of finite dimension over k) which are also C̄′-
modules in a compatible way (as explained in [J1]). We fix a “generic block” of this
category. Let I be an indexing set for the simple objects in this block. For i ∈ I,



368 G. LUSZTIG

let Li be the corresponding simple object of Cχ and let Qi be the corresponding
indecomposable projective object. For i ∈ I we have Qi =

∑
i′∈I ni,i′Li′ in the

appropriate Grothendieck group, where ni,i′ ∈ N are zero for all but finitely many
i′.

14.2. Let (e, f, h) be an sl2-triple in g. Let C and H = C × C∗ be as in 11.1.
We assume that the nilpotent element e ∈ g is of the same type as the nilpotent
element χ ∈ g′. We assume that Conjectures 12.19, 12.23 hold in our case. Let B
be an indexing set for BBe,ad and for BΛe,ad. For b ∈ B let βb be the corresponding
element of BBe,ad and let β̃b be the corresponding element of BΛe,ad. For b ∈ B we
can write k∗(βb) =

∑
b′∈BNb,b′β̃b′ where k∗ is as in 12.5 and Nb,b′ ∈ A are zero

for all but finitely many b′. The sum is taken in KH(Λe). From 12.23(b) (which
we assume) it follows that Nb,b′ ∈ N[v, v−1].

14.3. In the case where χ = 0, one can combine the known results on restricted
representations of g′ with the K-theory constructions in this paper to deduce that

(a) there exists a natural bijection ζ : I ∼−→ B such that ni,i′ = Nζ(i),ζ(i′)|v=1 for
all i, i′ ∈ I.

14.4. Let us now assume that χ is a nilpotent element of g′ which is regular inside
some Levi subalgebra l of a parabolic algebra of g′. Let Wl be the Weyl group of l.
It seems likely that the following generalization of 14.3(a) continues to hold:

(a) there exists a natural bijection ζ : I ∼−→ B such that ni,i′ = |Wl|Nζ(i),ζ(i′)|v=1

for all i, i′ ∈ I.
The factor |Wl| is needed in view of [J3, 11.18].

(Note that both I and B have natural actions of a free abelian group of rank
dimC′ (with finitely many orbits) and the bijection ζ should be compatible with
these actions.)

14.5. One could hope that the statement 14.4(a) remains true when χ is any
nilpotent element of g′ which is distinguished inside l (with l, |Wl| as in 14.4).

This would predict for example that, if g′ is of type D4 and χ is subregular, then
|I| = 5.
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