A KLOOSTERMAN SUM IN A RELATIVE TRACE FORMULA FOR $G L_{4}$

YANGBO YE

Abstract

We study a Kloosterman sum for $G L_{4}$ and prove that it is equal to an exponential sum over a quadratic number field. This identity has applications in a relative trace formula for $G L_{4}$ which might be used to give a new proof of quadratic base change and characterize its image.

1. Introduction

A main result of this article is the following identity of exponential sums.
Theorem 1. Let τ be a non-zero square-free integer which is not equal to 1. Let b be a non-zero integer and c a positive odd integer such that $(b, c)=(\tau, c)=1$. Then

$$
\begin{align*}
& \sum_{\substack{1 \leq x_{i} \leq c,\left(x_{i}, c\right)=1 \\
\text { for } i=1, \ldots, 4}} e^{2 \pi i\left(x_{1}+x_{2}+\bar{x}_{2} \bar{x}_{3}+x_{2} x_{3} \bar{x}_{4}+b \bar{x}_{1} x_{4}+b \bar{x}_{1} x_{3}\right) / c} \\
& =\sum_{\substack{1 \leq n, x_{1}, x_{2}, y_{1}, y_{2} \leq c,(n, c)=\left(x_{1}^{2}-\tau y_{1}^{2}, c\right)=\left(x_{2}^{2}-\tau y_{2}^{2}, c\right)=1, x_{1}^{2}-\tau y_{1}^{2} \equiv x_{2}^{2}-\tau y_{2}^{2}(\bmod c)}} e^{2 \pi i\left(n+b n\left(\overline{x_{1}^{2}-\tau y_{1}^{2}}\right)+2 \bar{n}\left(x_{1}+x_{2}\right)\right) / c} . \tag{1}
\end{align*}
$$

Here we denote by \bar{x} the inverse of x modulo c.
The sum on the left side of the above identity can be regarded as a generalization of the classical Kloosterman sum

$$
\sum_{\substack{1 \leq x \leq c,(x, c)=1}} e^{2 \pi i(x+b \bar{x}) / c}
$$

where $(b, c)=1$ and $x \bar{x} \equiv 1(\bmod c)$. We will see that it is indeed a Kloosterman sum for the group $G L_{4}$. The expression on the right side of (1) is an exponential sum taken over certain algebraic integers of the quadratic number field $\mathbb{Q}(\sqrt{\tau})$. Other identities of this kind have been studied by several authors including Zagier [24], Katz [12], Jacquet and Ye [9], Duke and Iwaniec [3], Ye [21] and [23], and Mao and Rallis [13]. Some of these known identities have applications in automorphic forms and representation theory. To look at similar applications of the identity in Theorem 1 let us consider its p-adic version.

Let F be a p-adic field of characteristic zero and $L=F(\sqrt{\tau})$ an unramified quadratic extension field of F with $\tau \in F$. Assume that $|2|_{F}=|\tau|_{F}=1$. Denote

[^0]by A the group of diagonal matrices in $G L_{4}$, by N the group of upper triangular matrices with unit diagonal entries in $G L_{4}$, and by $K(F)$ the maximal compact subgroup of $G L_{4}(F)$ which consists of matrices with entries in R_{F} and determinants in R_{F}^{\times}. Here R_{F} is the ring of integers in F and R_{F}^{\times}is the group of invertible elements in R_{F}. Let $w=\binom{1^{1}}{1^{1}}$ and $a=\operatorname{diag}\left(a_{1}, a_{1}, a_{2}, a_{2}\right)$ with $a_{1}, a_{2} \in F^{\times}$. Denote by $U_{w}(F)$ the subgroup of $N(F)$ consisting of matrices whose entries at $(1,2)$ and $(3,4)$ positions are both zero, and by $N_{w}(F)$ the subgroup of $N(L)$ defined by ${ }^{t} \bar{n} w n=w$.

Let ψ_{F} be a non-trivial character of F of order zero; hence ψ_{F} is trivial on R_{F} but non-trivial on $\varpi_{F}^{-1} R_{F}$, where ϖ_{F} is a prime element in F. Define a character θ_{F} on $N(F)$ by $\theta_{F}(n)=\psi_{F}\left(\sum_{1 \leq i<n} n_{i, i+1}\right)$ for $n=\left(n_{i j}\right) \in N(F)$.

Theorem 2. With the above assumptions, notation, and matrices w and a, for any $a_{1}, a_{2} \in F^{\times}$we have

$$
\begin{equation*}
\int_{\substack{u \in U_{w}(F), n \in N(F) \\{ }_{t} \text { uwan } \in K(F)}} \theta_{F}(u n) d u d n=\int_{\substack{n \in N_{w}(F) \backslash N(L), t_{\bar{n} w a n \in K(L)}}} \theta_{F}(n \bar{n}) d n \tag{2}
\end{equation*}
$$

The left side of (2) is a p-adic Kloosterman sum for $G L_{4}$ in the integral form as in Friedberg [4] and Stevens [14]. To see the significance of the identities in Theorems 1 and 2 , let us introduce a relative trace formula for $G L_{n}$ and look at its applications in representation theory.

Let E be an algebraic number field and $E^{\prime}=E(\sqrt{\tau})$ a quadratic extension of E with $\tau \in E^{\times}$. Denote by $E_{\mathbf{A}}$ and $E_{\mathbf{A}}^{\prime}$ the adele rings of E and E^{\prime}, respectively, and by $E_{\mathbf{A}}^{\times}$and $E_{\mathbf{A}}^{\prime \times}$ the idele groups of E and E^{\prime}, respectively. Then $E_{\mathbf{A}}$ is the restricted product of local fields E_{v} over all places v of E and $E_{\mathbf{A}}^{\prime}$ is the restricted product of local fields E_{w}^{\prime} over all places w of E^{\prime}. For $z=\prod_{w} z_{w}$ in $E_{\mathbf{A}}^{\prime}$ the Galois conjugation $z \mapsto \bar{z}$ is defined using the Galois conjugation on E^{\prime} over E. Denote by $\mathrm{N}_{E_{\mathbf{A}}^{\prime} / E_{\mathbf{A}}}$ the global norm map. Then the global norm-one group $E_{\mathbf{A}}^{\prime 1}$ is the kernel of $\mathrm{N}_{E_{\mathbf{A}}^{\prime} / E_{\mathbf{A}}}$, and we have $E_{\mathbf{A}}^{\prime 1}=\left\{z / \bar{z} \mid z \in E_{\mathbf{A}}^{\prime \times}\right\}$. If v is inert in E^{\prime}, we denote by E_{v}^{+}the group of elements of E_{v}^{\times}which are norms. Define $E_{\mathbf{A}}^{+}$as the group of $z=\prod_{v} z_{v} \in E_{\mathbf{A}}^{\times}$such that $z_{v} \in E_{v}^{+}$for every inert place v.

From the exact sequence

$$
1 \longrightarrow E_{\mathbf{A}}^{\prime 1} \longrightarrow E_{\mathbf{A}}^{\prime \times} \xrightarrow{\mathrm{N}_{E_{\mathbf{A}}^{\prime} / E_{\mathbf{A}}}} E_{\mathbf{A}}^{+} \longrightarrow 1
$$

we know that if an idele class character χ^{\prime} of E^{\prime} is trivial on $E_{\mathbf{A}}^{\prime 1}$, then there is an idele class character χ of E such that $\chi^{\prime}=\chi \circ \mathrm{N}_{E_{\mathbf{A}}^{\prime} / E_{\mathbf{A}}}$. This character χ is uniquely determined up to a multiplication by the idele class character η of E attached to the quadratic extension field E^{\prime}.

We note that E^{\times}and $E^{\prime \times}$ are indeed $G L_{1}(E)$ and $G L_{1}\left(E^{\prime}\right)$, respectively. Also, $E^{\prime 1}$ is actually the unitary group of one variable in E^{\prime} over E. This suggests a possible generalization of the above example to $G L_{n}$.

Let $S(E)$ be the set of invertible Hermitian matrices in $G L_{n}\left(E^{\prime}\right)$. For any $s \in$ $S(E)$ we denote by $H_{s}(E)$ the corresponding unitary group:

$$
H_{s}(E)=\left\{\left.h \in G L_{n}\left(E^{\prime}\right)\right|^{t} \bar{h} s h=s\right\}
$$

An automorphic irreducible cuspidal representation π^{\prime} of $G L_{n}\left(E_{\mathbf{A}}^{\prime}\right)$ with central character ω^{\prime} is said to be H_{s}-distinguished if the periodic integral

$$
\mu(\phi)=\int_{H_{s}(E) \backslash H_{s}\left(E_{\mathbf{A}}\right)} \phi(h) d h
$$

is a non-zero linear form on the space of π^{\prime}. Then the proposition below is a generalization of our example to $G L_{n}$.

Proposition 1. Let π^{\prime} be an H_{s}-distinguished representation of $G L_{n}\left(E_{\mathbf{A}}^{\prime}\right)$ with central character ω^{\prime} for a unitary group H_{s}. Then π^{\prime} is the quadratic base change of an automorphic irreducible cuspidal representation π of $G L_{n}\left(E_{\mathbf{A}}\right)$ with a central character ω. The central characters satisfy the condition $\omega^{\prime}=\omega \circ \mathrm{N}_{E_{\mathbf{A}}^{\prime} / E_{\mathbf{A}}}$.

In the case of $G L_{2}$ a representation π^{\prime} is H_{s}-distinguished if its Asai L-function has a pole at $s=1$ (Asai [2]). For $n>2$ a similar situation is also true. Therefore, Proposition 1 characterizes quadratic base change by analytic behavior of L-functions.

A proof of this proposition can be found in Harder, Langlands, and Rapoport [6] and Jacquet [7]. The converse of this proposition is expected to be true also but the proof appears much more difficult. For $G L_{2}$ the converse is proved in Harder, Langlands, and Rapoport [6], Ye [16] and [17], and Jacquet and Ye [8]. For $G L_{3}$ it is proved in a series of papers by Jacquet and Ye ([7], [9], [10], [11], and [18]).

The main technique used in [7] through [11] and [16] through [18] is a relative trace formula which is indeed an equality of two trace formulas. On one side is a Kuznetsov trace formula and on the other side is a so-called relative Kloosterman integral.

First let us look at the Kuznetsov trace formula for $G L_{n}$. Let $f=\prod_{v} f_{v}$ be a smooth function of compact support on $G L_{n}\left(E_{\mathbf{A}}\right)$. We want to assume that at any inert place v of E the local function f_{v} is supported on the group $G L_{n}^{+}\left(E_{v}\right)=$ $\left\{g \in G L_{n}\left(E_{v}\right) \mid \operatorname{det} g \in E_{v}^{+}\right\}$. Let χ be an idele class character of E. Then we define the kernel function

$$
\begin{equation*}
K_{f}(g, h)=\int_{Z^{+}(E) \backslash Z^{+}\left(E_{\mathbf{A}}\right)} \sum_{\xi \in G L_{n}(E)} f\left(z g^{-1} \xi h\right) \chi(z) d^{\times} z \tag{3}
\end{equation*}
$$

where $Z^{+}(E)$ is the set of matrices $\operatorname{diag}(z, \ldots, z)$ in the center $Z(E)$ of $G L_{n}(E)$ with z being in the subgroup E^{+}of E^{\times}consisting of norms. Let $\psi=\prod_{v} \psi_{v}$ be a non-trivial additive character of $E_{\mathbf{A}}$ trivial on E such that for almost all v the local character ψ_{v} has order zero, i.e., ψ_{v} is trivial on the ring of integer R_{v} of E_{v} but non-trivial on $\varpi_{v}^{-1} R_{v}$, where ϖ_{v} is a prime element in R_{v}. Denote by N the group of upper triangular matrices with unit diagonal entries. We define a character θ on N by $\theta(n)=\psi\left(\sum_{1 \leq i<n} n_{i, i+1}\right)$ for $n=\left(n_{i j}\right) \in N$. Then the Kuznetsov trace formula is given by the integral

$$
\begin{equation*}
\int_{N(E) \backslash N\left(E_{\mathbf{A}}\right)} \int_{N(E) \backslash N\left(E_{\mathbf{A}}\right)} K_{f}\left({ }^{t} n_{1}, n_{2}\right) \theta\left(n_{1}^{-1} n_{2}\right) d n_{1} d n_{2} . \tag{4}
\end{equation*}
$$

To have the relative Kloosterman integral, we set $S^{+}(E)$ to be the set of $s \in S(E)$ such that $\operatorname{det} s \in E^{+}$. Let $\Phi=\prod_{v} \Phi_{v}$ be a smooth function of compact support on
$S^{+}\left(E_{\mathbf{A}}\right)$. Now we define a kernel function

$$
K_{\Phi}(g)=\int_{Z^{+}(E) \backslash Z^{+}\left(E_{\mathbf{A}}\right)} \sum_{\xi \in S(E)} \Phi\left(z^{t} \bar{g} \xi g\right) \chi(z) d z
$$

and define the relative Kloosterman integral

$$
\begin{equation*}
\int_{N\left(E^{\prime}\right) \backslash N\left(E_{\mathbf{A}}^{\prime}\right)} K_{\Phi}(n) \theta(n \bar{n}) d n . \tag{5}
\end{equation*}
$$

The relative trace formula is then

$$
\begin{aligned}
& \int_{N(E) \backslash N\left(E_{\mathbf{A}}\right)} \int_{N(E) \backslash N\left(E_{\mathbf{A}}\right)} K_{f}\left({ }^{t} n_{1}, n_{2}\right) \theta\left(n_{1}^{-1} n_{2}\right) d n_{1} d n_{2} \\
& =\int_{N\left(E^{\prime}\right) \backslash N\left(E_{\mathbf{A}}^{\prime}\right)} K_{\Phi}(n) \theta(n \bar{n}) d n .
\end{aligned}
$$

Here the equality means that for a given smooth function $f=\prod_{v} f_{v}$ of compact support on $G L\left(n, F_{A}\right)$ there exists a smooth function $\Phi=\prod_{v} \Phi_{v}$ of compact support on $S\left(F_{A}\right)$ or a finite sum of these Φ, and vice versa, such that the above relative trace formula holds. There are restrictions on the way in which one chooses these functions:
(i) The matching of f and Φ should be made through matching of local functions f_{v} and Φ_{w}.
(ii) At an inert unramified non-Archimedean place v of E the characteristic function f_{0} of $K\left(E_{v}\right)$ should be matched with the characteristic function Φ_{0} of $K\left(E_{w}^{\prime}\right) \cap S\left(E_{v}\right)$.
(iii) At a non-Archimedean place v of E which splits into w_{1} and w_{2} the characteristic function of $K\left(E_{v}\right)$ should be matched with $\Phi_{1} \otimes \Phi_{2}$ via convolution where Φ_{i} is the characteristic function of $K\left(E_{w_{i}}^{\prime}\right) \cap S\left(E_{v}\right)$.
(iv) At an inert unramified non-Archimedean place v of E, a compactly supported bi- $K\left(E_{v}\right)$-invariant function f_{v} should be matched with a function Φ_{w} via the base change map of Hecke algebras (see Arthur and Clozel [1]).
(v) At a non-Archimedean place v of E which splits into w_{1} and w_{2} a compactly supported bi- $K\left(E_{v}\right)$-invariant function f_{v} should be matched with a function of the form $\Phi_{1} \otimes \Phi_{2}$ via convolution. Here the convolution is used as the base change map of Hecke algebras in splitting cases.

The matchings in (iv) and (v) are called the fundamental lemma of the relative trace formula while the matchings in (ii) and (iii) are called the fundamental lemma for unit elements of Hecke algebras. The splitting cases (iii) and (v) are easy. Proving the matching in (ii) and hence the the fundamental lemma for unit elements is the first step in establishing the relative trace formula. Once this has been done, one might be able to prove the matchings in (iv) using the techniques discussed in Ye [20]. One might then be able to deduce certain matchings in (i) from the fundamental lemma using the Shalika germ expansions introduced in Jacquet and Ye [10] and [11] and exponential sum expansions in Ye [19] and [20]. To apply the relative trace formula to base change problems one needs to study continuous spectrum of the relative trace following the work of Jacquet [7].

The present work is a step toward a proof of the matchings in (ii) for $G L_{4}$, i.e., the fundamental lemma for unit elements of Hecke algebras. More precisely, Theorem 2 proves the matchings in (ii) for $G L_{4}$ for certain local orbital integrals which will be defined below.

By the Bruhat decomposition the group $G L_{n}(E)$ can be decomposed into the disjoint union of double cosets ${ }^{t} N(E) w A(E) N(E)$, where w goes over the Weyl group W of the group A of diagonal matrices. Applying this decomposition to the sum in the kernel function $K_{f}(g, h)$ in (3) we can express the Kuznetsov trace formula in (4) as a sum of global orbital integrals

$$
\sum_{w} \sum_{a} \int_{Z^{+}\left(E_{\mathbf{A}}\right)} I(w a z, f) \chi(z) d z
$$

where

$$
I(w a, f)=\int_{\substack{u \in U_{w}\left(E_{\mathbf{A}}\right), n \in N\left(E_{\mathbf{A}}\right)}} f\left({ }^{t} u w a n\right) \theta(u n) d u d n
$$

Here the sums are taken over w and a of the form

$$
w=\left(\begin{array}{ccc}
w_{1} & & \tag{6}\\
& \ddots & \\
& & w_{r}
\end{array}\right), \quad a=\left(\begin{array}{ccc}
a_{1} & & \\
& \ddots & \\
& & a_{r}
\end{array}\right)
$$

where $w_{i}=\left({ }_{1} . \cdot^{1}\right) \in G L_{n_{i}}(E), a_{i}$ is in the center of $G L_{n_{i}}(E)$, and $n_{1}+\cdots+n_{r}=$ n. For such a w we denote by U_{w} the unipotent subgroup of $G L_{n}$ consisting of matrices $\left(\begin{array}{ccc}I_{1} & * & * \\ & \ddots & * \\ & & I_{r}\end{array}\right)$ where I_{i} is the identity matrix in $G L_{n_{i}}$. Note that in our computation other Weyl matrices w yield zero orbital integrals.

Similarly, using a double coset decomposition of $G L_{n}\left(E^{\prime}\right)$ the relative Kloosterman integral in (5) can be written as a sum of global orbital integrals

$$
\sum_{w} \sum_{a} \int_{Z^{+}\left(E_{\mathbf{A}}\right)} J(w a z, \Phi) \chi(z) d z
$$

where

$$
J(w a, \Phi)=\int_{N_{w}\left(E_{\mathbf{A}}\right) \backslash N\left(E_{\mathbf{A}}^{\prime}\right)} \Phi\left({ }^{t} \bar{n} w a n\right) \theta(n \bar{n}) d n .
$$

Here the sums are taken over the same w and a as above and $N_{w}\left(E_{\mathbf{A}}\right)$ is the subgroup of $N\left(E_{\mathbf{A}}^{\prime}\right)$ defined by ${ }^{t} \bar{n} w n=w$.

Consequently, the relative trace formula can be reduced to identities of global orbital integrals

$$
I(w a, f)=J(w a, \Phi)
$$

for any w and a as in (6) with a_{i} being in the center of $G L_{n_{i}}\left(E_{\mathbf{A}}\right)$. Expressing $I(w a, f)$ and $J(w a, \Phi)$ as products of local orbital integrals $I_{v}\left(w a, f_{v}\right)$ and $J_{w}\left(w a, \Phi_{w}\right)$, we need to prove that

$$
\begin{equation*}
I_{v}\left(w a, f_{v}\right)=J_{w}\left(w a, \Phi_{w}\right) \tag{7}
\end{equation*}
$$

for all w and a of the form (6) but with a_{i} being in the center of $G L_{n_{i}}\left(E_{w}\right)$, when v is inert in E^{\prime} with w lying above v. In the case of v being non-Archimedean and unramified, proving (7) for f_{v} being the characteristic function of $K\left(E_{v}\right)$ and Φ_{w} being the characteristic function of $K\left(E_{w}^{\prime}\right) \cap S\left(E_{v}\right)$ for all w is equivalent to proving the fundamental lemma for the unit elements of Hecke algebras.

Back to $G L_{4}$, one needs to prove (7) for the following w :

$$
\begin{aligned}
& w_{1}=\left(\begin{array}{llll}
& & & 1 \\
& & 1 & \\
& 1 & & \\
1 & & &
\end{array}\right), \quad w_{2}=\left(\begin{array}{llll}
& & 1 & \\
& 1 & & \\
1 & & & \\
& & & 1
\end{array}\right), \\
& w_{3}=\left(\begin{array}{lllll}
1 & & & \\
& & & & 1 \\
& & 1 & & \\
& 1 & &
\end{array}\right), \quad w_{4}=\left(\begin{array}{llll}
1 & 1 & & \\
& & & \\
& & & 1
\end{array}\right), \quad w_{5}=I .
\end{aligned}
$$

The case of w_{1} is trivial. The cases of w_{2} and w_{3} were proved in Ye [22]. In this article we will prove (7) for w_{4} with $E_{v}=F, E_{w}^{\prime}=L$, and $\psi_{v}=\psi_{F}$. Thus, the only remaining unproved case for the fundamental lemma of unit elements of Hecke algebras is $w_{5}=I$.

We want to point out that for the group $G L_{2}$, the non-trivial case for the fundamental lemma is similar to our case of w_{2}. For $G L_{3}$, the cases of $\left(\begin{array}{ll}1 & \\ 1^{1} & 1\end{array}\right)$ and $\left(\begin{array}{ccc}1 & & \\ & 1 & 1\end{array}\right)$ are again similar to our cases of w_{2} and w_{3}. The case of w_{4} does not appear in $G L_{2}$ and $G L_{3}$.

Exponential sums corresponding to w_{2} and w_{3} are hyper-Kloosterman sums which are studied by Katz [12], Friedberg [4], and Stevens [14]. The Kloosterman sum of the form on the left side of (2) for w_{4} in $G L_{4}$ has also been studied by Friedberg [4] and Stevens [14]. What is new in the present paper is its new expression given on the left side of (1). Also new in this paper is certainly the identity of exponential sums in Theorem 1. This identity can be regarded as a lifting of the exponential sum on the left side of (1) to a quadratic number field. Because of its connection with our relative trace formula, it might be a kind of manifestation of the underlying quadratic base change.

2. Proof of Theorem 1

We will use a local argument to prove the identity in Theorem 1. Let $\psi=$ $\psi_{\mathbb{R}} \prod_{p<\infty} \psi_{p}$ be an additive character of \mathbb{Q}_{A} which is trivial on \mathbb{Q} such that its real component is given by $\psi_{\mathbb{R}}(x)=e^{-2 \pi i x}$ and each p-adic local character ψ_{p} has order equal to 0 . Since ψ is trivial on \mathbb{Q}, for any $x \in \mathbb{Q}$ we have $e^{2 \pi i x}=\prod_{p<\infty} \psi_{p}(x)$. Recall that we assumed that c is odd and $(\tau, c)=1$. For any prime divisor p of c if $\left(\frac{\tau}{p}\right)=1$, then p splits in $E=\mathbb{Q}(\sqrt{\tau})$; if $\left(\frac{\tau}{p}\right)=-1$, then p is inert unramified in $E=\mathbb{Q}(\sqrt{\tau})$. In the former case $\mathbb{Q}_{p} \otimes_{\mathbb{Q}} E=E_{1 p} \oplus E_{2 p}$ is isomorphic to the direct sum of two copies of \mathbb{Q}_{p} while in the latter case $\mathbb{Q}_{p} \mathbb{Q}_{\mathbb{Q}} E=E_{p}$ is an unramified quadratic extension field of \mathbb{Q}_{p}. Now we can write the identity in (1) in terms of local products

$$
\begin{aligned}
\prod_{p \mid c} & \sum_{\substack{x_{i} \in R_{p}^{\times} /\left(1+c R_{p}\right) \\
\text { for } i=1, \ldots, 4}} \psi_{p}\left(\frac{1}{c}\left(x_{1}+x_{2}+\frac{1}{x_{2} x_{3}}+\frac{x_{2} x_{3}}{x_{4}}+\frac{b x_{4}}{x_{1}}+\frac{b x_{3}}{x_{1}}\right)\right) \\
& =\prod_{\substack{p \mid c,\left(\frac{\tau}{p}\right)=-1}} \sum_{\substack{x_{1}, x_{2} \in R_{E_{p}}^{\times} /\left(1+c R_{E_{p}}\right), m \in R_{p}^{\times} /\left(1+c R_{p}\right), x_{1} \bar{x}_{1} \in x_{2} \bar{x}_{2}\left(1+c R_{p}\right)}} \psi_{p}\left(\frac{m}{c}\left(1+\frac{b}{x_{1} \bar{x}_{1}}\right)\right) \psi_{p} \circ \operatorname{tr}_{E_{p} / \mathbb{Q}_{p}}\left(\frac{x_{1}+x_{2}}{c m}\right) \\
& \cdot \prod_{\substack{p \mid c,,\left(\frac{\tau}{p}\right)=1}} \sum_{\substack{m, x_{1}, x_{2}, y_{1}, y_{2} \in R_{p}^{\times} /\left(1+c R_{p}\right), x_{1} y_{1} \in x_{2} y_{2}\left(1+c R_{p}\right)}} \psi_{p}\left(\frac{m}{c}\left(1+\frac{b}{x_{1} y_{1}}\right)\right) \psi_{p}\left(\frac{x_{1}+x_{2}+y_{1}+y_{2}}{c m}\right) .
\end{aligned}
$$

We can rewrite the sums on both sides of the above identity as local integrals. Theorem 1 is thus reduced to local identities in the following two lemmas.

Lemma 1. Let F be a non-Archimedean local field of characteristic 0 with $|2|_{F}=1$. Let $L=F(\sqrt{\tau})$ be an unramified quadratic extension field of F with $\tau \in R_{F}^{\times}$. Denote by ψ_{F} a non-trivial character of F of order zero. For any $b \in R_{F}^{\times}$and $c \in \varpi_{F}^{C} R_{F}^{\times}$ with $C>0$ we have

$$
\begin{align*}
& \int_{\left(R_{F}^{\times}\right)^{4}} \psi_{F}\left(\frac{1}{c}\left(x_{1}+x_{2}+\frac{1}{x_{2} x_{3}}+\frac{x_{2} x_{3}}{x_{4}}+\frac{b x_{4}}{x_{1}}+\frac{b x_{3}}{x_{1}}\right)\right) d x_{1} d x_{2} d x_{3} d x_{4} \tag{8}\\
& =q_{F}^{C} \int_{\substack{m \in R_{F}^{\times}, x_{1}, x_{2} \in R_{L}^{\times}, x_{1} \bar{x}_{1} \in x_{2} \bar{x}_{2}\left(1+\varpi_{F}^{C} \\
R_{F}\right)}} \psi_{F}\left(\frac{m}{c}\left(1+\frac{b}{x_{1} \bar{x}_{1}}\right)\right) \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{x_{1}+x_{2}}{c m}\right) d m d x_{1} d x_{2} .
\end{align*}
$$

Lemma 2. Let F be a non-Archimedean local field of characteristic 0 with $|2|_{F}=$ 1. Denote by ψ_{F} a non-trivial character of F of order 0 . For any $b \in R_{F}^{\times}$and $c \in \varpi_{F}^{C} R_{F}^{\times}$with $C>0$ we have

$$
\begin{aligned}
& \int_{\left(R_{F}^{\times}\right)^{4}} \psi_{F}\left(\frac{1}{c}\left(x_{1}+x_{2}+\frac{1}{x_{2} x_{3}}+\frac{x_{2} x_{3}}{x_{4}}+\frac{b x_{4}}{x_{1}}+\frac{b x_{3}}{x_{1}}\right)\right) d x_{1} d x_{2} d x_{3} d x_{4} \\
& =q_{F}^{C} \int_{\substack{m, x_{1}, x_{2}, y_{1}, y_{2} \in R_{F}^{\times} \\
x_{1} y_{1} \in x_{2} y_{2}\left(1+\varpi_{F}^{C} R_{F}\right)}} \psi_{F}\left(\frac{m}{c}\left(1+\frac{b}{x_{1} y_{1}}\right)\right) \\
& \cdot \psi_{F}\left(\frac{x_{1}+x_{2}+y_{1}+y_{2}}{c m}\right) d m d x_{1} d x_{2} d y_{1} d y_{2} .
\end{aligned}
$$

Lemma 2 is trivial; its proof is by changing variables. We will devote the rest of this section to Lemma 1.

Proof of Lemma 1. We first consider the integral on the left side of (8). We note that for any $b_{1}, b_{2} \notin R_{F}$ an integral of the form

$$
\begin{equation*}
\int_{R_{F}^{\times}} \psi_{F}\left(x b_{1}+\frac{b_{2}}{x}\right) d x \tag{9}
\end{equation*}
$$

is non-zero only if $b_{1} \in b_{2} R_{F}^{\times}$. If one of b_{1} and b_{2} is in R_{F} but the other is not, the integral in (9) is non-zero only if the latter is in $\varpi_{F}^{-1} R_{F}^{\times}$. Applying these results to the integral with respect to x_{1} on the left side of (8) we get two non-vanishing cases:
(i) $C=1$ and $x_{3}+x_{4} \in \varpi_{F} R_{F}$, and
(ii) $C \geq 1$ and $x_{3}+x_{4} \in R_{F}^{\times}$.

In case (i) the integral can be computed directly. Namely, the integrand becomes $\psi_{F}\left(\frac{x_{1}}{c}+\frac{1}{c x_{2} x_{3}}\right)$ because the order of ψ_{F} is zero. The integral with respect to $x_{4} \in x_{3}+\varpi_{F} R_{F}$ equals q_{F}^{-1} and the integrals with respect to x_{1} and x_{2} are both equal to $-q_{F}^{-1}$. With the integral with respect to x_{3} being $1-q_{F}^{-1}$ we conclude that case (i) yields $q_{F}^{-3}\left(1-q_{F}^{-1}\right)$.

To compute case (ii) we use a Mellin transform. Let χ be a multiplicative character of F. If χ is ramified, we denote its conductor exponent by $a(\chi)$ which is the smallest positive integer a such that χ is trivial on $1+\varpi_{F}^{a} R_{F}$. We integrate the expression on the left side of (8) against $\chi^{-1}(b)$ with respect to $b \in R_{F}^{\times}$:

$$
\int_{\substack{\left(R_{F}^{\times}\right)^{5} \\ x_{3}+x_{4} \in R_{F}^{\times}}} \chi^{-1}(b) \psi_{F}\left(\frac{1}{c}\left(x_{1}+x_{2}+\frac{1}{x_{2} x_{3}}+\frac{x_{2} x_{3}}{x_{4}}+\frac{b x_{4}}{x_{1}}+\frac{b x_{3}}{x_{1}}\right)\right) d b d x_{1} d x_{2} d x_{3} d x_{4} .
$$

Now we change variables successively from b to $y_{0}=b\left(x_{3}+x_{4}\right) /\left(c x_{1}\right) \in \varpi_{F}^{-C} R_{F}^{\times}$, from x_{1} to $y_{1}=x_{1} / c \in \varpi_{F}^{-C} R_{F}^{\times}$, from x_{2} to $y_{2}=1 /\left(c x_{2} x_{3}\right) \in \varpi_{F}^{-C} R_{F}^{\times}$, from x_{4} to $x=x_{4} / x_{3} \in R_{F}^{\times}$with $x+1 \in R_{F}^{\times}$, and finally from x_{3} to $y_{3}=(x+1) /\left(c^{2} x x_{3} y_{2}\right) \in$ $\varpi_{F}^{-C} R_{F}^{\times}$. Then the above integral becomes

$$
\begin{equation*}
q_{F}^{-4 C} \chi^{-4}(c)\left(\int_{\varpi_{F}^{-C} R_{F}^{\times}} \chi^{-1}(y) \psi_{F}(y) d y\right)^{4} \int_{\substack{x \in R_{F}^{\times}, x+1 \in R_{F}^{\times}}} \chi^{-1}\left(\frac{x}{(x+1)^{2}}\right) d x . \tag{10}
\end{equation*}
$$

If the character χ is unramified, the first integral in (10) vanishes unless $C=1$. When $C=1$, we get $q_{F}^{-4}\left(1-2 q_{F}^{-1}\right)$. If χ is ramified, then the same integral vanishes unless $a(\chi)=C$; in this case

$$
\int_{\varpi_{F}^{-C}} \chi^{-1}(y) \psi_{F}(y) d y=\varepsilon(\chi, \psi)
$$

where the local ε-factor is defined as in Tate [15]. Together with our results for case (i) we conclude that the Mellin transform of the integral on the left side of (8) equals

$$
\begin{cases}q_{F}^{-3}\left(1-q_{F}^{-1}-q_{F}^{-2}\right) & \text { if } \chi \text { is unramified and } C=1 \tag{11}\\ q_{F}^{-4 C} \chi^{-4}(c)\left(\varepsilon\left(\chi, \psi_{F}\right)\right)^{4} & \int_{\substack{ \\R_{F}-\left(\pm 1+\varpi_{F} R_{F}\right)}} \chi^{-1}\left(\frac{1-z^{2}}{4}\right) \\ & \text { if } \chi \text { is ramified and } a(\chi)=C \\ 0 & \text { otherwise. }\end{cases}
$$

Here we rewrote the last integral in (10) by using a new variable $z=(1-x) /(1+x) \in$ $R_{F}-\left(\pm 1+\varpi_{F} R_{F}\right)$.

Now we turn to the integral on the right side of (8). Again we integrate it against $\chi^{-1}(b)$ with respect to $b \in R_{F}^{\times}$to get its Mellin transform

$$
\begin{aligned}
& q_{F}^{C} \quad \int_{\substack{b, m \in R_{F}^{\times}, x_{1}, x_{2} \in R_{L}^{\times}, x_{1} \bar{x}_{1} \in x_{2} \bar{x}_{2}\left(1+\varpi_{F}^{C} R_{F}\right)}} \chi^{-1}(b) \psi_{F}\left(\frac{m}{c}\left(1+\frac{b}{x_{1} \bar{x}_{1}}\right)\right) \\
& \cdot \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{x_{1}+x_{2}}{c m}\right) d b d m d x_{1} d x_{2} .
\end{aligned}
$$

Changing variables successively from b to $y_{0}=b m /\left(c x_{1} \bar{x}_{1}\right) \in \varpi_{F}^{-C} R_{F}^{\times}$, from x_{1} to $y_{1}=x_{1} /(c m) \in \varpi_{L}^{-C} R_{L}^{\times}$, from x_{2} to $y_{2}=x_{2} /(c m) \in \varpi_{L}^{-C} R_{L}^{\times}$with $y_{2} \bar{y}_{2} \in$ $y_{1} \bar{y}_{1}\left(1+\varpi_{F}^{C} R_{F}\right)$, from m to $y_{3}=m / c \in \varpi_{F}^{-C} R_{F}^{\times}$, and from y_{2} to $\varepsilon \in R_{L}^{\times}$with $\varepsilon \bar{\varepsilon} \in 1+\varpi_{F}^{C} R_{F}$ by $y_{2}=y_{1} \varepsilon$, we get

$$
\begin{aligned}
q_{F}^{-3 C} \chi^{-1}\left(c^{4}\right) & \left(\int_{\substack{\varpi_{F}^{-C} \\
R_{F}^{\times}}} \chi^{-1}(y) \psi_{F}(y) d y\right)^{2} \\
\cdot & \int_{\substack{ \\
y_{1} \in \varpi_{L}^{-C} \\
\varepsilon \in R_{L}^{\times}, \varepsilon \bar{\varepsilon} \in 1+\varpi_{F}^{\times},}} \chi^{-1} \circ \mathrm{~N}_{L / F}\left(y_{1}\right) \psi_{F} \circ \operatorname{tr}_{L / F}\left(y_{1}(1+\varepsilon)\right) d \varepsilon d y_{1} .
\end{aligned}
$$

If χ is unramified, then the integral with respect to y above indicates that it is non-zero only when $C=1$. In this non-zero case, we get

$$
q_{F}^{-3}\left(\left(q_{F}^{2}-1\right) \int_{\substack{\varepsilon \in-1+\varpi_{L} R_{L}, \varepsilon \bar{\varepsilon} \in 1+\varpi_{F} R_{F}}} d \varepsilon-\int_{\substack{\varepsilon \in R_{L}^{\times}, 1+\in \in R_{L}^{\times}, \varepsilon \bar{\varepsilon} \in 1+\varpi_{F} R_{F}}} d \varepsilon\right)=q_{F}^{-3}\left(1-q_{F}^{-1}-q_{F}^{-2}\right)
$$

If χ is ramified, then the integral with respect to y vanishes unless $a(\chi)=C$. Since we assumed that the quadratic extension L is unramified and $|2|_{F}=1$, we know that the conductor exponent $a\left(\chi \circ \mathrm{~N}_{L / F}\right)=C$ when $a(\chi)=C$ and the order of $\psi_{F} \circ \operatorname{tr}_{L / F}$ is again zero. Consequently, the integral with respect to y_{1} is non-zero only if $1+\varepsilon \in R_{L}^{\times}$when $a(\chi)=C$. Changing variables from y_{1} to $x=y_{1}(1+\varepsilon) \in \varpi_{L}^{-C} R_{L}^{\times}$ we get the local ε-factor $\varepsilon\left(\chi \circ \mathrm{N}_{L / F}, \psi_{F} \circ \operatorname{tr}_{L / F}\right)$ multiplied by the integral

$$
\int_{\substack{\varepsilon \in R_{L}^{\times}, 1+\varepsilon \in R_{L}^{\times}, \varepsilon \bar{\varepsilon} \in 1+\varpi_{F}^{C} R_{F}}} \chi \circ \mathrm{~N}_{L / F}(1+\varepsilon) d \varepsilon=q_{F}^{-2 C} \sum_{\substack{\varepsilon, 1+\varepsilon \in R_{L}^{\times} /\left(1+\varpi_{L}^{C} R_{L}\right), \varepsilon \bar{\varepsilon} \in 1+\varpi_{F}^{C} R_{F}}} \chi(2+\varepsilon+\bar{\varepsilon}) ;
$$

here we wrote the integral in terms of a finite sum. Now we can set $\varepsilon=$ $(1+z \sqrt{\tau}) /(1-z \sqrt{\tau})$ with $z \in R_{F} / \varpi_{F}^{C} R_{F}$. Then $\chi(2+\varepsilon+\bar{\varepsilon})=\chi^{-1}\left(\left(1-\tau z^{2}\right) / 4\right)$. Using an integral again we get

$$
\int_{\substack{\varepsilon \in R_{L}^{\times} \\ 1+\varepsilon \in R_{L}^{\times}, \varepsilon \bar{\varepsilon} \in 1+\varpi_{F}^{C} R_{F}}} \chi \circ \mathrm{~N}_{L / F}(1+\varepsilon) d \varepsilon=q_{F}^{-C} \int_{R_{F}} \chi^{-1}\left(\frac{1-\tau z^{2}}{4}\right) d z .
$$

Therefore, the Mellin transform of the right side of (8) becomes

$$
\begin{cases}q_{F}^{-3}\left(1-q_{F}^{-1}-q_{F}^{-2}\right) & \text { if } \chi \text { is unramified and } C=1 \tag{12}\\ q_{F}^{-4 C} \chi^{-4}(c)\left(\varepsilon\left(\chi, \psi_{F}\right)\right)^{2} \varepsilon\left(\chi \circ \mathrm{~N}_{L / F},\right. & \left.\psi_{F} \circ \operatorname{tr}_{L / F}\right) \int_{R_{F}} \chi^{-1}\left(\frac{1-\tau z^{2}}{4}\right) d z \\ & \text { if } \chi \text { is ramified and } a(\chi)=C \\ 0 & \text { otherwise. }\end{cases}
$$

To compare the expressions in (11) and (12) we recall a well-known identity between local ε-factors (see, e.g., Gérardin and Labesse [5])

$$
\varepsilon\left(\chi, \psi_{F}\right) \varepsilon\left(\chi \eta, \psi_{F}\right)=\varepsilon\left(\chi \circ \mathrm{N}_{L / F}, \psi_{F} \circ \operatorname{tr}_{L / F}\right)
$$

where η is the quadratic multiplicative character of F attached to the extension field L. Since L is assumed to be unramified over F, we have $\eta(c)=(-1)^{C}$ for any $c \in \varpi_{F}^{C} R_{F}^{\times}$; hence $\varepsilon(\chi \eta, \psi)=(-1)^{C} \varepsilon\left(\chi, \psi_{F}\right)$ when $a(\chi)=C$. Now we need a lemma.

Lemma 3. Let F be a non-Archimedean local field of characteristic 0 with $|2|_{F}=1$. Let $L=F(\sqrt{\tau})$ be an unramified quadratic extension field of F with $\tau \in R_{F}^{\times}$. Denote by χ a ramified character of F^{\times}whose conductor exponent is $a(\chi)=C$. Then

$$
\begin{equation*}
\int_{R_{F}-\left(\pm 1+\varpi_{F} R_{F}\right)} \chi^{-1}\left(1-z^{2}\right) d z=(-1)^{C} \int_{R_{F}} \chi^{-1}\left(1-\tau z^{2}\right) d z \tag{13}
\end{equation*}
$$

Together, with the above remark, Lemma 3 implies that the corresponding expressions in (11) and (12) are equal. That is to say, the Mellin transforms of the two sides of (8) are the same for any multiplicative character χ. By Fourier's inversion formula, we conclude that the two sides of (8) are equal.

To complete the proof of Lemma 1, we still have to prove Lemma 3. When $C=1$, the left side of (13) equals $q_{F}^{-1}\left(1+2 \sum \chi^{-1}(1-x)\right)$ where the sum is taken over all squares $x \neq 1$ in $R_{F}^{\times} /\left(1+\varpi_{F} R_{F}\right)$, and the right side of (13) equals $-q_{F}^{-1}\left(1+2 \sum \chi^{-1}(1-x)\right)$ where x goes over all non-squares in $R_{F}^{\times} /\left(1+\varpi_{F} R_{F}\right)$. Then (13) follows from

$$
\begin{aligned}
& q_{F}^{-1}\left(1+2 \sum_{\substack{x \in R_{F}^{\times} /\left(1+\omega_{F} R_{R}\right) \\
\text { i a square, } \\
x \neq 1}} \chi^{-1}(1-x)\right) \\
& \quad+q_{F}^{-1}\left(1+2 \sum_{\substack{x \in R_{F}^{\times} /\left(1+\omega_{F} R_{F}\right) \\
\text { is a non-square }}} \chi^{-1}(1-x)\right) \\
& \quad=2 q_{F}^{-1} \sum_{a \in R_{F}^{\times} /\left(1+\omega_{F} R_{F}\right)} \chi^{-1}(a) \\
& \quad=0
\end{aligned}
$$

where $a=1-x$.
When $C>1$, the integrals on both side of (13) can be taken over $z \in \varpi_{F}^{[C / 2]} R_{F}$. Indeed, if $z \notin \varpi_{F}^{[C / 2]} R_{F}$, we can set $z=u(1+v)$ and express an integral above as a finite sum with respect to u of integrals with respect to $v \in \varpi_{F}^{[(C+1) / 2]} R_{F}$. Since
$u \notin \varpi_{F}^{[C / 2]} R_{F}$, we can conclude that the integrals with respect to v vanish. This way the identity in (13) is reduced to

$$
\int_{\varpi_{F}^{[C / 2]} R_{F}} \chi^{-1}\left(1-z^{2}\right) d z=(-1)^{C} \int_{\varpi_{F}^{[C / 2]} R_{F}} \chi^{-1}\left(1-\tau z^{2}\right) d z
$$

If C is even, then the integrands above are both equal to 1 and hence the equality. If C is odd, this equality can then be proved in the same way as what we did for the case of $C=1$.

This completes the proof of Theorem 1.

3. The orbital integral $I_{F}\left(w a, f_{0}\right)$

To prove Theorem 2 we have to compute the integrals on the two sides of (2). Recall that the integral on the left side of (2) is the local orbital integral

$$
I_{F}\left(w a, f_{0}\right)=\int_{\substack{u \in U_{w}(F), n \in N(F)}} f_{0}\left({ }^{t} u w a n\right) \theta_{F}(u n) d u d n
$$

where f_{0} is the characteristic function of $K(F)$ and $w=\left(1^{1}{ }^{1}{ }^{1}\right)$. Similarly, the right side of (2) is the local orbital integral

$$
J_{F}\left(w a, \Phi_{0}\right)=\int_{N_{w}(F) \backslash N(L)} \Phi_{0}\left({ }^{t} \bar{n} w a n\right) \theta_{F}(n \bar{n}) d n
$$

where Φ_{0} is the characteristic function of $K(L) \cap S(F)$ with the same w. We will compute $I_{F}\left(w a, f_{0}\right)$ in this section and then $J_{F}\left(w a, \Phi_{0}\right)$ in the next section in order to show that they are equal.

Let us denote $w=\left(\begin{array}{cc}w_{1} & \\ & w_{1}\end{array}\right), a=\left(\begin{array}{ll}b_{1} & \\ & b_{2}\end{array}\right), u=\left(\begin{array}{cc}I & y \\ & I\end{array}\right) \in U_{w}(F)$, and $n=$ $\left(\begin{array}{cc}n_{1} & x \\ & n_{2}^{-1}\end{array}\right) \in N(F)$ in 2×2 blocks, where b_{i} is a scale matrix with diagonal entries equal to a_{i} and $w_{1}=\left(1^{1}\right)$. Then the matrix condition ${ }^{t}$ uwan $\in K(F)$ for the integral defining $I_{F}\left(w a, f_{0}\right)$ becomes

$$
\left(\begin{array}{cc}
w_{1} b_{1} n_{1} & w_{1} b_{1} x \tag{14}\\
{ }^{t} y w_{1} b_{1} n_{1} & { }^{t} y w_{1} b_{1} x+w_{1} b_{2} n_{2}^{-1}
\end{array}\right) \in K(F)
$$

We first conclude from this matrix condition that $a_{1} a_{2} \in R_{F}^{\times}$and $a_{1} \in R_{F}$. If $a_{1}, a_{2} \in R_{F}^{\times}$we can see that $I_{F}\left(w a, f_{0}\right)=1$. Thus, from now on we assume that $a_{1} \in \varpi_{F}^{A} R_{F}^{\times}$and $a_{2} \in \varpi_{F}^{-A} R_{F}^{\times}$with $A>0$. Then $n_{1}=\left(\begin{array}{cc}1 & m_{1} \\ 1\end{array}\right)$ with $m_{1} \in$ $\varpi_{F}^{-A} R_{F}$. We can also apply the automorphism $g \mapsto w_{G}{ }^{t} g^{-1} w_{G}$ to the matrix condition in (14), where $w_{G}=\left({ }_{1^{1}} 1^{1}\right)$. This way we can get $n_{2}=\left(\begin{array}{cc}1 & m_{2} \\ 1\end{array}\right)$ with $m_{2} \in \varpi_{F}^{-A} R_{F}$. Back to (14) we know that $x, w_{1}{ }^{t} y w_{1} n_{1} \in M_{2 \times 2}\left(\varpi_{F}^{-A} R_{F}\right)$. Setting $z=w_{1}{ }^{t} y w_{1} b_{1} n_{1} \in M_{2 \times 2}\left(R_{F}\right)$ and changing from x to $x b_{2}$ we can rewrite the last
condition in (14) and get

$$
\begin{aligned}
I_{F}\left(w a, f_{0}\right)=q_{F}^{8 A} & \int_{\substack{m_{1}, m_{2} \in \varpi_{F}^{-A} R_{F}, x, z \in M_{2 \times 2}\left(R_{F}\right), z n_{1}^{-1} x \in-n_{2}^{-1}+M_{2 \times 2}\left(\varpi_{F}^{A} R_{F}\right)}} \theta_{F}\left(I z n_{1}^{-1} b_{1}^{-1}\right) \\
& \cdot \theta_{F}\left(\begin{array}{r}
n_{1} \\
x b_{2} \\
\\
n_{2}^{-1}
\end{array}\right) d m_{1} d m_{2} d x d z .
\end{aligned}
$$

Denote $x=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$ and $z=\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{3} & z_{4}\end{array}\right)$ with $x_{i}, z_{i} \in R_{F}$. There are three cases.
(i) $m_{2} \in R_{F}$. Then the condition

$$
\begin{equation*}
z n_{1}^{-1} x \in-n_{2}^{-1}+M_{2 \times 2}\left(\varpi_{F}^{A} R_{F}\right) \tag{15}
\end{equation*}
$$

implies that $z n_{1}^{-1} x \in K_{2 \times 2}(F), \operatorname{det}(z x), \operatorname{det}(x), \operatorname{det}(z) \in R_{F}^{\times}, x, z, n_{1} \in K_{2 \times 2}(F)$, and $m_{1} \in R_{F}$.
(ii) $m_{2} \in \varpi_{F}^{M} R_{F}^{\times}$with $0>M>-A$. Then (15) implies that $z n_{1}^{-1} x \in G L_{2}(F)$, $\operatorname{det}(z x), \operatorname{det}(x), \operatorname{det}(z) \in R_{F}^{\times}, x, z \in K_{2 \times 2}(F)$, and $m_{1} \in \varpi_{F}^{M} R_{F}^{\times}$.
(iii) $m_{2} \in \varpi_{F}^{-A} R_{F}^{\times}$. Then from (15) we have $m_{1} \in \varpi_{F}^{-A} R_{F}^{\times}, x_{4}, z_{1} \in R_{F}^{\times}$, $x_{3}, z_{3} \in \varpi_{F}^{A} R_{F}$, and $x_{1}, x_{2}, z_{2}, z_{4} \in R_{F}$. We will denote the integrals corresponding to these three cases by I_{1}, I_{2}, and I_{3} so that $I_{F}\left(w a, f_{0}\right)=I_{1}+I_{2}+I_{3}$.

First we compute I_{1} :

$$
I_{1}=q_{F}^{8 A} \int_{\substack{m_{1}, m_{2} \in R_{F}, x, z \in K_{2 \times 2}(F), z n_{1}^{-1} x \in-n_{2}^{-1}+M_{2 \times 2}\left(\varpi_{F}^{A} R_{F}\right)}} \psi_{F}\left(\frac{z_{3}}{a_{1}}+a_{2} x_{3}\right) d m_{1} d m_{2} d x d z
$$

By changing variables from x to $n_{1} x$ and integrating with respect to m_{1}, m_{2}, x_{2}, x_{4}, z_{1}, and z_{2} successively we arrive at

$$
I_{1}=q_{F}^{5 A} \int_{\substack{x_{1}, x_{3}, z_{3}, z_{4} \in R_{F} \\ \text { with } x_{1} \text { or } x_{3} \in R_{F}^{\times} \\ \text {and } z_{3} \text { or } z_{4} \in R_{F}^{\times} \\ x_{1} z_{3}+x_{3} z_{4} \in \varpi_{F}^{A} R_{F}}} \psi_{F}\left(\frac{z_{3}}{a_{1}}+a_{2} x_{3}\right) d x_{1} d x_{3} d z_{3} d z_{4} .
$$

If $x_{1} \in R_{F}^{\times}$we have $z_{3} \in-x_{3} z_{4} / x_{1}+\varpi_{F}^{A} R_{F}$. If $x_{1} \in \varpi_{F} R_{F}$, then $x_{3} \in R_{F}^{\times}$and $z_{4} \in-x_{1} z_{3} / x_{3}+\varpi_{F}^{A} R_{F}$. By integrating z_{3} in the first case and z_{4} in the second case we can further compute I_{1} and conclude that

$$
\begin{align*}
I_{1} & =q_{F}^{3}\left(1-q_{F}^{-1}+q_{F}^{-2}\right) \quad \text { if } A=1 \tag{16}\\
& =q_{F}^{3 A}\left(1-q_{F}^{-1}\right) \quad \text { if } A>1 \tag{17}
\end{align*}
$$

Next, let us turn to I_{2}. After integrating with respect to m_{2} we get

$$
I_{2}=\sum_{-A<M<0} q_{F}^{7 A} \int \psi_{F}\left(\frac{z_{3}}{a_{1}}+a_{2} x_{3}+m_{1}-m_{1} x_{4} z_{1}\right) d m_{1} d x d z
$$

where the integral is taken over

$$
\begin{aligned}
m_{1} & \in \varpi_{F}^{M} R_{F}^{\times}, \\
x_{1}, x_{4}, z_{1}, z_{4} & \in R_{F}^{\times}, \\
x_{2}, z_{2} & \in R_{F}, \\
x_{3}, z_{3} & \in \varpi_{F}^{-M} R_{F}, \\
x_{1} z_{1}-m_{1} x_{3} z_{1}+x_{3} z_{2} & \in-1+\varpi_{F}^{A} R_{F}, \\
x_{2} z_{3}-m_{1} x_{4} z_{3}+x_{4} z_{4} & \in-1+\varpi_{F}^{A} R_{F}, \\
x_{1} z_{3}-m_{1} x_{3} z_{3}+x_{3} z_{4} & \in \varpi_{F}^{A} R_{F} .
\end{aligned}
$$

We will consider two cases:
(i) $x_{3} \in \varpi_{F}^{A} R_{F}$ (then $z_{3} \in \varpi_{F}^{A} R_{F}$) and
(ii) $x_{3} \notin \varpi_{F}^{A} R_{F}\left(\right.$ then $\left.z_{3} \in x_{3} R_{F}^{\times}\right)$.

In case (i) the integrand simplifies to $\psi_{F}\left(m_{1}-m_{1} x_{4} z_{1}\right)$ and we have $x_{4} \in$ $-1 /\left(z_{4}-m_{1} z_{3}\right)+\varpi_{F}^{A} R_{F}$ and $z_{1} \in-1 /\left(x_{1}-m_{1} x_{3}\right)+\varpi_{F}^{A} R_{F}$ with $x_{1}-m_{1} x_{3} \in R_{F}^{\times}$ and $z_{4}-m_{1} z_{3} \in R_{F}^{\times}$. After integrating the integrals with respect to x_{4} and z_{1}, changing variables from x_{1} to $x=x_{1}-m_{1} x_{3}$ and from z_{4} to $z=z_{4}-m_{1} z_{3}$, and integrating with respect to x_{3} and z_{3}, we get

$$
\sum_{-A<M<0} q_{F}^{3 A} \int_{\substack{m_{1} \in \varpi_{F}^{M} \\ x, z \in R_{F}^{\times}}} \psi_{F}^{\times}\left(m_{1}-\frac{m_{1}}{x z}\right) d m_{1} d x d z
$$

By integrating with respect to x_{1} we see that this integral vanishes unless $M=-1$. Computing the case of $M=-1$, we get $q_{F}^{3 A-1}\left(1-q_{F}^{-1}\right)$ for case (i).

In case (ii) we set $x_{3}, z_{3} \in \varpi_{F}^{X} R_{F}^{\times}$with $-M \leq X<A$. After integrating with respect to x_{2} and z_{2} and setting $x_{4} \in-1 /\left(z_{4}-m_{1} z_{3}\right)+\varpi_{F}^{X} R_{F}$ and $z_{1} \in$ $-1 /\left(x_{1}-m_{1} x_{3}\right)+\varpi_{F}^{X} R_{F}$ with $x_{1}-m_{1} x_{3} \in R_{F}^{\times}$and $z_{4}-m_{1} z_{3} \in R_{F}^{\times}$we get

$$
\begin{aligned}
& \sum_{\substack{-A<M<0,-M \leq X<A}} q_{F}^{5 A} \int_{\substack{m_{1} \in \varpi_{F}^{M} R_{F}^{\times}, x_{1}, z_{4} \in R_{F}^{\times}, x_{3}, z_{3} \in \varpi_{F}^{X} R_{F}^{\times},}} \\
& \left(x_{1}-m_{1} x_{3}\right)\left(z_{4}-m_{1} z_{3}\right) \in x_{1} z_{4}+\varpi_{F}^{A+M} R_{F} \\
& \psi_{F}\left(\frac{z_{3}}{a_{1}}+a_{2} x_{3}+m_{1}-\frac{m_{1}}{\left(x_{1}-m_{1} x_{3}\right)\left(z_{4}-m_{1} z_{3}\right)}\right) d m_{1} d x d z .
\end{aligned}
$$

From the last condition attached to the integral we know that $z_{3} \in-x_{3} z_{4} /$ $\left(x_{1}-m_{1} x_{3}\right)+\varpi_{F}^{A} R_{F}$. Hence, the integral with respect to z_{3} vanishes unless
$A+2 M \geq 0$. Then we get for case (ii)

$$
\begin{aligned}
& \sum_{-A / 2 \leq M<0} q_{F}^{4 A} \int_{m_{1} \in \varpi_{F}^{M} R_{F}^{\times},} \psi_{F}\left(-\frac{x_{3} z_{4}}{a_{1}\left(x_{1}-m_{1} x_{3}\right)}+a_{2} x_{3}+m_{1}-\frac{m_{1}}{x_{1} z_{4}}\right) d m_{1} d x d z \\
& \begin{array}{c}
m_{1} \in \varpi_{F} R_{F}^{\times}, \\
x_{1}, z_{4} \in R_{F}^{\times},
\end{array} \\
& x_{3} \in \varpi_{F}^{-M} R_{F} \text {, } \\
& x_{1}-m_{1} x_{3} \in R_{F}^{\times} \\
& -\sum_{-A / 2 \leq M<0} q_{F}^{4 A} \int_{\substack{ \\
m_{1} \in \varpi_{F}^{M} R_{F}^{\times}, x_{1}, z_{4} \in R_{F}^{\times}, x_{3} \in \varpi_{F}^{A} R_{F}}} \psi_{F}\left(-\frac{x_{3} z_{4}}{a_{1}\left(x_{1}-m_{1} x_{3}\right)}+a_{2} x_{3}+m_{1}-\frac{m_{1}}{x_{1} z_{4}}\right) d m_{1} d x d z .
\end{aligned}
$$

The second integral above is the same as the integral in case (i) because the integrand is actually equal to $\psi_{F}\left(m_{1}-m_{1} /\left(x_{1} z_{4}\right)\right)$; we thus get the same $q_{F}^{3 A-1}\left(1-q_{F}^{-1}\right)$.

For the first integral we change variables from x_{3} to $x=m_{1} x_{3} \in R_{F}$ with $x-x_{1} \in R_{F}^{\times}$and from z_{4} to $z=z_{4} / m_{1} \in \varpi_{F}^{-M} R_{F}^{\times}$to get

$$
\sum_{-A / 2 \leq M<0} q_{F}^{4 A} \int_{\substack{m_{1} \in \varpi_{F}^{M} R_{F}^{\times}, x \in R_{F}, x_{1}, x-x_{1} \in R_{F}^{\times}, z \in \varpi_{F}^{-M} R_{F}^{\times}}} \psi_{F}\left(-\frac{x z}{a_{1}\left(x-x_{1}\right)}+\frac{a_{2} x}{m_{1}}+m_{1}-\frac{1}{x_{1} z}\right) d m_{1} d x d x_{1} d z
$$

Applying our results on (9) to the integral with respect to z, we conclude that $x \in \varpi_{F}^{A+2 M} R_{F}^{\times}$if $M<-1$ and $x \in \varpi_{F}^{A+2 M} R_{F}$ if $M=-1$. We claim that the integral vanishes when $M<-1$ and $A+2 M>0$. Indeed, we change variables from x to $a_{1} x$ and set $b=a_{1} a_{2}$. Integrating the integral with respect to $b \in R_{F}^{\times}$against $\chi^{-1}(b)$ we get the Mellin transform

$$
\begin{aligned}
& \sum_{-A / 2<M<-1} q_{F}^{3 A} \int_{R_{F}^{\times}} \chi^{-1}(b) d b \\
& \quad \int_{\substack{m_{1} \in \varpi_{F}^{M} R_{F}^{\times}, x \in \varpi_{F}^{2 M} \\
x_{1} \in R_{F}^{\times}, z \in \varpi_{F}^{-M} R_{F}^{\times}}} \psi_{F}\left(\frac{x z}{\left(x_{1}-a_{1} x\right)}+\frac{b x}{m_{1}}+m_{1}-\frac{1}{x_{1} z}\right) d m_{1} d x d x_{1} d z .
\end{aligned}
$$

If χ is unramified, the integral with respect to b vanishes, because $M<-1$. Assume now that χ is ramified. We change variables successively from b to $y_{1}=b x / m_{1} \in$ $\varpi_{F}^{M} R_{F}^{\times}$, from x to $y=x_{1} / x \in \varpi_{F}^{-2 M} R_{F}^{\times}$, from x_{1} to $y_{2}=-1 /\left(x_{1} z\right) \in \varpi_{F}^{M} R_{F}^{\times}$, and from z to $y_{3}=z /\left(y-a_{1}\right) \in \varpi_{F}^{M} R_{F}^{\times}$. Then the Mellin transform becomes

$$
\sum_{-A / 2<M<-1} q_{F}^{3 A}\left(\int_{\varpi_{F}^{M} R_{F}^{\times}} \chi^{-1}\left(y_{1}\right) \psi_{F}\left(y_{1}\right) d y_{1}\right)^{4} \int_{\varpi_{F}^{-2 M} R_{F}^{\times}} \chi^{-1}\left(y\left(a_{1}-y\right)\right) d y
$$

The integral with respect to y_{1} vanishes if $a(\chi) \neq-M$. If $a(\chi)=-M \geq 2$, the integral with respect to y equals zero because we can set y as $y(1+c)$ with $c \in \varpi_{F}^{-[M / 2]} R_{F}$ and integrate with respect to c. Since the Mellin transform of our integral vanishes for any character χ when $M<-1$ and $A+2 M>0$, we prove the claim.

Now we compute the integral when $M=-1$ and $A+2 M>0$, i.e., $A>2$. Since the integrand becomes

$$
\psi_{F}\left(\frac{x z}{a_{1} x_{1}}+\frac{a_{2} x}{m_{1}}+m_{1}-\frac{1}{x_{1} z}\right)
$$

we can integrate with respect to $x \in \varpi_{F}^{A+2 M} R_{F}$. The integral is non-zero only if $z /\left(a_{1} x_{1}\right)+a_{2} / m_{1} \in \varpi_{F}^{2-A} R_{F}$. Consequently, we get

$$
\begin{gathered}
q_{F}^{3 A+2} \\
m_{1} \in \varpi_{F}^{-1} R_{F}^{\times}, \\
x_{1} \in R_{F}^{\times}, \\
z \in \varpi_{F} R_{F}^{\times}, \\
z /\left(a_{1} x_{1}\right)+a_{2} / m_{1} \in \varpi_{F}^{2-A} R_{F}
\end{gathered}
$$

The last condition attached to the integral implies that $z \in-a_{1} a_{2} x_{1} / m_{1}+\varpi_{F}^{2} R_{F}$. After integrating with respect to z we get

$$
\begin{aligned}
& q_{F}^{3 A} \int_{\substack{m_{1} \in \varpi_{F}^{-1} R_{F}^{\times}, x_{1} \in R_{F}^{\times}}} \psi_{F}\left(m_{1}\left(1+\frac{1}{a_{1} a_{2} x_{1}^{2}}\right)\right) d m_{1} d x_{1} \\
& \quad=q_{F}^{3 A}\left(q_{F} \int_{\substack{x_{1} \in R_{F}^{\times}, x_{1}^{2} \in-1 /\left(a_{1} a_{2}\right)+\varpi_{F} R_{F}}} d x_{1}-\int_{x_{1} \in R_{F}^{\times}} d x_{1}\right)
\end{aligned}
$$

which equals $q_{F}^{3 A}\left(1+q_{F}^{-1}\right)$ if $-a_{1} a_{2}$ is a square in $R_{F}^{\times} /\left(1+\varpi_{F} R_{F}\right)$ and equals $q_{F}^{3 A}\left(-1+q_{F}^{-1}\right)$ if $-a_{1} a_{2}$ is not a square in $R_{F}^{\times} /\left(1+\varpi_{F} R_{F}\right)$.

For the case of $A+2 M=0$, with A being even, we have

$$
\begin{aligned}
& \quad \int_{\substack{-A / 2 \\
m_{1} \in \varpi_{F}^{-A / 2} R_{F}^{\times}, x \in R_{F}, x_{1}, x-x_{1} \in R_{F}^{\times}, z \in \varpi_{F}^{A / 2} R_{F}^{\times}}} \psi_{F}\left(-\frac{x z}{a_{1}\left(x-x_{1}\right)}+\frac{a_{2} x}{m_{1}}+m_{1}-\frac{1}{x_{1} z}\right) d m_{1} d x d x_{1} d z .
\end{aligned}
$$

For the above integral, now we choose $c \in \varpi_{F}^{A / 2} R_{F}^{\times}$and set $b=a_{2} c^{4} / a_{1} \in R_{F}^{\times}$. We then change variables from m_{1} to $y_{1}=c m_{1} \in R_{F}^{\times}$, from z to $y_{2}=-c z / a_{1} \in R_{F}^{\times}$, from x to $y_{4}=a_{1}\left(x-x_{1}\right) / c^{2} \in R_{F}^{\times}$, and from x_{1} to $y_{3}=a_{1} x_{1} / c^{2} \in R_{F}^{\times}$. After collecting all of these results on I_{2} we get

$$
\begin{align*}
I_{2}= & q_{F}^{4 A} \int_{\left(R_{F}^{\times}\right)^{4}} \psi_{F}\left(\frac { 1 } { c } \left(y_{1}+y_{2}+\frac{1}{y_{2} y_{3}}+\frac{y_{2} y_{3}}{y_{4}}\right.\right. \\
& \left.\left.+\frac{b y_{4}}{y_{1}}+\frac{b y_{3}}{y_{1}}\right)\right) d y_{1} d y_{2} d y_{3} d y_{4} \quad \text { if } A \geq 2 \text { is even } \\
& + \begin{cases}q_{F}^{3 A}\left(q_{F}^{-1}+1\right) & \text { if }-a_{1} a_{2} \text { is a square in } R_{F}^{\times} /\left(1+\varpi_{F} R_{F}\right) \\
q_{F}^{3 A}\left(q_{F}^{-1}-1\right) & \text { and } A>2 \\
\text { if }-a_{1} a_{2} \text { is not a square in } R_{F}^{\times} /\left(1+\varpi_{F} R_{F}\right) \\
\text { and } A>2 .\end{cases} \tag{18}
\end{align*}
$$

Now we compute

$$
I_{3}=q_{F}^{8 A} \int \psi_{F}\left(m_{1}-m_{2}\right) d m_{1} d m_{2} d x d z
$$

where the integral is taken over

$$
\begin{gathered}
m_{1}, m_{2} \in \varpi_{F}^{-A} R_{F}^{\times} \\
x_{1}, x_{2}, z_{2}, z_{4} \in R_{F} \\
x_{3}, z_{3} \in \varpi_{F}^{A} R_{F} \\
x_{4}, z_{1} \in R_{F}^{\times} \\
x_{1} z_{1}-m_{1} x_{3} z_{1}+x_{3} z_{2} \in-1+\varpi_{F}^{A} R_{F} \\
x_{2} z_{3}-m_{1} x_{4} z_{3}+x_{4} z_{4} \in-1+\varpi_{F}^{A} R_{F} \\
x_{2} z_{1}-m_{1} x_{4} z_{1}+x_{4} z_{2} \in m_{2}+\varpi_{F}^{A} R_{F}
\end{gathered}
$$

If we integrate with respect to m_{2} first, we will get q_{F}^{-A} and the above integrand becomes $\psi_{F}\left(m_{1}+m_{1} x_{4} z_{1}\right)$. Having integrated with respect to $x_{1}, x_{2}, x_{3}, z_{2}, z_{3}$, and z_{4} we get

$$
\begin{align*}
I_{3} & =q_{F}^{3 A} \int_{\substack{m_{1} \in \varpi_{F}^{-A} R_{F}^{\times}, x_{4}, z_{1} \in R_{F}^{\times}}} \psi_{F}\left(m_{1}\left(1+x_{4} z_{1}\right)\right) d m_{1} d x_{4} d z_{1} \\
& =q_{F}^{2}\left(1-q_{F}^{-1}\right) \tag{19}\\
& \text { if } A=1 \tag{20}\\
& =0
\end{align*} \quad \text { if } A>1 .
$$

Collecting our results in (16) through (20) we get the following expression of $I_{F}\left(w a, f_{0}\right)$.

Lemma 4. Under the assumption of Lemma 1 we have

$$
\begin{aligned}
& I_{F}\left(w a, f_{0}\right)=1 \quad \text { if } A=0 ; \\
& =q_{F}^{3} \quad \text { if } A=1 ; \\
& =2 q_{F}^{3 A} \quad \text { if } A \geq 3 \text { is odd and }-a_{1} a_{2} \text { is a square in } F \text {; } \\
& =q_{F}^{4 A} \int_{\left(R_{F}^{\times}\right)^{4}} \psi_{F}\left(\frac { 1 } { c } \left(x_{1}+x_{2}+\frac{1}{x_{2} x_{3}}\right.\right. \\
& \left.\left.+\frac{x_{2} x_{3}}{x_{4}}+\frac{b x_{4}}{x_{1}}+\frac{b x_{3}}{x_{1}}\right)\right) d x_{1} d x_{2} d x_{3} d x_{4} \\
& \text { if } A \geq 2 \text { is even; } \\
& +q_{F}^{3 A}\left(1-q_{F}^{-1}\right) \quad \text { if } A=2 \text {; } \\
& +2 q_{F}^{3 A} \quad \text { if } A \geq 4 \text { is even and }-a_{1} a_{2} \text { is a square in } F ; \\
& =0 \quad \text { otherwise. }
\end{aligned}
$$

4. The orbital integral $J_{F}\left(w a, \Phi_{0}\right)$

We write any element in $N_{w}(F) \backslash N(L)$ as $n=\left(\begin{array}{cc}n_{1}^{-1} & \\ & n_{2}\end{array}\right)\left(\begin{array}{cc}I & u \\ & I\end{array}\right)$ where $n_{i}=\left(\begin{array}{cc}1 & m_{i} \\ & 1\end{array}\right)$ with $m_{1}, m_{2} \in F$ and $u \in M_{2 \times 2}(L)$. Then the matrix condition attached to the integral defining $J_{F}\left(w a, \Phi_{0}\right)$ on the right side of (2) becomes

$$
\left(\begin{array}{cc}
{ }^{t} n_{1}^{-1} w_{1} b_{1} n_{1}^{-1} & { }^{t} n_{1}^{-1} w_{1} b_{1} n_{1}^{-1} u \tag{21}\\
{ }^{t} \bar{u}^{t} n_{1}^{-1} w_{1} b_{1} n_{1}^{-1} & { }^{t} \bar{u}^{t} n_{1}^{-1} w_{1} b_{1} n_{1}^{-1} u+{ }^{t} n_{2} w_{1} b_{2} n_{2}
\end{array}\right) \in K(L) .
$$

First, we conclude from (21) that $a_{1} \in R_{F}$ and $a_{1} a_{2} \in R_{F}^{\times}$if the integral is non-zero. If $a_{1} \in R_{F}^{\times}$, then $J_{F}\left(w a, \Phi_{0}\right)=1$. We will assume from now on that $a_{1} \in \varpi_{F}^{A} R_{F}^{\times}$ and $a_{2} \in \varpi_{F}^{-A} R_{F}^{\times}$with $A>0$. Then from (21) we get $m_{1}, m_{2} \in \varpi_{F}^{-A} R_{F}$ following the arguments used in Section 3. Changing variables from u to $z=\left(\begin{array}{cc}z_{1} & z_{2} \\ z_{3} & z_{4}\end{array}\right)=$ ${ }^{t} n_{1}^{-1} w_{1} b_{1} n_{1}^{-1} u \in M_{2 \times 2}\left(R_{L}\right)$ and from m_{i} to $m_{i} / 2$ we get
$J_{F}\left(w a, \Phi_{0}\right)=q_{F}^{8 A}$

$$
\int_{\substack{m_{1}, m_{2} \in \varpi_{F}^{-A} R_{F}, z \in M_{2} \times 2\left(R_{L}\right),}}^{\int} \psi_{F}\left(m_{2}-m_{1}\right) \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{z_{1}}{a_{1}}\right) d m_{1} d m_{2} d z
$$

As in the last section there are three cases:
(i) $m_{1}, m_{2} \in R_{F}, z \in K_{2 \times 2}(L)$;
(ii) $m_{1}, m_{2} \in \varpi_{F}^{M} R_{F}^{\times}, z \in K_{2 \times 2}(L)$ with $-A<M<0$; and
(iii) $m_{1}, m_{2} \in \varpi_{F}^{-A} R_{F}^{\times}, z \in M_{2 \times 2}\left(R_{L}\right)$.

We will denote the corresponding integrals by J_{1}, J_{2}, and J_{3}.
For J_{1} we change variables from z to $y=\left(\begin{array}{ll}y_{1} & y_{2} \\ y_{3} & y_{4}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ m_{1} / 2 & 1\end{array}\right) z$. Then the integrand becomes $\psi_{F} \circ \operatorname{tr}_{L / F}\left(y_{1} / a_{1}\right)$ and the matrix condition attached to J_{1} becomes ${ }^{t} \bar{y} w_{1} y \in-a_{1} a_{2}\left(\begin{array}{cc}0 & 1 \\ 1 & m_{2}\end{array}\right)+M_{2 \times 2}\left(\varpi_{L}^{A} R_{L}\right)$. By integrating the integral with respect to m_{1}, m_{2}, y_{2}, and y_{4} we get

$$
J_{1}=q_{F}^{5 A} \int_{\substack{y_{1}, y_{3} \in R_{L}, y_{1} \text { or } y_{3} \in R_{L}^{\times}, y_{1} \bar{y}_{3}+\bar{y}_{1} y_{3} \in \varpi_{F}^{A} R_{F}}} \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{y_{1}}{a_{1}}\right) d y_{1} d y_{3}
$$

If $y_{1} \in R_{L}^{\times}$, the integral with respect to y_{3} yields q_{F}^{-A} and we get

$$
q_{F}^{4 A} \int_{y_{1} \in R_{L}^{\times}} \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{y_{1}}{a_{1}}\right) d y_{1}
$$

which equals $-q_{F}^{2}$ when $A=1$ and vanishes when $A>1$. If $y_{1} \in \varpi_{L} R_{L}$, then $y_{3} \in R_{L}^{\times}$. When $A=1$ the integrand equals 1 and we get $q_{F}^{3}\left(1-q_{F}^{-2}\right)$. When $A>1$ we change variables from y_{1} to $y_{0}=y_{1} \bar{y}_{3} \in \varpi_{L} R_{L}$ and get

$$
q_{F}^{5 A} \int_{\substack{y_{0} \in \varpi_{L} R_{L} \\ \text { with } y_{0}+\bar{y}_{0} \in \varpi_{F}^{A} R_{F},}} \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{y_{0}}{a_{1} \bar{y}_{3}}\right) d y_{0} d y_{3}
$$

which equals $q_{F}^{3 A}\left(1-q_{F}^{-1}\right)$. Adding these results together, we finally have

$$
\begin{aligned}
J_{1} & =q_{F}^{3}\left(1-q_{F}^{-1}-q_{F}^{-2}\right) & & \text { if } A=1 \\
& =q_{F}^{3 A}\left(1-q_{F}^{-1}\right) & & \text { if } A>1
\end{aligned}
$$

To compute J_{2}, we first integrate with respect to m_{2}. Then

$$
J_{2}=q_{F}^{7 A} \sum_{-A<M<0} \int \psi_{F}\left(-m_{1}-\frac{m_{1} z_{2} \bar{z}_{2}}{a_{1} a_{2}}\right) \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{z_{1}}{a_{1}}\right) d m_{1} d z_{1} d z_{2} d z_{3} d z_{4}
$$

where the integral is taken over

$$
\begin{aligned}
m_{1} & \in \varpi_{F}^{M} R_{F}^{\times}, \\
z_{1} & \in \varpi_{L}^{-M} R_{L}, \\
z_{2}, z_{3} & \in R_{L}^{\times} \\
z_{4} & \in R_{L} \\
m_{1} z_{1} \bar{z}_{1}+\bar{z}_{1} z_{3}+z_{1} \bar{z}_{3} & \in \varpi_{F}^{A} R_{F}, \\
m_{1} \bar{z}_{1} z_{2}+\bar{z}_{1} z_{4}+z_{2} \bar{z}_{3} & \in-a_{1} a_{2}+\varpi_{L}^{A} R_{L}
\end{aligned}
$$

Now we consider two cases:
(i) $z_{1} \in \varpi_{L}^{A} R_{L}$ and
(ii) $z_{1} \in \varpi_{L}^{Z} R_{L}^{\times}$with $-M \leq Z<A$.

In case (i) we can first integrate with respect to z_{4}, z_{3}, and z_{1} to get

$$
q_{F}^{3 A} \sum_{-A<M<0} \int_{\substack{m_{1} \in \varpi_{F}^{M} R_{F}^{\times}, z_{2} \in R_{L}^{\times}}} \psi_{F}\left(-m_{1}-\frac{m_{1} z_{2} \bar{z}_{2}}{a_{1} a_{2}}\right) d m_{1} d z_{2} .
$$

Writing the above sum as an integral taken over $m_{1} \in \varpi_{F}^{1-A} R_{F}$ minus the same integral over $m_{1} \in R_{F}$, we get $q_{F}^{3 A-1}\left(1+q_{F}^{-1}\right)$. Note that for J_{2} we always have $A>1$.

In case (ii) we have $z_{2} \in-a_{1} a_{2} /\left(m_{1} \bar{z}_{1}+\bar{z}_{3}\right)+\varpi_{L}^{Z} R_{L}$. Integrating with respect to z_{4} and z_{2} we arrive at

$$
\begin{aligned}
& q_{F}^{5 A} \sum_{0<-M \leq Z<A} \\
& \int_{m_{1} \in \varpi_{F}^{M}} R_{F}^{\times}, \\
& \begin{array}{c}
z_{1} \in \varpi_{L}^{Z} R_{L}^{\times}, \\
z_{3} \in R_{L}^{\times},
\end{array} \\
& z_{3} \in R_{L}^{\times} \text {, } \\
& m_{1} z_{1}+z_{3} \in R_{L}^{\times}, \\
& m_{1} z_{1} \bar{z}_{1}+z_{1} \bar{z}_{3}+\bar{z}_{1} z_{3} \in \varpi_{F}^{A} R_{F} \\
& \psi_{F}\left(-m_{1}-\frac{a_{1} a_{2} m_{1}}{\left(m_{1} z_{1}+z_{3}\right)\left(m_{1} \bar{z}_{1}+\bar{z}_{3}\right)}\right) \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{z_{1}}{a_{1}}\right) d m_{1} d z_{1} d z_{3} .
\end{aligned}
$$

Note that the last two conditions above are equivalent to $\left(m_{1} z_{1}+z_{3}\right)\left(m_{1} \bar{z}_{1}+\bar{z}_{3}\right) \in$ $z_{3} \bar{z}_{3}+\varpi_{F}^{A+M} R_{F}$. If we change variables from z_{3} to $z_{0}=z_{3} / m_{1} \in \varpi_{L}^{-M} R_{L}^{\times}$with $\left(z_{1}+z_{0}\right)\left(\bar{z}_{1}+\bar{z}_{0}\right) \in z_{0} \bar{z}_{0}\left(1+\varpi_{F}^{A+M} R_{F}\right)$, we get an integral of

$$
\psi_{F}\left(-m_{1}-\frac{a_{1} a_{2}}{m_{1}\left(z_{1}+z_{0}\right)\left(\bar{z}_{1}+\bar{z}_{0}\right)}\right)
$$

integrated with respect to $m_{1} \in \varpi_{F}^{M} R_{F}^{\times}$. This integral is of the same kind as the integral in (9) and hence is non-zero only if $1+a_{1} a_{2} /\left(z_{1}+z_{0}\right)\left(\bar{z}_{1}+\bar{z}_{0}\right) \in R_{L}^{\times}$ when $M<-1$. Using three new variables $m=-m_{1} \in \varpi_{F}^{M} R_{F}^{\times}, u=m_{1} z_{1} / z_{3} \in$ $\varpi_{L}^{M+Z} R_{L}^{\times}$with $(1+u)(1+\bar{u}) \in 1+\varpi_{F}^{A+M} R_{F}$, and $z=-(1+u) z_{3} \in R_{L}^{\times}$(with $1+a_{1} a_{2} /(z \bar{z}) \in R_{F}^{\times}$when $\left.M<-1\right)$ we can rewrite the integral in case (ii) as

$$
\begin{equation*}
q_{F}^{5 A} \sum_{0<-M \leq Z<A} q_{F}^{2 M} \int \psi_{F}\left(m\left(1+\frac{a_{1} a_{2}}{z \bar{z}}\right)\right) \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{u z}{a_{1} m(1+u)}\right) d m d u d z \tag{22}
\end{equation*}
$$

Let us first consider the case of $M<-1$. By an argument similar to the one for integrals like (9), the integral with respect to m vanishes unless the orders of
$m\left(1+a_{1} a_{2} /(z \bar{z})\right)$ and $c_{1} /\left(a_{1} m\right)$ are the same, where $u z /(1+u)=c_{1}+c_{2} \sqrt{\tau}$. Since $c_{1} \in \varpi_{F}^{M+Z} R_{F}$, we have $M \geq Z-A$; hence the sum in (22) in this case is taken over $1<-M \leq Z \leq A+M$ which implies that $A+2 M \geq 0$. Now by changing variables from z to $z /(1+u)$ we can simply erase the factor $(1+u)$ from the integrand in (22). We claim that we must have $M=-A / 2$ if the above integral is non-zero. To prove this claim, we assume $M>-A / 2$ and apply the Mellin transform to the integral:

$$
\begin{aligned}
& q_{F}^{5 A} \sum_{\substack{-A / 2<M<-1,-M \leq Z \leq A+M}} q_{F}^{2 M} \int_{R_{F}^{\times}} \chi^{-1}(b) d b \\
& \text {. } \int_{m \in \varpi_{F}^{M} R_{F}^{\times},} \psi_{F}\left(m\left(1+\frac{b}{z \bar{z}}\right)\right) \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{u z}{a_{1} m}\right) d m d u d z \\
& z \in R_{L}^{\times} \\
& u \in \varpi_{L}^{M+Z_{2}} R_{L}^{\times}, \\
& (1+u)(1+\bar{u}) \in 1+\varpi_{F}^{A+M} R_{F}
\end{aligned}
$$

where we set $b=a_{1} a_{2}$. If χ is unramified, the integral with respect to b vanishes because $M<-1$. Assume that χ is ramified. After changing variables from b to $c=b m /(z \bar{z}) \in \varpi_{F}^{M} R_{F}^{\times}$and from z to $y=u z /\left(a_{1} m\right) \in \varpi_{L}^{Z-A} R_{L}^{\times}$we see that the conductor exponent $a(\chi)$ must equal $-M$ if the integral is non-zero. Since $a\left(\chi \circ N_{L / F}\right)=a(\chi)$ we also have $Z-A=M$, i.e., $Z=A+M$ if the integral is non-zero. Therefore, when $a(\chi)=-M$ and $Z=A+M$ we get the integral

$$
\int_{\substack{u \in \varpi_{L}^{A+2 M}}} \chi(u \bar{u}) d u .
$$

Since $A+2 M>0$ we can set $1+u=(1+w)(1+v \sqrt{\tau}) /(1-v \sqrt{\tau})$ with $w \in \varpi_{L}^{A+M} R_{L}$ and $v \in \varpi_{F}^{A+2 M}\left(R_{F}^{\times} /\left(1+\varpi_{F}^{-M} R_{F}\right)\right)$. Then $\chi(u \bar{u})=\chi\left(-4 \tau v^{2} /\left(1-\tau v^{2}\right)\right)$ and the sum with respect to v vanishes because we can set $v=v_{0}(1+c)$ with $c \in \varpi_{F}^{-[M / 2]} R_{F}$ and sum over c. Since the Mellin transform for any character χ is zero, we prove our claim. Back to the case of $A+2 M=0$, we point out that then $Z=-M=A+M$ and $u \in R_{L}^{\times}$. Since the integral with respect to m vanishes if $u \in \varpi_{L} R_{L}$ when $M<-1$, we can take the integral with respect to u over R_{L}.

Now let us turn to the case of $M=-1$. Since $m\left(1+a_{1} a_{2} /(z \bar{z})\right) \in \varpi_{F}^{-1} R_{F}$ and $(1+u)(1+\bar{u}) \in 1+\varpi_{F}^{A-1} R_{F}$, we can again change variables from z to $z(1+u)$ and thus erase the factor $(1+u)$ from the integrand in (22). We can also set $z=z_{0}(1+v)$ with $v \in \varpi_{L} R_{L}$. Integrating with respect to v we know that Z must be equal to $A-1$ in order to have a non-zero integral. Consequently, we get

$$
q_{F}^{5 A-2} \int_{\begin{array}{c}
m \in \varpi_{F}^{-1} R_{F}^{\times}, \\
z \in R_{L}^{\times}, \\
u \in \varpi_{L}^{A-2} R_{L}^{\times}, \\
(1+u)(1+\bar{u}) \in 1+\varpi_{F}^{A-1} R_{F}
\end{array}} \psi_{F}\left(m\left(1+\frac{a_{1} a_{2}}{z \bar{z}}\right)\right) \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{u z}{a_{1} m}\right) d m d u d z .
$$

Recall that from case (i) we got $q_{F}^{3 A-1}\left(1+q_{F}^{-1}\right)$. This is indeed equal to the above integral with u being taken over $\varpi_{L}^{A-1} R_{L}$. Adding this expression to the above
integral we thus can set $u \in \varpi_{L}^{A-2} R_{L}$ with $(1+u)(1+\bar{u}) \in 1+\varpi_{F}^{A-1} R_{F}$. If $A>2$, we can further compute the integral with respect to u

$$
\begin{aligned}
& \int_{\substack{u \in \varpi_{L}^{A-2} R_{L},(1+u)(1+\bar{u}) \in 1+\varpi_{F}^{A-1} R_{F}}} \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{u z}{a_{1} m}\right) d u \\
&=\int_{\substack{u \in \varpi_{L}^{A-2} R_{L}, u+\bar{u} \in \varpi_{F}^{A-1} R_{F}}} \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{u z}{a_{1} m}\right) d u \\
&=\int_{\substack{w \in \varpi_{F}^{A-2} R_{F}, v \in \varpi_{F}^{A-1} R_{F}}} \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{w \sqrt{\tau} z}{a_{1} m}\right) d v d w \\
&
\end{aligned}
$$

with $u=v+w \sqrt{\tau}$. Since the order of ψ_{F} is zero, the last integral above equals $q_{F}^{3-2 A}$ if $y \in \varpi_{F} R_{F}$ and vanishes if $y \in R_{F}^{\times}$, where $z=x+y \sqrt{\tau}$. Back to (22), when $A>2$ we have

$$
\begin{aligned}
q_{F}^{3 A+1} & \int_{\substack{m \in \varpi_{F}^{-1} R_{F}^{\times}, z \in R_{L}^{\times} \text {with } y \in \varpi_{F} R_{F}}} \psi_{F}\left(m\left(1+\frac{a_{1} a_{2}}{z \bar{z}}\right)\right) d m d z \\
= & q_{F}^{3 A} \int_{\substack{m \in \varpi_{F}^{-1} R_{F}^{\times}, x \in R_{F}^{\times}}} \psi_{F}\left(m\left(1+\frac{a_{1} a_{2}}{x^{2}}\right)\right) d m d x \\
& = \begin{cases}q_{F}^{3 A}\left(q_{F}^{-1}+1\right) & \text { if }-a_{1} a_{2} \text { is a square } \\
q_{F}^{3 A}\left(q_{F}^{-1}-1\right) & \text { if }-a_{1} a_{2} \text { is not a square. }\end{cases}
\end{aligned}
$$

To summarize our computation we have

$$
\left.\begin{array}{rl}
J_{2}=q_{F}^{4 A} & \int_{\substack{m \in \varpi_{F}^{-A / 2} R_{F}^{\times}, z \in R_{L}^{\times}, u \in R_{L},}} \psi_{F}\left(m\left(1+\frac{a_{1} a_{2}}{z \bar{z}}\right)\right) \\
(1+u)(1+\bar{u}) \in 1+\varpi_{F}^{A / 2} R_{F}
\end{array}\right] \begin{array}{ll}
\left(\psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{u z}{a_{1} m}\right) d m d u d z \quad \text { if } A \geq 2\right. \text { is even }
\end{array} \quad \begin{array}{ll}
q_{F}^{3 A}\left(q_{F}^{-1}+1\right) & \text { if }-a_{1} a_{2} \text { is a square in } R_{F}^{\times} /\left(1+\varpi_{F} R_{F}\right) \\
& + \begin{cases}q_{F}^{3 A}\left(q_{F}^{-1}-1\right) & \text { if }-a_{1} a_{2} \text { is not a square in } R_{F}^{\times} /\left(1+\varpi_{F} R_{F}\right) \\
& \text { and } A \geq 3 .\end{cases}
\end{array}
$$

After changing variables from m to $n=c m \in R_{F}^{\times}$where $c \in \varpi_{F}^{A / 2} R_{F}^{\times}$, from z to $x_{1}=-c^{2} z / a_{1} \in R_{L}^{\times}$, and from u to $x_{2}=-x_{1}(1+u) \in R_{L}^{\times}$, we can write the above
integral as

$$
\begin{aligned}
& J_{2}=q_{F}^{9 A / 2} \int_{\substack{n \in R_{F}^{\times}, x_{1}, x_{2} \in R_{L}^{\times}, x_{1} \bar{x}_{1} \in x_{2} \bar{x}_{2}+\varpi_{F}^{A / 2} R_{F}}} \psi_{F}\left(\frac{n}{c}\left(1+\frac{b}{x_{1} \bar{x}_{1}}\right)\right) \\
& \quad \cdot \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{x_{1}+x_{2}}{c n}\right) d n d x_{1} d x_{2} \quad \text { if } A \geq 2 \text { is even } \\
& \\
& \quad+ \begin{cases}q_{F}^{3 A}\left(q_{F}^{-1}+1\right) & \text { if }-a_{1} a_{2} \text { is a square in } R_{F}^{\times} /\left(1+\varpi_{F} R_{F}\right) \\
q_{F}^{3 A}\left(q_{F}^{-1}-1\right) & \text { ifd } A \geq 3 \\
& \text { and } A \geq 3\end{cases}
\end{aligned}
$$

where as before $b=a_{2} c^{4} / a_{1} \in R_{F}^{\times}$.
Finally, we compute J_{3} :

$$
\begin{aligned}
& J_{3}=q_{F}^{8 A} \\
& \quad \cdot \int_{\substack{ \\
m_{1}, m_{2} \in \varpi_{F}^{-A} R_{F}^{\times}, z \in M_{2 \times 2}\left(R_{L}\right),{ }^{t} \bar{z}\left(\begin{array}{cc}
m_{1} & 1 \\
1 & 0
\end{array}\right)}}^{\substack{z \in-a_{1} a_{2}\left(\begin{array}{cc}
0 \\
1 & 1 \\
1 & m_{2}
\end{array}\right)+M_{2 \times 2}\left(\varpi_{L}^{A} R_{L}\right)}} \psi_{F}\left(m_{2}-m_{1}\right) \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{z_{1}}{a_{1}}\right) d m_{1} d m_{2} d z
\end{aligned}
$$

where the matrix condition is equivalent to

$$
\begin{aligned}
& m_{1} z_{1} \bar{z}_{1}+\bar{z}_{1} z_{3}+z_{1} \bar{z}_{3} \in \varpi_{F}^{A} R_{F}, \\
& m_{1} \bar{z}_{1} z_{2}+\bar{z}_{1} z_{4}+z_{2} \bar{z}_{3} \in-a_{1} a_{2}+\varpi_{L}^{A} R_{L} \\
& m_{1} z_{2} \bar{z}_{2}+\bar{z}_{2} z_{4}+z_{2} \bar{z}_{4} \in-a_{1} a_{2} m_{2}+\varpi_{F}^{A} R_{F} .
\end{aligned}
$$

The last condition above implies that $z_{2} \in R_{L}^{\times}$; hence from the second condition we get $z_{1} \in \varpi_{L}^{A} R_{L}$. Then we can integrate with respect to m_{2}, z_{4}, z_{3}, and z_{1} to get

$$
J_{3}=q_{F}^{3 A} \int_{\substack{m_{1} \in \varpi_{F}^{-A} R_{F}^{\times}, z_{2} \in R_{L}^{\times}}} \psi_{F}\left(-m_{1}\left(1+\frac{z_{2} \bar{z}_{2}}{a_{1} a_{2}}\right)\right) d m_{1} d z_{2}
$$

A similar integral has been computed and this one equals

$$
\begin{aligned}
J_{3} & =q^{2}\left(1+q_{F}^{-1}\right) \quad \text { if } A=1 \\
& =0 \quad \text { if } A>1
\end{aligned}
$$

Collecting our results on J_{1}, J_{2}, and J_{3} we arrive at

Lemma 5. Under the assumption of Lemma 1 we have

$$
\begin{aligned}
& J_{F}\left(w a, \Phi_{0}\right)=1 \quad \text { if } A=0 ; \\
& =q_{F}^{3} \quad \text { if } A=1 ; \\
& =2 q_{F}^{3 A} \quad \text { if } A \geq 3 \text { is odd and }-a_{1} a_{2} \text { is a square in } F ; \\
& =q_{F}^{9 A / 2} \quad \int_{F} \quad \psi_{F}\left(\frac{n}{c}\left(1+\frac{b}{x_{1} \bar{x}_{1}}\right)\right) \\
& n \in R_{F}^{\times} \text {, } \\
& x_{1}, x_{2} \in R_{L}^{\times} \text {, } \\
& x_{1} \bar{x}_{1} \in x_{2} \bar{x}_{2}+\varpi_{F}^{A / 2} R_{F} \\
& \cdot \psi_{F} \circ \operatorname{tr}_{L / F}\left(\frac{x_{1}+x_{2}}{c n}\right) d n d x_{1} d x_{2} \\
& \text { if } A \geq 2 \text { is even; } \\
& +q_{F}^{3 A}\left(1-q_{F}^{-1}\right) \quad \text { if } A=2 ; \\
& +2 q_{F}^{3 A} \quad \text { if } A \geq 4 \text { is even and }-a_{1} a_{2} \text { is a square in } F ; \\
& =0 \quad \text { otherwise. }
\end{aligned}
$$

Comparing Lemmas 4 and 5 and using the local identity in Lemma 1, we prove Theorem 2.

Acknowledgement

The author would like to thank the referee for making detailed helpful suggestions in a very timely fashion.

References

1. J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Ann. Math. Studies, no. 120, Princeton Univ. Press, Princeton, 1989. MR 90m:22041
2. T. Asai, On certain Dirichlet series associated with Hilbert modular forms and Rankin's method, Math. Ann. 226 (1977), 81-94. MR 55:276
3. W. Duke and H. Iwaniec, A relation between cubic exponential and Kloosterman sums, Contemporary Math. 143 (1993), 255-258. MR 93m:11082
4. S. Friedberg, Poincaré series for $G L(n)$: Fourier expansion, Kloosterman sums, and algebreogeometric estimates, Math. Zeit. 196 (1987), 165-188. MR 88m:11032
5. P. Gérardin and J.P. Labesse, The solution of a base change problem for $G L(2)$ (following Langlands, Saito, Shintani), Proc. Symp. Pure Math. 33 (1979), part 2, 115-133. MR 82e:10047
6. G. Harder, R. Langlands and M. Rapoport, Algebraische Zyklen auf Hilbert-BlumenthalFlächen, J. Reine Angew. Math. 366 (1986), 53-120. MR 87k:11066
7. H. Jacquet, The continuous spectrum of the relative trace formula for $G L(3)$ over a quadratic extension, Israel J. Math. 89 (1995), 1-59. MR 96a:22029
8. H. Jacquet and Y. Ye, Une remargue sur le changement de base quadratique, C.R. Acad. Sci. Paris, 311 Série I, (1990), 671-676. MR 92j:11046
9. H. Jacquet and Y. Ye, Relative Kloosterman integrals for $G L(3)$, Bull. Soc. Math. France, 120 (1992), 263-295. MR 94c:11047
10. H. Jacquet and Y. Ye, Distinguished representations and quadratic base change for $G L(3)$, Trans. Amer. Math. Soc., 348 (1996), 913-939. MR 96h:11041
11. H. Jacquet and Y. Ye, Germs of Kloosterman integrals for GL(3), Trans. Amer. Math. Soc., to appear. CMP 97:11
12. N.M. Katz, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. Math. Studies, no. 116, Princeton Univ. Press, Princeton, 1988. MR 91a:11028
13. Z. Mao and S. Rallis, A trace formula for dual pairs, Duke Math. J. 87 (1997), 321-341. CMP 97:11
14. G. Stevens, Poincaré series on $G L(r)$ and Kloosterman sums, Math. Ann. 277 (1987), 25-51. MR 88m:11031
15. J. Tate, Number theoretic background, Proc. Symp. Pure Math. 33 (1979), part 2, 3-26. MR 80m:12009
16. Y. Ye, Kloosterman integrals and base change. In: Number Theory and its Applications in China, Contemporary Math. 77 (1988), 163-170. MR 90b:11058
17. Y. Ye, Kloosterman integrals and base change for $G L(2)$, J. Reine Angew. Math. 400 (1989), 57-121. MR 90i:11134
18. Y. Ye, The fundamental lemma of a relative trace formula for $G L(3)$, Comp. Math. 89 (1993), 121-162. MR 95b:22023
19. Y. Ye, Local orbital integrals of a relative trace formula, Chinese Sci. Bull. 38 (1993), 969-971.
20. Y. Ye, An integral transform and its applications, Math. Ann. $\mathbf{3 0 0}$ (1994), 405-417. MR 95j:11045
21. Y. Ye, The lifting of Kloosterman sums, J. Number Theory 51 (1995), 275-287. MR 97a:11126
22. Y. Ye, Exponential sums for $G L(n)$ and their applications to base change, J. Number Theory 68 (1998), 112-130. CMP 98:07
23. Y. Ye, The lifting of an exponential sum to a cyclic algebraic number field of a prime degree, Trans. Amer. Math. Soc. 350 (1998), 5003-5015. CMP 97:08
24. D. Zagier, Modular forms associated to real quadratic fields, Invent. Math. 30 (1975), 1-46. MR 52:3062

Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242-1419
E-mail address: yey@math.uiowa.edu

[^0]: Received by the editors April 9, 1997 and, in revised form, August 27, 1998.
 1991 Mathematics Subject Classification. Primary 11L05; Secondary 11F70, 22E55.

