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A KLOOSTERMAN SUM IN A RELATIVE
TRACE FORMULA FOR GL4

YANGBO YE

Abstract. We study a Kloosterman sum for GL4 and prove that it is equal
to an exponential sum over a quadratic number field. This identity has appli-
cations in a relative trace formula for GL4 which might be used to give a new
proof of quadratic base change and characterize its image.

1. Introduction

A main result of this article is the following identity of exponential sums.

Theorem 1. Let τ be a non-zero square-free integer which is not equal to 1. Let b
be a non-zero integer and c a positive odd integer such that (b, c) = (τ, c) = 1. Then∑

1≤xi≤c,
(xi,c)=1

for i=1,... ,4

e2πi
(
x1+x2+x̄2x̄3+x2x3x̄4+bx̄1x4+bx̄1x3

)
/c

=
∑

1≤n,x1,x2,y1,y2≤c,
(n,c)=(x2

1−τy2
1,c)=(x2

2−τy2
2,c)=1,

x2
1−τy2

1≡x2
2−τy2

2 (mod c)

e2πi
(

n+bn(x2
1−τy2

1)+2n̄(x1+x2)
)
/c.

(1)

Here we denote by x̄ the inverse of x modulo c.

The sum on the left side of the above identity can be regarded as a generalization
of the classical Kloosterman sum ∑

1≤x≤c,
(x,c)=1

e2πi(x+bx̄)/c

where (b, c) = 1 and xx̄ ≡ 1 (mod c). We will see that it is indeed a Kloosterman
sum for the group GL4. The expression on the right side of (1) is an exponential
sum taken over certain algebraic integers of the quadratic number field Q(

√
τ ).

Other identities of this kind have been studied by several authors including Zagier
[24], Katz [12], Jacquet and Ye [9], Duke and Iwaniec [3], Ye [21] and [23], and Mao
and Rallis [13]. Some of these known identities have applications in automorphic
forms and representation theory. To look at similar applications of the identity in
Theorem 1 let us consider its p-adic version.

Let F be a p-adic field of characteristic zero and L = F (
√
τ ) an unramified

quadratic extension field of F with τ ∈ F . Assume that |2|F = |τ |F = 1. Denote
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by A the group of diagonal matrices in GL4, by N the group of upper triangular
matrices with unit diagonal entries in GL4, and by K(F ) the maximal compact
subgroup of GL4(F ) which consists of matrices with entries in RF and determinants
in R×F . Here RF is the ring of integers in F and R×F is the group of invertible

elements in RF . Let w =
(

1
1

11

)
and a = diag(a1, a1, a2, a2) with a1, a2 ∈ F×.

Denote by Uw(F ) the subgroup of N(F ) consisting of matrices whose entries at
(1, 2) and (3, 4) positions are both zero, and by Nw(F ) the subgroup of N(L)
defined by tn̄wn = w.

Let ψF be a non-trivial character of F of order zero; hence ψF is trivial on RF

but non-trivial on $−1
F RF , where $F is a prime element in F . Define a character

θF on N(F ) by θF (n) = ψF (
∑

1≤i<n ni,i+1) for n = (nij) ∈ N(F ).

Theorem 2. With the above assumptions, notation, and matrices w and a, for
any a1, a2 ∈ F× we have∫

u∈Uw(F ), n∈N(F )
tuwan∈K(F )

θF (un) du dn =
∫

n∈Nw(F )\N(L),
tn̄wan∈K(L)

θF (nn̄) dn.(2)

The left side of (2) is a p-adic Kloosterman sum for GL4 in the integral form
as in Friedberg [4] and Stevens [14]. To see the significance of the identities in
Theorems 1 and 2, let us introduce a relative trace formula for GLn and look at its
applications in representation theory.

Let E be an algebraic number field and E′ = E(
√
τ ) a quadratic extension of

E with τ ∈ E×. Denote by EA and E′A the adele rings of E and E′, respectively,
and by E×A and E′×A the idele groups of E and E′, respectively. Then EA is the
restricted product of local fields Ev over all places v of E and E′A is the restricted
product of local fields E′w over all places w of E′. For z =

∏
w zw in E′A the Galois

conjugation z 7→ z̄ is defined using the Galois conjugation on E′ over E. Denote by
NE′

A/EA
the global norm map. Then the global norm-one group E′1A is the kernel

of NE′
A/EA

, and we have E′1A = {z/z̄|z ∈ E′×A }. If v is inert in E′, we denote by
E+

v the group of elements of E×v which are norms. Define E+
A as the group of

z =
∏

v zv ∈ E×A such that zv ∈ E+
v for every inert place v.

From the exact sequence

1 −→ E′1A −→ E′×A
NE′

A
/EA−−−−−−→ E+

A −→ 1

we know that if an idele class character χ′ of E′ is trivial on E′1A, then there is an
idele class character χ of E such that χ′ = χ◦NE′

A/EA
. This character χ is uniquely

determined up to a multiplication by the idele class character η of E attached to
the quadratic extension field E′.

We note that E× and E′× are indeed GL1(E) and GL1(E′), respectively. Also,
E′1 is actually the unitary group of one variable in E′ over E. This suggests a
possible generalization of the above example to GLn.

Let S(E) be the set of invertible Hermitian matrices in GLn(E′). For any s ∈
S(E) we denote by Hs(E) the corresponding unitary group:

Hs(E) = {h ∈ GLn(E′)| th̄sh = s}.
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An automorphic irreducible cuspidal representation π′ of GLn(E′A) with central
character ω′ is said to be Hs-distinguished if the periodic integral

µ(φ) =
∫

Hs(E)\Hs(EA)

φ(h) dh

is a non-zero linear form on the space of π′. Then the proposition below is a
generalization of our example to GLn.

Proposition 1. Let π′ be an Hs-distinguished representation of GLn(E′A) with
central character ω′ for a unitary group Hs. Then π′ is the quadratic base change
of an automorphic irreducible cuspidal representation π of GLn(EA) with a central
character ω. The central characters satisfy the condition ω′ = ω ◦NE′

A/EA
.

In the case of GL2 a representation π′ is Hs-distinguished if its Asai L-function
has a pole at s = 1 (Asai [2]). For n > 2 a similar situation is also true. There-
fore, Proposition 1 characterizes quadratic base change by analytic behavior of
L-functions.

A proof of this proposition can be found in Harder, Langlands, and Rapoport
[6] and Jacquet [7]. The converse of this proposition is expected to be true also but
the proof appears much more difficult. For GL2 the converse is proved in Harder,
Langlands, and Rapoport [6], Ye [16] and [17], and Jacquet and Ye [8]. For GL3 it
is proved in a series of papers by Jacquet and Ye ([7], [9], [10], [11], and [18]).

The main technique used in [7] through [11] and [16] through [18] is a relative
trace formula which is indeed an equality of two trace formulas. On one side is a
Kuznetsov trace formula and on the other side is a so-called relative Kloosterman
integral.

First let us look at the Kuznetsov trace formula for GLn. Let f =
∏

v fv be
a smooth function of compact support on GLn(EA). We want to assume that at
any inert place v of E the local function fv is supported on the group GL+

n (Ev) ={
g ∈ GLn(Ev)

∣∣ det g ∈ E+
v

}
. Let χ be an idele class character of E. Then we define

the kernel function

Kf (g, h) =
∫

Z+(E)\Z+(EA)

∑
ξ∈GLn(E)

f(zg−1ξh)χ(z) d×z(3)

where Z+(E) is the set of matrices diag(z, . . . , z) in the center Z(E) of GLn(E)
with z being in the subgroup E+ of E× consisting of norms. Let ψ =

∏
v ψv be a

non-trivial additive character of EA trivial on E such that for almost all v the local
character ψv has order zero, i.e., ψv is trivial on the ring of integer Rv of Ev but
non-trivial on $−1

v Rv, where $v is a prime element in Rv. Denote by N the group
of upper triangular matrices with unit diagonal entries. We define a character θ
on N by θ(n) = ψ(

∑
1≤i<n ni,i+1) for n = (nij) ∈ N . Then the Kuznetsov trace

formula is given by the integral∫
N(E)\N(EA)

∫
N(E)\N(EA)

Kf (tn1, n2)θ(n−1
1 n2) dn1 dn2.(4)

To have the relative Kloosterman integral, we set S+(E) to be the set of s ∈ S(E)
such that det s ∈ E+. Let Φ =

∏
v Φv be a smooth function of compact support on
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S+(EA). Now we define a kernel function

KΦ(g) =
∫

Z+(E)\Z+(EA)

∑
ξ∈S(E)

Φ(ztḡξg)χ(z) dz

and define the relative Kloosterman integral∫
N(E′)\N(E′

A)

KΦ(n)θ(nn̄) dn.(5)

The relative trace formula is then∫
N(E)\N(EA)

∫
N(E)\N(EA)

Kf(tn1, n2)θ(n−1
1 n2) dn1 dn2

=
∫

N(E′)\N(E′
A)

KΦ(n)θ(nn̄) dn.

Here the equality means that for a given smooth function f =
∏

v fv of compact
support on GL(n, FA) there exists a smooth function Φ =

∏
v Φv of compact sup-

port on S(FA) or a finite sum of these Φ, and vice versa, such that the above relative
trace formula holds. There are restrictions on the way in which one chooses these
functions:

(i) The matching of f and Φ should be made through matching of local functions
fv and Φw.

(ii) At an inert unramified non-Archimedean place v of E the characteristic
function f0 of K(Ev) should be matched with the characteristic function Φ0 of
K(E′w) ∩ S(Ev).

(iii) At a non-Archimedean place v of E which splits into w1 and w2 the charac-
teristic function of K(Ev) should be matched with Φ1 ⊗ Φ2 via convolution where
Φi is the characteristic function of K(E′wi

) ∩ S(Ev).
(iv) At an inert unramified non-Archimedean place v of E, a compactly supported

bi-K(Ev)-invariant function fv should be matched with a function Φw via the base
change map of Hecke algebras (see Arthur and Clozel [1]).

(v) At a non-Archimedean place v of E which splits into w1 and w2 a compactly
supported bi-K(Ev)-invariant function fv should be matched with a function of the
form Φ1⊗Φ2 via convolution. Here the convolution is used as the base change map
of Hecke algebras in splitting cases.

The matchings in (iv) and (v) are called the fundamental lemma of the relative
trace formula while the matchings in (ii) and (iii) are called the fundamental lemma
for unit elements of Hecke algebras. The splitting cases (iii) and (v) are easy.
Proving the matching in (ii) and hence the the fundamental lemma for unit elements
is the first step in establishing the relative trace formula. Once this has been done,
one might be able to prove the matchings in (iv) using the techniques discussed
in Ye [20]. One might then be able to deduce certain matchings in (i) from the
fundamental lemma using the Shalika germ expansions introduced in Jacquet and
Ye [10] and [11] and exponential sum expansions in Ye [19] and [20]. To apply
the relative trace formula to base change problems one needs to study continuous
spectrum of the relative trace following the work of Jacquet [7].
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The present work is a step toward a proof of the matchings in (ii) for GL4,
i.e., the fundamental lemma for unit elements of Hecke algebras. More precisely,
Theorem 2 proves the matchings in (ii) for GL4 for certain local orbital integrals
which will be defined below.

By the Bruhat decomposition the group GLn(E) can be decomposed into the
disjoint union of double cosets tN(E)wA(E)N(E), where w goes over the Weyl
group W of the group A of diagonal matrices. Applying this decomposition to
the sum in the kernel function Kf (g, h) in (3) we can express the Kuznetsov trace
formula in (4) as a sum of global orbital integrals∑

w

∑
a

∫
Z+(EA)

I(waz, f)χ(z) dz

where

I(wa, f) =
∫

u∈Uw(EA),
n∈N(EA)

f(tuwan)θ(un) du dn.

Here the sums are taken over w and a of the form

w =

w1

. . .
wr

 , a =

a1

. . .
ar

 ,(6)

where wi =
( 1

. . .
1

)
∈ GLni(E), ai is in the center of GLni(E), and n1+· · ·+nr =

n. For such a w we denote by Uw the unipotent subgroup of GLn consisting of

matrices
( I1 ∗ ∗... ∗

Ir

)
where Ii is the identity matrix in GLni . Note that in our

computation other Weyl matrices w yield zero orbital integrals.
Similarly, using a double coset decomposition of GLn(E′) the relative Klooster-

man integral in (5) can be written as a sum of global orbital integrals∑
w

∑
a

∫
Z+(EA)

J(waz,Φ)χ(z) dz

where

J(wa,Φ) =
∫

Nw(EA)\N(E′
A)

Φ(tn̄wan)θ(nn̄) dn.

Here the sums are taken over the same w and a as above and Nw(EA) is the
subgroup of N(E′A) defined by tn̄wn = w.

Consequently, the relative trace formula can be reduced to identities of global
orbital integrals

I(wa, f) = J(wa,Φ)

for any w and a as in (6) with ai being in the center of GLni(EA). Express-
ing I(wa, f) and J(wa,Φ) as products of local orbital integrals Iv(wa, fv) and
Jw(wa,Φw), we need to prove that

Iv(wa, fv) = Jw(wa,Φw)(7)
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for all w and a of the form (6) but with ai being in the center of GLni(Ew), when
v is inert in E′ with w lying above v. In the case of v being non-Archimedean and
unramified, proving (7) for fv being the characteristic function of K(Ev) and Φw

being the characteristic function of K(E′w)∩S(Ev) for all w is equivalent to proving
the fundamental lemma for the unit elements of Hecke algebras.

Back to GL4, one needs to prove (7) for the following w:

w1 =


1

1
1

1

 , w2 =


1

1
1

1

 ,

w3 =


1

1
1

1

 , w4 =


1

1
1

1

 , w5 = I.

The case of w1 is trivial. The cases of w2 and w3 were proved in Ye [22]. In this
article we will prove (7) for w4 with Ev = F , E′w = L, and ψv = ψF . Thus, the
only remaining unproved case for the fundamental lemma of unit elements of Hecke
algebras is w5 = I.

We want to point out that for the group GL2, the non-trivial case for the fun-
damental lemma is similar to our case of w2. For GL3, the cases of

(
1

1
1

)
and(

1
1

1

)
are again similar to our cases of w2 and w3. The case of w4 does not appear

in GL2 and GL3.
Exponential sums corresponding to w2 and w3 are hyper-Kloosterman sums

which are studied by Katz [12], Friedberg [4], and Stevens [14]. The Klooster-
man sum of the form on the left side of (2) for w4 in GL4 has also been studied by
Friedberg [4] and Stevens [14]. What is new in the present paper is its new expres-
sion given on the left side of (1). Also new in this paper is certainly the identity of
exponential sums in Theorem 1. This identity can be regarded as a lifting of the
exponential sum on the left side of (1) to a quadratic number field. Because of its
connection with our relative trace formula, it might be a kind of manifestation of
the underlying quadratic base change.

2. Proof of Theorem 1

We will use a local argument to prove the identity in Theorem 1. Let ψ =
ψR

∏
p<∞ ψp be an additive character of QA which is trivial on Q such that its real

component is given by ψR(x) = e−2πix and each p-adic local character ψp has order
equal to 0. Since ψ is trivial on Q, for any x ∈ Q we have e2πix =

∏
p<∞ ψp(x).

Recall that we assumed that c is odd and (τ, c) = 1. For any prime divisor p of c
if

(
τ
p

)
= 1, then p splits in E = Q(

√
τ); if

(
τ
p

)
= −1, then p is inert unramified in

E = Q(
√
τ ). In the former case Qp ⊗Q E = E1p ⊕ E2p is isomorphic to the direct

sum of two copies of Qp while in the latter case Qp ⊗Q E = Ep is an unramified
quadratic extension field of Qp. Now we can write the identity in (1) in terms of
local products
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p|c

∑
xi∈R×

p /(1+cRp)
for i=1,... ,4

ψp

(1
c

(
x1 + x2 +

1
x2x3

+
x2x3

x4
+
bx4

x1
+
bx3

x1

))

=
∏
p|c,(

τ
p

)
=−1

∑
x1,x2∈R×

Ep
/(1+cREp),

m∈R×
p /(1+cRp),

x1x̄1∈x2x̄2(1+cRp)

ψp

(m
c

(
1 +

b

x1x̄1

))
ψp◦trEp/Qp

(x1 + x2

cm

)

·
∏
p|c,(
τ
p

)
=1

∑
m,x1,x2,y1,y2∈R×

p /(1+cRp),

x1y1∈x2y2(1+cRp)

ψp

(m
c

(
1 +

b

x1y1

))
ψp

(x1 + x2 + y1 + y2
cm

)
.

We can rewrite the sums on both sides of the above identity as local integrals.
Theorem 1 is thus reduced to local identities in the following two lemmas.

Lemma 1. Let F be a non-Archimedean local field of characteristic 0 with |2|F = 1.
Let L = F (

√
τ ) be an unramified quadratic extension field of F with τ ∈ R×F . Denote

by ψF a non-trivial character of F of order zero. For any b ∈ R×F and c ∈ $C
FR

×
F

with C > 0 we have

∫
(R×

F )4

ψF

(1
c

(
x1 + x2 +

1
x2x3

+
x2x3

x4
+
bx4

x1
+
bx3

x1

))
dx1 dx2 dx3 dx4

= qC
F

∫
m∈R×

F ,

x1,x2∈R×
L ,

x1x̄1∈x2x̄2(1+$C
F RF )

ψF

(m
c

(
1 +

b

x1x̄1

))
ψF ◦trL/F

(x1 + x2

cm

)
dmdx1 dx2.

(8)

Lemma 2. Let F be a non-Archimedean local field of characteristic 0 with |2|F =
1. Denote by ψF a non-trivial character of F of order 0. For any b ∈ R×F and
c ∈ $C

FR
×
F with C > 0 we have∫

(R×
F )4

ψF

(1
c

(
x1 + x2 +

1
x2x3

+
x2x3

x4
+
bx4

x1
+
bx3

x1

))
dx1 dx2 dx3 dx4

= qC
F

∫
m,x1,x2,y1,y2∈R×

F ,

x1y1∈x2y2(1+$C
F RF )

ψF

(m
c

(
1 +

b

x1y1

))

· ψF

(x1 + x2 + y1 + y2
cm

)
dmdx1 dx2 dy1 dy2.

Lemma 2 is trivial; its proof is by changing variables. We will devote the rest of
this section to Lemma 1.

Proof of Lemma 1. We first consider the integral on the left side of (8). We note
that for any b1, b2 6∈ RF an integral of the form∫

R×
F

ψF

(
xb1 +

b2
x

)
dx(9)
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is non-zero only if b1 ∈ b2R×F . If one of b1 and b2 is in RF but the other is not, the
integral in (9) is non-zero only if the latter is in $−1

F R×F . Applying these results
to the integral with respect to x1 on the left side of (8) we get two non-vanishing
cases:

(i) C = 1 and x3 + x4 ∈ $FRF , and
(ii) C ≥ 1 and x3 + x4 ∈ R×F .

In case (i) the integral can be computed directly. Namely, the integrand becomes
ψF (x1

c + 1
cx2x3

) because the order of ψF is zero. The integral with respect to
x4 ∈ x3 +$FRF equals q−1

F and the integrals with respect to x1 and x2 are both
equal to −q−1

F . With the integral with respect to x3 being 1−q−1
F we conclude that

case (i) yields q−3
F (1− q−1

F ).
To compute case (ii) we use a Mellin transform. Let χ be a multiplicative

character of F . If χ is ramified, we denote its conductor exponent by a(χ) which
is the smallest positive integer a such that χ is trivial on 1 +$a

FRF . We integrate
the expression on the left side of (8) against χ−1(b) with respect to b ∈ R×F :∫

(R×
F )5

x3+x4∈R×
F

χ−1(b)ψF

(1
c

(
x1 + x2 +

1
x2x3

+
x2x3

x4
+
bx4

x1
+
bx3

x1

))
db dx1 dx2 dx3 dx4.

Now we change variables successively from b to y0 = b(x3 + x4)/(cx1) ∈ $−C
F R×F ,

from x1 to y1 = x1/c ∈ $−C
F R×F , from x2 to y2 = 1/(cx2x3) ∈ $−C

F R×F , from x4 to
x = x4/x3 ∈ R×F with x+ 1 ∈ R×F , and finally from x3 to y3 = (x+ 1)/(c2xx3y2) ∈
$−C

F R×F . Then the above integral becomes

q−4C
F χ−4(c)

( ∫
$−C

F R×
F

χ−1(y)ψF (y) dy
)4

∫
x∈R×

F ,

x+1∈R×
F

χ−1
( x

(x + 1)2
)
dx.(10)

If the character χ is unramified, the first integral in (10) vanishes unless C = 1.
When C = 1, we get q−4

F (1−2q−1
F ). If χ is ramified, then the same integral vanishes

unless a(χ) = C; in this case∫
$−C

F R×
F

χ−1(y)ψF (y) dy = ε(χ, ψ)

where the local ε-factor is defined as in Tate [15]. Together with our results for
case (i) we conclude that the Mellin transform of the integral on the left side of (8)
equals 

q−3
F (1 − q−1

F − q−2
F ) if χ is unramified and C = 1;

q−4C
F χ−4(c)

(
ε(χ, ψF )

)4
∫

RF−(±1+$F RF )

χ−1
(1− z2

4

)
if χ is ramified and a(χ) = C;

0 otherwise.

(11)

Here we rewrote the last integral in (10) by using a new variable z = (1−x)/(1+x) ∈
RF − (±1 +$FRF ).
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Now we turn to the integral on the right side of (8). Again we integrate it against
χ−1(b) with respect to b ∈ R×F to get its Mellin transform

qC
F

∫
b,m∈R×

F ,

x1,x2∈R×
L ,

x1x̄1∈x2x̄2(1+$C
F RF )

χ−1(b)ψF

(m
c

(
1 +

b

x1x̄1

))

· ψF ◦trL/F

(x1 + x2

cm

)
db dmdx1 dx2.

Changing variables successively from b to y0 = bm/(cx1x̄1) ∈ $−C
F R×F , from x1

to y1 = x1/(cm) ∈ $−C
L R×L , from x2 to y2 = x2/(cm) ∈ $−C

L R×L with y2ȳ2 ∈
y1ȳ1(1 + $C

FRF ), from m to y3 = m/c ∈ $−C
F R×F , and from y2 to ε ∈ R×L with

εε̄ ∈ 1 +$C
FRF by y2 = y1ε, we get

q−3C
F χ−1(c4)

( ∫
$−C

F R×
F

χ−1(y)ψF (y) dy
)2

·
∫

y1∈$−C
L R×

L ,

ε∈R×
L ,

εε̄∈1+$C
F RF

χ−1◦NL/F (y1)ψF ◦trL/F (y1(1 + ε)) dε dy1.

If χ is unramified, then the integral with respect to y above indicates that it is
non-zero only when C = 1. In this non-zero case, we get

q−3
F

(
(q2F − 1)

∫
ε∈−1+$LRL,
εε̄∈1+$F RF

dε−
∫

ε∈R×
L ,

1+ε∈R×
L ,

εε̄∈1+$F RF

dε
)

= q−3
F

(
1− q−1

F − q−2
F

)
.

If χ is ramified, then the integral with respect to y vanishes unless a(χ) = C. Since
we assumed that the quadratic extension L is unramified and |2|F = 1, we know that
the conductor exponent a(χ◦NL/F ) = C when a(χ) = C and the order of ψF◦trL/F

is again zero. Consequently, the integral with respect to y1 is non-zero only if
1+ε ∈ R×L when a(χ) = C. Changing variables from y1 to x = y1(1+ε) ∈ $−C

L R×L
we get the local ε-factor ε(χ◦NL/F , ψF ◦trL/F ) multiplied by the integral∫

ε∈R×
L ,

1+ε∈R×
L ,

εε̄∈1+$C
F RF

χ◦NL/F (1 + ε) dε = q−2C
F

∑
ε,1+ε∈R×

L /(1+$C
L RL),

εε̄∈1+$C
F RF

χ(2 + ε+ ε̄);

here we wrote the integral in terms of a finite sum. Now we can set ε =
(1+ z

√
τ )/(1− z√τ) with z ∈ RF /$

C
FRF . Then χ(2 + ε+ ε̄) = χ−1

(
(1− τz2)/4

)
.

Using an integral again we get∫
ε∈R×

L ,

1+ε∈R×
L ,

εε̄∈1+$C
F RF

χ◦NL/F (1 + ε) dε = q−C
F

∫
RF

χ−1
(1− τz2

4

)
dz.
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Therefore, the Mellin transform of the right side of (8) becomes

q−3
F (1− q−1

F − q−2
F ) if χ is unramified and C = 1;

q−4C
F χ−4(c)

(
ε(χ, ψF )

)2

ε(χ◦NL/F , ψF ◦trL/F )
∫

RF

χ−1
(1− τz2

4

)
dz

if χ is ramified and a(χ) = C;
0 otherwise.

(12)

To compare the expressions in (11) and (12) we recall a well-known identity
between local ε-factors (see, e.g., Gérardin and Labesse [5])

ε(χ, ψF )ε(χη, ψF ) = ε(χ◦NL/F , ψF ◦trL/F )

where η is the quadratic multiplicative character of F attached to the extension
field L. Since L is assumed to be unramified over F , we have η(c) = (−1)C for
any c ∈ $C

FR
×
F ; hence ε(χη, ψ) = (−1)Cε(χ, ψF ) when a(χ) = C. Now we need a

lemma.

Lemma 3. Let F be a non-Archimedean local field of characteristic 0 with |2|F = 1.
Let L = F (

√
τ ) be an unramified quadratic extension field of F with τ ∈ R×F . Denote

by χ a ramified character of F× whose conductor exponent is a(χ) = C. Then∫
RF−(±1+$F RF )

χ−1(1− z2) dz = (−1)C

∫
RF

χ−1(1 − τz2) dz.(13)

Together, with the above remark, Lemma 3 implies that the corresponding ex-
pressions in (11) and (12) are equal. That is to say, the Mellin transforms of the two
sides of (8) are the same for any multiplicative character χ. By Fourier’s inversion
formula, we conclude that the two sides of (8) are equal.

To complete the proof of Lemma 1, we still have to prove Lemma 3. When
C = 1, the left side of (13) equals q−1

F (1 + 2
∑
χ−1(1 − x)) where the sum is

taken over all squares x 6= 1 in R×F /(1 +$FRF ), and the right side of (13) equals
−q−1

F (1 + 2
∑
χ−1(1 − x)) where x goes over all non-squares in R×F /(1 + $FRF ).

Then (13) follows from

q−1
F

(
1 + 2

∑
x∈R×

F /(1+$F RF )
is a square,

x 6=1

χ−1(1− x)
)

+ q−1
F

(
1 + 2

∑
x∈R×

F /(1+$F RF )
is a non-square

χ−1(1 − x)
)

= 2q−1
F

∑
a∈R×

F /(1+$F RF )

χ−1(a)

= 0

where a = 1− x.
When C > 1, the integrals on both side of (13) can be taken over z ∈ $[C/2]

F RF .
Indeed, if z 6∈ $[C/2]

F RF , we can set z = u(1 + v) and express an integral above as
a finite sum with respect to u of integrals with respect to v ∈ $[(C+1)/2]

F RF . Since
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u 6∈ $
[C/2]
F RF , we can conclude that the integrals with respect to v vanish. This

way the identity in (13) is reduced to∫
$

[C/2]
F RF

χ−1(1− z2) dz = (−1)C

∫
$

[C/2]
F RF

χ−1(1− τz2) dz.

If C is even, then the integrands above are both equal to 1 and hence the equality.
If C is odd, this equality can then be proved in the same way as what we did for
the case of C = 1.

This completes the proof of Theorem 1.

3. The orbital integral IF (wa, f0)

To prove Theorem 2 we have to compute the integrals on the two sides of (2).
Recall that the integral on the left side of (2) is the local orbital integral

IF (wa, f0) =
∫

u∈Uw(F ),
n∈N(F )

f0(tuwan)θF (un) du dn

where f0 is the characteristic function of K(F ) and w =
(

1
1

11

)
. Similarly, the

right side of (2) is the local orbital integral

JF (wa,Φ0) =
∫

Nw(F )\N(L)

Φ0(tn̄wan)θF (nn̄) dn

where Φ0 is the characteristic function of K(L) ∩ S(F ) with the same w. We will
compute IF (wa, f0) in this section and then JF (wa,Φ0) in the next section in order
to show that they are equal.

Let us denote w =
(

w1
w1

)
, a =

(
b1

b2

)
, u =

(
I y

I

)
∈ Uw(F ), and n =(

n1 x

n−1
2

)
∈ N(F ) in 2 × 2 blocks, where bi is a scale matrix with diagonal entries

equal to ai and w1 =
(

1
1

)
. Then the matrix condition tuwan ∈ K(F ) for the

integral defining IF (wa, f0) becomes(
w1b1n1 w1b1x

tyw1b1n1
tyw1b1x+ w1b2n

−1
2

)
∈ K(F ).(14)

We first conclude from this matrix condition that a1a2 ∈ R×F and a1 ∈ RF . If
a1, a2 ∈ R×F we can see that IF (wa, f0) = 1. Thus, from now on we assume that

a1 ∈ $A
FR

×
F and a2 ∈ $−A

F R×F with A > 0. Then n1 =
(

1 m1
1

)
with m1 ∈

$−A
F RF . We can also apply the automorphism g 7→ wG

tg−1wG to the matrix

condition in (14), where wG =
(

1
1

11

)
. This way we can get n2 =

(
1 m2

1

)
with

m2 ∈ $−A
F RF . Back to (14) we know that x,w1

tyw1n1 ∈M2×2($−A
F RF ). Setting

z = w1
tyw1b1n1 ∈ M2×2(RF ) and changing from x to xb2 we can rewrite the last
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condition in (14) and get

IF (wa, f0) = q8A
F

∫
m1,m2∈$−A

F RF ,
x,z∈M2×2(RF ),

zn−1
1 x∈−n−1

2 +M2×2($A
F RF )

θF

(
I zn−1

1 b−1
1

I

)

· θF

(
n1 xb2

n−1
2

)
dm1 dm2 dx dz.

Denote x =
(

x1 x2
x3 x4

)
and z =

(
z1 z2
z3 z4

)
with xi, zi ∈ RF . There are three cases.

(i) m2 ∈ RF . Then the condition

zn−1
1 x ∈ −n−1

2 +M2×2($A
FRF )(15)

implies that zn−1
1 x ∈ K2×2(F ), det(zx), det(x), det(z) ∈ R×F , x, z, n1 ∈ K2×2(F ),

and m1 ∈ RF .
(ii) m2 ∈ $M

F R×F with 0 > M > −A. Then (15) implies that zn−1
1 x ∈ GL2(F ),

det(zx), det(x), det(z) ∈ R×F , x, z ∈ K2×2(F ), and m1 ∈ $M
F R×F .

(iii) m2 ∈ $−A
F R×F . Then from (15) we have m1 ∈ $−A

F R×F , x4, z1 ∈ R×F ,
x3, z3 ∈ $A

FRF , and x1, x2, z2, z4 ∈ RF . We will denote the integrals corresponding
to these three cases by I1, I2, and I3 so that IF (wa, f0) = I1 + I2 + I3.

First we compute I1:

I1 = q8A
F

∫
m1,m2∈RF ,

x,z∈K2×2(F ),

zn−1
1 x∈−n−1

2 +M2×2($A
F RF )

ψF

( z3
a1

+ a2x3

)
dm1 dm2 dx dz.

By changing variables from x to n1x and integrating with respect to m1, m2, x2,
x4, z1, and z2 successively we arrive at

I1 = q5A
F

∫
x1,x3,z3,z4∈RF

with x1 or x3∈R×
F

and z3 or z4∈R×
F ,

x1z3+x3z4∈$A
F RF

ψF

( z3
a1

+ a2x3

)
dx1 dx3 dz3 dz4.

If x1 ∈ R×F we have z3 ∈ −x3z4/x1 + $A
FRF . If x1 ∈ $FRF , then x3 ∈ R×F and

z4 ∈ −x1z3/x3 + $A
FRF . By integrating z3 in the first case and z4 in the second

case we can further compute I1 and conclude that

I1 = q3F

(
1− q−1

F + q−2
F

)
if A = 1;(16)

= q3A
F

(
1− q−1

F

)
if A > 1.(17)

Next, let us turn to I2. After integrating with respect to m2 we get

I2 =
∑

−A<M<0

q7A
F

∫
ψF

( z3
a1

+ a2x3 +m1 −m1x4z1

)
dm1 dx dz
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where the integral is taken over

m1 ∈ $M
F R×F ,

x1, x4, z1, z4 ∈ R×F ,
x2, z2 ∈ RF ,

x3, z3 ∈ $−M
F RF ,

x1z1 −m1x3z1 + x3z2 ∈ −1 +$A
FRF ,

x2z3 −m1x4z3 + x4z4 ∈ −1 +$A
FRF ,

x1z3 −m1x3z3 + x3z4 ∈ $A
FRF .

We will consider two cases:
(i) x3 ∈ $A

FRF (then z3 ∈ $A
FRF ) and

(ii) x3 6∈ $A
FRF (then z3 ∈ x3R

×
F ).

In case (i) the integrand simplifies to ψF (m1 − m1x4z1) and we have x4 ∈
−1/(z4−m1z3)+$A

FRF and z1 ∈ −1/(x1−m1x3)+$A
FRF with x1−m1x3 ∈ R×F

and z4 − m1z3 ∈ R×F . After integrating the integrals with respect to x4 and z1,
changing variables from x1 to x = x1 −m1x3 and from z4 to z = z4 −m1z3, and
integrating with respect to x3 and z3, we get

∑
−A<M<0

q3A
F

∫
m1∈$M

F R×
F ,

x,z∈R×
F

ψF

(
m1 − m1

xz

)
dm1 dx dz.

By integrating with respect to x1 we see that this integral vanishes unless M = −1.
Computing the case of M = −1, we get q3A−1

F (1 − q−1
F ) for case (i).

In case (ii) we set x3, z3 ∈ $X
F R

×
F with −M ≤ X < A. After integrating

with respect to x2 and z2 and setting x4 ∈ −1/(z4 − m1z3) + $X
F RF and z1 ∈

−1/(x1 −m1x3) +$X
F RF with x1 −m1x3 ∈ R×F and z4 −m1z3 ∈ R×F we get

∑
−A<M<0,
−M≤X<A

q5A
F

∫
m1∈$M

F R×
F ,

x1,z4∈R×
F ,

x3,z3∈$X
F R×

F ,

(x1−m1x3)(z4−m1z3)∈x1z4+$A+M
F RF

ψF

( z3
a1

+ a2x3 +m1 − m1

(x1 −m1x3)(z4 −m1z3)

)
dm1 dx dz.

From the last condition attached to the integral we know that z3 ∈ −x3z4/
(x1 − m1x3) + $A

FRF . Hence, the integral with respect to z3 vanishes unless
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A+ 2M ≥ 0. Then we get for case (ii)∑
−A/2≤M<0

q4A
F

∫
m1∈$M

F R×
F ,

x1,z4∈R×
F ,

x3∈$−M
F RF ,

x1−m1x3∈R×
F

ψF

(
− x3z4
a1(x1 −m1x3)

+ a2x3 +m1 − m1

x1z4

)
dm1 dx dz

−
∑

−A/2≤M<0

q4A
F

∫
m1∈$M

F R×
F ,

x1,z4∈R×
F ,

x3∈$A
F RF

ψF

(
− x3z4
a1(x1 −m1x3)

+a2x3+m1− m1

x1z4

)
dm1 dx dz.

The second integral above is the same as the integral in case (i) because the inte-
grand is actually equal to ψF (m1−m1/(x1z4)); we thus get the same q3A−1

F (1−q−1
F ).

For the first integral we change variables from x3 to x = m1x3 ∈ RF with
x− x1 ∈ R×F and from z4 to z = z4/m1 ∈ $−M

F R×F to get∑
−A/2≤M<0

q4A
F

∫
m1∈$M

F R×
F ,

x∈RF ,

x1,x−x1∈R×
F ,

z∈$−M
F R×

F

ψF

(
− xz

a1(x− x1)
+
a2x

m1
+m1− 1

x1z

)
dm1 dx dx1 dz.

Applying our results on (9) to the integral with respect to z, we conclude that
x ∈ $A+2M

F R×F if M < −1 and x ∈ $A+2M
F RF if M = −1. We claim that the

integral vanishes when M < −1 and A+2M > 0. Indeed, we change variables from
x to a1x and set b = a1a2. Integrating the integral with respect to b ∈ R×F against
χ−1(b) we get the Mellin transform∑

−A/2<M<−1

q3A
F

∫
R×

F

χ−1(b) db

·
∫

m1∈$M
F R×

F ,

x∈$2M
F R×

F ,

x1∈R×
F ,

z∈$−M
F R×

F

ψF

( xz

(x1 − a1x)
+
bx

m1
+m1 − 1

x1z

)
dm1 dx dx1 dz.

If χ is unramified, the integral with respect to b vanishes, becauseM < −1. Assume
now that χ is ramified. We change variables successively from b to y1 = bx/m1 ∈
$M

F R×F , from x to y = x1/x ∈ $−2M
F R×F , from x1 to y2 = −1/(x1z) ∈ $M

F R×F , and
from z to y3 = z/(y − a1) ∈ $M

F R×F . Then the Mellin transform becomes∑
−A/2<M<−1

q3A
F

( ∫
$M

F R×
F

χ−1(y1)ψF (y1) dy1
)4

∫
$−2M

F R×
F

χ−1
(
y(a1 − y)

)
dy.

The integral with respect to y1 vanishes if a(χ) 6= −M . If a(χ) = −M ≥ 2,
the integral with respect to y equals zero because we can set y as y(1 + c) with
c ∈ $−[M/2]

F RF and integrate with respect to c. Since the Mellin transform of our
integral vanishes for any character χ when M < −1 and A+ 2M > 0, we prove the
claim.
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Now we compute the integral when M = −1 and A+2M > 0, i.e., A > 2. Since
the integrand becomes

ψF

( xz

a1x1
+
a2x

m1
+m1 − 1

x1z

)
,

we can integrate with respect to x ∈ $A+2M
F RF . The integral is non-zero only if

z/(a1x1) + a2/m1 ∈ $2−A
F RF . Consequently, we get

q3A+2
F

∫
m1∈$−1

F R×
F ,

x1∈R×
F ,

z∈$F R×
F ,

z/(a1x1)+a2/m1∈$2−A
F RF

ψF

(
m1 − 1

x1z

)
dm1 dx1 dz.

The last condition attached to the integral implies that z ∈ −a1a2x1/m1 +$2
FRF .

After integrating with respect to z we get

q3A
F

∫
m1∈$−1

F R×
F ,

x1∈R×
F

ψF

(
m1

(
1 +

1
a1a2x2

1

))
dm1 dx1

= q3A
F

(
qF

∫
x1∈R×

F ,

x2
1∈−1/(a1a2)+$F RF

dx1 −
∫

x1∈R×
F

dx1

)

which equals q3A
F (1 + q−1

F ) if −a1a2 is a square in R×F /(1 + $FRF ) and equals
q3A
F (−1 + q−1

F ) if −a1a2 is not a square in R×F /(1 +$FRF ).
For the case of A+ 2M = 0, with A being even, we have∫

m1∈$
−A/2
F R×

F ,
x∈RF ,

x1,x−x1∈R×
F ,

z∈$
A/2
F R×

F

ψF

(
− xz

a1(x− x1)
+
a2x

m1
+m1 − 1

x1z

)
dm1 dx dx1 dz.

For the above integral, now we choose c ∈ $A/2
F R×F and set b = a2c

4/a1 ∈ R×F . We
then change variables from m1 to y1 = cm1 ∈ R×F , from z to y2 = −cz/a1 ∈ R×F ,
from x to y4 = a1(x − x1)/c2 ∈ R×F , and from x1 to y3 = a1x1/c

2 ∈ R×F . After
collecting all of these results on I2 we get

I2 = q4A
F

∫
(R×

F )4

ψF

(1
c

(
y1 + y2 +

1
y2y3

+
y2y3
y4

+
by4
y1

+
by3
y1

))
dy1 dy2 dy3 dy4 if A ≥ 2 is even

+


q3A
F (q−1

F + 1) if − a1a2 is a square in R×F /(1 +$FRF )
and A > 2

q3A
F (q−1

F − 1) if − a1a2 is not a square in R×F /(1 +$FRF )
and A > 2.

(18)
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Now we compute

I3 = q8A
F

∫
ψF (m1 −m2) dm1 dm2 dx dz

where the integral is taken over

m1,m2 ∈ $−A
F R×F ,

x1, x2, z2, z4 ∈ RF ,

x3, z3 ∈ $A
FRF ,

x4, z1 ∈ R×F ,
x1z1 −m1x3z1 + x3z2 ∈ −1 +$A

FRF ,

x2z3 −m1x4z3 + x4z4 ∈ −1 +$A
FRF ,

x2z1 −m1x4z1 + x4z2 ∈ m2 +$A
FRF .

If we integrate with respect to m2 first, we will get q−A
F and the above integrand

becomes ψF (m1 + m1x4z1). Having integrated with respect to x1, x2, x3, z2, z3,
and z4 we get

I3 = q3A
F

∫
m1∈$−A

F R×
F ,

x4,z1∈R×
F

ψF

(
m1(1 + x4z1)

)
dm1 dx4 dz1

= q2F (1− q−1
F ) if A = 1;(19)

= 0 if A > 1.(20)

Collecting our results in (16) through (20) we get the following expression of
IF (wa, f0).

Lemma 4. Under the assumption of Lemma 1 we have

IF (wa, f0) = 1 if A = 0;
= q3F if A = 1;
= 2q3A

F if A ≥ 3 is odd and − a1a2 is a square in F ;

= q4A
F

∫
(R×

F )4

ψF

(1
c

(
x1 + x2 +

1
x2x3

+
x2x3

x4
+
bx4

x1
+
bx3

x1

))
dx1 dx2 dx3 dx4

if A ≥ 2 is even;
+q3A

F (1 − q−1
F ) if A = 2;

+2q3A
F if A ≥ 4 is even and − a1a2 is a square in F ;

= 0 otherwise.

4. The orbital integral JF (wa,Φ0)

We write any element inNw(F )\N(L) as n =
(

n−1
1

n2

)(
I u

I

)
where ni =

(
1 mi

1

)
with m1,m2 ∈ F and u ∈ M2×2(L). Then the matrix condition attached to the
integral defining JF (wa,Φ0) on the right side of (2) becomes(

tn−1
1 w1b1n

−1
1

tn−1
1 w1b1n

−1
1 u

tūtn−1
1 w1b1n

−1
1

tūtn−1
1 w1b1n

−1
1 u+ tn2w1b2n2

)
∈ K(L).(21)
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First, we conclude from (21) that a1 ∈ RF and a1a2 ∈ R×F if the integral is non-zero.
If a1 ∈ R×F , then JF (wa,Φ0) = 1. We will assume from now on that a1 ∈ $A

FR
×
F

and a2 ∈ $−A
F R×F with A > 0. Then from (21) we get m1,m2 ∈ $−A

F RF following

the arguments used in Section 3. Changing variables from u to z =
(

z1 z2
z3 z4

)
=

tn−1
1 w1b1n

−1
1 u ∈M2×2(RL) and from mi to mi/2 we get

JF (wa,Φ0) = q8A
F

·
∫

m1,m2∈$−A
F RF ,

z∈M2×2(RL),
tz̄

(
m1 1
1 0

)
z∈−a1a2

(
0 1
1 m2

)
+M2×2($

A
L RL)

ψF (m2 −m1)ψF ◦trL/F

( z1
a1

)
dm1 dm2 dz.

As in the last section there are three cases:
(i) m1,m2 ∈ RF , z ∈ K2×2(L);
(ii) m1,m2 ∈ $M

F R×F , z ∈ K2×2(L) with −A < M < 0; and
(iii) m1,m2 ∈ $−A

F R×F , z ∈M2×2(RL).
We will denote the corresponding integrals by J1, J2, and J3.

For J1 we change variables from z to y =
(

y1 y2
y3 y4

)
=

(
1 0

m1/2 1

)
z. Then the inte-

grand becomes ψF ◦trL/F (y1/a1) and the matrix condition attached to J1 becomes
tȳw1y ∈ −a1a2

(
0 1
1 m2

)
+ M2×2($A

LRL). By integrating the integral with respect
to m1, m2, y2, and y4 we get

J1 = q5A
F

∫
y1,y3∈RL,

y1 or y3∈R×
L ,

y1ȳ3+ȳ1y3∈$A
F RF

ψF ◦trL/F

(y1
a1

)
dy1 dy3.

If y1 ∈ R×L , the integral with respect to y3 yields q−A
F and we get

q4A
F

∫
y1∈R×

L

ψF ◦trL/F

(y1
a1

)
dy1

which equals −q2F when A = 1 and vanishes when A > 1. If y1 ∈ $LRL, then
y3 ∈ R×L . When A = 1 the integrand equals 1 and we get q3F (1− q−2

F ). When A > 1
we change variables from y1 to y0 = y1ȳ3 ∈ $LRL and get

q5A
F

∫
y0∈$LRL with y0+ȳ0∈$A

F RF ,

y3∈R×
L

ψF ◦trL/F

( y0
a1ȳ3

)
dy0 dy3

which equals q3A
F (1− q−1

F ). Adding these results together, we finally have

J1 = q3F (1 − q−1
F − q−2

F ) if A = 1;
= q3A

F (1 − q−1
F ) if A > 1.

To compute J2, we first integrate with respect to m2. Then

J2 = q7A
F

∑
−A<M<0

∫
ψF

(
−m1 − m1z2z̄2

a1a2

)
ψF ◦trL/F

( z1
a1

)
dm1 dz1 dz2 dz3 dz4
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where the integral is taken over

m1 ∈ $M
F R×F ,

z1 ∈ $−M
L RL,

z2, z3 ∈ R×L ,
z4 ∈ RL,

m1z1z̄1 + z̄1z3 + z1z̄3 ∈ $A
FRF ,

m1z̄1z2 + z̄1z4 + z2z̄3 ∈ −a1a2 +$A
LRL.

Now we consider two cases:
(i) z1 ∈ $A

LRL and
(ii) z1 ∈ $Z

LR
×
L with −M ≤ Z < A.

In case (i) we can first integrate with respect to z4, z3, and z1 to get

q3A
F

∑
−A<M<0

∫
m1∈$M

F R×
F ,

z2∈R×
L

ψF

(
−m1 − m1z2z̄2

a1a2

)
dm1 dz2.

Writing the above sum as an integral taken over m1 ∈ $1−A
F RF minus the same

integral over m1 ∈ RF , we get q3A−1
F (1 + q−1

F ). Note that for J2 we always have
A > 1.

In case (ii) we have z2 ∈ −a1a2/(m1z̄1 + z̄3) +$Z
LRL. Integrating with respect

to z4 and z2 we arrive at

q5A
F

∑
0<−M≤Z<A

∫
m1∈$M

F R×
F ,

z1∈$Z
L R×

L ,

z3∈R×
L ,

m1z1+z3∈R×
L ,

m1z1z̄1+z1z̄3+z̄1z3∈$A
F RF

ψF

(
−m1 − a1a2m1

(m1z1 + z3)(m1z̄1 + z̄3)

)
ψF ◦trL/F

( z1
a1

)
dm1 dz1 dz3.

Note that the last two conditions above are equivalent to (m1z1 + z3)(m1z̄1 + z̄3) ∈
z3z̄3 + $A+M

F RF . If we change variables from z3 to z0 = z3/m1 ∈ $−M
L R×L with

(z1 + z0)(z̄1 + z̄0) ∈ z0z̄0(1 +$A+M
F RF ), we get an integral of

ψF

(
−m1 − a1a2

m1(z1 + z0)(z̄1 + z̄0)

)
integrated with respect to m1 ∈ $M

F R×F . This integral is of the same kind as the
integral in (9) and hence is non-zero only if 1 + a1a2/(z1 + z0)(z̄1 + z̄0) ∈ R×L
when M < −1. Using three new variables m = −m1 ∈ $M

F R×F , u = m1z1/z3 ∈
$M+Z

L R×L with (1 + u)(1 + ū) ∈ 1 + $A+M
F RF , and z = −(1 + u)z3 ∈ R×L (with

1 + a1a2/(zz̄) ∈ R×F when M < −1) we can rewrite the integral in case (ii) as

q5A
F

∑
0<−M≤Z<A

q2M
F

∫
ψF

(
m

(
1 +

a1a2

zz̄

))
ψF ◦trL/F

( uz

a1m(1 + u)

)
dmdu dz.

(22)

Let us first consider the case of M < −1. By an argument similar to the one
for integrals like (9), the integral with respect to m vanishes unless the orders of
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m(1+ a1a2/(zz̄)) and c1/(a1m) are the same, where uz/(1+u) = c1 + c2
√
τ . Since

c1 ∈ $M+Z
F RF , we have M ≥ Z−A; hence the sum in (22) in this case is taken over

1 < −M ≤ Z ≤ A+M which implies that A+2M ≥ 0. Now by changing variables
from z to z/(1 + u) we can simply erase the factor (1 + u) from the integrand in
(22). We claim that we must have M = −A/2 if the above integral is non-zero.
To prove this claim, we assume M > −A/2 and apply the Mellin transform to the
integral:

q5A
F

∑
−A/2<M<−1,
−M≤Z≤A+M

q2M
F

∫
R×

F

χ−1(b) db

·
∫

m∈$M
F R×

F ,

z∈R×
L ,

u∈$M+Z
L R×

L ,

(1+u)(1+ū)∈1+$A+M
F RF

ψF

(
m

(
1 +

b

zz̄

))
ψF ◦trL/F

( uz

a1m

)
dmdu dz

where we set b = a1a2. If χ is unramified, the integral with respect to b vanishes
because M < −1. Assume that χ is ramified. After changing variables from b
to c = bm/(zz̄) ∈ $M

F R×F and from z to y = uz/(a1m) ∈ $Z−A
L R×L we see that

the conductor exponent a(χ) must equal −M if the integral is non-zero. Since
a(χ◦NL/F ) = a(χ) we also have Z − A = M , i.e., Z = A + M if the integral is
non-zero. Therefore, when a(χ) = −M and Z = A+M we get the integral∫

u∈$A+2M
L R×

L ,

(1+u)(1+ū)∈1+$A+M
F RF

χ(uū) du.

Since A+2M > 0 we can set 1+u = (1+w)(1+v
√
τ)/(1−v√τ ) with w ∈ $A+M

L RL

and v ∈ $A+2M
F

(
R×F /(1 +$−M

F RF )
)
. Then χ(uū) = χ(−4τv2/(1− τv2)) and the

sum with respect to v vanishes because we can set v = v0(1+c) with c ∈ $−[M/2]
F RF

and sum over c. Since the Mellin transform for any character χ is zero, we prove our
claim. Back to the case of A+ 2M = 0, we point out that then Z = −M = A+M
and u ∈ R×L . Since the integral with respect to m vanishes if u ∈ $LRL when
M < −1, we can take the integral with respect to u over RL.

Now let us turn to the case of M = −1. Since m(1 + a1a2/(zz̄)) ∈ $−1
F RF and

(1+u)(1+ ū) ∈ 1+$A−1
F RF , we can again change variables from z to z(1+u) and

thus erase the factor (1+u) from the integrand in (22). We can also set z = z0(1+v)
with v ∈ $LRL. Integrating with respect to v we know that Z must be equal to
A− 1 in order to have a non-zero integral. Consequently, we get

q5A−2
F

∫
m∈$−1

F R×
F ,

z∈R×
L ,

u∈$A−2
L R×

L ,

(1+u)(1+ū)∈1+$A−1
F RF

ψF

(
m

(
1 +

a1a2

zz̄

))
ψF ◦trL/F

( uz

a1m

)
dmdu dz.

Recall that from case (i) we got q3A−1
F (1 + q−1

F ). This is indeed equal to the above
integral with u being taken over $A−1

L RL. Adding this expression to the above
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integral we thus can set u ∈ $A−2
L RL with (1+u)(1+ ū) ∈ 1+$A−1

F RF . If A > 2,
we can further compute the integral with respect to u∫

u∈$A−2
L RL,

(1+u)(1+ū)∈1+$A−1
F RF

ψF ◦trL/F

( uz

a1m

)
du

=
∫

u∈$A−2
L RL,

u+ū∈$A−1
F RF

ψF ◦trL/F

( uz

a1m

)
du

=
∫

w∈$A−2
F RF ,

v∈$A−1
F RF

ψF ◦trL/F

(w√τz
a1m

)
dv dw

with u = v + w
√
τ . Since the order of ψF is zero, the last integral above equals

q3−2A
F if y ∈ $FRF and vanishes if y ∈ R×F , where z = x + y

√
τ . Back to (22),

when A > 2 we have

q3A+1
F

∫
m∈$−1

F R×
F ,

z∈R×
L with y∈$F RF

ψF

(
m

(
1 +

a1a2

zz̄

))
dmdz

= q3A
F

∫
m∈$−1

F R×
F ,

x∈R×
F

ψF

(
m

(
1 +

a1a2

x2

))
dmdx

=

{
q3A
F (q−1

F + 1) if − a1a2 is a square;
q3A
F (q−1

F − 1) if − a1a2 is not a square.

To summarize our computation we have

J2 = q4A
F

∫
m∈$

−A/2
F R×

F ,

z∈R×
L ,

u∈RL,

(1+u)(1+ū)∈1+$
A/2
F RF

ψF

(
m

(
1 +

a1a2

zz̄

))

· ψF ◦trL/F

( uz

a1m

)
dmdu dz if A ≥ 2 is even

+


q3A
F (q−1

F + 1) if − a1a2 is a square in R×F /(1 +$FRF )
and A ≥ 3

q3A
F (q−1

F − 1) if − a1a2 is not a square in R×F /(1 +$FRF )
and A ≥ 3.

After changing variables from m to n = cm ∈ R×F where c ∈ $
A/2
F R×F , from z to

x1 = −c2z/a1 ∈ R×L , and from u to x2 = −x1(1 + u) ∈ R×L , we can write the above
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integral as

J2 = q
9A/2
F

∫
n∈R×

F ,

x1,x2∈R×
L ,

x1x̄1∈x2x̄2+$
A/2
F RF

ψF

(n
c

(
1 +

b

x1x̄1

))

· ψF ◦trL/F

(x1 + x2

cn

)
dn dx1 dx2 if A ≥ 2 is even

+


q3A
F (q−1

F + 1) if − a1a2 is a square in R×F /(1 +$FRF )
and A ≥ 3

q3A
F (q−1

F − 1) if − a1a2 is not a square in R×F /(1 +$FRF )
and A ≥ 3

where as before b = a2c
4/a1 ∈ R×F .

Finally, we compute J3:

J3 = q8A
F

·
∫

m1,m2∈$−A
F R×

F ,
z∈M2×2(RL),

tz̄
(

m1 1
1 0

)
z∈−a1a2

(
0 1
1 m2

)
+M2×2($A

L RL)

ψF (m2−m1)ψF ◦trL/F

( z1
a1

)
dm1 dm2 dz

where the matrix condition is equivalent to

m1z1z̄1 + z̄1z3 + z1z̄3 ∈ $A
FRF ,

m1z̄1z2 + z̄1z4 + z2z̄3 ∈ −a1a2 +$A
LRL

m1z2z̄2 + z̄2z4 + z2z̄4 ∈ −a1a2m2 +$A
FRF .

The last condition above implies that z2 ∈ R×L ; hence from the second condition we
get z1 ∈ $A

LRL. Then we can integrate with respect to m2, z4, z3, and z1 to get

J3 = q3A
F

∫
m1∈$−A

F R×
F ,

z2∈R×
L

ψF

(
−m1

(
1 +

z2z̄2
a1a2

))
dm1 dz2.

A similar integral has been computed and this one equals

J3 = q2(1 + q−1
F ) if A = 1;

= 0 if A > 1.

Collecting our results on J1, J2, and J3 we arrive at
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Lemma 5. Under the assumption of Lemma 1 we have

JF (wa,Φ0) = 1 if A = 0;
= q3F if A = 1;
= 2q3A

F if A ≥ 3 is odd and − a1a2 is a square in F ;

= q
9A/2
F

∫
n∈R×

F ,

x1,x2∈R×
L ,

x1x̄1∈x2x̄2+$
A/2
F RF

ψF

(n
c

(
1 +

b

x1x̄1

))

·ψF ◦trL/F

(x1 + x2

cn

)
dn dx1 dx2

if A ≥ 2 is even;
+q3A

F (1− q−1
F ) if A = 2;

+2q3A
F if A ≥ 4 is even and − a1a2 is a square in F ;

= 0 otherwise.

Comparing Lemmas 4 and 5 and using the local identity in Lemma 1, we prove
Theorem 2.

Acknowledgement

The author would like to thank the referee for making detailed helpful suggestions
in a very timely fashion.

References

1. J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the
Trace Formula, Ann. Math. Studies, no. 120, Princeton Univ. Press, Princeton, 1989. MR
90m:22041

2. T. Asai, On certain Dirichlet series associated with Hilbert modular forms and Rankin’s
method, Math. Ann. 226 (1977), 81-94. MR 55:276

3. W. Duke and H. Iwaniec, A relation between cubic exponential and Kloosterman sums, Con-
temporary Math. 143 (1993), 255-258. MR 93m:11082
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