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A KLOOSTERMAN SUM IN A RELATIVE
TRACE FORMULA FOR GL4

YANGBO YE

ABSTRACT. We study a Kloosterman sum for GL4 and prove that it is equal
to an exponential sum over a quadratic number field. This identity has appli-
cations in a relative trace formula for GL4 which might be used to give a new
proof of quadratic base change and characterize its image.

1. INTRODUCTION

A main result of this article is the following identity of exponential sums.

Theorem 1. Let 7 be a non-zero square-free integer which is not equal to 1. Let b
be a non-zero integer and ¢ a positive odd integer such that (b,c) = (1,¢) = 1. Then

E 627T’i(:El+I2+f2f3+I2mgf4+bflm4+bf113)/C

_ Z 62771' (n+bn(m%—7’y%)+2ﬁ(m1+zg))/c

1§n7w12,wz,y1,y2§c,2
(n,e)=(a1—7yi,c)=(z3—7y3,c)=1,
x7 —Tyfzwg—'ryg (mod ¢)

Here we denote by T the inverse of x modulo c.

The sum on the left side of the above identity can be regarded as a generalization
of the classical Kloosterman sum
Z eZTri(m-i—bi)/c

1<z<c,
(z,c)=1
where (b,¢) =1 and 2% = 1 (mod ¢). We will see that it is indeed a Kloosterman
sum for the group GL4. The expression on the right side of (1) is an exponential
sum taken over certain algebraic integers of the quadratic number field Q(1/7).
Other identities of this kind have been studied by several authors including Zagier
[24], Katz [12], Jacquet and Ye [9], Duke and Iwaniec [3], Ye [21] and [23], and Mao
and Rallis [13]. Some of these known identities have applications in automorphic
forms and representation theory. To look at similar applications of the identity in
Theorem 1 let us consider its p-adic version.
Let F be a p-adic field of characteristic zero and L = F(/7) an unramified
quadratic extension field of F' with 7 € F. Assume that |2|p = |7|p = 1. Denote
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by A the group of diagonal matrices in GL4, by N the group of upper triangular
matrices with unit diagonal entries in GL4, and by K(F') the maximal compact
subgroup of GL4(F') which consists of matrices with entries in Rr and determinants
in Ry. Here Rp is the ring of integers in F' and Ry is the group of invertible

elements in Rp. Let w = (1111) and a = diag(ay,ay,as,a2) with aj,as € F*.

Denote by U, (F) the subgroup of N(F) consisting of matrices whose entries at
(1,2) and (3,4) positions are both zero, and by N, (F) the subgroup of N(L)
defined by 'nwn = w.

Let ¥ r be a non-trivial character of F' of order zero; hence ¥ is trivial on Rp
but non-trivial on w;lRp, where wp is a prime element in F. Define a character
0p on N(F) by 0r(n) = ¢Yr(3 1<, Niit1) for n = (n;) € N(F).

Theorem 2. With the above assumptions, notation, and matrices w and a, for
any a1, as € F* we have

) / O (un) du dn — / 0p(nt) dn.

wEU,, (F),nEN(F) nEN(F)\N(L),
fuwan€ K (F) *"Awan€ K (L)

The left side of (2) is a p-adic Kloosterman sum for GLy4 in the integral form
as in Friedberg [4] and Stevens [14]. To see the significance of the identities in
Theorems 1 and 2, let us introduce a relative trace formula for GL,, and look at its
applications in representation theory.

Let E be an algebraic number field and E' = E(,/7) a quadratic extension of
E with 7 € E*. Denote by Ea and E’, the adele rings of E and E’, respectively,
and by EX and E) the idele groups of E and E’, respectively. Then Ep is the
restricted product of local fields E, over all places v of F and EA is the restricted
product of local fields E!, over all places w of E’. For z = [[,, 2w in E, the Galois
conjugation z — Z is defined using the Galois conjugation on E’ over E. Denote by
Ng, /s the global norm map. Then the global norm-one group E’{ is the kernel
of Ng; /ga, and we have E} = {z/z|z € EY‘}. If v is inert in E’, we denote by
E} the group of elements of E which are norms. Define E} as the group of
z =[], zv € Ex such that z, € Ef for every inert place v.

From the exact sequence

N
/1 Ix  PA/EaA
1— Ey — EY

EX — 1

we know that if an idele class character x’ of E’ is trivial on E’{, then there is an
idele class character x of E such that x’ = yoN E,/Ea- Lhis character x is uniquely
determined up to a multiplication by the idele class character n of E attached to
the quadratic extension field E’.

We note that E* and E’* are indeed GL1(F) and GL1(E"), respectively. Also,
E'! is actually the unitary group of one variable in E’ over E. This suggests a
possible generalization of the above example to GL,,.

Let S(E) be the set of invertible Hermitian matrices in GL,,(E’). For any s €
S(FE) we denote by H(F) the corresponding unitary group:

Hy(E) = {h € GL,(E")|'hsh = s}.
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An automorphic irreducible cuspidal representation 7’ of GL,(E)) with central
character w’ is said to be H,-distinguished if the periodic integral

u(g) = / 6(h) dh

Hs(E)\Hs(Ea)

is a non-zero linear form on the space of n/. Then the proposition below is a
generalization of our example to GL,.

Proposition 1. Let ©’ be an Hs-distinguished representation of GL,(E}) with
central character W' for a unitary group Hy. Then 7' is the quadratic base change
of an automorphic irreducible cuspidal representation m of GL,(Ea) with a central
character w. The central characters satisfy the condition w' = w o NE, /Ea-

In the case of GLsy a representation 7’ is H-distinguished if its Asai L-function
has a pole at s = 1 (Asai [2]). For n > 2 a similar situation is also true. There-
fore, Proposition 1 characterizes quadratic base change by analytic behavior of
L-functions.

A proof of this proposition can be found in Harder, Langlands, and Rapoport
[6] and Jacquet [7]. The converse of this proposition is expected to be true also but
the proof appears much more difficult. For GLy the converse is proved in Harder,
Langlands, and Rapoport [6], Ye [16] and [17], and Jacquet and Ye [8]. For GLg it
is proved in a series of papers by Jacquet and Ye ([7], [9], [10], [11], and [18]).

The main technique used in [7] through [11] and [16] through [18] is a relative
trace formula which is indeed an equality of two trace formulas. On one side is a
Kuznetsov trace formula and on the other side is a so-called relative Kloosterman
integral.

First let us look at the Kuznetsov trace formula for GL,. Let f = [], f, be
a smooth function of compact support on GL,(Ea). We want to assume that at
any inert place v of F the local function f, is supported on the group GL} (E,) =
{g€ GLn(Ev)| det g € Ef}. Let x be an idele class character of E. Then we define
the kernel function

(3) Ky(g,h) = / Z f(zg7Yh)x(2) d*z

Z+(B\Z+(Ea) $€GLn(E)

where ZT(F) is the set of matrices diag(z,...,2) in the center Z(FE) of GL,(E)
with z being in the subgroup Et of E* consisting of norms. Let ¢ =[], ¢, be a
non-trivial additive character of Ea trivial on E such that for almost all v the local
character v, has order zero, i.e., ¥, is trivial on the ring of integer R, of E, but
non-trivial on w; ' R,, where @, is a prime element in R,. Denote by N the group
of upper triangular matrices with unit diagonal entries. We define a character 6
on N by 0(n) = V(3 1<y, Miiv1) for n = (ni;) € N. Then the Kuznetsov trace
formula is given by the integral

(4) / / K¢ ('n1,m9)0(ny ng) dny dns.
N(E)\N(Ea) N(E)\N(Ea)

To have the relative Kloosterman integral, we set S*(E) to be the set of s € S(E)
such that dets € ET. Let ® = [[, ®, be a smooth function of compact support on
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ST(Ea). Now we define a kernel function

Ko(g) = > d('gtg)x(z) dz

2+(B)\Z2+(Ba) $€5(F)

and define the relative Kloosterman integral

(5) / Ka(n)0(n) dn.

N(EN\N(ER)

The relative trace formula is then

Kf(tnl, ng)ﬂ(nflng) dn1 dng

N(E)\N(Ea) N(E)\N(Ea)

- / Ko(n)0(n) dn.

N(E\N(EQ)

Here the equality means that for a given smooth function f = [], f, of compact
support on GL(n, F4) there exists a smooth function ® = [[, ®, of compact sup-
port on S(F4) or a finite sum of these ®, and vice versa, such that the above relative
trace formula holds. There are restrictions on the way in which one chooses these
functions:

(i) The matching of f and ® should be made through matching of local functions
fo and ®,,.

(ii) At an inert unramified non-Archimedean place v of E the characteristic
function fo of K(E,) should be matched with the characteristic function ®y of
K(E!)NS(E,).

(iii) At a non-Archimedean place v of E which splits into w; and ws the charac-
teristic function of K (E,) should be matched with ®; ® ®5 via convolution where
®; is the characteristic function of K (E;, )N S(E,).

(iv) At an inert unramified non-Archimedean place v of E, a compactly supported
bi-K (E,)-invariant function f, should be matched with a function ®,, via the base
change map of Hecke algebras (see Arthur and Clozel [1]).

(v) At a non-Archimedean place v of E which splits into w; and wy a compactly
supported bi- K (F,)-invariant function f, should be matched with a function of the
form ¢, ® @, via convolution. Here the convolution is used as the base change map
of Hecke algebras in splitting cases.

The matchings in (iv) and (v) are called the fundamental lemma of the relative
trace formula while the matchings in (ii) and (iii) are called the fundamental lemma
for unit elements of Hecke algebras. The splitting cases (iii) and (v) are easy.
Proving the matching in (ii) and hence the the fundamental lemma for unit elements
is the first step in establishing the relative trace formula. Once this has been done,
one might be able to prove the matchings in (iv) using the techniques discussed
in Ye [20]. One might then be able to deduce certain matchings in (i) from the
fundamental lemma using the Shalika germ expansions introduced in Jacquet and
Ye [10] and [11] and exponential sum expansions in Ye [19] and [20]. To apply
the relative trace formula to base change problems one needs to study continuous
spectrum of the relative trace following the work of Jacquet [7].
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The present work is a step toward a proof of the matchings in (ii) for GLy,
i.e., the fundamental lemma for unit elements of Hecke algebras. More precisely,
Theorem 2 proves the matchings in (ii) for GL4 for certain local orbital integrals
which will be defined below.

By the Bruhat decomposition the group GL,(F) can be decomposed into the
disjoint union of double cosets ‘N (E)wA(E)N(E), where w goes over the Weyl
group W of the group A of diagonal matrices. Applying this decomposition to
the sum in the kernel function K (g, h) in (3) we can express the Kuznetsov trace
formula in (4) as a sum of global orbital integrals

ZZ / I(waz, f)x(z)dz

“ Z+(Ea)

where

I(wa, f) = / f(Fuwan)0(un) du dn.

UGUW(EA)7
neEN(Ea)

Here the sums are taken over w and a of the form

(6) w = ) a = )
Wy Ay

1
where w; = (1 ) € GL,,(FE), a; is in the center of GL,,(E), and n;+- - -+n, =

n. For such a w we denote by U, the unipotent subgroup of GL, consisting of
I, *x x
1* ) where I; is the identity matrix in GL,,. Note that in our

r

matrices (

computation other Weyl matrices w yield zero orbital integrals.
Similarly, using a double coset decomposition of GL,,(E’) the relative Klooster-
man integral in (5) can be written as a sum of global orbital integrals

ZZ / J(waz, ®)x(z)dz

@ Z+(Ea)

where

J(wa, ®) = / ®(*nwan)f(nn) dn.
Nuw(Ea\N (E})
Here the sums are taken over the same w and a as above and N, (Eja) is the
subgroup of N(E') defined by ‘nwn = w.
Consequently, the relative trace formula can be reduced to identities of global
orbital integrals

I(wa, ) = J(wa, @)

for any w and a as in (6) with a; being in the center of GL,,(FEa). Express-
ing I(wa, f) and J(wa,®) as products of local orbital integrals I,(wa, f,) and
Jw(wa, ®,,), we need to prove that

(7) I, (wa, f,) = Ju(wa, y)
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for all w and a of the form (6) but with a; being in the center of GL,,(E,,), when
v is inert in £’ with w lying above v. In the case of v being non-Archimedean and
unramified, proving (7) for f, being the characteristic function of K(E,) and ®,,
being the characteristic function of K (E! )NS(E,) for all w is equivalent to proving
the fundamental lemma for the unit elements of Hecke algebras.

Back to GLy4, one needs to prove (7) for the following w:

w3 = ; wy = ) ws = 1.

The case of w; is trivial. The cases of wy and w3 were proved in Ye [22]. In this
article we will prove (7) for wy with E, = F, E/, = L, and ¢, = ¢¥p. Thus, the
only remaining unproved case for the fundamental lemma of unit elements of Hecke
algebras is ws = 1.

We want to point out that for the group GLs, the non-trivial case for the fun-

L 1
damental lemma, is similar to our case of ws. For GLs3, the cases of (1 1) and

( ! 1 ) are again similar to our cases of wo and ws. The case of w, does not appear
in GL2 and GLg

Exponential sums corresponding to ws and ws are hyper-Kloosterman sums
which are studied by Katz [12], Friedberg [4], and Stevens [14]. The Klooster-
man sum of the form on the left side of (2) for wy in GL4 has also been studied by
Friedberg [4] and Stevens [14]. What is new in the present paper is its new expres-
sion given on the left side of (1). Also new in this paper is certainly the identity of
exponential sums in Theorem 1. This identity can be regarded as a lifting of the
exponential sum on the left side of (1) to a quadratic number field. Because of its
connection with our relative trace formula, it might be a kind of manifestation of
the underlying quadratic base change.

2. PROOF OF THEOREM 1

We will use a local argument to prove the identity in Theorem 1. Let ¢ =
PR Hp <o ¥p be an additive character of Q4 which is trivial on @ such that its real
component is given by ¢r(z) = e~>™® and each p-adic local character ¢, has order
equal to 0. Since ¢ is trivial on Q, for any z € Q we have ™ = [] __ ().

Recall that we assumed that ¢ is odd and (7,¢) = 1. For any prime divisor p of ¢
if (%) =1, then p splits in F = Q(y/7); if (%) = —1, then p is inert unramified in
E = Q(y/7). In the former case Q, ®qg E = E1, ® Es, is isomorphic to the direct
sum of two copies of Q, while in the latter case Q, ®g £ = Ej, is an unramified

quadratic extension field of Q,. Now we can write the identity in (1) in terms of
local products
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I > wi’(%(*’”l”ﬂ ! +$2$3+W—4+lm—3))

T2X3 Ty T T
ple zieR) /(1+cRy)
for i=1,... 4

-0 T w(Re ) e (M)

1 cm
ple, w17w26REp/(1+cREp)7

(5)=—1  mery/(1+cR,),
z1Z1E€x2T2(1+cRy)

S aZrm(ataiate)

C T1Y1 cm
ple,  m,zywa,y1,y2€RY /(1+cRy),
(%):1 z1y1€x2y2(1+cRy)

We can rewrite the sums on both sides of the above identity as local integrals.
Theorem 1 is thus reduced to local identities in the following two lemmas.

Lemma 1. Let F' be a non-Archimedean local field of characteristic 0 with |2|p = 1.
Let L = F(\/T) be an unramified quadratic extension field of F with T € Ry. Denote
by Yr a non-trivial character of F of order zero. For any b € Ry and ¢ € ng;
with C > 0 we have

(8)
1 1 bry b
/ wp(z (xl + o + y2Es 2 ﬂ)) dzy drs dvs dr

T3 T4 x1 x1
(Rp)*
b +
= qf / or (2 (14 =) Jorotrrp (F"2) dm dey das.
c 171 cm
meERY,
$1,12€Rf,

T1Z1€x2T2(1+wE RF)

Lemma 2. Let F be a non-Archimedean local field of characteristic 0 with |2|p =
1. Denote by Yr a non-trivial character of F of order 0. For any b € Ry and
c € WG Ry with C > 0 we have

1 1 Tok bz bz
/ ¢F(—(9C1 +z2 + + 2 3+—4+—3))d$1d$2d$3d$4
c ToX3 X4 1 T1

(RE)*

[ weEe)

m,o1,22,Y1,Y2ERE,
z1y1€E22y2(1+@E Rr)

r

Lemma 2 is trivial; its proof is by changing variables. We will devote the rest of
this section to Lemma 1.

1+ X2+ Y1+ Y2
cm

) dm dxy dzo dyy dys.

Proof of Lemma 1. We first consider the integral on the left side of (8). We note
that for any b1, by ¢ Rp an integral of the form

9) / b (xbl n %2) dz
R
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is non-zero only if by € boRy. If one of by and by is in Rp but the other is not, the
integral in (9) is non-zero only if the latter is in w}lRlﬁ. Applying these results
to the integral with respect to x1 on the left side of (8) we get two non-vanishing
cases:

(i) C=1and z3 + x4 € wpRp, and
(i) C >1and x5+ x4 € R;
In case (i) the integral can be computed directly. Namely, the integrand becomes

Yr(Z + cw:wg) because the order of v¢r is zero. The integral with respect to

T4 € v3 + wpRp equals q}l and the integrals with respect to z; and x5 are both
equal to —q}l. With the integral with respect to x3 being 1 — q}l we conclude that
case (i) yields ¢z*(1 — ¢z").

To compute case (ii) we use a Mellin transform. Let x be a multiplicative
character of F. If x is ramified, we denote its conductor exponent by a(x) which
is the smallest positive integer a such that x is trivial on 1 + w% Rr. We integrate
the expression on the left side of (8) against x~!(b) with respect to b € R

1
| e (g (o e+
(RE)°
$3+I4ER;

220y 200y BIYY hdy dy decy i
Tol3 Tq 1 1

Now we change variables successively from b to yo = b(zs + x4)/(cz1) € wp R},
from 21 to y1 = x1/c € w;CRé, from x5 to yo = 1/(caaa3) € w;CRIX?, from x4 to
T =x4/x3 € R} with 2+ 1 € R}, and finally from z3 to y3 = (x + 1)/(c2zasys2) €
w;CRé. Then the above integral becomes

(10) gz / x‘l(y)¢F(y)dy)4 / x‘l(ﬁ)d:&

wpR} zER},
z+1€ER
If the character x is unramified, the first integral in (10) vanishes unless C' = 1.
When C' =1, we get q;4(1 — 2q;1). If x is ramified, then the same integral vanishes
unless a(x) = C; in this case

/ X~ W)r(y) dy = e(x. ¥)
w;CR;
where the local e-factor is defined as in Tate [15]. Together with our results for

case (i) we conclude that the Mellin transform of the integral on the left side of (8)
equals

q;3(1 — q}l — q}z) if x is unramified and C = 1;
_ _ 4 /1 =22
07 x4() (<)) [ ()
(11) Rp—(tl14+wrRF)

if x is ramified and a(x) = C;
0 otherwise.

Here we rewrote the last integral in (10) by using a new variable z = (1—z)/(1+x) €
Rp — (£1 + wrRF).



378 YANGBO YE

Now we turn to the integral on the right side of (8). Again we integrate it against
x~1(b) with respect to b € R} to get its Mellin transform

)

b,TnER;i7
x1,52ERY,
T1Z1€x2T2(1+wE RF)

'¢F°‘DYL/F(

xr1 + T2

) dbdm da; ds.

Changing variables successively from b to yo = bm/(cx121) € wp R}, from 3
to y1 = x1/(cm) € w YRy, from a2 to yo = x2/(cm) € w; YR} with yafs €
11y1(1 + @@ Rp), from m to y3 = m/c € w;cRﬁ, and from y, to e € R} with
e € 1 + @@ Rr by y2 = 1€, we get

qESCX‘l(C“)( / x‘l(y)¢F(y)dy)2

—C px
wp Rp

/ X TN p(y)vrotry p(yi (1 +€)) de dys .

Y1 szch )
€ERT,
eE€l+wl Ry

If x is unramified, then the integral with respect to y above indicates that it is
non-zero only when C' = 1. In this non-zero case, we get

q;?’((q% —1) / de — / ds) = q;?’ (1 — qu - q;Q).

EE-%"FWL,%L; e€ERY,
ee€l+wrRF
1+eceR],
ee€l+wrRE

If x is ramified, then the integral with respect to y vanishes unless a(x) = C. Since
we assumed that the quadratic extension L is unramified and |2|r = 1, we know that
the conductor exponent a(xoNy,r) = C when a(x) = C and the order of Ypotr /g
is again zero. Consequently, the integral with respect to y; is non-zero only if
14¢ € R} when a(x) = C. Changing variables from y; to 2 = y1(14¢) € w; “ R}
we get the local e-factor e(xoNy,p, ¢rpotry,p) multiplied by the integral

—2C _
/ xoNp/p(1+¢)de = qp E X(2+e+E);
ceR}, e,1+e€R} /(1+wS Ry),
L14eeRY ee€l+wl Ry
eE€l+wi Rr

here we wrote the integral in terms of a finite sum. Now we can set ¢ =
(1+2y/7)/(1 — 2¢/7) with z € Rp/@wSRp. Then x(2+¢e+¢&) = x~! ((1 — 7'2’2)/4).
Using an integral again we get

1— 2
/ xoNz/p(1+¢) dE:q;C/X_l( 4TZ )dz.

eERY, Rp
1+e€R],
es€l+w Ry
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Therefore, the Mellin transform of the right side of (8) becomes
72 (1—qp' — qp?) if x is unramified and C = 1;

(12) qE4CX_4(C) (E(X7 wF))2E(XONL/F7 wFOtI‘L/F)R/F X (1 _ 7'2;2) dz

if x is ramified and a(x) = C;

0 otherwise.

To compare the expressions in (11) and (12) we recall a well-known identity
between local e-factors (see, e.g., Gérardin and Labesse [5])

e(x,¥r)e(xn, ¥r) = e(xoNL/p,Yrotry /)

where 7 is the quadratic multiplicative character of F' attached to the extension
field L. Since L is assumed to be unramified over F, we have n(c) = (—1)¢ for
any ¢ € w@Ry; hence e(xn, 1) = (—=1)%(x, ¢¥r) when a(x) = C. Now we need a
lemma. O

Lemma 3. Let F be a non-Archimedean local field of characteristic 0 with |2|p = 1.
Let L = F(\/T) be an unramified quadratic extension field of F with T € Rj.. Denote
by x a ramified character of F* whose conductor exponent is a(x) = C. Then

(13) / X M1 = 22)dz = (-1)° / x (1 = 72%) dz.
RF—(:E1+WFRF) Rp

Together, with the above remark, Lemma 3 implies that the corresponding ex-
pressions in (11) and (12) are equal. That is to say, the Mellin transforms of the two
sides of (8) are the same for any multiplicative character y. By Fourier’s inversion
formula, we conclude that the two sides of (8) are equal.

To complete the proof of Lemma 1, we still have to prove Lemma 3. When
C = 1, the left side of (13) equals ¢p'(1 + 2> x '(1 — z)) where the sum is
taken over all squares  # 1 in R} /(1 4+ wpRr), and the right side of (13) equals
—¢r'(1+ 23 x7*(1 — x)) where = goes over all non-squares in R}/(1 + wpRp).
Then (13) follows from

w2 Y xla-a)

wER;/(l-’-wFRF)
is a square,

r#l

+ap(1+2 Y x-w)

zGR;/(l-’erRF)
is a non-square

= 2¢5" > X "'(a)

a€R}/(1+wFrRF)
=0

where a =1 — z.
When C > 1, the integrals on both side of (13) can be taken over z € wE;C/Q] Rp.

Indeed, if 2 ¢ w&ﬂc/ 2 Rp, we can set z = u(1 4 v) and express an integral above as

a finite sum with respect to u of integrals with respect to v € w%cﬂ)/ 2]RF. Since
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u ¢ wgg/ 2 Rp, we can conclude that the integrals with respect to v vanish. This
way the identity in (13) is reduced to

/ 11— ) dz = (—1)C / = 22 de.

=% Ry =% Ry

If C' is even, then the integrands above are both equal to 1 and hence the equality.
If C' is odd, this equality can then be proved in the same way as what we did for
the case of C' = 1.

This completes the proof of Theorem 1.

3. THE ORBITAL INTEGRAL Ip(wa, fo)

To prove Theorem 2 we have to compute the integrals on the two sides of (2).
Recall that the integral on the left side of (2) is the local orbital integral

Ir(wa, fo) = / fo(*uwan)0r (un) du dn

weU, (F),
neN(F)

where fj is the characteristic function of K(F) and w = (1111). Similarly, the
right side of (2) is the local orbital integral

Jr(wa, ®g) = / o (*hwan)0r (ni) dn

N (FONN (L)

where @ is the characteristic function of K (L) N S(F') with the same w. We will
compute Ir(wa, fo) in this section and then Jr(wa, ®p) in the next section in order
to show that they are equal.

Let us denote w = (““ wl), a = (bl bz), u = (“I’) € Uy(F), and n =

(m ‘ ) € N(F) in 2 x 2 blocks, where b; is a scale matrix with diagonal entries

-1
g

equal to a; and w; = ( ;! ). Then the matrix condition ‘uwan € K(F') for the

integral defining I'r(wa, fo) becomes

(14) < w1b1n1 wlblx

_ K(F).
bywibing tywlblx+wlb2n21) € K(F)
We first conclude from this matrix condition that ajas € Ry and a1 € Rp. If
ai,as € RIX7 we can see that Ip(wa, fo) = 1. Thus, from now on we assume that
a1 € waRy and ay € w;ARE with A > 0. Then n; = (1”}1) with mq €

lwe to the matrix

w;ARF. We can also apply the automorphism g — wglg™
condition in (14), where wg = (1111). This way we can get ny = (1 "P) with
mo € w;ARF. Back to (14) we know that x,witywing € MQXQ(WEARF). Setting
2z = wilywibing € Maya(Rr) and changing from x to xby we can rewrite the last
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condition in (14) and get

Ip(wa, fo) = q%A / Or (I Z"f;bf1>

mi1,ma€wp” Rp,
x,2EMa2x2(RF),
znflre—ngl—i-szQ(w?RF)

O (") dma dms do dz.

Denote x = (ﬁ; ij) and z = (2 Z) with x;,2; € Rp. There are three cases.

(i) m2 € Rp. Then the condition
(15) znl_lx IS —712_1 + ngz(wﬁRF)

implies that znj 'z € Kaxo(F), det(2z),det(x),det(2) € Ry, x,2,n1 € Koxa(F),
and my € Rp.

(ii) m2 € wM RS with 0 > M > —A. Then (15) implies that zn; 'z € GLa(F),
det(zz), det(z),det(2) € Ry, o, 2 € Koxo(F), and my € wM R}.

(ili) mo2 € wp®RS. Then from (15) we have m; € wp R}, z4,21 € RY,
T3, 23 € wﬁRF, and x1, Ts, 22, 24 € Rrp. We will denote the integrals corresponding
to these three cases by I, Is, and I3 so that Ip(wa, fo) = I + Is + Is.

First we compute [;:

z
L = q%A / YF (i + a2x3> dmqy dmy dx dz.
mi1,m2€RF,
m,ZGKQXQ(F),

znflwe—n«;l-i-szz(wﬁRp)

By changing variables from x to njx and integrating with respect to my, ms, x2,
x4, 21, and 2o successively we arrive at

A Z3
I :q?;‘ / wp(a——FaQZIJg) dr1 drs dzs dzy.
1
1,73,23,24€EREF
with 1 or z3€R;
and z3 or Z4€R;§7
w1z3+13246ngF

If 21 € R; we have z3 € —x324/x1 + wﬁRF. If 1 € wpRp, then x3 € R; and
24 € —x123/13 + wﬁRF. By integrating z3 in the first case and z4 in the second
case we can further compute I; and conclude that

(16) h=gh(1-ap' +az?) ifA=1
(17) :q%f‘(1—q;1) ifA> 1.

Next, let us turn to I>. After integrating with respect to msy we get

z
I = Z L]F/#’F(a—g + axxs +my — m1x4z1) dmy dx dz
—A<M<0 !
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where the integral is taken over

my € wyR;ﬂ,
T1,24, 21, 21 € R,
x2,22 € RF,
3,23 € w;MRF,
T121 — M1T321 + X322 € —1 4+ w?RF,
Tozz — M1Ta23 + Ta24 € —1 + W?RF,

T123 — M1x323 + T324 € w?RF.

We will consider two cases:

(i) 23 € waRp (then 23 € waRp) and

(i) 73 ¢ waRp (then z3 € z3R}).

In case (i) the integrand simplifies to ¥p(m1 — mix421) and we have x4 €
—1/(z4 —ma23) —|—w§RF and 21 € —1/(x1 —mix3) —I—w?RF with 21 —mqz3 € Ry
and z4 — miz3 € Rp. After integrating the integrals with respect to x4 and 2,
changing variables from z; to x = r1 — myx3 and from z4 to z = z4 — my23, and
integrating with respect to z3 and z3, we get

Z g / YF (ml - %) dmy dx dz.

—A<M<0 myco M RX,
m,zGR;
By integrating with respect to x; we see that this integral vanishes unless M = —1.

Computing the case of M = —1, we get q%A_l(l — qgl) for case (i).

In case (ii) we set z3,235 € wp Ry with —M < X < A. After integrating
with respect to zo and zo and setting x4 € —1/(z4 — m123) + wifRF and z; €
—1/(x1 — mizs) + wp Rp with 1 — myzs € R} and z4 — mi2z3 € R} we get

>t /

i ek,
z1,z4ER;,
w3723€w§R;§,
(11—mlwg)(z4—m123)611z4+w2+MRp
mi

(1‘1 — mlxg)(z4 — m123)

{7 (Z—3 + asx3 +mg — ) dmq dx dz.
ap

From the last condition attached to the integral we know that z3 € —x324/
(r1 — myixs) + wﬁRF. Hence, the integral with respect to z3 vanishes unless
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A+2M > 0. Then we get for case (ii)

T3z m
Z g / ¢F(—%+azﬂc3+m1 - )dml dx dz
_Ajehe<o a1(ry —mixs T124

M X
mi€wp R,
X
z1,24€RE,
—M
T3EWR RF,
zl—mlz_geR;

T3z m

- Z CI%A / (3 (——3 1 +a2x3+m1——1 )dml drdz.
_AJ2<M <0 ai(z1 — mi3) T1%24

- mi1Ew ¥ Ry,

z1,24€R},

Ing?RF

The second integral above is the same as the integral in case (i) because the inte-

grand is actually equal to ¢ (m1 —m1 /(124)); we thus get the same ¢ ' (1—gp').
For the first integral we change variables from z3 to * = myx3 € Rp with

x —x1 € Rf and from zy to 2 = z3/my € wp R} to get

Tz asx 1
Z qf‘mA / 1/)F(—7+L+m1——) dmi dz dxq dz.
A5 a(z—21) My T1%2

[2EM< mlewyR;,

z€RF,

z1,z—z1€ERY,

sz;MR;

Applying our results on (9) to the integral with respect to z, we conclude that
T € w?”MRIX, if M < —1 and x € w?’LQMRF if M = —1. We claim that the
integral vanishes when M < —1 and A+2M > 0. Indeed, we change variables from
x to a1z and set b = ajay. Integrating the integral with respect to b € Ry against

x~1(b) we get the Mellin transform

S / x~L(b) db

—Aj2<M<—1 R

b 1
/ ¢F((L+_x+ml_ _) dmy dz dzy dz.

x1—a1x)  my T12
my GwyR;,
wEW%MR;i,
1 GR;,

zEw;MR;
If x is unramified, the integral with respect to b vanishes, because M < —1. Assume
now that x is ramified. We change variables successively from b to y; = bx/m; €
wMRY, from x to y = x1/x € wp™ Ry, from z; to yo = —1/(212) € wM R, and
from z to y3 = z/(y — a1) € wM R. Then the Mellin transform becomes

> qf’wA( / X‘l(y1)¢p(y1)dy1)4 / x‘l(y(al—y))dy-

—A/2<M<—1

@i R @M R
The integral with respect to y; vanishes if a(y) # —M. If a(y) = —-M > 2,

the integral with respect to y equals zero because we can set y as y(1 + ¢) with
ce w;[M/ Ry and integrate with respect to c. Since the Mellin transform of our
integral vanishes for any character x when M < —1 and A+ 2M > 0, we prove the
claim.
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Now we compute the integral when M = —1 and A+2M > 0, i.e., A > 2. Since
the integrand becomes

Tz asx 1
g (2 2y LY,
a1y mi T1z
we can integrate with respect to x € wﬁ”M Rp. The integral is non-zero only if
z/(a1x1) + az/my € w%_ARF. Consequently, we get
1
q%AH / Uvp (m1 — —) dmidxy dz.
Iz
mi€wy Ry,
z1€RE,
2€wpRE,

Z/(alml)-l-ag/mlewi:ARp

The last condition attached to the integral implies that z € —ajas21/my + w%RF.
After integrating with respect to z we get

Q%A / g (ml (1 + aloblzx% )) dmq dx1

-1
mi€wn Ry,
IleR;

:q%A(QF / dry — / dﬂCl)

T1ERY, T1ER}
rfe—l/(a1a2)+wFRF

which equals ¢3(1 + ¢p') if —ajaz is a square in R}/(1 + wpRr) and equals
¢ (—1 4 qz') if —ajas is not a square in Ry /(1 + wpRr).
For the case of A+ 2M = 0, with A being even, we have

Tz asx 1
/ ¢F(_7+L+ml__) dmy dx dxq dz.
a(x—x1)  my T12
—A/2 5%
m1E€EWg Ry,
z€RF,
11,1—1161’%;,

ZEw?/ZR;

For the above integral, now we choose ¢ € @i/ >R} and set b= agc/ay € R}. We
then change variables from m to y1 = cmy € RIX?, from z to ya = —cz/a; € RIX?,
from = to ys = a1(z — x1)/c* € R, and from z; to y3 = a1m1/c* € Ry. After
collecting all of these results on Iy we get

1 1
I =g / vr (= (o —— + 28

c Y293 Ya
(RF)*
b b
+ Y4 + ﬂ)) dyy dya dys dyy if A > 2iseven
(18) Y1 Y1
(gt +1) if —ajagisasquarein RS/(1+ wrRp)
and A > 2

g (¢p' — 1) if —ajas is not asquare in R} /(1 + wpRr)
and A > 2.
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Now we compute

I; = q%A /wp(ml —mg) dmy dmso dx dz
where the integral is taken over
mi, ma € w;AR}X,,
T1, T2, 22,24 € RF,

3,23 € w?RF,

T4, 21 € Ry,
r121 —mix3z1 + 3290 € —1 + W?RF,
Toz3 — M1xa23 + Tazq € —1 + W?RF,
ToZ1 — M1T421 + Ty € Mo + w?RF

If we integrate with respect to mso first, we will get q;A and the above integrand
becomes ¥ p(mq + miz4z1). Having integrated with respect to z1, xo, x3, 22, 23,
and z4 we get

IB = Q%A / 1/)F (ml (1 + 113421)) dm1 dZIJ4 le

—A pX
mi€wp’ Ry,
m4,z1€R;

(19) =qp(l—qp') fA=1
(20) =0 if A> 1.

Collecting our results in (16) through (20) we get the following expression of
IF (wa’a fO)

Lemma 4. Under the assumption of Lemma 1 we have

Ir(wa, fo) =1 if A=0;
=g ifA=1;
=234 if A > 3isodd and — ajas is a square in F';
=g / ¢F(1($1 + 2 +
C I2X3
(RF)*

b b
T213 + ﬂ + ﬂ)) dd?l diZ?Q diZ?g dZZ?4
Ty Z1 Z1

if A > 2iseven;
+@3 (1 —gpt) if A= 2
+2¢34 if A > 4iseven and — ajas is a square in F;
=0 otherwise.

4. THE ORBITAL INTEGRAL Jp(wa, )

We write any element in N,,(F\N (L) asn = (”fl M) (1 ”;) where n; = (1 “})
with mq1,me € F and u € Masxo(L). Then the matrix condition attached to the

integral defining Jg(wa, ®g) on the right side of (2) becomes

t —1 -1 to—1 -1
921 ny wibing ny wibing u K(L
(21) tet —1 -1 ¢t —1 -1 ¢ € K(L).
u'ny wibing a'ny wibing u + "nowibang
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First, we conclude from (21) that a1 € Rr and ajas € RIX, if the integral is non-zero.
If a; € RY, then Jp(wa, ®g) = 1. We will assume from now on that a; € waR)
and as € w;ARIX, with A > 0. Then from (21) we get mq,mq € w;ARF following
the arguments used in Section 3. Changing variables from u to z = (2 Z) =

tnl_lwlblnl_lu € Msyx2(Ryr) and from m; to m;/2 we get
Jr(wa, o) = q%A

21
/ Pr(me —m1)¢FOtrL/F( 1) dmi dms dz.

m1,m2€w;ARF,
Z€M2><2(RL)

‘2("}1 é)ze—alag(? m2)+M2><2(wL Ry1)
As in the last section there are three cases:

(1) mi, Mo € RF, z € KZXQ(L);

(ii) m1,me € w¥ Ry, 2 € Koxa(L) with —A < M < 0; and
(iii) mi, Mo € ’(IJFARF, z € M2><2(RL)
We will denote the corresponding integrals by Ji, J2, and Js.

For J1 we change variables from z to y = (;ﬁ Zj) = (mll/Z ?)z Then the inte-
grand becomes ¥ p otrL/F(yl/al) and the matrix condition attached to .J; becomes
tuny € —alag(l mz) + ngg(wL R.). By integrating the integral with respect
to mq, ma, Y2, and y4 we get

5A
J1 = qp / 1ﬁFO‘UfL/F( ) dy1 dys.
y1,Y3s€ERL,
y1 or ys€R],
y1@3+ﬂ1y36ngF

If y; € Ry, the integral with respect to y3 yields q;A and we get

/1/1F0trL/F( )dyl

yleRX

which equals —q% when A = 1 and vanishes when A > 1. If y; € wy R, then
y3 € RY. When A = 1 the integrand equals 1 and we get ¢3(1 —¢?). When A4 > 1
we change variables from y; to yo = y193 € wr Ry and get

5A
qr / Yrotrp p ( ) dyo dys
1
yo€wr Ry with yo+Jo€wp Rr,
ySERf

which equals g3 (1 — ¢z"). Adding these results together, we finally have

Ji :q%(l—qF —qF) ifA=1;
=31 —qph) if A> 1.

To compute Jo, we first integrate with respect to mq. Then

mizoz
B=qt Y /wp —my - = 2)¢FotrL/F( )dm1 dzy dzs dzs dzy

—A<M<0
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where the integral is taken over
my € wé‘,f[R;,
z1 € wZMRL,
29,23 € RZ,
Z4 € RL,
mi1z121 + 2123 + 2123 € W?RF,
M12122 + 2124 + 2223 € —ajas + wfRL

Now we consider two cases:
(i) z1 € wfRL and
(i) 21 € @f R} with —M < Z < A.
In case (i) we can first integrate with respect to z4, 23, and 21 to get

miz9Z
@t Y / 1bF(—ml - = 2)dm1 dza.

a1a
~A<M<0 192

M pX
mi€wp Ry,
zzGRZ

Writing the above sum as an integral taken over m; € wllp_ARF minus the same

integral over my; € Rp, we get qf,A_l(l + q}l). Note that for Jo we always have

A>1.

In case (ii) we have 22 € —ajas/(m1z1 + Z3) + wfRL. Integrating with respect
to z4 and 2z we arrive at

DS /

0<—M<Z<A
< s2< mlewyR;,

z1 waRf s
Z?,ERE< 5
miz1+z3€ER],
miz1Z1+2123+2123€wp Ry

¢F(_m1 _ ajazmsi
(my21 + 23)(m1z1 + Z3

>)¢F0trL/F(z_1) dmq dz dzs.

Note that the last two conditions above are equivalent to (mq2z1 + 23)(m1z1 + 23) €
2323 + w?’LMRF. If we change variables from z3 to zg = z3/m; € wZMRZ with
(21 + 20)(21 + Z0) € 20Z0(1 + w?JrMRF), we get an integral of
a1as )
—my — - —
¢F( m1(z1 + 20)(Z1 + Zo)
integrated with respect to m; € wM RX. This integral is of the same kind as the
integral in (9) and hence is non-zero only if 1 + ajaz/(z1 + 20)(Z1 + Z0) € R}
when M < —1. Using three new variables m = —my € wi R}, u = miz1/z3 €
w2 RY with (1 +u)(1+a) € 1 + wp™Rp, and 2 = —(1 + u)z3 € R (with
1+ ajaz/(22) € RE when M < —1) we can rewrite the integral in case (ii) as
(22)

Q%A Z q%M/1/)F (m(l + G;C;Q))q/}potrL/F(%) dmdudz.

0<—M<Z<A

Let us first consider the case of M < —1. By an argument similar to the one
for integrals like (9), the integral with respect to m vanishes unless the orders of
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m(1+ajaz/(22)) and ¢1/(ay1m) are the same, where uz/(1+u) = ¢1 + c24/7. Since
c1 € wf‘p/[’LZRF, we have M > Z — A; hence the sum in (22) in this case is taken over
1< —-M < Z < A+ M which implies that A+2M > 0. Now by changing variables
from z to z/(1 + u) we can simply erase the factor (1 + u) from the integrand in
(22). We claim that we must have M = —A/2 if the above integral is non-zero.
To prove this claim, we assume M > —A/2 and apply the Mellin transform to the
integral:

@D gi" [ x7'(b)db
—A/2<M<—1, ”
—M<Z<A+M Ry

/ ZZJF(m(l—I—%))?/JFOtI"L/F(;lL—;) dm du dz

mef;[R;,
ZERZ7

M+Z px
uEwy, Ry,

(1+u)(1+a)el+wp ™Ry

where we set b = ajas. If x is unramified, the integral with respect to b vanishes
because M < —1. Assume that y is ramified. After changing variables from b
to ¢ = bm/(22) € w¥ R} and from 2z to y = uz/(a1m) € wZ AR} we see that
the conductor exponent a(x) must equal —M if the integral is non-zero. Since
a(xoNr/r) = a(x) we also have Z — A = M, ie., Z = A+ M if the integral is
non-zero. Therefore, when a(x) = —M and Z = A+ M we get the integral

x(u) du.
uEwi’+2MRZ R
(1+u)(1+a)el+wpn ™Ry

Since A4+2M > 0 we can set 1+u = (1+w)(1+vy/7)/(1—vy/7) withw € wi ™ Ry,
and v € wpt?M (R;/(l + w;MRF)). Then x(uii) = x(—47v%/(1 — 7v?)) and the

sum with respect to v vanishes because we can set v = vo(1+c¢) with ¢ € w;[M/ Ry
and sum over c. Since the Mellin transform for any character x is zero, we prove our
claim. Back to the case of A+ 2M = 0, we point out that then Z = —-M = A+ M
and v € R} . Since the integral with respect to m vanishes if u € wy Ry, when
M < —1, we can take the integral with respect to u over Ry.

Now let us turn to the case of M = —1. Since m(1 + ajaz/(2%)) € wy'Rr and
(1+u)(1+a@) € 1+wp 'Rp, we can again change variables from z to z(1 +u) and
thus erase the factor (1+u) from the integrand in (22). We can also set z = zo(14v)
with v € wr Rr. Integrating with respect to v we know that Z must be equal to
A — 1 in order to have a non-zero integral. Consequently, we get

qif‘_z / ¢F(m<1+ a1?2))¢FOtI‘L/F(£) dmdudz.
zZ aim
meglR;,
zeRf,

quffZRE,
(1+u)(14a)€l+wp 'Ry

Recall that from case (i) we got ¢~ '(1 4 ¢z'). This is indeed equal to the above

integral with u being taken over wf‘lRL. Adding this expression to the above
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integral we thus can set u € w? Ry, with (1+u)(1+@) € 1 +wa 'Rp. If A > 2,
we can further compute the 1ntegra1 with respect to u

/ 1/)FOtI'L/F(;;_;L) du

uEw‘L“’*2RL7
(1+u)(14a)el+wp 'Rp

uz

= / wFotrL/F(al—m> du

u6w272RL,
u+ﬁ€w271RF

WA/ TZ
= / '@ZJFOtrL/F( \/_
aim

wEw?fZRF,
A—1
vEwr Rp

) dv dw

with u = v + w+/7. Since the order of ¥ is zero, the last integral above equals
q% 24 if y € wpRp and vanishes if y € R}, where z = x + y+/7. Back to (22),
when A > 2 we have

g / b (m(l + a;;? )) dm dz

—1px
mewrn Rg,
ZGRZ with yewpRF

=g / wF(m(1+a;a2))d mdz

me}lR;7
zERY

_ LI%A( o + 1) if — ajaq is a square;
3 (qp' — 1) if — ajas is not a square.

To summarize our computation we have

e[ ()

A/2RF,

mew
zERL7
ueERL,
(14uw)(1+a)el+wa/?Rp

wpotrL/F( )dmdudz if A > 2iseven

@ (gr' +1) if —ajasis asquarein Ry /(1 + wrRr)

n and A > 3
@A (gp' — 1) if —ajas is not a square in R /(1 + wrRr)
and A > 3.

After changing variables from m to n = ¢m € R} where ¢ € wF/ Ry, from z to
) = —c*z/a; € R}, and from u to zo = —x1(1 +u) € R}, we can write the above



390 YANGBO YE
integral as

medt [ (G0 )

neRy,
x
r1,22€R],

_ — A/2
1% Er212+wp/ RFp

. wpotrL/F($) dndxydry if A > 2iseven

A (gpt +1) if —ajag isasquarein R} /(14 wrpRr)

. and A >3
¥ (gz' —1) if —ajas is not a square in Ry/(1 + wrRr)
and A >3
where as before b = axc?/a; € Ry.
Finally, we compute Js:
Js = g
21
/ ¢F(m2—m1)¢FotrL/F(a—> dmq dms dz
1
ml,m2€w;ARny,
zEMax2(RL),
tz(“}l é)ze—alag(? n%2)+M2><2(w£’RL)

where the matrix condition is equivalent to

- - - A
Mmi12121 + Z123 + 2123 € wpRp,

- - - A
M12122 + 2124 + 2223 € —ajas + ZULRL

- = - A
M12222 + 2224 + 2224 € —a1a2me + wrpRF.

The last condition above implies that zo € R; ; hence from the second condition we
get 21 € wfRL. Then we can integrate with respect to mo, 24, 23, and 21 to get

J3 = q%A / ) (—m1 (1 + Z2%2 )) dmy dzs.

ai1ag
m1€w;AR;§,
Z2ERZ

A similar integral has been computed and this one equals

Js=¢*(1+qp") ifA=1;
=0 ifA>1.

Collecting our results on Ji, Jo, and J3 we arrive at
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Lemma 5. Under the assumption of Lemma 1 we have

Jp(wa, @) =1 it A=0;

= ¢ ifA=1;

=2¢34 if A > 3isodd and — ajas is a square in F;
n b

— [ w(B(45%)
& 11

neERY,
ml,mzeRZ,

I151€1252+w2/2RF
T+
-wFotrL/F(il * 2) dndzy dxs
cn
if A > 2iseven;
3A —1\ i A _ 9.
+2¢34 if A > 4iseven and — ajas is a square in F';
=0 otherwise.

Comparing Lemmas 4 and 5 and using the local identity in Lemma 1, we prove

Theorem 2.

in

1

10.

11.

12.

13.
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