
REPRESENTATION THEORY
An Electronic Journal of the American Mathematical Society
Volume 2, Pages 393–409 (October 26, 1998)
S 1088-4165(98)00043-0

ROGAWSKI’S CONJECTURE ON THE JANTZEN
FILTRATION FOR THE DEGENERATE AFFINE

HECKE ALGEBRA OF TYPE A

TAKESHI SUZUKI

Abstract. The functors constructed by Arakawa and the author relate the
representation theory of gln and that of the degenerate affine Hecke algebra H`

of GL`. They transform the Verma modules over gln to the standard modules
over H`. In this paper we prove that they transform the simple modules to the
simple modules (in more general situations than in the previous paper). We
also prove that they transform the Jantzen filtration on the Verma modules
to that on the standard modules. We obtain the following results for the
representations of H` by translating the corresponding results for gln through
the functors: (i) the (generalized) Bernstein-Gelfand-Gelfand resolution for a
certain class of simple modules, (ii) the multiplicity formula for the composition
series of the standard modules, and (iii) its refinement concerning the Jantzen
filtration on the standard modules, which was conjectured by Rogawski.

Introduction

This paper is a continuation of the paper [AS], in which we gave functors from
O(gln) to R(H`). Here O(gln) denotes the Bernstein-Gelfand-Gelfand (in short,
BGG) category of representations of the complex Lie algebra gln, and R(H`) de-
notes the category of finite-dimensional representations of the degenerate affine
Hecke algebra H` of GL` introduced by Drinfeld [Dr].

Let us review the results in [AS]. Let t∗n and Wn denote the space of weights
and Weyl group of gln respectively. For λ ∈ t∗n, let M(λ) denote the Verma module
with highest weight λ and L(λ) its simple quotient. Let Vn = Cn denote the vector
representation of gln. For each λ ∈ t∗n and X ∈ objO(gln), we define an action of H`

on the finite-dimensional vector space Fλ(X) = Homgln(M(λ), X ⊗ V ⊗`
n ). Under

the condition that λ + ρ is dominant, we proved that the functor Fλ is exact and
Fλ(M(µ)) is isomorphic to M(λ, µ) unless it is zero. Here M(λ, µ) ∈ objR(H`)
denotes the standard module. With the restriction ` = n, we proved that Fλ(L(µ))
is isomorphic to the unique simple quotient L(λ, µ) of M(λ, µ) unless it is zero.
Any simple H`-module is thus obtained. To prove the irreducibility of Fλ(L(µ)),
we compared the multiplicities of the simple modules in the composition series
of M(µ) and those in M(λ, µ) by using the Kazhdan-Lusztig type multiplicity
formulas known for O(gln) and R(H`). (See (b), (c) below.)
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In the present paper, further properties of the functors are deduced from the
key observation that the gln-contravariant bilinear form on a highest weight gln-
module X induces the H`-contravariant bilinear form on Fλ(X). The irreducibility
of Fλ(L(µ)) is deduced from the non-degeneracy of the bilinear form. As a conse-
quence, we can determine the images of simple gln-modules (Theorem 3.2.2) without
assuming ` = n or referring to the multiplicity formulas.

We also prove that Fλ transforms the Jantzen filtration on M(µ) to that on
Fλ(M(µ)) ∼=M(λ, µ) (Theorem 4.3.5).

The following are the consequences of these results.
(i) We obtain a resolution for a certain class of simple H`-modules by applying Fλ

to the BGG resolution [BGG] and its generalization by Gabber and Joseph [GJ1]
for gln-modules. This generalizes the results of Cherednik [Ch1] and Zelevinsky
[Ze4].

(ii) To simplify the descriptions, we assume λ and µ are dominant integral
weights. (More general cases are treated in §5.2.) Set w ◦ µ = w(µ + ρ) − ρ
for w ∈ Wn and let w, y ∈ Wn be such that λ− w ◦ µ and λ− y ◦ µ are weights of
V ⊗`

n . We have a direct proof of the following formula:

[M(w ◦ µ) : L(y ◦ µ)] = [M(λ, w ◦ µ) : L(λ, y ◦ µ)].(a)

Let Pw,y(q) denote the Kazhdan-Lusztig polynomial of Wn. The formula (a)
implies the equivalence of the following two multiplicity formulas:

[M(λ, w ◦ µ) : L(λ, y ◦ µ)]=Pw,y(1),(b)

[M(w ◦ µ) : L(y ◦ µ)] =Pw,y(1).(c)

The formula (b) was proved by Ginzburg [Gi1] (see also [CG]) for affine Hecke
algebras and by Lusztig for degenerate (or graded) affine Hecke algebras [Lu2], and
(c) was proved by Beilinson and Bernstein [BB1] and Brylinski and Kashiwara [BK]
by using the geometric method and the theory of perverse sheaves. We remark that
our proof of (a) is purely algebraic.

(iii) We have a refinement of the formula (a): Let λ, µ and w, y be as in (ii). (See
§5.3 for more general cases.) Let

M(µ) = M(µ)0 ⊇M(µ)1 ⊇M(µ)2 ⊇ · · · ,
M(λ, µ) =M(λ, µ)0 ⊇M(λ, µ)1 ⊇M(λ, µ)2 ⊇ · · ·

be the Jantzen filtrations on M(µ) and M(λ, µ), respectively. Since Fλ preserves
the Jantzen filtration, we have

[M(w ◦ µ)j : L(y ◦ µ)] = [M(λ, w ◦ µ)j : L(λ, y ◦ µ)].(a’)

The Jantzen filtration on standard modules over affine Hecke algebras of GL
was introduced by Rogawski [Ro]. He conjectured a refinement of the formula (b)
concerning the Jantzen filtration. A proof of Rogawski’s conjecture has been pre-
sented in [Gi2] without details1. A degenerate affine Hecke analogue of Rogawski’s

1I. Grojnowski announced similar results in a series of his lectures at Kyoto in 1997. He also
treated affine Hecke algebras at roots of unity by the geometric method. After the submission of
this article, the author received a manuscript of Grojnowski concerning these results, which will
form a part of his forthcoming paper “Affine and cyclotomic Hecke algebras at roots of unity”.
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conjecture is written as follows:∑
i∈Z≥0

[griM(λ, w ◦ µ) : L(λ, y ◦ µ)]q(l(y)−l(w)−i)/2 = Pw,y(q).(b’)

The formula (a’) implies the equivalence between (b’) and the improved Kazhdan-
Lusztig multiplicity formula∑

i∈Z≥0

[gri M(w ◦ µ) : L(y ◦ µ)]q(l(y)−l(w)−i)/2 = Pw,y(q),(c’)

which was proved in [BB2].
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1. Basic definitions

1.1. Lie algebra gln. Let gln denote the Lie algebra consisting of all n×n matrices
with entries in C. Let tn be the Cartan subalgebra of gln consisting of all diagonal
matrices. An inner product is defined on gln by

(x|y)n = tr(xy)(1.1.1)

for x, y ∈ gln. Let t∗n denote the dual space of tn. The natural pairing is denoted
by 〈 , 〉n : t∗n × tn → C. Let Ei,j (1 ≤ i, j ≤ n) denote the matrix with only
nonzero entries 1 at the (i, j)-th component. Define a basis {εi}i=1,...,n of t∗n by
εi(Ej,j) = δi,j , and define the roots by αij = εi − εj and the simple roots by
αi = εi − εi+1.

Put

Rn = {αij | 1 ≤ i 6= j ≤ n},(1.1.2)

R+
n = {αij | 1 ≤ i < j ≤ n}, R−

n = Rn \R+
n ,(1.1.3)

Πn = {αi | i = 1, . . . n− 1}.(1.1.4)

Then Rn ⊆ t∗n is a root system of type An−1. Since the restriction of ( | )n to tn is
non-degenerate, we have an isomorphism t∗n

∼→ tn, whose image of ξ ∈ t∗n is denoted
by ξ∨. In particular, we have ε∨i = Ei,i and α∨i = Ei,i − Ei+1,i+1.

Putting n+
n =

⊕
i<j CEi,j , n−n =

⊕
i>j CEi,j , we have a triangular decomposition

gln = n+
n ⊕ tn ⊕ n−n . We put b±n = n±n ⊕ tn.

Let σ denote the involution on gln given by the transposition: σ(Ei,j) = Ej,i.
The inner product ( | )n is invariant with respect to σ: (σ(x)|σ(y))n = (x|y)n for
all x, y ∈ gln.
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Put ρ = 1
2

∑
α∈R+

n
α and define

Qn =
n−1⊕
i=1

Zαi,(1.1.5)

Dn = {λ ∈ t∗n | 〈λ + ρ, α〉n /∈ Z<0 for all α ∈ R+
n },(1.1.6)

D◦
n = {λ ∈ t∗n | 〈λ, α〉n /∈ Z<0 for all α ∈ R+

n },(1.1.7)

Pn =
n⊕

i=1

Zεi, P+
n = Pn ∩D◦

n.(1.1.8)

An element of D◦
n (resp. Pn, P+

n ) is called a dominant (resp. integral, dominant
integral) weight.

1.2. Weyl group. Let Wn ⊂ GL(t∗n) be the Weyl group associated to the root
system (Rn, Πn), which is by definition generated by the reflections sα (α ∈ Rn)
defined by

sα(λ) = λ− 〈λ, α∨〉nα (λ ∈ t∗n).(1.2.1)

We often write si = sαi for αi ∈ Πn. Note that Wn is isomorphic to the symmetric
group Sn.

We often use another action of Wn on t∗n, which is given by

w ◦ λ = w(λ + ρ)− ρ (w ∈Wn, λ ∈ t∗n).(1.2.2)

For w, y ∈Wn, we write w ≥ y if and only if y can be obtained as a subexpression
of a reduced expression of w. The resulting relation in Wn defines a partial order
called the Bruhat order.

1.3. Representations of gln. For a tn-module X and λ ∈ t∗n, put

Xλ = {v ∈ X | hv = 〈λ, h〉nv for all h ∈ tn},(1.3.1)

P (X) = {λ ∈ t∗n | Xλ 6= 0}.(1.3.2)

The space Xλ is called the weight space of weight λ with respect to tn, and an
element of P (X) is called a weight of X .

Let U(gln) denote the universal enveloping algebra of gln. LetO = O(gln) denote
the category of gln-modules which are finitely generated over U(gln), n+

n -locally
finite and tn-semisimple (see [BGG]). The categoryO is closed under the operations
such as forming subquotient modules, finite direct sums, and tensor products with
finite-dimensional modules. For λ ∈ t∗n, let M(λ) = U(gln)⊗U(b+

n ) Cvλ denote the
Verma module with highest weight λ, where vλ denotes the highest weight vector.
The unique simple quotient of M(λ) is denoted by L(λ). The modules M(λ) and
L(λ) are objects of O.

Let χλ : Z(U(gln)) → C denote the infinitesimal character of M(λ). We intro-
duce an equivalence relation in t∗n by

λ ∼ µ⇔ λ = w ◦ µ for some w ∈Wn.(1.3.3)

Then it follows that χλ = χµ if and only if λ ∼ µ. Let [λ] denote the equivalence
class of λ ∈ t∗n. Define the full subcategory O[λ] of O by

objO[λ] = {X ∈ objO | (Kerχλ)kX = 0 for some k}.
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Then any X ∈ objO admits a decomposition

X =
⊕

[λ]∈t∗n/∼
X [λ](1.3.4)

such that X [λ] ∈ objO[λ]. The correspondence X 7→ X [λ] gives an exact functor on
O.

Lemma 1.3.1. Let λ ∈ Dn. Then the natural map (X [λ])λ → (X/n−n X)λ is bijec-
tive.

Remark 1.3.2. (i) There also exists a canonical bijection Homgln(M(λ), X)∼=(X [λ])λ

for λ ∈ Dn.
(ii) A proof of Lemma 1.3.1 for integral λ is given in [AS]. The generalization to

non-integral cases is similarly proved.

2. Degenerate affine Hecke algebras and their representations

2.1. Degenerate affine Hecke algebras. For a group G, let C[G] denote its
group ring. Let S(t`) denote the symmetric algebra of t`, which is isomorphic to
the polynomial ring C[ε∨1 , . . . , ε∨` ].

Definition 2.1.1. The degenerate (or graded) affine Hecke algebra H` of GL` is
the unital associative algebra over C defined by the following properties:

(i) As a vector space, H`
∼= C[W`]⊗ S(t`).

(ii) The subspaces C[W`] ⊗ C and C ⊗ S(t`) are subalgebras of H` in a natural
fashion (their images will be identified with C[W`] and S(t`) respectively).

(iii) The following relations hold in H`:

sα · ξ − sα(ξ) · sα = −〈α, ξ〉` (α ∈ Π`, ξ ∈ t`).(2.1.1)

It is easy to verify the following lemma.

Lemma 2.1.2. There exists a unique anti-involution ι on H` such that

ι(w) = w−1 (w ∈W`), ι(ξ) = ξ (ξ ∈ t`).

2.2. Induced modules. For a pair (a, b) of complex numbers such that b−a+1 ∈
Z≥0, we put [a, b] := {a, a+1, . . . , b} ⊆ C ([a, a−1] := ∅) and call it a segment. For
a segment ∆ = [a, b] such that b− a + 1 = `, there exists a unique one-dimensional
representation C∆ = C1∆ of H` (we put H0 = C) such that

w1∆ = 1∆ (w ∈W`),(2.2.1)

ε∨i 1∆ = (a + i− 1)1∆ (i = 1, . . . , `).(2.2.2)

Let Φ = (∆1, . . . , ∆n) be an ordered sequence of segments with ∆i = [ai, bi] such
that bi−ai +1 = `i and ` =

∑n
i=1 `i. Regard H`1 ⊗H`2⊗· · ·⊗H`n as a subalgebra

of H`. Define an H`-module M(Φ) by

M(Φ) = H` ⊗H`1⊗···⊗H`n
(C∆1 ⊗ · · · ⊗ C∆n).(2.2.3)

EvidentlyM(Φ) is a cyclic module with a cyclic weight vector

1Φ := 1∆1 ⊗ · · · ⊗ 1∆n ,(2.2.4)
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whose weight ζΦ is given by

〈ζΦ, ε∨j 〉` = ai + j −
i−1∑
k=1

`k − 1 for
i−1∑
k=1

`k < j ≤
i∑

k=1

`k.

(2.2.5)

It is also obvious that M(Φ) ∼= C[W`/(W`1 × · · · ×W`n)] as a C[W`]-module and
thus its dimension is given by dimM(Φ) = `!

`1!···`n! .

Let λ, µ ∈ t∗n be such that λ− µ ∈ P (V ⊗`
n ). Then putting

`i = 〈λ− µ, ε∨i 〉n ∈ Z≥0 (i = 1, . . . , n),(2.2.6)

we have l =
∑n

i=1 `i. Define an ordered sequence

Φλ,µ := ([〈µ + ρ, ε∨1 〉n, 〈λ + ρ, ε∨1 〉n − 1], . . . , [〈µ + ρ, ε∨n〉n, 〈λ + ρ, ε∨n〉n − 1])
(2.2.7)

of segments. We put

M(λ, µ) =M(Φλ,µ), 1λ,µ = 1Φλ,µ
,(2.2.8)

where 1Φλ,µ
is as in (2.2.4).

Remark 2.2.1. (i) For any ordered sequence Φ = (∆1, . . . , ∆n) of segments, one can
find λ, µ ∈ t∗n such that Φ = Φλ,µ.

(ii) For Φ = (∆1, . . . , ∆n) and w ∈ Wn, put w(Φ) = (∆w(1), . . . , ∆w(n)). Then,
for Φλ,µ in (2.2.7), we have w(Φλ,µ) = Φw◦λ,w◦µ.

Recall that the simple modules of W` are parametrized by unordered partitions
of ` (or Young diagrams of size `). We let Sγ denote the simple W`-module corre-
sponding to the partition γ. Let [λ−µ] denote the unordered partition of ` obtained
from (`1, . . . , `n) by forgetting the order. As is well-known, it holds that

M(λ, µ) ∼= S[λ−µ] ⊕
⊕

β.[λ−µ]

S
⊕aβ

β ,(2.2.9)

as a C[W`]-module . Here . denotes the dominance order in the set of partitions,
and aβ are some non-negative integers.

Let Y`(n) denote the set of Young diagrams of size ` consisting of at most n

rows. We say that an H`-module Y is of level n if Y =
⊕

γ∈Y`(n) S
⊕aγ
γ for some

aγ ∈ Z≥0. The induced module M(λ, µ) (λ, µ ∈ t∗n) is of level n. Of course, any
finite-dimensional H`-module is of level `.

2.3. Zelevinsky’s classification of simple modules. Let λ, µ ∈ t∗n be such that
λ− µ ∈ P (V ⊗`

n ). Suppose that λ ∈ Dn. Then for any i < j, we have

〈λ + ρ, ε∨i 〉n − 〈λ + ρ, ε∨j 〉n = 〈λ + ρ, α∨ij〉n /∈ Z<0.

This implies that the segment [〈µ + ρ, ε∨j 〉n, 〈λ + ρ, ε∨j 〉n − 1] does not precede the
segment [〈µ + ρ, ε∨i 〉n, 〈λ + ρ, ε∨i 〉n− 1] in the sense of [Ze1, 4.1]. Thus the following
statement follows from [Ze1, Theorem 6.1-(a)] and [Ro, §5] (see also [Ch2]). (Recall
that the representation theory of the degenerate affine Hecke algebra is related to
that of the affine Hecke algebra by Lusztig [Lu1].)

Theorem 2.3.1 ([Ze1, Ro]). Let λ ∈ Dn and µ ∈ λ− P (V ⊗`
n ).

(i) In the decomposition (2.2.9), S[λ−µ] generates M(λ, µ) over H`.
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(ii) The H`-module M(λ, µ) has the unique simple quotient, which is denoted by
L(λ, µ).

(iii) The L(λ, µ) contains S[λ−µ] with multiplicity one as a C[W`]-module.

Remark 2.3.2. The statement (i) easily follows from (ii) and (iii).

For λ ∈ Dn and µ ∈ λ − P (V ⊗`
n ), the H`-module M(λ, µ) is called a standard

module.
By Remark 2.2.1 and [Ze1, Theorem 6.1-(b)(c)], we have the following state-

ments:

Theorem 2.3.3 ([Ze1, Theorem 6.1-(c)]). Any simple H`-module of level n is iso-
morphic to L(λ, µ) for some λ ∈ Dn and µ ∈ λ− P (V ⊗`

n ).

For η ∈ t∗n, let Wn[η] denote the stabilizer of η:

Wn[η] = {w ∈Wn | w(η) = η},(2.3.1)

which is a parabolic subgroup of Wn.

Proposition 2.3.4 ([Ze1, Theorem 6.1-(b)]). Suppose that λ, µ ∈ Dn and w, y ∈
Wn satisfy λ − w ◦ µ ∈ P (V ⊗`

n ) and λ − y ◦ µ ∈ P (V ⊗`
n ). Then the following

conditions are equivalent:
(i) y ∈Wn[λ + ρ]wWn[µ + ρ].
(ii) M(λ, w ◦ µ) ∼=M(λ, y ◦ µ).
(iii) L(λ, w ◦ µ) ∼= L(λ, y ◦ µ).

Remark 2.3.5. Let λ, µ ∈ Dn and w ∈ Wn such that λ − w ◦ µ ∈ P (V ⊗`
n ). Then

the condition (i) in Proposition 2.3.4 implies λ− y ◦µ ∈ P (V ⊗`
n ). We often use the

following fact from Proposition 2.3.4:

M(λ, w ◦ µ)∼=M(λ, wλ ◦ µ)∼=M(λ, wλ
µ ◦ µ),(2.3.2)

L(λ, w ◦ µ) ∼= L(λ, wλ ◦ µ)∼=L(λ, wλ
µ ◦ µ).(2.3.3)

Here wλ (resp. wλ
µ) denotes the unique longest element in Wn[λ + ρ]w (resp.

Wn[λ + ρ]wWn[µ + ρ]).

3. Functors Fλ

3.1. Construction. Let us recall the definition of the functor

Fλ : O(gln)→R(H`)

introduced in [AS]. Here R(H`) denotes the category of finite-dimensional repre-
sentations of H`. Let Vn = Cn denote the vector representation of gln.

Lemma 3.1.1 ([AS]). For any X ∈ O(gln), there exists a unique homomorphism

θ : H` → Endgln(X ⊗ V ⊗`
n )(3.1.1)

such that

θ(si) = Ωi i+1 (i = 1, . . . , `− 1),(3.1.2)

θ(ε∨i ) =
∑

0≤j<i

Ωji +
n− 1

2
(i = 1, . . . , `),(3.1.3)
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where

Ωji =
∑

1≤k,m≤n

1⊗j ⊗ Ek,m ⊗ 1⊗i−j−1 ⊗ Em,k ⊗ 1⊗`−i ∈ End(X ⊗ V ⊗`
n ).

(3.1.4)

Remark 3.1.2. Note that the action of W` given by (3.1.2) is just the natural action
of W` on V ⊗`

n .

Let λ ∈ Dn and X ∈ objO(gln). We define

Fλ(X) = (X ⊗ V ⊗`
n )[λ]

λ(3.1.5)

with an induced H`-module structure through the homomorphism θ. We also intro-
duce an H`-module structure on

(
(X ⊗ V ⊗`

n )/n−n (X ⊗ V ⊗`
n )

)
λ
. Then the bijection

given in Lemma 1.3.1 gives an H`-isomorphism

Fλ(X) ∼= (
(X ⊗ V ⊗`

n )/n−n (X ⊗ V ⊗`
n )

)
λ

.(3.1.6)

Obviously Fλ defines an exact functor from O(gln) to R(H`).

3.2. Image of functors. We extend the definition ofM(λ, µ) for any λ, µ ∈ t∗n by

M(λ, µ) = 0 for λ, µ ∈ t∗n such that λ− µ /∈ P (V ⊗`
n ).(3.2.1)

Let {ui}i=1,...,n denote the standard basis of Vn = Cn. For λ ∈ Dn and µ ∈
λ − P (V ⊗`

n ), we define an element uλ,µ ∈
(
(M(µ)⊗ V ⊗`

n ) / n−n (M(µ)⊗ V ⊗`
n )

)
λ

as
the image of vµ ⊗ u⊗`1

1 ⊗ · · · ⊗ u⊗`n
n ∈M(µ)⊗ V ⊗`

n , where `i = 〈λ− µ, ε∨i 〉n. It was
shown in [AS] that there exists an H`-homomorphism

M(λ, µ)→ (
M(µ)⊗ V ⊗`

n / n−n (M(µ)⊗ V ⊗`
n )

)
λ

,(3.2.2)

which sends 1λ,µ to uλ,µ, and that this is bijective. Combining (3.1.6), we have

Theorem 3.2.1 ([AS]). For each λ ∈ Dn and µ ∈ t∗n, there is an isomorphism of
H`-modules

Fλ(M(µ)) ∼=M(λ, µ).

In particular, the H`-module Fλ(M(µ)) has the unique simple quotient.

For η ∈ t∗n, put Rn[η] = {α ∈ Rn | 〈η, α∨〉n = 0}. It is not difficult to see
that Rn[η] is a root system and its Weyl group is a stabilizer Wn[η] of η: Wn[η] =
〈sα | α ∈ Rn[η]〉.

A proof of the following statement is given in §4.2.

Theorem 3.2.2. Let λ ∈ Dn and µ ∈ λ− P (V ⊗`
n ).

(i) If µ satisfies the condition

〈µ + ρ, α∨〉n ∈ Z≤0 for any α ∈ R+
n ∩Rn[λ + ρ],(3.2.3)

then we have

Fλ(L(µ)) ∼= L(λ, µ),(3.2.4)

where L(λ, µ) is the unique simple quotient of M(λ, µ).
(ii) If µ does not satisfy the condition (3.2.3), then we have

Fλ(L(µ)) = 0.(3.2.5)
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Remark 3.2.3. (i) In the case ` = n, Theorem 3.2.2 was proved in [AS] using the
Kazhdan-Lusztig type multiplicity formula for O(gln) and that forR(H`) (see §5.2).
The proof given in §4.2 does not depend on these multiplicity formulas.

(ii) The Wn[λ + ρ] acts on λ − Pn by µ 7→ w ◦ µ (µ ∈ λ − Pn, w ∈ Wn[λ + ρ])
(Remark 2.3.5). By a standard argument (see e.g. [Hu, 1.12]), it can be shown that
a fundamental domain for this action on λ− Pn is given by

A := {µ ∈ λ− Pn |〈µ + ρ, α∨〉n ∈ Z≤0

for any α ∈ R+
n ∩Rn[λ + ρ]}.(3.2.6)

(iii) We can express µ in Theorem 3.2.2 as µ = w ◦ µ̃ with some w ∈ Wn and
µ̃ ∈ Dn. Then the condition (3.2.3) is equivalent to

µ = wλ ◦ µ̃ or equivalently µ = wλ
µ̃ ◦ µ̃.

Here wλ (resp. wλ
µ̃) denotes the unique longest element in the coset Wn[λ + ρ]w

(resp. Wn[λ + ρ]wWn[µ̃ + ρ]). This can be shown as follows:
By Remark 3.2.3-(ii), it is enough to see that wλ ◦ µ̃ and wλ

µ̃ ◦ µ̃ belong to A for
any w ∈ Wn and µ̃ ∈ Dn such that w ◦ µ̃ ∈ λ − Pn. (Note that this also implies
wλ ◦ µ̃ = wλ

µ̃ ◦ µ̃.) Take any α ∈ R+
n ∩Rn[λ+ρ]. Note that wλ ◦ µ̃ ∈ λ−Pn and thus

〈wλ ◦ µ̃ + ρ, α∨〉n ∈ Z. Since sα ∈ Wn[λ + ρ], we have l(sαwλ) < l(wλ) and thus
(wλ)−1(α) ∈ −R+

n . This implies 〈wλ ◦ µ̃ + ρ, α∨〉n = 〈µ̃ + ρ, (wλ)−1(α∨)〉n ∈ Z≤0.
Hence wλ ◦ µ̃ ∈ A. Similarly, it follows that wλ

µ̃ ◦ µ̃ ∈ A.

From Theorem 2.3.3 and Remark 2.3.5, we have

Corollary 3.2.4. Any finite-dimensional simple H`-module of level n is isomor-
phic to Fλ(L(µ)) for some λ ∈ Dn and µ ∈ λ− P (V ⊗`

n ) satisfying (3.2.3).

4. Contravariant forms and the Jantzen filtration

We remark on contravariant bilinear forms on gln-modules and those on H`-
modules. We relate them via the functor Fλ. As a consequence, we have a proof of
Theorem 3.2.2 (a similar argument can be seen in the theory of Jantzen’s translation
functors [Ja]). We also prove that the Jantzen filtration on the Verma modules are
transformed to the Jantzen filtration on the standard modules.

4.1. Contravariant forms. Let X ∈ objO(gln). A bilinear form ( | )X : X×X →
C is called a gln-contravariant form if

(xv|u)X = (v|σ(x)u)X for all u, v ∈ X, x ∈ gln,(4.1.1)

where σ is the transposition (§1.1). For Y ∈ objR(H`), a bilinear form ( | )Y :
Y × Y → C is called an H`-contravariant form if

(xv|u)Y = (v|ι(x)u)Y for all u, v ∈ Y, x ∈ H`,(4.1.2)

where ι is given in Lemma 2.1.2.
Let us recall some fundamental facts on contravariant bilinear forms. The fol-

lowing lemma is easily shown.

Lemma 4.1.1. Let X ∈ objO(gln) be equipped with a gln-contravariant bilinear
form ( | )X . Then we have

X [λ] ⊥ X [µ] unless λ ∈ Wn ◦ µ,(4.1.3)

Xλ ⊥ Xµ unless λ = µ.(4.1.4)
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Lemma 4.1.2. (i) Let µ ∈ t∗n. A gln-contravariant form on M(µ) is unique up to
constant multiples.

(ii) Let λ ∈ Dn and µ ∈ λ− P (V ⊗`
n ). An H`-contravariant form on M(λ, µ) is

unique up to constant multiples.

Proof. (i) is well-known. We will prove (ii). Recall the decomposition (2.2.9):

M(λ, µ) ∼= S[λ−µ] ⊕
⊕

β.[λ−µ]

S
⊕aβ

β

as a C[W`]-module. Because an H`-contravariant form is W`-invariant, its restric-
tion to S[λ−µ] is unique up to constant, and we have

S[λ−µ]⊥
⊕

β.[λ−µ]

S
⊕aβ

β .(4.1.5)

From Theorem 2.3.1-(i), S[λ−µ] generates M(λ, µ) over H`. Thus the statement
follows.

It is easy to construct a nonzero gln-contravariant form on M(µ). It is also known
that there exists a nonzero contravariant form on M(λ, µ) (see [Ro, CG] and also
Remark 4.2.2). In the rest of this paper, we fix a canonical gln-contravariant form
( | )M(µ) on M(µ) by (vµ|vµ)M(µ) = 1.

Lemma 4.1.3. (i) Let µ ∈ t∗n and let N be a unique maximal submodule of M(µ).
Then

N = rad( | )M(µ),(4.1.6)

where rad( | )M(µ) denotes the radical of ( | )M(µ).
(ii) Let λ ∈ Dn and µ ∈ λ − P (V ⊗`

n ). Let ( | )M(λ,µ) be a nonzero H`-contra-
variant form on M(λ, µ) and let N be a unique maximal submodule of M(λ, µ).
Then we have

N = rad( | )M(λ,µ).

Proof. (i) is well-known. Let us prove (ii). It is obvious that rad( | ) ⊆ N . The-
orem 2.3.1 implies that N ⊆ ⊕

β.[λ−µ] S⊕aβ

β with some aβ ∈ Z≥0. Thus we have
S[λ−µ]⊥N by (4.1.5). Hence Theorem 2.3.1-(i) implies that N ⊆ rad( | )M(λ,µ).

Let X, Y ∈ objO(gln) with gln-contravariant forms ( | )X , ( | )Y . Then the tensor
product X⊗Y is equipped with a natural gln-contravariant bilinear form such that
(u⊗ v | u′⊗ v′)X⊗Y = (u | u′)X (v | v′)Y for u, u′ ∈ X and v, v′ ∈ Y . The following
simple lemma will play a key role.

Lemma 4.1.4. Let λ ∈ Dn. Let X be a highest weight module (i.e. a quotient of
a Verma module) of gln.

(i) The gln-contravariant form on X ⊗V ⊗`
n is also H`-contravariant, and thus it

induces an H`-contravariant form on (X ⊗ V ⊗`
n )[λ]

λ = Fλ(X).
(ii) If the gln-contravariant form on X is non-degenerate, then the induced con-

travariant form on Fλ(X) is non-degenerate.

Proof. (i) Put Ω =
∑

1≤k,m≤n Ek,m⊗Em,k, where Ek,m (1 ≤ k, m ≤ n) denote the
matrix units as in §1.1. Then we have (σ⊗σ)(Ω) = Ω. Thus, for any u, v ∈ X⊗V ⊗`

n ,
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we have (Ωiju|v)X⊗V ⊗`
n

= (u|Ωijv)X⊗V ⊗`
n

(0 ≤ i, j ≤ `), where Ωij is as in (3.1.4).
This implies

(siu|v)X⊗V ⊗`
n

= (u|siv)X⊗V ⊗`
n

(i = 1, . . . , `− 1),

(ε∨i u|v)X⊗V ⊗`
n

= (u|ε∨i v)X⊗V ⊗`
n

(i = 1, . . . , `),

from which the statement follows. (ii) follows from Lemma 4.1.1.

As a consequence of Lemma 4.1.4-(i), the canonical gln-contravariant form on M(µ)
induces an H`-contravariant form on M(λ, µ) = Fλ(M(µ)), which we call the
canonical contravariant form onM(λ, µ). By Lemma 4.1.3-(i), the gln-contravariant
form on L(µ) is non-degenerate, and by Lemma 4.1.4-(ii), it induces a non-degener-
ate H`-contravariant form on Fλ(L(µ)). By Lemma 4.1.3-(ii), we have

Corollary 4.1.5. Suppose that λ ∈ Dn and µ ∈ λ−P (V ⊗`
n ). Then the H`-module

Fλ(L(µ)) is simple unless it is zero.

4.2. Proof of Theorem 3.2.2. By Fλ(M(µ)) ∼=M(λ, µ) and Corollary 4.1.5, it
follows that Fλ(L(µ)) is isomorphic to L(λ, µ) or zero. Hence the proof of Theorem
3.2.2 is reduced to the following lemma:

Lemma 4.2.1. Let λ ∈ Dn and µ ∈ λ− P (V ⊗`
n ). Then Fλ(L(µ)) 6= 0 if and only

if µ satisfies the condition (3.2.3).

Remark 4.2.2. Lemma 4.2.1 implies that the canonical gln-contravariant form on
M(µ) induces a nonzero H`-contravariant form on Fλ(M(µ)) if and only if the
condition (3.2.3) is satisfied. By Remark 2.3.5 and Remark 3.2.3, it follows that
any standard module admits a nonzero H`-contravariant form.

Proof of Lemma 4.2.1. First we show the “only if” part. Suppose that µ does
not satisfy (3.2.3). Then there exists α ∈ R+

n such that 〈µ + ρ, α∨〉 ∈ Z>0 and
〈λ + ρ, α∨〉 = 0. The first inequality implies M(sα ◦ µ) ⊂ M(µ), and the sec-
ond equality implies M(λ, µ) ∼= M(λ, sα ◦ µ) (Proposition 2.3.4). Hence we have
Fλ(L(µ)) = 0, because it is a quotient of Fλ(M(µ))/Fλ(M(sα ◦ µ)) = 0.

Let us prove the “if” part. We can write µ as

µ = w ◦ µ̃,

where w ∈ Wn and µ̃ ∈ Dn.
Then the condition (3.2.3) implies µ = wλ

µ̃ ◦ µ̃, where wλ
µ̃ is the longest element

in Wn[λ+ρ]wµ̃Wn[µ̃+ρ] (see Remark 3.2.3). In the Grothendieck group of O(gln),
we write

M(wλ
µ̃ ◦ µ̃) = L(wλ

µ̃ ◦ µ̃) +
∑
yµ̃

ayµ̃L(yµ̃ ◦ µ̃).(4.2.1)

Here the sum runs over those elements yµ̃ ∈ Wn such that yµ̃ is longest in
yµ̃Wn[µ + ρ] and

yµ̃ > wλ
µ̃.(4.2.2)

Applying Fλ to (4.2.1) we have

M(λ, wλ
µ̃ ◦ µ̃) = Fλ(L(wλ

µ̃ ◦ µ̃)) +
∑
yµ̃

ayµ̃Fλ(L(yµ̃ ◦ µ̃))(4.2.3)
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in the Grothendieck group of R(H`). Assuming that Fλ(L(wλ
µ̃ ◦ µ̃)) = 0, we will

deduce a contradiction. Since the multiplicity of L(λ, wλ
µ̃ ◦ µ̃) in M(λ, wλ

µ̃ ◦ µ̃) is
nonzero, Corollary 4.1.5 implies

L(λ, wλ
µ̃ ◦ µ̃) = Fλ(L(yµ̃ ◦ µ̃)) = L(λ, yµ̃ ◦ µ̃)

for some yµ̃. But this implies yµ̃ ∈Wn[λ+ρ]wλ
µ̃Wn[µ̃+ρ] by Proposition 2.3.4, and

thus we have l(yµ̃) ≤ l(wλ
µ̃). This contradicts (4.2.2).

4.3. The Jantzen filtrations. Throughout this subsection, we fix a weight δ ∈ t∗n.
Let A = C[ t ](t) denote the localization of C[ t ] at the prime ideal (t). We use the
notation ηt = η + δt ∈ t∗n ⊗A for η ∈ t∗n.

For µ ∈ t∗n, let M(µt) be the Verma module of gln ⊗A with highest weight µt:

M(µt) = (U(gln)⊗A)⊗U(b+
n )⊗A (Avµt).

The canonical gln-contravariant bilinear form on M(µ) can be naturally extended to
a gln⊗A-contravariant form ( | )M(µt) on M(µt) (with respect to the anti-involution
σ ⊗ idA) with values in A.

Define

M(µt)j = {v ∈M(µt) | (v | u)M(µt) ∈ tjA for all u ∈M(µt)}.
(4.3.1)

Putting M(µ)j = M(µt)j /(tM(µt) ∩M(µt)j) we have a filtration

M(µ) = M(µ)0 ⊇M(µ)1 ⊇M(µ)2 ⊇ · · ·(4.3.2)

by gln-modules called the Jantzen filtration [Ja].
Our next aim is to define the Jantzen filtration on the standard module, which

was introduced in [Ro]. Let λ ∈ Dn and µ ∈ λ− P (V ⊗`
n ). Analogously to §2.2, we

define an H` ⊗A-module M(λt, µt) by

M(λt, µt) = (H` ⊗A)⊗Hλ,µ⊗A (A1λt,µt).

Put X = M(µt) ⊗ V ⊗`
n , which is equipped with a gln ⊗ A-contravariant form

( | )X . Then t∗n ⊗A acts semisimply on X and it follows that

X =
⊕

ηt∈µt+Pn

Xηt ,(4.3.3)

Xηt⊥Xνt unless µ = ν.(4.3.4)

Let χηt : Z(U(gln) ⊗ A) → A be the infinitesimal character of M(ηt). Following
[GJ2, 1.8], we define for η ∈ t∗n an ideal Jηt of Z(U(gln)⊗A) by

Jηt =
⋂

w∈Wn

Kerχ(w◦η)t ,

and define

X [ηt] = {v ∈ X | Jk
ηtv = 0 for some k}.(4.3.5)

Obviously X [ηt] depends only on the equivalence class [η] of η with respect to the
equivalence relation (1.3.3).

The following lemma will be used later (see Theorem 4.3.5).
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Lemma 4.3.1 ([GJ2, Proposition 1.8.4]). We have

X =
⊕

[η]∈t∗n/∼
X [ηt],(4.3.6)

X [ηt]⊥X [νt] unless [η] = [ν].(4.3.7)

On the gln ⊗ A-module X = M(µt) ⊗ V ⊗`
n , we can define an action of H` ⊗ A

commuting with gln ⊗A as in Lemma 3.1.1. We define an induced H` ⊗A-module
structure on the following spaces:

(X/n−n X)λt , (X [λt])λt .(4.3.8)

With respect to this action, the natural map

(X [λt])λt → (X/n−n X)λt(4.3.9)

is an H` ⊗A-homomorphism.
Similarly to (3.2.2), we can construct an H` ⊗A-homomorphism

M(λt, µt)→ (X/n−n X)λt .(4.3.10)

The following lemma is elementary.

Lemma 4.3.2. Let M and N be free A-modules of finite rank, and let f : M → N
be an A-homomorphism. If the specialization

f̄ : M/tM → N/tN

at t = 0 is a C-isomorphism, then f is an A-isomorphism.

Using Lemma 4.3.2, we get

Proposition 4.3.3. The H`⊗A-homomorphisms (4.3.9) and (4.3.10) are bijective:

(X [λt])λt ∼= (X/n−n X)λt ∼=M(λt, µt).(4.3.11)

Proof. The specialization of (4.3.9) (resp. (4.3.10)) at t = 0 gives the isomorphism
in Lemma 1.3.1 (resp. (3.2.2)). Therefore by Lemma 4.3.2, it is enough to show
that (X [λt])λt , (X/n−n X)λt and M(λt, µt) are all free A-modules of finite rank.
Obviously they are finitely generated over A. It is also clear thatM(λt, µt) is free.
Since A is a principal ideal domain and X is a free A-module, its subspace (X [λt])λt

is a free A-module. Finally, let us show that (X/n−n X)λt is a free A-module. By
the isomorphism

X = M(µt)⊗ V ⊗`
n
∼= (U(gln)⊗A)⊗U(b+

n )⊗A (Avµt ⊗ V ⊗`
n )

(4.3.12)

as U(gln)⊗A-modules, it follows that

(X/n−n X)λt ∼= (V ⊗`
n )λ−µ ⊗A(4.3.13)

as A-modules. This is a free A-module.

It follows that the gln ⊗ A-contravariant form on X = M(µt) ⊗ V ⊗`
n is also

H` ⊗A-contravariant. Through the isomorphism

M(λt, µt) ∼= (X [λt])λt ⊂ X,(4.3.14)

we introduce an A-valued H` ⊗A-contravariant form onM(λt, µt).
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Assume that µ satisfies the condition (3.2.3) in Theorem 3.2.2. Then the induced
contravariant form is nonzero (since its specialization at t = 0 is nonzero). Therefore
we have a filtration

M(λ, µ) =M(λ, µ)0 ⊇M(λ, µ)1 ⊇M(λ, µ)2 ⊇ · · ·(4.3.15)

by H`-modules, which we call the Jantzen filtration. Recall that any standard
module is isomorphic to M(λ, µ) for some λ ∈ Dn and µ ∈ λ − P (V ⊗`

n ) satisfying
(3.2.3) (Remark 2.3.5).

Remark 4.3.4. In [Ro], the deformation direction δ is restricted by a certain con-
dition. The construction above gives the definition of the Jantzen filtration for an
arbitrary direction δ.

Theorem 4.3.5. Suppose that λ ∈ Dn and µ ∈ λ − P (V ⊗`
n ) satisfy the condition

(3.2.3). Then Fλ(M(µ)j) =M(λ, µ)j.

Proof. It is easy to check that Fλ(M(µ)j) ⊆ M(λ, µ)j . To prove the opposite
inclusion, let

p : M(µt)⊗ V ⊗`
n → (M(µt)⊗ V ⊗`

n )[λ
t]

λt =M(λt, µt)

denote the natural projection. Note that (M(µt) ⊗ V ⊗`
n ))[λ

t]
λt ⊥Ker p by (4.3.4)

and Lemma 4.3.1. Fix any orthonormal basis {bi}n`

i=1 of V ⊗`
n with respect to the

gln-contravariant form ( | )V ⊗`
n

.

Take any u ∈ M(λt, µt)j ⊆ (M(µt)⊗ V ⊗`
n ))[λ

t]
λt and write as u =

∑
i ai ⊗ bi with

ai ∈M(µt). Then for any v ∈M(µt) and k, we have

(ak | v)M(µt) = (u | v ⊗ bk)M(µt)⊗V ⊗`
n

= (u | p(v ⊗ bk))M(µt)⊗V ⊗`
n

= (u | p(v ⊗ bk))
(M(µt)⊗V ⊗`

n )
[λt]
λt

∈ tjA.

This implies ak ∈ M(µt)j and thus u ∈ (M(µt)j ⊗ V ⊗`
n )[λ

t]
λt . Therefore we have

Fλ(M(µ)j) ⊇M(λ, µ)j .

5. Consequences

5.1. BGG resolution. Recall the generalization of the BGG resolution for certain
simple gln-modules given by Gabber and Joseph [GJ1].

We fix µ ∈ t∗n such that −(µ+ρ) is dominant and regular, i.e. 〈− (µ+ρ), α∨〉n /∈
Z≤0 for all α ∈ R+

n . Set Rµ
n = {α ∈ Rn | 〈µ, α∨〉n ∈ Z}. It is known that Rµ

n is a
root system and its Weyl group coincides with the integral Weyl group

Wµ
n = {w ∈Wn | w ◦ µ− µ ∈ Qn}.(5.1.1)

Set Rµ+
n = Rµ

n ∩R+
n and let Πµ

n be the set of simple roots of Rµ+
n .

Fix B ⊆ Πµ
n. The length function lB and the Bruhat order of WB are defined

with respect to the set of simple roots B. Let wB be a unique longest element of
WB with respect to lB. Put µB = wB ◦ µ. Gabber and Joseph constructed the
exact sequence

0← L(µB)← C0 ← C1 ← · · ·(5.1.2)

of gln-modules, where

Ci =
⊕

y∈WB , lB(y)=i

M(y ◦ µB).
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We apply Fλ to the sequence (5.1.2). Then Theorem 3.2.1 and Theorem 3.2.2 imply
the following:

Theorem 5.1.1. Let µ and B be as above. Suppose that λ ∈ Dn ∩ (µB + P (V ⊗`
n ))

satisfies 〈λ + ρ, α∨〉 6= 0 for any α ∈ B. Then there exists an exact sequence

0← L(λ, µB)← C0 ← C1 ← · · ·(5.1.3)

of H`-modules, where

Ci =
⊕

y∈WB , lB(y)=i

M(λ, y ◦ µB).

Remark 5.1.2. In the case µB ∈ P+
n and B = Π` (the original BGG case [BGG]),

the corresponding sequence has been obtained by Cherednik [Ch1] by a different
method (see also [Ze4, AST]).

5.2. Kazhdan-Lusztig formulas. For a module M and simple module L, let
[M : L] denote the multiplicity of L in the composition series of M .

Recall that Wµ
n denotes the integral Weyl group of µ ∈ t∗n (see (5.1.1)). The

following formula is a direct consequence of Theorem 3.2.1 and Theorem 3.2.2.

Theorem 5.2.1. Let λ, µ ∈ Dn and let w, y ∈Wµ
n such that λ−w ◦ µ, λ− y ◦ µ ∈

P (V ⊗`
n ). Then we have

[M(λ, w ◦ µ) : L(λ, y ◦ µ)] = [M(w ◦ µ) : L(yλ ◦ µ)],(5.2.1)

where yλ denotes the longest element in Wn[λ + ρ]y.

Let λ, µ ∈ Dn and w, y ∈ Wµ
n be as in Theorem 5.2.1. The equality (5.2.1) has

been known through the following two multiplicity formulas:

[M(w ◦ µ) : L(y ◦ µ)] = Pw,yµ(1),(5.2.2)

[M(λ, w ◦ µ) : L(λ, y ◦ µ)] = Pw,yλ
µ
(1).(5.2.3)

Here Pw,y(q) ∈ Z[q, q−1] denotes the Kazhdan-Lusztig polynomial [KL1] of the
Hecke algebra associated to Wµ

n (we put Pw,y(q) = 0 for w 6< y for convenience), and
yµ (resp. yλ

µ) denotes the longest element in yWn[µ+ρ] (resp. Wn[λ+ρ]yWn[µ+ρ]).

Remark 5.2.2. It follows from (5.2.2) and (5.2.3) that Pw,yµ(1) = Pwµ,yµ(1) and
Pw,yλ

µ
(1) = Pwµ,yλ

µ
(1) = Pwλ

µ,yλ
µ
(1). The latter is expressed in terms of the intersec-

tion cohomology concerning nilpotent orbits on the quiver variety [Ze3].

The formula (5.2.2) was conjectured by Kazhdan and Lusztig [KL1] and proved
by Beilinson and Bernstein [BB1] and Brylinski and Kashiwara [BK]. The formula
(5.2.3) was conjectured by Zelevinsky [Ze2] (see also [Ze3]) and proved by Ginzburg
[Gi1] (see also [CG]). The theory of perverse sheaves plays an essential role in these
proofs.

Theorem 5.2.1 (proved in a purely algebraic way) says that the Kazhdan-Lusztig
formula (5.2.2) is equivalent to its degenerate affine Hecke analogue (or its p-adic
analogue) (5.2.3). The implication (5.2.2)⇒(5.2.3) is obvious. The implication
(5.2.3)⇒(5.2.2) is proved as follows. Take any µ ∈ Dn and w, y ∈ Wµ

n . Then we
can find ` ∈ Z≥2 and λ ∈ D◦

n such that

λ− z ◦ µ ∈ P (V ⊗`
n ) for all z ∈Wµ

n .

In this case Fλ(L(z ◦ µ)) never vanishes and thus it is isomorphic to L(λ, z ◦ µ).
Now (5.2.3) implies (5.2.2).



408 TAKESHI SUZUKI

5.3. Rogawski’s conjecture. Let {M(µ)j}j and {M(λ, µ)j}j be the Jantzen fil-
trations defined in §4.3. As a direct consequence of Theorem 3.2.2 and Theorem
4.3.5, we have

Theorem 5.3.1. Let λ, µ ∈ Dn and w, y ∈ Wµ
n (see (5.1.1)) be such that λ − w ◦

µ, λ− y ◦ µ ∈ P (V ⊗`
n ). Then we have

[M(λ, w ◦ µ)j : L(λ, y ◦ µ)] = [M(wλ ◦ µ)j : L(yλ ◦ µ)],(5.3.1)

where wλ and yλ denote the longest element in Wn[λ + ρ]w and Wn[λ + ρ]y,
respectively.

A priori the Jantzen filtrations depend on the choice of the deformation direction
δ ∈ t∗n. It has been known that the Jantzen filtration on M(µ) does not depend
on the choice of δ for which ( | )M(µt) is non-degenerate [Ba]. Now Theorem 4.3.5
implies

Proposition 5.3.2. Let λ ∈ Dn and µ ∈ λ − P (V ⊗`
n ) satisfy (3.2.3). Then the

Jantzen filtration on M(λ, µ) does not depend on the choice of δ such that

〈δ, α∨〉n 6= 0 for any α ∈ R+
n such that 〈µ + ρ, α∨〉n ∈ Z>0.

(5.3.2)

Remark 5.3.3. For λ and µ as in Proposition 5.3.2, the condition (5.3.2) is equiv-
alent to the condition that the H` ⊗ A-contravariant form ( | )M(λt,µt) is non-
degenerate.

We say that the Jantzen filtration {M(µ)j}j (or {M(λ, µ)j}j) is regular if the
deformation direction δ satisfies (5.3.2). The following formula was conjectured in
[GJ2, GM], and proved in [BB2].

Theorem 5.3.4 ([BB2]). Let µ ∈ Dn and w, y ∈ Wµ
n . Suppose that w and y are

the longest elements in wWn[µ + ρ] and yWn[µ + ρ], respectively. For the regular
Jantzen filtration {M(w ◦ µ)j}j, we have

∑
j∈Z≥0

[grj M(w ◦ µ) : L(y ◦ µ)]q(lµ(y)−lµ(w)−j)/2 = Pw,y(q),

(5.3.3)

where Pw,y(q) denotes the Kazhdan-Lusztig polynomial of Wµ
n , and lµ denotes the

length function on Wµ
n .

Combining with Theorem 5.3.1, the improved Kazhdan-Lusztig formula (5.3.3)
implies its degenerate affine Hecke analogue, which was conjectured in [Ro].

Theorem 5.3.5 (cf. [Gi2, Theorem 2.6.1]). Let λ, µ ∈ Dn and w, y ∈ Wµ
n be such

that λ−w ◦ µ, λ− y ◦ µ ∈ P (V ⊗`
n ). Suppose that w and y are the longest elements

in Wn[λ + ρ]wWn[µ + ρ] and Wn[λ + ρ]yWn[µ + ρ], respectively. For the regular
Jantzen filtration {M(λ, w ◦ µ)j}j, we have

∑
j∈Z≥0

[grjM(λ, w ◦ µ) : L(λ, y ◦ µ)]q(lµ(y)−lµ(w)−j)/2 = Pw,y(q),

(5.3.4)

where Pw,y(q) denotes the Kazhdan-Lusztig polynomial of Wµ
n , and lµ denotes the

length function on Wµ
n .
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