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A GENERALIZATION OF SPRINGER THEORY
USING NEARBY CYCLES

MIKHAIL GRINBERG

Abstract. Let g be a complex semisimple Lie algebra, and f : g → G\\g the
adjoint quotient map. Springer theory of Weyl group representations can be
seen as the study of the singularities of f .

In this paper, we give a generalization of Springer theory to visible, polar
representations. It is a class of rational representations of reductive groups
over C, for which the invariant theory works by analogy with the adjoint
representations. Let G |V be such a representation, f : V → G\\V the quotient
map, and P the sheaf of nearby cycles of f . We show that the Fourier transform
of P is an intersection homology sheaf on V ∗.

Associated to G | V , there is a finite complex reflection group W , called
the Weyl group of G |V . We describe the endomorphism ring End(P ) as a
deformation of the group algebra C[W ].
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1. Introduction

Let f : Cd → C be a non-constant polynomial. Fix a point x ∈ E = f−1(0). The
Milnor fiber of f at x is defined by Ff,x = f−1(ε) ∩ Bx,δ, where Bx,δ is the δ-ball
around x, and we assume that 0 < |ε| � δ � 1. Since the publication of Milnor’s
seminal work [Mi], the cohomology of Ff,x has been a central object in the study
of the singularities of f .

In the language of sheaf theory, the cohomology groups H∗(Ff,x), for all x ∈ E,
fit together to form a constructible, bounded complex P of sheaves on E, called the
sheaf of nearby cycles of f (i.e., H∗(Ff,x) is the stalk of P at x). The complex P is
a perverse sheaf ([GM2], [KS]).

There are two kinds of questions one may ask about the singularities of f . First,
one may be interested in the cohomology of the Milnor fibers Ff,x and of other
related spaces, as well as in the various maps between such groups. The most
important among such maps is the monodromy transformation µx : H∗(Ff,x) →
H∗(Ff,x), arising from the dependence of the Milnor fiber on the choice of the small
number ε ∈ C∗. Much of the work in singularity theory since the publication of
[Mi] has centered around such concrete geometric questions.

On the other hand, one may ask: what is the structure of P as an object in
the abelian, artinian category of perverse sheaves on E (see [BBD])? In particular,
what are the simple constituents of P? Is P semisimple? What are the extensions
involved in building P up from its simple constituents? What is the endomorphism
ring End(P )? How does the monodromy transformation µ ∈ Aut(P ) act?

These two kinds of questions are intimately related. The structure of P as a
perverse sheaf is the “glue” that ties together the various local geometric invariants
of f at different points. To the author’s knowledge, the only general theorem about
the structure of P is the deep result of Ofer Gabber (see [BB]) describing the
filtration of P arising from the action of the monodromy. Gabber’s theorem is a
semisimplicity assertion about certain subquotients of P .

The definition of the nearby cycles sheaf P can be extended to the setting of a
dominant map f : Cd → Cr. In order to assure the desired properties of P , one
needs to impose some technical conditions on f (see Section 2.2 below). On the
other hand, the resulting theory is richer, because instead of a single monodromy
transformation of P , we have an action of the whole fundamental group of the set
of regular values of f near zero.

In this paper, we consider the nearby cycles for a certain special class of maps
f : Cd → Cr, whose components are given by homogeneous polynomials. This
class arises naturally from the invariant theory of reductive group actions, and our
motivation for studying it comes from the Springer theory of Weyl group represen-
tations.

Springer theory (see [BM1], [M], [S3], and Section 2.1 below) can be seen as the
study of the singularities of the adjoint quotient map f : g → G\\g = Spec C[g∗]G,
associated to a complex semisimple Lie algebra. For this map, both the categor-
ical structure of P and its local invariants are well understood. The sheaf P is
semisimple. The monodromy group acting on P is the braid group BW of the
Weyl group W of g; but the monodromy action factors through W . Moreover, this
monodromy action gives an isomorphism C[W ] ∼= End(P ). Thus, Springer theory
gives a relation between the singularities of the nilcone N = f−1(0) ⊂ g and the
representations of the Weyl group.
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Dadok and Kac [DK] introduced a class of rational representations G |V
(G reductive/C) for which the invariant theory works by analogy with the ad-
joint representations. They call this the class of polar representations; it includes
the adjoint representations, as well as many of the classical invariant problems of
linear algebra (see Section 3.2 for examples). For any polar representation G |V ,
the quotient G\\V is isomorphic to a vector space. In this paper, we study the
singularities of the quotient map f : V → G\\V , giving a generalization of Springer
theory to polar representations satisfying a mild additional hypothesis.

Our main result (Theorem 3.1, part (i)) is the following. For a polar represen-
tation G |V , assume that the fiber E = f−1(0) consists of finitely many G-orbits
(this condition is called visibility). Then the nearby cycles sheaf P of the quotient
map f satisfies

F P ∼= IC((V ∗)rs,L),(1)

where F is the geometric Fourier transform functor, and the right-hand side is
an intersection homology sheaf on V ∗. (See [KS] for a definition of the Fourier
transform, and [GM1] for a discussion of intersection homology.) The content of
this is that the sheaf P is completely encoded in the single local system L on a
certain locus in the dual space V ∗. In the case of Springer theory, this result is due
independently to Ginzburg [Gi] and to Hotta-Kashiwara [HK] (see also [Br]). The
proof of (1) draws on a general result of the author about the specialization of an
affine variety to the asymptotic cone (see [Gr1] and Section 2.2.2).

Further assertions of Theorem 3.1 describe the holonomy of the local system
L and the monodromy action on P of the appropriate fundamental group. It
turns out that the semisimplicity observed in Springer theory does not extend to
this generalization. Associated to each polar representation G |V , there is a finite
complex reflection group W , called the Weyl group of G |V (it is not, in general,
the Weyl group of G). We have dim End(P ) = |W |, but the algebra End(P ) is not,
in general, isomorphic to C[W ]. Instead, it is given as a kind of a Hecke algebra
associated to W .

We should note that our Fourier transform description of P , while well suited
to the study of the endomorphism ring and of the monodromy action, falls short of
giving the complete structure of P as a perverse sheaf. This is because intersection
homology is not an exact functor from local systems to perverse sheaves.

An important special case of this theory, which includes the adjoint representa-
tions, arises in the following way. Let θ : g → g be an involutive automorphism of a
complex semisimple Lie algebra, and g = g+⊕g− the eigenspace decomposition for
θ. Then the adjoint form G+ of the Lie algebra g+ acts on the symmetric space g−.
Orbits and invariants of the representation G+ | g− were studied by Kostant and
Rallis in [KR]. This representation is polar and visible. In Theorem 6.1, we explic-
itly compute the endomorphism ring End(P ) in this case. It is given as a “hybrid”
of the group algebra C[W ] and the Hecke algebra of W (which is a Coxeter group)
specialized at q = −1.

I would like to thank the University of Utrecht, Holland, and the IAS, Prince-
ton, for their hospitality. Throughout this work I was supported by a Fannie and
John Hertz foundation graduate fellowship. Discussions with Tom Braden, Ian
Grojnowski, Victor Kac, Peter Magyar, David Massey, Dirk Siersma, and Tonny
Springer have been of great value to me. I am also grateful to Mark Goresky,
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David Kazhdan, and Wilfried Schmid for their interest and encouragement. Fi-
nally, I would like to thank my adviser, Robert MacPherson, for his inspiration,
guidance, and support.

2. Background

Notations. We will say sheaf to mean complex of sheaves throughout; all our
sheaves will be sheaves of C vector spaces. Given a map g : X → Y , the symbols
g∗, g! will always denote the derived push-forward functors. All perverse sheaves
and intersection homology will be taken with respect to the middle perversity (see
[GM1], [BBD]); we use the shift conventions of [BBD]. Given a sheaf A on X ,
and a pair of closed subspaces Z ⊂ Y ⊂ X , we will write Hk(Y, Z;A) for the
hypercohomology group Hk(j! i∗A), where i : Y \ Z → X and j : Y \ Z → Y are
the inclusion maps. We call Hk(Y, Z;A) the relative hypercohomology of A.

For an analytic function f : M → C, we use the notation of [KS, Chapter 8.6]
for the nearby and vanishing cycles functors ψf , φf . Let A be a sheaf on M or
M \ f−1(0). We denote by µ : ψfA → ψfA the monodromy transformation of
the nearby cycles. It is the counter-clockwise monodromy for the family of sheaves
ψf/τA, parametrized by the circle {τ ∈ C | |τ | = 1}.

When V is a C vector space, we denote by PC∗ (V ) the category of C∗-conic per-
verse sheaves on V , and by F : PC∗ (V ) → PC∗ (V ∗) the (shifted) Fourier transform
functor. In the notation of [KS, Chapter 3.7], we have F P = Pˆ[dim V ]. To avoid
cumbersome notation, we will use the following shorthand: if P is a conic perverse
sheaf on a closed, conic subvariety X ⊂ V , and jX : X → V is the inclusion, then
we write F P instead of F ◦ (jX)∗ P . When E is a G-space, we denote by PG (E)
the category of G-equivariant perverse sheaves on E. The symbol dim, without a
subscript, will always denote the complex dimension.

2.1. Springer theory. In this section we give a brief summary of the Springer
theory of Weyl group representations. Springer theory (see [BM1], [S3]) is concerned
with exhibiting the Weyl group W of a complex semisimple Lie algebra g as the
symmetry group of a certain perverse sheaf P on the nilcone N ⊂ g. As we
mentioned in the introduction, P is the nearby cycles sheaf for the adjoint quotient
map f : g → G\\g (here G is the adjoint form of g). However, this is not the original
definition of P , and not the one used in the literature to prove its properties.

We now describe the construction due to Lusztig [Lu1] and Borho-MacPherson
[BM1] of the sheaf P and the W -action on it. Consider the Grothendieck simulta-
neous resolution diagram:

Ñ
p

��

�
�

// g̃

q

��

f̃
// t

f |t
��

N �
� j

// g
f

// W\\t
Here g̃ is the variety of pairs (x, b), where b ⊂ g is a Borel subalgebra, and x ∈ b.
This variety is smooth; it is a vector bundle over the flag variety B of g. The
map f is given by the invariants of the adjoint action G | g; the target space is
identified with the quotient of a Cartan subalgebra t ⊂ g by the action of the Weyl
group. The map f̃ is the natural morphism making the diagram commute. Finally,
Ñ = { (x, b) ∈ g̃ | x ∈ N }.



414 MIKHAIL GRINBERG

Note that the map q is a finite cover over the set grs of regular semisimple
elements in g. Given a point x ∈ grs, the fiber q−1(x) can be identified with the
Weyl group W . Such an identification requires a choice of a positive Weyl chamber
for the Cartan subalgebra gx ⊂ g. The Weyl group W , therefore, acts as the deck
transformations of the covering qrs : g̃rs → grs (where g̃rs = q−1(grs), and qrs is
the restriction of q).

The diagram above is a simultaneous resolution in the following sense. For any
point t ∈ t, the restriction qt : f̃−1(t) → f−1(f(t)) is a resolution of singularities.
In particular, the map p = q0 is a resolution of singularities of the nilcone.

We now consider the push-forward sheaves

P = p∗ CÑ [dim N ] and Q = q∗ Cg̃ [dim g].

Note that P = j∗Q [−r], where r = dim t.

Proposition 2.1 ([Lu1]). The map q is small and the map p is semi-small in the
sense of [GM1]. Consequently, the sheaf P is perverse, and the sheaf Q is the
intersection cohomology extension IC(grs,L) of the local system L = qrs∗ Cg̃rs on
grs.

The Weyl group action on g̃rs by deck transformations produces an action on
the local system L, and by the functoriality of intersection cohomology on the sheaf
Q. In fact, we have End(L) = End(Q) = C[W ], the group algebra of W . Using the
relation P = j∗Q [−r], we obtain a W -action on P as well. This construction of the
W -action is due to Lusztig [Lu1]. Originally, the representations of W on the stalks
of P , i.e., on the cohomology of the varieties p−1(x) (x ∈ N ), were constructed by
Springer ([S1], [S2]). Other constructions of the same representations were given by
Slodowy [Sl] and Kazhdan-Lusztig [KL]. The construction of Slodowy is essentially
the nearby cycles definition, which is the starting point for this paper. Hotta in
[Ho] showed that all of the different constructions agree.

Theorem 2.2 ([BM1]).
(i) P is a semisimple perverse sheaf.
(ii) The action of W on P gives an isomorphism C[W ] ∼= End(P ).

Borho and MacPherson deduce the first part of Theorem 2.2 from the decom-
position theorem of Beilinson, Bernstein, Deligne, and Gabber [BBD], and use a
counting argument to prove the second part. A different proof, using the Fourier
transform, was later given by Ginzburg [Gi] and Hotta-Kashiwara [HK] (see also
[Br]). We will use the Killing form on g to identify g with its dual, and to regard
the Fourier transform on g as a functor F : PC∗(g) → PC∗(g).

Theorem 2.3 ([Gi], [HK]).
(i) There is an isomorphism F P ∼= Q.
(ii) The Weyl group W acts on each side of this isomorphism. These two actions

differ by the sign character of W (i.e., the character that sends each simple reflection
σ ∈W to −1.)

Theorem 2.3 implies Theorem 2.2, because the functor F is an equivalence of
categories.
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2.2. Nearby cycles.

2.2.1. Families over a large base. The sheaf P constructed in the previous section
can be defined in a different way, namely, as the nearby cycles of the adjoint quotient
map f . One usually considers the nearby cycles functor for an analytic function
M → C (see [GM2, Section 6], [KS, Chapter 8.6]). Proposition 2.4 below provides a
technical basis for discussing the nearby cycles for a sufficiently nice map M → Cr.

Let M be a connected complex analytic manifold of dimension d, let U be a
neighborhood of zero in Cr, and let f : M → U be an analytic map onto U . Let
Using ⊂ U be the closure of the set of non-regular values of f . We assume that
Using is a proper analytic subvariety of U . Let Ureg = U \Using , and note that the
preimage M◦ = f−1(Ureg) ⊂M is a manifold. We assume that there is an analytic
Whitney stratification S of the fiber E = f−1(0), such that Thom’s Af condition
holds for the pair (M◦, S), for every stratum S ∈ S. Recall that the Af condition
says that for any sequence of points xi ⊂M◦, converging to a point y ∈ S, if there
exists a limit

∆ = lim
i→∞

Txif
−1(f(xi)) ⊂ TyM,

then ∆ ⊃ TyS. If r = 1, such a stratification S can always be found. For r > 1,
the existence of S is an actual restriction on f . It implies, in particular, that
dimE = d − r. We refer the reader to [Hi] for a detailed discussion of the Af

condition.
Let U be a neighborhood of zero in C, and γ : U → U be an embedded analytic

arc, such that γ(0) = 0, and γ(z) ∈ Ureg for z 6= 0. Form the fiber product
Mγ = M ×U U , and let fγ : Mγ → U be the projection map. We may consider the
nearby cycles sheaf Pfγ = ψfγ CMγ [d− r].

Proposition 2.4. (i) The sheaves Pfγ for different γ are all isomorphic. We may
therefore omit the subscript γ, and call the sheaf Pf = Pfγ the nearby cycles of f .
It is a perverse sheaf on E, constructible with respect to S.

(ii) The local fundamental group π1(Ureg ∩ Bε), where Bε ⊂ U is a small ball
around the origin, acts on Pf by monodromy. We denote this action by

µ : π1(Ureg ∩ Bε) → Aut(Pf ).

(iii) The sheaf Pf is Verdier self-dual.

Proof. We refer the reader to [GM2, Section 6] for a proof that each Pfγ is a perverse
sheaf constructible with respect to S. The self-duality of Pfγ follows from the fact
that the nearby cycles functor ψfγ commutes with Verdier duality.

For the other assertions of the proposition, choose a point x ∈ E, and let S ⊂ E
be the stratum containing x. Fix a normal slice N ⊂M to S through the point x.
Also, fix a pair of numbers 0 < ε� δ � 1 (chosen to be small in decreasing order).
For each regular value λ ∈ Ureg with ||λ|| < ε, consider the Milnor fiber cohomology
group

H∗(f−1(λ) ∩N ∩ Bx,δ),

where Bx,δ ⊂ M is the δ-ball around x (we fix a Hermitian metric on M for this).
It is enough to show that this Milnor fiber cohomology varies as a local system in
λ. This can be done by adapting the argument in [Lê1, Section 1].
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Returning to the notation of the previous section, it is easy to check that the
adjoint quotient map f : g → W \\ t and the orbit stratification of the nilcone N
satisfy the hypotheses of Proposition 2.4. Note that the set of regular values of
f equals f(treg), where treg = t ∩ grs. The fundamental group π1(f(treg) ∩ Bε) is
the braid group BW associated to W . Theorem 2.5 below is a consequence of the
properties of the simultaneous resolution (see [Sl] for an early treatment of these
ideas).

Theorem 2.5 ([Ho], [M]).
(i) We have P ∼= Pf .
(ii) The monodromy action µ : BW → Aut(Pf ) factors through the natural

homomorphism BW → W , producing an action of W on Pf . The isomorphism of
part (i) agrees with the W actions on both sides.

Thus, Springer theory can be viewed as the study of the nearby cycles of the
adjoint quotient map.

2.2.2. Specialization to the asymptotic cone. In this section we summarize the re-
sults of [Gr1] on which this paper relies.

Let V ∼= Cd be a complex vector space, and X ⊂ V be an irreducible, smooth,
closed subvariety. We denote by V̄ the standard projective compactification of V ,
and by X̄ the closure of X in V̄ . Set V∞ = V̄ \ V , and X∞ = X̄ ∩ V∞. The
asymptotic cone As(X) ⊂ V is defined as the affine cone over X∞.

Another way to define As(X) is as follows. Let X̃◦ = {(λ, x̃) ∈ C∗×V | x̃ ∈ λX},
and X̃ be the closure of X̃◦ in C× V . Write f̃ : X̃ → C for the projection on the
first factor. Then As(X) = f̃−1(0). This definition shows that the asymptotic
cone is naturally equipped with a nearby cycles sheaf P = PX := ψf̃ CX̃ [n], where
n = dimX . The sheaf P is C∗-conic.

Given a Hermitian inner product on V , we may consider for any x ∈ X , the angle
∠(x, TxX) ∈ [0, π/2] between the vector x ∈ V and the subspace TxX ⊂ TxV ∼= V .
The variety X is said to be transverse to infinity if for some (equivalently for any)
inner product on V , there exists a constant k > 0, such that for any x ∈ X , we
have

∠(x, TxX) <
k

||x|| .

Theorem 2.6 ([Gr1, Theorem 1.1]). Assume X ⊂ V is transverse to infinity, and
let P be the nearby cycles sheaf on As(X). Let T ∗XV ⊂ T ∗V ∼= V × V ∗ be the
conormal bundle to X, and p2 : V ×V ∗ → V ∗ be the projection. Let Y = p2(T ∗XV );
it is an irreducible cone in V ∗. Then we have

F P ∼= IC(Y ◦,L),

where F is the geometric Fourier transform functor, L is a local system on some
Zariski open subset Y ◦ of Y , and the right-hand side is the intersection homology
extension of L.

We will need some auxiliary facts describing the stalks of F P .

Lemma 2.7 ([Gr1, Proposition 3.3]). In the situation of Theorem 2.6, fix l ∈ V ∗,
and let ξ = Re (l). Also fix large positive numbers 1 � ξ0 � η0. Then we have

H i
l (F P ) ∼= Hi+d+n ({ x ∈ X | ξ(x) ≤ ξ0 }, { ||x|| ≥ η0 }; C).
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Assume now l 6= 0. Let ∆ ⊂ V be the kernel of l, and L ⊂ V be any line comple-
mentary to ∆. We have V = ∆⊕L. Take the standard projective compactification
∆̄ of ∆, and let V̂ = V̂l = ∆̄ × L. It is not hard to check that the space V̂ is
canonically independent of the choice of the line L. Note that l : V → C extends
to a proper algebraic function l̂ : V̂ → C. Let X̂ = X̂l be the closure of X in V̂ ,
and j : X → X̂ be the inclusion map. Set X̂∞ = X̂ \X .

Lemma 2.8 ([Gr1, Proposition 3.7]). For l 6= 0, the statement of Lemma 2.7 can
be modified as follows:

H i
l (F P ) ∼= Hi+d ({ x ∈ X̂ | ξ̂(x) ≤ ξ0 }, { ||l̂(x)|| ≥ 2ξ0 }; j! CX [n]),

where ξ0 � 1, and ξ̂(x) = Re (l̂(x)).

Let S be an algebraic Whitney stratification of As(X), written As(X) =
⋃

S∈S S,
satisfying the following three conditions.

(i) S is conical, i.e., each S ∈ S is C∗-invariant.
(ii) Thom’s Af̃ condition holds for the pair (X̃◦, S), for each S ∈ S.
(iii) Let S◦ = S \ {{0}}. For S ∈ S◦, let S∞ ⊂ X∞ be the projectivization of

S. Then the decomposition X̄ = X ∪⋃
S∈S◦ S

∞ is a Whitney stratification.
The existence of such an S follows from the general results of stratification theory.

Let a(S, l) be the dimension of the critical locus of l |As(X) with respect to S.

Lemma 2.9 ([Gr1, Section 3.4]). There exists a stratification X̂ of X̂ with the fol-
lowing property. Write Z for the critical locus of l̂ |X̂ with respect to X̂ . Then

dim Z ∩ X̂∞ < a(S, l).
(We set dim ∅ = −1.)

2.3. Polar representations.

2.3.1. A Summary of the results of Dadok and Kac. Dadok and Kac [DK] intro-
duced and studied the class of polar representations. Their motivation was to find
a class of representations of reductive groups over C, whose invariant theory works
by analogy with the adjoint representations. In this section, following [DK], we will
recall the definition and the main properties of polar representations.

Let G |V be a rational linear representation of a connected reductive Lie group
over C in a finite-dimensional vector space. A vector v ∈ V is called semisimple
if the orbit G · v is closed, and nilpotent if the closure G · v contains zero. We say
that v ∈ V is regular semisimple if G · v is closed and of maximal dimension among
all closed orbits. We will write V s (V rs) for the set of all semisimple (regular
semisimple) vectors in V . The representation G |V is called stable if dim G · v ≥
dim G · x, for any regular semisimple v ∈ V and any x ∈ V .

For a semisimple vector v ∈ V , define a subspace

cv = { x ∈ V | g · x ⊂ g · v },
where g is the Lie algebra of G. The orbits through cv thus have “parallel” tangent
spaces. The representation G |V is called polar if for some semisimple v ∈ V , we
have dim cv = dim C[V ∗]G; in this case, cv is called a Cartan subspace. The pro-
totype of all polar representations (responsible for the name “polar”) is the action
of the circle S1 on the plane R2 by rotations. The class of polar representations in-
cludes the adjoint representations (a Cartan subspace for an adjoint representation
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is just a Cartan subalgebra) and the representations arising from symmetric spaces,
studied by Kostant and Rallis in [KR] (see Section 6 below). It is, in fact, much
larger. Every representation with dim C[V ∗]G = 1 is automatically polar. Dadok
and Kac [DK] give a complete list of all polar representations of simple G. Their
classification includes many of the classical invariant problems of linear algebra.
Other examples of polar representations can be found in [K]. Note that a polar
representation need not be stable.

Before describing the invariant theory of a polar representation, we recall the
notion of a Shephard-Todd group (or a complex reflection group). Let c be a
complex vector space. An element g ∈ GL(c) is called a complex reflection if in some
basis it is given by the matrix diag (e2πi/n, 1, . . . , 1), for some integer n > 1. A finite
subgroup W ⊂ GL(c) is called a Shephard-Todd group if it is generated by complex
reflections. Shephard-Todd groups are a natural generalization of Coxeter groups;
we refer the reader to [ST] for a discussion of their properties. Let W ⊂ GL(c) be
a Shephard-Todd group, and g be a complex reflection in W . Fix a basis of c in
which g = diag (e2πi/n, 1, . . . , 1). We will say that g is a primitive reflection if there
is no integer n′ > n such that diag (e2πi/n′ , 1, . . . , 1) ∈ W .

Theorem 2.10 ([DK]). Let G |V be a polar representation of a connected reductive
group.

(i) All Cartan subspaces of V are G-conjugate.
(ii) Fix a Cartan subspace c ⊂ V . Every vector v ∈ c is semisimple, and every

closed orbit passes through c.
(iii) Let NG(c) and ZG(c) be, respectively, the normalizer and the stabilizer of

c. The quotient W = NG(c)/ZG(c) is a Shephard-Todd group acting on c; it is
called the Weyl group of the representation G |V (note that, in general, W is not
the Weyl group of G).

(iv) Restriction to c gives an isomorphism of invariant rings C[V ∗]G ∼= C[c∗]W ;
this invariant ring is free, generated by homogeneous polynomials. We denote by Q
the categorical quotient G \\ V ∼= W \\ c. As a variety, Q is isomorphic to a vector
space of the same dimension as c.

(v) Let f : V → Q be the quotient map. Denote by creg ⊂ c the set of regular
points of f |c. It is the complement of the union of the reflection hyperplanes in c.
Then the set Qreg ⊂ Q of regular values of f is equal to f(creg).

We write V ◦ = f−1(Qreg).

Remark 2.11. It is easy to see that V s ∩ V ◦ ⊂ V rs. Dadok and Kac conjecture
that, in fact, V s ∩ V ◦ = V rs [DK, p. 521, Conjecture 2].

We will call the fundamental group π1(Qreg) the braid group of W , and denote
it by BW .

Proposition 2.12 ([DK]). Let G |V be a polar representation, as in Theorem 2.10,
and c ⊂ V be a Cartan subspace. Let Gc be the identity component of the stabilizer
ZG(c).

(i) There exists a compact form K ⊂ G, and a K-invariant inner product 〈 , 〉
on V , such that each v ∈ c is of minimal length in its G-orbit.

(ii) The group Gc is reductive, and Kc = Gc ∩K is a compact form of Gc.
(iii) We have a Gc-invariant orthogonal decomposition

V = c⊕ Uc ⊕ g · c,
with dim Gc\\Uc = 0.
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(iv) The representation G |V is stable if and only if Uc = 0.

Let d = dim V , d0 = d − dim Uc, and r = dim c = dim Q. Note that V rs is
irreducible and smooth of dimension d0.

The rank of a polar representation G |V is defined by

rank G |V = dim c/V G,

where V G ⊂ V is the fixed points of G. Note that V G is contained in every Cartan
subspace of V . Dadok and Kac [DK, Theorem 2.12] show that any polar represen-
tation has a decomposition into polar representations of rank one, analogous to the
root space decomposition of a semisimple Lie algebra. We will return to this result
in Section 5.

2.3.2. Geometry of the general fiber of a polar quotient map. We now deduce from
the results of [DK] some corollaries about the conormal geometry of the general fiber
of a polar quotient map. First, we need to discuss the dual of a polar representation.
We continue with the situation of Theorem 2.10 and Proposition 2.12.

Proposition 2.13. (i) The dual representation G |V ∗ is also polar, with the same
Weyl group W . Given a Cartan subspace c ⊂ V , as in Proposition 2.12, a Cartan
subspace for G |V ∗ is given by

c∗ = (g · c⊕ Uc)⊥ ⊂ V ∗.

This establishes a one-to-one correspondence between the Cartan subspaces of V
and V ∗. Let 〈 , 〉V ∗ be the Hermitian metric on V ∗ induced by 〈 , 〉. Then every
l ∈ c∗ is of minimal length in its G-orbit.

(ii) Let l ∈ c∗ be regular semisimple. Then the set { v ∈ V | l | g·v = 0 } equals
c⊕ Uc.

Proof. The dual representation G |V ∗ differs from G |V by an automorphism of G
(this is a general fact about representations of connected reductive groups). Thus,
G |V ∗ is also polar with a Cartan subspace of the same dimension, and the same
Weyl group as G |V .

Take any l ∈ c∗. It follows from Proposition 2.12 that 〈 g · l, l 〉V ∗ = 0. By
a theorem of Kempf and Ness ([KN], [DK, Theorem 1.1]), this implies that l is
semisimple and of minimal length in its orbit. The rest of the proof is an exercise
in linear algebra using Proposition 2.12.

Corollary 2.14. (i) The set (V ∗)rs of regular semisimple points in V ∗ is an irre-
ducible algebraic manifold of dimension d0. We have (V ∗)s ⊂ (V ∗)rs.

(ii) The subspace Uc ⊂ V of Proposition 2.12 is canonically independent of the
choice of the compact form K, and the inner product 〈 , 〉.

Pick a regular value λ ∈ Qreg, and let F = f−1(λ) ⊂ V . Let O ⊂ F be the
unique closed G-orbit in F , and let v ∈ c ∩ O.

Proposition 2.15. (i) There is a unique G-equivariant algebraic map φ : F → O,
such that φ(v + u) = v, for any u ∈ Uc.

(ii) The map φ : F → O is a complex algebraic vector bundle of rank d− d0.
(iii) Fix any x ∈ O. The tangent spaces TyF , for all y ∈ φ−1(x), are parallel.



420 MIKHAIL GRINBERG

Proof. Let ψ : G × Uc → V be the map ψ : (g, u) 7→ g (u + v). By part (iii) of
Proposition 2.12, we have Imψ ⊂ F . It is not hard to see that for small u ∈ Uc,
the differential d(1,u)ψ is surjective onto the tangent space Tu+vF , which is parallel
to Uc ⊕ g · c. It follows that Imψ contains a neighborhood of v in F . Since O
is the unique closed G-orbit in F , we have Imψ = F . It also follows that Tu+vF
is parallel to Uc ⊕ g · c, for all u ∈ Uc. It is now not hard to check that setting
φ(ψ(g, u)) = g v gives the required definition.

We can now describe the conormal geometry of F . Consider the conormal bundle
ΛF = T ∗FV ⊂ T ∗V = V × V ∗, and let p2 : ΛF → V ∗ be the projection map.

Corollary 2.16. (i) The image p2(ΛF ) = (V ∗)s.
(ii) For any l ∈ (V ∗)rs, the critical points of the restriction l|F form a non-

degenerate (Morse-Bott) critical manifold, which is a union of |W | fibers of φ. In
particular, l|F is a (complex) Morse function if and only if G |V is stable.

Proof. Part (i) follows from the G-equivariance of the map p2, and Propositions
2.13, 2.15. For part (ii) we may assume that l ∈ c∗. Then the critical points of l |F
is the set φ−1(W ·v). The G-equivariance of p2 and Proposition 2.13 imply that the
restriction of p2 to p−1

2 (V ∗)rs is a smooth submersion. The Morse-Bott property
of l |F is simply a restatement of that fact.

Proposition 2.17. The variety F ⊂ V is transverse to infinity in the sense of
Section 2.2.2, i.e., using the inner product of Proposition 2.12, we can find a k > 0,
such that

∠(x, TxF ) <
k

||x|| ,
for any x ∈ F .

Proof. We will show that we can take k = || v ||. Let x ∈ F and l ∈ V ∗ be a
pair satisfying (x, l) ∈ ΛF ⊂ T ∗V = V × V ∗. Then it is enough to show that
|l(x)| ≤ || v || · || l ||. By Proposition 2.15, we may write x = g (v + u) and l = g l′,
where g ∈ G, u ∈ Uc, and l′ ∈ c∗. Then we have l(x) = l′(v + u) = l′(v), and
|l(x)| = |l′(v)| ≤ || v || · || l′ || ≤ || v || · || l ||, where the last inequality follows from the
fact that l′ is of minimal length in its orbit (Proposition 2.13).

3. The main theorem

3.1. Statement of the theorem. Let G |V be a polar representation, as in The-
orem 2.10. Assume that either rank G |V = 1, or G |V is visible, i.e., there are
finitely many nilpotent orbits in V . This assumption holds for the representations
discussed in [KR] and for all of the infinite series listed in [DK] and [K]. As before,
we write f : V → Q for the quotient map, and E = f−1(0) for the zero fiber.
The purpose of the additional restriction on G |V is to ensure that there exists a
G-invariant conical stratification S of E, such that the Af condition holds for the
pair (V ◦, S), for every S ∈ S. Indeed, if G |V is visible, we can take S to be the
orbit stratification. If, instead, rank G |V = 1, we can readily reduce to the case
dim Q = 1, then use the general result about the existence of Af stratifications for
functions [Hi, p. 248, Corollary 1].

We are now in the situation of Proposition 2.4, and therefore may consider the
nearby cycles sheaf P = Pf ∈ PG (E). In order to fix the up-to-isomorphism
ambiguity in the definition of P , we fix a regular value λ ∈ Qreg, let F = f−1(λ),
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and identify P with the sheaf PF given by the specialization of F to As(F ) = E,
as in Section 2.2.2. This corresponds to specializing along the path γ : z 7→ f(zF ).
We also have the monodromy action µ : BW = π1(Qreg, λ) → Aut(P ). Our main
result is Theorem 3.1 below. It gives a description of the pair (P, µ) analogous to
Theorem 2.3 in Springer theory. Recall from Corollary 2.14 that the set (V ∗)rs of
regular semisimple points in V ∗ is an irreducible algebraic manifold.

Theorem 3.1. Let G |V be, as above, a polar representation which is of rank one
or visible. Let c ⊂ V be a Cartan subspace, and W be the Weyl group.

(i) We have

F P ∼= IC((V ∗)rs,L),

where the right-hand side is an intersection homology sheaf with coefficients in a
local system L on (V ∗)rs of rank |W |.

(ii) Write A = End(P ), the endomorphisms of P as a perverse sheaf (forgetting
the G-equivariant structure). We have dim A = |W |. The monodromy action µ
gives a surjection C[BW ] → A.

(iii) Let σ ∈W be a primitive reflection of order nσ. It gives rise to an element
σ̂ ∈ BW , represented by a loop going counter-clockwise around the image f(cσ) of
the hyperplane cσ ⊂ c fixed by σ. The minimal polynomial Rσ of µ(σ̂) ∈ A has
integer coefficients and is of degree nσ (we normalize Rσ to have leading coefficient
1).

(iv) Fix a basepoint l ∈ (V ∗)rs. By part (i), we have an action

A = End(P ) ∼= End(L) → End(Ll)

of A on the fiber Ll. There is an identification χ : Ll
∼= A, such that this action is

given by left multiplication.
(v) There is a semigroup homomorphism ρ : π1((V ∗)rs, l) → A◦, the opposite

of the algebra A, such that the holonomy of L is given as ρ followed by the right

multiplication action of A◦ on Ll

χ∼= A. The homomorphism ρ gives a surjection
C[π1((V ∗)rs, l)] → A◦.

Remark 3.2. Dadok and Kac conjecture [DK, p. 521, Conjecture 4] that every
visible representation is polar.

Remark 3.3. The support supp (F P ) = (V ∗)rs is equal to all V ∗ if and only if the
action G |V is stable (cf. Corollary 2.14).

Remark 3.4. It is natural to expect from claims (ii) and (iii) of Theorem 3.1 that
the algebra A is equal to the quotient C[BW ]/〈Rσ(σ̂) 〉, where σ runs over all the
primitive reflections in W . This is always true when W is a Coxeter group. In fact,
it is the case in all of the examples known to the author.

Remark 3.5. We will give some additional information about the polynomials Rσ

in Section 5.

Remark 3.6. One may ask whether it is always true, say, for a homogeneous poly-
nomial f : Cd → C that the Fourier transform F Pf of the nearby cycles of f is
an intersection homology sheaf. The answer is “no.” A counterexample is given by
f(x, y, z) = x2y + y2z.



422 MIKHAIL GRINBERG

3.2. Examples.

Example 3.7. Quadrics. Let G = SOn act on V = Cn by the standard repre-
sentation. Any non-isotropic line c ⊂ V can serve as a Cartan subspace. The Weyl
group W = Z/2Z, and the invariant map f : V → C is just the standard quadratic
invariant of SOn. The algebra A of Theorem 3.1 is given by A = C[z]/(z − 1)2, if
n is even, and A = C[z]/(z2 − 1), if n is odd.

Example 3.8. Normal Crossings. Consider the action of the torusG = (C∗)n−1

on V = Cn, given by

(t1, . . . , tn−1) : (x1, . . . , xn) 7→ (t1x1, t
−1
1 t2x2, t

−1
2 t3x3, . . . , t

−1
n−1xn).

A Cartan subspace for this action is given by c = { x1 = · · · = xn } ⊂ V , the
Weyl group W = Z/nZ, and the invariant map f : V → C is just the product
f : (x1, . . . , xn) 7→ x1 · . . . · xn. The algebra A of Theorem 3.1 is given by A =
C[z]/(z − 1)n, functions on the n-th order neighborhood of a point.

Example 3.9. The determinant (see [BG]). Let G = SLn act on

V = Mat (n× n; C)

by left multiplication. A Cartan subspace c ⊂ V for this action is given by the
scalar matrices, the Weyl group W = Z/nZ, and the invariant map f : V → C is
the determinant. As in the previous example, the algebra A = C[z]/(z − 1)n.

Example 3.10. Symmetric matrices (see [BG]). Let G = SLn act on the space
V of symmetric n × n matrices by g : x 7→ gxgt. A Cartan subspace c ⊂ V is
again given by the scalar matrices, the Weyl group W = Z/nZ, and the invariant
map f : V → C is again the determinant. However, the algebra A is now given by
A = C[z]/(z − 1)dn/2e(z + 1)bn/2c.

Example 3.11. A “real analog” of Springer theory for SLn (see [Gr2] and
Section 6 below). Let G = SOn act on the space V of symmetric n×n matrices by
conjugation. A Cartan subspace c ⊂ V is given by the diagonal matrices. The Weyl
groupW = Σn, the symmetric group on n letters. The invariant map f : V → Cn−1

is given by sending a matrix x ∈ V to the characteristic polynomial char (x). The
algebra A = H−1(Σn), the Hecke algebra of Σn specialized at q = −1.

Example 3.12. Maps from an orthogonal to a symplectic vector space.
Let (U1, ν) be an orthogonal vector space of dimension 2n+1 (ν is a non-degenerate
quadratic form), and (U2, ω) a symplectic vector space of dimension 2n. Set
V = HomC (U1, U2). The group G = Sp2n × SO2n+1 acts on V by left-right
multiplication. This action is polar, with a Cartan subspace of dimension n. The
Weyl group W ⊂ GLn is the semi-direct product of (Z/4Z)n ⊂ GLn, acting by di-
agonal matrices of fourth roots of unity, and the symmetric group Σn ⊂ GLn,
acting by permutation matrices. Let σ ∈ Σn ⊂ W be any simple reflection,
and let τ = diag (i, 1, . . . , 1) ∈ (Z/4Z)n ⊂ W . The algebra A is given by A =
C[BW ]/〈(σ2 − 1), (τ2 − 1)2〉.

In all of the above examples, the representation G |V is stable. Here is an
example where it is not.

Example 3.13. An evaluation map. Let U ∼= C2n. Set V = Λ2U∗ ⊕ U ⊕ U .
The linear group G = GL(U) acts on V . The only invariant is the evaluation map
f : (ω, u1, u2) 7→ ω(u1, u2). A non-zero vector (ω, u1, u2) ∈ V is semisimple, if and
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only if ω is of rank 2 and ω(u1, u2) 6= 0. The Weyl group W = Z/3Z, and the
algebra A = C[z]/(z − 1)3.

3.3. A remark on the degree of generality. The reason we assume in Theorem
3.1 that G |V is of rank one or visible, is to insure that the Af condition holds and
the sheaf P is well defined. If we dropped this assumption, we could still pick a
λ ∈ Qreg, and consider a sheaf Pλ coming from the specialization of F = f−1(λ) to
the asymptotic cone. Using the techniques of this paper and some algebro-geometric
generalities, we could then show that the sheaves Pλ for generic λ are isomorphic,
and that they form a local system over some open set Q◦ ⊂ Qreg. Furthermore, all
of the assertions of Theorem 3.1 could be given meaning and proved in this context.
This is somewhat unsatisfactory, since we would have to use the full power of our
methods just to show that there is a well posed question. Conjecture 3.14 below
implies that the subset Q◦ is a phantom, and that nearby cycles are well defined
for any polar representation.

Conjecture 3.14. Let G |V be a polar representation, f : V → Q be the quotient
map, and E = f−1(0). Then there exists an Af stratification of E (see Section
2.2.1).

If this conjecture is true, all our results extend automatically to an arbitrary
polar representation.

4. Proof of the main theorem

4.1. A preliminary lemma. We begin with a preliminary lemma. Recall the
G-invariant conical stratification S of E discussed at the beginning of Section 3.
By passing if necessary to a refinement, we may assume that S satisfies conditions
(i)–(iii) of Section 2.2.2, with X = F . Indeed, conditions (i) and (ii) already hold
without a refinement. To satisfy condition (iii), we use the general fact that any
finite, algebraic, G-invariant decomposition of a G-variety (in our case, F̄ ) can be
refined to a G-invariant Whitney stratification.

Lemma 4.1. Let l ∈ (V ∗)rs, and let a(S, l) be the dimension of the critical locus
of l |E with respect to S, as in Lemma 2.9. Then a(S, l) ≤ d−d0, where d = dimV ,
and d0 = dim V rs.

Proof. Let ΛE ⊂ T ∗V = V ×V ∗ be the conormal variety to the stratification S, and
p2 : V × V ∗ → V ∗ be the projection. Using Proposition 2.13 and the G-invariance
of S, it is not hard to show that dim p−1

2 (l)∩ΛE is independent of l for l ∈ (V ∗)rs.
Therefore,

a(S, l) + dim (V ∗)rs ≤ dim ΛE = d.

Together with Corollary 2.14, this proves the lemma.

4.2. The stable case. In this section we prove Theorem 3.1 in the case when the
representation G |V is stable. Then, in Section 4.3, we will indicate how to modify
the argument in the nonstable case.

Assuming G |V is stable, choose a basepoint l ∈ (V ∗)rs. Note that (V ∗)rs is
open in V ∗. We may assume that l ∈ c∗, the Cartan subspace of Proposition 2.13.
By Proposition 2.17, all the constructions of Section 2.2.2 apply to X = F . As in
that section, we consider the compactification F̂ of F relative to l, and denote by Z
the set of critical points of the restriction l̂ |F̂ . By Lemmas 2.9, 4.1, and Corollary
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2.16, we have Z ⊂ c ⊂ V . Furthermore, Z is a single W -orbit in c, and each critical
point in Z is Morse. Fix a point e0 ∈ Z, and write Z = {ew}w∈W , where ew = w e0.

Recall the description of the stalk H∗
l (F P ) in Lemma 2.8. Since dim Z = 0, we

have Hi
l (F P ) = 0, unless i = −d. Furthermore, by duality

H−d
l (F P ) ∼= Hd−r (F, { ξ(y) ≥ ξ0 }; C),

where ξ0 > | l(e) | for all e ∈ Z.
We will need a standard Picard-Lefschetz construction of classes in the relative

homology group above (see, for example, [BG, Section 7.2]). Let e ∈ Z be a critical
point. Fix a smooth path γ : [0, 1] → C such that

(i) γ(0) = l(e), and γ(1) = ξ0;
(ii) γ(t) /∈ l(Z), for t > 0;
(iii) γ(t1) 6= γ(t2), for t1 6= t2;
(iv) γ′(t) 6= 0, for t ∈ [0, 1].

Let He : TeF → C be the Hessian of l |F at e, and let Te [γ] ⊂ TeF be the positive
eigenspace of the (non-degenerate) real quadratic form

Re (He / γ
′(0) ) : TeF → R.

Note that dimR Te [γ] = d − r. Fix an orientation O of Te [γ]. The triple (e, γ,O)
defines a homology class

u = u(e, γ,O) ∈ Hd−r (F, { ξ(y) ≥ ξ0 }; C).

Namely, the class u is represented by an embedded (d− r)-disc

κ : (Dd−r, ∂ Dd−r) → (F, { ξ(y) ≥ ξ0 }),
such that the image of κ projects onto the image of γ, is tangent to Te [γ] at e,
and does not pass through any point of Z except e. The sign of u is given by the
orientation O. It is a standard fact that u 6= 0.

We now fix a path γ0 : [0, 1] → C, satisfying conditions (i)–(iv) above for e = e0,
and an orientation O0 of the space Te0

[γ0]. Let u0 = u(e0, γ0,O0); we will use the
same symbol for the corresponding element of H−d

l (F P ).

Lemma 4.2. The image of u0 ∈ H−d
l (F P ) under the monodromy action of BW

generates the stalk H−d
l (F P ) as a vector space. We have dim H−d

l (F P ) = |W |.
Proof. For each w ∈ W , pick a lift bw ∈ BW . By a standard Picard-Lefschetz
theory argument, we have

µ(bw)u0 = u (ew, γw,Ow),

where γw is some path satisfying conditions (i)–(iv) for e = ew, and Ow is an
orientation of Tew

[γw]. Since {ew}w∈W are the only critical points of the function
l̂ |F̂ , the elements {µ(bw)u0}w∈W form a basis of H−d

l (F P ).

Consider now the restriction of F P to the manifold (V ∗)rs. By Lemma 4.2 and
the preceding arguments, it is a perverse sheaf whose stalks only live in degree −d
and all have rank |W |. Therefore, it is a rank |W | local system with a degree shift.
Together with Theorem 2.6, this proves part (i) of Theorem 3.1. The local system
L of Theorem 3.1 is given by L = F P | (V ∗)rs [−d]. Let h : π1((V ∗)rs, l) → End(Ll)
be the holonomy of L.
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Lemma 4.3. The image of u0 ∈ Ll under the action h generates the stalk Ll as a
vector space.

Proof. The proof of this is analogous to the proof of Lemma 4.2. Let Q′ = G\\V ∗,
and f ′ : V ∗ → Q′ be the quotient map. Let (Q′)reg ⊂ Q′ be the set of regular values
of f ′. Set (V ∗)◦ = f ′ −1 ((Q′)reg); it is a Zariski open subset of (V ∗)rs (see Remark
2.11). We may assume without loss of generality that l ∈ (V ∗)◦. Let L◦ be the
restriction of the local system L to (V ∗)◦, and let h◦ : π1((V ∗)◦, l) → End(Ll) be
the holonomy of L◦. It is enough to show that the image of u0 under h◦ generates
the stalk Ll.

Since we assume that G is connected, the push-forward homomorphism f ′∗ :
π1((V ∗)◦, l) → π1((Q′)reg, f ′(l)) is surjective. By Proposition 2.13, we have an iso-
morphism η : π1((Q′)reg, f ′(l)) ∼= BW (it is not canonical). The composition η ◦ f ′∗,
followed by the natural map BW →W , gives a surjection θ : π1((V ∗)◦, l) →W . For
each w ∈ W , choose a lift αw ∈ θ−1(w). Then a Picard-Lefschetz theory argument
similar to the proof of Lemma 4.2 shows that the elements { h◦(αw)u0 }w∈W form
a basis of Ll.

Claims (ii), (iv), and (v) of Theorem 3.1 follow easily from Lemmas 4.2 and 4.3.
We define the vector space map χ : A → Ll of claim (iv) by χ : a 7→ a u0. By
Lemma 4.2, χ is surjective. On the other hand, the action of any a ∈ A on Ll must
commute with the holonomy representation h. Therefore, Lemma 4.3 implies that
χ is injective. This proves that χ is a vector space isomorphism. Claim (ii) now
follows from Lemma 4.2; claim (iv) from the definition of χ; and claim (v) from
Lemma 4.3, and the fact that every endomorphism of A commuting with the left
action of A on itself is of the form a 7→ a a′, for some a′ ∈ A (this is true for any
associative algebra with unit).

It remains to prove claim (iii) of the theorem. The idea is to use a regular
value λ ∈ Qreg which is very near the image f(cσ), then apply a standard carousel
argument (see [Lê2] and [BG, Section 7.3]).

Pick a point v1 ∈ cσ ⊂ c which is not fixed by any element of W , other than the
powers of σ. The orbit W · v1 consists of |W |/nσ points. Choose a point v ∈ creg

which is very near v1. The orbit W ·v consists of |W | points which are grouped into
|W |/nσ clusters. Each cluster consists of nσ points surrounding a point in W · v1,
and the action of σ ∈ W cyclically permutes the points in each cluster. We may
assume that the fiber F = f−1(λ) passes through v, so that Z = W · v. We may
also assume that the choice of l ∈ c∗ ∩ (V ∗)rs is sufficiently generic, so that the
image l(Z) appears in the C-plane as |W |/nσ disjoint clusters, each consisting of
nσ points arranged in a circle (see Figure 1).

Choose a path γ0 : [0, 1] → C, satisfying conditions (i)–(iv) above for e = v, which
does not “come near” any of the clusters in l(Z), other than the one containing
l(v). Fix an orientation O0 of the space Tv [γ]. Let u0 = u(v, γ0,O0). The element
σ̂ ∈ BW = π1(Qreg, λ) is represented by a loop going once counter-clockwise around
the image f(cσ), which stays in a small neighborhood of the critical value f(v1).
Then, by a standard carousel argument, the vectors {µ(σ̂)k u0 }nσ−1

k=0 are linearly
independent, and we have

µ(σ̂)nσ u0 = ±u0 +
nσ−1∑
k=1

gk · µ(σ̂)k u0,

where the {gk} are some integers. Together with Lemma 4.3, this implies claim
(iii) of Theorem 3.1.
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4.3. The nonstable case. The proof of Theorem 3.1 in the case when G |V is
not stable is analogous to the argument of Section 4.2, with Morse critical points
of l replaced by Morse-Bott critical manifolds (see part (ii) of Corollary 2.16). We
briefly indicate the changes that have to be made in the nonstable case.

As before, we pick a basepoint l ∈ (V ∗)rs, lying in the Cartan subspace c∗ of
Proposition 2.13, and write Z for the critical points of the restriction l̂ |F̂ . Fix a
point e ∈ (F ∩ c) ⊂ Z, and a path γ : [0, 1] → C, satisfying conditions (i)–(iv)
of Section 4.2. The Hessian He : TeF → C of l |F at e will now be degenerate.
However, we may still consider the positive eigenspace Te [γ] ⊂ TeF of the real
quadratic form Re (He / γ

′(0) ). By Corollary 2.16, we have dimR Te [γ] = d0 − r.
Fix an orientation O of Te [γ]. The triple (e, γ,O) defines a Picard-Lefschetz class

u = u(e, γ,O) ∈ Hd0−r (F, { ξ(y) ≥ ξ0 }; C),

where ξ0 is large, exactly as before. We may regard u as an element of H−d0
l (F P ).

The main distinction from the stable case is that there is no a priori geometric
reason for u to be non-zero. This is because the Morse-Bott manifold containing e
is non-compact. However, we may use Lemmas 2.8, 2.9, 4.1, and an argument as in
Lemma 4.2, to show that u generates the stalk H−d0

l (F P ) under the monodromy
action of BW . Thus, if we had u = 0, it would follow that H−d0

l (F P ) = 0, and
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by Theorem 2.6, that P = 0. This contradiction shows that u 6= 0. The rest of the
proof is exactly as in the stable case.

5. Rank one representations and the polynomials Rσ

As we mentioned in Section 2, there is an analog of root space decomposition
for polar representation. Namely, any polar representation has a decomposition
into polar representations of rank one. In this section, we use these rank one
representations to give an interpretation (see Theorem 5.2) of the polynomials Rσ

appearing in part (iii) of Theorem 3.1. This interpretation will be used in Section
6 to analyze the polar representations arising from symmetric spaces.

Let G |V be a polar representation, σ ∈W be a primitive reflection of order nσ,
and cσ ⊂ c be the hyperplane fixed by σ (cf. Theorem 3.1). Denote by c◦σ the set
of all v ∈ cσ such that the stabilizer ZW (v) is generated by σ; it is an open subset
of the hyperplane cσ. Let gσ ⊂ g be the stabilizer of cσ, and Gσ ⊂ G the adjoint
form of gσ. In terms of Proposition 2.12, let

Vσ = c⊕ Uc ⊕ gσ · c ⊂ V.

If gσ · c = 0, we say that σ is of global type; otherwise, we say that σ is of local type.

Proposition 5.1 ([DK]). (i) The representation G |V restricts to a representation
Gσ |Vσ, which is polar with Cartan subspace c. The rank of Gσ |Vσ is equal to zero
if σ is of global type, and to one if σ is of local type.

(ii) Choose a point v1 ∈ c◦σ. Let gv1
⊂ g be the stabilizer of v1. Then we have

gv1
= gσ, g · v1 = g · cσ, and V = Vσ ⊕ g · v1.

Proposition 5.1 implies that σ is of local type if and only if cσ ∩V rs = ∅. Dadok
and Kac conjecture (cf. Remark 2.11) that σ is always of local type. We do not
know of any counterexamples, but allow for the possibility that they exist. The
“root space decomposition” theorem of [DK] involves the representations Gσ |Vσ,
for all primitive reflections σ of local type.

The Weyl group Wσ of Gσ |Vσ is naturally a subgroup of W . Moreover, it must
be a cyclic group, generated by σmσ for some mσ ∈ Z+, a divisor of nσ. Note that
when σ is of global type, we have mσ = nσ and Wσ = {1}. Let fσ : Vσ → Qσ =
Gσ\\Vσ be the quotient map, Eσ = f−1

σ (0) be the zero fiber, and Pσ ∈ PGσ(Eσ)
be the nearby cycles of fσ. Let Bσ be the braid group of Wσ . If σ is of local type,
then Bσ

∼= Z, and we have a monodromy transformation µσ : Pσ → Pσ, given by
the action of the counter-clockwise generator of Bσ. If σ is of global type, then
Bσ = {1}, and we set µσ = Id : Pσ → Pσ. Let R̃σ be the minimal polynomial of
µσ ∈ End(Pσ). It is a monic polynomial with integer coefficients of degree nσ/mσ.
Note that if σ is of global type, then R̃σ(z) = z − 1. By Theorem 3.1, we have
End(Pσ) ∼= C[z]/R̃σ(z).

Theorem 5.2. Let G |V be as in Theorem 3.1, and Gσ |Vσ be as in Proposition
5.1. Then the polynomial Rσ in part (iii) of Theorem 3.1 is given by Rσ(z) =
R̃σ(zmσ).

Proof. Choose a point v1 ∈ cσ, as in part (ii) of Proposition 5.1. Let λ1 = f(v1) ∈
Q. Choose a regular value λ ∈ Qreg very near λ1. The idea of this proof is to break
up the specialization of λ to 0 into two steps: first specialize λ to λ1, then specialize
λ1 to 0. In order to compute the polynomial Rσ, we will only need to understand
the first step.
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Let D = { z ∈ C | |z| < 2 } and γ1 : D → Q be an embedded holomorphic arc
such that

(i) γ1(0) = λ1;
(ii) γ1(1) = λ;
(iii) γ1(D \ 0) ⊂ Qreg;
(iv) γ1 is transverse to the image f(cσ).

Form the fiber product V1 = V ×Q D, and let f1 : V1 → D be the projection map.
Let E1 = f−1(λ1). We have dim E1 = dim E = d− r. Let P1 = ψf1 CV1

[d− r]; we
have P1 ∈ PG(E1). Write µ1 : P1 → P1 for the monodromy transformation of P1.

Claim: There is a functor Ψ : PG(E1) → PG(E) such that ΨP1 = P and
Ψ(µ1) = µ(σ̂).

To prove the claim, define an arc γ2 : D → Q by γ2 : z 7→ f(z v1). Form
V2 = V ×QD, and let f2 : V2 → D be the projection. We have a map π : V2\E → E1,
defined by π(z e, z) = e, for z ∈ D \ 0, e ∈ E1. Set Ψ = ψf2 ◦ π∗. The claim follows
form the definition of nearby cycles.

Because of the claim, it will suffice to show that R̃σ(µmσ
1 ) = 0. For this, consider

the inclusion jσ : Vσ → V given by jσ : v 7→ v + v1. By Proposition 5.1, jσ
exhibits Vσ as a Gσ-invariant normal slice to the orbit G ·v1. Consider the perverse
restriction to the normal slice functor pj∗σ = j∗σ [dσ − d] : PG(E1) → PGσ(Eσ),
where dσ = dim Vσ. It is not hard to check that pj∗σ is injective on morphisms. Set
P2 = pj∗σ P1, and µ2 = pj∗σ(µ1) : P2 → P2. Then it will suffice to show that

R̃σ(µmσ
2 ) = 0.(2)

Let gσ : Qσ → Q be the natural map. Note that f ◦ jσ = gσ ◦ fσ. Note also that
near the point fσ(v1), the map gσ is an mσ-fold cover, ramified along the smooth
hypersurface fσ(cσ). It follows that P2

∼= ⊕mσ

k=1 Pσ, and that µ2 is given by the
matrix: 

0 0 . . . 0 µσ

1 0 0 0
0 1 0 0
...

. . .
...

0 0 . . . 1 0

 .

This implies (2).

Remark 5.3. Our technique of first specializing λ to λ1, then specializing λ1 to 0 has
a counterpart in the resolution approach to Springer theory. Namely, it corresponds
to Borho and MacPherson’s idea of first “forgetting the complete flag partially,”
then “forgetting the partial flag completely” (see [BM2, p. 28]).

Corollary 5.4. All the roots of Rσ are roots of unity.

Proof. This follows form Theorem 5.2 and the quasi-unipotence of the monodromy
transformation µσ (see, for example, [Lê2]).

6. Symmetric spaces

Both Springer theory and Example 3.11 above are special cases of representations
arising from symmetric spaces studied by Kostant and Rallis in [KR]. Let g be a
semisimple Lie algebra over C, and θ : g → g an involutive automorphism. Let
g = g+⊕ g− be the eigenspace decomposition for θ, so that θ|g± = ±1. Then g+ is
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a Lie algebra, and the adjoint form G+ of g+ acts on the symmetric space g− by
conjugation. By the results of [KR], the representation G+ | g− is polar and visible.
Theorem 6.1 below gives a recipe for computing the algebra A of Theorem 3.1 for
this representation.

Let gR be a real form of g with a Cartan decomposition gR = g+
R ⊕ g−R , such that

g± is the complexification of g±R (see [OV] for a discussion of real forms of complex
semisimple Lie algebras). Let cR ⊂ g−R be a maximal abelian subalgebra. Then the
complexification c ⊂ g− of cR is a Cartan subspace for G+ | g−. The Weyl group W
of this representation is just the small Weyl group associated to gR. It is a Coxeter
group acting on cR with its Euclidean structure induced by the Killing form on gR.

Fix a Weyl chamber C ⊂ cR. Let { σi }r
i=1 (r = dimR cR) be the reflections in

the walls of C; they give a set of generators for W . Fix a basepoint b ∈ C. Consider
the braid group BW = π1(Qreg, f(b)) (we use the notation of Theorem 2.10). Let
σ̂i ∈ BW be the element represented by the f -image of a path from b to σi(b)
in creg, which is almost straight but passes counter-clockwise half-way around the
hyperplane cσi ⊂ c fixed by σi. The braid group BW is generated by the elements
{ σ̂i }r

i=1.
To each reflection σi we associate a number s(i) as follows. Let g+

c ⊂ g+ be the
stabilizer of c, and let g+

i ⊂ g+ be the stabilizer of cσi . Then we set

s(i) = dim g+
i − dim g+

c .

(This is just half the sum of the dimensions of the root spaces in gR corresponding
to σi.)

The Killing form on g restricts to a non-degenerate G+-invariant quadratic form
on g−. We will use it to identify g− with (g−)∗, and to regard the Fourier transform
on g− as a functor F : PC∗(g

−) → PC∗(g
−). The set of regular semisimple vectors

in g− is given by (g−)rs = f−1(Qreg).

Theorem 6.1. Let G+ | g− be the representation arising from an involution θ as
above. Then, in terms of Theorem 3.1, we have

(i) The endomorphism algebra A = End(P ) is given by

A = C[BW ]/〈 (σ̂i − 1)(σ̂i + (−1)s(i)) 〉ri=1.(3)

(ii) Take l = b as a basepoint for (g−)rs. The homomorphism ρ : π1((g−)rs, b) →
A◦ of part (v) of Theorem 3.1 is given by ρ = α ◦ f∗, where f∗ : π1((g−)rs, b) →
π1(Qreg, f(b)) = BW is the push-forward by f , and α : BW → A◦ is defined by
α : σ̂i 7→ (−1)s(i)−1 · σ̂i.

Proof. Because W is a Coxeter group, the braid group quotient in the right-hand
side of (3) has the correct dimension, namely the order of W . Thus, for part (i), it
is enough to show that for σ = σi, we have Rσ(z) = (z − 1)(z + (−1)s(i)). This is
an easy application of Theorem 5.2. It follows from the root space decomposition
for gR that, in terms of Proposition 5.1, we have Gσ = SO(s(i) + 1), Vσ = Cs(i)+r,
and Gσ acts by the standard representation on the first s(i) + 1 coordinates. The
computation of Rσ is now given by Theorem 5.2 and Example 3.7.

Part (ii) of the theorem is proved by a Picard-Lefschetz argument as in Section
5 (cf. Lemma 4.3).

Remark 6.2. Note that A is isomorphic to the group algebra C[W ], when s(i) is
even for all i, and to the Hecke algebra H−1(W ) specialized at q = −1, when s(i)
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is odd for all i. In general, it is a “hybrid” of the two. Group algebra deformations
of this kind were considered by Lusztig in [Lu2].

In the case when all the s(i) are even, we can conclude from Theorem 3.1 that
the sheaf P is semisimple. One example of this is the symmetric space sl2n/sp2n.
In this example, the Weyl group is Σn, and nilpotent orbits are parametrized by
the partitions of n. It is shown in [Gr2] that, in fact, this symmetric space gives a
complete analog of the Springer correspondence for SLn.
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