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CHARACTER FORMULAS FOR TILTING MODULES
OVER KAC-MOODY ALGEBRAS

WOLFGANG SOERGEL

Abstract. We show how to express the characters of tilting modules in a (pos-
sibly parabolic) category O over a Kac-Moody algebra in terms of the charac-
ters of simple highest weight modules. This settles, in lots of cases, Conjecture
7.2 of Kazhdan-Lusztig-Polynome and eine Kombinatorik für Kipp-Moduln,
Representation Theory (An electronic Journal of the AMS) (1997), by the au-
thor, describing the character of tilting modules for quantum groups at roots
of unity.

Introduction

In this article I determine the characters of indecomposable tilting modules in the
category O over an affine Kac-Moody Lie algebra. By an equivalence of categories
due to Kazhdan and Lusztig, this leads to character formulas for tilting modules
over quantum groups; in particular we prove Conjecture 7.2 from [Soe97] in many
cases.

I found the key to the determination of these characters in [Ark96]. There
Arkhipov extends Feigin’s semi-infinite cohomology and shows in particular, that
the category of all modules with a Weyl filtration in positive level is contravariantly
equivalent to the analogous category in negative level. Under this equivalence,
projective objects have to be transformed into tilting modules; thus the Kazhdan-
Lusztig conjectures in positive level lead to character formulas for tilting modules
in negative level.

In [Ark96] the contravariant equivalence alluded to above appears as an illus-
tration of a much stronger and deeper semi-infinite duality. I will show in the
subsequent sections, how one can get it directly. Then I will discuss the application
to tilting modules.

1. The semi-regular bimodule

Let g =
⊕

i∈Z gi be a Z-graded Lie algebra over the field k with finite dimen-
sional homogeneous pieces, dimk gi <∞ for all i.

Definition 1.1. A character γ : g0 → k is called a semi-infinite character for g iff
we have:

1. As a Lie algebra g is generated by g1, g0 and g−1.
2. γ([X, Y ]) = tr(adXadY : g0 → g0) ∀X ∈ g1, Y ∈ g−1.
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Remark 1.2. Voronov [Vor93] and Arkhipov [Ark96] work without the assumption
(1) and rather ask of γ, that dγ is the “critical cocycle of g”. The Lie algebras
we are interested in however, are generated by g1, g0 and g−1. Since it is easier
to treat this case, we restrict our attention to the framework mapped out by the
above definition.

We put b = g≥0, n = g<0 and denote the enveloping algebras of g, b, n by U, B, N .
Certainly U, B and N inherit a Z-grading from the corresponding Lie algebras. We
consider for N the graded dual N~ =

⊕
i N∗i and make it into an N -bimodule via

the prescriptions (fn)(n1) = f(nn1), (nf)(n1) = f(n1n) ∀ f ∈ N~, n, n1 ∈ N .

Theorem 1.3. Let γ : g0 → k be a semi-infinite character for g. Then there exists
a Z-graded U -bimodule S = Sγ along with an inclusion of Z-graded N -bimodules
ι : N~ ↪→ S such that the following hold:

1. The map U ⊗N N~ → S, u⊗ f 7→ uι(f) is a bijection.
2. The map N~ ⊗N U → S, f ⊗ u 7→ ι(f)u is a bijection.
3. Up to a twist by γ, the inclusion ι : N~ ↪→ S commutes with the adjoint

action of g0 on both spaces, in formulas ι(f ◦ adH) + (adH)ι(f) = ι(f)γ(H)
for all H ∈ g0 and f ∈ N~.

Remarks 1.4. 1. The bimodule S is a semi-infinite analogue of the enveloping
algebra, since in analogy to U ∼= B⊗k N ∼= N ⊗k B we have S ∼= B⊗k N~ ∼=
N~ ⊗k B. We call S the “semi-regular bimodule”. In greater generality it
is introduced in [Vor93] as “standard semijective module” and in [Ark96] as
“semiregular module”. The presentation in [Vor93] however, still needs some
fixing.

2. The semiregular bimodule S only has homogeneous components of degree
≥ 0.

3. The formula (3) in particular, tells us that Hι(ε) = ι(ε)(H + γ(H)) for all
H ∈ g0 and ε ∈ N~

0 , in particular for ε the augmentation of N .
4. Going carefully through the proof of the theorem and replacing the compar-

ision of dimension at the end by a more refined argument, we see that it is
sufficient to assume dimk gi <∞ for i < 0.

Proof. Let us start by constructing for an arbitrary character γ of g0 a vector space
S = Sγ with a left and a right action of U .

For any two Z-graded vector spaces M, M ′, let us define the Z-graded vector
space Homk(M, M ′) with homogeneous components

Homk(M, M ′)j = {f ∈ Homk(M, M ′) | f(Mi) ⊂M ′
i+j}.

For example we have N~ = Homk(N, k), if we equip k with the Z-grading k = k0.
Now let us consider for an arbitrary character γ of g0 the following sequence of
isomorphisms of Z-graded vector spaces over k:

HomB(U, kγ ⊗k B) ∼→ Homk(N, B) ∼← N~ ⊗k B
∼→ N~ ⊗N U.

Here HomB denotes the space of all B-homomorphismen in Homk, our kγ is the
one-dimensional representation of b given by the character γ : g0 → k and the
surjection b � g0, and kγ ⊗k B is, as a left b-module, the tensor product of these
two representations. The first isomorphism is defined as the restriction to N using
the identification kγ⊗kB

∼→ B, 1⊗b 7→ b. The other isomorphisms are obvious. We
now put Sγ = N~⊗k B and define on this space an action of U from the left (resp.
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right) by the first two (resp. the last) isomorphisms. Our first goal is to show, that
for a semi-infinite character γ the right and the left action of U on Sγ commute. I
have to confess that I don’t understand the true reason for that and thus have to
check by blind calculation.

All our isomorphisms above are compatible with the obvious left action of N
and right action of B on our spaces. Thus the left action of N commutes with the
right action of U , and similarly the right action of B commutes with the left action
U . We thus only have to show that

H((f ⊗ b)Y ) = (H(f ⊗ b))Y,
X((f ⊗ b)Y ) = (X(f ⊗ b))Y

for all H ∈ g0, X ∈ g1, Y ∈ g−1, f ∈ N~, b ∈ B. Here we may even assume b = 1.
Indeed, by right multiplication with X1 ∈ g1 resp. H1 ∈ g0 and a short calculation,
one easily deduces from our equations with b the analogous equations with bX1

resp. bH1. Thus we need only to show

H((f ⊗ 1)Y ) = (H(f ⊗ 1))Y,
X((f ⊗ 1)Y ) = (X(f ⊗ 1))Y

for all H ∈ g0, X ∈ g1, Y ∈ g−1, f ∈ N~.
So let’s calculate. If we denote by LY : N → N the multiplication with Y ∈ g−1

from the left, we have (f ⊗ 1)Y = fLY ⊗ 1. Also for H ∈ g0 we get from our
definitions

H(f ⊗ 1) = −f(adH)⊗ 1 + f ⊗ (γ(H) + H)

where adH : N → N is given by (adH)(n) = Hn− nH as usual. Thus we get

(H(f ⊗ 1))Y = −f(adH)LY ⊗ 1 + fLY ⊗ (γ(H) + H),
+fL[H,Y ] ⊗ 1,

H((f ⊗ 1)Y ) = −fLY (adH)⊗ 1 + fLY ⊗ (γ(H) + H),

and since (adH)LY = LY (adH) + L[H,Y ], these expressions still coincide for γ
arbitrary.

To determine X(f ⊗ 1) we choose a basis (Hi)i∈I of g0 and define linear maps
H i

X , FX : N → N by

nX = Xn +
∑

i

HiH
i
X(n) + FX(n) ∀n ∈ N.

From our definitions we get

X(f ⊗ 1) = f ⊗X +
∑

i

fHi
X ⊗ (γ(Hi) + Hi) + fFX ⊗ 1.

We further calculate

(Y n)X = X(Y n) +
∑

HiH
i
X(Y n) + FX(Y n)

Y (nX) = Y Xn +
∑

Y HiH
i
X(n) + Y FX(n)

= XY n + [Y, X ]n +
∑

HiY Hi
X(n)

+
∑

[Y, Hi]Hi
X(n) + Y FX(n)

and with [Y, X ] =
∑

ci
Y XHi we get the formulas

Hi
XLY = LY Hi

X + ci
Y X idN

FXLY = LY FX +
∑

i L[Y,Hi]H
i
X .
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Now we get

X((f ⊗ 1)Y ) = fLY ⊗X +
∑

i fLY Hi
X ⊗ (γ(Hi) + Hi)

+fLY FX ⊗ 1
(X(f ⊗ 1))Y = f ⊗XY +

∑
i fHi

X ⊗ (γ(Hi) + Hi)Y + fFX ⊗ Y
= fLY ⊗X + f ⊗ [X, Y ]

+
∑

i fHi
XLY ⊗ (γ(Hi) + Hi)

+
∑

i fHi
XL[Hi,Y ] ⊗ 1

+fFXLY ⊗ 1

and as a condition for X((f ⊗ 1)Y ) = (X(f ⊗ 1))Y we find using our formulas
0 =

∑
i ci

Y X · γ(Hi) + ci
[Hi,Y ]X , in other words γ([X, Y ]) = tr(adXadY : g0 → g0).

Thus for every semi-infinite character γ our S = Sγ is a U -bimodule. We define
ι : N~ ↪→ S by ι(f) = f ⊗ 1 and only have to check the properties (1)–(3) from the
theorem.

Here (2) and (3) follow directly from the definitions and we only prove (1).
Certainly S admits a Z-grading with finite dimensional homogeneous components.
By equality of dimensions, it is sufficient to show that U⊗N N~ → S is a surjection,
hence that ι(N~) already generates S as a left U -module. But our formulas for
X(f ⊗ 1), H(f ⊗ 1) show, that the left U -submodule generated by ι(N~) is stable
under the right B-action.

2. The category of all modules with a finite Verma-flag

is its own opposed category

We keep the notations of the preceding section. Let γ : g0 → k be a semi-infinite
character for g and S = Sγ the corresponding semi-regular bimodule. LetM resp.
K denote the categories of all Z-graded representations of g, which are over N
graded free resp. cofree of finite rank, i.e. isomorphic to finite direct sums of maybe
grading shifted copies of N resp. N~.

Theorem 2.1. The functor S⊗U defines an equivalence of categories S⊗U :M ∼→
K, such that short exact sequences correspond to short exact sequences.

Remarks 2.2. 1. The existence of an equivalenceM∼= K is a result of Arkhipov
[Ark96].

2. If h ⊂ g0 is an abelian subalgebra such that the adjoint action of h on n is
diagonalizable, then our functor also gives an equivalenceMh

∼→ Kh between
the categories of all h-diagonalizable objects ofM resp. K.

Proof. First we deduce from S ∼= N~ ⊗N U , that S⊗U
∼= N~⊗N indeed gives

a functor T : M → K, which transforms short exact sequences into short ex-
act sequences. Furthermore multiplication from the right defines an isomorphism
Nopp → EndN (N~), and since we also have S ∼= U ⊗N N~ the prescription
HomU (S, ) ∼= HomN (N~, ) indeed defines a functor H : K → M making short
exact sequences to short exact sequences.

Our functors obviously form an adjoint pair (T, H). To show they are inverse
equivalences of categories, we only have to show that for all M ∈ M resp. K ∈ K
the canonical map M → HTM resp. THK → K is an isomorphism. But we have

HTM = HomU (S, S ⊗U M)
= HomN (N~, N~ ⊗N M)
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and for a free N -module M of finite rank certainly the canonical map M →
HomN (N~, N~ ⊗N M) is an isomorphism. Similarly we have

THK = S ⊗U HomU (S, K)
= N~ ⊗N HomN (N~, K)

and for K = N~ or, more generally, K cofree of finite rank over N certainly the
canonical map N~ ⊗N HomN (N~, K)→ K is an isomorphism.

In the following corollary the content of the theorem appears most clearly. For a
Z-graded space V =

⊕
Vi let V ~ = Homk(V, k) denotes its Z-graded dual with

homogeneous components (V ~)i = (V−i)∗. If V is a Z-graded representation of g,
the contravariant action (Xf)(v) = −f(Xv) for all f ∈ V ~, X ∈ g, v ∈ V makes
V ~ into a Z-graded representation of g. LetMopp denote the opposed category of
M.

Corollary 2.3. The functor M 7→ (S⊗U M)~ defines an equivalence of categories
M ∼→Mopp, under which short exact sequences correspond to short exact sequences,
and such that U⊗B E gets mapped to U⊗B (k−γ⊗E∗), for every finite dimensional
Z-graded representation E of g0.

Proof. Remark that the formulas above define a second left action of n on N~

that doesn’t coincide with the left action from section 1 in general. However, N~

with this second n-action is isomorphic to N~ with the first action as a Z-graded
n-module, a possible isomorphism being the transpose of the principal antiauto-
morphism of N . Hence our functor V 7→ V ~ defines an equivalence of categories
K ∼→Mopp. The rest of the proof is left to the reader.

Remarks 2.4. 1. It is not difficult to show that M consists precisely of those
Z-graded g-modules, which admit a finite filtration with subquotients of the
form U ⊗B E for suitable finite dimensional irreducible Z-graded g0-modules
E. Therefore we callM also the category of all finite Verma flag modules.

2. It is also not difficult to show thatM is stable under taking direct summands.
More generally an arbitrary direct summand of a graded free N -module of
finite rank is itself graded free of finite rank, for any Z-graded algebra N
which has no terms of positive degree and whose degree zero part is just the
ground field.

3. Under the assumptions of Remark 2.2 (2) our functor also gives an equivalence
Mh

∼→Mopp
h .

3. Projective objects in O
We now develop some well-known results in great generality and need stronger

assumptions than in the first sections. From now on let k be an algebraically closed
field of characteristic zero and let g =

⊕
i∈Z gi be a Z-graded Lie algebra over k

with dimk gi < ∞ ∀i ∈ Z such that g0 is reductive and g a semisimple g0-module
for the adjoint action. Then we consider the category O of all Z-graded g-modules
M =

⊕
i∈Z Mi, which are locally finite for g≥0 and semisimple for g0. For M, N ∈ O

we thus have HomO(M, N) = {f ∈ Homg(M, N) | f(Mi) ⊂ Ni ∀i ∈ Z}.
As before we put g≥0 = b and U(b) = B. Let Λ denote the set of isomorphism

classes of irreducible finite dimensional Z-graded g0-modules. Such an E ∈ Λ
certainly will be concentrated in one degree |E| ∈ Z, so we have E = E|E|. For E ∈
Λ we form the Verma module ∆(E) = U⊗BE. Certainly ∆(E) is an object ofO, has
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a unique simple quotient L(E), and {L(E)}E∈Λ is a system of representatives for the
simple isomorphism classes in O. Dually we form the object∇(E) = Homg≤0(U, E)
in O and it is easy to see that L(E) is the smallest non-zero submodule of ∇(E).
More precisely, we consider for n ∈ Z in O the subcategory

O≤n = {M ∈ O |Mi = 0 if i > n}.
One shows for arbitrary E, F ∈ Λ:

Lemma 3.1. 1. ∆(E) is the projective cover of L(E) in O≤|E|.
2. ∇(E) is the injective hull of L(E) in O≤|E|.
3. HomO(∆(F ),∇(E)) = 0 if F 6= E. For F = E this space is one-dimensional.
4. Ext1O(∆(F ),∇(E)) = 0.

Proof. Left to the reader.

In general a simple object does not admit a projective cover in O, but only in
the truncated categories O≤n.

Theorem 3.2. 1. Every simple object L(E) ∈ O≤n admits in O≤n a projective
cover P≤n(E), and this projective cover has a finite ∆-flag.

2. For m > n the kernel of the surjection P≤m(E) � P≤n(E) admits a finite
∆-flag with subquotients of the form ∆(F ) for m ≥ |F | > n.

3. The simple L(E) admits a projective cover P (E) in O if and only if P≤n(E) ∼=
P≤n+1(E) ∼= . . . for n� 0, and then we have P (E) ∼= P≤n(E).

The proof needs some abstract theory.

Lemma 3.3. Let A be an abelian category, p : P � L a surjection of an indecom-
posable projective object onto a simple object. If E = EndAP is of finite length as
a right module over itself, then P is a projective cover of L.

Proof. Indeed zero and one are the only idempotents of E, since P is indecompos-
able. The usual arguments via the Fitting decomposition then show, that every
element of E is either nilpotent or invertible. Now if i : U → P is a morphism such
that p◦i 6= 0, then by projectivity of P there exists q : P → U such that p◦i◦q = p.
But then i◦q is not nilpotent, hence an isomorphism and thus i is surjective. Hence
ker p is the biggest proper subobject of P , that was to be shown.

Now we prove the theorem.

Proof. (1) For a Z-graded b-module K =
⊕

Ki let τ≤nK denote the quotient by
the submodule of all homogeneous parts of degree > n, thus τ≤nK =

⊕
i≤n Ki.

For E ∈ Λ, then

Q = U ⊗B τ≤n(B ⊗U(g0) E)

is projective in O≤n. Indeed, if Homg,Z denotes the space of all g-module homo-
morphisms which are homogeneous of degree zero with respect to the Z-grading,
then

HomO(Q, M) = Homg,Z(Q, M)
= Homb,Z(τ≤n(B ⊗U(g0) E), M)
= Homb,Z(B ⊗U(g0) E, M)
= Homg0,Z(E, M)

for all M ∈ O≤n and Homg0,Z(E, M) is an exact functor in M ∈ O by the very
definition of this category.
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Certainly Q graded free over N of finite rank, and if n ≥ |E|, there is a surjection
Q � L(E). By 3.3 we can take as P≤n(E) every indecomposable summand of Q
which has L(E) as a quotient, and by Remark 2.4 (2) the module P≤n(E) admits
a ∆-flag.

(2) Certainly for m ≥ n we have a surjection

P≤m(E) � P≤n(E),

and by the universal properties the kernel of such a surjection has to be a submodule
of P≤m(E) generated by all homogeneous components of degree > n. But such a
submodule in a graded free N -module is graded free itself (with a basis all vectors
of degree > n inside a homogeneous basis of the full module), thus by Remark 2.4
(2) the submodule admits a ∆-flag, too.

(3) If L(E) admits a projective cover P (E) in O, then P (E) is generated by a
single vector (indeed by every vector outside the biggest proper submodule), thus
P (E) ∈ O≤n for n� 0, hence P (E) ∼= P≤m(E) ∀m ≥ n.

If, on the other hand, the projective system of the P≤n(E) stabilizes with an
object P (E), we have to show that P (E) is projective in O. Certainly P (E) is
generated by one element v. Now let M � M ′ be a surjection and f ′ : P (E)→M ′

a morphism, which we want to lift to f : P (E)→M . Then we choose a preimage
m ∈ M of m′ = f ′(v) ∈ M ′ and consider the surjection U(g)m � U(g)m′. Now
both modules lie in O≤n for n � 0, and since P (E) ∼= P≤n(E) we find the lift we
were looking for.

4. Reciprocity and decompositon of O into blocks

To formulate the usual reciprocity in full generality we have to introduce multi-
plicities in full generality.

Definition 4.1. Let A be an abelian category, M ∈ A an object, L ∈ A a simple
object. The multiplicity [M : L] ∈ N ∪ {∞} of L in M is the supremum over all
(finite) filtrations F of M of the multiplicity of L as a subquotient of the filtration.
In formulas

[M : L] = sup
F

#{i | FiM/Fi+1M ∼= L}.

This multiplicity is additive, i.e. for every short exact sequence M ′ ↪→M � M ′′

we have [M : L] = [M ′ : L] + [M ′′ : L]. In particular, for ∇ ∈ O≤n and E ∈ Λ
we always have [∇ : L(E)] = dimk HomO(P≤n(E),∇). On the other hand, for a
module P ∈ O with a finite ∆-flag we know by Lemma 3.1 that the multipicity
[P : ∆(F )] of ∆(F ) as a subquotient is dimk Hom(P,∇(F )). Putting things together
we obtain the reciprocity formula

[P≤n(E) : ∆(F )] = [∇(F ) : L(E)]

for all E, F ∈ Λ and n ≥ max{|E|, |F |}.
Since it is not a big deal from where we are, I want to discuss the decomposition

of O into blocks, although it is not needed for the main result of this article.
Certainly there is a partial order ≥ on Λ such that [∆(F ) : L(E)] 6= 0 ⇒ F ≥ E
and [∇(F ) : L(E)] 6= 0⇒ F ≥ E. From now on let ≥ be the smallest such partial
order and ∼ the equivalence relation generated by it. For every equivalence class
θ ∈ Λ/∼ we consider the category

Oθ = {M ∈ O | [M : L(E)] 6= 0⇒ E ∈ θ}.
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Theorem 4.2. The functor
∏

θ∈Λ/∼Oθ → O, (Mθ)θ 7→
⊕

θ Mθ is an equivalence
of categories.

Proof. For θ ∈ Λ/∼ and M ∈ O let Mθ ⊂ M denote the submodule generated by
all images of morphisms ϕ : P≤n(E)→M with E ∈ Λ. We show

1. Mθ ∈ Oθ;
2. If f : M → N is a morphism in O, then f(Mθ) ⊂ Nθ;
3. M =

⊕
θ Mθ.

This then proves the theorem. We start with (1). By the definition of our equiva-
lence relation and by the reciprocity formula we have P≤n(E) ∈ Oθ for all E ∈ θ.
In a short exact sequence in O the middle term lies in Oθ iff both ends do, by the
additivity of multiplicities. Thus it will be sufficient to show that Oθ is stable under
arbitrary direct sums. But every simple subquotient of

⊕
i∈I Mi is the quotient of

a submodule generated by one element, thus occurs also in a finite direct sum. This
establishes (1). Now (2) follows from the definitions and from (2) we see that the
sum in (3) is direct. We leave it to the reader to show it is all of M .

Remark 4.3. Let E ∈ Λ be given. If there are only finitely many F ∈ Λ such that
F ≥ E, then L(E) admits by Theorem 3.2 (3) a projective cover P (E) in O.

5. Tilting modules in O
Definition 5.1. By a ∆-flag in an object M ∈ O we mean a (possibly infinite)
increasing filtration

0 = M0 ⊂M1 ⊂M2 ⊂ . . .

such that M =
⋃

Mν and Mν/Mν−1
∼= ∆(Fν) for all ν ≥ 1, with suitable Fν ∈ Λ.

Theorem 5.2. For every E ∈ Λ there is a unique up to isomorphism indecompos-
able object T = T (E) ∈ O such that:

1. Ext1O(∆(F ), T ) = 0 for all F ∈ Λ;
2. T admits a ∆-flag, starting with T1

∼= ∆(E).

Definition 5.3. This object T (E) is called the tilting module with parameter E.

Remark 5.4. The theorem is a variation of results of [Rin91], who in turn develops
results of [Don86] and [CI89] in a general context.

Proof. We start with

Lemma 5.5. 1. For all F, G ∈ Λ both spaces HomO(∆(F ), ∆(G)) and
Ext1O(∆(F ), ∆(G)) are of finite dimension.

2. For all G ∈ Λ and i ∈ Z there are at most finitely many F ∈ Λ such that
|F | = i and HomO(∆(F ), ∆(G)) or Ext1O(∆(F ), ∆(G)) is not zero.

Proof. By our assumptions all homogeneous components of ∆(G) are of finite di-
mension. This gives (1) and (2) for Hom. Furthermore let n be bigger than |F |
and |G|. We consider the short exact sequence ker ↪→ P≤n(F ) � ∆(F ) and get a
surjection

HomO(ker, ∆(G)) � Ext1O(∆(F ), ∆(G)).

Since here ker admits a finite ∆-flag, we get (1) for Ext1. Finally all ∆-subquotients
of a ∆-flag of P≤n(F ) are of the form ∆(H), where H is a summand of the Z-
graded g0-module (τ≤n−|F |U(g>0))⊗k F (and g0 acts by the adjoint action on the
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first factor). For HomO(ker, ∆(G)) to be different from zero, such an H also has
to occur as a summand in the Z-graded g0-module ∆(G) = U(g<0)⊗k G, hence in
(τ≥|F |−|G|U(g<0))⊗k G.

But the representation theory of reductive Lie algebras tells us, that for given
finite dimensional representations U1, U2 and G there are up to isomorphism only
finitely many simple finite dimensional representations F such that U1 ⊗k F and
U2 ⊗k G admit a common composition factor.

We show next

Proposition 5.6. Let E ∈ Λ, m ≤ |E|. There is a unique up to isomorphism
indecomposable object T = T≥m(E) in O such that:

1. Ext1O(∆(F ), T ) = 0 for all F ∈ Λ with |F | ≥ m;
2. There is an inclusion ∆(E) ↪→ T , whose cokernel admits a finite ∆-flag such

that only subquotients ∆(F ) with |E| > |F | ≥ m occur.

Proof. We start by proving unicity. Let T ′ be a second object satisfying our con-
ditions. We consider the diagram

∆(E) ↪→ T � coker
‖

∆(E) ↪→ T ′ � coker′.

Since by (2) for T ′ and (1) for T the relevant Ext-group vanishes, we find α :
T ′ → T making the whole diagram commutative. Similarily we find β : T → T ′.
But α ◦ β isn’t nilpotent, hence an isomorphism since T was indecomposable with
dimk(EndOT ) <∞. The same holds for β ◦ α, and we deduce T ∼= T ′.

Next we show the existence of T≥m(E) by induction on m from above. As a basis
for our induction we may take T≥|E|(E) = ∆(E). Now let T≥m(E) be constructed
already. We then form a sequence T (i) of objects from O as follows. Start with
T (0) = T≥m(E). If T (i) is already constructed and there is a nonsplit extension
T (i) ↪→ T (i+1) � ∆(F ) with F ∈ Λ, |F | = m− 1, take it as T (i+1). Otherwise stop
at T (i).

We show that such a sequence T (i) stops with a possible T≥m−1(E). Indeed by
Lemma 5.5 above the number

e(T ) =
∑

F∈Λ, |F |=m−1

dimk Ext1O(∆(F ), T )

is finite for all T ∈ O with finite ∆-flag. Now if |F | = |G| the Ext-group
Ext1O(∆(F ), ∆(G)) disappears, and this gives us e(T (i+1)) = e(T (i)) − 1. Thus
our sequence stops with an object T (j) satisfying certainly conditions (1) and (2)
for T≥m−1(E) from the proposition. Instead of proving that T (j) is indeed in-
decomposable, it is easier to choose an indecomposable summand of T (j), whose
homogeneous component of degree |E| doesn’t vanish, and this is then the possible
T≥m−1(E) looked for.

Proposition 5.7. Let E ∈ Λ and |E| ≥ n > m. Then there exists an inclusion
T≥n(E) ↪→ T≥m(E), and the cokernel of every such inclusion admits a ∆-flag with
only subquotients ∆(F ) for n > |F | ≥ m.

Proof. Consider in T≥m(E) the submodule T ′ generated by all homogeneous ele-
ments of degree at least n and form a short exact sequence T ′ ↪→ T≥m(E) � koker.
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Then T ′ resp. koker admits a ∆-flag, in which there are only subquotients ∆(F )
with |F | ≥ n resp. n > |F | ≥ m. It follows easily that T ′ satisfies all conditions we
put on T≥n(E) except perhaps indecomposability. Thus T≥n(E) is a direct sum-
mand of T ′, and we deduce [T≥n(E) : ∆(F )] ≤ [T≥m(E) : ∆(F )]. But our inductive
construction of T≥m(E) shows the reverse inequality as well, for |F | ≥ n. Thus we
have equality and can deduce T ′ ∼= T≥n(E). The proposition follows.

After these preparations we can at least construct a possible T = T (E) as
T = limn→−∞ T≥n(E). Let us remark right away that every element of EndT
is either nilpotent or an isomorphism, since T is indecomposable and all its ho-
mogeneous components are of finite dimension, so the usual arguments via the
Fitting-decomposition work. To prove unicity we use

Lemma 5.8. In O there are enough injectives.

Proof. For M ∈ O the biggest Z-graded g-submodule of Homg0(U, M) which lies
in O is an injective object of O containing M .

Remark 5.9. By general arguments ([HS71], I.9.2) we can deduce that every simple
object L(E) in O admits an injective hull I(E). One may show in addition that
I(E) admits a (possibly infinite) increasing ∇-flag, whose multiplicities are given
by the reciprocity formula [I(E) : ∇(F )] = [∆(F ) : L(E)]. We will neither use nor
prove this.

Lemma 5.10. Let J ∈ O be such that Ext1O(∆(F ), J) = 0 ∀F ∈ Λ. Then also
Ext1O(M, J) = 0 for all M ∈ O with a ∆-flag.

Proof. Choose a short exact sequence J ↪→ I � K with I injective in O. We get
an exact sequence

Hom(M, J) ↪→ Hom(M, I)→ Hom(M, K) � Ext1(M, J),

which starts with an inclusion and ends with a surjection. Let 0 = M0 ⊂M1 ⊂ . . .
be a ∆-flag of M . Then we may rewrite the first three terms of our sequence to

lim← Hom(Mi, J) ↪→ lim← Hom(Mi, I)→ lim← Hom(Mi, K),

and by our assumption we have for every fixed i a short exact sequence. Using our
assumption on J a second time, we see that in addition all maps of the projective
system Hom(Mi, J) are surjections. Therefore by [AM69], 10.2 the projective limit
of our short exact sequence is a short exact sequence too and thus Ext1(M, J) =
0.

We now show unicity of T = T (E). Let T ′ ∈ O be a second object satisfying all
the conditions of the theorem. As before we consider the diagram

∆(E) ↪→ T � T/T ′1
‖

∆(E) ↪→ T ′ � T ′/T ′1

By the lemma there is a morphism α : T ′ → T , which makes the diagram commute.
Analogously we find β : T → T ′. Then α ◦ β is not nilpotent, thus is an automor-
phism of T . But since also T ′ was assumed indecomposable, we find that α is an
isomorphism.
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Remark 5.11. For the multiplicity of ∆(F ) as a subquotient in a ∆-flag of M ∈ O
we get by the above lemma the formula [M : ∆(F )] = dimk HomO(M,∇(F )). In
particular, this multiplicity does not depend on the choice of a ∆-flag.

Finally we now obtain the looked-for character formula for tilting modules.

Theorem 5.12. Let γ : g0 → k be a semi-infinite character for g. Then for all
E, F ∈ Λ we have

[T (E) : ∆(F )] = [∇(k−γ ⊗ F ∗) : L(k−γ ⊗ E∗)].

Proof. If h ⊂ g0 is a maximal torus, our Mh of Remark 2.2 (2) is precisely the
categoryO∆ of all objects ofO with a finite ∆-flag. Our equivalenceO∆ ∼→ (O∆)opp

from Remark 2.4 (3) has to transform P≤−n(k−γ⊗E∗) into T≥n(E) for all n ≤ |E|,
by the very definition of T≥n. Thus for n ≤ |F | we get

[T (E) : ∆(F )] = [T≥n(E) : ∆(F )]
= [P≤−n(k−γ ⊗ E∗) : ∆(k−γ ⊗ F ∗)]
= [∇(k−γ ⊗ F ∗) : L(k−γ ⊗ E∗],

the last equality by the reciprocity formula.

6. Projective objects and tilting modules

in categories without grading

For the applications which are the goal of this work, it is convenient to hide
the Z-grading on the modules. In this section, as in the two preceding ones, let
g =

⊕
i∈Z gi be a Z-graded Lie-algebra over an algebraically closed field k of char-

acteristic zero such that dimk gi < ∞ for all i, that g0 is reductive, and that g is
semisimple for adg0. But we ask in addition that there is an element ∂ ∈ g0 such
that [∂, X ] = iX ∀i ∈ Z, X ∈ gi.

As before put b = g≥0 and B = U(b). Let Ō denote the category of all g-modules
which are locally finite for b and semisimple for g0. I want to explain briefly how
results for Ō can be deduced from the analogous results for O. First by assumption
∂ lies in the center of g0, thus every M ∈ Ō decomposes under ∂ into eigenspaces
M =

⊕
a∈k Ma. If we consider for every a ∈ k the category

Oa = {M ∈ O |Ma+i = Mi ∀i ∈ Z},
we certainly have O =

∏
a∈kOa. On the other hand, we also have for ā ∈ k/Z the

subcategory

Ōā = {M ∈ Ō |M b 6= 0⇒ b ∈ ā}
and analogously Ō =

∏
ā∈k/Z Ōā. But clearly forgetting the Z-grading gives us

equivalences Oa
∼→ Ōā, which we can use to transfer our results from O to Ō.

To formulate these results for Ō, we need a bit of notation. Let Λ̄ denote the
set of all isomorphism classes of finite dimensional irreducible representations of
g0. For E ∈ Λ̄ we consider in Ō the Verma module ∆(E) = U ⊗B E. It has a
unique simple quotient L(E). In addition we consider in Ō for every E ∈ Λ̄ the
object ∇(E) = HomU(g≤0)(U, E)g0−fin, that is the space of all g0-finite vectors in
said Hom-space, and L(E) is the socle of ∇(E). On Λ̄ let ≤ be the smallest partial
order such that [∇(E) : L(F )] 6= 0 ⇒ E ≥ F and [∆(E) : L(F )] 6= 0 ⇒ E ≥ F .
Let ∼ denote the equivalence relation on Λ̄ generated by this partial order. For
θ̄ ∈ Λ̄/∼ we put Ōθ̄ = {M ∈ Ō | [M : L(E)] 6= 0⇒ E ∈ θ̄}.
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Our theorems of the preceding sections translate into the following.

Theorem 6.1. The functor (Mθ̄)θ̄ 7→
⊕

θ̄ Mθ̄ gives an equivalence of categories∏
θ̄∈Λ̄/∼

Ōθ̄
∼→ Ō.

Remark 6.2. This generalizes results of [DGK82] and [RCW82].

Definition 6.3. A tilting module with parameter E ∈ Λ̄ is an indecomposable
object T = T (E) ∈ Ō such that

1. T admits a ∆-flag starting with T1
∼= ∆(E).

2. Ext1Ō(∆(F ), T ) = 0 ∀F ∈ Λ̄.

Theorem 6.4. For every E ∈ Λ̄ there exists in Ō a tilting module T (E) with
parameter E. It is unique up to isomorphism.

Remarks 6.5. 1. [Pol91] Remark 5.9 shows that there are enough injectives in Ō,
that an injective hull I(E) of L(E) admits a ∇-flag, and that the multiplicities
in such a ∇-flag are given by the reciprocity formula

[I(E) : ∇(F )] = [∆(F ) : L(E)] ∀E, F ∈ Λ̄.

2. In addition Remark 4.3 shows that L(E) admits a projective cover in Ō if
there are but finitely many F ∈ Λ̄ such that F ≥ E. For this projective cover
we then have analogously [P (E) : ∆(F )] = [∇(F ) : L(E)] ∀E, F ∈ Λ̄.

From now on let γ : g0 → k be a semi-infinite character of g, so in particular g is
generated by g1, g0 and g−1. Let Ō∆ denote the category of all objects in Ō with
a (finite) ∆-flag.

Theorem 6.6. There is an equivalence of categories Ō∆ → (Ō∆)opp such that
short exact sequences correspond to short exact sequences, and such that ∆(E) gets
transformed into ∆(k−γ ⊗ E∗), for all E ∈ Λ̄.

If L(E) in Ō admits a projective cover P (E), then P (E) gets transformed into
T (k−γ ⊗ E∗) under such an equivalence. But in any case we have

Theorem 6.7. The character of our tilting modules is given by

[T (E) : ∆(F )] = [∇(k−γ ⊗ F ∗) : L(k−γ ⊗ E∗)] ∀E, F ∈ Λ̄.

7. The case of Kac-Moody algebras

Let g be a Kac-Moody algebra, h ⊂ g its Cartan subalgebra, Π ⊂ h∗ the simple
roots. For α ∈ Π the weight spaces gα and g−α in g generate a subalgebra iso-
morphic to sl(2, C) and we let α∨ ∈ [gα, g−α] ⊂ h be the vector characterized by
〈α, α∨〉 = 2.

Let us consider first on g the Z-grading with g0 = h and g1 =
⊕

α∈Π gα. Since
the simple roots are linearly independent, there exists ∂ ∈ h such that 〈α, ∂〉 =
1 ∀α ∈ Π, thus [∂, X ] = iX ∀X ∈ gi, i ∈ Z.

Lemma 7.1 ([Ark96]). Let ρ ∈ h∗ be such that 〈ρ, α∨〉 = 1 ∀α ∈ Π. Then 2ρ is a
semi-infinite character for g.

Proof. We have to show 2ρ([X, Y ]) = tr(adXadY : h→ h) for all X ∈ gα, Y ∈ g−β

and α, β ∈ Π. If α 6= β both sides vanish, if α = β the equality follows from the
definitions.
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In our case certainly Λ̄ = h∗ and [∆(λ) : L(µ)] = [∇(λ) : L(µ)] ∀λ, µ ∈ h∗.
For α ∈ Π let sα : h∗ → h∗ denote the involution sα(λ) = λ − 〈λ, α∨〉α. The
subgroup W ⊂ Auth∗ generated by the sα is called the Weyl group. If we put
S = {sα | α ∈ Π}, then (W ,S) is a Coxeter system. We define the dot-actions of
W on h∗ by the formula x · λ = x(λ + ρ)− ρ. This action does not depend on the
choice of ρ. In [Kas90] Kashiwara establishes a conjecture of Deodhar, Gabber and
Kac [DGK82] to the effect, that the Kazhdan-Lusztig-polynomials Px,y for (W ,S)
give Jordan-Hölder multiplicities for g.

Theorem 7.2 ([Kas90]). Let g be symmetrizable. Let λ ∈ h∗ be such that 〈λ +
ρ, α∨〉 ∈ {1, 2, . . . } ∀α ∈ Π. Then [∆(x · λ) : L(ν)] = 0 for ν /∈ W · λ and

[∆(x · λ) : L(y · λ)] = Px,y(1) ∀x, y ∈ W .

Now theorem 6.7 gives easily the generalization of the main results of [CI89] to
symmetrizable Kac-Moody algebras.

Corollary 7.3. Suppose g is symmetrizable. Let µ ∈ h∗ be such that 〈µ + ρ, α∨〉 ∈
{−1,−2, . . .} ∀α ∈ Π. Then [T (y · µ) : ∆(ν)] = 0 for ν /∈ W · µ and

[T (y · µ) : ∆(x · µ)] = Px,y(1) ∀x, y ∈ W .

Let us consider also the parabolic case. Let Πf ⊂ Π be a set of simple roots such
that the gα with ±α ∈ Πf generate a finite dimensional (necessarily semisimple)
subalgebra of g. Then g also admits a Z-grading such that h ⊂ g0, gα ⊂ g0 if
±α ∈ Πf , and gα ⊂ g1 if α ∈ Π − Πf , and for this Z-grading our conditions from
the beginning of section 6 are satisfied as well. Let ρf ∈ h∗ denote the half sum of
positive roots of g0.

Lemma 7.4. There is a character γ = γf : g0 → C which coincides on h with
2ρ− 2ρf . Every such character γ is a semi-infinite character for g.

Proof. Certainly g is generated by g1, g0 and g−1, for our new grading as well. We
have 〈ρ, β∨〉 = 〈ρf , β∨〉 = 1 ∀β ∈ Πf , thus 2ρ− 2ρf disappears on [g0, g0]∩ h and
can indeed be extended to a character γ of g0. The only thing left to show is the
formula

γ([X, Y ]) = tr(adXadY : g0 → g0) ∀X ∈ g1, Y ∈ g−1.

If this holds for fixed X ∈ g1 with arbitrary Y ∈ g−1, then it also holds for [A, X ]
with arbitrary Y ∈ g−1 and A ∈ g0. We leave this verification to the reader and
then only have to check that

γ([Xα, Xβ]) = tr(adXαadXβ : g0 → g0)

for α ∈ Π − Πf , β a root of g with gβ ⊂ g−1, and Xβ ∈ gβ. If β 6= −α both
sides of our equation vanish, and we are left with the case β = −α. We then
put Xβ = Yα and decompose g0 = n+

0 ⊕ h ⊕ n−0 under the adjoint action of h. All
three summands are stable under adXαadYα. Furthermore [Yα, n+

0 ] = 0 = [Xα, n−0 ],
since the weight of these brackets doesn’t belong to the root system of g. Without
restriction suppose [Xα, Yα] = α∨. We get

tr(adXαadYα : g0 → g0) = tr(adXαadYα : h→ h)
+tr(ad(α∨) : n−0 → n−0 )

= 2− 2ρf (α∨)
= 〈2ρ− 2ρf , α∨〉.
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In the parabolic case we can identify Λ̄ with the set

h∗f = {λ ∈ h∗ | 〈λ, α∨〉 ∈ N ∀α ∈ Πf},
by associating to E ∈ Λ̄ its highest weight λ(E) ∈ h∗. For λ = λ(E) ∈ h∗f we also
write ∆f (λ) instead of ∆(E) and call this object the parabolic Verma module of
highest weight λ. Analogously we define ∇f (λ), T f(λ) and Lf (λ). However, we
will never use Lf (λ) since clearly Lf(λ) = L(λ).

Certainly we have [∇f (λ) : L(µ)] = [∆f (λ) : L(µ)] ∀λ, µ ∈ h∗f . To calculate
these multiplicities we take λ = λ(E) ∈ h∗f and consider for the g0-module E

following [BGG75] the resolution

0→Mr → . . .→M1 →M0 → E → 0.

So here Mi =
⊕

l(z)=i ∆f (z ·λ) where ∆f (µ) denotes the Verma for g0 with highest
weight µ and the sum runs over all elements z of length i of the Weyl group
Wf = 〈sα | α ∈ Πf 〉 of g0. (Remark that z(λ + ρf )− ρf = z(λ + ρ)− ρ ∀z ∈ Wf ,
since 〈ρ, α∨〉 = 1 = 〈ρf , α∨〉 ∀α ∈ Πf .)

Applying the functor U⊗B to this exact sequence, we get an exact sequence

0→ U ⊗B Mr → . . .→ U ⊗B M0 → ∆f (λ)→ 0

with U ⊗B Mi =
⊕

l(z)=i ∆(z · λ). This implies

[∆f (λ) : L(ν)] =
∑

z∈Wf

(−1)l(z)[∆(z · λ) : L(ν)]

for all λ ∈ h∗f , ν ∈ h∗. (In this argument the BGG-resolution can be replaced by the
Weyl character formula, if one takes the time to introduce suitable Grothendieck
groups.) Now let Wf ⊂ W denote the set of shortest representatives for the right
cosets of Wf . Thus multiplication gives a bijection Wf × Wf ∼→ W . If NΠ de-
notes the set of all linear combinations of simple roots with integral nonnegative
coefficients, we can describe Wf alternatively as

Wf = {x ∈ W | x−1Πf ⊂ NΠ}.
In particular, for λ ∈ h∗ with 〈λ, α∨〉 ∈ N ∀α ∈ Π we have x · λ ∈ h∗f ∀x ∈ Wf .

For x, y ∈ Wf let nx,y ∈ Z[v] denote one of the two corresponding parabolic
Kazhdan-Lusztig polynomials in [Deo87], in the normalization and notation of
[Soe97].

Proposition 7.5. Let g be symmetrizable. Let λ ∈ h∗ be such that 〈λ, α∨〉 ∈
N ∀α ∈ Π. Then [∆f (x · λ) : L(ν)] = 0 for ν /∈ Wf · λ and

[∆f (x · λ) : L(y · λ)] = nx,y(1) ∀x, y ∈ Wf .

Proof. By Deodhar [Deo87, Soe97] our parabolic polynomials satisfy nx,y(1) =∑
z∈Wf

(−1)l(z)Pzx,y(1).

This gives a character formula for certain parabolic tilting modules T f(λ). More
precisely, let wf ∈ Wf be the longest element. We define a new action of W on h∗

by x � λ = (wfxwf ) · λ.

Corollary 7.6. Let g be symmetrizable. Suppose µ ∈ h∗ is such that 〈−wfµ−2ρ+
2ρf , α∨〉 ∈ N ∀α ∈ Π. Then [T f(y � µ) : ∆f (ν)] = 0 for ν /∈ Wf � µ and

[T f(y � µ) : ∆f (x � µ)] = nx,y(1) ∀x, y ∈ Wf .
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Proof. We only have to calculate. First remark ρ − ρf = wf (ρ − ρf ) = wfρ + ρf ,
thus wfρ = ρ − 2ρf . Furthermore −wfλ(E) is the highest weight of E∗. Let
γ = 2ρ−2ρf be as above. If x �µ is the highest weight of E, then the highest weight
of k−γ ⊗ E∗ is precisely x · λ for λ = −wfµ − 2ρ + 2ρf . We leave the verification
to the reader. the corollary follows, in particular we get y � µ ∈ h∗f ∀y ∈ Wf .

8. Translation into results for quantum groups

For the application to quantum groups at roots of unity the important case is
to take g the affinization of a simple complex Lie algebra g̀ and Πf the set of all
simple roots except the “affine root”. To introduce the necessary notation I will
start with some recollections concerning the affinization of a simple complex Lie
algebra g̀.

One starts with the loop algebra Lg̀ = g̀ ⊗C C[t, t−1]. Its elements will be
understood as maps of the circle S1 to g̀ and written

X = X(t) =
∑

Xit
i.

Let κ̀ : g̀×g̀→ C be the Killing form. We consider the central extension g̃ = Lg̀⊕Cz
of Lg̀ with bracket

[X + aK, Y + bK] = [X, Y ]− res(κ̀(X, dY ))z

for all X, Y ∈ Lg̀ and a, b ∈ C, where we understand d(
∑

Yit
i) =

∑
iYit

i−1dt
and res(

∑
ait

idt) = a−1. In fact we should not prefer the Killing form in this
construction, but rather interpret Cz as the dual of the one-dimensional space of
all g̀-invariant bilinear forms on g̀.

Finally we extend the derivation ∂ = t ∂
∂t of Lg̀ by the rule ∂(z) = 0 to a

derivation of g̃, and adjoining this derivation to g̃ we get the so-called affinization
g = g̃⊕ C∂ of g̀ with bracket

[X + a∂, Y + b∂] = [X, Y ] + a∂(Y )− b∂(X)

for all X, Y ∈ g̃ and a, b ∈ C.
The center z of g is the line Cz. We equip g with the Z-grading g0 = g̀⊕Cz⊕C∂,

gi = g ⊗ ti if i 6= 0. Thus gi is the eigenspace of ad∂ with eigenvalue i, and the
semi-infinite characters γ : g0 → C are precisely the linear maps γ : g0 → C such
that γ(g̀) = 0 and γ(z) = 1. The Lie algebra g is an affine Kac-Moody algebra, and
the grading corresponds to a choice Πf ⊂ Π such that Π − Πf consists of a single
element α0.

In their articles [KL93, KL94] Kazhdan and Lusztig consider for c ∈ C a certain
subcategory given by suitable finitness conditions in the category Õ(z = c) of all
g̃-modules, that are killed by (z− c) and on which g̃≥0 acts locally finitely and g̃>0

locally nilpotently. We want to translate our results for Ō into results for Õ(z = c)
and need results of [Kac90].

For every M ∈ Ō the Casimir Ω gives a locally finite endomorphism Ω = ΩM ∈
EndgM , and for every morphism g : M → N we have g ◦ΩM = ΩN ◦ g. For a ∈ C
let Ō(Ω ' a) denote the subcategory of all objects of Ō, on which (Ω − a) acts
locally nilpotently.

Proposition 8.1 ([Pol91]). Let c ∈ C, c 6= −1/2. Then forgetting the action of ∂
gives an equivalence of categories

Ō(Ω ' 0, z = c) ∼→ Õ(z = c).
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Remarks 8.2. 1. The case z = −1/2 is precisely the “critical level”. Instead of z
Kac uses the “canonical” central element K = 2hz with h = h∨ the Coxeter
number.

2. Under the assumptions of the proposition forgetting the action of ∂ gives more
generally equivalences

Ō(Ω ' a, z = c) ∼→ Õ(z = c)

for all a ∈ C. Indeed the eigenvalue of Ω can be adjusted to every given
number if we change the action of ∂ by an additive constant; see [Kac90],
12.8.3.

Proof. Given a representation M of g̃ such that every m ∈M is killed by g̀⊗ ti for
i� 0, one defines as in [Kac90], 12.8.4 the zeroth Sugawara operator T0 : M →M .
If z acts by a scalar c 6= −1/2 on M , the formula ∂ = −(2h(2c + 1))−1T0 then
determines a (functorial) extension of the action of g̃ on M to an action of g; see
[Kac90], Corollary 12.8 (a). In case M was already a representation of g, we have
by [Kac90], 12.8.5 the relation

T0 = −2h(2c + 1)∂ + Ω.

Now we define an inverse to the functor of the Proposition. Certainly T0 acts
locally finitely on M ∈ Õ(z = c). So if we extend our g̃-action on M by ∂ =
−(2h(2c + 1))−1T0 to a g-action, ∂ acts locally finitely and Ω acts as zero. If we
now define a new action of ∂ on M as the semisimplification of the first action, we
obtain a new action of g on M , and one sees easily that this gives a functor

Õ(z = c)→ Ō(Ω ' 0, z = c).

On the other hand, the action of ∂ on an object of Ō(Ω ' 0, z = c) has to be
the semisimplification of the action of −(2h(2c + 1))−1T0, by the relations between
T0, ∂ and Ω recalled above. Thus we really found an inverse to the functor of the
proposition.

Suppose from now on that g̀ has type ADE. To simplify we work with the canoni-
cal central element K = 2hz, thus the critical level is K = −h. In this case Kazhdan
and Lusztig [KL93, KL94] show for many l ∈ C−Q≤0 an equivalence of categories

Õe(K = −h− l) ∼= Uζ-mode,1.

Here Õe denotes the category of all finite length objects in Õ, we put ζ =exp(−πi/l),
and Uζ-mode,1 means the category of all finite dimensional representations of type
1 of the quantum group with divided powers Uζ. In particular, for l ∈ Z≥h the
block B ⊂ Uζ-mode,1 of the trivial representation of Uζ is equivalent to the block
of Ō containing L(µ) with µ = −((h + l)/2h)γ. (This holds for every choice of a
semi-infinite character γ = 2ρ− 2ρf .)

To prove Conjecture 7.2 from [Soe97] concerning the character of tilting modules
for quantum groups at roots of unity l > 33, we thus have to check in Ō the formula

[T f(y � µ) : ∆f (x � µ)] = nx,y(1)

for all x, y ∈ Wf . By Corollary 7.6 it is sufficient to check 〈−wfµ−2ρ+2ρf , α∨〉 ∈ N
for all α ∈ Π.

Now a possible definition of the Coxeter number is 〈ρf , α∨0 〉 = −h + 1, we thus
get 〈γ, α∨0 〉 = 2h. Furthermore we have 〈γ, α∨〉 = 0 ∀α ∈ Πf . Since wfγ = γ we
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get −wfµ−2ρ+2ρf = ((h+ l)/2h)γ−γ = ((l−h)/2h)γ, thus this weight vanishes
on all coroots α∨ for α ∈ Πf and takes on α∨0 the value l − h ∈ N.

If g̀ is not of type ADE, the argument is more or less the same. The only problem
is that the Kazhdan-Lusztig-conjectures for affine Lie algebras in positive level are
only known for integral weights. Here there are still gaps in the literature to be
filled.

How one can get characters for tilting modules “on the walls” from the character
formulas in the principal block is explained in [Soe97].
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