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INVOLUTIONS IN WEYL GROUPS

ROBERT E. KOTTWITZ

Abstract. Let G be a split real group with Weyl group W . Let E be an
irreducible representation of W . Let V be the stable Lie algebra version of the
coherent continuation representation of W . The main result of this paper is a
formula for the multiplicity of E in V . The formula involves the position of E
in Lusztig’s set

∐
M(G). The paper treats all quasi-split groups G as well.

1. Introduction

Let G be a split adjoint group over R with root system R and Weyl group W .
Choose a system R+ of positive roots in R. By an involution in W we mean an
element σ ∈ W such that σ2 = 1. Given an involution σ ∈ W , we denote by W σ

the centralizer of σ in W , and we denote by RI the set of imaginary roots relative
to σ. There is a sign character εI on W σ, defined as follows: for w ∈ W σ we put
εI(w) = (−1)k, where k is the number of positive imaginary roots α such that wα
is negative.

For any involution σ ∈ W and any finite dimensional representation E of W
we define m(σ,E) to be the multiplicity of the character εI in the restriction of E
to the subgroup W σ. For any finite dimensional representation E of W we define
m(E) by

m(E) :=
∑
σ

m(σ,E)

where the sum ranges over a set of representatives σ for the conjugacy classes of
involutions in W .

Let g denote the (real) Lie algebra of G, and let O denote a nilpotent orbit
of G(C) in gC. Let E be the Springer representation of W corresponding to O.
Then m(E) is equal to the dimension of the space of stably G(R)-invariant linear
combinations of G(R)-invariant measures on the G(R)-orbits in O∩g; this assertion
(see [Kot98]) is the stable analog of a theorem of Rossmann [Ros90], 3.7. Assuming
Assem’s conjecture [Ass98] is valid in the real case, then for split classical groups
and special O the number m(E) should be equal to the cardinality of the finite
group G associated by Lusztig to the special representation E. Assem’s conjecture
also predicts that m(E) should be 0 if O is not special. See [Kot98] for a detailed
discussion of Assem’s conjecture, which has been proved by Waldspurger [Wal99]
for classical unramified p-adic groups.

Both of these predictions of Assem’s conjecture are proved in this paper, which
suggests that Assem’s conjecture is indeed valid in the real case. More generally,
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this paper calculates (case-by-case) the multiplicities m(E) and m(σ,E) for all
split classical groups and all irreducible representations E of W , and the last three
sections of the paper solve the analogous problem for real groups that are quasi-split
but not split. Casselman [Cas98] treats all the split exceptional groups.

The multiplicities m(E) and m(σ,E) are stable Lie algebra analogs of multi-
plicities that have been computed for all classical real groups by Barbasch (see the
comment following Theorem 3.5 in [Bar91]) and McGovern [McG98]. I am indebted
to Vogan for these references. No ideas beyond those used by Barbasch and Mc-
Govern are needed to calculate the stable multiplicities, so this revised version of
the paper records the results in the stable case with only brief indications of proofs.

There is a surprisingly simple formula for m(E) (see Theorem 1 below). In order
to state it we need to review some results of Lusztig [Lus84], [Lus79]. The set W∨

of isomorphism classes of irreducible representations of W is a disjoint union of
subsets, called families. Associated to a family F is a finite group G = GF .

Associated to any finite group G is a finite set M(G), defined as follows (see
[Lus84], [Lus79]). Consider pairs (x, ρ), where x is an element of G and ρ is an
irreducible (complex) representation of the centralizer Gx of x in G. There is an
obvious conjugation action of G on this set of pairs, andM(G) is by definition the
set of orbits for this action. The setM(G) has an obvious basepoint (1, 1).

We now consider the function φ̂0 on M(G) whose values are given by

φ̂0(x, ρ) =
∑
s∈S

d(s, ρ),

where S is a set of representatives for the Gx-conjugacy classes of elements s ∈ Gx
such that s2 = x, and d(s, ρ) denotes the dimension of the space of vectors in ρ

fixed by the centralizer Gs of s in G. As the notation suggests, φ̂0 arises naturally
as the Fourier-Lusztig transform of a function φ0 onM(G) (see 2.9 and 2.10). The
value of φ̂0 at the base point in M(G) is equal to the number of conjugacy classes
of involutions in G. If G is an elementary abelian 2-group, then φ̂0 is very simple:
its value at the basepoint in M(G) is equal to the order of G and all remaining
values are 0.

Let F be a family of representations of W , and let G be the associated finite
group. Then Lusztig [Lus84], Ch. 4 defines (case-by-case) an injection

F ↪→M(G).

The image of the unique special representation in F under this injection is the base
point (1, 1) ∈M(G).

We now state a theorem, which in this paper is proved only for the classical
root systems. The exceptional root systems are treated by Casselman [Cas98]. In
this theorem we assume that the group G is simple, so that the root system R is
irreducible. The theorem involves the notion of exceptional representations [BL78]
for the Weyl groups of type E7 and E8.

Theorem 1. Let E be an irreducible representation of the Weyl group W , and let
F ⊂ W∨ be the unique family containing E. Let G be the finite group associated
to F , and let xE ∈M(G) denote the image of E under the injection F ↪→M(G).
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Then there is an equality

m(E) =

{
φ̂0(xE) if E is non-exceptional,
1 if E is exceptional.

In particular if E is special and non-exceptional, then m(E) is the number of conju-
gacy classes of involutions in G. Moreover if R is classical, so that G is necessarily
an elementary abelian 2-group, then m(E) = 0 if E is non-special, and m(E) = |G|
if E is special.

The results in this paper are compatible with the following conjecture on left
cells. (Left cells in W and left cell representations of W are defined in [KL79].)

Conjecture 1. Let Γ be a left cell in W , and let [Γ] denote the corresponding
left cell representation of W . Let σ be an involution in W and let Σ denote its
conjugacy class in W . Then the multiplicity m(σ, [Γ]) is equal to the cardinality of
the set Σ ∩ Γ.

If the root system R is of type An, then left cells can be described in terms
of the Robinson-Schensted correspondence [KL79], [BV82a], and the conjecture is
true: it follows from 3.1 and a known statement about the Robinson-Schensted
correspondence (see Exercise 4 in §4.2 of [Ful97]). Moreover Casselman [Cas98] has
verified the conjecture for the root systems F4 and E6.

Conjecture 1 can also be generalized to the quasi-split case (see Conjecture 2
in §4). In the special case of complex groups Conjecture 2 is true: it reduces to a
result of Lusztig, namely Proposition 12.15 in [Lus84].

As is clear from the discussion above, this paper owes much to ideas of Assem
and Rossmann. I would like to thank two other people for their direct contribu-
tions to this paper. Casselman [Cas98] used a computer to prove Theorem 1 for E6,
E7 and E8 and in doing so discovered that the exceptional representations of the
Weyl groups of type E7 and E8 behave differently from the non-exceptional ones.
Moreover my confidence in Conjecture 1 was greatly bolstered by Casselman’s ver-
ification of its truth for F4 and E6. Fulton’s help with the representation theory
of Sn was invaluable, and in fact the work on type An in 3.1 was done jointly with
him, including the proof of Conjecture 1 for type An.

This paper is organized in the following way. Theorem 1 is stated in §2. In §3
Theorem 1 is proved for the classical root systems. At the same time the multi-
plicities m(σ,E) are calculated. The five exceptional root systems are treated by
Casselman [Cas98], who tabulates all the individual multiplicities m(σ,E). Theo-
rem 2 is stated in §4 and proved in §5 and §6. Again the multiplicities m(σ,E) are
calculated at the same time. Fortunately Theorem 2 for the quasi-split outer form
of E6 requires no essentially new computation; we need only appeal to Casselman’s
verification of Theorem 1 for E6.

2. Statement of Theorem 1 (the split case)

2.1. The goal. In this section we introduce notation, review some results of
Lusztig, and state Theorem 1 (see 2.13).

2.2. Involutions. Let W be the Weyl group of an irreducible reduced root sys-
tem R. Choose a system R+ of positive roots in R. By an involution in W we mean
an element σ ∈ W such that σ2 = 1. Given an involution σ ∈ W , we denote by Wσ



4 ROBERT E. KOTTWITZ

the centralizer of σ in W , and we denote by RI the set of imaginary roots relative
to σ (by definition a root α is said to be imaginary if σ(α) = −α). Of course W σ

acts on RI by automorphisms of that root system, and therefore there is a sign
character εI on W σ, defined as follows: for w ∈ W σ we put εI(w) = (−1)k, where
k is the number of positive imaginary roots α such that wα is negative. Note that
the Weyl group W (RI) of RI is a subgroup of W σ and that the restriction of εI
to W (RI) is the usual sign character on that Weyl group.

2.3. Definition of m(σ,E). For any involution σ ∈W and any finite dimensional
representation E of W we define m(σ,E) to be the multiplicity of the character εI
in the restriction of E to the subgroup W σ; clearly m(σ,E) depends only on the
conjugacy class of σ in W .

2.4. Definition of m(E). For any finite dimensional representation E of W we
define m(E) by

m(E) :=
∑
σ

m(σ,E)

where the sum ranges over a set of representatives σ for the conjugacy classes of
involutions in W .

2.5. Families of representations of W . We need to review some results of
Lusztig [Lus84], [Lus79]. The set W∨ of isomorphism classes of irreducible repre-
sentations of W is a disjoint union of subsets, called families. Each family F ⊂W∨
contains a unique special representation; thus the set of families is in one-to-one
correspondence with the set of special representations in W∨. Associated to a fam-
ily F is a finite group G = GF . If R is classical, then G is an elementary abelian
2-group. If R is exceptional, then G is one of the symmetric groups Sn (1 ≤ n ≤ 5).

2.6. The set M(G). Associated to any finite group G is a finite setM(G), defined
as follows (see [Lus84], [Lus79]). Consider pairs (x, ρ), where x is an element of G
and ρ is an irreducible (complex) representation of the centralizer Gx of x in G.
There is an obvious conjugation action of G on this set of pairs, and M(G) is by
definition the set of orbits for this action. The setM(G) has an obvious basepoint
(1, 1), the first entry being the identity element of G and the second entry being
the trivial representation of G.

2.7. Pairing {·, ·} on M(G). Given elements (x, ρ), (y, τ) in M(G) one defines
(see [Lus79], §4) a complex number {(x, ρ), (y, τ)} by the formula

{(x, ρ), (y, τ)} = |Gx|−1|Gy|−1
∑
g

χτ (g−1x−1g)χρ(gyg−1),(2.7.1)

where the sum is taken over the set of elements g ∈ G such that x commutes with
gyg−1, and where we have written χτ and χρ for the characters of the representa-
tions τ and ρ respectively. Clearly the pairing {·, ·} has the following property:

{m,n} = {n,m} for all m,n ∈ M(G).(2.7.2)
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2.8. Fourier transform onM(G). Let φ be a complex-valued function onM(G).
The Fourier transform φ̂ of φ is the complex-valued function onM(G) defined by

φ̂(m) =
∑

n∈M(G)

{m,n}φ(n).

It follows easily from the definitions that

φ̂(x, ρ) = |Gx|−1
∑
y∈Gx

χρ(y)
∑
τ∈G∨y

χτ (x−1) · φ(y, τ).(2.8.1)

In [Lus79], §4 it is shown that the square of the Fourier transform operator is the
identity (in other words, the square of the matrix {m,n} is the identity).

2.9. Special function φ0 onM(G). Let G∨ denote the set of isomorphism classes
of irreducible representations of G. For any ρ ∈ G∨ we define a number ε(ρ) in
the following way. If ρ is not isomorphic to its contragredient, we put ε(ρ) =
0. Otherwise, either ρ admits a non-degenerate G-invariant symmetric bilinear
form, in which case we put ε(ρ) = 1, or ρ admits a non-degenerate G-invariant
alternating bilinear form, in which case we put ε(ρ) = −1. To understand the
significance of ε(ρ), one should recall that the number of involutions in G is equal
to
∑
ρ∈G∨ ε(ρ) · dim(ρ). More generally, for any element x ∈ G one has an equality∣∣{g ∈ G ∣∣ g2 = x}

∣∣ =
∑
ρ∈G∨

ε(ρ) · χρ(x).(2.9.1)

Define an involution θ on the group algebra C[G] by θ(g) = g−1 (g ∈ G) and let
Lx be the C-linear endomorphism of C[G] given by left multiplication by x; then
(2.9.1) can be proved by calculating the trace of the endomorphism Lxθ in two
ways.

We will need the following function φ0 on M(G). Let m = (x, ρ) ∈ M(G). We
put φ0(m) = ε(ρ) (of course the function ε occurring here is the one for the finite
group Gx).

2.10. Fourier transform of φ0. We are interested in the Fourier transform of the
function φ0 defined in 2.9. The value of this Fourier transform at the base point in
M(G) is equal to the number of conjugacy classes of involutions in G. In fact the
following more general statement holds:

φ̂0(x, ρ) =
∑
s∈S

d(s, ρ),(2.10.1)

where S is a set of representatives for the Gx-conjugacy classes of elements s ∈ Gx
such that s2 = x, and d(s, ρ) denotes the dimension of the space of vectors in ρ
fixed by Gx ∩ Gs (here Gx, Gs denote the centralizers of x, s in G). In particular
φ̂0(x, ρ) is always a non-negative integer.

Indeed, it follows from (2.8.1) and (2.9.1) that

φ̂0(x, ρ) = |Gx|−1
∑
y∈Gx

χρ(y) · |{s ∈ Gy
∣∣ s2 = x}|(2.10.2)

(note that {s ∈ Gy
∣∣ s2 = x−1} and {s ∈ Gy

∣∣ s2 = x} have the same cardinality).
The right side of (2.10.2) is equal to∑

{s∈G | s2=x}
|Gx|−1

∑
y∈Gx∩Gs

χρ(y),
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which is in turn equal to the right side of (2.10.1). (Note that any element s ∈ G
such that s2 = x automatically lies in Gx.)

If G is an elementary abelian 2-group, then the Fourier transform of φ0 is very
simple; its value at the basepoint in M(G) is equal to the order of G and all
remaining values are 0.

To handle the exceptional root systems one also needs to compute the Fourier
transform of φ0 for the symmetric groups Sn (3 ≤ n ≤ 5). We give the results
in the form of lists. We adopt (without further explanation) the notation used by
Lusztig [Lus84], 4.3 to describe the elements in M(G) for these three symmetric
groups. We do not give all the values of φ̂0, just the ones needed for our purposes.

We begin with the case G = S3. Then M(G) has 8 elements, but we need only
consider 5 of them: (1, 1), (g2, 1), (1, r), (g3, 1), (1, ε). The values of φ̂0 on these 5
elements are 2, 0, 1, 1, 0 (in the order given).

Next we consider the case G = S4. ThenM(G) has 21 elements, but we need only
consider 11 of them: (1, 1), (1, λ1), (1, λ2), (1, σ), (g2, 1), (g2, ε

′′), (g′2, 1), (g′2, ε
′′),

(g′2, ε
′), (g3, 1), (g4, 1). The values of φ̂0 on these 11 elements are 3, 1, 0, 2, 0, 0, 1,

0, 0, 1, 0 (in the order given).
Finally we consider the case G = S5. Then M(G) has 39 elements, but we need

only consider 17 of them: (1, 1), (g3, 1), (g′2, 1), (1, ν), (1, λ1), (g5, 1), (g3, ε), (1, ν′),
(g′2, ε

′′), (1, λ2), (g′2, ε
′), (1, λ3), (g2, 1), (g4, 1), (g6, 1), (g2, r), (g2, ε). The values of

φ̂0 on these 17 elements are 3, 2, 1, 2, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 (in the order
given).

2.11. Injection F ↪→ M(G). Let F be a family of representations of W , and let
G be the associated finite group (see 2.5). Then Lusztig [Lus84], Ch. 4 defines
(case-by-case) an injection

F ↪→M(G).(2.11.1)

The image of the unique special representation in F under the injection (2.11.1) is
the base point (1, 1) ∈M(G).

2.12. Exceptional representations of W . Let E be an irreducible representa-
tion of the Weyl group W . Recall that E is said to be exceptional (see [BL78]) if R
is of type E7 and dim(E) = 512 (there are two of these) or if R is of type E8 and
dim(E) = 4096 (there are four of these). Recall also the involution i : W∨ → W∨

introduced in [BL78]. If E is non-exceptional, then i(E) = E. If E is exceptional,
then i(E) 6= E and the unique family F ⊂ W∨ containing E has two elements,
namely E and i(E).

2.13. Statement of Theorem 1. Let E be an irreducible representation of the
Weyl group W , and let F ⊂W∨ be the unique family containing E. Let G be the
finite group associated to F (see 2.5), and let xE ∈ M(G) denote the image of E
under the injection (2.11.1). Theorem 1 states that

m(E) =

{
φ̂0(xE) if E is non-exceptional,
1 if E is exceptional.

(2.13.1)

In particular (see 2.10) if E is special and non-exceptional, then m(E) is the number
of conjugacy classes of involutions in G. Moreover (again see 2.10) if R is classical,
so that G is necessarily an elementary abelian 2-group, then m(E) = 0 if E is
non-special, and m(E) = |G| if E is special.
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If E is exceptional, then F = {E, i(E)} (see 2.12), the group G is cyclic of
order 2, and the function E′ 7→ φ̂0(xE′) takes the value 2 on the unique special
member of F and 0 on the unique non-special member of F . Therefore Theorem 1
is equivalent to the statement that

m(E) = [φ̂0(xE) + φ̂0(xi(E))]/2(2.13.2)

for all E, exceptional or not.

3. Proof of Theorem 1 for classical split groups

3.1. Root system An. Let σ ∈ Sn be an involution and let s be the number of
fixed points of σ on {1, . . . , n}. Let E be an irreducible representation of Sn, and
let t be the number of columns of odd length in the Young diagram corresponding
to E. Then the multiplicity m(σ,E) is equal to δs,t (Kronecker delta). This follows
from the Littlewood-Richardson rule and 4.1(b) in [BV82b] (see also [Tan85] and
[Tho80]).

It follows that m(E) = 1 for every irreducible representation E of W . This
proves Theorem 1 in this case, since for type An the families F are singletons and
the groups GF are trivial (see [Lus84], 4.4). For type An Theorem 1 is not new; it
is a special case of a theorem of Rossmann [Ros90], 3.7.

3.2. Root systems Bn and Cn. In this section we assume that the root system R
is of type Bn or Cn. In fact these two cases can be treated together: the Weyl groups
are the same, the characters εI are the same, and the families F and groups GF are
essentially the same [Lus84], 4.5.

The Weyl group Wn is the semidirect product Sn n {±1}n. For any ordered
triple (j, k, l) of non-negative integers satisfying

2j + k + l = n(3.2.1)

we define an involution σ = σj,k,l in Wn by

σj,k,l := θj n (1, . . . , 1,−1, . . . ,−1),

where 1 is repeated 2j+k times in (1, . . . , 1,−1, . . . ,−1) and −1 is repeated l times,
and where θj ∈ Sn is the product of the j disjoint transpositions (i, 2j + 1 − i)
(1 ≤ i ≤ j). These elements σj,k,l form a set of representatives for the conjugacy
classes of involutions in Wn.

The isomorphism classes of irreducible representations of Wn are parametrized
by ordered pairs (α, β) of partitions such that |α| + |β| = n; we write Eα,β for
the representation corresponding to (α, β). The multiplicity m(σj,k,l, Eα,β) is equal
to 0 unless j + k = r and j + l = s, in which case it is equal to the number of
partitions γ of j such that γ c−→ α and γ

r−→ β. Here we are using the notation
γ

c−→ α (respectively, γ r−→ β) to indicate that the Young diagram for α can be
obtained from the Young diagram for β by adding boxes in such a way that at
most one box is added to each column (respectively, row). This follows easily from
the Littlewood-Richardson rule (and Mackey’s formula for the restriction of an
induced representation).

We need to recall some results from [Lus84], 4.5. By adding some parts equal to 0
to α, β, we may assume that α has one more part than β, say α = (αl1 ≤ α2 ≤ · · · ≤
αm+1) and β = (β1 ≤ β2 ≤ · · · ≤ βm). Put λi := αi + i − 1 (for 1 ≤ i ≤ m + 1)
and µi := βi + i − 1 (for 1 ≤ i ≤ m), and note that both λ1, λ2, . . . , λm+1 and
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µ1, µ2, . . . , µm are strictly increasing sequences of non-negative numbers. Then the
irreducible representation Eα,β of Wn is special if and only if

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µm ≤ λm+1,(3.2.2)

and in case it is special, then the corresponding group GF is an elementary abelian
2-group of order 2d, where d is the number of integers in the sequence µ1, µ2, . . . , µm
that do not appear in the sequence λ1, λ2, . . . , λm+1.

An easy combinatorial argument shows that the multiplicities m(σ,Eα,β) and
m(Eα,β) are 0 unless Eα,β is special, and that in case Eα,β is special one has

m(Eα,β) = 2d = |GF |.(3.2.3)

This proves Theorem 1 in this case. Furthermore, the combinatorial argument also
shows that for any non-negative integers j, k, l satisfying j + k = r and j + l = s,

m(σj,k,l, Eα,β) =
(

d

j0 − j

)
(binomial coefficient),(3.2.4)

where j0 :=
∑m

i=1 inf{αi+1, βi}. In particular m(σj,k,l, Eα,β) = 0 unless j0 − d ≤
j ≤ j0.

3.3. Root system Dn. In this section we assume that the root system R is of
type Dn; thus W (Dn) is the semidirect product Sn n {±1}neven, where {±1}neven is
the subgroup of {±1}n consisting of elements (a1, . . . , an) such that a1 . . . an = 1.
We identify W (Dn) with a subgroup of index 2 in Wn in the usual way.

Recall the involutions σj,k,l ∈ Wn. Clearly σj,k,l lies in the subgroup W (Dn) if
and only if l is even. In this case the intersection of W (Dn) with the conjugacy
class of σj,k,l in Wn is a single conjugacy class in W (Dn), except when k = l = 0,
in which case n must be even and the intersection consists of two conjugacy classes
in W (Dn); for each even n we now fix an element σ′n/2,0,0 that is conjugate to
σn/2,0,0 in Wn but not in W (Dn). Then the elements σj,k,l (for ordered triples of
non-negative integers (j, k, l) satisfying (3.2.1) and such that l is even), together
with the element σ′n/2,0,0 if n is even, form a set of representatives for the conjugacy
classes of involutions in W (Dn).

Let (α, β) be an ordered pair of partitions such that |α| + |β| = n. Then the
irreducible representation Eα,β of Wn restricts to an irreducible representation of
W (Dn) unless α = β (this can happen only if n is even), in which case it decomposes
as the direct sum of two irreducible representations E′α,α and E′′α,α. Obviously E′α,α
and E′′α,α are conjugate by the non-trivial element of the group Wn/W (Dn); soon
we will see how to distinguish them. Every irreducibleW (Dn)-module is isomorphic
to one of the modules above. Note that Eα,β and Eβ,α are isomorphic as W (Dn)-
modules, but this is the only redundancy in this description of the irreducible
W (Dn)-modules.

Let α, β be as above. By adding some parts equal to 0 to α, β, we may assume
that α and β have the same number of parts, say α = (α1 ≤ α2 ≤ · · · ≤ αm) and
β = (β1 ≤ β2 ≤ · · · ≤ βm). Put λi := αi + i− 1 and µi := βi + i− 1 for 1 ≤ i ≤ m.

We need to recall some results from [Lus84], 4.6. Suppose first that α = β. Then
the representations E′α,α, E′′α,α are both special and the associated groups G are
both trivial. Now assume that α 6= β, and by switching α, β if necessary, assume
that |β| ≤ |α|. Then Eα,β is special if and only if

µ1 ≤ λ1 ≤ µ2 ≤ λ2 ≤ · · · ≤ µm ≤ λm.(3.3.1)
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If Eα,β is special, then the associated group G is an elementary abelian 2-group of
order 2c−1, where c is the number of integers in the sequence µ1, µ2, . . . , µm that
do not appear in the sequence λ1, λ2, . . . , λm. Note that c ≥ 1 (since α 6= β).

We start by calculating the multiplicities m(σ,Eα,β), even though in case α = β
this number is the sum of the two multiplicities m(σ,E′α,α) and m(σ,E′′α,α) that we
really want. In case n is even, so that σ′n/2,0,0 is defined, we note that

m(σ′n/2,0,0, Eα,β) = m(σn/2,0,0, Eα,β),

so that we may as well assume that σ = σj,k,l with l even.
The calculation of m(σ,Eα,β) is very similar to the one made for types B and

C, and we just state the result. As before we assume that |β| ≤ |α|. Let Q(α, β)
denote the set of partitions γ such that β r−→ γ and γ

c−→ α. For any non-negative
integer d let Qd(α, β) be the set of partitions γ ∈ Q(α, β) such that |γ| = d. Then
m(σj,k,l, Eα,β) is 0 unless |α| = j + k + l and |β| = j, in which case it is equal to
the cardinality of the set Qj+l(α, β).

Assume for the moment that α = β. It follows from the discussion above that
m(σj,k,l, Eα,α) = 0 unless k = l = 0, and that m(σn/2,0,0, Eα,α) = 1. Thus we
may choose the labeling of E′α,α and E′′α,α so that both m(σn/2,0,0, E′α,α) and
m(σ′n/2,0,0, E

′′
α,α) are 1, and both m(σn/2,0,0, E′′α,α) and m(σ′n/2,0,0, E

′
α,α) are 0.

Therefore Theorem 1 holds for E′α,α and E′′α,α.
Now we assume that α 6= β (and that |β| ≤ |α|). As above we assume that α,

β both have m parts, and we use α, β to define integers λi, µi. In the discussion
below it will be convenient to make the convention that α0 = β0 = 0, so that αi−1,
βi−1 are defined even for i = 1.

One sees easily that Q(α, β) is the set of partitions γ = (γ1 ≤ γ2 ≤ · · · ≤ γm)
such that

sup{αi−1, βi} ≤ γi ≤ inf{αi, βi + 1}.
In particular Q(α, β) is non-empty if and only if

αi−1 − 1 ≤ βi ≤ αi for i = 1, . . . ,m,

or, equivalently, if and only if (3.3.1) holds.
Now assume that Q(α, β) is non-empty. Then for each value of the index i, the

difference of inf{αi, βi + 1} and sup{αi−1, βi} is 0 or 1, and we define C to be the
set of indices i for which the difference is 1; it is easy to see that i ∈ C if and
only if αi−1 − 1 < βi < αi, or, equivalently, if and only if µi does not belong to
the sequence λ1, λ2, . . . , λm. Therefore the cardinality of C is the number c defined
above. Now put

d0 =
m∑
i=1

sup{αi−1, βi}.

Then |Qd(α, β)| is 0 unless d0 ≤ d ≤ d0 + c, in which case it is the binomial
coefficient

(
c

d−d0

)
. Moreover we have m(E) = 2c−1, which proves Theorem 1.

4. Statement of Theorem 2 (the quasi-split case)

4.1. The group G. Let G be a connected reductive group over R that is quasi-
split but not split. We assume further that G is adjoint and R-simple. Thus G is
either of the form RC/RH for a simple group H over C, or G is an outer form of
An, Dn or E6.
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We fix a Borel subgroup B of G over R and a maximal R-torus T contained
in B. Let R denote the root system of TC in GC, and let W denote the Weyl group
of TC in GC. Then complex conjugation, which we denote by θ, acts on R and W ,
preserving the subset R+ of roots that are positive relative to B. We denote by W̃
the semidirect product W oGal(C/R). Of course W̃ acts in an obvious way on R.

4.2. Involutions. Let W ′ = W · θ be the non-trivial coset of W in W̃ . By an
involution in W ′ we mean an element σ ∈W ′ such that σ2 = 1. Given an involution
σ ∈ W ′, we denote by W σ the centralizer of σ in W , and we denote by RI the set
of imaginary roots in R relative to σ (by definition a root α is said to be imaginary
if σ(α) = −α). Of course W σ acts on RI by automorphisms of that root system,
and therefore there is a sign character εI on W σ, defined as follows: for w ∈ W σ

we put εI(w) = (−1)k, where k is the number of positive imaginary roots α such
that wα is negative.

4.3. Definition of m(σ,E). The group Gal(C/R) = {1, θ} acts on the set W∨

of isomorphism classes of irreducible representations of W . We denote by W∨ex the
subset of W∨ consisting of all isomorphism classes of irreducible representations
that are fixed by θ. Any representation E ∈W∨ex can be extended (in two ways) to
an irreducible representation Ẽ of W̃ . For any involution σ ∈W ′ and any E ∈W∨ex

we define m(σ,E) to be the multiplicity of the character εI in the restriction of E
to the subgroup W σ; clearly m(σ,E) depends only on the W -conjugacy class of σ
in W ′.

4.4. Definition of mθ(E). For any E ∈ W∨ex we define mθ(E) by

mθ(E) :=
∑
σ

m(σ,E),

where the sum ranges over a set of representatives σ for the W -conjugacy classes
of involutions in W ′.

4.5. Families in W∨ex. We need to review some results in [Lus84]. If F ⊂ W∨

is a family, then θ(F) is also a family. Now assume that θ(F) = F . Then F is
fixed pointwise by θ, so that F ⊂ W∨ex (see [Lus84], 4.17). Let F̃ be the set of
isomorphism classes of irreducible representations of W̃ whose restrictions to W
are irreducible and belong to F . The restriction map F̃ → F is surjective, and
its fibers have two elements, obtained from one another by tensoring with the non-
trivial 1-dimensional character χ of the quotient Gal(C/R) of W̃ .

Associated to F , θ is a finite group G̃ = G̃F containing the group GF of 2.5 as a
subgroup of index 2 (see 4.18–4.20 in [Lus84]). We identify the quotient group G̃/G
with {1, θ} and denote by G′ the non-trivial coset of G in G̃.

4.6. The sets M, M′, M. Let G̃ be a finite group, and let G be a subgroup of
index 2 in G̃. Denote by G′ the non-trivial coset of G in G̃. Associated to (G, G̃)
are three finite sets M, M′, M, defined as follows (see [Lus84], 4.16). We begin
with M and M′, both of which are by definition subsets of M(G̃), the finite set
associated to G̃ (see 2.6). The set M consists of elements (x, ρ) ∈ M(G̃) such that
x ∈ G, the centralizer G̃x meets G′, and the restriction of ρ to Gx remains irreducible.
The setM′ consists of pairs (y, τ) ∈ M(G̃) such that y ∈ G′. Finally,M is defined
to be the set of equivalence classes of pairs (y, τ̄) consisting of an element y ∈ G′
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and an element τ̄ ∈ G∨y , two such pairs being equivalent if they lie in the same orbit
of the conjugation action of G̃ (or, equivalently, the conjugation action of G).

There is a surjective map M′ →M defined by (y, τ) 7→ (y, τ̄), where τ̄ denotes
the restriction of τ to Gy ; note that τ̄ is automatically irreducible, since the non-
trivial coset of Gy in G̃y contains an element of the center of G̃y, namely y. Every
fiber of this map M′ →M has two elements.

There is a map M → M(G) defined by (x, ρ) 7→ (x, ρ̄), where ρ̄ denotes the
restriction of ρ to Gx. Any non-empty fiber of this map has two elements, ob-
tained from one another by tensoring with the non-trivial 1-dimensional character χ
of G̃/G, which we also view as the non-trivial character on G̃x/Gx for any x ∈ G̃
such that G̃x meets G′.

4.7. Pairing {·, ·} between M and M′. We restrict the pairing {·, ·} on M(G̃)
to the subset M×M′ of M(G̃)×M(G̃), obtaining a pairingM×M′ → C, as in
[Lus84], 4.16.

4.8. Fourier transform. Recall from 2.8 the Fourier transform on M(G̃). This
Fourier transform interchanges (see [Lus84], 4.16) the following two subspaces of the
space of complex-valued functions onM(G̃): the space P of functions φ supported
onM and satisfying φ(x, ρ⊗χ) = −φ(x, ρ) for all (x, ρ) ∈M, and the space P ′ of
functions φ supported onM′ and satisfying φ(y, τ⊗χ) = φ(y, τ) for all (y, τ) ∈M′.
Obviously P ′ can be identified with the space of complex-valued functions on M,
since the fiber of M′ →M through (y, τ) consists of (y, τ) and (y, τ ⊗ χ).

4.9. Special function φ0 on M. We will need the following function φ0 on M.
Let (y, τ̄ ) ∈ M. Let ωτ̄ denote the central character of τ̄ . We put

φ0(y, τ̄ ) = ε(τ̄ ) · ωτ̄ (y2),

with ε(τ̄) as in 2.9. (Note that y2 lies in the center of Gy .)
We will need the following analog of (2.9.1). Suppose that G′ contains an ele-

ment y belonging to the center of G̃. Then for all x ∈ G there is an equality∣∣{g ∈ G′ ∣∣ g2 = x}
∣∣ =

∑
ρ∈G∨

ε(ρ) · ωρ(y2) · χρ(x).(4.9.1)

This follows from (2.9.1), applied to both G̃ and G.

4.10. Fourier transform of φ0. We are interested in the Fourier transform of the
function φ0 defined in 4.9. We regard φ̂0 as a function onM satisfying φ̂0(x, ρ⊗χ) =
−φ̂0(x, ρ) for all (x, ρ) ∈ M. In fact, just as in 2.10 one can use (4.9.1) to show
that for (x, ρ) ∈ M

φ̂0(x, ρ) =
∑
s∈S

[d(s, ρ)− d(s, ρ⊗ χ)],(4.10.1)

where S is a set of representatives for the G̃x-conjugacy classes of elements s ∈ G′
such that s2 = x, and d(s, ρ) denotes the dimension of the space of vectors in ρ

fixed by G̃x ∩ G̃s. In particular, the value of φ̂0 at the base point (1, 1) in M is
equal to the number of G̃-conjugacy classes of involutions in G′ (which is the same
as the number of G-conjugacy classes of involutions in G′).

We need to know more about φ̂0 in three special cases. First suppose that G̃ is the
direct product of G and {±1}. Then the canonical map M→M(G) has a section
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t :M(G)→M, defined by t(x, ρ̄) = (x, ρ), where ρ is the irreducible representation
of G̃x obtained from ρ̄ by means of the canonical surjection G̃x = Gx × {±1} → Gx.
MoreoverM is the disjoint union of the image of t and the image of t′, where t′ is
the composition of t and the map M→M defined by (x, ρ) 7→ (x, ρ⊗ χ). Pulling
back the function φ̂0 to M(G) by means of t, we get a function on M(G) which is
easily seen (using the description of the pairing onM×M′ given in [Lus84], 4.19)
to coincide with the one in 2.10 (defined using the Fourier transform on M(G)).

Next suppose that G̃ is an elementary abelian 2-group. Of course G is then also
an elementary abelian 2-group. Moreover, G̃ is non-canonically the direct product
of G and {±1}. Therefore it follows from the discussion above (together with 2.10)
that φ̂0(1, 1) = |G|, φ̂0(1, χ) = −|G|, and the remaining values of φ̂0 are all 0.

Finally, suppose that G = H × H for some finite group H, and that G̃ is the
semidirect product Go {1, θ}, where θ acts on H×H by θ(a, b) = (b, a). There is a
canonical embedding u :M(H)→M, defined by (x, ρ) 7→ ((x, x), ρ⊗ρ), where the
element θ of G̃(x,x) acts on ρ⊗ ρ by θ(v ⊗ w) = w ⊗ v. MoreoverM is the disjoint
union of the image of u and the image of u′, where u′ is the composition of u and the
map M→M defined by (x, ρ) 7→ (x, ρ⊗ χ). Therefore φ̂0 is uniquely determined
by the function ψ onM(H) obtained by composing φ̂0 with the embedding u. It is
easy to check (using the description of the pairing onM×M′ given in [Lus84], 4.20)
that ψ is equal to the Fourier transform (on M(H)) of the function φ1 on M(H)
defined by φ1(x, ρ) = ε(ρ) · ωρ(x), where ωρ denotes the central character of ρ.

We claim that φ1 is its own Fourier transform and hence that ψ = φ1. Indeed,
using (2.8.1) we see that for (x, ρ) ∈ M(H)

φ̂1(x, ρ) = |Hx|−1
∑
y∈Hx

χρ(y)
∑
τ∈H∨y

χτ (x−1) · ε(τ) · ωτ (y).(4.10.2)

It follows from (2.9.1) that the second sum in (4.10.2) is equal to∣∣{s ∈ Hy ∣∣ s2 = x−1y}
∣∣.

Therefore the right side of (4.10.2) can be rewritten as

ωρ(x) · |Hx|−1
∑
s∈Hx

χρ(s2),

which is in turn equal to ωρ(x) ·ε(ρ) (in other words, equal to φ1(x, ρ)), since χρ(s2)
is equal to χSym2(ρ)(s)− χ∧2(ρ)(s).

4.11. Injection F̃ ↪→ M. Let F be a θ-stable family in W∨, and define F̃ and
F̃ → F as in 4.5. Let G = GF be the finite group associated to F as in 2.5, and
let G̃ be the finite group associated to F , θ in 4.5. Recall that G is a subgroup of
index 2 in G̃, so that we have finite sets M, M′, M as in 4.6. Lusztig [Lus84],
Ch. 4 defines (case-by-case) an injection

i : F̃ → M(4.11.1)

such that the diagram

F̃ i−−−−→ My y
F −−−−→ M(G)
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commutes, where F → M(G) is the injection in 2.11 and M→M(G) is the map
defined in 4.6. Moreover, if the image of Ẽ ∈ F̃ under the injection i is (x, ρ), then
the image of Ẽ ⊗ χ under i is (x, ρ⊗ χ).

4.12. Statements of Theorem 2 and Conjecture 2. Let E ∈ W∨ex and let
F ⊂ W∨ be the unique family containing E. Then F is θ-stable, and we let F̃ ,
G, G̃, M and F̃ → M be as in 4.11. Let Ẽ be one of the two extensions of E
to a representation of W̃ (the other extension being Ẽ ⊗ χ), and let xẼ ∈ M
be the image of Ẽ under the injection F̃ → M. Then φ̂0(xẼ) is an integer, and
φ̂0(xẼ⊗χ) = −φ̂0(xẼ). Therefore the absolute value |φ̂0(xẼ)| is independent of the
choice of extension Ẽ.

Theorem 2. There is an equality

mθ(E) = |φ̂0(xẼ)|,(4.12.1)

where mθ(E) is the multiplicity defined in 4.4.

Conjecture 2. Let σ be an involution in W ′ and let Σ be its conjugacy class in W̃ .
Let Γ be a left cell in W , let [Γ] be the corresponding left cell representation of W ,
and let Γ · θ be the subset of W ′ consisting of all products wθ where w ∈ Γ. Then
the multiplicity m(σ, [Γ]) is equal to the cardinality of the set Σ ∩ (Γ · θ).

This generalizes Conjecture 1 of the introduction to the quasi-split case.

4.13. Organization. In §5 we will calculate the multiplicities m(σ,E) and mθ(E).
In §6 we will prove Theorem 2.

5. Multiplicities m(σ,E) and mθ(E) (quasi-split case)

5.1. The goal. We retain the notation and assumptions of §4. For each involution
σ ∈W ′ and each E ∈W∨ex we are going to calculate the multiplicities m(σ,E) and
mθ(E) defined in 4.3 and 4.4. This will be done case-by-case.

5.2. Complex groups. Assume that G = RC/R(H) for some connected reductive
group H over C, and let WH denote the Weyl group of H . Then W = WH ×WH

and W̃ is the semidirect product (WH ×WH)o {1, θ}, where θ acts on WH ×WH

by θ(a, b) = (b, a). The map EH 7→ EH ⊗ EH from W∨H to W∨ex is bijective.
Every involution in W ′ is conjugate to the involution θ. The centralizer W θ of the
involution θ is WH , embedded diagonally in W . There are no imaginary roots, and
therefore the sign character εI is trivial. Thus, for any E ∈W∨ex we have

mθ(E) = m(θ, E) = 1.(5.2.1)

(We used that every EH ∈W∨H is self-contragredient.)

5.3. Types An and E6. Assume that G is of type An (n ≥ 2) or E6. Then we
have

W̃ = Aut(R) = W × {±1},

where −1 ∈ W̃ denotes the automorphism of R sending each root to its negative.
Therefore W∨ex = W∨ and every involution σ ∈W ′ is of the form σ = (τ,−1), where
τ is an involution in W . Clearly (τ,−1) is conjugate to (τ ′,−1) if and only if τ is
conjugate to τ ′. The centralizer W σ is equal to the centralizer W τ . A root α ∈ R
is imaginary for σ if and only if it is real for τ . Therefore εσI is equal to εW ⊗ ετI ,
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where εσI (respectively, ετI ) denotes the sign character εI for σ (respectively, τ), and
where εW denotes the usual sign character for W .

Let E ∈ W∨. We conclude from the discussion above that

m(σ,E) = m(τ, E ⊗ εW ).(5.3.1)

The multiplicities on the right side of (5.3.1) were calculated in 3.1 for type An and
by Casselman [Cas98] for type E6. It follows from (5.3.1) that mθ(E) = m(E⊗εW ).
But in fact m(E ⊗ εW ) is equal to m(E); this is obvious for type An since m(E) is
then always 1, and it is true for type E6 by Casselman’s calculation. Therefore we
conclude that

mθ(E) = m(E).(5.3.2)

5.4. Type Dn. Assume that G is of type Dn (n ≥ 2). Then we may identify W̃
with Wn (see 3.3), and W∨ex consists of the representations Eα,β of 3.3 with α 6= β.
Every involution in W ′ is conjugate under W to one of the involutions σj,k,l of 3.2
with l odd. Thus we need to calculate the multiplicities m(σj,k,l, Eα,β) for α 6= β
and l odd. But in fact this calculation is exactly the same as the one made in 3.3,
since the fact that l was assumed to be even played no role. Therefore the results
of 3.3 remain true for l odd (in particular the non-zero multiplicities are binomial
coefficients).

It follows from the discussion above (together with results from 3.3) that
mθ(Eα,β) is 0 unless Eα,β is special, in which case mθ(Eα,β) = 2c−1, which can be
rewritten as (see 3.3)

mθ(Eα,β) = |G|,(5.4.1)

where G is the finite group associated to the unique family F ⊂ W∨ containing
Eα,β .

6. Proof of Theorem 2

6.1. The goal. We retain the notation and assumptions of §4. Let E ∈ W∨ex and
let F , G, G̃, M, φ̂0 be as in 4.12. In this section we will verify case-by-case that
Theorem 2 (see (4.12.1)) is true.

6.2. Complex groups. As in 5.2 we assume that G = RC/R(H). Then E = EH⊗
EH for some EH ∈ W∨H , and F = FH ×FH , where FH is the unique family in W∨H
containing EH . Moreover G = H×H, where H = GFH , and G̃ = (H×H)o {1, θ},
where θ acts on H×H by interchanging the two factors.

It follows from 4.10 that the function |φ̂0| on M is identically equal to 1. It
follows from (5.2.1) that the function mθ on W∨ex is also identically equal to 1.
Therefore Theorem 2 is true in this case.

6.3. Types An and E6. Assume that G is of type An (n ≥ 2) or E6. In this case
we have G̃ = G×{±1} (see [Lus84], 4.19). It follows from 4.10 that the function |φ̂0|
onM is the composition of the mapM→M(G) (defined in 4.6) with the function
onM(G) defined in 2.10. Using Theorem 1 and the commutativity of the diagram
in 4.11, we see that Theorem 2 is equivalent to the assertion that mθ(E) = m(E),
which we have already proved (see (5.3.2)).
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6.4. Type Dn. Assume that G is of type Dn (n ≥ 2). Then G̃ is an elementary
abelian 2-group (see [Lus84], 4.18). It follows from 4.10 that the function |φ̂0| onM
is 0 except at the two points (1, 1) and (1, χ), where it is equal to |G|. Therefore
Theorem 2 is equivalent to the assertion that mθ(E) = 0 unless E is special, in
which case mθ(E) = |G|. We have already proved this assertion (see (5.4.1)).
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