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STABLE NILPOTENT ORBITAL INTEGRALS
ON REAL REDUCTIVE LIE ALGEBRAS

ROBERT E. KOTTWITZ

Abstract. This paper proves a stable analog of Rossmann’s formula for the
number of G(R)-orbits in g ∩O, where O is a nilpotent orbit in gC.

1. Introduction

1.1. Notation. Let G be a connected reductive group over R and let g denote its
Lie algebra. For g ∈ G(R) and X ∈ g we denote by g ·X the adjoint action of g
on X (and the same for the adjoint action of G(C) on the complexification gC of g).
For X ∈ g we denote by GX the centralizer of X in G.

1.2. Stable conjugacy. Let X,Y be regular semisimple elements in g. Recall that
X,Y are said to be stably conjugate if there exists g ∈ G(C) such that g ·X = Y .
The inner automorphism Int(g) induces an isomorphism (over R) from GX to GY ,
and this isomorphism is independent of the choice of g.

1.3. Stable orbital integrals. Let X be a regular semisimple element of g.
Choose Haar measures dg and dt on G(R) and GX(R) respectively. For any
Schwartz function f on g we write OX(f) for the orbital integral

OX(f) :=
∫
G(R)/GX(R)

f(g ·X) dg/dt.

Similarly we write SOX(f) for the stable orbital integral

SOX(f) :=
∑
X′

OX′(f)

where the sum is taken over a set of representatives X ′ for the conjugacy classes
within the stable conjugacy class of X . We form the orbital integral OX′ using dg
and the Haar measure dt′ on GX′(R) obtained from dt via the isomorphism from
GX to GX′ defined in 1.2.

1.4. Stably invariant tempered distributions. Let f be a Schwartz function
on g. We write f ∼ 0 if SOX(f) = 0 for every regular semisimple element X in
g. We say that a tempered distribution D on g is stably invariant if D(f) = 0 for
every Schwartz function f on g such that f ∼ 0 (equivalently: D is in the closure
of the linear span of the tempered distributions SOX , where closure is taken in
the sense of the topology of pointwise convergence). It is obvious that any stably
invariant distribution is invariant. Of course by an invariant distribution we mean
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one that is invariant under the adjoint action of G(R). The definitions in 1.2–1.4
are Lie algebra analogs of ones made by Shelstad in [She79] (see also [Wal97] for
the p-adic case).

1.5. Nilpotent orbital integrals. Now let O be a nilpotent G(C)-orbit in gC and
let rO be the number of G(R)-orbits in g∩O. EachG(R)-orbit in g∩O determines a
tempered invariant distribution on g (see [Rao72]), defined by integrating Schwartz
functions f on g over the given orbit with respect to the (unique up to scalars)
non-zero G(R)-invariant Radon measure on that orbit. The linear span of these
distributions (one for each G(R)-orbit in g ∩O) is an rO-dimensional space DO of
tempered invariant distributions on g.

The main result of this paper is a formula for the dimension sO of the subspace
Dst

O of stably invariant elements in DO. Our formula for sO (see 1.8) is the stable
analog of Rossmann’s formula for rO, which we now recall.

1.6. W σ, WR and εI. Let T be a maximal torus in G and let W denote the Weyl
group of T (C) in G(C). Then complex-conjugation, which we denote by σ, acts on
W , and we can consider W σ, the group of fixed points of σ on W . Inside Wσ we
have the subgroup WR consisting of elements in W that can be realized by elements
in G(R) that normalize T .

Let RI denote the set of imaginary roots of T (roots α of T (C) in gC such that
σα = −α). Then W σ permutes the elements of RI , and we define a sign character
εI on W σ in the usual way: εI(w) = (−1)b, where b is the number of positive roots
α ∈ RI such that wα is negative. By restriction we also regard εI as a character
on WR.

Similarly we use the set of real roots of T (roots α such that σα = α) to define
another sign character εR on W σ: εR(w) = (−1)c, where c is the number of positive
real roots such that wα is negative. It is well-known that εIεR coincides with the
restriction to W σ of the usual sign character ε on the Weyl group W .

1.7. Rossmann’s formula. Using Springer’s correspondence [Spr76], we get from
the nilpotent orbit O an irreducible character χO of the abstract Weyl group Wa

of G(C). We normalize the correspondence so that the trivial orbit O = {0}
corresponds to the sign character ε of Wa. Of course we can also think of χO as
an irreducible character of the Weyl group W of any maximal torus T as above,
so that we can consider the multiplicity mWR(εI , χO) with which εI occurs in the
restriction of χO to the subgroup WR. Rossmann [Ros90], 3.7 proved that

rO =
∑
T

mWR(εI , χO),(1.7.1)

where the sum is taken over a set of representatives for the G(R)-conjugacy classes
of maximal tori T in G.

1.8. Main Theorem. The main result of this paper is the following formula for
the number sO:

sO =
∑
T

mWσ (εI , χO),(1.8.1)

where the index set for the sum is the same as in (1.7.1) and where mWσ (εI , χO)
denotes the multiplicity with which εI appears in the restriction of χO to W σ.
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To prove this formula for sO we use the Fourier transform and must therefore
check that the Fourier transform of a stably invariant tempered distribution on g

is stably invariant. This result (see 4.3, 4.4), which is due to Waldspurger [Wal97]
in the p-adic case, follows easily from another theorem of Rossmann [Ros78].

The Fourier transforms of nilpotent orbital integrals are invariant eigendistribu-
tions on g and hence by a theorem of Harish-Chandra are represented by locally
integrable functions on g. It is easy to recognize when such a locally integrable
function represents a stably invariant distribution. Moreover, a description of the
image of DO under the Fourier transform is implicit in the work of Barbasch and
Vogan [BV80], [BV82], [BV83], Ginzburg [Gin83], Hotta-Kashiwara [HK84] and
Rossmann [Ros90]. (I am very much indebted to V. Ginzburg for this remark.)
Our main theorem is a simple consequence of these observations, and all the meth-
ods used in this paper are straightforward adaptations of methods used in the
papers just cited. For this reason much of the paper consists of a review of the
relevant literature.

1.9. Assem’s conjecture. Our main result is a formula for the dimension sO of
the subspace Dst

O of stably invariant elements in DO. It would of course be better
to find a basis for Dst

O. Assem investigated this question in the p-adic case (for the
group rather than its Lie algebra) and suggested (see the introduction to [Ass98]) a
conjectural answer for split classical groups. Assem’s conjecture has been proved by
Waldspurger (see [Wal99], IX.16), who in fact treats all unramified classical groups.

Let us transpose Assem’s conjecture to the real case and see what it says sO
ought to be. We assume that G is quasi-split and classical, and we fix a nilpotent
G(C)-orbit O in gC. First of all, Assem conjectures that sO = 0 unless O is special
in Lusztig’s sense. The truth of this conjecture follows from the main theorem of
this paper in conjunction with the main result of [Kot98].

Next Assem defines a suitable notion of stable conjugacy for special nilpotent
elements, intermediate betweenG(R)-conjugacy andG(C)-conjugacy. Assume that
O is special. For X ∈ g ∩O we denote by GX Lusztig’s canonical (finite) quotient
group of the centralizer GX (see [Lus84], 13.1, where the quotient group GX is
denoted by Ā(u)). The quotient group and the canonical surjection GX → GX are
both defined over R, and in fact the Galois group acts trivially on GX .

For Y ∈ g∩O we choose g ∈ G(C) such that Y = Ad(g)(X). Then σ 7→ g−1σ(g)
(σ ∈ Gal(C/R)) is a 1-cocycle of Gal(C/R) in GX , whose class aY in H1(R, GX)
is well-defined. Following Assem (except in terminology) we say that Y is stably
conjugate to X if the image āY of aY in H1(R,GX) is trivial. Stable conjugacy is
an equivalence relation, and the map Y 7→ āY is an injection from the set of stable
conjugacy classes in g∩O to H1(R,GX). In fact this injection is actually a bijection,
not just over R, but over any field of characteristic 0. (Only the orthogonal groups
pose any difficulty; for them one needs to use the explicit description of Lusztig’s
quotient group.) Therefore the number of stable conjugacy classes in g ∩O is the
cardinality of H1(R,GX) = GX . (The last equality follows from the fact that GX
is an elementary abelian 2-group on which the Galois group acts trivially.)

Let X = X1, . . . , Xr be representatives for the G(R)-conjugacy classes in the
stable conjugacy class of X . Assem refers to X1, . . . , Xr as the stability packet of X .
Consider the linear span of the orbital integrals OX1 , . . . , OXr . Assem conjectures
that the subspace of stably invariant elements in this linear span is 1-dimensional,
and that the stable combinations so obtained, one for each stable conjugacy class,
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form a basis for Dst
O. In case G is split, Assem predicts which linear combination

of OX1 , . . . , OXr is stable. Fix a non-zero G(C)-invariant differential form of top
degree on O that is defined over R. Associated to the differential form is a measure
on g ∩ O. We use (the restriction of) this measure to define the orbital integrals
OX1 , . . . , OXr ; then Assem predicts that

r∑
i=1

OXi

is stable. In the quasi-split case he predicts only that one can obtain a stable
combination by taking a linear combination of the form

r∑
i=1

ci ·OXi

with ci ∈ {±1} for all i.
In any case Assem’s conjecture implies that sO should be equal to the number

of stable conjugacy classes in g ∩ O, namely |GX |. This prediction is correct; it
follows from the main theorem in this paper in conjunction with the main result of
[Kot98]. Since Waldspurger has proved Assem’s conjecture for unramified classical
p-adic groups, and since Assem’s conjecture in the real case predicts the correct
value of sO, it seems likely that Assem’s conjecture is valid in the real case.

2. Review of invariant eigendistributions

In this section we review Harish-Chandra’s theory of invariant eigendistributions.
The presentation in 2.6–2.9 has been strongly influenced by the paper [HK84] of
Hotta and Kashiwara.

2.1. Invariant eigendistributions of type Λ. Let ha be the abstract Cartan
subalgebra of gC. It comes equipped with a root system Ra ⊂ h∗a and a positive
system R+

a in Ra. The Weyl group Wa of Ra is called the abstract Weyl group
of gC.

The algebra S(gC)G(C) of G-invariant constant coefficient differential operators
on g can be identified with the algebra C[h∗a]Wa of Wa-invariant polynomial func-
tions P on h∗a; we write ∂(P ) for the differential operator on g corresponding to P .

Let Λ be a Wa-orbit in h∗a. Any polynomial P ∈ C[h∗a]Wa takes a constant
value P (Λ) on the orbit Λ. An invariant eigendistribution of type Λ on g is by
definition a G(R)-invariant distribution D on g such that ∂(P )(D) = P (Λ)D for
all P ∈ C[h∗a]Wa , and we denote by DG(Λ) (or just D(Λ)) the vector space of all
invariant eigendistributions of type Λ.

2.2. Fourier transforms of orbital integrals. Choose a non-degenerate G-
invariant symmetric bilinear form (·, ·) on g and use it to identify g with its dual.
We define the Fourier transform f̂ of a Schwartz function f on g by

f̂(X) =
∫

g

f(Y ) exp(i(X,Y )) dY,

where dY is the self-dual Haar measure on g, and we extend the Fourier transform
to tempered distributions in the usual way.
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For any X ∈ g we pick a non-zero G(R)-invariant measure on the G(R)-orbit
of X in g and use it to define orbital integrals

OX(f) =
∫
G(R)·X

f

for Schwartz functions f on g. The integral is convergent and OX is a tempered
distribution on g. The Fourier transform ÔX is an invariant eigendistribution, and
if X is nilpotent, then ÔX lies in D(0).

2.3. Lie algebra analogs of discrete series characters. Now assume that
G(R) has a discrete series. In other words, assume that G has an elliptic, maximal
torus T . Let WR ⊂W σ ⊂W be the groups attached to T in 1.6; since T is elliptic,
W σ equals W . The discrete series representations of G(R) come in packets, each
of size [W : WR] (the packets consist of discrete series representations having the
same infinitesimal and central characters).

Harish-Chandra constructed Lie algebra analogs of discrete series characters (see
[HC65a], Thm. 2), in the following way. Start by taking invariant eigendistribu-
tions of the form ÔX (as in 2.2) for regular elements X ∈ Lie(T ). This provides
Lie algebra analogs of discrete series characters with unitary central character.
Let AG denote the maximal split torus in the center of G. As usual we regard
Lie(AG) as a direct summand of g. Now multiply ÔX by functions on g of the
form Y 7→ exp(ν(Y )), where ν ∈ Lie(AG)∗; the resulting products are invariant
eigendistributions, and they are the desired Lie algebra analogs of discrete series
characters.

Let Ha be the abstract maximal torus of GC; of course Lie(Ha) = ha and
X∗(Ha) ⊗Z R is a real structure on h∗a. Let Λ be a Wa-orbit in h∗a. Suppose that
Λ is contained in the real subspace X∗(Ha)⊗Z R (we then say that Λ is real) and
suppose further that each element in Λ takes non-zero values on every (abstract)
coroot α∨ ∈ ha (we then say that Λ is regular). In this case the construction
described above yields a [W : WR]-dimensional space of discrete series analogs in
D(Λ).

2.4. Parabolic induction. Let P = MN be a parabolic subgroup of G with Levi
component M and unipotent radical N , and let p = m⊕n be the corresponding Lie
algebras. Pick a maximal compact subgroup K in G(R) and define a continuous
linear map f 7→ f (P ) from C∞c (g) to C∞c (m) by

f (P )(X) =
∫

n

∫
K

f(k · (X + Y )) dk dY (X ∈ m),(2.4.1)

where dk and dY are Haar measures on K and n respectively. For an M(R)-
invariant distribution D on m the complex number D(f (P )) is independent of the
choice of K and the distribution iGP (D) on g defined by

iGP (D)(f) = D(f (P ))

is G(R)-invariant.
The linear map iGP is Harish-Chandra’s Lie algebra analog of parabolic induction

fromM(R) to G(R). Since the map f 7→ f (P ) extends continuously to the Schwartz
spaces, parabolic induction takes tempered invariant distributions on m to tempered
invariant distributions on g. The linear map iGP depends on the choice of Haar
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measures on g and m; one can avoid this choice by regarding iGP as a linear map
from invariant generalized functions on m to invariant generalized functions on g.

The map f 7→ f (P ) is compatible with the natural injective C-algebra homomor-
phism

S(gC)G(C) → S(mC)M(C),

and therefore iGP (D) is an invariant eigendistribution on g whenever D is an invari-
ant eigendistribution on m.

The map f 7→ f (P ) commutes with the Fourier transform. Therefore the map iGP
also commutes with the Fourier transform (of tempered invariant distributions).

2.5. Invariant eigendistributions are functions. Harish-Chandra proved (see
[HC65b]) that any invariant eigendistribution D on g is represented by a locally
integrable function F that is real-analytic on the set g′ of regular semisimple el-
ements in g (choose a Haar measure on g in order to do this, or else work with
generalized functions rather than distributions). In particular, if F is identically 0
on g′, then D is 0.

Suppose that D = iGP (DM ) for some invariant eigendistribution DM on m (with
notation as in 2.4), and let F (respectively, FM ) be the locally integrable function
on g (respectively, m) representing D (respectively, DM ). It is a well-known conse-
quence of the Weyl integration formula that F is obtained from FM in the following
way. Let X ∈ g′. Then

F (X) =
∑
Y

FM (Y ) · |DG
M (Y )|−1/2,(2.5.1)

where Y runs over a set of representatives for the M(R)-conjugacy classes in the
intersection of m and the G(R)-conjugacy class of X , and where

DG
M (Y ) := det(ad(Y ); g/m) (Y ∈ m).

Suppose that M contains an elliptic maximal torus T . Then (2.5.1) becomes
especially simple for regular elements X ∈ Lie(T ):

F (X) =
∑
g

FM (g ·X) · |DG
M (g ·X)|−1/2(2.5.2)

where g runs over the finite group NG(R)(M)/M(R).

2.6. Properties of the locally integrable function F . An allowed embedding
i : ha → gC is an injective C-linear map whose image is the complexification of
some Cartan subalgebra h in g and which has the property that roots of hC in
gC pull back under i to elements in Ra. The Cartan subalgebra h is uniquely
determined by i, and we denote it by hi. Moreover we denote by hia the subspace
of ha obtained as the inverse image of h under i : ha → hC. The subspace hia puts a
real structure on ha and defines the notion of real and imaginary roots on hia (roots
in Ra that take real (respectively, imaginary) values on hia). We define (hia)′′ to be
the complement in hia of the real root hyperplanes.

Now fix a Wa-orbit Λ in h∗a and consider an invariant eigendistributionD ∈ D(Λ).
As in 2.5 we write F for the corresponding real-analytic function on g′. For each
allowed embedding i we define a function Fi on hia ∩ h′a (where h′a denotes the
regular set in ha) by

Fi(X) := π(X)F (i(X)) (X ∈ h
i
a ∩ h

′
a),
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where π is the polynomial function on ha defined as the product of all positive roots
α ∈ R+

a .
Harish-Chandra [HC65b], Thm. 2 showed that each Fi extends (uniquely, of

course) to a real-analytic function on (hia)′′, which we still denote by Fi. The
function Fi satisfies the differential equations

∂(P )(ϕ) = P (Λ)ϕ (P ∈ C[h∗a]Wa).(2.6.1)

Any solution ϕ of the differential equations (2.6.1) on any connected component of
(hia)′′ extends (again uniquely) to a holomorphic solution of the same differential
equations on ha.

Write H(Λ) for the space of holomorphic solutions of the differential equations
(2.6.1) on ha (the advantage of this space is that it is independent of i). Then (see
[Ste64]) H(Λ) is the space of functions on ha of the form

X 7→
∑
λ∈Λ

Φλ(X) · exp(λ(X)),

where Φλ is a Wλ-harmonic polynomial on ha. Here Wλ denotes the stabilizer
of λ in Wa, and by a Wλ-harmonic polynomial on ha we mean a polynomial on ha

that is annihilated by all constant coefficient differential operators ∂(P ) on ha with
P ∈ C[h∗a]Wλ and P (0) = 0. The group Wa acts on H(Λ), and the resulting
representation of Wa is isomorphic to the regular representation (see [Ste64]).

It follows from this discussion that for each connected component C of (hia)′′

there is a unique element Fi,C ∈ H(Λ) whose restriction to C coincides with that
of Fi. The group G(R) acts on the left of the set S of pairs s = (i, C) consisting of
an allowed embedding i and a connected component C of (hia)′′ (g ∈ G(R) sends
(i, C) to (Ad(g)◦i, C)) and the groupWa acts on the right of S (w ∈Wa sends (i, C)
to (i◦w,w−1(C)). The two actions commute and the quotient set G(R)\S/Wa can
be identified with the set of G(R)-conjugacy classes of Cartan subalgebras of g

(associate to s = (i, C) the Cartan subalgebra hi).
The G(R)-invariance of D is equivalent to the following property of the family

of functions Fs (s ∈ S):

Fgs = Fs for all g ∈ G(R).(2.6.2)

Moreover it is obvious from the definition of Fs that

w(Fs) = ε(w)Fsw−1 for all w ∈ Wa.(2.6.3)

(We are using the obvious left action of Wa on H(Λ).)
Harish-Chandra proved that the family of functions Fs satisfies a matching con-

dition [HC65b], Lemma 18, which we now recall. Let i be an allowed embedding
and let α be a real root for hi (we use i to regard α as a real root of hia as well). Then
α determines a connected subgroup M ⊂ G whose Lie algebra m is the direct sum
of hi and the root spaces for ±α (thus the derived subalgebra of m is isomorphic
to sl2(R)). Choose m ∈ M(C) such that j := Ad(m) ◦ i is an allowed embedding
having the property that hj is an elliptic Cartan subalgebra of m. Note that the
set of real roots for hja is a subset of the set of real roots for hia. Moreover

hia ∩ ker(α) = hia ∩ hja = hja ∩ ker(α).

Now let C be a connected component of (hia)′′ such that ker(α) is a wall of C. Let
C be the closure of C in hia; then the interior of C ∩ker(α) is contained in a unique
connected component C̃ of hja. Let wα ∈ Wa denote the reflection in α. Then the
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functions Fs (s ∈ S) satisfy the following condition. For all i, α, j, C, C̃ as above,
for all constant coefficient differential operators ∂ on ha such that wα(∂) = −∂

(∂Fi,C)(X) = (∂Fj,C̃)(X)

for all X ∈ ha such that α(X) = 0. It is easy to see that a holomorphic function f
on ha satisfies

(∂f)(X) = 0

for all X ∈ ker(α) and all constant coefficient differential operators ∂ such that
wα(∂) = −∂ if and only if it satisfies wα(f) = f . Therefore Harish-Chandra’s
matching condition on the family Fs (s ∈ S) can be reformulated as follows: for all
i, α, j, C, C̃ as above

Fi,C − Fj,C̃ is fixed by wα.(2.6.4)

2.7. The spaces F(Λ) and F(V ). We now define F(Λ) to be the vector space con-
sisting of all families (Fs)s∈S of elements Fs ∈ H(Λ) satisfying the three conditions
(2.6.2), (2.6.3), (2.6.4). The discussion in 2.6 then yields an injection

D(Λ)→ F(Λ),(2.7.1)

which turns out to be an isomorphism (see 2.9).
Note that the conditions (2.6.2), (2.6.3), (2.6.4) involve only the Wa-module

structure on H(Λ). Now let V be any finite dimensional Wa-module. We define
F(V ) to be the vector space consisting of all collections (Fs)s∈S of elements Fs ∈ V
satisfying the three conditions (2.6.2), (2.6.3), (2.6.4). It is obvious that

F(V1 ⊕ V2) = F(V1)⊕F(V2)(2.7.2)

and that the dimension of F(V ) depends only on the isomorphism class of V .
In particular the dimension of F(Λ) is independent of Λ, since H(Λ) is always
isomorphic to the regular representation of Wa.

2.8. Filtration on F(V ). Let V be a finite-dimensional Wa-module. We now
define a decreasing filtration

F(V ) = F(V )0 ⊃ F(V )1 ⊃ F(V )2 ⊃ · · ·
on F(V ). To do so we first define the split rank of a maximal torus T in G (or of
the corresponding Cartan subalgebra Lie(T )) to be dim(AT /AG), where AT is the
maximal split torus in T and AG is the maximal split torus in the center of G. Thus
T is elliptic if and only if its split rank is 0. Now define F(V )r to be the subspace
of F(V ) consisting of all families (Fs)s∈S such that Fs = 0 for all s = (i, C) such
that the split rank of hi is strictly less than r. It is obvious that

F(V1 ⊕ V2)r = F(V1)r ⊕F(V2)r .(2.8.1)

Fix r ≥ 0. Consider a family (Fs)s∈S lying in F(V )r, and let s = (i, C) be an
element of S such that the split rank of hi is r. Then the condition (2.6.4) reduces
to

wα(Fs) = Fs(2.8.2)

for every real root α of hi such that ker(α) is a wall of C (since the split rank of hj

is strictly less than r). Let Tr be a set of representatives for the G(R)-conjugacy
classes of maximal tori T in G with split rank equal to r. For each T ∈ Tr we
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choose an element sT = (i, C) ∈ S such that hi = Lie(T ), and we use i to identify
WR with a subgroup of Wa (recall from 1.6 the objects W , WR, W σ, εR, εI , ε
associated to T ). Then WR = W1nW2 where W1 is the stabilizer of C in WR and
W2 is the (normal) subgroup of WR generated by reflections in real roots α of T .
Using that ε = εRεI , one sees that εI is trivial on W2 and equal to ε on W1. We
claim that w(FsT ) = εI(w)FsT for all w ∈ WR; indeed, for w ∈ W1 this follows
from (2.6.2) and (2.6.3) and for w ∈ W2 it follows from (2.8.2).

We conclude that the map (Fs)s∈S 7→ (FsT )T∈Tr induces an injection

F(V )r/F(V )r+1 →
⊕
T∈Tr

VWR,εI ,(2.8.3)

where VWR,εI denotes the subspace of V consisting of elements that transform by
εI under WR.

We claim that the maps (2.8.3) are actually isomorphisms. Using (2.8.1), we see
that it suffices to prove this in the special case that V is the regular representation.
So take V to be H(Λ), for some orbit Λ that is real and regular (in the sense of
2.3).

Suppose first that r = 0 and that T0 is non-empty (i.e. G has elliptic maximal
tori). Then Harish-Chandra’s Lie algebra analogs of discrete series characters (see
2.3) provide enough elements in F(Λ) to show that (2.8.3) is surjective (for r = 0
and V = H(Λ)) (use [HC65a], Thm. 2).

Now consider any r ≥ 0. Let T ∈ Tr and let M denote the centralizer of AT
in G. Then, by inducing discrete series analogs on m = Lie(M), we get enough
elements in F(Λ)r to show that the image of (2.8.3) contains the direct summand
H(Λ)WR,εI indexed by T ∈ Tr. Here we used (2.5.2) and the exact sequence

1→WM
R → WR → NG(R)(M)/M(R)→ 1,

where WM
R is the analog of WR for the group M . Therefore (2.8.3) is indeed

surjective.
The fact that the maps (2.8.3) are isomorphisms implies that

dimF(V ) =
∑
T

dim(V WR,εI ),(2.8.4)

where T runs over a set of representatives for theG(R)-conjugacy classes of maximal
tori in G.

2.9. The isomorphism D(Λ)→ F(Λ). In 2.7 we defined an injection (2.7.1) from
D(Λ) to F(Λ). We will now check that (2.7.1) is an isomorphism. First suppose that
Λ is real and regular. Then in 2.8 we saw that parabolic induction of discrete series
analogs provides enough elements in D(Λ) to get all elements in F(Λ)r modulo
F(Λ)r+1. Since F(Λ)r is {0} for large r, we see that D(Λ) does indeed map onto
F(Λ).

Now consider arbitrary Λ. Let Gsc be the simply connected cover of the derived
group of G. Then the spaces D(Λ), F(Λ) for G are obtained by taking invariants
under G(R)/ imGsc(R) in the spaces D(Λ), F(Λ) for Gsc. Thus we may as well
assume that G is simply connected, in which caseG(R) is connected. Then elements
in D(Λ) can be identified with eigendistributions on g that are annihilated by the
adjoint action of g. Therefore it follows from [HK84], 6.7.3 that the dimension of
D(Λ) is independent of Λ. As was noted in 2.7, the dimension of F(Λ) is also
independent of Λ. Since we know that D(Λ) → F(Λ) is injective, it is enough to
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show that dimD(Λ) and dimF(Λ) are equal, which follows from the real, regular
case that has already been treated.

3. Invariant eigendistributions of type 0

3.1. The goal. Let O be a nilpotent G(C)-orbit in gC. We let DO and rO be as
in 1.5. We consider the composed map

DO
FT−−→ D(0)

(2.7.1)−−−−→ F(0),(3.1.1)

where the first map is the Fourier transform (see 2.2). The map (3.1.1) is of course
injective; we wish to describe its image, using Springer theory. As was mentioned
in the introduction, such a description is implicit in the literature.

3.2. The character χO and integer dO. The Springer correspondence [Spr76]
associates to O an irreducible character χO of the abstract Weyl group Wa. We
normalize the correspondence so that the trivial orbit O = {0} corresponds to the
sign character ε of Wa and the regular orbit O corresponds to the trivial character
1 of Wa. We also associate to O a non-negative integer dO, defined by

dO = |R+
a | − 1

2 dim O.(3.2.1)

Recall that for any X ∈ O the dimension of the variety of Borel subalgebras of gC

containing X is equal to dO.

3.3. Gradings on F(0). For Λ = 0 the space H(Λ) (see 2.6) is simply the space
H of Wa-harmonic polynomials on ha. The Wa-module H has several direct sum
decompositions. For d ≥ 0 let Hd be the space of harmonic polynomials of degree
d; then H =

⊕
d≥0Hd. For χ ∈ W∨a (where W∨a denotes the set of irreducible char-

acters of Wa) let Hχ denote the χ-isotypic component of H; then H =
⊕

χ∈W∨a Hχ.
For d ≥ 0 and χ ∈W∨a let Hd,χ = Hd ∩Hχ; then H =

⊕
d≥0⊕χ∈W∨a Hd,χ. Each of

these direct sum decompositions gives rise to a corresponding direct sum decompo-
sition of F(0) (see 2.7.2):

F(0) =
⊕
d≥0

F(0)d(3.3.1)

=
⊕
χ∈W∨a

F(0)χ(3.3.2)

=
⊕
d≥0

⊕
χ∈W∨a

F(0)d,χ.(3.3.3)

3.4. Description of the image of DO in F(0). We will now show that the image
of DO in F(0) is equal to F(0)dO,χO . As in 2.9 it is enough to consider the case in
which G is simply connected, so that G(R) is connected. Then D(0) is the space
of distributions on g that are solutions of the cyclic D-module denoted by MF

0 in
[HK84]. Here D is the Weyl algebra of differential operators on gC with polynomial
coefficients.

All the distributions in D(0) are tempered. Let D̂(0) denote the space of Fourier
transforms of distributions in D(0). Of course D̂(0) is the space of tempered dis-
tributions on g that are solutions of the Fourier transform M0 of the D-module
MF

0 .
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Hotta and Kashiwara decompose the D-module M0 in two ways. This comes
about as follows. BothM0 andMF

0 are completely regular holonomic D-modules.
Under the Riemann-Hilbert correspondenceMF

0 goes over to the middle extension
of the following local system on grs, the set of regular semisimple elements in gC.
Let g̃rs denote the set of pairs (X, b), where X ∈ grs and b is a Borel subalgebra
in gC containing X . Then g̃rs is an unramified Galois covering of grs with Galois
groupWa. Therefore any finite dimensional representation ofWa gives rise to a local
system on grs. The local system coming fromMF

0 corresponds to the representation
H⊗ ε of Wa (as usual H is the space of harmonic polynomials on ha, and ε is the
sign character on Wa). Therefore any direct sum decomposition of the Wa-module
H gives rise to direct sum decompositions ofMF

0 and of its Fourier transformM0.
In particular the decompositions of H considered in 3.3 give rise to decompositions

M0 =
⊕
d≥0

M0(d),(3.4.1)

M0 =
⊕
χ∈W∨a

M0(χ),(3.4.2)

M0 =
⊕
d≥0

⊕
χ∈W∨a

M0(d, χ).(3.4.3)

TheD-moduleM0 is homogeneous (with respect to the obvious scaling action of the
group of positive real numbers on g), and (3.4.1) is its homogeneous decomposition
[HK84], §7 (with a different indexing). Moreover the D-module M0 is semisimple
and (3.4.2) is its isotypic decomposition [HK84].

Thus our problem becomes the following. Let ψ be a D-module map from M0

to the space of tempered distributions on g, and let x ∈ D̂(0) be the image under
ψ of the canonical generator of M0. We must show that x ∈ DO if and only if ψ
factors through the projection map

M0 →M0(dO, χO).

The image of ψ is the cyclic D-module D · x generated by x. It follows from
[HK84], Cor. 7.1.4 that M0(dO, χO) is a simple D-module supported on O (the
closure of O) and that HdO,χO is an irreducible Wa-module whose character is χO.

Now suppose that x ∈ DO. We want to show that ψ factors throughM0(dO, χO).
It follows from [HK84], Cor. 7.1.5 that D · x is either {0} or isomorphic to
M0(dO, χO). Therefore ψ factors through projection on the M0(dO, χO)-isotypic
component of M0, namely M0(χO). Since x is homogeneous of degree dim(g) −
1
2 dim(O) (with respect to scaling by positive real numbers), ψ also factors through
projection on M0(dO). Therefore ψ factors through M0(dO, χO), as desired.

Now suppose that ψ factors through projection on M0(dO, χO). Then x is
homogeneous of degree dim(g) − 1

2 dim(O) (since ψ factors through M0(dO)) and
x is supported on O ∩ g (since ψ factors through M0(dO, χO) and M0(dO, χO) is
supported on O). But any invariant distribution on g with these two properties lies
in DO by [BV80], Cor. 3.9.

3.5. Rossmann’s formula for rO. It follows from 3.4 that the injection (3.1.1)
identifies DO with F(HdO,χO) (in the notation of 2.7). Using (2.8.4) to calculate
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the dimension of F(HdO,χO) and recalling that the character of HdO,χO is χO (see
3.4), we see that

rO = dimDO =
∑
T

mWR(εI , χO)(3.5.1)

(notation as in the introduction). This is Rossmann’s formula [Ros90] for rO.

4. Stably invariant tempered distributions

4.1. Induction. Let P = MN be a parabolic subgroup in G and write p = m⊕ n

for the corresponding Lie algebras. In 2.4 we reviewed the parabolic induction map
iGP from invariant distributions on m to invariant distributions on g. Recall that for
any G-regular semisimple element Y ∈ m

iGP (OY ) = |DG
M (X)|1/2 ·OX(4.1.1)

where X is the image of Y under the inclusion of m in g, and where DG
M (X) :=

det(ad(X); g/m). Using the well-known fact that

H1(R,M)→ H1(R, G)(4.1.2)

is injective, one sees that if Y1, . . . , Yr are a set of representatives for the M(R)-
conjugacy classes in the stable conjugacy class of Y , then their images X1, . . . , Xr

under the inclusion of m in g are representatives for the G(R)-conjugacy classes in
the stable conjugacy class of X . It follows that

iGP (SOY ) = |DG
M (X)|1/2 · SOX .(4.1.3)

We claim that if D is any stably invariant tempered distribution on m, then
iGP (D) is stably invariant. Indeed, by (4.1.3) this is true if D = SOY for Y as
above; therefore it is true in general, since the span of the distributions SOY is
dense in the space of stably invariant tempered distributions on m.

4.2. Stably invariant eigendistributions. Let D be an invariant eigendistribu-
tion on g and as before let F be the corresponding real-analytic function on g′

(locally integrable on g). Then D need not be tempered, so that our definition of
stable invariance might not apply to D. However, if D happens to be tempered,
then D is stably invariant if and only if the function F is constant on every stable
conjugacy class in g′. (The proof of this statement is essentially the same as Shel-
stad’s proof of the analogous statement [She79], 5.1 on the group G(R) and will
therefore be omitted.) Thus it is reasonable to make the following definition: the
(possibly non-tempered) invariant eigendistribution D is said to be stably invariant
if the function F is constant on every stable conjugacy class in g′.

Let us make this definition more explicit. Let T be a maximal torus in G, and
let WR ⊂ W σ ⊂ W be as in 1.6. We need yet another subgroup of W , namely
the imaginary Weyl group. Let A be the maximal split subtorus in T , and let
M be the centralizer of A in G. Then M is a Levi subgroup of G, and T is an
elliptic maximal torus in M . The imaginary Weyl group of T is the Weyl group
WM of T (C) in M(C) (the roots of T in M are precisely the imaginary roots of T
in G); we view WM as a subgroup of W and note that WM ⊂W σ.

Let X ∈ Lie(T )∩g′. Then (see [She79], §2) the set SM ofM(R)-conjugacy classes
within the stable conjugacy class of X in m = Lie(M) corresponds bijectively to
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the set

(WR ∩WM )\WM ,

and the set SG of G(R)-conjugacy classes within the stable conjugacy class of X
in g corresponds bijectively to the set

WR\W σ;

since the natural map SM → SG is bijective (see 4.1) it follows that the natural
map

(WR ∩WM )\WM →WR\W σ

is bijective (in other words, W σ = WRWM ).
We conclude that the invariant eigendistribution D is stable if and only if the

function F satisfies the following property for all maximal tori T inG; the restriction
of F to Lie(T ) ∩ g′ is invariant under W σ, or, equivalently, invariant under the
imaginary Weyl group WM .

4.3. Fourier transform. Let D be a stably invariant tempered distribution on g.
We claim that the Fourier transform D̂ of D is also stably invariant. Indeed,
unwinding the definition of stable invariance, we see that it is enough to show that
the Fourier transform of SOX is stably invariant for all regular semisimple X ∈ g.
Since iGP preserves stability (see 4.1) and commutes with the Fourier transform (see
2.4), it is enough to show that the Fourier transform of SOX is stably invariant for
all elliptic regular semisimple X ∈ g. We will check this in 4.4.

4.4. Lie algebra analogs of stable discrete series characters. We now resume
the discussion in 2.3. We suppose that G has an elliptic maximal torus Te, and
let X be a regular element in Lie(Te). We claim that the Fourier transform ŜOX
of SOX is stably invariant.

Let F be the real-analytic function on g′ that represents the tempered invariant
distribution ŜOX . To show that ŜOX is stable we must show that for every maxi-
mal torus T in G, the restriction of F to Lie(T )∩g′ is invariant under the imaginary
Weyl group. In case T is elliptic this restriction is given by a theorem of Rossmann
(see the second corollary on p. 217 of [Ros78]) and the desired invariance (under
all of W in this case) is clear from Rossmann’s result. The desired invariance for
non-elliptic T follows from the invariance for elliptic T , just as for stable discrete
series characters on G(R) (see the first part of the proof of Lemma 5.2 in [She79],
which relies on Lemma 61 of [HC65a], and note that Harish-Chandra’s proof of his
Lemma 61 works equally well for Lie algebras).

As in 2.3 we can multiply ŜOX by functions on g of the form Y 7→ exp(ν(Y )),
where ν ∈ Lie(AG)∗; the resulting products are stably invariant eigendistributions
(possibly non-tempered) and are the desired Lie algebra analogs of the stable dis-
crete series characters on G(R) (see [She79]).

Let Λ be a Wa-orbit in h∗a and suppose that Λ is real and regular (in the sense
of 2.3). Then the construction above produces a 1-dimensional space of stably
invariant eigendistributions of type Λ, and any non-zero element in this space has
non-zero restriction to the elliptic Cartan subalgebra Lie(Te) (again by Rossmann’s
theorem [Ros78]).
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5. Stably invariant eigendistributions of type Λ

5.1. The spaces Dst(Λ) and Fst(Λ). Let Λ be a Wa-orbit in h∗a. Let Dst(Λ)
denote the space of stably invariant eigendistributions on g of type Λ. Of course
Dst(Λ) is a subspace of D(Λ).

Let Fst(Λ) denote the subspace of F(Λ) consisting of collections (Fs)s∈S satis-
fying the following additional condition: for every s = (i, C) ∈ S

Fi,C = FAd(g)◦i,C(5.1.1)

for all g ∈ G(C) such that the restriction of Ad(g) to hi is defined over R (recall
that hi is the Cartan subalgebra of g whose complexification is i(ha)). It is clear
from the discussion in 4.2 that the isomorphism (2.7.1) from D(Λ) to F(Λ) restricts
to an isomorphism

Dst(Λ)→ Fst(Λ).(5.1.2)

5.2. The spaces Fst(V ). Let V be a finite dimensional representation of Wa. Just
as in 2.7 we can define a variant Fst(V ) of Fst(Λ); thus Fst(V ) consists of families
(Fs)s∈S of elements Fs ∈ V satisfying (2.6.2), (2.6.3), (2.6.4) and the additional
condition (5.1.1) (of course (2.6.2) can be dropped since it follows from (5.1.1)). It
is obvious that

Fst(V1 ⊕ V2) = Fst(V1)⊕Fst(V2).(5.2.1)

5.3. Filtration on Fst(V ). The filtration (see 2.8) on F(V ) induces a filtration
on the subspace Fst(V ):

Fst(V ) = Fst(V )0 ⊃ Fst(V )1 ⊃ Fst(V )2 ⊃ · · ·
where

Fst(V )r := Fst(V ) ∩ F(V )r.

It is obvious that

Fst(V1 ⊕ V2)r = Fst(V1)r ⊕Fst(V2)r.(5.3.1)

Just as in 2.8 we see that there is an injection (analogous to (2.8.3))

Fst(V )r/Fst(V )r+1 →
⊕
T∈Tr

VW
σ ,εI(5.3.2)

where VW
σ ,εI denotes the subspace of V consisting of vectors that transform by εI

under W σ.
We claim that the maps (5.3.2) are isomorphisms. Using (5.3.1) we see that it

suffices to prove this in the special case that V is the regular representation. So
take V to be H(Λ) for some orbit Λ that is real and regular (in the sense of 2.3).
Then, just as in 2.8, parabolic induction of stable discrete series analogs on suitable
Levi subalgebras m in g provides enough elements in Fst(Λ)r to show that (5.3.2)
is surjective.

The fact that the maps (5.3.2) are isomorphisms implies that

dimFst(V ) =
∑
T

dim(VW
σ ,εI ),(5.3.3)

where T runs over a set of representatives for theG(R)-conjugacy classes of maximal
tori in G.
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6. Stably invariant eigendistributions of type 0

6.1. Description of Dst
O. Let O be a nilpotent G(C)-orbit in gC. We let Dst

O and
sO be as in 1.5. We consider the composed map

Dst
O

FT−−→ Dst(0)
(5.1.2)−−−−→ Fst(0),(6.1.1)

where the first map is the Fourier transform (see 2.2 and 4.3). The map (6.1.1) is
of course injective, and its image is simply the intersection of Fst(0) and F(0)dO,χO

in F(0) (here we are using the notation and results of 3.4), and it follows from our
definitions that this intersection is Fst(HdO,χO).

6.2. Main theorem. We can now prove the formula (1.8.1) for sO. Indeed, from
6.1 we see that

sO = dimFst(HdO,χO).

Then, recalling from 3.4 that the character of HdO,χO is χO, we see from (5.3.3)
that

dimFst(HdO,χO) =
∑
T

mWσ (εI , χO).
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