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VERIFYING KOTTWITZ’ CONJECTURE BY COMPUTER

BILL CASSELMAN

Abstract. In these notes I will discuss the computations that were used to
verify the main conjecture of Kottwitz (1997) for the groups E6, E7, E8, and
the subsidiary one for F4 and E6. At the end I will include tables of the
relevant computer output. I begin by recalling briefly what is to be computed.

The main conjecture

Suppose W to be a finite Weyl group. An involution in W is any element of
order at most two. If σ is an involution, let Wσ be the centralizer of σ. A root λ is
called imaginary if σλ = −λ (as opposed to real if σλ = λ). Let Iσ be the set of
all imaginary roots of σ. Any element commuting with σ permutes Iσ. Therefore,
if

Pσ =
∏

λ>0,λ∈Iσ

λ,

then for any w in Wσ

wPσ = sgnσ(w)Pσ

where sgnσ = ±1 is a multiplicative homomorphism from Wσ to {±1}. It can be
calculated explicitly as (−1)`σ(w) where

`σ(w) = #{λ ∈ Iσ | λ > 0, w−1λ < 0} = Iσ ∩ Λw
if

Λw = {λ > 0 | w−1λ < 0} .
Kottwitz’ conjecture concerns the multiplicity of sgnσ in the restriction to Wσ of
irreducible representations of W . In other words, we must compute

m(σ,E) = 〈sgnσ, E |Wσ,=〉
1

#Wσ

∑
Wσ

sgnσ(w)χE(w)

for the irreducible representations E of W .
Some cases are simple. If σ = 1, then it has no imaginary roots and sgnσ is the

trivial character of W . In this case m(σ,E) = 0 unless E is equal to the trivial
character. If the longest element w` of W happens to be −1 and σ = w`, then all
roots are imaginary and sgnσ is then the usual sign-character sgnW of W . Again
in this case m(σ,E) = 0 unless E = sgnW itself. Along these lines, it can be seen
more generally that if −1 lies in W , then m(σ,E) = m(σ∗, E∗) whenever σ∗ = −σ,
E∗ = E · sgnW .
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Kottwitz’ conjecture asserts that the sum

m(E) =
∑
σ

m(σ,E)

(where the sum is over representatives of all conjugacy classes of involutions) is
equal to the Lusztig-Fourier transform of a function ϕ0 which I do not define here.
(But I shall recall later exactly what the computation has to agree with.) For
classical groups as well as G2 and F4, Kottwitz was able to verify his conjecture
by hand. This leaves the exceptional groups E6 (51, 840 elements), E7 (2, 903, 040
elements), and E8 (696, 729, 600 elements), for which it was apparently necessary
to do the computations by machine.

At first it looked as though it would be a great deal of work just getting the known
character and conjugacy class information into computer-readable form, but luckily
— and just in time — Meinolf Geck made available to us some recently developed
programs for use with the well known algebra package GAP, which were able to
produce exactly the information we needed. (These files are part of a larger project
called CHEVIE involving Geck and several of his colleagues, and are available for
public use as extensions to GAP. For information, see the reference to CHEVIE at the
end of this note.)

Once we had the character and conjugacy class data that we needed in a form
which a program could read, it was not too difficult to write a program that could
calculate the multiplicities.

The original program searched through the whole Weyl group to pick out those
in the centralizer Wσ, since I was not aware at this time how simple the central-
izer was. Several people pointed out to me later that my exhaustive calculations
could be short-circuited. It was also pointed out to me that Dean Alvis had un-
doubtedly made similar calculations a long time ago, as evidenced by his work with
Lusztig. Most valuable (and embarassing) was a note from John Stembridge, who
has developed a Maple package for finite Weyl groups which could do this particular
calculation very quickly. I shall say a few words about the early version, however,
because someone else might face a similar problem without a shortcut.

Because of the crude technique used, it was something of a challenge to construct
an efficient program, since the groups E6, E7, and E8 are so large. The basic
technique in all cases was the same — for each one of the involution classes {σ} in
W the whole group was scanned to find elements in the centralizer Wσ (the order
of the centralizer is known, and is one of the data produced by GAP). For each w in
Wσ the parity of Iσ ∩ Λw was calculated as well as its conjugacy class in W , from
which the terms m(σ,E) could be calculated, again from the GAP data.

The details of the calculation were important, if the program were to be fast.
The fastest known way to scan the group, as far as I can see, is that described in [7],
and involves building and then traversing the automaton describing the ShortLex
language of strings of simple generators for elements in W which are of minimal
length and lexicographically least. The fastest way to perform multiplication in
the group is to use the ideas of du Cloux [8], based in turn on ideas of Deodhar,
representing an element of W as a sequence of elements of Weyl group cosets (with
respect to smaller Weyl groups), using canonical representatives of these cosets.
Here the basic calculation is to multiply an element of the group, represented as a
sequence of coset representatives, by a simple generator si. The group E6 is in fact
small enough so that in fact the whole table of wsi can be stored in an array. It



34 BILL CASSELMAN

would have been possible to use tables of representatives already constructed by du
Cloux, but in fact the program built these tables on the fly, using the multiplication
algorithm described in [7], which in turn is based on ideas of Brink and Howlett
[4].

There seems to be no uniform efficient way to handle the conjugacy class problem
for these groups. Here again, the group E6 is small enough that the most efficient
and dependable thing to do was simply to build a list, in the obvious way, of classes
for every element in the group. For E8, Geck suggested using the fact that the map
from conjugacy classes of E8 to those in the group of permutations of its 240 roots
is an embedding. In other words, a conjugacy class in E8 is distinguished by its
representation in terms of cycles in S240. There are simple and efficient algorithms
for finding the cycle representation of a permutation, but nonetheless to do this
several million times for permutations of 240 items is necessarily a slow business.

For E7 there are 126 roots. The map from conjugacy classes into conjugacy
classes of S126 fails to be an injection, but the map into conjugacy classes in E8

is injective. Those classes in E7 which coincide in S126 were distinguished in this
way.

Thus in traversing the group there were essentially three things to do: (1) tell
whether the element w commutes with the current involution σ; (2) calculate
sgnσ(w); (3) find the conjugacy class of w. The data needed for these calcula-
tions is easily updated in going from w to ws with ws > w, which is the way in
which the automaton is traversed.

The amount of memory needed to run the program was negligible, but the
amount of time required was substantial. I used several machines to develop the
program with the small An and F4, to compare with Kottwitz’ calculations, and
then to deal with the cases E6 and E7, which are still relatively small. They took a
few seconds and a few minutes, respectively. The group E8 is large by almost any
standard, however. It contains almost a billion elements, and for each one of these
a large number of calculations had to be made. The final run for E8 took about 36
hours on a SPARC 20.

The tables of m(σ,E) will be exhibited at the end of this note. In order to
understand exactly how they imply Kottwitz’ conjecture, I present here some rele-
vant data mentioned in Kottwitz’ article, but in a tabular form so that immediate
comparison is straightforward. According to Lusztig [11], the irreducible represen-
tations E of W are partitioned into families F . To each family is associated a finite
group G, and to G is associated a finite setM(G) of conjugacy classes of pairs (g, ρ),
where g is an element of G and ρ an irreducible representation of the centralizer
Gg. For this theory, refer to [11], Chapter 13 of [6], and [12]. Each family maps
injectively into a subset of M(G), but this map is not surjective. In the tables
below, the image (g, ρ) of each E is indicated. Kottwitz’ conjecture concerning the
m(E) is that they agree with the Lusztig-Fourier transform of a certain function
ϕ0 on M(G) defined in §2.10 of Kottwitz’ article. Kottwitz has listed the relevant
values of ϕ̂0 in his article; it will be simpler for the reader to verify his conjecture
from my calculations if he has these in a tabular form.

Throughout the tables, Carter’s name conventions for both conjugacy classes and
representations of W are followed (see Carter (1972) and Carter (1985)). Carter’s
naming scheme for representations refers to a representation ϕn,d where n is its
dimension and d is the lowest degree it appears in the canonical representation
of W on S(V ), the symmetric algebra of the root space V . That for conjugacy
classes takes advantage of the fact that most conjugacy classes in a Weyl group are
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Coxeter elements in some Weyl subgroup. The roots, hence the numbering of the
elementary reflections indexed in the reduced expressions, are numbered as in [3].
The characters and other conjugacy class data were provided by GAP.

Table of ϕ̂0

G (g, ρ) ϕ̂0(g, ρ)

S1 (1, 1) 1

S2 (1, 1) 2
(g2, 1) 0
(1, ε) 0

S3 (1, 1) 2
(g2, 1) 0
(1, r) 1
(g3, 1) 1
(1, ε) 0

S4 (1, 1) 3
(1, λ1) 1
(1, λ2) 0
(1, σ) 2
(g2, 1) 0
(g2, ε

′′) 0
(g′2, 1) 1
(g′2, ε

′′) 0
(g′2, ε

′) 0
(g3, 1) 1
(g4, 1) 0

S5 (1, 1) 3
(g3, 1) 2
(g′2, 1) 1
(1, ν) 2
(1, λ1) 2
(g5, 1) 1
(g3, ε) 0
(1, ν′) 1
(g′2, ε′′) 0
(1, λ2) 0
(g′2, ε

′) 0
(1, λ3) 0
(g2, 1) 0
(g4, 1) 0
(g6, 1) 0
(g2, r) 0
(g2, ε) 0
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As Kottwitz mentions, it was the computer results for E7 (which appeared before
those for E8) which forced him to deal with the six exceptional representations (two
of E7, four of E8) specially. As far as I know, it is only in [13] that any theoretical
explanation of some of the phenomena attached to these occurs in the literature.

I include here also the tables for the exceptional groups G2 and F4, which will
perhaps allow the reader to orient himself in reading these tables.

The subsidiary conjecture

Kottwitz’ second conjecture is made in the introduction to his paper. It asserts
that if σ is an involution, then the number of involutions in any right cell [Γ] and
conjugate to σ is equal to m(σ, πΓ), the multiplicity with which the character sgnσ
ofWσ occurs in the representation πΓ determined by Γ. As he points out, this is true
for type An because of known facts about the Robinson-Schensted correspondence.
If πΓ =

∑
niEi is its decomposition into irreducibles, then the claim is that

#{x ∈ Γ | x ∼ σ} =
∑

nim(σ,Ei)

so that we can use previous calculations to verify this if we can count conjugacy
classes of involutions in the cells. I have done this for the groups F4, E6 as well as
a selection of smaller classical groups. This program was more interesting than the
one used previously, since it involved computing explicitly all the W -graphs asso-
ciated to the right cells of W . (It was also more interesting because I implemented
it more than one year after the other, in the relatively new programming language
Java, which is inefficient but extremely flexible.)

A few people have suggested that these calculations might have been carried out
by hand, based on known facts about cells, but my feeling about this is that a well
constructed program that deals uniformly with a wide range of Coxeter groups is
more valuable than an ad hoc collection of techniques tailored to particular cases.

At any rate, we have the following table of data (see Cells for F4 below), which
in combination with the table of the m(σ,E) for E an irreducible representation of
F4 implies the result. Each row in this table concerns an equivalence class of cells.
The first column records the number of cells in the class {Γ}. The last column
records the decomposition of the representation πΓ into irreducible components.
The middle column records the conjugacy classes of involutions occurring in the
cell, with its multiplicity in brackets [ ].

The case E6 was decided long after the case of F4. The group E6 is not from
a mathematical point of view more complicated than F4, but its much larger size
creates serious computational difficulties. The program first calculated and stored
in a file the W -graph of E6, and then later read this file to verify the conjecture.
(The plain text file took up about 5 megabytes, which gives you some idea of how
difficult the group E7 will be.) A number of tricks were required in order not
to exceed memory or time limitations. The principal one was an efficient way to
the Bruhat order, suggested by du Cloux, following Deodhar. I should add that
du Cloux himself has calculated all the Kazhdan-Lusztig polynomials of E6, and
that I could have used his data in the second stage of my calculations, but for
technical reasons it was just as easy to calculate the W -graph directly. I have
intended for a long time now to make available on the Internet data files storing
the W -graphs of a wide selection of Coxeter groups up to about the size of E6, as
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well as partial graphs of a number of infinite Coxeter groups. What has deterred
me is that the size of the files required is huge, and recently I have been exploring
interesting ways to navigate them.

Cells for F4

Number of equivalent cells Involution classes in cell Decomposition

1 1 ϕ1,0

2 A1, Ã1 ϕ′′2,4 + ϕ4,1

2 A1, Ã1 ϕ′2,4 + ϕ4,1

9 A1 × Ã1 ϕ9,2

8 Ã1 ϕ′′8,3

8 A1 ϕ′8,3

8 A3
1 ϕ′′8,9

8 A2
1 × Ã1 ϕ′8,9

9 A1 × Ã1 ϕ9,10

1 [5] A1 × Ã1, [2] A2
1 ϕ′′1,12 + 2ϕ′′9,6 + ϕ′′6,6 + ϕ12,4 + ϕ′′4,7 + ϕ16,5

3 [4] A1 × Ã1, A2
1 ϕ′′9,6 + ϕ′6,6 + ϕ12,4 + ϕ′′4,7 + ϕ16,5

4 [2] A2
1, [5] A1 × Ã1 ϕ4,8 + ϕ′′9,6 + ϕ′9,6 + ϕ′′6,6 + ϕ12,4 + 2ϕ16,5

3 [4] A1 × Ã1, A2
1 ϕ′9,6 + ϕ′6,6 + ϕ12,4 + ϕ′4,7 + ϕ16,5

2 A3
1, A2

1 × Ã1 ϕ′′2,16 + ϕ4,13

1 [2] A2
1, [5] A1 × Ã1 ϕ′1,12 + 2ϕ′9,6 + ϕ′′6,6 + ϕ12,4 + ϕ′4,7 + ϕ16,5

2 A3
1, A2

1 × Ã1 ϕ′2,16 + ϕ4,13

1 A4
1 ϕ1,24

I should also remark here that my calculations undoubtedly reproduce some that
were made much earlier by the redoubtable Dean Alvis.
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The tables

The group G2. It has 12 elements.

Conjugacy class data:

Carter’s name Representative reduced Conjugacy class size
word expression

1 ∅ 1
Ã1 [1] 3
A1 [2] 3

A1 × Ã1 [121212] 1

Multiplicities:

G E (g, ρ) m(σ,E)
1 Ã1 A1 A1 × Ã1 m(E)

S1 ϕ1,0 1 0 0 0 1
ϕ1,6 0 0 0 1 1

S3 ϕ2,1 (1, 1) 0 1 1 0 2
ϕ′1,3 (1, r) 0 0 1 0 1
ϕ′′1,3 (g3, 1) 0 1 0 0 1
ϕ2,2 (g2, 1) 0 0 0 0 0

The group F4. It has 1152 elements.

Conjugacy class data:

Carter’s name Representative reduced Conjugacy class size
word expression

1 ∅ 1
A4

1 [121321323432132343213234] 1
A2

1 [2323] 18
A1 [1] 12
A3

1 [232343234] 12
Ã1 [3] 12

A2
1 × Ã1 [121321323] 12

A1 × Ã1 [13] 72
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Multiplicities: The group F4 is unusual, in that Kondo’s names are still commonly
used, and in particular in [10]. They are therefore given here, just after those of
Carter.

G E (Kondo) (g, ρ) m(σ, E)

1 A4
1 A2

1 A1 A3
1 Ã1 A2

1 × Ã1 A1 × Ã1 m(E)

S1 ϕ1,0 11 1 0 0 0 0 0 0 0 1

ϕ1,24 14 0 1 0 0 0 0 0 0 1

ϕ9,10 94 0 0 0 0 0 0 0 1 1

ϕ′′8,3 81 0 0 0 0 0 1 0 0 1

ϕ′8,3 83 0 0 0 1 0 0 0 0 1

ϕ′′8,9 84 0 0 0 0 1 0 0 0 1

ϕ′8,9 82 0 0 0 0 0 0 1 0 1

ϕ9,2 91 0 0 0 0 0 0 0 1 1

S2 ϕ4,1 42 (1, 1) 0 0 0 1 0 1 0 0 2

ϕ′′2,4 21 (g2, 1) 0 0 0 0 0 0 0 0 0

ϕ′2,4 23 (1, ε) 0 0 0 0 0 0 0 0 0

S2 ϕ4,13 45 (1, 1) 0 0 0 0 1 0 1 0 2

ϕ′′2,16 24 (g2, 1) 0 0 0 0 0 0 0 0 0

ϕ′2,16 22 (1, ε) 0 0 0 0 0 0 0 0 0

S4 ϕ12,4 121 (1, 1) 0 0 1 0 0 0 0 2 3

ϕ′′9,6 92 (g′2, 1) 0 0 0 0 0 0 0 1 1

ϕ′9,6 93 (1, λ1) 0 0 0 0 0 0 0 1 1

ϕ′′1,12 12 (g′2, ε
′) 0 0 0 0 0 0 0 0 0

ϕ′1,12 13 (1, λ2) 0 0 0 0 0 0 0 0 0

ϕ4,8 41 (g′2, ε
′′) 0 0 0 0 0 0 0 0 0

ϕ′′4,7 43 (g4, 1) 0 0 0 0 0 0 0 0 0

ϕ′4,7 44 (g2, ε′′) 0 0 0 0 0 0 0 0 0

ϕ′6,6 61 (g3, 1) 0 0 0 0 0 0 0 1 1

ϕ′′6,6 62 (1, σ) 0 0 1 0 0 0 0 1 2

ϕ16,5 161 (g2, 1) 0 0 0 0 0 0 0 0 0

The group E6. It has 51, 840 elements.

Conjugacy class data:

Carter’s name Representative reduced Conjugacy class size
word expression

1 ∅ 1
A4

1 [343243543245] 45
A2

1 [14] 270
A1 [1] 36
A3

1 [146] 540
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Multiplicities:

G E (g, ρ) m(σ, E)
1 A4

1 A2
1 A1 A3

1 m(E)

S1 ϕ1,0 1 0 0 0 0 1
ϕ1,36 0 1 0 0 0 1
ϕ6,1 0 0 0 1 0 1
ϕ6,25 0 0 0 0 1 1
ϕ20,10 0 0 0 0 0 0
ϕ20,2 0 0 1 0 0 1
ϕ20,20 0 1 0 0 0 1
ϕ24,6 0 0 1 0 0 1
ϕ24,12 0 1 0 0 0 1
ϕ60,5 0 0 0 0 1 1
ϕ60,11 0 0 0 0 1 1
ϕ64,4 0 0 1 0 0 1
ϕ64,13 0 0 0 0 1 1
ϕ81,6 0 0 1 0 0 1
ϕ81,10 0 0 1 0 0 1

S2 ϕ30,15 (1, 1) 0 0 0 0 2 2
ϕ15,17 (1, ε) 0 0 0 0 0 0
ϕ15,16 (g2, 1) 0 0 0 0 0 0

S2 ϕ30,3 (1, 1) 0 0 0 1 1 2
ϕ15,5 (1, ε) 0 0 0 0 0 0
ϕ15,4 (g2, 1) 0 0 0 0 0 0

S3 ϕ80,7 (1, 1) 0 0 0 0 2 2
ϕ10,9 (g3, 1) 0 0 0 0 1 1
ϕ20,10 (1, ε) 0 0 0 0 0 0
ϕ60,8 (g2, 1) 0 0 0 0 0 0
ϕ90,8 (1, r) 0 0 0 0 1 1

The group E7. It has 2, 903, 040 elements.

Conjugacy class data:

Carter’s name Representative reduced Conjugacy class size
word expression

1 ∅ 1
A6

1 [767567456724567345672456345243] 63
(A′′1 )4 [545245345243] 315
A2

1 [75] 945
(A′1)4 [7523] 3780
A7

1 [7675674567245673456724563452431
34567245634524313456724563452431]

1
A1 [7] 63

(A′1)3 [752] 315
A5

1 [7545245345243] 945
(A′′1 )3 [753] 3780

Multiplicities: The exceptional classes are marked Exc.
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G E (g, ρ) m(σ,E)
1 A6

1 (A′′1 )4 A2
1 (A′1)4 A7

1 A1 (A′1)3 A5
1 (A′′1 )3 m(E)

S1 ϕ1,0 1 0 0 0 0 0 0 0 0 0 1
ϕ1,63 0 0 0 0 0 1 0 0 0 0 1
ϕ7,46 0 1 0 0 0 0 0 0 0 0 1
ϕ7,1 0 0 0 0 0 0 1 0 0 0 1
ϕ21,36 0 0 1 0 0 0 0 0 0 0 1
ϕ21,3 0 0 0 0 0 0 0 1 0 0 1
ϕ27,2 0 0 0 1 0 0 0 0 0 0 1
ϕ27,37 0 0 0 0 0 0 0 0 1 0 1
ϕ105,6 0 0 0 0 1 0 0 0 0 0 1
ϕ105,21 0 0 0 0 0 0 0 0 0 1 1
ϕ105,12 0 0 1 0 0 0 0 0 0 0 1
ϕ105,15 0 0 0 0 0 0 0 1 0 0 1
ϕ168,6 0 0 0 1 0 0 0 0 0 0 1
ϕ168,21 0 0 0 0 0 0 0 0 1 0 1
ϕ189,22 0 0 0 0 1 0 0 0 0 0 1
ϕ189,5 0 0 0 0 0 0 0 0 0 1 1
ϕ189,20 0 0 1 0 0 0 0 0 0 0 1
ϕ189,7 0 0 0 0 0 0 0 1 0 0 1
ϕ210,6 0 0 0 1 0 0 0 0 0 0 1
ϕ210,21 0 0 0 0 0 0 0 0 1 0 1
ϕ210,10 0 0 0 0 1 0 0 0 0 0 1
ϕ210,13 0 0 0 0 0 0 0 0 0 1 1
ϕ378,14 0 0 0 0 1 0 0 0 0 0 1
ϕ378,9 0 0 0 0 0 0 0 0 0 1 1

S2 ϕ56,3 (1, 1) 0 0 0 0 0 0 1 0 0 1 2
ϕ35,4 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ21,6 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ56,30 (1, 1) 0 1 0 0 1 0 0 0 0 0 2
ϕ35,31 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ21,33 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ120,4 (1, 1) 0 0 0 1 1 0 0 0 0 0 2
ϕ15,7 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ105,5 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ120,25 (1, 1) 0 0 0 0 0 0 0 0 1 1 2
ϕ15,28 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ105,26 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ405,8 (1, 1) 0 0 0 0 2 0 0 0 0 0 2
ϕ216,9 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ189,10 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ405,15 (1, 1) 0 0 0 0 0 0 0 0 0 2 2
ϕ216,16 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ189,17 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ420,10 (1, 1) 0 0 0 1 1 0 0 0 0 0 2
ϕ84,12 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ336,11 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ420,13 (1, 1) 0 0 0 0 0 0 0 0 1 1 2
ϕ84,15 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ336,14 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

Exc ϕ512,11 (1, 1) 0 0 0 0 0 0 0 0 0 1 1
ϕ512,12 (g2, 1) 0 0 0 0 1 0 0 0 0 0 1
ϕ512,12 (1, ε) 0 0 0 0 1 0 0 0 0 0 1

S3 ϕ315,7 (1, 1) 0 0 0 0 0 0 0 0 0 2 2
ϕ280,8 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ280,9 (1, r) 0 0 0 0 0 0 0 0 0 1 1
ϕ70,9 (g3, 1) 0 0 0 0 0 0 0 0 0 1 1
ϕ35,13 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S3 ϕ315,16 (1, 1) 0 0 0 0 2 0 0 0 0 0 2
ϕ280,17 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ280,18 (1, r) 0 0 0 0 1 0 0 0 0 0 1
ϕ70,18 (g3, 1) 0 0 0 0 1 0 0 0 0 0 1
ϕ35,22 (1, ε) 0 0 0 0 0 0 0 0 0 0 0
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The group E8. It has 696, 729, 600 elements.

Conjugacy class data:

Carter’s name Representative reduced Conjugacy class size
word expression

1 ∅ 1
A8

1 [878678567845678145678345678145
673456145341134567814567345614
534113456781456734561453411345

678145634514313456714563451431]
1

(A′1)4 [545245345243] 3150
A2

1 [61] 3780
A6

1 [767567456724567345672456345243] 3780
(A′′1 )4 [7523] 113400
A1 [3] 120
A7

1 [7675674567245673456724563452431
34567245634524313456724563452431]

120
A3

1 [861] 37800
A5

1 [7545245345243] 37800

Multiplicities. The exceptional classes are marked Exc.

G E (g, ρ) m(σ, E)
1 A8

1 (A′1)4 A2
1 A6

1 (A′′1 )4 A1 A7
1 A3

1 A5
1 m(E)

S1 ϕ1,0 1 0 0 0 0 0 0 0 0 0 1
ϕ1,120 0 1 0 0 0 0 0 0 0 0 1
ϕ35,2 0 0 0 1 0 0 0 0 0 0 1
ϕ35,74 0 0 0 0 1 0 0 0 0 0 1
ϕ525,12 0 0 1 0 0 0 0 0 0 0 1
ϕ525,36 0 0 1 0 0 0 0 0 0 0 1
ϕ567,6 0 0 0 1 0 0 0 0 0 0 1
ϕ567,46 0 0 0 0 1 0 0 0 0 0 1
ϕ2100,20 0 0 1 0 0 0 0 0 0 0 1
ϕ2835,14 0 0 0 0 0 1 0 0 0 0 1
ϕ2835,22 0 0 0 0 0 1 0 0 0 0 1
ϕ6075,14 0 0 0 0 0 1 0 0 0 0 1
ϕ6075,22 0 0 0 0 0 1 0 0 0 0 1
ϕ8,1 0 0 0 0 0 0 1 0 0 0 1
ϕ8,91 0 0 0 0 0 0 0 1 0 0 1
ϕ560,5 0 0 0 0 0 0 0 0 1 0 1
ϕ560,47 0 0 0 0 0 0 0 0 0 1 1
ϕ3240,9 0 0 0 0 0 0 0 0 1 0 1
ϕ3240,31 0 0 0 0 0 0 0 0 0 1 1
ϕ4200,15 0 0 0 0 0 0 0 0 0 1 1
ϕ4200,21 0 0 0 0 0 0 0 0 1 0 1

ϕ4536,13 0 0 0 0 0 0 0 0 1 0 1
ϕ4536,23 0 0 0 0 0 0 0 0 0 1 1
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1 A8
1 (A′1)4 A2

1 A6
1 (A′′1 )4 A1 A7

1 A3
1 A5

1 m(E)

S5 ϕ4480,16 (1, 1) 0 0 0 0 0 3 0 0 0 0 3
ϕ3150,18 (g3, 1) 0 0 0 0 0 2 0 0 0 0 2
ϕ4200,18 (g′2, 1) 0 0 0 0 0 1 0 0 0 0 1
ϕ4536,18 (1, ν) 0 0 0 0 0 2 0 0 0 0 2
ϕ5670,18 (1, λ1) 0 0 0 0 0 2 0 0 0 0 2
ϕ420,20 (g5, 1) 0 0 0 0 0 1 0 0 0 0 1
ϕ1134,20 (g3, ε) 0 0 0 0 0 0 0 0 0 0 0
ϕ1400,20 (1, ν′) 0 0 0 0 0 1 0 0 0 0 1

ϕ2688,20 (g′2, ε
′′) 0 0 0 0 0 0 0 0 0 0 0

ϕ1680,22 (1, λ2) 0 0 0 0 0 0 0 0 0 0 0
ϕ168,24 (g′2, ε

′) 0 0 0 0 0 0 0 0 0 0 0
ϕ70,32 (1, λ3) 0 0 0 0 0 0 0 0 0 0 0
ϕ7168,17 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ1344,19 (g4, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ2016,19 (g6, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ5600,19 (g2, r) 0 0 0 0 0 0 0 0 0 0 0
ϕ448,25 (g2, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ112,3 (1, 1) 0 0 0 0 0 0 1 0 1 0 2
ϕ84,4 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ28,8 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ112,63 (1, 1) 0 0 0 0 0 0 0 1 0 1 2
ϕ84,64 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ28,68 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ210,4 (1, 1) 0 0 0 1 0 1 0 0 0 0 2
ϕ50,8 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ160,7 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ210,52 (1, 1) 0 0 0 0 1 1 0 0 0 0 2
ϕ50,56 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ160,55 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ700,6 (1, 1) 0 0 0 1 0 1 0 0 0 0 2
ϕ400,7 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ300,8 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ700,42 (1, 1) 0 0 0 0 1 1 0 0 0 0 2
ϕ400,43 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ300,44 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ2268,30 (1, 1) 0 0 0 0 1 1 0 0 0 0 2
ϕ972,32 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ1296,33 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ2268,10 (1, 1) 0 0 0 1 0 1 0 0 0 0 2
ϕ972,12 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ1296,13 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ2240,28 (1, 1) 0 0 0 0 0 2 0 0 0 0 2
ϕ1400,29 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ840,31 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ2240,10 (1, 1) 0 0 0 0 0 2 0 0 0 0 2
ϕ1400,11 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ840,13 (1, ε) 0 0 0 0 0 0 0 0 0 0 0
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1 A8
1 (A′1)4 A2

1 A6
1 (A′′1 )4 A1 A7

1 A3
1 A5

1 m(E)

Exc ϕ4096,11 (1, 1) 0 0 0 0 0 0 0 0 1 0 1
ϕ4096,12 (1, ε) 0 0 0 0 0 1 0 0 0 0 1

Exc ϕ4096,26 (1, 1) 0 0 0 0 0 1 0 0 0 0 1
ϕ4096,27 (1, ε) 0 0 0 0 0 0 0 0 0 1 1

S2 ϕ4200,12 (1, 1) 0 0 0 0 0 2 0 0 0 0 2
ϕ840,14 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0

ϕ3360,13 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ4200,24 (1, 1) 0 0 0 0 0 2 0 0 0 0 2
ϕ840,26 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ3360,25 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ2800,13 (1, 1) 0 0 0 0 0 0 0 0 1 1 2
ϕ700,16 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ2100,16 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ2800,25 (1, 1) 0 0 0 0 0 0 0 0 1 1 2
ϕ700,28 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ2100,28 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ5600,15 (1, 1) 0 0 0 0 0 0 0 0 2 0 2
ϕ3200,16 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ2400,17 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S2 ϕ5600,21 (1, 1) 0 0 0 0 0 0 0 0 0 2 2
ϕ3200,22 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ2400,23 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S3 ϕ1400,7 (1, 1) 0 0 0 0 0 0 0 0 2 0 2
ϕ1344,8 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ1008,9 (1, r) 0 0 0 0 0 0 0 0 1 0 1
ϕ448,9 (g3, 1) 0 0 0 0 0 0 0 0 1 0 1
ϕ56,19 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S3 ϕ1400,37 (1, 1) 0 0 0 0 0 0 0 0 0 2 2
ϕ1344,38 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ1008,39 (1, r) 0 0 0 0 0 0 0 0 0 1 1
ϕ448,39 (g3, 1) 0 0 0 0 0 0 0 0 0 1 1
ϕ56,49 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S3 ϕ1400,8 (1, 1) 0 0 0 0 0 2 0 0 0 0 2
ϕ1050,10 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ1575,10 (1, r) 0 0 0 0 0 1 0 0 0 0 1
ϕ175,12 (g3, 1) 0 0 0 0 0 1 0 0 0 0 1
ϕ350,14 (1, ε) 0 0 0 0 0 0 0 0 0 0 0

S3 ϕ1400,32 (1, 1) 0 0 0 0 0 2 0 0 0 0 2
ϕ1050,34 (g2, 1) 0 0 0 0 0 0 0 0 0 0 0
ϕ1575,34 (1, r) 0 0 0 0 0 1 0 0 0 0 1
ϕ175,36 (g3, 1) 0 0 0 0 0 1 0 0 0 0 1
ϕ350,38 (1, ε) 0 0 0 0 0 0 0 0 0 0 0
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