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HARISH-CHANDRA MODULES
FOR QUANTUM SYMMETRIC PAIRS

GAIL LETZTER

Abstract. Let U denote the quantized enveloping algebra associated to a
semisimple Lie algebra. This paper studies Harish-Chandra modules for the
recently constructed quantum symmetric pairs U ,B in the maximally split case.
Finite-dimensional U -modules are shown to be Harish-Chandra as well as the
B-unitary socle of an arbitrary module. A classification of finite-dimensional
spherical modules analogous to the classical case is obtained. A one-to-one
correspondence between a large class of natural finite-dimensional simple B-
modules and their classical counterparts is established up to the action of
almost B-invariant elements.

Let g be a semisimple Lie algebra and let gθ be the Lie subalgebra fixed by
an involution θ of g. There is an extensive theory concerning the Harish-Chandra
modules associated to the pair g, gθ. These are g-modules which behave nicely with
respect to the restriction of the action of g to gθ. One of the main motivations in
understanding such modules is their close connection and impact on the study of
real Lie group representations. Harish-Chandra modules also are a class of infinite-
dimensional g-modules that have a reasonable amount of structure and thus are
amenable to study. In this way they are similar to the other infinite-dimensional
g-modules that have been examined thoroughly, the so-called category O modules.
These modules behave nicely with respect to the Cartan subalgebra of g.

Let U denote the Drinfeld-Jimbo quantization of the enveloping algebra of g. In
the quantum case, there is already a well developed theory of category O modules
(see for example [Jo]). However, much less is known about infinite-dimensional
quantum modules that correspond to the classical Harish-Chandra modules. One
of the main reasons for this difference is that there is an obvious quantum analog
of the Cartan subalgebra of g, while the analogs of the invariant Lie subalgebra are
less apparent. In [L2], we introduced one-sided coideal algebrasB = Bθ as quantum
analogs of the enveloping algebra of the fixed Lie subalgebra under the maximally
split form of an involution θ. These analogs generalize the known examples already
in the literature in the maximally split case. Using these analogs in this paper, we
lay the groundwork for the study of quantum Harish-Chandra modules.

In the first part of the paper, we prove elementary results about quantum
Harish-Chandra modules associated to U,B. As in the classical case, every finite-
dimensional simple U -module comes equipped with a positive definite conjugate lin-
ear form. One checks that B behaves nicely with respect to this form which allows
us to decompose finite-dimensional U -modules into a direct sum of finite-dimen-
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sional simple B-modules. This is exactly the condition necessary to make such a
U -module into a quantum Harish-Chandra module with respect to B. Using this
result applied to the locally finite part of U , we prove that the sum of all finite-
dimensional unitary simple B-modules inside a U -module is a Harish-Chandra mod-
ule. As in the classical case, this result should prove useful in finding examples of
Harish-Chandra modules inside of infinite-dimensional U -modules.

In the next part of the paper, we study a special type of quantum Harish-
Chandra module: the finite-dimensional spherical modules. We show that a finite-
dimensional U -module is a spherical module for B exactly when the corresponding
gθ-module is spherical. Some of the proof here is similar to the classical case, while
some new ideas are needed to avoid the use of Lie groups. These results extend the
work of Noumi and Sugitani (see [N, Theorem 3.1] and [NS, Theorem 1]) in special
cases and suggest that the quantum analogs of [L2] will yield a good quantum
symmetric space theory for maximally split involutions (see [Di, end of Section 3]).

In order to have a reasonable Harish-Chandra module theory, one needs to un-
derstand the finite-dimensional simple B-modules. One obvious class of finite-
dimensional simple unitary B-modules is the submodules of finite-dimensional U -
modules. We extend this class when gθ has a nontrivial center. Unfortunately, in
most cases, neither the enveloping algebra of the semisimple part nor the center of
gθ lifts to a subalgebra of B. However, B is shown to be the direct sum of a poly-
nomial ring whose generators correspond to a basis of gθ/[gθ,gθ] and a subalgebra
of B. This decomposition is then used to produce analogs of the one-dimensional
U(gθ) representations for B. The class of finite-dimensional unitary simple mod-
ules is extended by taking submodules of tensor products of these one-dimensional
simple B-modules with finite-dimensional U -modules.

In order to gain further understanding of the finite-dimensional simple modules,
we study those modules of B which can be specialized to gθ-modules. One of the
difficulties in understanding finite-dimensional B-modules is that unlike the quan-
tized enveloping algebra, there is no obvious Cartan subalgebra inside of B. Thus
one cannot analyze finite-dimensional B-modules using weights and highest weight
vectors. In [GI] (see also [L1, Remark 2.4]), certain finite-dimensional modules are
analyzed when B is the analog of U(so n) using Gelfand-Tsetlin basis; however,
this approach does not generalize to other cases. Despite these problems, we show
that every specializable simple B-module remains simple upon specialization and
every finite-dimensional simple U(gθ)-module is the image under specialization of
some finite-dimensional simple B-module. Furthermore, every finite-dimensional
unitary simple U(gθ)-module can be lifted to a finite-dimensional unitary simple
B-module. The picture is particularly nice when gθ is semisimple. Indeed in this
case, there is a one-to-one correspondence between specializable finite-dimensional
simple B-modules and finite-dimensional simple U(gθ)-modules.

The main new idea in studying specialization is to embed finite-dimensional
B-modules inside of certain U -modules coinduced from a subalgebra of B. The
process is rather delicate since one must show that specializable B-modules embed
in a way that is compatible with specialization of the larger U -modules. When gθ

is not semisimple, we use the results on spherical modules to lift the center of gθ

to elements of U (though not to elements of B). This is necessary to ensure that
the center of gθ will acts as scalars on the specialization of the B-modules under
question.
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In the quantized enveloping algebra case, all finite-dimensional simple modules
are specializable (up to a one-dimensional representation of the Cartan subalge-
bra). This is not true for the analogs of U(gθ). At the end of the paper, we give
examples of one-dimensional nonspecializable modules for an example of B where
gθ is semisimple.

There is more than one way to embed the analogs in [L2] of U(gθ) into U up
to Hopf algebra automorphisms. These embeddings are divided into two classes,
standard and nonstandard (see Section 2). All the results listed above are proved
for the standard embedding. The same theorems are also true for a large class of
nonstandard embeddings (see Section 3 and Section 4). This was somewhat sur-
prising to the author and required a completely different argument for the theorem
classifying finite-dimensional spherical modules (see the end of Section 4).

This paper is organized as follows. Section 1 sets notation and recalls basic facts
about semisimple Lie algebras. In Section 2, we give the necessary background
material on quantum symmetric pairs, and in particular, the construction of the
analogs of U(gθ). Section 3 is devoted to basic results about quantum Harish-
Chandra modules. Necessary and sufficient conditions for a finite-dimensional U -
module to be spherical are established in Section 4. In Section 5, we produce a
decomposition of B when gθ is not semisimple in order to obtain additional one-
dimensional representations of B. Section 6 is an analysis of certain coinduced
modules and their finite-dimensional B-submodules. In Section 7, we define and
study specializable B-modules.

1. Background and Notation

Let g = n− ⊕ h ⊕ n+ be a semisimple Lie algebra of rank l over C. Let (aij)
denote the Cartan matrix of g and let ∆ (resp. ∆+) be the set of roots (resp.
positive roots) for g. Write π = {α1 . . . αl} for the set of positive simple roots
and set Q =

∑
1≤i≤l Zαi and Q+ =

∑
1≤i≤l Nαi (where N denotes the set of

nonnegative integers). Let ( , ) denote the Cartan inner product on h∗ and set
〈α, β〉 = 2(α, β)/(β, β). We use “<” for the usual order on Q. In particular, we say
that λ < γ whenever γ − λ ∈ Q+.

Let q be a fixed indeterminate. We will be defining quantized enveloping algebras
over an extension of C(q) and we will also need a notion of conjugation on this
extended field. Note that the ring C[q](q−1) can be considered as a subring of the
ring of formal power series C[[q−1]]. Furthermore, every element in C[[q−1]] that
is not in the ideal generated by (q − 1) has a square root in C[[q − 1]]. Let A be
the smallest subring of the algebraic closure of C(q) such that every element in A
which is not contained in the ideal generated by (q − 1) has a square root and is
invertible. It follows that we can also embed A inside of C[[q − 1]]. Write K for
the quotient field of A. Define R to be the intersection of K with the real closure
of R(q). Using the theory of real ordered fields, we have that K = R+ iR (see [Ja,
§11]). Conjugation ¯ on C can be extended to conjugation on C(q) and hence on
K by setting the conjugate of qm equal to qm for all integers m.

Given an indeterminate q, the Drinfeld-Jimbo quantized enveloping algebra U =
Uq(g) is the algebra over K generated by xi, yi, t±1

i , 1 ≤ i ≤ l subject to the
relations in [L2] or [Jo, 3.2.9]. (We follow the conventions of the warning in the
latter reference.) The algebra U is also a Hopf algebra with comultiplication ∆,
counit ε, and antipode σ as in [Jo, 3.2.9].



HARISH-CHANDRA MODULES FOR QUANTUM SYMMETRIC PAIRS 67

The group T = 〈t1, . . . , tl〉 is isomorphic to the additive group Q. Define the
corresponding isomorphism τ by setting τ(αi) = ti for 1 ≤ i ≤ l. We will sometimes
adjoin additional elements τ(λ) to U where λ ∈ h∗ as in [JL2, §3.1].

Given an algebra S and subalgebras Si, 1 ≤ i ≤ r, we call the map from
S1 ⊗ · · · ⊗ Sr to S which sends s1 ⊗ · · · ⊗ sr to s1 . . . sr the multiplication map.

Let U+ (resp. U−, resp. Uo) be the K subalgebra of U generated by xi (resp.
yi, resp. t±1

i ), for 1 ≤ i ≤ l. There is a vector space isomorphism over K via the
multiplication map ([R])

U ∼= U− ⊗ Uo ⊗ U+.

We may replace U+ (resp. U−) by G+ (resp. G−) where G+ (resp. G−) is the
subalgebra of U generated by xit−1

i (resp. yiti) for 1 ≤ i ≤ l.
Given a U -module M and a Λ ∈ K[T ]∗, we write MΛ for the Λ weight space of

M . In particular, MΛ = {v ∈ M |tv = Λ(t)v for t ∈ T }. When Λ takes the form
Λ(τ(β)) = q(λ,α) for some λ ∈ h∗, we write Λ = qλ and Mλ instead of MΛ. When
M is a subset of U , the λ weight space of M is defined with respect to the adjoint
action of T on U . If v ∈M has weight λ, then we set wt v = λ.

Set Û equal to the A subalgebra of U generated by xi, yi, (ti − 1)/(q − 1). By
say [DK, Proposition 1.5] and [JL2, 6.11], we have that U(g) ∼= Û ⊗A C where
we identify C with A/〈q − 1〉. Given a subalgebra S of U , set Ŝ = Û ∩ S. The
specialization of S at q = 1 is the image of Ŝ in U(g) using the above isomorphism.

Though we started with the field C, the results in this paper also hold if we
replace C by the algebraic closure of any real ordered field. Basic facts about
quantized enveloping algebras which are not referenced explicitly can be found in
[Jo].

2. Quantum Symmetric Pairs

Let θ be an involution of g and write gθ for the corresponding fixed subalgebra.
Replacing θ by a conjugate using automorphisms of g (if necessary), we may assume
that θ is maximally split (see [D, 1.13.8]). In particular, we may assume that θ
satisfies the following three conditions:
(2.1) θ(h) = h;
(2.2) θ(ei) = ei and θ(fi) = fi if θ(hi) = hi;
(2.3) θ(ei) (resp. θ(fi)) is a nonzero scalar multiple of a root vector in n− (resp.

n+) if θ(hi) 6= hi.

The above conditions imply that θ induces an automorphism of the root system
which we denote by Θ. Set πΘ = {αi ∈ π|θ(hi) = hi}, Q(πΘ) =

∑
αi∈πΘ

Zαi,
and ∆Θ = Q(πΘ) ∩ ∆. We have that ∆Θ is a root system with positive roots
∆+

Θ = ∆+ ∩ ∆Θ, negative roots ∆−Θ = ∆− ∩ ∆Θ and simple roots πΘ. Let mΘ

denote the reductive Lie subalgebra of gθ generated by gθ ∩ h and the semisimple
Lie subalgebra whose root system is ∆Θ. Write n+

Θ for the Lie subalgebra generated
by the root vectors of weights in ∆+ −∆+

Θ and define n−Θ similarly using negative
weights. (In what follows, we drop the Θ subscript from mΘ since Θ will be
understood from context.)

As in say [L2, (3.7)], there exists a permutation p on the set {i|αi ∈ π − πΘ}
such that for each αi ∈ π − πΘ,

Θ(αi) + αp(i) ∈ Q(πΘ).(2.4)
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Quantum analogs of U(gθ) are constructed and studied in [L2]. These analogs
are subalgebras of U which specialize to U(gθ) and are right coideals. Because of
the convention of considering left modules more often than right modules, it will
be convenient to replace these right coideals by left coideals. This is done by using
the isomorphism of U which sends xi to yi, yi to xi, ti to t−1

i , and sends the Hopf
structure of U to the opposite Hopf structure. Thus when referring to results in
[L2], we will assume this isomorphism transforming the Hopf structure has been
applied to U .

Let us briefly review the construction and properties of the quantum analogs of
U(gθ) defined in [L2]. Let TΘ denote the subgroup of T consisting of those τ(λ)
such that λ = Θ(λ). Let R be the subalgebra of U generated by the xi, yi, with
αi ∈ πΘ and the group TΘ. Alternatively, we can view R as the subalgebra of U
generated by the quantized enveloping algebra Uq([m,m]) and TΘ.

The involution θ can be lifted to a C-algebra involution θ̃ of U such that (see
[L2, Theorem 3.1])

(2.5) θ̃(q) = q−1;
(2.6) θ̃(τ(λ)) = τ(−Θ(λ)) for all τ(λ) ∈ T ;
(2.7) θ̃(xi) = xi and θ̃(yi) = yi for all αi ∈ πΘ;
(2.8) θ̃(xi) ∈ G−Θ(αi)

and θ̃(yi) ∈ G+
Θ(−αi) where αi /∈ πΘ.

Let Bθ̃ be the K-subalgebra of U generated by R and the elements

Bθ̃i = yiti + θ̃(yi)ti

for αi /∈ πΘ. In what follows, we drop the θ̃ subscript or superscript from Bθ̃ and
Bθ̃i as long as the involution θ can be understood from context.

By [L2, Theorem 4.9], B satisfies the following properties:

(2.9) B specializes to U(gθ).
(2.10) ∆(B) ⊂ U ⊗B.
(2.11) If B ⊂ C and C is a subalgebra of U which also specializes to U(gθ), then

B = C.

Moreover, if B′ and B both satisfy (2.9), (2.10), (2.11), then B′ is isomorphic
as an algebra to B (see [L2, Theorem 5.8]). This isomorphism is not necessarily
the restriction of a Hopf algebra automorphism of U . To classify such left coideal
algebras up to Hopf algebra isomorphism, set S equal to the subset of π − πΘ

consisting of those αi such that (λ, αi) = 0 for all τ(λ) ∈ TΘ. Let S denote the
set of l-tuples (s1, . . . , sl) such that si ∈ A and si 6= 0 implies that αi ∈ S. Given
s ∈ S, set

Bs,θ̃
j = yjtj + θ̃(yj)tj + sjtj

for 1 ≤ j ≤ l. Let Bs,θ̃ be the subalgebra of U generated by R and Bs,θ̃
j for αj /∈ πΘ.

Let H denote the set of the Hopf algebra automorphisms of U which fix elements
of T and send xi to aiyi, yi to a−1

i yi, where ai and a−1
i are in A − (q − 1)A for

1 ≤ i ≤ l. Let [Θ] denote the set of all involutions of g corresponding to the root
system automorphism Θ. Replace condition (2.9) by

(2.12) B specializes to U(gθ
′
) for some θ′ ∈ [Θ].



HARISH-CHANDRA MODULES FOR QUANTUM SYMMETRIC PAIRS 69

By [L2, §5 (the paragraph following Lemma 5.5, Theorem 5.8, and Remark 5.10)],
we have the following classification of subalgebras of U satisfying (2.10), (2.11), and
(2.12).

Theorem 2.1. A subalgebra B of U satisfies conditions (2.10), (2.11), and (2.12)
if and only if there is a Hopf algebra automorphism Υ ∈ H such that Υ(B) = Bs,θ̃

for some s ∈ S. Moreover, B is isomorphic as an algebra to Bθ̃.

When s is identically zero, then Bs,θ̃ is just the same as Bθ̃. In this paper, we
call B a standard analog of U(gθ) if B is the image of Bθ̃ under a Hopf algebra
automorphism of U in H. Thus, any analog isomorphic to Bs,θ̃ with s 6= 0 via
a Hopf algebra automorphism in H is nonstandard. We usually take the point of
view of the standard analogs of U(gθ) in this paper. However, we show that the
results of this paper are true as well for all nonstandard analogs of U(gθ) that are
Hopf isomorphic to a subalgebra invariant under a certain real antiautomorphism
of U .

Let N+
Θ be the subalgebra of U+ defined by

N+
Θ =

∑
γ∈Q+

(G+ ∩ θ̃(U−))γτ(γ).

In the lemma below, we show that this algebra (defined somewhat differently than
in [L2]) is a quantum analog of U(n+

Θ). Set R− = R ∩ U− and R+ = R ∩ U+.
Define a twisted adjoint action or, more precisely, a (right) skew derivation (see
[Jo, 1.2.11]) of U− on U by

(ãd yi)b = yibt
−1
i − byit−1

i

for all 1 ≤ i ≤ l. Similarly, we define an action of U+ and Uo on U by

(ãdxi)b = xib− t−1
i btixi (ãd ti)b = t−1

i bti

for 1 ≤ i ≤ l.
We can associate to the ordinary adjoint action a map Ad : U → U ⊗ Uop

such that if Ad(a) =
∑
a(1) ⊗ a(2), then (ada)b =

∑
a(1)ba(2). Let ψ be the C-

algebra automorphism of U defined by ψ(xi) = xi, ψ(yi) = yi, ψ(ti) = t−1
i , and

ψ(q) = q−1 for 1 ≤ i ≤ l. A map similar to Ad for ãd can also be defined. In
particular, the C-algebra homomorphism (ψ⊗ψ) ◦Ad from U to U ⊗Uop satisfies
(ψ⊗ψ) ◦Ad (c) =

∑
c(1)⊗ c(2) when (ãd c)b =

∑
c(1)bc(2). Thinking now of ãd as

a map from U into EndU , the above discussion implies that

(ãdxi)(ãd yj) = (ãd yj)(ãdxi) + δij(ãd (ti − t−1
i ))/(q−1 − q)

(2.13)

for 1 ≤ i ≤ l.
Proposition 2.2. The algebra N+

Θ is (ãdR) invariant. Moreover, the algebra gen-
erated by N+

Θ and R is isomorphic to N+
Θ ⊗R as vector spaces via the multiplication

map and the algebra generated by N+
Θ and R+ is equal to all of U+.

Proof. It is straightforward to check that (ãd yi)U+ is contained in U+ + U+t−2
i

for 1 ≤ i ≤ l. Fix a nonnegative integer r and a sequence i1, . . . , ir of r elements in
the set {i|αi ∈ πΘ}. Pick j such that 1 ≤ j ≤ l and αj /∈ πΘ.

Set

Yr = (ãd yir ) · · · (ãd yi1)(θ̃(yj)τ(Θ(−αj))).
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We show by induction on r that

∆(Yr) ⊂ t−1
i1
· · · t−1

ir
τ(Θ(−αj))⊗ Yr + U ⊗R(2.14)

and

Yr ∈ U+.(2.15)

By [L2, Proposition 4.1], (2.14) and (2.15) hold for r = 0. Assume (2.14) holds
for r = n − 1. Set λ = wtYn−1 and note that λ = −αi1 · · · − αin−1 + Θ(−αj). It
follows that yinτ(λ)t−1

in
⊗ t−1

in
Yn−1t

−1
in

= τ(λ)yin t
−1
in
⊗ Yn−1t

−2
in
. Using this fact, a

straightforward computation shows that

∆(Yn) = ∆(yinYn−1t
−1
in
− Yn−1yint

−1
in

) = τ(λ)t−1
in
⊗ (ãd yin)Yn−1 + U ⊗R.

Statement (2.14) thus follows by induction.
Now assume that (2.14) holds for Yn and (2.15) holds for Yn−1. Then, write

(ãd yin)Yn−1 as b1 + b2t
−2
in

where b1 and b2 are in U+
λ−αin . We have

∆(b1 + b2t
−2
in

) = τ(λ) ⊗ b1 + τ(λ)t−2
in
⊗ b2t−2

in
+

∑
γ<λ−αin

U ⊗ U+
γ U

o.

Since λ− αin /∈ Q(πΘ), we cannot have that b2t−2
in
∈ R. Thus by (2.14) for r = n,

b2 = 0 and hence (2.15) holds for r = n. Therefore (2.15) follows by induction on
r.

Using induction again, we assume that Yr−1 ∈ N+
Θ . In particular, Yr−1 =

θ̃(ar−1)τ(wt Yr−1) for some ar−1 ∈ U−. It follows that Yr = (ãd yir )Yr−1 =
θ̃(ar)τ(wt Yr−1)t−1

ir
where ar = yirar−1 − q(wtYr−1,αir )ar−1yir . Hence Yr ∈ N+

Θ .
We have shown that (ãdR−)(θ̃(yj)) ∈ N+

Θ for all αj /∈ πΘ. Thus N+
Θ contains

elements which specialize to the root vectors that form a basis of n+
Θ. Since these

generators are also in Û , we see that the dimension of each weight space of N+
Θ is

greater than or equal to the dimension of each weight space of U(n+
Θ). Furthermore,

by definition, of N+
Θ , the specialization of N+

Θ is contained in U(n+
Θ). Hence N+

Θ

specializes to U(n+
Θ), there is an equality of character formulas chN+

Θ = chU(n+
Θ),

and N+
Θ must thus be generated by the set {(ãdR−)(θ̃(yj))|αj /∈ πΘ}. This set is

a vector space spanned by weight vectors, hence N+
Θ is (ãdRo) invariant. It now

follows from the definition of ãd yi that N+
Θ is also (ãdR−) invariant.

To show that N+
Θ is (ãdR+) invariant, it is sufficient to show that (ãdxi)a

is in N+
Θ for any of the generators of N+

Θ and for any xi ∈ R. In particu-
lar, assume that a takes the form Yr = (ãd yir ) · · · (ãd yi1)(θ̃(yj)τ(Θ(−αj))) for
an appropriate sequence ir, . . . , i1. By (2.13), we have that (ãdxi)Yr ∈ N+

Θ +
(ãd yir ) · · · (ãd yi1)(ãd xi)(θ̃(yj)τ(Θ(−αj))). It is enough to show that zero equals
(ãdxi)X where X = θ̃(yj)τ(Θ(−αj)). Now (ãdxi)X = xiX − t−1

i Xtixi, hence
θ̃((ãdxi)X) = xiyjτ(αj) − tiyjτ(αj)t−1

i xi. Note that j cannot equal i because
αi ∈ πΘ while αj /∈ πΘ. Thus (ãdxi)X = 0 and N+

Θ is (ãdR) invariant.
Recall Sweedler’s notation for Hopf algebras: ∆(r) = r(1) ⊗ r(2). If r ∈ R and

n ∈ N+
Θ , then

rn = r(1)nε(r(2)) = r(1)nσ(r(2))r(3) = ((ad r(1))n)r(2).(2.16)

Since N+
Θ is (ãdR) invariant and R is a Hopf algebra, every element of the algebra

generated by N+
Θ and R is in the vector space N+

ΘR = span{nr|n ∈ N+
Θ , r ∈ R}.
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Let m−⊕mo⊕m+ be the triangle decomposition of the reductive Lie algebra m.
In the classical case, the subalgebra generated by U(m+) and U(n+

Θ) is isomorphic
as a vector space to U(n+

Θ) ⊗ U(m+) via the multiplication map. Since N+
ΘR

+

specializes to this algebra as q goes to 1, the subalgebra generated by N+
Θ and R+

must be isomorphic to N+
Θ ⊗R+ as a vector space via the multiplication map.

Note that (chN+
Θ )(chR+) = (chU(n+

Θ)(chU(m+)) = chU+. Hence the above
tensor product decomposition shows that the subalgebra of U+ generated by N+

Θ

and R+ is equal to all of U+. The proposition now follows from the triangular
decomposition of U and the triangular decomposition of R.

Let A be the subgroup of 〈t1/21 , . . . , t
1/2
l 〉 generated by t1/2i τ(Θ(αi))−1/2 for 1 ≤

i ≤ l. Let T ′ be the subgroup of 〈t1/21 , . . . , t
1/2
l 〉 generated by T 1/2

Θ = 〈t1/2|t ∈ TΘ〉
and A. Note that T ′ contains the group T . Write UΘ for the extension of U
generated by U and T ′. As in [L2, Theorem 4.5], there is a vector space isomorphism
via the multiplication map called the quantum Iwasawa decomposition

UΘ
∼= BT

1/2
Θ ⊗K[A]⊗N+

Θ(2.17)

where B is any of the analogs of U(gθ) described in Theorem 2.1. As mentioned
earlier, N+

Θ is defined somewhat differently from [L2]. This compensates for the
fact that here we work inside U and not the larger algebra generated by U and
〈t1/21 , . . . , t

1/2
l 〉.

Define N−Θ to be the subalgebra θ̃(N+
Θ ) of G−. Note that

Ñ−Θ =
∑
γ∈Q+

(U− ∩ θ̃(G+))−γτ(γ).

By Proposition 2.2 and the definition of θ̃, it follows that Ñ−Θ is (adR) invariant.
The proof of Proposition 2.2 also implies that yjtj is contained in Ñ−Θ for each
αj /∈ πΘ and that Ñ−Θ is generated by the sets (adR−)yjtj for αj /∈ πΘ. Thus Ñ−Θ
is the subalgebra of G− considered in [Ke]. Just as in (2.17), we have a vector space
isomorphism via the multiplication map UΘ

∼= BT
1/2
Θ ⊗K[A]⊗ Ñ−Θ.

Define a degree function on U by setting deg yi = 1 and deg xi = deg t±1
i = 0 for

1 ≤ i ≤ l. Set Bi = yiti whenever αi ∈ πΘ. Given an m-tuple I = (i1, . . . , im), we
set BI = Bi1 . . . Bim and yI = yi1ti1 . . . yimtim . Note that BI = yI+ lower degree
terms. Also, yI is a weight vector in U and BI = yI+ higher weight terms. By the
discussion following [L2, Lemma 4.3], each element of B can be written as a sum of
terms of the form BIrI where I is an m tuple for some nonnegative integer m and
rI ∈ R+Ro. Moreover, by [L2, Lemma 4.4], the highest degree term of any element
b in B is contained in G−R+Ro. Let L be a set of tuples of different lengths such
that {yI |I ∈ L} is a basis for G−. It follows that

B =
⊕
I∈L

BIR
+Ro.

3. Quantum Harish-Chandra modules

Let B satisfy the conditions of Theorem 2.1 for some fixed Θ. In this section we
introduce the notion of quantum Harish-Chandra modules similar to [L1, §4]. We
look at two important examples of Harish-Chandra modules: finite-dimensional U -
modules and the locally finite part F (U) of U (see [JL1]). Ultimately, F (U) plays
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the same role as g in the classical case. In particular, for all standard analogs and
some nonstandard analogs B, we show, using F (U) and the coideal structure of B,
that the sum of the finite-dimensional simple unitary B-modules inside a U -module
is a Harish-Chandra module. Some of the results in this section generalize [L1]. One
of the main tools will be a conjugate linear antiautomorphism which makes U into
a Hopf ∗ algebra and B into a ∗ invariant subalgebra under a suitable embedding
inside of U .

Consider the subalgebra of U generated by F (U) and B. We claim that this
subalgebra is equal to the set F (U)B := span{ub|u ∈ U and b ∈ B}. To see
this, consider bu where u ∈ F (U) and b ∈ B. As in (2.16), we have that bu =∑

(ad b(1))ub(2). The claim now follows from the fact that F (U) is an (adU)-module
and B is a left coideal.

Note that any F (U)B-module is automatically a B-module using the restricted
action.

Definition 3.1. A F (U)B-module M is called a Harish-Chandra module for the
pair U,B if M can be written as a direct sum of finite-dimensional simple B-modules
using the restriction of the action to B.

We could have defined a U, B Harish-Chandra module using a U -module instead
of an F (U)B-module. However, we show that sum of the finite-dimensional simple
unitary B-modules inside a U -module form a F (U)B-module (Theorem 3.7 below)
but not necessarily a U -module. (See example 3.8.)

Let UR be the R subalgebra of U generated by xi, yi, and T over R. Let κ be
the R-algebra antiautomorphism of UR defined by κ(xi) = yiti, κ(yi) = t−1

i xi, and
κ(t) = t for all t ∈ T .

We may extend κ to U by insisting that the resulting antiautomorphism is linear
as a K map. We will refer to this extension by κ as well. Note that κ is the
composition of a Hopf algebra automorphism fixing the root system of g composed
with the chevellay antiautomorphism defined in [Jo, 3.3.3].

There is an alternate extension which results in just a R linear map. Extend κ
to an antiautomorphism κ̄ of U over R by setting κ̄(aw) = āκ(w) for a ∈ K and
w ∈ UR.

It is straightforward to check that (κ ⊗ κ) ◦ ∆ = ∆ ◦ κ. The same identity
also holds for κ̄. Since κ̄ also commutes with the counit, this conjugate linear
antiautomorphism describes a Hopf ∗ algebra structure on U (see [CP, 4.1F]).

Note that κ (resp. κ̄) is a K (resp. R) Hopf algebra antiautomorphism. It follows
that both κ(B) and κ̄(B) are left coideals satisfying conditions (2.12), (2.10), and
(2.11).

Lemma 3.2. Assume that B is a standard analog of U(gθ). There exists a Hopf
algebra automorphism Υ in H such that κ(Υ(B)) = κ̄(Υ(B)) = Υ(B) and Υ(Bi) ∈
UR for all αi /∈ πΘ.

Proof. Without loss of generality, we may assume that B = Bθ̃. Now the con-
struction in [L2, Theorem 3.1] finds one particular involution corresponding to Θ.
Other involutions of U corresponding to Θ can be obtained using an element of
H. Checking the maps used in [L2, Theorem 3.1] to construct this involution of U ,
we see that this particular involution restricts to a R algebra involution of UR. In
particular, replacing θ̃ by χθ̃χ−1 for some χ ∈ H if necessary, we may assume that
Bi ∈ UR for all αi /∈ πΘ.
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Consider the elementsBi = yiti+θ̃(yi)ti where αi = −Θ(αi). It follows that θ̃(yi)
is a nonzero scalar multiple, say ai ∈ A−(q−1)A, of xit−1

i . Thus a−1/2
i yiti+a

1/2
i xi

is contained in B. Let Υ1 be the element in H which sends xi to a−1/2
i xi and yi to

a
1/2
i yi for each i such that αi = −Θ(αi). It follows that κ̄(Υ1(Bi)) = κ(Υ1(Bi)) =

Υ1(Bi) = yiti + xi ∈ UR whenever αi = −Θ(αi).
Note that κ̄(Υ1(B)) is an algebra satisfying (2.10),(2.11), and (2.12). Hence

there exists an l-tuple s ∈ S such that κ(Υ1(B)) is isomorphic to Bs,θ̃ via a Hopf

algebra automorphism in H. By the previous paragraph, Bs,θ̃
i = yiti + bixi for

some bi in A whenever Θ(αi) = −αi. Hence s = 0 and there is a Hopf algebra
automorphism Υ2 ∈ H such that κ̄(Υ1(B)) = Υ2(B).

Since Bi ∈ UR for each i, we can find scalars ai in A ∩ R − (q − 1)A such that
Υ2(xi) = aixi and Υ2(yi) = a−1

i yi for 1 ≤ i ≤ l. Since R is the intersection of
K with a real closed field, there is a well defined notion of absolute value of an
element and every positive element has a square root in R. Also, by construction,
every square root of an element in A − (q − 1)A is also in A − (q − 1)A. Let Υ3

be the element in H such that Υ3(xi) = |ai|1/2xi for 1 ≤ i ≤ l. Let Υ4 be the
element in H such that Υ2

3Υ4 = Υ2. By the choice of Υ3 and Υ4, we must have
that Υ4(xi) = εixi for 1 ≤ i ≤ l where each εi ∈ {1,−1}. Furthermore,

κ̄(Υ3(B)) = Υ4(Υ3(B)).(3.1)

Note that by definition of Υ3, we have that Υ3(Bi) ∈ UR for each αi /∈ πΘ.
Without loss of generality, we may assume that ai = εi = 1 for all αi ∈ πΘ. Set

B′ = Υ3(B). The proof of the lemma is finished if we can show that Υ4(B′) = B′.
This will be accomplished by showing that the generators of B′ are contained in
Υ4(B′). Note that the algebra R is contained in Υ4(B′).

Consider i where αi /∈ πΘ. There exists bi ∈ A∩R such that yiti+biθ̃(yi)ti ∈ B′.
Set j = p(i). If εj = εi, then Υ4(yiti + biθ̃(yi)ti) = εi(yiti + biθ̃(yi)ti) and hence
Υ4(B′) contains the generator yiti + biθ̃(yi)ti.

Now assume that εj 6= εi. We can find y ∈ U−Uo of weight Θ(αi) such that
xi + y is also in B′. It follows that Υ4(B′) contains xi − y = ±εi(xi − y) which
in turn must equal κ̄(yiti + biθ̃(yi)ti) by (3.1). By Theorem 2.1, B′ specializes to
U(gθ

′
) for some involution θ′ corresponding to Θ. Upon specialization, we see that

both ei + f and fi + e are elements of gθ
′
. Here ei (resp. fi) is the root vector in

g corresponding to αi (resp. −αi). Similarly, f (resp. e) is a root vector of weight
Θ(αi) (resp. Θ(−αi)). Let c denote the classical chevellay antiautomorphism
which is just the specialization of κ̄. Since κ̄(yiti + biθ̃(yi)ti) = xi − y, it follows
that c(fi + e) = ei − f . Let K denote the Killing form. By say [D, 1.13.1],
K(fi + e, ei − f) = 0 since fi + e ∈ gθ

′
while θ′(ei − f) = −(ei − f). However,

by [Jo2, Lemma 2.5], K(fi + e, ei − f) 6= 0 because ei − f = c(fi + e). This
contradiction forces εj = εi. In particular, Υ4(B′) contains the generators of B′.
Thus Υ4(Υ3(B)) = Υ3(B). Setting Υ3 = Υ proves the lemma.

Now consider a nonstandard analog B of U(gθ). Modifying the arguments of
Lemma 3.2 slightly, one can show that there is a Hopf algebra automorphism Υ′

such that κ(Υ′(B)) = Υ′(B). However, Lemma 3.2 in full, does not quite work
for an arbitrary Bs,θ̃. Consider Υ(Bs,θ̃) where Υ is as in the proof of Lemma 3.2.

Note that κ̄(Υ(Bs,θ̃)) contains R and the generators Υ(Bs,θ̃
i ) where Θ(αi) 6= −αi.
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Moreover, when Θ(αi) = −αi, we have that Υ(Bs,θ̃
i ) is of the form yiti + xi + aiti

for some ai ∈ A. We say that Bs,θ̃ is a real nonstandard analog of U(gθ) if ai is in
R∩A for all choices of i such that αi = −Θ(αi). More generally, call a nonstandard
analogB of U(gθ) a real nonstandard analog if there is a Hopf algebra automorphism
ψ ∈ H such that ψ(B) = Bs,θ̃ and Bs,θ̃ is a real nonstandard analog. Note that the
assumptions on ai imply that Lemma 3.2 is true for all real nonstandard analogs.

Now let Υ be as in Lemma 3.2. Note that Υθ̃Υ−1 also satisfies the conditions
(2.5), (2.6), (2.7), and (2.8). Thus we may replace θ̃ by Υθ̃Υ−1. For the remainder
of the paper (unless stated otherwise), we will assume that B is a standard analog
or real nonstandard analog such that
(3.2) B = Bθ̃ or B = Bs,θ̃ for some s ∈ S;
(3.3) κ̄(B) = B = κ(B);
(3.4) the generators of B, (i.e. the Bi for αi /∈ πΘ and the generators of R) all sit

inside of UR.
Condition (3.3) ensures that B is invariant under the ∗ structure of the Hopf ∗
algebra U . (Of course, equivalently, we could have replaced κ̄ by Υ−1κ̄Υ instead of
changing B.)

Let Λ be an element of K[T ]∗ such that the simple highest weight U -module
L(Λ) generated by a highest weight vector of weight Λ is finite-dimensional.

Let U+
+ (resp. U−+ ) denote the augmentation ideal of U+ (resp. U−). Define

the Harish-Chandra map ϕ as the projection of U onto Uo using the direct sum
decomposition U = (UU+

+ + U−+U)⊕ Uo of U . Set S = SΛ equal to the conjugate
linear form on L(Λ) which satisfies

S(vΛ, vΛ) = 1(3.5)

and

S(fvΛ, gvΛ) = Λ(ϕ(κ̄(f)g))(3.6)

for all f and g in U .
Note that (3.6) implies that S(fv, v) = S(v, κ̄(f)v) for all v ∈ L(Λ) and f ∈ B.

Let vΛ denote the highest weight vector of L(Λ). By [L1, Lemma 4.2], we have that

S(w,w) 6= 0 for any nonzero w ∈ L(Λ).

Theorem 3.3. Each finite-dimensional U -module is completely reducible as a B-
module.

Proof. The conjugate linear form S can now be used as in [L1, Lemma 4.3] to break
down a finite-dimensional U -module into a direct sum of its simple B-submodules.

Theorem 3.3 implies that any finite-dimensional U -module is a Harish-Chandra
module for the pair U,B. It follows that F (U) is a Harish-Chandra module for the
pair U,B using the adjoint action. As in [L1, Section 4], we can show that F (U) is
the maximal Harish-Chandra module inside of U with respect to the adjoint action.
The following key lemma is an adaptation of [L1, Lemma 4.4].

Lemma 3.4. Let M be a U -module which admits a semisimple T -action. If W is
a finite-dimensional simple B-submodule of M , then W generates a locally finite
semisimple U -submodule of M .
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Proof. Note that we may restrict the action of B on W to R and thus W is a finite-
dimensional R-module. Since R is generated by the quantized enveloping algebra
Uq([m,m]), and the group TΘ, it follows that xi and yi act locally nilpotent on W
for αi ∈ πΘ. For αi /∈ πΘ, we may apply the argument in the proof of [L1, Lemma
4.4] to show that xmi W = ymi W = 0 for some large m. Using the arguments in [L1,
Lemma 4.4] one can show that for all 1 ≤ i ≤ l, xi and yi act locally nilpotent on
the U -submodule generated by W and thus the lemma follows by [JL1, Theorem
5.9].

Note that F (U) is a semisimple (adT )-module and, furthermore, F (U) can be
written as the direct sum of all the finite-dimensional simple U -modules inside U .
Thus Theorem 3.3 and Lemma 3.4 imply the following result as in [L1, Corollary
4.6].

Theorem 3.5. The (adU)-module F (U) is the maximal Harish-Chandra module
for the pair U,B inside of U .

Consider again a finite-dimensional U -module L(Λ) with conjugate linear form
S and highest weight generating vector vΛ as above. Define a real lattice LR by
LR = URvΛ. The vector space LR is a R subspace of L(Λ) such that L(Λ) =
LR ⊕ iLR, URLR ⊂ LR, and SΛ(v, v) > 0 for all 0 6= v ∈ LR.

Set BR equal to B ∩ UR. By (3.3) and (3.4), all the generators of B are con-
tained in BR and κ̄(BR) = BR. Note that a simple BR-module tensored with
K is automatically a simple B-module. Let V be a simple BR-module inside of
LR. Set W equal to the perpendicular of V inside of LR with respect to S. The
perpendicular of V in L(Λ) with respect to S is just V ⊗ K. In particular, the
decomposition of L(Λ) as a B-module corresponds to the decomposition of LR as
a BR-module. Thus a simple B-submodule W which is contained in L(Λ) has the
following properties:
(3.7) W has a R vector subspace WR such that WR⊗K = W and WR is a simple

BR-module of the same dimension as W .
(3.8) W has a conjugate linear form SW such that SW (v, bw) = SW (κ̄(b)v, w) for

all b ∈ B and SW (v, v) is a positive element of R for each nonzero v ∈WR.
Of course, condition (3.8) implies that SW (v, v) 6= 0 for all 0 6= v ∈ W . In

general, we call a simple B-module W a unitary B-module if W satisfies conditions
(3.7) and (3.8). Given a finite-dimensional simple U -module L(Λ), we can form the
finite-dimensional B-module L(Λ)⊗W .

Lemma 3.6. If W is a finite-dimensional simple unitary B-module, then L(Λ)⊗W
is also unitary.

Proof. Note that the vector space LR⊗WR satisfies (3.7). Set S(v⊗w, v′ ⊗w′) =
SΛ(v, v′)SW (w,w′). The fact that S is conjugate linear and positive definite on
LR ⊗ WR follows from the properties of SΛ and SW . Now S(a(v1 ⊗ v2), (w1 ⊗
w2)) = S(a(1)v1 ⊗ a(2)v2, w1 ⊗ w2) Since B is a left coideal, we have that a(2) ∈
B. Thus S(a(1)v1 ⊗ a(2)v2, w1 ⊗ w2) = S(v1 ⊗ v2, κ̄(a(1))w1 ⊗ κ̄(a(2))w2) again
by properties of SΛ and SW . Since κ̄ commutes with the coproduct, this equals
S(v1 ⊗ v2, κ̄(a)(w1 ⊗ w2)).

Let W be a finite-dimensional U -module and let V be a finite-dimensional simple
unitary B-module. Just as in the proof of Theorem 3.3, Lemma 3.6 implies that
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W ⊗ V can be written as a direct sum of finite-dimensional simple unitary B-
modules. Thus the finite-dimensional unitary modules make good building blocks
for Harish-Chandra modules (see Theorem 3.7 below). Now assume that V is a
B-submodule of a finite-dimensional U -module W ′. Then the B-module W ⊗ V is
contained in the U -module W ⊗W ′. Thus the only simple unitary B-modules we
have seen so far are submodules of finite-dimensional U -modules. We will produce
more examples of unitary modules in Section 5.

Theorem 3.7. Let M be a U -module and let W be the sum inside of M of all
the finite-dimensional simple unitary B-submodules. Then W is a Harish-Chandra
module for the pair U,B.

Proof. By the definition of Harish-Chandra modules, it is sufficient to show that
W is a F (U)-submodule of M . Make F (U)⊗W into a B-module as follows:

c · (F (U)⊗W ) = (ad c(1))F (U)⊗ c(2)W

for all c ∈ B. Note that c(2) ∈ B for c ∈ B and hence c(2)W ⊂ W . Also, since
F (U) is an (adU)-module, it follows that (ad c(1))F (U) ⊂ F (U). Furthermore,
since F (U) is a direct sum of finite-dimensional (adU)-modules and W is unitary,
the discussion preceding the theorem implies that F (U) ⊗ W is a direct sum of
finite-dimensional simple unitary B-modules.

Consider the map F (U)⊗W to the F (U)-submodule F (U)W of M defined by
the multiplication map. We have

(ad c(1))F (U)c(2)W = c(1)F (U)σ(c(2))c(3)W

= c(1)F (U)ε(c(2))W

= cF (U)W.

Hence the map from F (U)⊗W to F (U)W is a B-module map. Note that this map
restricts to a map of B-modules F (U)⊗W onto F (U)W . Thus F (U)W is a locally
finite semisimple B-submodule of M . By definition of W , F (U)W = W .

In the example below we return to the issue of why quantum Harish-Chandra
modules are defined using an F (U)B action instead of the action of U .

Example 3.8. Keep the notation of Theorem 3.7. In special cases, W is actually
a U -module such as when M is a finite-dimensional U -module or when M = F (U).
Unfortunately we cannot expect W = F (U)W to be a U -module in general. For
example, consider the case where g = sl 2 and B is just the polynomial ring in one
variable, yt + x. Let v be the generator of a one-dimensional B-module such that
(yt+ x)v = λv where λ ∈ R. Note that Kv is a unitary B-module with conjugate
linear form S such that S(v, v) = 1. Hence F (U)⊗Kv is a Harish-Chandra module
for the pair U,B by Theorem 3.7. Now F (U) ⊗Kv is a proper submodule of the
U -module U ⊗Kv. Consider u ∈ U −F (U). Then either (adx)mu 6= 0 for all m or
(ad y)mu 6= 0 for all m. Thus by weight space considerations, (yt + x)m(u ⊗ v) =
(ad yt + x)mu ⊗ v + (ad t)u ⊗ λv is never zero. It follows that B does not act
locally finite on u ⊗ v for any u ∈ U − F (U). Hence F (U) ⊗ v is the sum of all
the finite-dimensional B-modules inside of U ⊗ v. In particular, the appropriate
choice for a Harish-Chandra module contained in U ⊗ v is a F (U)B-module but
not a U -module.
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4. Spherical Modules

We continue our assumptions on B, namely that B is either a standard or a
real nonstandard analog of U(gθ) satisfying (3.2), (3.3), and (3.4). In this section
we consider spherical modules associated to the subalgebra B. We show that U,B
is a Gelfand pair (see the definition below). We further prove that the finite-
dimensional spherical modules can be classified in exactly the same way as in the
classical case. This generalizes work of Noumi and Sugitani who explicitly find the
spherical vectors for specific families of quantum analogs (see [N, Theorem 3.1] and
[N, Theorem 1]). (See also [L2, §6] which shows that the examples in [NS] fit into
the framework of Theorem 2.1.) Our proof is general and translates to a new proof
even in the classical case using just enveloping algebras and no Lie groups.

Definition 4.1. A U -module V is called spherical if the set V B = {v ∈ V |bv =
ε(b)v for all b ∈ B} has dimension 1. If dimV B ≤ 1 for all finite-dimensional simple
U -modules V then U,B is called a Gelfand pair.

Let a be the classical counterpart to A appearing in the classical Iwasawa decom-
position. Let ∆(a,g) denote the corresponding set of restricted roots with positive
roots ∆+(a,g). Write Q(a,g) (resp. Q+(a,g)) for the integral (resp. nonnegative
integral) linear combinations of elements of ∆(a,g). There is a standard partial
order on Q(a,g) defined by λ > λ′ if λ − λ′ is in Q+(a,g). Note that Q(a,g) can
be identified with the subset of Q(π) consisting of those weights orthogonal to the
set {αi + Θ(αi)|1 ≤ i ≤ l} under the Cartan inner product. In particular, ∆(a,g)
can be taken to be the nonzero elements of the set {αi − Θ(αi)|1 ≤ i ≤ l}. (For
more information about restricted roots, see for example [Kn].)

Let Z denote the subgroup of the nonzero complex numbers consisting of all
fourth roots of unity. One can associate a group homomorphism of 〈t1/21 , . . . , t

1/2
l 〉

into Z to each l-tuple ζ = (ζ1, . . . , ζl) ∈ Z l by setting ζ(t1/2i ) = ζi. Given λ ∈
Q(a,g) and ζ ∈ Z l, define elements ζqλ ∈ K[A]∗ by ζqλ(t1/2i τ(Θ(αi))−1/2) =
ζ(t1/2i τ(Θ(αi))−1/2)q(λ,(αi−Θ(αi))/2) for each 1 ≤ i ≤ l.

Now let V be a finite-dimensional simple U -module. By say [R2], there exists
a fixed ζ ∈ Z l such that all weights of V are of the form ζqβ where β ∈ Q(π).
(Here ζ is restricted to its action on T ; elements of T are sent to elements of the
group {1,−1}.) We can also break V up into weight spaces for the action of A. In
particular, given Γ ∈ K[A]∗, the Γ weight space of V consists of those vectors v
such that av = Γ(a)v for all a ∈ A. It is straightforward to see that the possible
weights of V considered as an A-module take the form ζqλ where λ ∈ Q(a,g). We
write ζqλ < ζqλ

′
if λ < λ′. Since V is finite-dimensional, it makes sense to talk

about a maximal A-weight of V , say ζqγ . Let V γ be the corresponding weight
space.

Theorem 4.2. If V is a finite-dimensional simple U -module, then dimV B ≤ 1.
In particular, U,B is a Gelfand pair.

Proof. By (3.3) κ(B) = B. Set B+ equal to the intersection of the augmentation
ideal of U with B.

Let V be a finite-dimensional simple U -module. Write U ′ for the extension of
U by the elements in 〈t1/21 , . . . , t

1/2
l 〉. It is straightforward to extend the action of

U on V to an action of U ′ on V so that the highest weight of V takes the form
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ζqλ where ζ ∈ Zl and λ ∈ h∗ is dominant integral. Note that UΘ (see Section 2) is
contained in U ′ and thus V is also a UΘ-module.

The proof here uses the quantum Iwasawa decomposition (2.17) and follows
the argument of Kostant in [K1, §2]. Let N++

Θ denote the intersection of N+
Θ

with the augmentation ideal of U . By Proposition 2.2 and its proof, we have
that RN++

Θ = N++
Θ R. Since N+

Θ is generated by weight vectors, we also have
AN++

Θ = N++
Θ A.

Let γ be chosen so that ζqγ is the maximal A weight of V where ζ ∈ Zl and
γ ∈ Q(a,g). Set V n = {v ∈ V |N++

Θ v = 0}. Using the argument in [K1, Proposition
1.2.3], it follows that V γ = V n and that V n is irreducible as a AR-module.

Let V ′ denote the dual of V which becomes a U -module using the antiautomor-
phism κ. Assume that V B is nonzero. By definition, 〈v, x · w〉 = 〈κ(x)v, w〉 for all
v ∈ V , w ∈ V ′, and x ∈ B. Hence if v ∈ V B and 〈v, w〉 6= 0, then w /∈ B+V ′. Now
V ′/B+V ′ is isomorphic to a direct sum of one-dimensional trivial B-modules. By
Theorem 3.3, there exists a trivial B-submodule W of V ′ such that W ∼= V ′/B+V ′.
Of course W is just equal to V ′B. Thus V B 6= 0 implies that V ′B is nonzero.
Similarly, if V ′B 6= 0, then V B 6= 0.

We continue the assumption that V B 6= 0. Using the quantum Iwasawa decom-
position (2.17) as in [K1, Lemma 1.2.4], we can now show that V n, V B, V ′B, and
V ′n are each one-dimensional. In particular, choose 0 6= w ∈ V ′B and 0 6= v ∈ V n
and assume that 0 = 〈v, w〉. Then 0 = 〈v,Bw〉 = 〈Bv,w〉 = 〈BT 1/2

Θ AN+
Θ v, w〉 =

〈UΘv, w〉 = 〈V,w〉, a contradiction. It follows that V ′B and V n are dual to each
other under the bilinear form 〈 , 〉. Now V n is an irreducible R-module and V B is a
direct sum of trivial R-modules. Since R is the algebra generated by the quantized
enveloping algebra Uq([m,m]) and TΘ, finite-dimensional simple R-modules are self
dual. In particular, V n must be a trivial one-dimensional R-module and hence V ′B

is one-dimensional. A similar argument works for V B and V ′n.

In the next theorem, we classify the finite-dimensional simple spherical modules
for analogsB of U(gθ). The classification parallels the classical case; see for example
[Kn, Theorem 8.49].

Theorem 4.3. Assume that B is a standard or real nonstandard analog of U(gθ)
satisfying (3.2), (3.3), and (3.4). A finite-dimensional simple U -module V is spher-
ical (with respect to B) if and only if the highest T weight ζqλ of V vanishes on
TΘ and its restriction λ̃ to A satisfies (λ̃, β)/(β, β) is a positive integer for every
positive restricted root β.

Before proving the theorem, we replace the last condition on restricted roots
with one on simple (nonrestricted) roots.

Lemma 4.4. Let λ be an element of h∗ such that λ is zero on γ whenever τ(γ) ∈
TΘ. The restriction λ̃ of λ to A satisfies (λ̃, β)/(β, β) is a nonnegative integer for
every positive restricted root β if and only if

(4.1) 2(λ, α)/(α, α) is a nonnegative integer for all positive simple roots α such that
α 6= −Θ(α)

and

(4.2) (λ, α)/(α, α) is a nonnegative integer for all positive simple roots α such that
α = −Θ(α).
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Proof. Let λ be a weight and write λ̃ for its restriction to a. By the proof of [Kn,
Theorem 8.49], we have (λ̃, β)/(β, β) is a nonnegative integer for every positive
restricted root β if and only if
(4.3) 2(λ, α)/(α, α) is a nonnegative integer for all positive roots α such that α 6=

−Θ(α)
and
(4.4) (λ, α)/(α, α) is a nonnegative integer for all positive roots α such that α =

−Θ(α).
So it is enough to show that (4.3) and (4.4) are equivalent to (4.1) and (4.2).

Clearly (4.3) (resp. (4.4)) implies (4.1) (resp. (4.2)). To see the other direction,
we modify the proof of [Kn, Proposition 4.62]. Indeed if Θ(α) 6= −α, then the
induction argument of [Kn, Proposition 4.62] works here as well. On the other hand,
if Θ(α) = −α, then one adapts the argument by replacing a reflection corresponding
to a simple root by the reflection corresponding to some αi −Θ(αi).

Proof of Theorem 4.3. We assume first that B is a standard analog. Let V be
a finite-dimensional simple U -module with highest weight ζqλ and highest weight
generating vector vλ. Set mi = 2(λ, αi)/(αi, αi). Since V is finite-dimensional, the
mi, 1 ≤ i ≤ l are all nonnegative integers. Hence it is sufficient to show that V is
spherical if and only if λ acts trivially on TΘ and mi is even whenever αi = −Θ(αi).

We argue first that dim V/B+vλ is less than or equal to 1. To see this, we can
find a basis of V consisting of elements of the form yηvλ where yη is in G− of weight
η. Without loss of generality, we may assume that yη is a monomial, say yI . Since
B is a standard analog, the elements Bi, 1 ≤ i ≤ l are all contained in B+. Thus,
BIvλ = yIvλ + higher weight terms and is contained in B+vλ. Induction on weight
implies the dimension claim. Moreover, B+vλ = V if and only if vλ ∈ B+vλ.

If dim V/B+vλ = 1, then, by Theorem 3.3, V contains a one-dimensional trivial
B-module. On the other hand, if B+ acts trivially on the nonzero vector w, then,
again by Theorem 3.3, we cannot have w ∈ B+V . Thus V is spherical if and only
if

vλ /∈ B+vλ.(4.5)

To complete the proof of the theorem we argue that (4.5) happens if and only if λ
has the nice form of Theorem 4.3 as interpreted by Lemma 4.4.

Note that if vλ /∈ B+vλ, then vλ /∈ (R)+vλ where (R)+ denotes the augmentation
ideal of R. Recall that R is the algebra generated by the quantized enveloping alge-
bra Uq([m,m]) and TΘ. Hence vλ /∈ (R)+vλ if and only if (R)+vλ = 0. Moreover,
(R)+vλ = 0 if and only if λ is trivial when restricted to TΘ if and only if vλ gener-
ates a one-dimensional trivial R-module. Furthermore, if Kvλ is a one-dimensional
R-module, then mi = 0 for all αi ∈ πΘ.

Now a typical element of B is a sum of elements in BIR
+Ro (see Section 2).

Hence we only need to determine when vλ cannot be written as a linear combination
over A using terms of the form BIvλ.

It is well known that the annihilator of vλ in U is

U AnnUovλ +
∑

1≤i≤l
Uxi +

∑
1≤i≤l

U(yiti)mi+1.(4.6)

We have that BIvλ = yIvλ + higher weight terms. Suppose that BI ∈ U(Bi)mi+1

for some i. If αi ∈ πΘ, then mi = 0, Bi = yiti and BIvλ = 0.
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Assume that αi /∈ πΘ and assume further that Θ(αi) 6= −αi. It follows that
tΘ(αi) + sαi is never contained in the set of positive weights where t and s are
positive integers. In particular, if we rewrite (Bi)m as a sum of elements in the
form ace where a ∈ G−, c ∈ Uo, and e ∈ U+, then (Bi)m = (yiti)m +UU++ where
U++ is the augmentation ideal of U+. Hence Bmi vλ = (yiti)mvλ for all m. Thus
(Bi)mi+1vλ = 0.

Now assume that αi = −Θ(αi). In this case, Bi = yiti + xi. We drop the
subscript i from y, t, and x in the argument that follows. Note that (yt+ x)nvλ =
(yt+x)n−1ytvλ for any positive integer n. Now (yt+x)n−1ytvλ is a sum of terms of
the form (yt)n−2jvλ where n− 2j ≥ 0 and j is a nonnegative integer. Furthermore,
the coefficient of (yt)nvλ in this sum is one. Choosing n = 1, 2, 3, . . . , we see that
B+vλ contains (yt)nvλ for all odd values of n.

Assume first that mi is even. It follows that

(yt+ x)mi+1vλ ∈
∑

j<mi,j odd

K(yt+ x)jvλ ⊂ B+vλ.

Hence

(yt+ x)nvλ ∈
∑

1≤j≤mi

K(yt+ x)jvλ

for all n ≥ 1. Thus vλ /∈ (B+ ∩K[yt+ x])vλ in this case.
Now assume that mi is odd. By the above, (yt)nvλ ∈ B+vλ for all odd n.

Hence (yt + x)(yt)nvλ ∈ B+vλ whenever n is odd. Note that if n < mi + 1,
then x(yt)nvλ is a nonzero multiple, say an, of (yt)n−1vλ. Thus B+vλ contains
(yt)n+1vλ+an(yt)n−1vλ. Consider (yt+x)(yt)mivλ. Since (yt)mi+1vλ = 0, we must
have that (yt)mi−1vλ ∈ B+vλ. It now follows by induction that (yt)mi−1−2jvλ ∈
B+vλ for (mi − 1)/2 ≥ j ≥ 0. Hence vλ ∈ B+vλ in this case.

We have shown that when αi = −Θ(αi), vλ ∈ (K[yt + x] ∩ B+)vλ if and only
if mi is odd. Also, by the previous two paragraphs, there exists a polynomial pi
of degree mi + 1 such that pi(yt + x)vλ = 0. Moreover, this polynomial pi has a
nonzero constant coefficient if and only if mi is odd. Set ai equal to the constant
coefficient of pi.

Recall (see the end of Section 2) that

B =
⊕
J∈L

BJR
oR+(4.7)

where {yJ |J ∈ L} is a basis for G−. Let I be a subset L such that {vλ}∪{yIvλ|I ∈
I} is a basis for V . Furthermore, by (4.6), a typical element y in the augmentation
ideal of G− satisfies

y =
∑
I∈I

aIyI +
∑
i

G−(yiti)mi+1.(4.8)

Since BI = yI+ lower degree terms, we also have that {vλ} ∪ {BIvλ|I ∈ I} is a
basis for V . Moreover, given a typical element b ∈ B+, using (4.7) and (4.8), we
may find scalars aI ∈ K such that

b =
∑
I∈I

aIBI +
∑

{j|Θ(αj) 6=−αj}
B(Bj)mj+1

+
∑

{j|Θ(αj)=−αj}
B+pj(Bj) +

∑
{j|Θ(αj)=−αj}

K(pj(Bj)− aj) +B(R)+.
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Thus bvλ ∈
∑
I∈I KBIvλ +

∑
j Kajvλ. In particular, V is spherical if and only if

R acts trivially on vλ and each aj = 0. This in turn is equivalent to λ acts trivially
on TΘ and mj is even whenever αj = −Θ(αj). This completes the proof in the
standard case.

Now consider the case where B is a real nonstandard analog of U(gθ). The proof
above applies to B as well, except for the part concerning the Bi with αi = −Θ(αi).
Without loss of generality, we may assume that B contains elements yiti+xi+ siti
where si ∈ A ∩ R for all αi such that αi = −Θ(αi). (Note that yiti + xi + siti is
not in B+ when si 6= 0. However, yiti + xi + (siti − si) is in B+. Thus we want to
use yiti + xi + siti − si instead of Bi in the preceding arguments.) Let Vi be the
K[yiti + xi + siti − si]-submodule of V generated by vλ. Theorem 4.3 will hold for
real nonstandard B, if we can show that Vi admits a spherical vector if and only if
mi is even for each i such that si 6= 0.

Dropping the subscript i from x, y, and t, we are reduced to the following question
about Uq(sl 2). Let X = yt + x + a(t − 1) where a ∈ A ∩ R. Note that B+ is
the polynomial ring generated by X . We must show that an n dimensional simple
Uq(sl 2)-module is spherical if and only if n is odd. (Here we may think of mi as
equal to n+ 1.)

Let w be a nonzero vector which generates a one-dimensional simple Uq(sl 2)-
module with tw = −w. Note that ∆(X) ∈ at⊗X+U+⊗1. Thus, if L(qnα) admits
a spherical vector v, then w ⊗ v is a spherical vector of Kw ⊗ L(qnα) ∼= L(−qnα).
Hence, we reduce to the case of n dimensional simple modules Ln generated by a
highest weight vector of weight q(n−1)α/2 for some nonnegative integer n.

Now, if n is even and Ln contains a vector v annihilated by X , then the special-
ization of Ln is a spherical (sl 2)θ-module, which is a not possible by the classical
theory. On the other hand, let n = 3, and let v1 be the highest weight generating
vector of L3. One checks that

v1 + a(q−2 − 1)(q + q−1)−1ytv1 − (q + q−1)−1(yt)2v1

is annihilated by X and hence L3 is a spherical module.
To show that the other Ln are spherical for n odd, we pass to the locally finite

part F = F (Uq(sl 2)) of Uq(sl 2). We will use the following lemma later, so it
will be proved for all U and not just Uq(sl 2). Set F (U)B = {a|a ∈ F (U) and
(ad b)a = ε(b)a for all b ∈ B}. By Theorem 3.5, F (U)B = UB where UB is defined
in a similar fashion.

Lemma 4.5. The set F (U)B equals {z ∈ F (U)|σ−1(z)b = bσ−1(z) for all b ∈ B}.
In particular, F (U)B is a subalgebra of F (U).

Proof. Note that the second sentence follows from the first. To prove the first state-
ment, we follow the argument in [JL1, Corollary 2.4]. Set ZB = {z ∈ F (U)|σ−1(z)b
= bσ−1(z) for all b ∈ B}. If z ∈ ZB, then

(ad b)z = b(1)zσ(b(2)) = σ(b(2)σ
−1(z)σ−1(b(1))).

Since b(2) ∈ B, the above equals

σ(σ−1(z)b(2)σ
−1(b(1))) = b(1)σ(b(2))z = ε(b)z.

On the other hand, if z ∈ F (U)B , then

σ−1(z)b = σ−1(z)b(1)ε(b(2)) = ε(b(2))σ−1(z)b(1) = σ−1(ε(b(2))z)b(1).



82 GAIL LETZTER

Since b(2) ∈ B and z ∈ F (U)B, σ−1(z)b equals

σ−1(b(2)zσ(b(3)))b(1) = b(3)σ
−1(z)σ−1(b(2))b(1) = b(2)σ

−1(z)ε(b(1)) = bσ−1(z).

Using the Separation of Variables theorem for Uq(sl 2), we have that the har-
monics are a direct sum of the modules (adUq(sl 2))xn ∼= L2n+1 (see [JL2] and
[JL1, §3.11]). Let v ∈ (adUq(sl 2))x be a nonzero spherical vector. By weight
space considerations, v = x+ lower weight terms. Lemma 4.5 implies that vn is
in F (U)B for all n ≥ 0. Now vn = xn+ lower weight terms. One sees by the
degree arguments using the filtration defined in [JL2, §2.2] and the decomposition
in [JL1, Lemma 3.11], that vn is not in FZ+ where Z+ is the augmentation ideal
of the center Z. Hence by degree considerations, there is a nonzero spherical vec-
tor w in L2n+1 such that v ∈ w + FZ+ +

∑
1≤i≤m L2n−1Z. In particular, each

L2n+1 is a spherical module for B which completes the proof of Theorem 4.3 in the
nonstandard case. 2

5. Semisimple part of B

In the classical case, gθ is not necessarily semisimple though it is reductive.
In order to analyze finite-dimensional simple B-modules, we want to split off the
“semisimple” part of B. We do this to a certain extent in this section and thus
produce a large class of one-dimensional nontrivial B-modules

Write gθ as a direct sum of the semisimple Lie algebra [gθ,gθ] and the center
Z(gθ). Let {z1, . . . , zr} be a basis for Z(gθ). (Of course, if g is simple, the classical
version of Theorem 4.2 implies that r ≤ 1.) Note that this decomposition of gθ

implies that no zi can been written as a sum of commutators of elements in gθ.
Let ei, fi, hi, 1 ≤ i ≤ l be a set of generators for g. Here ei is the root vector

corresponding to αi, and xi specializes to ei. Similarly, fi is the image of yi and hi
is the image of (ti − t−1

i )/(q− q−1) under specialization. The generators for gθ are
say ei + θ(ei) and hi + θ(hi) for i such that αi /∈ πΘ and ei, fi, hi for i such that
αi ∈ πΘ.

Assume that there exists an n such that en + θ(en) cannot be written as a
sum of commutators. If n 6= p(n), then hn − hp(n) is a nonzero element of gθ and
[hn−hp(n), en+θ(en)] 6= 0 which is not possible. On the other hand, if αn 6= −Θ(αn)
and n = p(n), then there must exist αi ∈ πΘ such that (αi, αn) 6= 0. So en+θ(en) is
a nonzero multiple of [hi, en+ θ(en)], a contradiction. It follows that −Θ(αn) = αn
and so, without loss of generality, en + θ(en) = en + fn.

Choose c1, . . . cr so that zi ∈ C∗ci + [gθ,gθ] and ci is either equal to hn + θ(hn)
or en + fn for some n. If ci = hn + θ(hn), then set Ci = tnτ(Θ(αn)) while if
ci = en + fn, set Ci = Bn.

We may write g as a direct sum of simple Lie algebras gj such that the root
system of g is a disjoint union of the root systems ∆j of the gj . By (2.1), (2.2), and
(2.3), it follows that θ(gj) is equal to another summand gk where gk is isomorphic
to gj . Suppose that ci = en + fn for some i, 1 ≤ i ≤ r and some n, 1 ≤ n ≤ l.
Let ∆j be the subset of ∆ containing αn. It follows that θ(gj) = gj . Since gj is
simple, by the classical version of Theorem 4.2, zi is the only element up to a scalar
of Z(gθ) contained in gj . Thus we may write g =

⊕
1≤j≤s gj where g1, . . . ,gs−1

are simple and θ restricts to an involution of each gj . Furthermore, we may assume
that ci is in gs if and only if ci is contained in h.
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The discussion in the previous paragraph implies that each ci /∈ h lie in a dif-
ferent simple summand of gj of g where 1 ≤ j ≤ s − 1. Furthermore, all ci ∈ h
are contained in the last summand gs. It follows that C[c1, . . . , cr] is a commuta-
tive polynomial ring. The same argument can be made in the quantum case. In
particular, the ring over K generated by the Ci, 1 ≤ i ≤ r is a polynomial ring in
r variables. Let Z be the ring generated by {Ci|1 ≤ i ≤ r} and {C−1

i |Ci ∈ T and
1 ≤ i ≤ r}.

Let B′ be the subalgebra of B generated by the sets

{Bi|αi /∈ πΘ and Bi 6= Cj for any 1 ≤ j ≤ r},

{tiτ(Θ(αi))|αi /∈ πΘ and tiτ(Θ(αi)) 6= Cj for any 1 ≤ j ≤ r},
and

{xi, yi, ti, t−1
i |αi ∈ πΘ}.

Set B′+ = U+ ∩B′.

Theorem 5.1. B = BB′+B ⊕ Z.

Proof. Since the theorem takes place entirely inside of B, we may assume without
loss of generality that B is a standard analog of U(gθ). By the above discussion,
we may reduce to the following two cases.

Case 1: r = 1 and C = Bn for some 1 ≤ n ≤ l.
Case 2: Each Ci ∈ TΘ for 1 ≤ i ≤ r.
Let R1 be the subalgebra R∩B′ of B and write (R1)+ for the augmentation ideal

of R1. Let I denote the set of all m-tuples, where m is any positive integer, which
satisfies the condition that at least one entry is contained in the set {i|Bi ∈ B′}. By
[L2, discussion following Lemma 4.3], we have that R+RoBi = BiR

+Ro for each
αi /∈ πΘ. Thus we can write B(B′)+B =

∑
I∈I BIR

oR+ + (R1)+Z.
Let I1 be a maximal subset of I such that the set {yI |I ∈ I1} is linearly in-

dependent over K. Recall the degree function on U defined at the end of Section
2. Note that BI = yI+ lower degree terms. Hence {BI |I ∈ I1} is also linearly
independent over K.

Set J equal to the set of m-tuples such that {yJ |J ∈ J } = {ymn |m ≥ 1} in Case
1 and equal to the empty set otherwise. By the choice of I1, {yI |I ∈ I1 ∪ J } is
a basis for G− over K. The proof of the theorem now follows from the following
lemma.

Lemma 5.2. B(B′)+B =
∑

I∈I1
BIR

oR+ + (R1)+Z.

Proof. It is sufficient to show that whenever we have a relation of the form∑
I∈I

aIBIrI =
∑

I∈I1 ∪ J
bIBIr

′
I + c

where rI , r′I ∈ RoR+ and c ∈ R1Z, then bI = 0 whenever I ∈ J and c ∈ (R1)+Z.
Now the relations among the BIRoR+ come from the quantum Serre relations on
G− (and relations of R) (see the discussion at the end of Section 2). Hence without
loss of generality we may assume that there is some positive integer m such that
whenever aI is nonzero, the degree of yI is m and whenever bJ 6= 0, yJ has degree
strictly less than m.

Recall that the quantum Serre relations each involve two elements yiti and yjtj
for some i and j. Thus, we can reduce to the case where the aI 6= 0 if and only
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if I has one entry equal to j and mij = −〈αi, αj〉 + 1 entries equal to i for some
1 ≤ i, j ≤ l. Furthermore, either Bi or Bj (or both) must be in B′. We are thus
interested in relations of the form∑

k

AkB
mij−k
i BjB

k
i = X(5.1)

where Ak ∈ K and X has degree strictly lower than mij+1. (Here the Ak are chosen
from the quantum Serre relations. In particular,

∑
k Aky

mij−k
i yjy

k
i = 0.) We argue

in the following cases that X is in
∑
I∈I1

BIR
oR+ + (R1)+Z. Set m = mij .

Case (i): αi or αj is in πΘ: Assume that αi ∈ πΘ and αj /∈ πΘ. We
may write Bj = yjtj + θ(yj)tj . In this case 0 =

∑
k Ak(yiti)m−k(yjtj)(yiti)k =∑

k q
sAky

m−k
i yjy

k
i t
m
i tj for some s independent of k. Hence

0 = θ̃(
∑
k

qsAky
m−k
i yjy

k
i )tmi tj =

∑
k

qsAky
m−k
i θ̃(yj)yki t

m
i tj

=
∑
k

Ak(yiti)m−kθ̃(yj)tj(yiti)k.

It follows that
∑
k AkB

m−k
k BjB

k
i = X = 0. The same argument works when

αj ∈ πΘ and αi /∈ πΘ. Furthermore, if both αi and αj are in πΘ, then we must also
have that X = 0.

For the remaining cases, we assume that αi /∈ πΘ and αj /∈ πΘ.
Case (ii): i 6= p(i), i 6= p(j): It follows immediately that j 6= p(i). Recall

(Section 2) that the highest degree term of X must be contained in G−RoR+.
Furthermore, the assumptions in this case say that any monomial in θ̃(yi)ti, θ̃(yj)tj ,
yiti, and yjtj is not in G−RoR+ unless it is actually a monomial in yiti and yjtj .
In particular, X = 0 in this case.

Case (iii): i = p(i): One checks that i 6= p(j) and j 6= p(i) in this case. More-
over, it will not matter whether or not j is equal to p(j). Now the highest degree
term of X can be written as a sum of monomials of the form ym−2k−k′

i yjy
k′

i R
oR+.

Hence X can be written as a sum of terms of the form Bm−2k−k′
i BjB

k′

i R
oR+ where

k ≥ 1 and m− 2k ≥ 0 and m− 2k ≥ k′ ≥ 0. Since m− 2k + 1 is strictly less than
m+ 1 for k ≥ 1, we may assume the elements Bm−2k−k′

i BjB
k′

i are contained in the
set {BI |I ∈ I1 ∪ J }.

Now if J = 0 or Z = K[Bn] with j 6= n, then it follows that X ∈
∑
I∈I1

BIR
oR+

as desired. So assume that Z = K[Bj ]. Now if g is of type G2, we must have that
gθ is semisimple (see [Kn, p. 543]). Hence, we may assume that m = 2 or m = 3.
Using the above, if m = 3, then X ∈

∑
I∈I1

BIR
oR+ since each BI contains at

least one Bi term. Hence we are reduced to the case where Z = K[Bj] and m = 2.
If αi = −Θ(αi), then by the classical version of the identity in [L1, Lemma 2.2],

we have that en + fn ∈ [gθ,gθ], a contradiction. If αi 6= −Θ(αi), then one checks
by looking at the possible monomials on the left hand side of (5.1) that X is in∑
I∈I1

BIR
oR+ + (R1)+Z as desired.

Case 4: i = p(j): It follows that j = p(i), j 6= p(j), and i 6= p(i). In this case,
X will be a sum of terms of the form Bm−1

i RoR+ where Bi appears exactly m− 1
times. By assumption, it is impossible for Bi = Bn, and thus X has the desired
form.
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Using Theorem 5.2, we can now construct a family of nontrivial one-dimensional
B-modules.

Corollary 5.3. For each x1, . . . , xr ∈ K such that xi is invertible whenever Ci is
in T , there exists a (unique) one-dimensional B-module Kv such that Civ = xiv
and B′+v = 0.

Unfortunately, we cannot expect to actually lift U([gθ,gθ]) to a subalgebra of
B. To see this, consider the case when g = sl 3 and Θ(α1) = −α2,Θ(α2) = −α1.
In this case, B is generated by B1 = y1t1 + x2t

−1
2 t1, B2 = y2t2 + x1t1t

−1
2 and k1, k2

where k1 = t1t
−1
2 and k2 = k−1

1 . Relations for B are given in [L1, Lemma 2.2].
(Note that we must apply a suitable automorphism to U and take into account the
difference in the definition of the generators of the quantized enveloping algebra so
that the subalgebra here agrees with the one in [L1].) In particular, for i 6= j, we
have that

B2
iBj−(q + q−1)BiBjBi +BjB

2
i =(q + q−1)Bi(q3ki+k−1

i ).(5.2)

In addition, each Bi is a weight vector for the action of (ad ki), i = 1, 2, in the
obvious way.

We may set C = k1 and Z = K[C,C−1]. Suppose that we have a subalgebra B′′

of B which specializes to U([gθ,gθ]) and furthermore, such that B ∼= B′′⊗K[t, t−1].
We should have that B′′ contains B1 and B2. By (5.2), B′′ contains Bi(q3ki+k−1

i ).
Hence B′′ ∩ Û contains the element (q−1)−1(Bi(q3ki+k−1

i )−2Bi) which does not
specialize to an element of U([gθ,gθ]). Note that the same problem occurs if we
replace Bi by Bitm for any integer m or even any rational number m. Thus, such
a subalgebra B′′ does not exist. Problems also arise in trying to construct such a
B′′ when C is not in TΘ.

Set ZR equal to the R subring of Z generated by all Ci ∈ Z and all of the
C−1
i which are in Z for 1 ≤ i ≤ r. Let x be an element in the set of algebra

homomorphisms Z to K which restricts to an algebra homomorphism from ZR
to R. Set Vx to be the one-dimensional B-module Kvx where B′vx = 0 and
svx = x(s)vx for all s ∈ Z. Since x(s) ∈ R for all s ∈ ZR, we can define a
conjugate linear form on Vx which satisfies (3.7) and (3.8). In particular, we have
the following additional unitary B-modules.

Theorem 5.4. Let W be a finite-dimensional U -module and let x be an element of
Hom (Z,K) which restricts to an element of Hom(ZR,R). The B-module W ⊗ Vx
can be written as a direct sum of finite-dimensional simple unitary B-modules.

6. Coinduced Modules

Let M denote the subalgebra of R corresponding to Uq([m,m]). In this section
we use M to construct coinduced modules. Such modules play an important role
in the classical theory. Here we use them in a novel way. In particular, in the next
section, these modules are used to study and specialize certain finite-dimensional
simple B-modules.

In this section we only need to assume that B is a standard or nonstandard analog
of U(gθ) such that κ(B) = B as in Lemma 3.2. (Thus the results in this section
hold for all nonstandard analogs.) Let W be a finite-dimensional simple M -module.
We make M into a T -module by assuming that the highest weight generating vector
of W is also a weight vector for T of some chosen weight. In particular, let h∗1 equal
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1≤i≤l Z[1/2]ωi where ωi is the fundamental weight corresponding to the root αi.

It follows that qλ is a well defined weight in the quantum case whenever λ ∈ h∗1.
Let h∗W be the subset of h∗1 so that for each λ ∈ h∗W , ζqλ restricts on M ∩ T to the
highest weight of W (where ζ is some fixed homorphism on T ∩M sending each
ti ∈ T ∩M to the set {1,−1}). The argument below is independent of the choice
of weight in h∗W .

Make W ∗ into a M -module using the antiautomorphism κ. Note that κ preserves
both M and T . Set N−Θ = c(Ñ−Θ) where c is the automorphism of G− fixing each
yiti and sending q to q−1.

Lemma 6.1. κ(N+
Θ ) = N−Θ .

Proof. By Proposition 2.2, N+
Θ has generators Xβ where Xβ is an element in U+

β

and β is a weight of n+
Θ. Furthermore, using (2.14), we have that

∆(Xβ) ⊂ T ⊗Xβ + U ⊗ R.
Applying the same argument as in [L2, Proposition 4.1], we have that Xβ is the
unique element up to scalar of U+

β satisfying this condition on the coproduct. We
can similarly show that N−Θ is generated by elements Yβ in G−β where −β is a weight
of n+

Θ. Once again we have that Yβ is the unique element up to nonzero scalar of
G−β satisfying the coproduct condition

∆(Yβ) ⊂ T ⊗ Yβ + U ⊗R.
Since κ sends U+ to G− and preserves the Hopf structure of U , it follows that

κ sends the generators of N−Θ to the generators of N+
Θ . Hence κ(N−Θ ) = N+

Θ .

We can make W into a MTN−Θ -module by letting N−Θ act as zero on the lowest
weight generating vector of W . It follows that W ∗ becomes a MTN+

Θ -module where
N+

Θ acts as zero on the highest weight generating vector of W ∗.
Let V be the right U -module HomMTN−Θ

(U,W ) coinduced from W . Here the U
action is defined as follows. Let f ∈ V and u ∈ U . Then u · f(v) = f(vu). We have
V ∼= (U ⊗MTN+

Θ
W ∗)∗ as U -modules where fχ is mapped to χ and

fχ(κ(m))(w∗) = χ(m⊗ w∗).

Recall the definition of T 1/2
Θ (Section 2) and note that there is an obvious way

to make a finite-dimensional B-module into a BT
1/2
Θ -module. In particular, let

ψ ∈ {1,−1} and let E be a set of generators of TΘ. If tv = ψqmv for some v inside
a finite-dimensional B-module and t ∈ E, then we may set t1/2v = qm/2v if ψ = 1
and t1/2v = iqm/2v if ψ = −1.

Theorem 6.2. Let N be a B-module. There is a vector space isomorphism

Hom
BT

1/2
Θ

(N,HomMTN−Θ
(UΘ,W )) ∼= HomM (N,W ).(6.1)

Proof. This is a standard argument (see [D, §5.5]) which we include for complete-
ness. Let ε be the map from HomMTN−Θ

(UΘ,W ) to W defined by ε(f) = f(1) for
f in the space HomMTN−Θ

(UΘ,W ). Define a map χ from the left hand side of (6.1)
to the right hand side of (6.1) by χ : g → ε ◦ g. The map χ will be the desired
isomorphism.

We first check that ε◦g is indeed an element of HomM (N,W ). Given n ∈ N and
r ∈M , we have that ε◦g(n) = g(n)(1) which is in W since g is in the left hand side
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of (6.1). Furthermore, ε ◦ g(rn) = g(rn)(1) = rg(n)(1) since g is a BT 1/2
Θ -module

map. Hence ε ◦ g(rn) = rε ◦ g(n).
To see that χ is one-to-one, suppose that ε ◦ g = 0. Then g(n)(1) = 0 for all

n ∈ N . Hence κ(u)g(n)(1) = g(n)(u) = 0 for all u ∈ U and n ∈ N . Thus g(n) = 0
for all n ∈ N and so g is identically equal to zero.

We now check that χ is onto. First we argue that

HomMTN−Θ
(UΘ,W ) ∼= HomM (BT 1/2

Θ ,W )

as vector spaces using the restriction map. Let f, g be two elements of
HomMTN−Θ

(UΘ,W ) and assume that f and g are equal when restricted to BT 1/2
Θ .

Let u ∈ U and write u =
∑
imibi using the quantum Iwasawa decomposition (2.17)

wheremi ∈ N−ΘA and bi ∈ BT 1/2
Θ . It follows that g(u) =

∑
mig(bi) =

∑
mif(bi) =

f(u) for all u ∈ U . Hence f = g. Thus the restriction map gives a one-to-one map
from HomMTN−Θ

(U,W ) into HomM (BT 1/2
Θ ,W ). To see onto, one notes that any

f ∈ HomM (BT 1/2
Θ ,W ) can be lifted to a map f ∈ HomMTN−Θ

(U,W ) in a well
defined unique way using the quantum Iwasawa decomposition. In particular f(u)
is defined to equal

∑
mif(bi) where u =

∑
mibi as above.

We are thus reduced to showing that Hom
BT

1/2
Θ

(N,HomM (BT 1/2
Θ ,W )) maps

onto HomM (N,W ) using χ. Let f ∈ HomM (N,W ). We define the function g in
Hom(N,HomM (BT 1/2

Θ ,W )) by setting g(n)(1) = f(n) and g(n)(b) = g(bn)(1). A
straightforward check shows that g is an element of the set Hom

BT
1/2
Θ

(N,

HomM (BT 1/2
Θ ,W )) and g maps to f .

Now assume that N is a simple B-module which is locally finite as a M -module
(where the action of M comes from restricting the action of B). Since M is just a
quantized enveloping algebra of the semisimple Lie algebra m, we can decompose
N into a direct sum of finite-dimensional simple M -modules. Hence the dimension
of the right hand side of (6.1) is just the index [N : W ]. Let X(W ) denote the sum
of all the finite-dimensional simple B-modules contained in (U⊗MTN+

Θ
W ∗)∗. Then

the left hand side of (6.1) just equals [X(W ) : N ]. Thus we have the following.

Corollary 6.3. If N is a simple B-module and is locally finite as a M -module
under the restriction of the action to M , then

[N : W ] = [X(W ) : N ].

Note that U⊗RAN+
Θ
W ∗ is just a quantum version of a generalized Verma module

corresponding to the reductive algebra m+h (resp. parabolic subalgebra p) whose
enveloping algebra is the specialization of MT (resp. MTN+

Θ .) In particular, let
Λ be the highest weight of W ∗ considered as a T -module. Then W ∗ is the finite-
dimensional simple MT module generated by a vector vΛ of highest weight Λ. Write
M ′(Λ) for the U -module U ⊗MTN+

Θ
W ∗. We have by the proof of Proposition 2.2

that chM ′(Λ) = chN−Θ chW ∗ = chU(n−Θ)chW ∗. Furthermore, Ĝ−vΛ = N̂−Θ R̂vλ is
a free A-module with weight vectors as a basis which form a basis for M ′(Λ). Set
M̂ ′(Λ) := Ĝ−vΛ.

We say that the algebra homomorphism Λ from Uo to K is linear and specializes
to the weight λ ∈ h∗W if Λ(τ(λ)) = q(λ,α) for all τ(α) ∈ T . If Λ is a linear weight,
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then the specialization of M̂ ′(Λ) at q = 1, M̂ ′(Λ)⊗C, is a U(g)-module. Further-
more, the above equality of character formulas ensures that this specialization is
equal to M̄ ′(λ) := U(g)⊗U(p)W̄

∗ where W̄ ∗ is the finite-dimensional m+h module
of highest weight λ.

Using [J], we may choose λ ∈ h∗W so that M̄ ′(λ) is simple. Again, set Λ = qλ.
Suppose that w is a nonzero highest weight vector in M ′(Λ). Rescaling if necessary,
we may assume that w is in M̂ ′(Λ) and w /∈ (q− 1)M̂ ′(Λ). Thus w specializes to a
nonzero highest weight vector of M̄ ′(λ). It follows that M ′(Λ) is also simple.

Write δM ′(Λ) for the locally finite T dual of M ′(Λ) (see [Jo, 4.1.4]) where Λ is
chosen as in the previous paragraph. Since M ′(Λ) is simple, we have that M ′(Λ) ∼=
δM ′(Λ). Now (U ⊗RAN+

Θ
W ∗)∗ can be considered as a T completion of δM ′(Λ)

or equivalently M ′(Λ) in the following sense. Elements of (U ⊗MTN+
Θ
W ∗)∗ can

be written as possibly infinite sums of weight vectors of distinct weight in M ′(Λ).
Let M̂ ′(Λ)∗ denote the A-submodule of M ′(Λ)∗ which consists of infinite sums of
weight vectors of distinct weight in M̂ ′(Λ) with coefficients in A. We may further
assume that these weight vectors have been chosen so that M̂ ′(Λ)⊗A C = M̄ ′(Λ).

7. Specializable modules.

In this section, we study the modules of B which can be specialized to U(gθ)-
modules. In particular, let V be a finite-dimensional B-module. We call V special-
izable if there exists a basis B of V such that B̂

∑
v∈B Av ⊂

∑
v∈B Av. Of course

there could be more than one choice of basis which makes V specializable. Any such
basis of V will be called a specializable basis. Given such a basis B we can form the
specialization V̄ :=

∑
v∈B Av⊗A C which inherits a U(gθ)-module structure. Note

that dimC V̄ = dimK V . Of course such a specialization seems dependent on the
choice of specializable basis. We show below that this is not so for simple modules.

Let V be a finite-dimensional B-module with specializable basis B. Let C be
an invertible matrix with entries in A. If D is the matrix whose rows are the
vectors in B, then it is straightforward to see that the rows of CD also form a
specializable basis and moreover the specialization of V using B and this second
basis are isomorphic as U(gθ)-modules. Now assume that C ∈ Mn×n(A) and det
C ∈ C∗. Elementary matrices that exchange rows or add a scalar (in A) multiple
of one row to another are invertible with inverse also in Mn×n(A). Hence C is
equivalent to a diagonal matrix D with all entries in C. In particular, C is invertible
with inverse also in Mn×n(A).

Though two specializable basis might produce different specializations, the fol-
lowing two lemmas show that these specializations at least have the same compo-
sition series.

Lemma 7.1. Let B = {v1, . . . , vn} be a specializable basis for the B-module V . Let
V1 denote the specialization of V using this basis. If {v1, . . . , vs} specializes to a
basis of a submodule W of V1, and B2 = {v1, . . . , vs, (q−1)−1vs+1, . . . , (q−1)−1vn}
is also a specializable basis of V with specialization V2, then V1 and V2 have the
same composition series as B-modules.

Proof. Let b ∈ B̂. Write bvj =
∑

1≤i≤n bijvi where bij ∈ A. Since both B1 and
B2 are specializable basis, we must have that bij ∈ (q − 1)A whenever 1 ≤ i ≤ s
and s + 1 ≤ j ≤ n. In particular, vs+1, . . . , vn also specializes to a basis of a
submodule, say W ′ of V1. Moreover, W ⊕ W ′ ∼= V1. Now we cannot say that
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(q−1)−1vs+1, . . . , (q−1)−1vn specializes to a basis of a submodule of V2. However,
let N be the A-module generated by v1, . . . , vs. Then (q − 1)−1vs+1 + N, . . . ,
(q− 1)−1vn +N specializes to a basis of a module isomorphic to W ′. In particular,
V1/W ∼= V2/W . The lemma now follows.

Lemma 7.2. Let V be a finite-dimensional specializable B-module. Let B1,B2 be
two specializable basis with corresponding specializations V1 and V2. Then V1 and
V2 have the same composition series as U(gθ)-modules.

Proof. Write B1 = {v1, . . . , vn} and B2 = {w1, . . . , wn}. Note that if we multiply
all elements of a specializable basis by the same nonzero scalar, we get another
specializable basis with isomorphic specialization to the first specialization. Write
vi =

∑
aijwj . Multiplying B1 by a nonzero scalar if necessary, we may assume that

all the aij ∈ A and not all the aij ∈ (q − 1)A. Let C be the matrix with entries
aij . Note that we must have det C 6= 0 since it transforms one basis of V into
another. Using standard P.I.D. theory, we can find elementary invertible matrices
E and F with entries in A so that ECF is a diagonal matrix D with diagonal
entries d1, . . . dn in A. Moreover di divides di+1 for each i. Note that both E and
F are invertible matrices with inverses in Mn(A). Hence ECB2 specializes to the
same module as does B1.

We can also find a diagonal matrix H with entries a power of (q−1) so that HD
is a diagonal matrix with all entries in C. Since detHD 6= 0 and F is invertible
in Mn×n(A), it follows that HDF−1B2 has the same specialization as B2. By
Lemma 7.1 and induction, the specializations of DB2 and HDF−1B2 have the
same composition series.

Let V be a Û-module such that each element of V is a (possibly infinite) sum of
T -weight vectors of distinct weight and of weight less than or equal to some fixed Λ.
Assume further that there is an A-module VA inside of V such that V = VA ⊗K,
(Û)VA ⊂ VA and that there is a well ordered set of linearly independent weight
vectors in VA such that each element in VA is a possibly infinite linear combination
of these vectors over A. Suppose that N is a finite-dimensional B-submodule of V
such that there exists a K basis for N inside of VA.

The following lemma is critical to showing that N embeds in a nice way inside
of certain coinduced modules from Section 6. This nice embedding will allow us to
specialize the quantum picture to the classical case.

Lemma 7.3. N ∩ VA is a free A-submodule of VA.

Proof. Think of A as a subalgebra of the formal power series C[[q − 1]].
Let {vi|i ≥ 0} be the set of linearly independent weight vectors of VA such that each
element of VA is a possibly infinite linear combination of these vectors over A. Let
{wi|1 ≤ i ≤ r} be a basis for N over K where each wi is in VA. We may write each
wi as

∑
j≥0 pijvj for some pij ∈ A. Set p(wi) = j where pij is the first nonzero

polynomial in the sequence p1j , p2j , . . . . Using the fact that A is a P.I.D., reordering
the basis of N and taking linear combinations if necessary allows us to assume that
p(w1) > p(w2) > · · · > p(wr). Let m(wi) be the highest power of (q − 1) dividing
the coefficient pip(wi) of vp(wi) in the expression of wi above.

Now write wi =
∑

m≥0(q − 1)mwim where each wim is in the A span of the set
{vi|i ≥ 0}. Let j be the smallest integer such that

∑
1≤k≤j Awk0 does not equal∑

1≤k≤j Kwk0 ∩ VA. It follows that there exist elements aji ∈ A such that wj −
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1≤i<j ajiwi is divisible by (q− 1) in VA. Set w′j = (q− 1)−1(wj −

∑
1≤i<j ajiwi).

Note that the set w1, . . . , wj−1, w
′
j , wj+1, . . . , wr is still in VA and is a basis for N

over K. Also, p(w′j) = p(wj) and m(w′j) = m(wj)− 1. Repeating this process, and
applying induction on m(wj), we can find a vector w such that the intersection of
theK span of {w1, . . . , wj} with VA is a free A-module with basis {w1, . . . , wj−1, w}.
The lemma now follows by induction on j.

We recall some of the notation from the previous section. First note that any
M -submodule of a finite-dimensional specializable B-module must be a specializ-
able M -module. Let W be a finite-dimensional (specializable) simple M -module.
Choose λ ∈ h∗W and set Λ = qλ such that both M ′(Λ) and M̄ ′(λ) are simple. Recall
that (U ⊗MTN+

Θ
W ∗)∗ embeds in a T completion of M ′(Λ) and that M̂ ′(Λ)∗ is an

A-submodule of this completion. Let N be a finite-dimensional specializable simple
B-module with [N : W ] 6= 0. Let {n1, n2, . . . , nr} be a specializable basis of N . Let
Ñ be a copy of N contained in (U ⊗MTN+

Θ
W ∗)∗ and write ñi for the image of ni

in (U ⊗MTN+
Θ
W ∗)∗.

Lemma 7.4. For each i there exists a smallest integer si such that (q − 1)si ñi ∈
M̂ ′(Λ)∗. Thus N ∩ M̂ ′(Λ)∗ is a free A-submodule of M̂ ′(Λ)∗.

Proof. Let Ω denote the set of weights of M ′(Λ)∗. We may write ñi =
∑

η∈Ω c
i
ηw

i
η

where ciη ∈ C(q) and wiη is a weight vector of weight η in M̂ ′(Λ)∗ and wiη /∈
(q − 1)M̂ ′(Λ)∗. We can extend the standard partial order (the Bruhat order) on
Ω to a complete ordering. Multiplying each ni by the same nonzero scalar does
not change the specialization of {n1, . . . , nr}. So without loss of generality, we may
assume for each i, that if ηi is the highest weight with ciηi 6= 0, then ciηi ∈ A.

Let ζ be the highest weight such that ciζ /∈ A for some choice of i. Since
both M ′(Λ) and its specialization is simple, there exists xj such that xjwζ /∈
(q − 1)M̂ ′(Λ). Consider κ(Bj)ñi =

∑
η∈Ω c

′
ηw
′
η. The w′ζ+αj term comes from

xjc
i
ζwζ and terms Ĝ−ciβwβ where β > ζ. In particular, c′ζ+αi /∈ A. This contra-

dicts the choice of ζ and the fact that {n1, . . . nr} is a specializable basis of N . The
second statement follows immediately from Lemma 7.3.

If gθ is semisimple, then we are ready to show that the finite-dimensional simple
modules of B remain simple upon specialization. However, when gθ has nonzero
central elements then it is necessary to understand how these nonzero central ele-
ments behave. We use material from Section 4 to do this.

It is well known that U specializes to U(g) at q = 1. Let Ǔ denote the simply
connected quantized enveloping algebra as defined in [JL2]. (Note that all our U -
modules can be given an obvious Ǔ -module structure. Furthermore, one can define
the A subalgebra Ǔˆ in a manner similar to Û .) We also have that Ǔ specializes
to U(g) since the extra terms in the extension Ť of T do not contribute anything
new to the specialization. Let F (Ǔ) denote the locally finite part of Ǔ . Write T<
for Ť ∩ F (Ǔ). Recall [JL1] that Ǔ is a free module with basis say r1, . . . , rf in
Ť over F (Ǔ)T−1

< . Since the specialization of (ts − 1)/(q − 1) is the same as the
specialization of (t− 1)/(q− 1) + (s− 1)/(q− 1) for all s, t ∈ T , we have that both
F (Ǔ)T−1

< and F (Ǔ) specialize to U(g).
One can define a notion of specializable modules for U just as we did for B. By

[JL2], the center Z of Ǔ specializes to the center of U(g). Also by [JL2], F (Ǔ)
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is free over Z with basis H. Furthermore, H is a direct sum of finite-dimensional
simple (specializable) U -modules with the same multiplicities as in the classical
case. Thus the simple U -submodules of H specialize to their classical counterparts
in the harmonics of U(g). Recall by Lemma 4.5 that σ−1(F (Ǔ)B) is the set of
elements in F (Ǔ) which commute with all b in B.

Lemma 7.5. For each y in U(g)g
θ

, there exists a Y ∈ σ−1(F (Ǔ)B) such that Y
specializes to y.

Proof. If y is in the center of U(g), then by say [JL2, Theorem 6.17], we can lift y
to an element of the center of U . By [JL2, Theorem 7.4] and the classical version
[K2], we thus reduce to the case where y is an element of the classical harmonics.
Since gθ is a Lie subalgebra of g, it is invariant under the antipode, σ̄, of g. Hence
σ̄(y) is also in U(g)g

θ

. Furthermore, without loss of generality, we may assume
that σ̄(y) lies in some simple summand say V of the harmonics of U(g). There
exists a simple summand Ṽ of H which specializes to V . Since finite-dimensional
(specializable) U -modules are spherical if and only if their specializations are (see
Theorem 4.5), we can find an element Ỹ in F (U)B ∩ Ṽ such that Ỹ specializes
to σ̄(y). Now set Y equal to σ−1(Ỹ ). By properties of σ and σ̄ it follows that Y
specializes to y.

Recall the definition of the basis {z1, . . . , zr} for Z(gθ) and the elements
{c1, . . . , cr} in gθ from Section 5. Using Lemma 7.5, find Zi ∈ σ−1(F (Ǔ)B) for
each i such that Zi specializes to zi.

We return now to specializing simple B-modules.

Theorem 7.6. Let N be a finite-dimensional simple specializable B-module. Then
N specializes to a finite-dimensional simple U(gθ)-module of the same dimension
which is independent of the choice of specializable basis of N .

Proof. The independence of the choice of basis follows from Lemma 7.2 after we
prove the rest of the theorem.

Let {n1, . . . , ns} be a specializable basis for N . Let N1, . . . , Ns be linear inde-
pendent copies of N inside of M̂ ′(Λ)∗. Set nij equal to the image of nj in Ni.

Reordering and taking linear combinations if necessary, we may assume that
the span of the first r vectors {n1, . . . , nr} specialize to a finite-dimensional simple
U([gθ,gθ])-module Y . Without loss of generality, we may assume that n1 special-
izes to the highest weight generating vector of Y under a suitable choice of the
Cartan subalgebra of U([gθ,gθ]). By Lemma 7.3, we can replace N1, . . . , Ns by
suitable linear combinations of the Nj so that {ni1|1 ≤ i ≤ s} is an A basis for∑

1≤i≤sKni1 ∩ M̂ ′(Λ)∗.
Thus we may assume that the image of the C span of the set {nij |1 ≤ i, j ≤ s}

includes s linearly independent copies Yj of Y . By the choice of the Zi and Lemma
4.5, the Zj commute with each element of B. Also, since B specializes to U(gθ) we
can find for each 1 ≤ j ≤ s, a Sj ∈ B̂ such that Zj = Sj+(q−1)Û . Since each Ni is
a B-module, it follows that SjNi ⊂ Ni for each choice of j. Furthermore, the action
of Sj is the same on each Ni since the Ni are isomorphic as B-modules. Hence there
exists a scalar b such that Zjn = bn+(q−1)M̂ ′(Λ)∗ for all n ∈

⊕
1≤i≤s(Ni∩M̂ ′(Λ)∗).

Thus zj acts by the same scalar on each Yi. In particular, the Yi are actually
isomorphic as U(gθ)-modules.
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Let W̄ denote the specialization of W . Recall that W is an M -module and
M is the quantized enveloping algebra of the semisimple Lie algebra [m,m]. By
Corollary 6.3 and its classical version, we have that

[Y : W̄ ] = [X̄ : Y ] = s = [N : W ].

Note that this argument works for each finite-dimensional (specializable) simple
M -module W . By the quantized enveloping algebra theory, the finite-dimensional
specializable M -modules correspond to their classical counterparts. Hence we must
have that dimY = dimN . The result now follows.

The next theorem goes the other direction lifting simple U(gθ)-modules to the
quantum case.

Theorem 7.7. For each finite-dimensional simple U(gθ)-module V , there exists a
specializable simple B-module Ṽ such that the specialization of Ṽ is V .

Proof. Let V be a finite-dimensional simple U(gθ)-module. Choose a finite-dimen-
sional M -module W and a T -weight Λ = qλ so that the highest weight of W
is the restriction of Λ to T ∩ M and M̄ ′(λ) is simple. We may further assume
that [V : W̄ ] 6= 0 where W̄ is the specialization of W . Hence V appears in the
composition series of M̄ ′(λ) considered as a U(gθ)-module.

Recall that M ′(Λ) = G−vΛ where vΛ is the highest weight generating vector
for W and that M ′(Λ) is also simple. Given a weight vector n in G− one can
find a t ∈ T such that nt ∈ F (U). (This follows from the embeddings of finite-
dimensional simple U -modules L(λ) in G−τ(−1/2λ) ∩ F (Ǔ) found in [JL2, §4].)
Thus M ′(Λ) = F (U)vΛ = F (U)MvΛ. By Theorem 3.7 applied to M instead of
B, it follows that M ′(Λ) is isomorphic to a direct sum of finite-dimensional simple
M -modules.

Let Y1 and Y2 be submodules of M̄ ′(λ) such that Y1/Y2 is isomorphic to V .
Choose v ∈ M̂ ′(Λ) such that the image of v under specialization is contained in
Y1 but not in Y2. Assume further that the image of the specialization of v in the
simple U(gθ)-module Y1/Y2 corresponds to a highest weight vector under a suitable
choice of Cartan subalgebra of U([gθ,gθ]). Let Y be the B-submodule of M ′(Λ)
generated by v and let Y ′ be its maximal proper B-submodule. Note that v cannot
be contained in Y ′. Given w ∈ M̂ ′(Λ)− (q − 1)M̂ ′(Λ), let w̃ be the weight vector
of M̂ ′(Λ) − (q − 1)M̂ ′(Λ) such that w = w̃+ weight vectors of weight higher than
the weight of w + an element in (q − 1)M̂ ′(Λ). Using induction on weight, we
can find a basis B′ (resp. B) of Y ′ (resp. Y ) such that the set {w̃|w ∈ B′} (resp.
{w̃|w ∈ B}) remains linearly independent upon specialization of M̂ ′(Λ). Moreover,
one can choose the basis for Y ′ first and then enlarge this to a basis of Y . Note
that these bases make Y and Y ′ into specializable modules.

Set Ṽ = Y/Y ′ and note that this is a simple B-module. The set {y+Y ′|y ∈ B−
B′} of Ṽ is a specializable basis of Y/Y ′ by the previous paragraph. Furthermore,
the element v + Y ′ will be nonzero under the specialization of Y/Y ′ with respect
to the above basis. It follows that the specialization of Ṽ has V in its composition
series.

We have constructed a simple specializable B-module Ṽ whose specialization
includes V in its composition series. The proof now follows as in Theorem 7.6. Note
that we have not assumed that Ṽ is finite-dimensional. However, Ṽ is a locally finite
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semisimple M -module and we have assumed that V is finite-dimensional. Thus the
arguments of Theorem 7.6 are applicable in this case as well.

A natural question is: What is the relationship between B-modules with iden-
tical specializations? This is addressed in the next theorem. First, we need finer
information about elements of U which commute with elements of B.

Lemma 7.8. Let y be an element of Z(gθ). For each positive integer n, there
exists an element bn ∈ B̂ such that bn ∈ σ−1(F (Ǔ)B) ∩ Ǔˆ + (q − 1)nǓˆ and bn
specializes to y.

Proof. Consider y in Z(gθ) and let Y0 be an element in σ−1(F (Ǔ)B)∩ Ǔˆ such that
the specialization of Y0 is y0 as in Lemma 7.5. Since y0 ∈ U(gθ), we can find X0 ∈ B̂
which also specializes to y0. It follows that Y0 − X0 ∈ (q − 1)Ǔ .̂ Furthermore,
b(Y0 −X0) − (Y0 −X0)b ∈ (q − 1)B̂ for all b ∈ B̂. Therefore, (q − 1)−1(Y0 −X0)
specializes to an element of U(gθ) + U(g)g

θ

because gθ acts locally finite and
semisimple on U(g). By Lemma 7.5 and (2.9), we can find Y1 ∈ σ−1(F (Ǔ )B) ∩ Û
and X1 ∈ B̂ such that (q − 1)−1(Y0 −X0) = (X1 − Y1) + (q − 1)Ǔ .̂ In particular,
the element Y0 + (q − 1)Y1 commutes with all elements of B, specializes to y0 and
is in B̂ + (q − 1)2Ǔ .̂ The lemma follows by induction.

Consider again the basis {z1, . . . , zr} of Z(gθ). By the above lemma, we can
find two sequences {yin}n≥1 and {zin}n≥1 for each i such that for all n ≥ 1,
zin ∈ σ−1(F (Ǔ )B) ∩ Ǔ ,̂ yin ∈ B̂, yin − zin ∈ (q − 1)nǓ ,̂ and zin specializes
to zi. Since B is κ̄ invariant and each ci is invariant under the classical chevellay
antiautomorphism, we may assume without loss of generality that each zin and each
yin is κ̄ invariant. (This can be easily accomplished by replacing each zin (resp. yin)
by 1/2(κ̄(zin) + zin) (resp. 1/2(κ̄(yin) + yin)).) Note that this invariance implies
that we can further assume that each zin ∈ ǓR and each yin ∈ BR.

Given a finite-dimensional simple specializable B-module V , we can embed it
inside a U -module using Theorem 6.2 and Corollary 6.3. For any positve integer n,
the arguments of Theorem 7.6 ensure that this embedding can be chosen so that
zin acts as a scalar on V . Thus yin must act like a scalar modulo (q− 1)n on V for
each n (i.e. yin acts as a matrix which is the sum of a scalar matrix and a matrix
with entries all in (q−1)nA). Call two B-modules compatible if for each i and each
n, yin acts by the same scalar ain modulo (q − 1)n on both modules.

Theorem 7.9. Let V1 and V2 be two specializable finite-dimensional simple B-
modules. Then V1 and V2 are isomorphic if and only if they are compatible and
there specializations are isomorphic. Moreover, each finite-dimensional simple B-
module is self dual.

Proof. Note that the M -module structure of V1 and V2 must be the same since
their specializations are isomorphic. Let W be a finite-dimensional simple M -
module and Λ = qλ such that λ ∈ h∗W and both M̄ ′(λ) and M ′(Λ)∗ are simple. Set
s = [V1 : W ] = [V2 : W ]. Let {Vij |1 ≤ j ≤ s} be linearly independent copies of Vi in
M ′(Λ)∗ for i = 1 and i = 2 and let v1

ij , . . . v
m
ij be a basis for the jth copy of Vi. Using

the arguments in Theorem 7.6 we can find a new basis such that using this basis
the

∑
ij Vij specializes under the specialization of M ′(Λ)∗ to a finite-dimensional

U(gθ)-module N of the same dimension. The process of finding this basis consists
of multiplying the basis {vkij} by a suitable matrix with entries in K. Let n be the
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smallest nonnegative integer n such that (q−1)n times this matrix forces all entries
to be in A. By assumption, zi,n+1 acts on the original basis by a scalar matrix
Ci,n+1 plus a matrix with entries in (q − 1)n+1A. Hence for each i, zi,n+1 acts
on the new basis by the same scalar matrix Ci,n+1 plus a matrix with entries in
(q−1)A. Since zi,n+1 specializes to zi, each zi acts as a scalar on the specialization
N . Thus U(gθ) acts semisimply on N and N is a direct sum of 2s copies of V̄ .
This contradicts the fact that [V̄ : W̄ ] = [Vi : W ] = s.

Now let V be a finite-dimensional simple specializable B-module and let V ∗ be
the dual using κ. Since each zin and yin is κ invariant, the action is the same on V
and V ∗. The theorem now follows from the previous paragraph and the fact that
the specializations of V and V ∗ are isomorphic.

The picture is particularly nice when gθ is semisimple.

Corollary 7.10. If gθ is semisimple, then there is a one-to-one correspondence
between finite-dimensional specializable simple B-modules and finite-dimensional
simple gθ-modules.

We now turn our attention to unitary modules.

Corollary 7.11. For each finite-dimensional simple unitary U(gθ)-module V ,
there exists a finite-dimensional specializable simple unitary B-module Ṽ such that
the specialization of Ṽ is V .

Proof. Let V̄ be a finite-dimensional simple unitary U(gθ)-module. So V̄ has a
real vector subspace V̄R such that dimR V̄R = dimC V̄ . The proofs of this section
work if the base field is R instead of K. In particular, there is a finite-dimensional
specializable simple BR-module VR which specializes to V̄R. Set V = VR ⊗ K
and note that V specializes to V̄ and satisfies condition (3.7). By the previous
corollary, it follows that V is isomorphic to its dual V ∗. Rescaling if necessary, we
may assume that the bilinear pairing between VR and V ∗R specializes to the bilinear
pairing between V̄R and its dual. This bilinear pairing becomes the conjugate linear
form on V which satisfies (3.8) because its specialization is positive definite.

Unfortunately, the methods in this section are not constructive. The modules
considered in Section 5 are more computable. We show below that many of the
finite-dimensional simpleB-modules considered earlier in the paper are specializable
B-modules. Note that any finite-dimensional simple U -module with highest weight
of the form qλ where λ is dominant integral is a specializable B-module. Let
x denote the r-tuple x1, . . . , xr such that each xi ∈ A. Write Vx for the one-
dimensional B-module as defined in Corollary 5.2. Note that for such a choice of
x, Vx is a specializable B-module.

Proposition 7.12. If W is a B-submodule of L(qλ)⊗Vx, then W is a specializable
B-module.

Proof. Let vλ be the highest weight generating vector of L(Λ) and let v be a basis
vector for Vx. Let u1vλ⊗v, . . . , usvλ⊗v be a basis for W . Rescaling if necessary, we
may assume that ui ∈ Û . Furthermore, using linear combinations and the fact that
A is a principle ideal domain, we may assume that the set {u1vλ⊗ v, . . . , usvλ⊗ v}
remains linearly independent upon specialization. Let b ∈ B̂ and find bij ∈ K such
that buivλ⊗v =

∑
j bijujvλ⊗v. Fix i. If bij is not in A for all j, then there exists a

smallest positive integer s such that (q−1)sbij ∈ A for all j. Now (q−1)sb ∈ (q−1)Û ,
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so upon specialization of (q− 1)s
∑

j bijujvλ we get a nontrivial linear combination
of linearly independent vectors is zero. This contradiction ensures that bij ∈ A for
all i, j. Hence W is specializable.

Unlike the quantized enveloping algebra, not all finite-dimensionalB-modules are
specializable. Of course when gθ is not semisimple, it is easy to construct finite-
dimensional modules which are not specializable. Indeed, any one-dimensional
module Vx where x takes some Ci to an element not in A is such an example.
The surprising thing is that there are non specializable modules even when gθ is
semisimple. We consider such an example below.

Example 7.13. Let g = sl 3 and define Θ by Θ(αi) = −αi for 1 ≤ i ≤ 2. It
follows that gθ is isomorphic to the simple Lie algebra so 2 = sl 2. By [L2, Lemma
2.2] the generators Bj = yjtj + xj , j = 1, 2 satisfy the following relations.

B2
kBj − (q + q−1)BkBjBk +BjB

2
k = qBj(7.1)

for {k, j} = {1, 2}, j 6= k. Let λ be an algebra homomorphism from B to the
scalarsK. Assume that vλ generates a one-dimensionalB-module such that Bjvλ =
λ(Bj)vλ. Note that by (7.1), λ(B1) = 0 if and only if λ(B2) = 0. For j = 1, 2,
set λj = λ(Bj). The only specializable one-dimensional B-module is the one where
both λ1 and λ2 are zero. Now assume that neither of them are zero. Substituting λi
for Bi in (7.1) yields four additional one-dimensional nonspecializable B-modules.
In particular, solving for λj , we get the following two choices for each j:

λj = ±iq/(q − 1).

Note that since κ̄(B) = B, these one-dimensional nonspecializable B-modules are
not unitary.

References

[CP] V. Chari and A. Pressley, A guide to quantum groups, Cambridge University Press, Cam-
bridge, 1995. MR 96h:17014

[DK] C. DeConcini and V.G. Kac, Representations of quantum groups at roots of 1, In: Operator
Algebras, Unitary Representations, Envelping Algebras, and Invariant Theory, Prog. Math.
92 (1990), 471-506. MR 92g:17012

[Di] M.S. Dijkhuizen, Some remarks on the construction of quantum symmetric spaces, In:
Representations of Lie groups, Lie algebras and their quantum analogues, Acta Appl. Math.
44 (1996), no. 1-2, 59-80. MR 98c:33020

[D] J. Dixmier, Algebres Enveloppantes, Cahiers Scientifiques, XXXVII, Gauthier-Villars, Paris
(1974). MR 58:16803a

[GI] A.M. Gavrilik and N.Z. Iorgov, q-deformed inhomogeneous algebras Uq(son) and their rep-
resentations, In: Symmetry in nonlinear mathematical physics, Vol. 1, 2, Natl. Acad. Sci.
Ukraine, Inst. Math., Kiev (1997), 384-392. MR 99c:81087

[Ja] N. Jacobson, Basic Algebra. II, W. H. Freeman and Co., San Francisco, CA, 1980.
MR 81g:00001

[J] J.C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-
Algebren, Math. Ann. 226 (1977), 53-65. MR 55:12783

[JL1] A. Joseph, and G. Letzter, Local finiteness of the adjoint action for quantized enveloping
algebras, Journal of Algebra, 153 (1992), 289-318. MR 94b:17023

[JL2] A. Joseph, and G. Letzter, Separation of variables for quantized enveloping algebras, Amer-
ican Journal of Mathematics, 116, (1994), 127-177. MR 95e:17017

[Jo] A. Joseph, Quantum Groups and their Primitive Ideals, Springer-Verlag, New York (1995).
MR 96d:17015

[Jo2] A. Joseph, On a Harish-Chandra homomorphism, C. R. Acad. Sci. Paris Sér. I Math. 324
(1997), no. 7, 759-764. MR 98d:17017

http://www.ams.org/mathscinet-getitem?mr=96h:17014
http://www.ams.org/mathscinet-getitem?mr=92g:17012
http://www.ams.org/mathscinet-getitem?mr=98c:33020
http://www.ams.org/mathscinet-getitem?mr=58:16803a
http://www.ams.org/mathscinet-getitem?mr=99c:81087
http://www.ams.org/mathscinet-getitem?mr=81g:00001
http://www.ams.org/mathscinet-getitem?mr=55:12783
http://www.ams.org/mathscinet-getitem?mr=94b:17023
http://www.ams.org/mathscinet-getitem?mr=95e:17017
http://www.ams.org/mathscinet-getitem?mr=96d:17015
http://www.ams.org/mathscinet-getitem?mr=98d:17017


96 GAIL LETZTER

[Ke] M.S. Kebe, O-algebres quantiques, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 1,
1-4. MR 97c:17022

[Kn] A.W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, Birkhäuser,
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