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LARGE SCHUBERT VARIETIES

MICHEL BRION AND PATRICK POLO

Abstract. For a semisimple adjoint algebraic group G and a Borel subgroup
B, consider the double classes BwB in G and their closures in the canonical
compactification of G; we call these closures large Schubert varieties. We show
that these varieties are normal and Cohen-Macaulay; we describe their Picard
group and the spaces of sections of their line bundles. As an application, we
construct geometrically a filtration à la van der Kallen of the algebra of regular
functions on B. We also construct a degeneration of the flag variety G/B
embedded diagonally in G/B ×G/B, into a union of Schubert varieties. This
yields formulae for the class of the diagonal of G/B × G/B in T -equivariant
K-theory, where T is a maximal torus of B.

Introduction

Consider an adjoint semisimple algebraic group G and a Borel subgroup B.
The Schubert varieties are the images in G/B of the closures in G of double classes
BwB. These varieties are generally singular, but all of them are normal and Cohen-
Macaulay [25]. The spaces of sections of line bundles over Schubert varieties play
an important role in representation theory, see for example [14], [29].

The group G has a canonical smooth G × G-equivariant compactification X,
constructed by De Concini and Procesi [9] in characteristic zero, and by Strickland
[27] in arbitrary characteristics. In this paper, we study the closures of double
classes BwB in X; we call them large Schubert varieties.

These varieties are highly singular: by [4, 2.2], their singular locus has codi-
mension two, apart from trivial exceptions. However, we show that large Schubert
varieties are normal and Cohen-Macaulay (Corollary 3 and Theorem 20). Further,
their Picard group is isomorphic to the weight lattice (Theorem 5).

Large Schubert varieties have an obvious relation to usual Schubert varieties:
the latter are quotients by B of an open subset of the former. A more hidden
connection arises by intersecting a large Schubert variety X with the unique closed
G×G-orbit Y in X. As Y is isomorphic to G/B ×G/B by [27], X ∩ Y is a union
of Schubert varieties in G/B ×G/B.

The space X∩Y is generally reducible; its irreducible components were described
in [4], e.g. those of B ∩ Y are parametrized by the Weyl group. We show that the
scheme-theoretic intersection X ∩Y is reduced and Cohen-Macaulay (Corollaries 4,
21). Together with a construction of [4], this yields a degeneration of the diagonal
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in G/B ×G/B into a union of Schubert varieties, and then formulae for the class
of the diagonal in equivariant K-theory (Theorem 16 and Corollary 17).

Let B̃ be the preimage of B in the simply connected cover G̃ of G. Then the
space of sections of each line bundle over a large Schubert variety X is a B̃ × B̃-
module, endowed with a natural filtration by order of vanishing of sections along
Y . We decompose the associated graded module into a direct sum of spaces of
sections of line bundles over X ∩ Y ; the latter B̃ × B̃-modules are indecomposable
(Theorem 7 and Corollary 22). In the case where X = B, these modules can be
seen as degenerations of induced G̃-modules; see Corollary 19.

As a consequence, we obtain in a geometric way a filtration of the affine algebra
of B̃ (Theorem 11), similar to those constructed by van der Kallen in [28]. For
this, consider regular functions on B as rational functions on its closure B with
poles along the boundary. The factors of the filtration by order of poles are spaces
of sections of line bundles on B ∩ Y . In particular, as a B × B-module, the affine
algebra of B, k[B], admits a Schubert filtration in the sense of [24]. Filtering further
by ordering the irreducible components of B∩Y gives back a filtration à la van der
Kallen of k[B]. This generalizes to regular functions over B̃, by decomposing them
into sums of sections of line bundles over B.

Our proofs rely on the method of Frobenius splitting: following the approach of
[21], we show that X is Frobenius split compatibly with all large Schubert varieties
(Theorem 2). The normality of large Schubert varieties is a direct consequence of
this fact: it is easy to see that they are smooth in codimension one, and that their
depth is at least two (a regular sequence being provided by the “boundary divisors”
of X).

The proof that large Schubert varieties are Cohen-Macaulay is much more in-
volved. As for usual Schubert varieties [25], we proceed by ascending induction on
the dimension; but here the argument begins with B (instead of the point) which
is handled through its intersection with Y . It would be interesting to obtain an
equivariant desingularization ofB; then the classical construction of Bott-Samelson-
Demazure would give equivariant resolutions of all large Schubert varieties. The
present work raises many other questions, e.g. is there a standard monomial theory
for large Schubert varieties?

One may also ask for extensions of our results to orbit closures of Borel subgroups
in complete symmetric varieties [9], or, more generally, in regular embeddings of
spherical homogeneous spaces [4]. In fact, it is shown in [5] that closures of orbits
of maximal rank are normal, and that their intersection with any irreducible com-
ponent of the boundary is reduced; further, these intersections can be described
in terms of the Weyl group. But many orbit closures of smaller rank are neither
normal, nor Cohen-Macaulay (see [18] for the notion of rank; all large Schubert
varieties have maximal rank).

1. The canonical compactification of a semisimple adjoint group

We begin by introducing notation and recalling some properties of group com-
pactifications.

Let G be a connected adjoint semisimple algebraic group over an algebraically
closed field k of arbitrary characteristic. Let B and B− be opposite Borel subgroups
of G, with common torus T . Let X be the character group of T ; we identify X
with the character groups of B and B−. Let W be the Weyl group of T , and let
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Φ be the root system of (G, T ) with subsets of positive (resp. negative) roots Φ+,
Φ− defined by B, B−. Let ∆ = {α1, . . . , αr} be the set of simple roots, where r
is the rank of G; let s1, . . . , sr ∈ W be the simple reflections. The corresponding
length function on W is denoted by `. Let w0 be the element of maximal length in
W . Set N := `(w0), the number of positive roots.

We denote by G̃ the simply connected covering of G, and by B̃, T̃ , . . . the
preimages of B, T , . . . in G̃. The character group of T̃ is denoted by X̃ ; it is
the weight lattice of Φ with basis the set of fundamental weights ω1, . . . , ωr. The
monoid generated by these weights is the set X̃+ of dominant weights. Let ≤ denote
the usual partial order on X̃ defined by λ ≤ µ if there exist non-negative integers
n1, . . . , nr such that µ− λ = n1α1 + · · ·+ nrαr.

By [9] and [27], G admits a compactification X satisfying the following properties:
(i) X is a smooth projective variety, and the action of G × G on G by left and

right multiplication extends to X.
(ii) The boundary X−G is a union of r smooth irreducible divisors D1, . . . , Dr

with normal crossings.
(iii) Each G×G-orbit closure in X is the transversal intersection of the boundary

divisors which contain it.
(iv) The intersection Y := D1 ∩ · · · ∩Dr is the unique closed G×G-orbit in X;

it is isomorphic to G/B ×G/B.
Further, any compactification of G satisfying (i), (ii) and (iii) dominates X, and

any normal compactification of G with a unique closed orbit is dominated by X
(this follows from embedding theory of homogeneous spaces; see [17]). We will call
X the canonical compactification of G.

Note that in the above G is regarded as the homogeneous space (G×G)/diag(G),
where diag(G) denotes the diagonal subgroup, which is the fixed subgroup of the
involution (g1, g2) 7→ (g2, g1) of G × G. Thus, the compactification X is a special
case of the compactification of symmetric spaces studied in [9] (for k = C) and in
[10] (for char(k) 6= 2). In fact, for those results from [10] that we shall need, it is
easily seen that in this special case the hypothesis that char(k) 6= 2 is unnecessary.

For w ∈ W , consider the double class BwB in G, and its closure in X. We
denote this closure by X(w), and we call it a large Schubert variety. On the other
hand, we denote by S(w) the usual Schubert variety, that is, the closure in G/B of
BwB/B. In other words, S(w) is the image in G/B of the intersection X(w) ∩G.

The intersections of large Schubert varieties with G × G-orbits were studied in
[4, §2]. In particular, we have the following decomposition of

Z(w) := X(w) ∩ Y
into irreducible components (which are Schubert varieties in G/B ×G/B):

Z(w) =
⋃
x∈W

`(wx)=`(w)+`(x)

S(wx) × S(xw0).

For w = 1 (the identity of W ), we denote X(w) by B, and Z(w) by Z. Then

Z =
⋃
x∈W

S(x)× S(xw0).

The large Schubert varieties of codimension one in X are X(w0s1), . . . ,X(w0sr).
They are the irreducible B × B-stable divisors in X which are not G × G-stable,
or, equivalently, which do not contain Y . By [10, Proposition 4.4], the divisor
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class group of X is freely generated by the classes of X(w0s1), . . . ,X(w0sr). On
the other hand, the line bundles on X are described in [27, §2] (see also [10, §4]).
We now recall this description; a generalization to large Schubert varieties will be
obtained in Section 3.

For λ, µ ∈ X̃ , we denote by LG/B(λ) the G̃-linearized line bundle on G/B whose
geometric fiber at the fixed point of B is the one-dimensional representation of
B̃ corresponding to the character −λ, and by LY (λ, µ), or simply L(λ, µ), the
line bundle LG/B(λ) � LG/B(µ) on Y = G/B × G/B. (With this convention,
H0(G/B,LG/B(λ)) is non-zero if and only if λ is dominant; this is the convention
used in [27], it differs by a sign from the one used in [14].)

Then, the map (λ, µ) 7→ LY (λ, µ) identifies the Picard group Pic Y with X̃ × X̃ .
Now the restriction resY : Pic X→ Pic Y is injective, and its image consists of the
LY (λ,−w0λ), for λ ∈ X̃ .

We denote by LX(λ) the line bundle on X such that resY LX(λ) = LY (λ,−w0λ).
This identifies Pic X with X̃ ; we can index the boundary divisors D1, . . . , Dr so
that the classes of the corresponding line bundles are LX(α1), . . . ,LX(αr). Then
each LX(αi) = OX(Di) has a section σi with divisor Di; this section is unique up
to scalar multiplication.

Because G̃ is semisimple and simply connected, each line bundle LX(λ) has a
unique G̃ × G̃-linearization. (See, for example, the collective volume [20]: since
k[G̃] is factorial (Prop. 4.6, p. 74), existence follows from the Remark on p. 67, and
uniqueness from Prop. 2.3, p. 81.) Thus, each space H0(X,LX(λ)) is a G̃ × G̃-
module, which we denote by H0(X, λ). Similarly, we denote H0(Y,LY (λ, µ)) by
H0(Y, λ, µ). This G̃× G̃-module is isomorphic to H0(G/B, λ)�H0(G/B, µ).

Observe that the section σi of LX(αi) is G̃ × G̃-invariant. This is the starting
point for an analysis of the G̃ × G̃-module H0(X, λ) for arbitrary λ, see [27, §2];
the results will be generalized to large Schubert varieties in Section 3. Here we will
need the following

Lemma 1. Let λ be a dominant weight. The line bundle LX(λ) has a global section
τλ, eigenvector of B̃ × B̃ of weight (−w0λ, λ). This section is unique up to scalar,
and its divisor is

r∑
i=1

〈λ, α∨i 〉X(w0si).

As a consequence, LX(λ) is generated by its global sections. Moreover, if λ is regular
then LX(λ) is ample.

Proof. By [10, §4], the line bundle on X associated with the divisor X(w0si) is
LX(ωi). Let τi be the canonical section of this line bundle; then τi is an eigenvector
of B̃× B̃, because its divisor X(w0si) is B×B-stable. The closure in G̃ of B̃w0siB̃

is the divisor of a regular function on G̃, eigenvector of B̃×B̃ of weight (−w0ωi, ωi),
and unique up to scalar multiplication. Thus, the weight of τi is (−w0ωi, ωi). As the
LX(ωi) generate the Picard group of X, the existence of τλ and the formula for its
divisor follow immediately. Finally, uniqueness of τλ up to scalar is a consequence
of the fact that B ×B has a dense orbit in X. This proves the first assertion.

The second one follows immediately. Since τλ does not vanish identically on Y ,
the G̃× G̃-translates of τλ generate LX(λ).

If, moreover, λ is regular, then LX(λ) is ample by [27, §2].
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2. Compatible Frobenius splitting and applications

In the beginning of this section, we assume that k has characteristic p > 0. For
a scheme X over k, we denote by F : X → X the absolute Frobenius morphism.
Recall that X is Frobenius split if the map F : OX → F∗OX is split, that is, if
there exists σ ∈ HomOX (F∗OX ,OX) such that σ ◦F is the identity. Let Y ⊆ X be
a closed subscheme with ideal sheaf IY ; then a splitting σ is compatible with Y if
σ(F∗IY ) is contained in IY .

By [27, §3], the canonical compactification X is Frobenius split compatibly with
all G×G-orbit closures. We will need the following refinement of this result.

Theorem 2. X is Frobenius split compatibly with all G×G-orbit closures and all
subvarieties X(w) and (w0, w0)X(w), for w ∈W .

Proof. Let St = H0(G/B, (p − 1)ρ) be the Steinberg module for G̃; it is a simple,
self-dual G̃-module [14, II.2.5, II.3.18]. On the other hand, the line bundle LX((p−
1)ρ) is G̃×G̃-linearized by construction of X, and the G̃×G̃-module H0(X, (p−1)ρ)
contains an eigenvector of B̃ × B̃ of weight (p − 1)(ρ, ρ), unique up to scalar, by
Lemma 1. Further, the image of this eigenvector under restriction to Y is non-zero,
since no X(w0si) contains Y . Using Frobenius reciprocity [14, I.3.4] and self-duality
of St, we obtain a G̃× G̃-homomorphism

f : St� St→ H0(X, (p− 1)ρ)

such that the composition

resY ◦ f : St� St→ H0(Y, (p− 1)(ρ, ρ))

is non-zero. Since the G̃× G̃-module H0(Y, (p− 1)(ρ, ρ)) is isomorphic to St� St,
hence simple, it follows that resY ◦ f is an isomorphism.

We thus obtain a G̃× G̃-homomorphism

f2 : (St� St)⊗2 → H0(X, 2(p− 1)ρ),

x1 � y1 ⊗ x2 � y2 7→ f(x1 � y1)f(x2 � y2).

Moreover, the composition

resY ◦ f2 : (St� St)⊗2 → H0(Y, 2(p− 1)(ρ, ρ))

is surjective, because the product map

H0(Y, (p− 1)(ρ, ρ))⊗2 → H0(Y, 2(p− 1)(ρ, ρ))

is [14, II.14.20]. Now, by [21, 2.1,2.3], there is a natural G̃× G̃-isomorphism

HomOY (F∗OY ,OY )
∼=−→ H0(Y, 2(p− 1)(ρ, ρ))

and there is a unique G̃× G̃-homomorphism (up to a constant)

ϕ : (St� St)⊗2 → HomOY (F∗OY ,OY ).

Further, for a and b in St � St, the map ϕ(a ⊗ b) is a splitting of Y (up to a
constant) if and only if 〈a, b〉 6= 0 where 〈 , 〉 is the G̃× G̃-invariant bilinear form
on St� St. Finally, if a = sp−1 and b = tp−1 for sections s, t of LY (ρ, ρ), then the
zero subschemes Z(s), Z(t) in Y are compatibly ϕ(a⊗ b)-split.

Because resY ◦ f2 is a surjective G̃× G̃-homomorphism, we can identify it with
ϕ. Let v+ (resp. v−) be a highest (resp. lowest) weight vector in H0(G/B, ρ). Set
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s := v+ � v+, t := v− � v−, a := sp−1 and b := tp−1. Then a, b are in St� St and
they satisfy 〈a, b〉 6= 0. Thus, resY ◦ f2(a ⊗ b) splits Y compatibly with Z(s) and
Z(t).

Set τ := ϕ(a⊗ b) and consider

σ := τ
r∏
i=1

σp−1
i ,

a global section of LX((p−1)(2ρ+
∑r
i=1 αi)). Recall from [27, §3] that the dualizing

sheaf of X is

ωX = LX(−2ρ−
r∑
i=1

αi).

Thus, σ ∈ H0(X, ω1−p
X ) ∼= HomOX(F∗OX,OX). By [27, Th. 3.1], σ splits X com-

patibly with D1, . . . , Dr.
Set τ+ = f(vp−1

+ � vp−1
+ ) and τ− = f(vp−1

− � vp−1
− ). Then τ+ and τ− are in

H0(X, (p− 1)ρ), and τ+ (resp. τ−) is an eigenvector of B̃ × B̃ (resp. B̃− × B̃−) of
weight (p− 1)(ρ, ρ) (resp. −(p− 1)(ρ, ρ)). By Lemma 1, we have

div(τ±) = (p− 1)X±

where X+ is the sum of the classes of the X(w0si) over all simple reflections si, and
X− = (w0, w0)X+. Thus, σ splits X compatibly with X+ and X−. This implies
the theorem, as in the proof of [25, Th. 3.5(i)]. Namely, one uses [25, Lemma 1.11]
and the fact that each X(w) is obtained from X+ by iterating the process of taking
irreducible components and intersections.

Corollary 3. Let char(k) be arbitrary.
(i) For any dominant weight λ and for any intersection X of large Schubert

varieties and of boundary divisors, the restriction map

resX : H0(X, λ)→ H0(X,λ)

is surjective. Further, Hi(X,λ) = 0 for i ≥ 1.
(ii) Any intersection of large Schubert varieties and of boundary divisors is re-

duced.

Proof. Let us prove (i). Note first that, by Lemma 1, X+ is ample (the associated
line bundle is LX(ρ)) and LX(λ) is generated by global sections. Therefore, (i) is
a consequence of [26, Proposition 1.13(ii)] when char(k) = p > 0. Moreover, since
G, B are defined over Z, it follows from the construction of X ([27]) that X, the
boundary divisors Di and the large Schubert varieties X(w) are all defined and
flat over some open subset of Spec Z (in fact, they are defined over Z by [10]).
Therefore, by the semicontinuity theorem, (i) holds in characteristic zero as well.

Moreover, by the proof of [25, Th. 3], (ii) follows (in arbitrary characteristic)
from Theorem 2.

For 1 ≤ i ≤ r, multiplication by σi (a section of LX(αi) with divisor Di) defines
an exact sequence

0→ OX(−Di)→ OX → ODi → 0.
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Because Y is the transversal intersection of D1, . . . , Dr, the image of the map

(σ1, . . . , σr) :
r⊕
i=1

OX(−Di)→ OX

is the ideal sheaf IY .

Corollary 4. Again, let char(k) be arbitrary.
(i) The ideal sheaf of the set-theoretic intersection Z(w) = X(w)∩Y in X(w) is

generated by the image of (σ1, . . . , σr).
(ii) σ1, . . . , σr form a regular sequence in X(w).
(iii) X(w) is normal.

Proof. By Corollary 3, the scheme-theoretic intersection X(w) ∩ Y is reduced; this
is equivalent to (i).

For (ii), we have to check that the image in OX(w)/(σ1, . . . , σj−1) of σj is not a
zero divisor, for each j. But the scheme-theoretic intersection

X(w)<j := X(w) ∩
j−1⋂
i=1

Di

is reduced. Further, by [4, Th. 2.1], each irreducible component of X(w)<j has
codimension j − 1 in X(w), and is not contained in Dj. Thus, the restriction of σj
to X(w)<j does not vanish identically on any such component. It follows that σj
is not a zero divisor in OX(w)<j = OX(w)/(σ1, . . . , σj−1).

For (iii), observe that X(w) ∩ G is smooth in codimension one, as the preim-
age in G of a Schubert variety in G/B (this goes back to Chevalley [7, Cor., p.
10].) Further, the intersection X(w) ∩ Di is reduced for 1 ≤ i ≤ r, so that each
irreducible component of this intersection contains smooth points of X(w). Thus,
X(w) is smooth in codimension one (this also follows from [4, Cor. 2.1]). By Serre’s
criterion, it is enough to prove that X(w) has depth at least two.

Because B ×B acts on X(w) with finitely many orbits and a unique fixed point
y (the base point of Y = G/B × G/B), it suffices to prove that X(w) has depth
at least two at y. This is clear if r ≥ 2, because local equations of D1, . . . , Dr at
y form a regular sequence in the local ring OX(w),y. On the other hand, if r = 1,
then each X(w) is smooth. We have indeed G̃ = SL(2), G = PGL(2), and X is
the projectivization of the space of 2 × 2 matrices where G acts by left and right
multiplication. So X(w) is either X or the projectivization of the subspace of upper
triangular matrices.

3. Line bundles on large Schubert varieties

In this section, we describe the Picard group of large Schubert varieties, and the
spaces of global sections of line bundles on these varieties.

Theorem 5. For any w ∈W , the restriction map

resX(w) : Pic X→ Pic X(w)

is bijective. Further, the line bundle LX(w)(λ) is generated by its global sections
(resp. ample) if and only if λ is dominant (resp. dominant regular).
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Remarks. 1) We will see in Corollary 9 that LX(w)(λ) admits nontrivial global sec-
tions if and only if λ is in the monoid generated by all simple roots and fundamental
weights.

2) It is proved in [27, §2] that LX(2λ) is very ample for any regular dominant
weight λ. In fact, one can check that LX(λ) is already very ample, using Corollary
3.

Proof. We will use the duality between line bundles and curves: each closed curve
C in X(w) defines an additive map Pic X(w)→ Z, L 7→ (L ·C) where (L ·C) is the
degree of the restriction of L to C. In fact, (L ·C) only depends on the classes of L
and C up to rational equivalence. Further, C is rationally equivalent to a positive
integral combination of closed irreducible B ×B-stable curves [13].

Examples of such curves are the “Schubert curves” C(αi) := S(si) × S(1) and
C′(αi) := S(1)× S(si) in G/B ×G/B. Note that

(LX(w)(λ) · C(αi)) = (LX(w)(λ) · C′(−w0αi)) = 〈λ, α∨i 〉

for all λ ∈ X̃ . We first show the following

Lemma 6. The closed irreducible B × B-stable curves in X are the C(αi) and
C ′(αi) for 1 ≤ i ≤ r. They are contained in B. Further, each C(αi) is rationally
equivalent in B to C′(−w0αi).

Proof. The first assertion follows from the description of all B×B-orbits in X given
in [4, 2.1]. And as B ∩Y contains both S(w0)×S(1) and S(1)×S(w0), it contains
the C(αi) and C′(αi).

For the latter assertion, we begin by the case where G = PGL(2). Then we saw
that X = P3 and B = P2. Further, Y is a smooth quadric in P3, and both C(α)
and C′(−w0α) are embedded lines. Thus, they are rationally equivalent in P2.

The general case reduces to the previous one, as follows. Set Xi :=
⋂
j 6=iDj , then

Xi is the closure of a unique G×G-orbit X0
i in X. Let Pi be the parabolic subgroup

generated by B and si; let Qi be the opposite parabolic subgroup containing B−,
and let Li be their common Levi subgroup. Then the G × G-variety Xi fibers
equivariantly over G/Pi × G/Qi, with fiber the canonical compactification of the
adjoint group Li/Z(Li) (this follows e.g. from [10, Th. 3.16]). This group is
isomorphic to PGL(2). Set Pj := w0Qiw0, the parabolic subgroup generated by B
and w0siw0. Now Xi fibers equivariantly over G/Pi ×G/Pj and the fiber over the
base point is a closed B×B-stable subvariety Fi ofXi, isomorphic to P3. Restricting
this fibration to Y ⊂ Xi, we obtain the canonical map G/B×G/B → G/Pi×G/Pj .
Thus, Fi contains both C(αi) = Pi/B × B/B and C′(−w0αi) = B/B × Pj/B.
Further, B ×B has a unique closed orbit Oi in X0

i ; and Oi is contained in Fi ∩B
(because B meets all G×G-orbits). Thus, the closure of Oi in Xi is isomorphic to
P2, and contains both C(αi) and C′(−w0αi) as embedded lines.

We return to the proof of Theorem 5. For injectivity, let λ be a weight such that
the restriction of LX(λ) to X(w) is trivial. Then the restriction of LX(λ) to each
C(αi) is trivial. It follows that 〈λ, α∨i 〉 = 0 for 1 ≤ i ≤ r, and that λ = 0.

For surjectivity, we first prove that the abelian group Pic X(w) is free of finite
rank. For this, we identify Pic X(w) to the group of all Cartier divisors on X(w) up
to rational equivalence (this holds because X(w) is normal). Let y be the B × B-
fixed point of Y . Let Xy be the set of all x ∈ X such that the orbit closure (T × T )x
contains y. Then Xy is an open affine T × T -stable subset of X, containing y as
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its unique closed T × T -orbit (it is the image under (1, w0) of the affine chart V
defined in [27, §2]). Because y ∈ X(w), the intersection X(w)y := X(w) ∩Xy is
a non-empty open affine T × T -stable subset of X(w), containing y as its unique
closed T ×T -orbit. By the equivariant Nakayama lemma [1, §6], it follows that any
T×T -linearizable line bundle over X(w)y is trivial. But since X(w)y is normal, any
line bundle over X(w)y is T × T -linearizable [20, p. 67]. Thus, the Picard group
of X(w)y is trivial. On the other hand, any regular invertible function on X(w)y
is constant (for it is an eigenvector of T × T by [20, Prop. 1.3 (ii), p. 79], and all
weights of non-constant regular functions on X(w)y are contained in an open half
space). Therefore, any Cartier divisor on X(w) is rationally equivalent to a unique
Cartier divisor with support in the complement X(w) \X(w)y . Now the abelian
group of Weil divisors with support in X(w) \X(w)y is free of finite rank.

We now prove that any Cartier divisorD on X(w) which is numerically equivalent
to zero (that is, (D ·C) = 0 for each closed curve C in X(w)) is rationally equivalent
to zero. Indeed, by [12, 19.3.3], there exists a positive integer m such that mD is
algebraically equivalent to zero. But algebraic and rational equivalence coincide for
Cartier divisors on X(w), by freeness of Pic X(w) and [12, 19.1.2]. Thus, the class
of mD in Pic X(w) is zero, and we conclude by freeness of Pic X(w) again.

For a line bundle L on X(w), define a weight λ by

λ := (L · C(α1))ω1 + · · ·+ (L · C(αr))ωr,

so that (L · C(αi)) = (LX(λ) · C(αi)) for 1 ≤ i ≤ r. By Lemma 6, it follows that
(L · C) = (LX(λ) · C) for all closed curves C in X(w). By the previous step, L is
isomorphic to resX(w)LX(λ). This proves that resX(w) is bijective.

Finally, for the two remaining assertions of Theorem 5, the sufficiency was es-
tablished in Lemma 1. Conversely, if L = LX(λ) is a line bundle on X such that
resX(w)(L) is generated by its global sections (resp. ample), then (L ·C) ≥ 0 (resp.
> 0) for any closed curve C in X(w). Applying this to the curves C(αi), one obtains
that λ is dominant (resp. dominant regular).

For any weight λ, the space

H0(X(w), λ) := H0(X(w),LX(w)(λ))

is a finite-dimensional B̃ × B̃-module. Its B̃ × B̃-submodules

FnH
0(X(w), λ) := H0(X(w),LX(λ)⊗ InZ(w))

(where n ∈ N) form a decreasing filtration, which we call the canonical filtration.
Since

⋂
n≥0 FnH

0(X(w), λ) = 0 and since H0(X(w), λ) is finite dimensional, this
filtration is finite, that is, there exists an integer n0(λ) such that FnH0(X(w), λ) = 0
for n > n0(λ).

Let n = (n1, . . . , nr) ∈ Nr and let |n| = n1 + · · · + nr. Then multiplication by
the section σn1

1 · · ·σnrr defines a map

σn : H0(X(w), λ − n1α1 − · · · − nrαr)→ H0(X(w), λ).

Because each σi is G̃ × G̃-invariant and nonidentically zero on X(w), this map is
injective and B̃ × B̃-equivariant. Let FnH

0(X(w), λ) be the image of σn; it is a
B̃ × B̃-submodule of FnH0(X(w), λ), where n = |n|.
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Theorem 7. With notation as above, we have

FnH
0(X(w), λ) =

∑
n∈Nr
|n|=n

FnH
0(X(w), λ)

Further, the n-th layer of the associated graded module satisfies

grnH
0(X(w), λ) =

⊕
(n1,... ,nr)

H0(Z(w), λ− n1α1 − · · · − nrαr),

the sum being taken over all (n1, . . . , nr) ∈ Nr such that n1 + · · ·+nr = n and that
λ− n1α1 − · · · − nrαr is dominant.

In particular,

grH0(X(w), λ) =
⊕
µ∈X̃+

µ≤λ

H0(Z(w), µ).

Proof. Set I = IZ(w). From the exact sequence of sheaves on X(w),

0→ In+1 ⊗ LX(w)(λ)→ In ⊗ LX(w)(λ)→ In/In+1 ⊗ LX(w)(λ)→ 0,

we see that grnH0(X(w), λ) injects into H0(Z(w), In/In+1⊗LX(w)(λ)). The latter
is equal to ⊕

n1+···+nr=n

H0(Z(w), λ − n1α1 − · · · − nrαr).

We have indeed

In/In+1 =
⊕

n1+···+nr=n

σn1
1 · · ·σnrr LZ(w)(−n1α1 − · · · − nrαr)

because I is generated by the regular sequence (σ1, . . . , σr) (Corollary 4). We now
need the following

Lemma 8. For a weight µ, the following conditions are equivalent:
(i) µ is dominant.
(ii) H0(Z(w), µ) is nonzero.

Proof. (i)⇒(ii). If µ is dominant, then the restriction to Y of LX(µ) is generated
by its global sections.

(ii)⇒(i). Recall that

Z(w) =
⋃
x∈W

`(wx)=`(w)+`(x)

S(wx) × S(xw0),

and that the restriction of LX(µ) to Y is equal to LY (µ,−w0µ). Thus, there exists
x ∈ W such that H0(S(wx), µ) and H0(S(xw0),−w0µ) are both nonzero. But
H0(S(wx), µ) 6= 0 implies that 〈µ, α̌〉 ≥ 0 for each α ∈ ∆ such that wxα ∈ Φ−; this
follows from [24, Cor. 2.3]; see also [8]. Similarly, H0(S(xw0),−w0µ) 6= 0 implies
that 〈−w0µ, β̌〉 ≥ 0 for each β ∈ ∆ such that xw0β ∈ Φ−. Since −w0 permutes
the simple roots, the latter is equivalent to 〈µ, α̌〉 ≥ 0 for each α ∈ ∆ such that
xα ∈ Φ+. Now, for each α ∈ ∆, we have either xα ∈ Φ+ or wxα ∈ Φ−, because
`(wx) = `(w) + `(x).
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Returning to the proof of Theorem 7, let µ = λ − n1α1 − · · · − nrαr such that
the space H0(Z(w), µ) is nonzero. Then µ is dominant by Lemma 8. By Corollary
3, the restriction

H0(X(w), µ)→ H0(Z(w), µ)

is surjective; therefore, the restriction

FnH
0(X(w), λ)→ H0(Z(w), λ − n1α1 − · · · − nrαr)

is surjective. It follows that, first,

grnH
0(X(w), λ) ∼=

⊕
(n1,... ,nr)

H0(Z(w), λ− n1α1 − · · · − nrαr),

where the sum is taken over all (n1, . . . , nr) ∈ Nr such that n1 + · · ·+ nr = n and
that λ− n1α1 − · · · − nrαr is dominant, and, second, that

FnH
0(X(w), λ) =

∑
n∈Nr
|n|=n

FnH
0(X(w), λ) + Fn+1H

0(X(w), λ).

Let t ≥ 1. Replacing in the above formula n by n + 1, . . . , n + t, and using the
fact that Fn′H

0(X(w), λ) ⊆ FnH
0(X(w), λ) if n′ is greater than n for the product

order on Nr, one obtains that

FnH
0(X(w), λ) =

∑
n∈Nr
|n|=n

FnH
0(X(w), λ) + Fn+tH

0(X(w), λ)

for all t ≥ 1. Since Fn+tH
0(X(w), λ) = 0 for t� 0, this implies our statements.

In particular, one obtains the following

Corollary 9. LX(w)(λ) admits a nonzero global section if and only if λ belongs to
the monoid generated by ∆ and X̃+.

Consider now the space

R(w) :=
⊕
λ∈X̃

H0(X(w), λ).

Then R(w) is a k-algebra, with a grading by X̃ . By Theorem 5, R(w) can be seen
as the multihomogeneous coordinate ring of X(w). Observe that σ1, . . . , σr are
homogeneous elements of R(w) of degrees α1, . . . , αr.

We define similarly,

A(w) :=
⊕
µ

H0(Z(w), µ)

(sum over all weights µ, or, equivalently, over all dominant weights by Lemma 8).
Then A(w) is the multihomogeneous coordinate ring over Z(w), a union of Schubert
varieties in G/B ×G/B.

Corollary 10. σ1, . . . , σr form a regular sequence in R(w), and the quotient
R(w)/(σ1, . . . , σr) is isomorphic to A(w). As a consequence, R(w) is generated as
a k-algebra by σ1, . . . , σr together with the subspaces H0(X(w), ωi), for 1 ≤ i ≤ r.
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Proof. The canonical filtrations of the H0(X(w), λ) fit together into a filtration
(FnR(w)) of R(w). Theorem 7 implies that

FnR(w) = (σ1, . . . , σr)n

(the n-th power of the ideal generated by σ1, . . . , σr) and that

FnR(w)/Fn+1R(w) =
⊕

n1+...+nr=n
µ∈X̃+

σn1
1 · · ·σnrr H0(Z(w), µ).

Thus, the associated graded ring is isomorphic to the polynomial ring A(w)[t1,
. . . , tr]. By [6, 1.1.15], σ1, . . . , σr form a regular sequence in R(w). Further, by
[14, II.14.15, II.14.21], the graded ring A(w) is a quotient of

⊕
µH

0(Y, µ), and
the latter ring is generated by its subspaces H0(Y, ωi). So R(w) is generated by
σ1, . . . , σr and the H0(X(w), ωi) (which lift the H0(Z(w), ωi)).

We will show in Section 7 that the rings R(w) and A(w) are Cohen-Macaulay.

4. A filtration of k[B̃]

In this section, we construct geometrically a filtration à la van der Kallen of the
B̃×B̃-module k[B̃] (the ring of regular functions on B̃); see [28, Th. 1.13]. For this,
we first obtain a coarser filtration whose layers are spaces of global sections of line
bundles over B∩Y = Z. In particular, k[B̃] admits a Schubert filtration as defined
in [24, 2.8] (see also [29, 6.3.4]).

For µ ∈ X̃+, we set

M(µ) := H0(Z, µ).

Then M(µ) is a finite dimensional B̃ × B̃-module. By Theorem 7, each B̃ × B̃-
module H0(B, λ) has a filtration with layers M(µ) where µ ∈ X̃+ and µ ≤ λ.

We will need more notation on B̃-modules, taken from [28]. Let ν be a weight;
then there exist a unique w = wmin ∈ W and a unique dominant weight µ such
that ν = wµ and that the length of w is minimal. Set

P (ν) := H0(S(wmin), µ)

and

Q(ν) := H0(S(wmin), I∂S(wmin) ⊗ LG/B(µ)),

where ∂S(w) denotes the boundary of S(w), that is, the complement of its open
B-orbit BwB/B. Then both P (ν) and Q(ν) are finite dimensional B̃-modules.

Theorem 11. (i) The B̃ × B̃-module k[B̃] has a canonical increasing filtration by
finite dimensional submodules, with associated graded module⊕

µ∈X̃+

M(µ).

(ii) For any µ ∈ X̃+, the B̃ × B̃-module M(µ) has a filtration with associated
graded module ⊕

ν∈Wµ

P (ν)�Q(−ν).
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Proof. Set Γ = X̃/X . For γ ∈ Γ, let k[B̃]γ be the sum of T̃ -weight spaces in
k[B̃] (for the right T̃ -action) over all weights in the coset γ. Then each k[B̃]γ is a
B̃ × B̃-submodule of k[B̃], and we have

k[B̃] =
⊕
γ∈Γ

k[B̃]γ .

Further, as a k[B]-module, k[B̃]γ is freely generated by any B̃-eigenvector.
Choose γ ∈ Γ. It is known (see [3, Chap.VI, Ex. §2.5]) that the set of dominant

weights belonging to the coset γ admits a unique minimal element; denote it by λ.
By Theorem 7, H0(B, λ) is isomorphic to M(λ). Thus, H0(B, λ) contains a right
B̃-eigenvector vλ of weight λ, and one deduces that

H0(B,LB(λ)) ∼= k[B] vλ = k[B̃]γ .

Now, let us filter k[B̃]γ by the order of pole along the boundary of B. Specifically,
consider the section σ := σ1 · · ·σr of LB(β), where β = α1 + · · · + αr. Then σ is
invariant by B̃× B̃, and its zero set is the boundary B−B. Therefore, the B̃× B̃-
module k[B̃]γ = H0(B,LB(λ)) is the increasing union of its finite dimensional
submodules

σ−nH0(B, λ+ nβ)

for n ≥ 0. The associated graded module of this filtration satisfies

grnk[B̃]γ ∼= H0(B, λ+ nβ)/σH0(B, λ+ (n− 1)β).

Let R be the multihomogeneous coordinate ring on B, then σ ∈ Rβ and

grnk[B̃]γ ∼= Rλ+nβ/σRλ+(n−1)β = (R/σR)λ+nβ .

Consider the decreasing filtration of R/σR, image of the filtration of R by the ideals
(σ1, . . . , σr)mR. Let

Nr(0) := {(m1, . . . ,mr) ∈ Nr | m1 · · ·mr = 0}.

Then, as σ1, . . . , σr form a homogeneous regular sequence in R, the associated
graded ring of R/σR satisfies

grmR/σR =
⊕

(m1,...,mr)∈Nr(0)
m1+···+mr=m

σm1
1 · · ·σmrr A

where A is the multihomogeneous coordinate ring of Z. Taking homogeneous com-
ponents of degree λ+nβ, we see that each grnk[B̃]γ has a finite decreasing filtration
with associated graded ⊕

(m1,... ,mr)∈Nr(0)

λ+nβ−m1α1−mrαr∈X̃+

M(λ+ nβ −m1α1 −mrαr).

Reordering the indices, we obtain a canonical increasing filtration of k[B̃] satisfying
the requirements of (i).

For (ii), recall that the irreducible components of Z are exactly the S(w) ×
S(ww0) for w ∈ W . We first construct an increasing filtration of Z by partial
unions of these components, as follows. Choose an indexing W = {w1, . . . , wM}
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which is compatible with the Bruhat-Chevalley order, that is, i ≤ j if wi ≤ wj . In
particular, w1 = 1 and wM = w0. Set

Zi := S(wi)× S(wiw0), Z≥i :=
⋃
j≥i

Zj, Z>i =
⋃
j>i

Zj .

Then we have the following

Lemma 12. Zi ∩ Z>i = S(wi)× ∂S(wiw0).

Proof. Let x, y in W such that S(x) × S(yw0) ⊆ Zi, that is, x ≤ wi ≤ y. If,
moreover, S(x) × S(yw0) ⊆ Z>i, then wj ≤ y for some j > i. It follows that
y 6= wi, so that Zi ∩ Z>i ⊆ S(wi)× ∂S(wiw0).

For the opposite inclusion, let y ∈ W such that S(yw0) ⊆ ∂S(wiw0), that is,
y > wi. Then y = wj for some j > i. Thus, S(wi) × S(yw0) ⊆ S(y) × S(yw0) is
contained in Zi ∩ Z>i.

Returning to the proof of Theorem 11, let Ii be the ideal sheaf of Z>i in Z≥i.
Then Ii identifies to the ideal sheaf of Zi ∩ Z>i in Zi. By definition, we have an
exact sequence of sheaves of OZ-modules: 0→ Ii → OZ≥i → OZ>i → 0. Thus, the
sequence

0→ Ii ⊗ LZ(µ)→ LZ≥i(µ)→ LZ>i(µ)→ 0

is exact. Further, H1(Z≥i,LZ(µ)) = 0 as Z≥i is a union of Schubert varieties in Y ,
and µ is dominant. So we obtain an exact sequence

0→ H0(Z≥i, Ii ⊗ LZ(µ))→ H0(Z≥i, µ)→ H0(Z>i, µ)→ 0.

Now Lemma 12 implies that

H0(Z≥i, Ii ⊗ LZ(µ)) = H0(Zi, Ii ⊗ LZ(µ))

= H0(S(wi), µ)�H0(S(wiw0), I∂S(wiw0) ⊗ LG/B(−w0µ)).

By induction on i, we thus obtain a filtration of M(µ) with associated graded
module ⊕

x∈W
H0(S(x), µ) �H0(S(w0x), I∂S(w0x) ⊗ LG/B(−w0µ)).

Further, we have H0(S(x), µ) = P (xµ) by [29, Lemma 2.3.2]. And

H0(S(x), I∂S(x) ⊗ LG/B(µ)) = Q(xµ)

if x is the element of minimal length in its coset xWµ (where Wµ is the isotropy
group of µ in W ). Otherwise, H0(S(x), I∂S(x) ⊗LG/B(µ)) = 0; indeed, the restric-
tion map H0(S(x), µ)→ H0(S(xmin), µ) is an isomorphism by [loc.cit.].

It follows that the B̃-module H0(S(xw0), I∂S(xw0) ⊗ LG/B(−w0µ)) equals
Q(−xµ) if x has maximal length in its coset xWµ, and equals 0 otherwise. Thus,
the B̃× B̃-module M(µ) has a filtration with associated graded module

⊕
P (xµ)�

Q(−xµ), sum over all x ∈W such that x has maximal length in its Wµ-coset. This
implies (ii).

Remark. A similar argument shows that the G̃× G̃-module k[G̃] has an increasing
filtration by finite dimensional submodules with associated graded module⊕

µ∈X̃+

H0(G/B, µ)�H0(G/B,−w0µ).
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This gives a geometric proof of a result of Donkin and Koppinen [14, II.4.20].

For any dominant weight µ, we denote by cµ = chM(µ) the character of the
finite dimensional T̃ × T̃ -module M(µ). Then cµ is a regular function on T̃ × T̃ ,
and we have by Theorem 7, for t, u ∈ T̃ ,

cµ(t, u) =
∑
ν∈Wµ

chP (ν)(t) chQ(−ν)(u).

Further, chP (ν) is given by the Demazure character formula (see, for example, [14,
II.14.18]), and chQ(ν) is given by a closely related formula [22, Th. 2.1].

By Corollary 3, we have Hi(Z, µ) = 0 for i ≥ 1; thus, we can extend the map
µ 7→ cµ to the group X̃ by setting

cλ = χ(Z, λ) =
∑
i≥0

(−1)ich Hi(Z, λ)

for arbitrary λ ∈ X̃ .
We now establish two symmetry properties of the resulting map λ 7→ cλ; the

second symmetry will be an essential ingredient of the proof that B is Gorenstein.
We will determine the value of cλ at (t, t−1) and, in particular, the dimension of
M(λ) in Corollary 19 below.

Theorem 13. We have c−w0λ(t, u) = cλ(u, t) and

c−λ(t−1, u−1) = (−1)Nρ(t)ρ(u)cλ−ρ(t, u)

for all λ ∈ X̃ and t, u ∈ T̃ .

Proof. With notation as in Lemma 12, we have for any λ ∈ X̃ and any index i,

χ(Z≥i, λ) = χ(Z>i, λ) + χ(Z≥i, Ii ⊗ LZ(λ))

= χ(Z>i, λ) + χ(S(wi), λ)χ(S(wiw0), I∂S(wiw0) ⊗ LG/B(−w0λ)),

by Lemma 12 and the argument thereafter. Since Z = Z≥1, it follows that

χ(Z, λ) =
∑
x∈W

χ(S(x), λ)χ(S(xw0), I∂S(xw0) ⊗ LG/B(−w0λ))(∗)

for all λ ∈ X̃ . Thus, one has

c−λ(t−1, u−1) =
∑
x∈W

χ(S(x),−λ)(t−1) χ(S(xw0), I∂S(xw0) ⊗ LG/B(w0λ))(u−1).

Let x ∈ W . Recall that, by [25, Prop. 4 and Th. 4], the Schubert variety S(x)
is Cohen-Macaulay. Denote by ωS(x) its dualizing sheaf, a B-linearized sheaf. In
fact, [25, Th. 4] shows more precisely that any standard resolution φ : V (x)→ S(x)
satisfies φ∗ωV (x) = ωS(x). Combining this with the results in [29, A.4], one obtains
an isomorphism of B-linearized sheaves

ωS(x)
∼= I∂S(x) ⊗ LG/B(−ρ)[ρ]
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where [ρ] denotes the shift by the character ρ in the B-linearization. Thus, using
Serre duality on each S(x), one obtains that

(−1)Nρ(t−1)ρ(u−1) c−λ(t−1, u−1)

=
∑
x∈W

χ(S(x), I∂S(x) ⊗ LG/B(−ρ+ λ))(t) χ(S(xw0),−ρ− w0λ)(u)

=
∑
y∈W

χ(S(y),−ρ− w0λ)(u)χ(S(yw0), I∂S(yw0) ⊗ LG/B(−ρ+ λ))(t)

= c−w0λ−ρ(u, t).

On the other hand, set Zi := S(wiw0) × S(wi) and define similarly Z≥i, Z>i.
Then we obtain as in Lemma 12 that Zi ∩ Z>i = ∂S(wiw0)× S(wi). As above, it
follows that

χ(Z, λ) =
∑
x∈W

χ(S(xw0), I∂S(xw0) ⊗ LG/B(λ)) χ(S(x),−w0λ)

for any λ. Thus, χ(Z,−w0λ)(u, t) = χ(Z, λ)(t, u) and the first identity is proved.
In particular, c−w0λ−ρ(u, t) = cλ−ρ(t, u) which completes the proof of the second
identity.

5. Closures of Borel subgroups are Gorenstein

Let R (resp. A) be the multihomogeneous coordinate ring of B (resp. Z = B ∩
Y ) as defined in Section 2. We show that both R and A are Gorenstein; as a
consequence, B and Z are Gorenstein as well.

It will be convenient to set

β := α1 + · · ·+ αr.

Then the dualizing sheaf of X is LX(−2ρ− β) by [27, §3].

Theorem 14. (i) B (resp. Z) is Gorenstein and its dualizing sheaf is isomorphic
to LB(−ρ− β)[ρ, ρ] (resp. LZ(−ρ)[ρ, ρ]) as a B̃ × B̃-linearized sheaf.

(ii) The graded ring R (resp. A) is Gorenstein and its dualizing module is gen-
erated by a homogeneous element of degree ρ + β (resp. ρ), eigenvector of B̃ × B̃
of weight (ρ, ρ).

Proof. We begin by proving that Z is Cohen-Macaulay. For this, we use the nota-
tion introduced in the proof of Theorem 11. We check by decreasing induction on
i that each Z≥i is Cohen-Macaulay. If i = M , then Z≥M = S(w0)× S(1) ∼= G/B,
a nonsingular variety. For arbitrary i, we have an exact sequence

0→ OZ≥i → OZi ⊕OZ>i → OZi∩Z>i → 0.

Further, we know that Zi = S(wi) × S(wiw0) is Cohen-Macaulay; and, by the
induction hypothesis, the same holds for Z>i. On the other hand, Zi∩Z>i = S(wi)×
∂S(wiw0) by Lemma 12. The dualizing sheaf of S(wiw0) is the tensor product of
the ideal sheaf of ∂S(wiw0) with the invertible sheaf LG/B(−ρ). By [6, Proposition
3.3.18], it follows that ∂S(wiw0) is Cohen-Macaulay, of depth `(wiw0) − 1. Thus,
the depth of Zi ∩ Z>i is `(wi) + `(wiw0)− 1 = `(w0)− 1 = dimZ≥i − 1. Together
with the exact sequence above, this implies easily that Z≥i is Cohen-Macaulay; see
[6, Proposition 1.2.9].
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We now prove that the ring A is Cohen-Macaulay. For this, let C = SpecA be
the corresponding affine scheme. Then C is the multicone over Z in the sense of
[16]; we now recall some constructions from that article. Let S denote the sheaf of
graded algebras

S := SymOZ
( r⊕
i=1

LZ(ωi)
)
,

let E = Spec(S) denote the corresponding vector bundle, with projection q : E →
Z. Then

q∗OE = SymOZ
( r⊕
i=1

LZ(ωi)
)

=
⊕
µ∈X̃+

LZ(µ).

In particular, H0(E,OE) = A so that we have a morphism p : E → C. The torus T̃
acts on E and on C (because A is graded by the character group of T̃ ), compatibly
with the action of B̃×B̃. Clearly, p and q are equivariant for the action of B̃×B̃×T̃ .

As the line bundles LZ(ω1), . . . ,LZ(ωr) are generated by their global sections,
p is proper. Further, we have p∗OE = OC , as C is affine and H0(E,OE) =
H0(C,OC). In particular, p is surjective.

Let E0 be the total space of E minus the union of all sub-bundles
⊕

j 6=i LZ(ωj)
for 1 ≤ i ≤ r; let p0 : E0 → C and q0 : E0 → Z be the restrictions of p and q. Then
p0 is an isomorphism onto an open subset C0 of C, and q0 is a principal T̃ -bundle
over Z. As a consequence, the restriction of p to each irreducible component of E
(that is, to each q−1(S(w) × S(ww0)) is birational. Thus, C is equidimensional of
dimension dim(B) = N + r.

We claim that Rip∗OE = 0 for i ≥ 1. Indeed, as C and q are affine, this amounts
to

0 = Hi(E,OE) = Hi(Z, q∗OE) =
⊕
µ∈X̃+

Hi(Z, µ),

which follows from Corollary 3.
Because Z is Cohen-Macaulay, the same holds for E, and we have

ωE = q∗ωZ ⊗ ωE/Z = q∗(ωZ ⊗ LZ(ω1)⊗ · · · ⊗ LZ(ωr)) = q∗(ωZ ⊗ LZ(ρ))

as a B̃ × B̃-linearized sheaf. Both ωE and q∗(ωZ ⊗ LZ(ρ)) have canonical T̃ -
linearizations, since T̃ acts on E and fixes Z pointwise; but

ωE = q∗(ωZ ⊗ LZ(ρ))[−ρ]

as a B̃ × B̃ × T̃ -linearized sheaf, where [χ] denotes the shift of the T̃ -linearization
by the character χ.

We claim that Rip∗ωE = 0 for i ≥ 1, that is, Hi(E,ωE) = 0 for i ≥ 1. Indeed,
we have

H i(E,ωE) = Hi(Z, q∗ωE) =
⊕
µ∈X̃+

Hi(Z, ωZ ⊗ LZ(ρ+ µ))

=
⊕
µ∈X̃+

HN−i(Z,−ρ− µ)∗,
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as Z is equidimensional of dimension N . For µ ∈ X̃+, the line bundle LZ(ρ+ µ) is
ample. Because Z is Cohen-Macaulay, we therefore have

Hj(Z,−n(ρ+ µ)) = 0

for j < N and large n. But Z, being a union of Schubert varieties in Y , is Frobenius
split. Thus, Hj(Z,−ρ− µ) = 0 for j < N by [29, Proposition A.2.1]. This proves
our claim.

We now recall a version of a result of Kempf; see e.g. [15, p. 49-51].

Lemma 15. Let p : X̂ → X be a proper morphism of algebraic schemes. Assume
that X̂ is Cohen-Macaulay, X is equidimensional of the same dimension as X̂,
p∗OX̂ = OX and Rip∗OX̂ = Rip∗ωX̂ = 0 for i ≥ 1. Then X is Cohen-Macaulay
with dualizing sheaf p∗ωX̂ .

Proof. The statement is local in X , so that we may assume that X is a closed
subscheme of a smooth affine scheme S. Denote by ι : X → S the inclusion and set
π := ι ◦ p. Then π∗OX̂ = ι∗OX and Riπ∗OX̂ = 0 for i ≥ 1. Applying the duality
theorem to the proper morphism π : X̂ → S and the sheaves OX̂ and ωS , we obtain

RHom(ι∗OX , ωS) = RHom(Rπ∗OX̂ , ωS) = Rπ∗RHom(OX̂ , π
!ωS)

= Rπ∗π
!ωS = Rπ∗ωX̂ [dimX − dimS] = π∗ωX̂ [dimX − dimS],

that is, ExtiS(ι∗OX , ωS) = 0 for i 6= dimS − dimX , and

ExtdimX−dimS
S (ι∗OX , ωS) = π∗ωX̂ .

This means that X is Cohen-Macaulay with dualizing sheaf p∗ωX̂ .

Lemma 15 implies that the graded ring A is Cohen-Macaulay with dualizing
module

ωA = H0(C, p∗ωE) =
⊕
µ∈X̃+

H0(Z, ωZ ⊗ LZ(µ+ ρ))[−ρ]

=
⊕
µ∈X̃+

HN(Z,−µ− ρ)∗[−ρ].

Further, Hj(Z,−µ − ρ) = 0 for j 6= N . The module ωA is X̃ -graded and each ho-
mogeneous component is a finite-dimensional B̃×B̃-module. Thus, we can consider
the Hilbert series

HωA(t, u, z) :=
∑
λ∈X̃

chωA,λ(t, u) zλ

where t, u are in T̃ , and the zλ are the canonical basis elements of the group algebra
Z[X̃ ]. Now we have

HωA(t, u, z) =
∑
µ∈X̃+

chHN (Z,−µ− ρ)(t−1, u−1) zµ+ρ

= (−1)N
∑
µ∈X̃+

c−µ−ρ(t−1, u−1)zµ+ρ.

Together with Theorem 13, it follows that

HωA(t, u, z) = ρ(t)ρ(u)zρHA(t, u, z).
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Using [6, Cor. 4.3.8.a)], we therefore have

HA(t−1, u−1, z−1) = (−1)dim(A)ρ(t)ρ(u)zρHA(t, u, z).

Now a result of Stanley [6, Cor. 4.3.8.c)] would imply that A is Gorenstein if
A were a domain. This is not the case, but A is the quotient of the domain R
by the ideal generated by the regular sequence (σ1, . . . , σr). It follows that R is
Cohen-Macaulay with Hilbert series

HR(t, u, z) =
HA(t, u, z)∏r
i=1(1 − zαi)

because each σi is the restriction of a G̃ × G̃-invariant section. As a consequence,
we obtain

HR(t−1, u−1, z−1) = (−1)dim(R)ρ(t)ρ(u)zρ+βHR(t, u, z).

Thus, by the result of Stanley quoted above, R is Gorenstein and its dualizing
module is generated by a homogeneous element of degree ρ + β, eigenvector of
B̃× B̃ of weight (ρ, ρ). It follows that A is Gorenstein as well and that its dualizing
module is generated in degree ρ and weight (ρ, ρ).

It remains to prove that B and Z are Gorenstein and to determine their dualizing
sheaves. For this, consider the isomorphism p0 : E0 → C0 where C0 is an open
subset of C, and the principal T̃ -bundle q0 : E0 → Z. Then ωE0 = OE0 [ρ, ρ] as a
B̃ × B̃-linearized sheaf, because the same holds for C. Further, ωE0 = q0∗(ωZ ⊗
LZ(ρ)) so that

ωZ ⊗ LZ(ρ)⊗ q0
∗OE0 = q0

∗OE0 [ρ, ρ].

Taking invariants of T̃ , we obtain

ωZ ⊗ LZ(ρ) = OZ [ρ, ρ],

that is, Z is Gorenstein with dualizing sheaf LZ(−ρ)[ρ, ρ]. The argument for B is
similar.

6. The class of the diagonal for flag varieties

We will construct a degeneration of the diagonal in G/B ×G/B into a union of
Schubert varieties. For this, we recall a special case of a construction of [4, 1.6].

Consider the action of B ×B on B and the associated fiber bundle

p : G×G×B×B B → G/B ×G/B,

a locally trivial fibration with fiber B. The action map

G×G× B → X = (G×G)B : (g, h, x) 7→ (g, h)x

defines a G×G-equivariant map

π : G×G×B×B B → X.

Observe that π factors through the closed embedding

G×G×B×B B → G/B ×G/B ×X : (g, h, x)(B ×B) 7→ (gB, hB, (g, h)x)

followed by the projection G/B × G/B × X → X. Thus, π is proper and its
scheme-theoretic fibers identify to closed subschemes of G/B×G/B via p∗. Further,



116 MICHEL BRION AND PATRICK POLO

the fiber π−1(1) at the identity is the diagonal diag(G/B); and the reduced fiber
π−1(y)red at the base point y of Y = G/B ×G/B is⋃

x∈W
S(x) × S(w0x).

Consider now the closure T of T in X, then T is a T × T -stable subvariety
fixed pointwise by diag(T ). By [27], T is smooth and meets Y transversally at the
points (w,ww0)y for w ∈W . Further, each (w,ww0)y admits a T ×T -stable affine
neighborhood in T , isomorphic to affine r-space where T × T acts linearly with
weights (−w(αi), w(αi)), 1 ≤ i ≤ r. Since the character group of T is the root
lattice, there exists a unique one-parameter subgroup λ of T such that 〈λ, αi〉 = 1
for 1 ≤ i ≤ r. Then the closure of λ in T is a curve γ containing 1 and isomorphic to
projective line, with λ-fixed points z := (1, w0)y and z′ := (w0, 1)y. In particular,
γ \ {z, z′} is contained in T . Further, π−1(γ) is a diag(T )-stable subvariety of
G×G×B×B B and we have a diag(T )-equivariant isomorphism

π−1(γ) ' {(gB, hB, x) ∈ G/B ×G/B × γ | (g−1, h−1)x ∈ B}
identifying π−1(γ)→ γ to the restriction of the projection G/B ×G/B × γ → γ.

Theorem 16. The morphism π : G×G×B×B B → X is flat, with reduced fibers.
Its restriction π−1(γ)→ γ is flat and diag(T )-invariant, with fibers over γ \ {z, z′}
isomorphic to diag(G/B), and with fiber at z equal to⋃

x∈W
S(x)× w0S(w0x).

Proof. By [4, Proposition 1.6], π is equidimensional. Further, G × G ×B×B B is
Cohen-Macaulay, as B is. Because X is smooth, it follows that π is flat (see, for
example, [23, Cor. of Th. 23.1]).

For x ∈ X, the scheme-theoretic fiber π−1(x) identifies to

{(gB, hB) ∈ G/B ×G/B | (g−1, h−1)x ∈ B}.

Set F := {(g, h) ∈ G × G | (g−1, h−1)x ∈ B}. Then F is stable under right
multiplication by B × B, and left multiplication by (G × G)x (the isotropy group
of x in G × G). The quotient of F by the right B × B-action is π−1(x), whereas
the quotient by the left (G × G)x-action is isomorphic to the scheme-theoretic
intersection of B with the orbit (G×G)x. This intersection is reduced by Corollary
3; thus, F and π−1(x) are reduced, too.

The remaining assertions are direct consequences of these facts.

We now deduce from Theorem 16 a formula for the class of the diagonal of the
flag variety in equivariant K-theory.

For a variety X with an action of T , we denote by KT (X) the Grothendieck
group of T -linearized coherent sheaves on X . The character group of T acts on
KT (X) by shifting the linearization; this endows KT (X) with the structure of an
R(T )-module. If the T -action on X extends to an action of the normalizer NG(T ),
then NG(T ) acts on KT (X) by n · [F ] = [n∗F ]. Clearly, this descends to an action
of W on KT (X), compatible with the R(T )-module structure.

We apply this to X = G/B × G/B where T acts diagonally. For a T -stable
subvariety S of G/B ×G/B, the class in KT (G/B × G/B) of the structure sheaf
OS will be denoted by [S]. In particular, we have the classes of Schubert varieties
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and of their translates by W×W ; we also have the class of the diagonal, diag(G/B).
We will express the latter in terms of the former.

This will imply a formula for the class of the diagonal in the Grothendieck group
K(G/B ×G/B) of coherent sheaves on that space, by applying the forgetful map

KT (G/B ×G/B)→ K(G/B ×G/B).

Observe that the action of G × G on K(G/B × G/B) is trivial, because G is
generated by subgroups isomorphic to the additive group. Thus, the forgetful map
is W -invariant.

To simplify our statements, for x ∈ W we set

S−(x) := B−xB/B = w0S(w0x)

and

[S−(x)]0 := [S−(x)] − [∂S−(x)] = w0[S(w0x)] − w0[∂S(w0x)].

Corollary 17. With notation as above, we have in KT (G/B ×G/B),

[diag(G/B)] = [
⋃
x∈W

S(x)× S−(x)]

=
∑
x∈W

[S(x)]× [S−(x)]0 =
∑

x,y∈W,x≤y
(−1)`(y)−`(x)[S(x)] × [S−(y)].

As a consequence, in K(G/B ×G/B) we have

[diag(G/B)] = [
⋃
x∈W

S(x)× S(w0x)]

=
∑
x∈W

[S(x)]× [S(w0x)]0 =
∑

x,y∈W,x≤y
(−1)`(y)−`(x)[S(x)] × [S(w0y)].

Proof. Since γ is a projective line fixed pointwise by diag(T ), then [z] = [1] in
Kdiag(T )(γ). As the map π−1(γ)→ γ is flat and diag(T )-invariant, the fibers π−1(1)
and π−1(z) have the same class in KT (π−1(γ)) and hence in KT (G×G×B×B B).
Thus, the direct images of these fibers under p are equal in KT (G/B×G/B). This
proves the first equality.

For the second one, we use the notation introduced in the proof of Theorem 11.
Set

∆i := S(wi)× S−(wi), ∆≥i :=
⋃
j≥i

∆i, ∆>i :=
⋃
j>i

∆i.

Then ∆≥M = S(w0) × w0S(1), ∆≥1 =
⋃
x∈W S(x) × S−(x), and we obtain as in

Lemma 12 that

∆i ∩∆>i = S(wi)× ∂S−(wi).

As a consequence, we have an exact sequence of sheaves

0→ Ii → O∆≥i → O∆>i → 0

where Ii fits into an exact sequence

0→ Ii → O∆i → OS(wi)×∂S−(wi) → 0.
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It follows that

[∆≥i] = [∆>i] + [Ii] = [∆>i] + [S(wi)× S−(wi)]− [S(wi)× ∂S−(wi)]

= [∆>i] + [S(wi)]× [S−(wi)]0.

By decreasing induction on i, we thus have

∆≥i =
∑
j≥i

[S(wj)]× [S−(wj)]0.

For the third equality, it suffices to prove that

[S(x)]0 =
∑
y≤x

(−1)`(x)−`(y)[S(y)]

in KT (G/B). But the definition of [S(x)]0 implies that [S(x)] =
∑

y∈W, y≤x[S(y)]0.
Further, the Möbius function of the partially ordered set (W,≤) is given by µ(y, x) =
(−1)`(x)−`(y) if y ≤ x and µ(y, x) = 0 otherwise; see [11].

Consider now the Grothendieck groupKT (G/B) of T -linearized coherent sheaves
on G/B. Since G/B is smooth and projective, KT (G/B) is isomorphic to the
Grothendieck group of T -linearized vector bundles, see e.g. [2, 2.6–2.7]; as a conse-
quence, it has the structure of a R(T )-algebra. Further, the R(T )-moduleKT (G/B)
is free, with basis the [S(x)] (x ∈W ); and the R(T )-bilinear map

KT (G/B)×KT (G/B)→ R(T ), (u, v) 7→ χ(G/B, u · v)

is a perfect pairing, where u · v denotes the product in KT (G/B), and χ(G/B,−)
denotes the equivariant Euler characteristic; see [19, 3.39, 4.9].

Corollary 18. The classes

[S−(x)]0 =
∑

y∈W, y≥x
(−1)`(y)−`(x)[S−(y)](x ∈ W )

form the dual basis of the basis of the [S(x)] (x ∈W ).

Proof. Observe that

χ(G/B, u · v) = χ(G/B ×G/B, [diag(G/B)] · (u× v))

=
∑
x∈W

χ(G/B, u · [S(x)]) χ(G/B, v · [S−(x)]0)

where the second equality follows from Corollary 17. In particular, for y ∈ W we
have

χ(G/B, u · [S(y)]) =
∑
x∈W

χ(G/B, u · [S(x)]) χ(G/B, [S(y)] · [S−(x)]0).

As the R(T )-linear forms u 7→ χ(G/B, u·[S(x)]) are linearly independent, we obtain

χ(G/B, [S(y)] · [S−(x)]0) = δx,y.

As another consequence of the determination of the class of the diagonal, we
recover a formula of Mathieu for the character of the G-module H0(G/B, λ+µ) as
a function of the dominant weights λ and µ ([22, Cor. 7.7]). Further, we determine
the dimension of the modules M(λ) introduced in Section 4.
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Corollary 19. For any weights λ and µ, and for any t ∈ T , we have

χ(G/B, λ+ µ)(t) =
∑
x∈W

χ(S(x), λ)(t) χ(S(xw0), I∂S(xw0) ⊗ LG/B(−w0µ))(t−1).

Therefore, χ(G/B, 2λ)(t) = cλ(t, t−1) for all t ∈ T . Further, for λ ∈ X̃+, one has

chM(λ)(t, t−1) = chH0(G/B, 2λ)(t)

and

dimM(λ) =
∏
α∈Φ+

〈2λ+ ρ, α̌〉
〈ρ, α̌〉 .

Proof. Let [L(λ, µ)] denote the class of the G̃ × G̃-linearized line bundle L(λ, µ)
in KT (G/B × G/B). As the restriction of this line bundle to the diagonal is
LG/B(λ+ µ), we have

χ(G/B, λ+ µ) = χ(G/B ×G/B, [diag(G/B)] · [L(λ, µ)]).

By Corollary 17, the latter is equal to∑
w∈W

χ(S(w), λ) w0χ(S(w0w), I∂S(w0w) ⊗ LG/B(µ)).

To complete the proof of the first equality, it suffices to check that

χ(S(w0w), I∂S(w0w) ⊗ LG/B(µ))(w0t) = χ(S(ww0), I∂S(ww0) ⊗ LG/B(−w0µ))(t−1).

For this, using Serre duality as in the proof of Theorem 13, we obtain

χ(S(w0w), I∂S(w0w) ⊗ LG/B(µ))(w0t) = (−1)N−`(w)ρ(t)χ(S(w0w),−ρ− µ)(−w0t).

Further, the Demazure character formula implies that

χ(S(w0w), ν)(−w0t) = χ(S(ww0),−w0ν)(t)

for all weights ν. It follows that

χ(S(w0w), I∂S(w0w) ⊗ LG/B(µ))(w0t) = (−1)N−`(w)ρ(t) χ(S(ww0),−ρ+ w0µ)(t)

= χ(S(ww0), I∂S(ww0) ⊗ LG/B(−w0µ))(−t),
by Serre duality once more.

Now the second equality follows from formula (∗) in the proof of Theorem 13.
For λ ∈ X̃+, the third equality follows from the vanishing of the Hi(Z, λ) ([25, Th.
2]), and the fourth one from Weyl’s dimension formula.

7. Large Schubert varieties are Cohen-Macaulay

In this section, we prove the statement of the title and we give some applications.
We begin by constructing a partial desingularization of X(w), by the total space of
a fibration with fiber B over the usual Schubert variety S(w).

For this, consider the action of B on B by left multiplication, and the associated
fiber bundle G ×B B over G/B. The map G × B → X : (g, x) 7→ gx defines a
birational, G×B-equivariant morphism

ϕ : G×B B → X
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where the action of G × B on G ×B B is defined by (g, b)(g′, x) = (gg′, xb−1). On
the other hand, the projection

ψ : G×B B → G/B

is a locally trivial fibration with fiber B. Observe that (ϕ, ψ), being the composition
of

G×B B ↪→ G×B X ∼= G/B ×X,

is a closed embedding.
Let X′(w) be the preimage of S(w) under ψ; then X′(w) is stable by the subgroup

B×B of G×B. Observe that X′(w) is the closure of BwB×BB ' BwB in G×BB.
As a consequence, ϕ restricts to a B ×B-equivariant morphism

f : X′(w)→ X(w)

which is an isomorphism over BwB. Denote by ∂X(w) the complement of BwB in
X(w), and by ∂X′(w) its preimage under f . Finally, let

g : X′(w)→ S(w)

be the restriction of ψ. Then g is a locally trivial fibration with fiber B, also.

Theorem 20. With notation as above, we have
(i) X′(w) is Cohen-Macaulay and its dualizing sheaf is isomorphic to I∂X′(w) ⊗

f∗LX(w)(−ρ)[ρ, ρ] as a B̃ × B̃-linearized sheaf.
(ii) f∗OX′(w) = OX(w) and Rif∗OX′(w) = 0 = Rif∗ωX′(w) for i ≥ 1.
(iii) X(w) is Cohen-Macaulay and its dualizing sheaf is isomorphic to f∗ωX′(w) =

I∂X(w) ⊗ LX(w)(−ρ)[ρ, ρ] as a B̃ × B̃-linearized sheaf.
(iv) The graded ring R(w) =

⊕
λ∈X̃ H0(X(w), λ) is Cohen-Macaulay.

Proof. Because S(w) and B are Cohen-Macaulay, the same holds for X′(w). And
because f is birational and X(w) is normal, we have f∗OX′(w) = OX(w).

We now show that Rif∗OX′(w) = 0 for i ≥ 1. For this, it suffices, by a lemma
of Kempf (see e.g. [14, II.14.13]), to show that Hi(X′(w), f∗LX(w)(λ)) = 0 for
i ≥ 1 and for any regular dominant weight λ. Consider the line bundle ϕ∗LX(λ)
and its higher direct images Rjψ∗(ϕ∗LX(λ)) for j ≥ 0. Then Rjψ∗(ϕ∗LX(λ)) is
the G̃-linearized sheaf on G/B = G̃/B̃ associated with the B̃-module Hj(B, λ),
and Rjg∗(f∗LX(w)(λ)) is the restriction to S(w) of this G̃-linearized sheaf. As
Hj(B, λ) = 0 for all j ≥ 1 by Corollary 3, we have

Rjg∗(f∗LX(w)(λ)) = 0

for j ≥ 1.
For a B̃-module M , denote by M the corresponding homogeneous vector bundle

on G/B. Then we obtain from the Leray spectral sequence for g that

H i(X′(w), f∗LX(w)(λ)) ∼= Hi(S(w), g∗f∗LX(w)(λ)) ∼= Hi(S(w), H0(B, λ)).

By Theorems 7 and 11, the left B̃-module H0(B, λ) has a filtration with associated
graded a direct sum of P (µ)’s for certain dominant weights µ. Further, we have for
i ≥ 1,

Hi(S(w), P (µ)) = 0,
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as follows from [24, Prop. 1.4.2] or [29, Lemma 3.1.12]. Thus, for each i ≥ 1, we
have Hi(X′(w), f∗LX(w)(λ)) = 0 and, therefore, Rif∗OX′(w) = 0.

We now determine the dualizing sheaf ωX′(w); we begin with the relative dual-
izing sheaf ωg of g : X′(w) → S(w). Observe that the relative dualizing sheaf of
ψ : G ×B B → G/B equals ϕ∗LX(−β − ρ) ⊗ ψ∗LG/B(ρ)[ρ] as a G̃ × B̃-linearized
sheaf, where [ρ] denotes the shift by ρ of the B̃-linearization. Indeed, ωψ is the
(G̃ × B̃)-linearized sheaf on G ×B B associated with the (B̃ × B̃)-linearized sheaf
ωB on B. On the other hand, the sheaf ϕ∗LX(−β − ρ) ⊗ ψ∗LG/B(ρ)[ρ] is G̃ × B̃-
linearized, and the associated B̃ × B̃-linearized sheaf on B is ωB by Theorem 14.
As g : X′(w) → S(w) is the pull-back of ψ under the inclusion S(w) → G/B, it
follows that ωg = f∗LX(w)(−β − ρ)⊗ g∗LS(w)(ρ)[ρ]. In particular, ωg is invertible.
Thus,

ωX′(w) = g∗ωS(w) ⊗ ωg = g∗I∂S(w) ⊗ f∗LX(w)(−β − ρ)[ρ, ρ].

We now claim that

g∗I∂S(w) ⊗ f∗LX(w)(−β) = I∂X′(w).(1)

For this, observe that ∂X′(w) contains the preimage under f of X(w) ∩ (X \G) =
X(w)∩(D1∪· · ·∪Dr), a Cartier divisor. Further, the complement ∂X′(w)∩f−1(G)
of that divisor is equal to g−1(∂S(w))∩f−1(G). As the line bundle associated with
X(w) ∩ (D1 ∪ · · · ∪Dr) is LX(w)(−β), it follows that

I∂X′(w) = g∗I∂S(w) ⊗ f∗IX(w)∩(D1∪···∪Dr) = g∗I∂S(w) ⊗ f∗LX(w)(−β),

which proves the claim. We conclude that

ωX′(w) = I∂X′(w) ⊗ f∗LX(w)(−ρ)[ρ, ρ].(2)

Further, since f∗OX′(w) = OX(w) and f(∂X′(w)) = ∂X(w), then

f∗I∂X′(w) = I∂X(w),(3)

and, therefore,

f∗ωX′(w) = I∂X(w) ⊗ LX(w)(−ρ)[ρ, ρ].(4)

We now prove that Rif∗ωX′(w) = 0 for i ≥ 1. Using Kempf’s lemma, again, it
suffices to prove that

Hi(X′(w), g∗I∂S(w) ⊗ f∗LX(w)(λ − β)) = 0(5)

for i ≥ 1 and for λ ∈ X̃+ big enough (we consider here ωX′(w) ⊗ f∗LX(w)(λ + ρ)).
We argue by induction over `(w), the case where `(w) = 0 being obvious.

In the general case, choose a decomposition w = sx where s is a simple reflection,
and `(x) = `(w)−1. Let Ps be the parabolic subgroup generated by B and s. This
defines the variety

Ŝ(w) := Ps ×B S(x)

together with the map σ : Ŝ(w)→ S(w). Let

X̂(w) = Ŝ(w) ×S(w) X′(w) = Ps ×B X′(x)

with projections τ : X̂(w) → X′(w) and q : X̂(w) → Ŝ(w). Let p : X̂(w) → X(w)
be the composition of f and τ , then p is an isomorphism above BwB. Further, q is
a locally trivial fibration with fiber B. The B × B-action on X′(w) lifts to X̂(w),
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where 1 × B acts trivially on S(w) and Ŝ(w). Let ∂Ŝ(w) denote the complement
of the open B-orbit in Ŝ(w).

We claim that σ∗OŜ(w) = OS(w), σ∗I∂Ŝ(w) = I∂S(w) and Riσ∗I∂Ŝ(w) = 0 for
i ≥ 1. This follows from [25]. In more detail, consider a reduced expression for
x and let φ : V (w) → S(w) denote the standard resolution associated to the
corresponding reduced expression of w = sx. Observe that φ factors through σ,
say φ = σθ. Since φ, θ, σ are proper and birational and S(w), Ŝ(w) are normal,
then φ∗OV (w) = OS(w), θ∗OV (w) = OŜ(w) and σ∗OŜ(w) = OS(w). Let ∂V (w)

denote the complement of the open B-orbit in V (w), then θ(∂V (w)) = ∂Ŝ(w) and
σθ(∂V (w)) = ∂S(w), so that σ∗I∂Ŝ(w) = I∂S(w). Further, by [25, Prop. 2, Th. 4],
one has

ωV (w)
∼= I∂V (w) ⊗ φ∗LS(w)(−ρ), ωS(w)

∼= φ∗ωV (w)
∼= I∂S(w) ⊗ LS(w)(−ρ),

and Riφ∗OV (w) = 0 = Riφ∗ωV (w) for i ≥ 1. Since σ is proper with fibres being
points or projective lines, then Riσ∗I∂Ŝ(w) = 0 for i ≥ 2 and, therefore, one obtains,
by using the projection formula, that

R1σ∗(I∂Ŝ(w))⊗ LS(w)(−ρ)) ∼= R1σ∗(θ∗ωV (w)) ↪→ R1φ∗ωV (w) = 0.

This proves the claim.
Define a sheaf F(w) on X̂(w) by

F(w) := q∗I∂Ŝ(w) ⊗ p
∗LX(w)(λ− β).

Since τ is the pull-back of σ under the locally trivial fibration g, then, using again
the projection formula and the fact that cohomology commutes with flat base ex-
tension, it follows that

Riτ∗F(w) ∼= (Riτ∗q∗I∂Ŝ(w))⊗ f∗LX(w)(λ− β),

∼=
{
g∗I∂S(w) ⊗ f∗LX(w)(λ− β) if i = 0,
0 if i ≥ 1.

This yields

H i(X′(w), g∗I∂S(w) ⊗ f∗LX(w)(λ− β)) ∼= Hi(X̂(w),F(w)),(6)

and it suffices to prove that the right-hand side vanishes for i ≥ 1 and for λ ∈ X̃+

big enough.
Embed S(x) = B×BS(x) into Ŝ(w), as a Cartier divisor; then X′(x) embeds into

X̂(w). Observe that ∂Ŝ(w) = S(x)∪(Ps×B ∂S(x)) whereas S(x)∩(Ps×B ∂S(x)) =
∂S(x). Therefore, we have an exact sequence

0→ I∂Ŝ(w) → IPs×B∂S(x) → I∂S(x) ⊗OŜ(w)
OS(x) → 0.

Denote by ι : X′(x)→ X̂(w) the inclusion and set

F(w, x) := q∗IPs×B∂S(x) ⊗ p∗LX(w)(λ− β),

F(x) := ι∗F(w, x).

Then F(x) is the sheaf g∗I∂S(x) ⊗ f∗LX(x)(λ− β) on X′(x), and we have an exact
sequence

0→ F(w)→ F(w, x)→ ι∗F(x)→ 0.



LARGE SCHUBERT VARIETIES 123

The corresponding long exact sequence of cohomology groups, together with the
induction hypothesis applied to x, yields an exact sequence

H0(X̂(w),F(w, x)) → H0(X′(x),F(x))(7)

→ H1(X̂(w),F(w)) → H1(X̂(w),F(w, x))

and isomorphisms for i ≥ 2,

Hi(X̂(w),F(w)) ∼= Hi(X̂(w),F(w, x)).(8)

Further, consider the projection

π : X̂(w) = Ps ×B X′(x)→ Ps/B.

Then the sheaf Rjπ∗F(w, x) is the homogeneous vector bundle on Ps/B associated
with the B-module Hj(X′(x),F(x)). The latter vanishes for j ≥ 1 and large λ by
the induction hypothesis applied to x. As Ps/B is a projective line, it follows that
H i(X̂(w),F(w, x)) = 0 for i ≥ 2. Therefore, by (8), we obtain that

Hi(X̂(w),F(w)) = 0

for i ≥ 2. Moreover, setting

M := H0(X′(x),F(x)),

we have that π∗F(w, x) = M . Thus, (7) gives the exact sequence

H0(Ps/B,M)→M → H1(X̂(w),F(w))→ H1(Ps/B,M).

To complete the proof, it remains to show that H1(X̂(w),F(w)) = 0. For this, it is
enough to check that M is generated by its global sections, that is, that M is the
quotient of a Ps-module. Now, using (1) and (3), applied to x instead of w, observe
that

M ∼= H0(X(x), I∂X(x) ⊗ LX(x)(λ)).

Further, ∂X(x) = X(x) ∩ Ps∂X(x) (indeed, ∂X(x) is obviously contained in
Ps∂X(x) ∩ X(x); and X(x) is not contained in Ps∂X(x), because X(x) is not
stable by Ps), and this intersection is reduced as large Schubert varieties are com-
patibly split in X. Therefore, I∂X(x) = IPs∂X(x) ⊗OX(w) OX(x), and the restriction
map

H0(X(w), IPs∂X(x) ⊗ LX(w)(λ))→ H0(X(x), I∂X(x) ⊗ LX(x)(λ)) = M

is surjective for λ big enough, by Serre’s theorem. Thus, M is a quotient of a
Ps-module. This completes the proof of (ii).

Now the previous arguments and Lemma 15 imply assertion (iii). Then (iv)
follows by arguing as in the proof of Theorem 14.

In particular, the closure in X of any parabolic subgroup P is Cohen-Macaulay.
As in Section 6, this yields a degeneration of the diagonal in G/P into a union of
Schubert varieties, and formulae for the class of the diagonal in KT (G/P ×G/P ).

Consider now the subvariety Z(w) = X(w)∩Y of X(w), and its preimage Z ′(w)
under f : X′(w) → X(w). We still denote by f : Z ′(w) → Z(w) and g : Z ′(w) →
S(w) the restrictions of f and g; then g is a locally trivial fibration with fiber Z.
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As Z ′(w) = (BwB ∩G)×B Z, one has g−1∂S(w) =
⋃
x<w(BxB ∩G)×B Z, and

hence f(g−1∂S(w)) =
⋃
x<w BxZ. Therefore,

f(g−1∂S(w)) =
⋃
x<w

Z(x) =
⋃

x,y∈W
x<w, `(xy)=`(x)+`(y)

S(xy)× S(yw0).

We shall denote this subvariety of Z(w) by δZ(w).

Corollary 21. With notation as above, we have:
(i) Z ′(w) is Cohen-Macaulay and its dualizing sheaf is isomorphic to g∗I∂S(w)⊗

f∗LZ(w)(−ρ)[ρ, ρ] as a B̃ × B̃-linearized sheaf.
(ii) f∗OZ′(w) = OZ(w) and Rif∗OZ′(w) = Rif∗ωZ′(w) = 0 for i ≥ 1.
(iii) Z(w) is Cohen-Macaulay and its dualizing sheaf is isomorphic to f∗ωZ′(w) =

IδZ(w) ⊗ LZ(w)(−ρ)[ρ, ρ] as a B̃ × B̃-linearized sheaf.
(iv) The graded ring A(w) =

⊕
µ∈X̃+ H0(Z(w), µ) is Cohen-Macaulay.

Proof. Since Z(w) is the complete intersection in X(w) of the Cartier divisors
X(w)∩D1, . . . ,X(w)∩Dr , by Corollary 4, it follows that Z(w) is Cohen-Macaulay.
Similarly, Z ′(w) is Cohen-Macaulay and its dualizing sheaf is the restriction to
Z ′(w) of

ωX′(w) ⊗ f∗LX(w)(α1)⊗ · · · ⊗ f∗LX(w)(αr) = ωX(w′) ⊗ f∗LX(w)(β).

The latter is equal to g∗I∂S(w) ⊗ f∗LX(w)(−ρ)[ρ, ρ], as we saw in the proof of
Theorem 20. This proves (i).

The multiplication by σ1 defines exact sequences

0→ LX(w)(−α1)→ OX(w) → OX(w)∩D1 → 0

and

0→ f∗LX(w)(−α1)→ OX′(w) → OX′(w)∩f−1(D1) → 0.

By Theorem 20(ii), it follows that

f∗OX′(w)∩f−1(D1) = OX(w)∩D1 and Rif∗OX′(w)∩D1 = 0 for i ≥ 1.

Iterating this argument, we obtain f∗OZ′(w) = OZ(w) and Rif∗OZ′(w) = 0 for
i ≥ 1. The vanishing of Rif∗ωZ′(w) and the equality f∗ωZ′(w) = ωZ(w) follow
similarly from the exact sequences

0→ ωX(w) → ωX(w) ⊗ LX(w)(α1)→ ωX(w)∩D1 → 0

and

0→ ωX′(w) → ωX′(w) ⊗ f∗LX(w)(α1)→ ωX′(w)∩f−1(D1) → 0

together with Theorem 20(ii). This proves (ii).
It also follows, using Lemma 15, that

ωZ(w) = f∗ωZ′(w) = f∗g
∗I∂S(w) ⊗ LZ(w)(−ρ)[ρ, ρ].

Furthermore, g∗I∂S(w) = Ig−1(∂S(w)), since g is a locally trivial fibration, and
f∗Ig−1(∂S(w)) = Ifg−1(∂S(w)), since f∗OZ′(w) = OZ(w). This completes the proof of
(iii).

Finally, (iv) is checked as in the proof of Theorem 14.
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We now apply these geometric results to the structure of the B̃ × B̃-modules
H0(X(w), λ) and H0(Z(w), λ). For this, we recall the definition of the Joseph
functors; see [24, 1.4] and [29, 2.2]. Let y, z ∈ W and let N (resp. M) be a
B̃-module (resp. B̃ × B̃-module), then

HyN := H0(S(y), N) and Hy,zM := H0(S(y)× S(z),M),

where N (resp. M) is the corresponding G̃ (resp. G̃× G̃) linearized vector bundle
on G/B (resp. G/B×G/B). Observe that HyM , where M is regarded as a B̃× 1-
module, has a natural structure of B̃ × B̃-module and, furthermore, there is an
isomorphism of B̃ × B̃-modules HyM ∼= Hy,1M .

Corollary 22. For any weight λ, we have

H0(X(w), λ) ∼= Hw,1H
0(B, λ) and H0(Z(w), λ) ∼= Hw,1M(λ).

Further, each endomorphism of the B̃ × B̃-module H0(Z(w), λ) is scalar. In par-
ticular, this module is indecomposable.

Proof. Recall that H0(X(w), λ) = H0(X(w),LX(w)(λ)). By Theorem 20, the latter
is isomorphic to

H0(X′(w), f∗LX(w)(λ)) ∼= H0(S(w), g∗f∗LX(w)(λ))
∼= H0(S(w), H0(B, λ)) ∼= Hw,1H

0(B, λ).

Using Corollary 21, we obtain similarly that H0(Z(w), λ) ∼= Hw,1M(λ).
We prove that EndB̃×B̃ H

0(Z(w), λ) = k by descending induction on `(w). If
w = w0, then Z(w) = Y and H0(Z(w), λ) = H0(G/B, λ) � H0(G/B,−w0λ). In
this case, the assertion follows from [14, II.2.8, II.4.7].

In the general case, let s be a simple reflection such that `(sw) = `(w) + 1; let
P̃s be the parabolic subgroup of G̃ generated by B̃ and s. Then, using [29, 2.2.5],
we obtain that

H0(Z(sw), λ) ∼= HswM(λ) ∼= indP̃s
B̃
HwM(λ) ∼= indP̃s

B̃
H0(Z(w), λ).

Further, the natural map

indP̃s
B̃
H0(Z(w), λ)→ H0(Z(w), λ)

is surjective by Corollary 3. Thus, EndB̃×B̃ H
0(Z(w), λ) embeds into

HomB̃×B̃
(
indP̃s

B̃
H0(Z(w), λ), H0(Z(w), λ)

) ∼= EndP̃s×B̃
(
indP̃s

B̃
H0(Z(w), λ)

)
.

The latter equals EndB̃×B̃ H
0(Z(sw), λ) by [14, II.2.1.(7)], and we conclude by the

induction hypothesis.

Remark. By looking at right actions, one can also prove that

H0(X(w), λ) ∼= H1,w−1H0(B, λ) and H0(Z(w), λ) ∼= H1,w−1M(λ).
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