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ON LAGUERRE POLYNOMIALS, BESSEL FUNCTIONS,
HANKEL TRANSFORM AND A SERIES

IN THE UNITARY DUAL OF THE SIMPLY-CONNECTED
COVERING GROUP OF Sl(2,R)

BERTRAM KOSTANT

Abstract. Analogous to the holomorphic discrete series of Sl(2,R) there is
a continuous family {πr}, −1 < r <∞, of irreducible unitary representations
of G, the simply-connected covering group of Sl(2,R). A construction of this
series is given in this paper using classical function theory. For all r the
Hilbert space is L2((0,∞)). First of all one exhibits a representation, Dr ,
of g = LieG by second order differential operators on C∞((0,∞)). For x ∈
(0,∞), −1 < r < ∞ and n ∈ Z+ let ϕ

(r)
n (x) = e−xx

r
2L

(r)
n (2x) where L

(r)
n (x)

is the Laguerre polynomial with parameters {n, r}. Let HHCr be the span of

ϕ
(r)
n for n ∈ Z+. Next one shows, using a famous result of E. Nelson, that
Dr |HHCr exponentiates to the unitary representation πr of G. The power of
Nelson’s theorem is exhibited here by the fact that if 0 < r < 1, one has
Dr = D−r, whereas πr is inequivalent to π−r . For r = 1

2
, the elements in

the pair {π 1
2
, π− 1

2
} are the two components of the metaplectic representation.

Using a result of G.H. Hardy one shows that the Hankel transform is given
by πr(a) where a ∈ G induces the non-trivial element of a Weyl group. As a
consequence, continuity properties and enlarged domains of definition, of the
Hankel transform follow from standard facts in representation theory. Also,
if Jr is the classical Bessel function, then for any y ∈ (0,∞), the function
Jr,y(x) = Jr(2

√
xy) is a Whittaker vector. Other weight vectors are given and

the highest weight vector is given by a limiting behavior at 0.

0. Introduction

0.1. Throughout this paper r is a real number where −1 < r <∞. The classical
Laguerre polynomials, {L(r)

n (x)}, are defined for those values of r and non-negative
integers n. See e.g. [Ja], p. 184 or [Sz], p. 96. We will take the normalization as
defined in [Ja]. Let H be the Hilbert space L2((0,∞)) with respect to Lebesgue
measure dx. Let ϕ(r)

n ∈ C∞((0,∞)) be defined by putting ϕ(r)
n (x) = e−xx

r
2L

(r)
n (2x).

We refer to the {ϕ(r)
n } as Laguerre functions. Then for each value of r the subset

{ϕ(r)
n }, n = 0, 1, ..., of Laguerre functions is an orthogonal basis of H. In particular,

HHCr is a dense subspace of H where HHCr is defined to be the linear span of this
subset.
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Let g = Lie Sl(2,R) and let U(g) be the universal enveloping algebra over g with
coefficients in C. Let {h, e, f} ⊂ g be the S-triple basis of g where

h =
(

1 0
0 −1

)
, e =

(
0 −1
0 0

)
, f =

(
0 0
−1 0

)
.

Let G be a simply-connected Lie group with Lie algebra g. The center Z of G
is infinite cyclic and one identifies Sl(2,R) with G/Z2. The metaplectic group,
Mp(2,R), the double cover of Sl(2,R), is identified with G/Z4. Conjugation of g

by
(−1 0

0 1

)
defines an outer automorphism κ of G.

Let L be a Hilbert space and assume that π : G→ U(L) is an irreducible unitary
representation of G. Let L∞ ⊂ L be the dense subspace of infinitely differentiable
vectors in L. From the general theory of unitary representations the “differential”
of π induces a representation

π∞ : U(g)→ EndL∞.

The group G is not in the Harish-Chandra category because Z is infinite. In
particular, even though the element e− f ∈ g is elliptic, the subgroup K of G cor-
responding to R(e− f) is not compact. Nevertheless, much of the Harish-Chandra
theory is still valid. In particular, if h′ = −i(e− f), then the linear span, LHC , of
the π∞(h′) eigenvectors in L∞ is a dense U(g)-submodule of L∞. We refer to LHC
as the Harish-Chandra module associated to π. We will say that π is one-sided if
the spectrum of π∞(h′)|LHC is either a set of positive numbers or a set of negative
numbers. To distinguish between these two cases, and adopting terminology which
is valid for the discrete representations of Sl(2,R), we will say that π is holomor-
phic (resp. anti-holomorphic) if the spectrum of π∞(h′)|LHC is a set of positive
(resp. negative) numbers. It is immediate that π is holomorphic if and only if πκ

is anti-holomorphic, where for g ∈ G, πκ(g) = π(κ(g)).
Lajos Pukanszky in [Pu] has determined, among other things, the unitary dual

of G. See p. 102 in [Pu]. There are 3 series of representations. The one-sided
representations are exactly the members of the second series. We are concerned,
in the present paper, with a construction, and resulting harmonic analysis, of a
model, using Laguerre functions, for the members of this second series. Using κ it
is enough to give the model for the members of the holomorphic subfamily. Due
to a sign difference the members of this subfamily are denoted, in [Pu], by D−`
where ` > 0. In the present paper these representations will appear as πr where,
as stated in the first sentence of the introduction, −1 < r <∞. (The letter D will
be reserved here for another purpose.) The relation between the parameter ` and
r is r = 2`− 1.

0.2. Let DiffC∞((0,∞)) be the algebra of all differential operators on (0,∞).
Let x ∈ C∞((0,∞)) be the natural coordinate function. Identifying elements of
C∞((0,∞)) with the corresponding multiplication operators, it is easy to see that
there is a representation, Dr : U(g)→ DiffC∞((0,∞)) so that

Dr(h) = 2x
d

dx
+ 1,

Dr(e) = ix,

Dr(f) = i(x
d2

dx2
+

d

dx
− r2

4x
).
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Next, one finds that HHCr is stable under Dr(U(g)). In fact, {h′, e′, f ′} is an S-
triple in the complexification, gC, of g, where e′ = 1

2 (−ih+e+f), f ′ = 1
2 (ih+e+f)

and, as above, h′ = −i(e− f). When applied to the Laguerre functions one finds
(see Theorem 2.6), for n ∈ Z+,

Dr(h′)ϕ(r)
n = (2n+ r + 1)ϕ(r)

n ,

Dr(e′)ϕ(r)
n = iϕ

(r)
n+1,

Dr(f ′)ϕ(r)
n = i(nr + n2)ϕ(r)

n−1,

(0.1)

where we put ϕ(r)
−1 = 0. In particular, the spectrum of Dr(h′)|HHCr is positive.

Furthermore, ϕ(r)
0 (x) = x

r
2 e−x spans the eigenspace for the minimal eigenvalue,

r + 1, of Dr(h′)|HHCr and Dr(f ′)ϕ
(r)
0 = 0.

For u ∈ g the operator Dr(u)|HHCr is formally skew-symmetric. But “formal”
isn’t good enough since the Laguerre functions do not vanish as x approaches 0 for
r ≤ 0. In fact, they become unbounded for r < 0. Nevertheless, these operators
are skew-symmetric. But much more is true. The hypotheses for Nelson’s beautiful
Theorem 5 in [Ne] are satisfied so Dr|HHCr can be exponentiated for all −1 < r <
∞. We prove

Theorem 0.1. There exists a unique irreducible unitary representation πr : G →
U(H) whose Harish-Chandra module is Dr|HHCr . Furthermore, the family {πr},
−1 < r <∞ is the same as Pukanszky’s holomorphic family D−` , ` > 0.

The representation πr descends to Sl(2,R) when r is an integer. In such a case
πr defines a holomorphic discrete series representation of Sl(2,R) when r is positive
and π0 is often referred to as a limit of such series. The representation πr descends
to the metaplectic group Mp(2,R) when r ∈ Z/2.

We will say πr is special if 0 < |r| < 1. Obviously the special representations
occur in pairs, {πr, π−r}.

Remark 0.2. What seems to be particularly striking about a special pair {π−r, πr},
and what seems to be illustrative of the power of Nelson’s theorem, is that, whereas
clearly Dr = D−r, one has the inequivalence of πr and π−r. The only special pair
which descends to the metaplectic group Mp(2,R) is {π− 1

2
, π 1

2
}. As one might

suspect these two representations are the two irreducible components (even and
odd) of the holomorphic metaplectic (or oscillator) representation. See Theorem
3.13. In a number of ways the special pairs can be regarded as a generalization of
the metaplectic representation. For example, if one defines an equivalence relation
by putting πr ∼ πr′ in case πr and πr′ have the same infinitesimal character, then
the equivalence classes are the special pairs and the singlets {πr} where πr is not
special. There is, however, an important distinction between the set of special
representations where r is positive and the set where r is negative. Pukanszky in
[Pu] shows that the former has positive Plancherel measure whereas the latter has
zero Plancherel measure.

0.3. Let H∞r denote the space of C∞ vectors in H with respect to πr. One
establishes

C∞o ((0,∞)) ⊂ H∞r ⊂ C∞((0,∞))
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where subscript o denotes compact support. Furthermore,

π∞r = Dr|H∞r .(0.2)

See Propositions 4.6 and 4.7. As is standard in representation theory the action of
U(g) induces a Fréchet topology on H∞r which we will refer to as the πr-Fréchet
topology. The πr-Fréchet topology is in fact strictly finer than the topology induced
on H∞r by its inclusion in C∞((0,∞)) when C∞((0,∞)) = E((0,∞)) is given the
familiar Fréchet topology of distribution theory. In fact, C∞o ((0,∞)) is not dense
in H∞r with respect to the πr-Fréchet topology. See Theorem 5.26.

The representation π∞r can be defined on the convolution algebra, Disto(G),
of distributions of compact support on G and for any ν ∈ Disto(G), π∞r (ν) is
continuous with respect to the πr-Fréchet topology. See e.g. [Ca]. We recall that
Disto(G) contains both G and U(g). Contragrediently, there is a Disto(G)-module
H−∞r with respect to a representation π−∞r and one has inclusions

H∞r ⊂ H ⊂ H−∞r
together with a sesquilinear form {ϕ, ρ} for ϕ ∈ H∞r and ρ ∈ H−∞r such that
every continuous linear functional on H∞r is uniquely of the form ϕ 7→ {ϕ, ρ} for
ρ ∈ H−∞r . In addition, π∞r = π−∞r |H∞r . There is a natural embedding of the
space, Disto((0,∞)), of distributions of compact support on (0,∞) in H−∞r . See
Proposition 4.11. In addition, Va embeds into H−∞r where a > 0 and Va is the
space of all Borel measurable functions, ψ, on (0,∞) which are L2 on (0, a) and
O(xk) on [a,∞), for some k ∈ N. See Proposition 4.13.

Let u ∈ gC. Then an element ρ ∈ H−∞r is called a u-weight vector of weight λ ∈ C
in case π−∞r (u)(ρ) = λρ. In case u = h, e or f , we prove that the corresponding
weight space is at most 1-dimensional. For a more general statement see Theorem
5.15. An e-weight (resp. f -weight) vector of ρ of weight λ will be referred to as
an e-Whittaker (resp. f -Whittaker) vector in case λ 6= 0. It will be referred to as
a highest (resp. lowest) weight vector if λ = 0. Here we are adopting terminology
from finite dimensional representation theory emphasizing e (resp. f) behavior and
not extremal h-weights. In fact, h-weights are unbounded. Theorem 5.17 asserts
that for any y ∈ (0,∞) the Dirac measure δy at y is (up to scalar multiplication)
the unique e-Whittaker vector of weight iy. Now let Jr(z) be the Bessel function
of order r. For any y ∈ (0,∞) let Jr,y ∈ V1 ⊂ H−∞r be defined by putting
Jr,y(x) = Jr(2

√
yx) so that for any ϕ ∈ H∞r ,

{ϕ, Jr,y} =
∫ ∞

0

Jr(2
√
yx)ϕ(x)dx.(0.3)

Then one has (see Theorem 5.17)

Theorem 0.3. The function Jr,y(x) is, up to scalar multiplication, the unique f -
Whittaker vector of weight −iy.

Remark 0.4. If 0 < |r| < 1, then the Bessel functions Jr(z) and J−r(z) are a basis of
the space of solutions of the corresponding Bessel (2nd order differential) equation.
One sees then that for the special pair {π−r, πr} of unitary representations both
solutions become involved in the determination of f -Whittaker vectors.

Let ko ∈ K be defined by putting ko = exp π2 (e− f). Let

Ur = crπ
−∞
r (ko)(0.4)
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where cr = e−
r+1

2 πi so that Ur|H is a unitary operator. It is immediate from the
first equation in (0.1) that

Ur(ϕ(r)
n ) = (−1)nϕ(r)

n(0.5)

so that Ur is of order 2 and stabilizes the Harish-Chandra module HHCr . On the
other hand, the operator with kernel function Jr(2

√
yx) is classical and is known

as the Hankel transform (modulo a slight change in parameters). Furthermore, it
is also classical that

(−1)nϕ(r)
n (y) =

∫ ∞
0

Jr(2
√
yx)ϕ(r)

n (x)dx,(0.6)

a result that Carl Herz in [He] says is implicit in the 19th century work of Sonine.
The result (0.6) is stated as Exercise 21, p. 371 in [Sz] where a reference to the
paper [Ha] of G.H. Hardy is given. The result is important for us since it implies

Theorem 0.5. Ur|H is the Hankel transform.

For completeness we include a proof of (0.6) given to us by John Stalker.

Remark 0.6. The domain of the Fourier transform is normally regarded to be the
space of tempered distributions. It is not generally appreciated but, since it stabi-
lizes the Harish-Chandra module of Hermite functions, it operates contragrediently
on the algebraic dual of this module. This makes its domain much larger than
the space of tempered distributions. The same statement is true of the Hankel
transform. Nevertheless, we only require here that it operates (see (0.4)) on H−∞r .

Let G1 be a semisimple Lie group whose corresponding symmetric space X is
Hermitian. The holomorphic discrete series ofG1 is normally constructed on a space
of square integrable holomorphic sections of a line bundle on X . If X is of tube
type, then Ding and Gross in [DG] have recognized that the natural generalization
of the Hankel transform is given by the action of an element in G1 and have used
this fact in [DG] to transfer the discrete series, constructed on X , to another model
built on a symmetric cone. Applied to the case considered here this constructs
our representations πn, n = 1, 2, .... This method, however, would not yield πr for
r ≤ 0. As pointed out to us by David Vogan, for such values of r, πr cannot be
realized on a space of square integrable holomorphic sections of a line bundle on
X arising from the natural action of G1 on X . For r rational this follows from
Harish-Chandra’s classification of the discrete series for a group with finite center.

0.4. Note that Adko defines the non-trivial element of the Weyl group of G with
respect to the pair (Rh, g). That is, Adko(h) = −h. It follows that the Hankel
transform Ur carries h-weight vectors of weight λ to h-weight vectors of weight −λ.
The following result is stated in Theorem 5.22.

Theorem 0.7. Assume λ ∈ C where Reλ > 0. Let µ = λ−1
2 so that xµ ∈

V1 ⊂ H−∞r . Then, up to scalar multiplication, xµ is the unique h-weight vector of
weight λ and Ur(xµ) is the unique h-weight vector of weight −λ.

Remark 0.8. Note for Reλ > 0 the h-weight vector is independent of r whereas for
Reλ < 0 there is an apparent dependence on r. This dependence is made explicit
in Theorem 5.25 for the case where λ = −(r + 1). The situation when λ is purely
imaginary will be explored elsewhere.
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Now note that Ad(k0)(e) = −f so that the Hankel transform Ur carries e-weight
vectors of weight λ to f -weight vectors of weight −λ. In fact, for y ∈ (0,∞) one
has, for Whittaker vectors,

Ur(δy) = Jr,y.

See Theorem 5.17. More interesting is the question about highest and lowest weight
vectors if they exist at all in H−∞r . In fact, they do exist in H−∞r . The highest
(resp. lowest) weight vector, given below, in Theorem 0.8, as δr,0 (resp. Jr,0) is the
unique element (up to scalar multiplication) in H−∞r which is simultaneously an
h-weight vector and an e-weight (resp. f -weight) vector. See Theorem 5.25.

Theorem 0.9. There exists a unique element δr,0 ∈ H∞r such that for any ϕ ∈ H∞r
the limit in (0.7) below exists and one has

{ϕ, δr,0} = lim
x→0

x−
r
2ϕ(x).(0.7)

Moreover, δr,0 is, up to scalar multiplication, the unique highest weight vector (i.e.
δr,0 ∈ Ker π−∞r (e)). Furthermore, δr,0 is also an h-weight vector of weight −(r+1).

The h-weight vector, Jr,0, of weight r + 1 given by

{ϕ, Jr,0} =
1

Γ(r + 1)

∫ ∞
0

ϕ(x)x
r
2 dx(0.8)

for any ϕ ∈ H∞r , (see Theorem 0.7) is, up to scalar multiplication, the unique
lowest weight vector (i.e. Jr,0 ∈ Ker π−∞r (f)). In addition, with respect to the
Hankel transform, one has

Ur(δr,0) = Jr,0.(0.9)

Remark 0.10. Note that (0.7) vanishes if ϕ ∈ C∞o ((0,∞)) thereby establishing that
C∞o ((0,∞)) is not dense in H∞r .

0.5. Following this introduction there are five chapters:
1. The representation Dr and the Casimir element
2. Laguerre functions and Harish-Chandra modules
3. The series, {πr}, −1 < r <∞, of irreducible unitary representations of G on
L2((0,∞))

4. Distribution theory on (0,∞) and the spaces H∞r and H−∞r
5. Whittaker vectors, Bessel functions and the Hankel transform

Sections 1 and 2 should be regarded as a joint work of Nolan Wallach and myself. Its
history is as follows: To deal with a problem arising in the theory of global solutions
of Maxwell’s equations I was motivated to model the holomorphic representations
of G on the spectrum, (0,∞), of the nilpotent element −ie. Towards this end
Wallach and I came up with the Lie algebra respresentation Dr. It was Wallach
who first noted that the eigenfunctions of Dr(e− f) were the Laguerre functions.

Besides Nolan Wallach I would like to thank David Vogan, Richard Melrose and
John Stalker for valuable conversations.

Remark 0.11. It was pointed out by an editor of this journal that the Lie algebra
representation Dr on HHCr was known to physicists. The citation is [BL], p. 284–
287. However, a serious error is made on p. 287 (top paragraph) in [BL] which in
effect asserts that Dr|HHCr is not a representation by skew-symmetric operators.
An implication would be that Dr|HHCr could not be integrated to a unitary repre-
sentation of G and in fact no such group representation is given in [BL]. Although
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it is not transparent, particularly for −1 < r < 0, it is one of the results of our
paper (see Lemma 3.2) that Dr|HHCr is indeed a representation by skew-symmetric
operators. This is a key point since it sets the stage for the use of Nelson’s theorem
to establish that Dr|HHCr integrates to a unitary representation of G.

1. The representation Dr and the Casimir element

1.1. Let gC = Lie Sl(2,C) and let g = Lie Sl(2,R) so that g is a real form of gC.
Let {h, e, f} ⊂ g be the S-triple given by

h =
(

1 0
0 −1

)
, e =

(
0 −1
0 0

)
, f =

(
0 0
−1 0

)
.

Consider the algebra Diff C∞((0,∞)) of differential operators on the open in-
terval (0,∞). Let x ∈ C∞((0,∞)) be the natural coordinate function and let
H be the Hilbert space L2((0,∞)) with respect to the usual measure defined by
dx. Unless stated otherwise we will always assume r ∈ R where r > −1. Let
Dr : gC → Diff C∞((0,∞)) be the linear map, where identifying elements in
C∞((0,∞)) with the corresponding multiplication operators,

Dr(e) = ix,

Dr(h) = 2x
d

dx
+ 1,

Dr(f) = i(x
d2

dx2
+

d

dx
− r2

4x
).

(1.1)

Noting that [x, x d2

dx2 ] = −2x d
dx one readily establishes that Dr is a Lie algebra

homomorphism. Thus if U(g) is the universal enveloping algebra of gC, then Dr

extends to an algebra homomorphism Dr : U(g)→ Diff C∞((0,∞)). Let Cas ∈
U(g) be the quadratic Casimir element corresponding to the Killing form on gC.
Clearly,

Cas =
1
4

(
h2

2
+ ef + fe).(1.2)

Computation yields

Proposition 1.1. The differential operator Dr(Cas) is the scalar operator given
by

Dr(Cas) =
1
8

(r2 − 1).(1.3)

Proof. We first note that

Dr(h2/2) = (2x
d

dx
+ 1)2/2

= 2(x2(
d

dx
)2 + 2x

d

dx
+ 1/4).

(1.4)

Next,

Dr(ef + fe) = ix(i(x(
d

dx
)2 +

d

dx
− r2

4x
)) + i(x(

d

dx
)2 +

d

dx
− r2

4x
)ix

= −2x2(
d

dx
)2 − 4x

d

dx
− 1 +

r2

2
.

(1.5)

But then (1.3) follows from (1.1), (1.2), (1.4) and (1.5). QED
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Let G be a simply-connected covering group with Lie algebra g.

Remark 1.2. Note the scalar value of Dr(Cas) is negative if and only if |r| <
1. Later in this paper the representation Dr will lead to an irreducible unitary
representation πr of G. The representation πr will depend on more than just Dr.
In fact, for 0 < |r| < 1 the representations πr and π−r will be inequivalent whereas
Dr and D−r are clearly the same.

It is convenient to think of the parameter r as an analogue of dimension. In
fact, if r ∈ N and νr is the finite dimensional irreducible representation of U(g)
having dimension r, then 1

8 (r2 − 1) is the scalar value of νr(Cas). Indeed, with
the usual definition of ρ the “strange formula” of Freudenthal-de Vries asserts that
|ρ|2 = 1

8 because the formula asserts |ρ|2 = dim g

24 and in our case dim g = 3.
However, (r− 1)ρ is the highest weight of νr. But then the scalar value of νr(Cas)
is |r ρ|2 − |ρ|2 = 1

8 (r2 − 1).

2. Laguerre functions and Harish-Chandra modules

2.1. Recall −1 < r < ∞. The Laguerre polynomials L(r)
n (x), n = 0, 1, ..., are

defined, as in Chapter X, p. 184 of [Ja], by putting

L(r)
n (x) = (−1)nx−rex

dn

dxn
(xr+ne−x).

One has deg L(r)
n = n and the coefficient of xn is 1. Furthermore, the sequence of

Laguerre polynomials is a Gram-Schmidt orthogonal family of polynomials associ-
ated to the monomials 1, x, x2, ..., with respect to the finite measure xre−xdx on
(0,∞). See §2, Chapter X in [Ja]. But then upon multiplication by the square root
of the weighting factor xre−x it follows that for n = 0, 1, 2...,

x
r
2 e−

x
2L(r)

n (x) = (−1)nx−
r
2 e

x
2
dn

dxn
(xr+ne−x)(2.1)

is an orthogonal family of functions in H. If we replace x by 2x in (2.1) and divide
by 2

r
2 , it then follows that

ϕ(r)
n (x) = x

r
2 e−xL(r)

n (2x)

= x
r
2 e−x(−1)nx−re2x d

n

dxn
(xr+ne−2x)

= (−1)nx−
r
2 ex

dn

dxn
(xr+ne−2x)

(2.2)

is again an orthogonal basis of functions in H. We will refer to the sequence of
functions ϕ(r)

n (x), n = 0, 1, ..., as Laguerre functions (of type r).

Proposition 2.1. The set of Laguerre functions {ϕ(r)
n (x)}, n = 0, 1, ..., is an or-

thogonal basis of H. Furthermore,∫ ∞
0

|ϕ(r)
n (x)|2dx =

1
2r+1

n! Γ(n+ r + 1).(2.3)

Proof. By (5.7.1) in Theorem 5.7.1, p. 104, in [Sz] the functions x
r
2 e−

x
2L

(r)
n (x), n =

0, 1, ..., span a dense subspace of H and hence, in the Hilbert space sense, are an
orthogonal basis of H. But then the same statement is true after scaling and
replacing x by 2x. Hence the Laguerre functions are also an orthogonal basis of H.



LAGUERRE POLYNOMIALS AND THE UNITARY DUAL OF S̃l(2,R) 189

Let ψn be the function defined by the left side of (2.1). Now by the computation
of dn on the bottom of p. 185 in [Ja], one has∫ ∞

0

|ψn(x)|2dx = n! Γ(n+ r + 1).(2.4)

But then (2.3) follows from (2.4) since ϕ(r)
n (x) = 2−

r
2ψn(2x). QED

2.2. We now consider a new S-triple {h′, e′, f ′} ⊂ gC defined by putting

{h′, e′, f ′} = A{h, e, f}A−1 where A = 1√
2

(
1 −i
−i 1

)
. One readily has

h′ =
(

0 i
−i 0

)
= −i(e− f).

(2.5)

Next,

e′ =
1
2

(
−i −1
−1 i

)
=

1
2

(−ih+ e+ f).
(2.6)

Also,

f ′ =
(
i −1
−1 −i

)
=

1
2

(ih+ e+ f).
(2.7)

The element e−f is elliptic in g and hence h = −i(e−f) ∈ gC is hyperbolic. We
are looking for a g-submodule of C∞((0,∞)), with respect to Dr, which is spanned
by eigenvectors of Dr(h′). By (2.5) Dr(h′) = −(x( d

dx)2 + d
dx −

r2

4x − x). Hence if
ϕ ∈ C∞((0,∞)) is an eigenvector for Dr(h′) with eigenvalue λ we have (recalling
(1.1)) the differential equation

(x(
d

dx
)2 +

d

dx
− r2

4x
− x+ λ)ϕ = 0.(2.8)

Lemma 2.2. For n = 0, 1, ..., one has

Dr(h′)ϕ(r)
n = (2n+ r + 1)ϕ(r)

n .(2.9)

Proof. By (3) on p. 186 in [Ja] (or (5.1.2) on p. 96 in [Sz]) one has

(x(
d

dx
)2 + (r + 1− x)

d

dx
+ n)L(r)

n (x) = 0.(2.10)

If A is the operator on C∞((0,∞)) defined by putting Af(x) = f(2x), then conju-
gating the differential operator in (2.10) by A and then multiplying by 2 yields the
differential equation

(x(
d

dx
)2 + (r + 1− 2x)

d

dx
+ 2n)L(r)

n (2x) = 0.(2.11)

Conjugating the differential operator in (2.11) by the multiplication operator M =
e−xx

r
2 then establishes the differential equation

M(x(
d

dx
)2 + (r + 1− 2x)

d

dx
+ 2n)M−1ϕ(r)

n = 0.(2.12)
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However,

M
d

dx
M−1 =

d

dx
+ (− r

2x
+ 1)(2.13)

so that

M(r + 1− 2x)
d

dx
M−1 = (r + 1− 2x)

d

dx
+ (r + 1− 2x)(− r

2x
+ 1)

= (r + 1− 2x)
d

dx
+ 2r + 1− 2x− r2

2x
− r

2x
.

(2.14)

But (2.13) also implies

Mx(
d

dx
)2M−1 = x(

d

dx
+ (− r

2x
+ 1))2

= x
d

dx

2

+ (−r + 2x)
d

dx
+

r

2x
+
r2

4x
− r + x.

(2.15)

But then adding (2.14), (2.15) and 2n yields

M(x(
d

dx
)2 + (r + 1− 2x)

d

dx
+ 2n)M−1 = x(

d

dx
)2 +

d

dx
− r2

4x
− x+ (2n+ r + 1).

But then (2.9) follows from (2.12) and (2.8) with λ = 2n+r+1 and ϕ = ϕ
(r)
n . QED

Remark 2.3. With our assumptions on r and n note that the eigenvalue 2n+ r+ 1
is always positive.

2.3. Let HHCr be the linear span of the {ϕ(r)
n }, n ∈ Z+. By Proposition 2.1 it

follows that HHCr is dense in H. We wish to show that HHCr is stable under the
action of Dr(gC). By Lemma 2.2 HHCr is clearly stable under Dr(h′). But now by
(1.1), (2.6) and (2.7) one has

Dr(e′) =
i

2
(x

d2

dx2
+ (1− 2x)

d

dx
− r2

4x
− 1 + x)(2.16)

and

Dr(f ′) =
i

2
(x

d2

dx2
+ (1 + 2x)

d

dx
− r2

4x
+ 1 + x).(2.17)

Remark 2.4. Note that Dr(e′) and Dr(f ′) differ only in the sign of 2 terms.

Recall (2.2). We make the following computations:

x
d2

dx2
ϕ(r)
n (x) = (−1)nx−

r
2 ex(((

r

2
)(
r

2
+ 1)x−1 − r + x)

dn

dxn
(xr+ne−2x)

+ (−r + 2x)
dn+1

dxn+1
(xr+ne−2x)

+ x
dn+2

dxn+2
(xr+ne−2x)).

(2.18)

Next,

(1 ∓ 2x)
d

dx
ϕ(r)
n (x) = (−1)nx−

r
2 ex((− r

2
x−1

+ 1∓ (−r) ∓ 2x)
dn

dxn
(xr+ne−2x)(1∓ 2x)

dn+1

dxn+1
(xr+ne−2x))

(2.19)
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and finally,

(− r
2

4x
∓ 1 + x)ϕ(r)

n (x) = (−1)nx−
r
2 ex((−r

2

4
x−1 ∓ 1 + x)

dn

dxn
(xr+ne−2x)).(2.20)

It follows from (2.16) upon adding (2.18), (2.19) and (2.20) choosing the top signs
that

Dr(e′)ϕ(r)
n =

i

2
(−1)nx−

r
2 ex((1− r) + x

d

dx
)(
d

dx
)n+1xr+ne−2x.(2.21)

But

[x
d

dx
,
dn+1

dxn+1
] = −(n+ 1)

dn+1

dxn+1
.(2.22)

Thus,

x
d

dx

dn+1

dxn+1
(xr+ne−2x) =

dn+1

dxn+1
x
d

dx
(xr+ne−2x)− (n+ 1)

dn+1

dxn+1
(xr+ne−2x)

=
dn+1

dxn+1
((r + n)xr+n − 2xr+n+1 − (n+ 1)xr+n)e−2x

= (r − 1)
dn+1

dxn+1
(xr+ne−2x)− 2

dn+1

dxn+1
(xr+n+1e−2x).

But then by (2.2) and (2.21),

δr(e′)ϕ(r)
n (x) = i(−1)n+1x−

r
2 ex

dn+1

dxn+1
(xr+n+1e−2x)

= iϕ
(r)
n+1.

(2.23)

We have proved

Lemma 2.5. HHCr is stable under Dr(e′). In fact,

Dr(e′)ϕ(r)
n = iϕ

(r)
n+1.(2.24)

Now from (2.17) and adding (2.18), (2.19) and (2.20) choosing the bottom signs
and taking n = 0 one has

Dr(f ′)ϕ
(r)
0 (x) =

i

2
x−

r
2 ex((−2r + 2 + 4x) + (1− r + 4x)

d

dx
+ x(

d

dx
)2)xre−2x.

But it is straightforward to verify that xre−2x satisfies the differential equation

(x(
d

dx
)2 + (1− r + 4x)

d

dx
) + (−2r + 2 + 4x))xre−2x = 0

and hence,

Dr(f ′)ϕ
(r)
0 = 0.(2.25)

Let k = R(e−f) = iRh′ and let K ⊂ G be the subgroup corresponding to k. Since
the center G is not finite, the group G is not in the Harish-Chandra class and K
is not compact. Accordingly, we will modify the definition of a Harish-Chandra
module to suit the case at hand. In this paper a module for U(g) will be called
a Harish-Chandra module if it is spanned by 1-dimensional submodules under the
action of k. Partly summarizing some of the results above one has
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Theorem 2.6. As always −1 < r < ∞. The dense subspace HHCr , in H =
L2((0,∞)), spanned by the Laguerre functions ϕ

(r)
n (x) = x

r
2 e−xL

(r)
n (2x), n =

0, 1, . . . , is stable under the action of Dr(gC) and, with respect to Dr, defines an
irreducible Harish-Chandra module for U(g). In fact,

Dr(h′)ϕ(r)
n = (2n+ r + 1)ϕ(r)

n ,

Dr(e′)ϕ(r)
n = iϕ

(r)
n+1.

(2.26)

In particular, the spectrum of Dr(h′) is positive. Furthermore, ϕ(r)
0 (x) = x

r
2 e−x

spans the “minimal k-type” and

Dr(f ′)ϕ
(r)
0 = 0.(2.27)

Moreover, for n > 0 one has

Dr(f ′)ϕ(r)
n = i(nr + n2)ϕ(r)

n−1.(2.28)

Proof. The equations (2.26) have been previously established. See Lemmas 2.2 and
2.5. Also (2.27) is just (2.25). We will prove (2.28) by induction on n. The result
has actually been established for n = 0 by putting ϕ

(r)
−1 = 0. Inductively, assume

(2.28) for n. Then

(2n+ r + 1)ϕ(r)
n = Dr(h′)ϕ(r)

n

= (Dr(e′)Dr(f ′)−Dr(f ′)Dr(e′))ϕ(r)
n

= i(nr + n2)Dr(e′)ϕ
(r)
n−1 − iDr(f ′)ϕ

(r)
n+1

= −(nr + n2)ϕ(r)
n − iDr(f ′)ϕ

(r)
n+1.

Thus,

Dr(f ′)ϕ
(r)
n+1 = i((2n+ r + 1) + nr + n2)ϕ(r)

n

= i((n+ 1)r + (n+ 1)2))ϕ(r)
n .

This establishes (2.28) for all n. ThusHHCr is stable under Dr(gC). It is then clearly
a Harish-Chandra module for g where all the eigenvalues of Dr(h′) are positive and
have multiplicity 1. But since nr + n2 = n(r + 1) is positive for all n = 1, ..., it
follows from (2.28) that any nonzero gC-submodule of HHCr must contain ϕ(r)

0 and
hence, by the second equation in (2.26), must be equal to HHCr . This establishes
irreducibility. QED

3. The series, {πr}, −1 < r <∞, of irreducible unitary

representations of G on L2((0,∞))

3.1. If ψ and ϕ are measurable functions on (0,∞) and ψϕ is integrable, we will
write

{ψ, ϕ} =
∫ ∞

0

ψ(x)ϕ(x)dx.

IfA is a densely defined operator onH, we will denote its domain byDom(A) ⊂ H.
Given such an operator we recall that A has a closure, denoted by A, if and only if
A admits a densely defined adjoint operator A∗. In such a case

{Aψ,ϕ} = {ψ,A∗ϕ}
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for all ψ ∈ Dom(A) and ϕ ∈ Dom(A∗). If A is densely defined and is symmetric
(resp. skew-symmetric) on its domain, then A admits a closure, Dom(A) ⊂
Dom(A∗) and A = A∗|Dom(A) (resp. −A = A∗|Dom(A)). In such a case A
is called essentially self-adjoint (resp. essentially skew-adjoint) if A = A∗ (resp.
−A = A∗).

Remark 3.1. If one considers the Schwartz space, S, of functions on R, it is ob-
vious that d

dx |S is skew-symmetric. Now recall (1.1). It then follows easily that
Dr(u), for any u ∈ g, regarded as an operator S, is also skew-symmetric. That
is, Dr(u) is formally skew-symmetric. However, d

dx cannot automatically be taken
as skew-symmetric when defined on domains in H that contain functions which do
not converge to zero as x tends to zero. In particular, it is not automatic that
Dr(u)|HHCr is skew-symmetric when r ≤ 0. Nevertheless, the following lemma
asserts that any such operator is indeed skew-symmetric.

Lemma 3.2. For any u ∈ g the operator Dr(u)|HHCr is skew-symmetric.

Proof. Let v 7→ v∗ be the conjugate linear map on gC defined so that v∗ = −v for
v ∈ g. Let ψ, ϕ ∈ HHCr . It suffices to prove

{Dr(v)ψ, ϕ} = {ψ,Dr(v∗)ϕ}(3.1)

for any v ∈ gC. However, since v 7→ {ψ,Dr(v∗)ϕ} is complex linear, it suffices only
to prove (3.1) for a basis of gC. We will establish (3.1) for the basis {h′, e′, f ′}. But
(h′)∗ = h′. However, since the Laguerre functions ϕ(r)

n are mutually orthogonal,
(3.1) follows from the first equation of (2.26) when v = h′. Next it follows from
(2.6) and (2.7) that (e′)∗ = −f ′. By symmetry it suffices then only to prove

{Dr(e′)ψ, ϕ} = −{ψ,Dr(f ′)ϕ}.
But then from the second equation of (2.26) and (2.28), we have only to prove that

{Dr(e′)ϕ(r)
n , ϕ

(r)
n+1} = −{ϕ(r)

n , Dr(f ′)ϕ
(r)
n+1}

for n = 0, 1, . . . . But then again, from the second equation of (2.26) and (2.28) we
must show that

i{ϕ(r)
n+1, ϕ

(r)
n+1} = i((n+ 1)r + (n+ 1)2){ϕ(r)

n , ϕ(r)
n }.(3.2)

But the left side of (3.2) equals i
2r+1 (n+ 1)! Γ(n+ r+ 2) by (2.3) whereas the right

side of (3.2) equals i
2r+1 ((n+1)r+(n+1)2)n! Γ(n+r+1). But since Γ(n+r+2) =

(n + r + 1)Γ(n + r + 1) it follows easily that the left and right sides of (3.2) are
equal. QED

3.2. Since K is non-compact some care must be exercised in appealing to the
literature about Harish-Chandra modules. We will refer instead to [Pu], modified
by some general representation theory. Pukanszky in [Pu] has determined the
unitary dual of G. See the bottom of p. 102 in [Pu]. Assume

π : G→ U(L)

is an irreducible unitary representation of G on a Hilbert space L. If u ∈ g, then
t 7→ π(exp tu) is a one parameter group of unitary operators. By Stone’s theorem
there exists a skew-adjoint operator, π̃(u), which in the sense of the spectral theorem
generates this one parameter group. Let Domπ(u) ⊂ L be the domain of π̃(u).
Let L∞ be the space of infinitely differentiable vectors in L. Then L∞ is dense in
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L and L∞ ⊂ Domπ(u) for any u ∈ g. Furthermore, if π∞(u) = π̃(u)|L∞, then
L∞ is stable under π∞(u) and π∞ defines a Lie algebra representation of g on L∞.
In addition, π∞(u) is essentially skew-adjoint. See [Se]. The representation π∞

extends to a representation π∞ : U(g)→ EndL∞. It follows easily that if Lo ⊂ L
is a subspace such that Lo ⊂ Domπ(vi) for a basis {vi} of g and Lo is stable under
all π̃(vi), then Lo is a U(g)-submodule of L∞ with respect to π∞. Now Pukanszky,
in [Pu], observes that there exists a character χ on K such that χπ|K descends
to a representation of the circle group. Hence, if we let Lo be the span of the
eigenvectors of π̃(e− f), then Lo is dense in L. He then proves (see pp. 99 and 100
in [Pu]) that, for a basis {vi} of g, Lo ⊂ Domπ(vi) and Lo is stable under π̃(vi).
Thus Lo is a U(g) submodule of L∞. Consequently, if we define LHC to be the
span of the eigenvectors of π∞(h′), then one has LHC = Lo. In particular, LHC is
a Harish-Chandra module for U(g) with respect to π∞ and we refer to LHC as the
Harish-Chandra module associated to π.

Pukanszky lists three families of irreducible unitary representations. From the
list one readily notes that π∞(Cas) = Cπ for a scalar Cπ and if we denote the
spectrum of π∞(h′)|LHC by Sπ, then each λ ∈ Sπ has multiplicity 1. Furthermore
by inspection one has

Proposition 3.3. Let πi, i = 1, 2, be two irreducible unitary representations of G.
Then π1 is equivalent to π2 if and only if there exists λi ∈ Sπi such that, as pairs,

(Cπ1 , λ1) = (Cπ2 , λ2).(3.3)

In particular, any irreducuble unitary representation of G is determined by its
Harish-Chandra module.

To align the notation of [Pu] with that used here one notes that if H0 and the
Casimir eigenvalue q are defined as in [Pu], then

H0|LHC = −1
2
π∞(h′)|LHC(3.4)

and

q = −2Cπ.(3.5)

The members of the second family (denoted by II) of irreducible unitary repre-
sentations are characterized by the property that the numbers in Sπ are either all
positive or all negative. Correspondingly, this family, respectively, breaks up into 2
series, D−` and D+

` both for 0 < ` <∞ (note the sign change in (3.4)). For π = D−`
one has

Sπ = {2`, 2`+ 2, 2`+ 4, ...}

and

Cπ =
1
2
`(`− 1).(3.6)

Although it is an abuse of terminology, for suggestive reasons, we will refer to
the set of representations, {D−` }, for 0 < ` < ∞, as the holomorphic series of
representations of G.
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3.3. Let u1 = e − f, u2 = e + f and u3 = h so that {ui}, 1 = 1, 2, 3, is a basis
of g. Moreover, the basis is an orthogonal basis with respect to the Killing form.
Clearly, 8Cas = −u2

1 + u2
2 + u2

3. But u2
1 = −(h′)2 by (2.5) so that

8Cas− 2(h′)2 =
3∑
i=1

u2
i .(3.7)

On the other hand,

Dr(8Cas− 2(h′)2)ϕ(r)
n = ((r2 − 1)− 2(2n+ r + 1)2)ϕ(r)

n

= −(8n(n+ r + 1) + (r + 3)(r + 1))ϕ(r)
n

(3.8)

by Lemma 1.1 and (2.9). The power of Nelson’s theorem on analytic vectors enables
us to exponentiate Dr(g)|HHCr to a unitary representation of G on H = L2((0,∞)).

Theorem 3.4. For any −1 < r < ∞ there exists an irreducible (necessarily
unique) unitary representation, πr, of G on L2((0,∞)) where the corresponding
Harish-Chandra module is HHCr with respect to the action of g defined by u 7→
Dr(u)|HHCr . Furthermore, using the notation of Pukanszky, πr is equivalent to
D−r+1

2
. In particular {πr}, −1 < r <∞, is the holomorphic series.

Proof. Let ui, i = 1, 2, 3 be the basis of g defined in (3.7). By (3.7) and (3.8) the
elements of the orthogonal basis, {ϕ(r)

n }, of H are eigenvectors of Dr(
∑3

i=1 u
2
i ) and

the eigenvalues are real. It is immediate then that Dr(
∑3

i=1 u
2
i )|HHCr is essentially

self-adjoint. On the other hand, Dr(u)|HHCr is skew-symmetic for any u ∈ g by
Lemma 3.2. It follows then from Theorem 5, p. 602 in [Ne], that there exists a
unitary representation, πr of G on H such that, in the notation of §3.2, HHCr is in
the domain of π̃r(u) for all u ∈ g and

π̃r(u)|HHCr = Dr(u)|HHCr .(3.9)

But now u1 = ih′ by (2.5) and hence by (2.9) and (3.9) the elements of the orthog-
onal basis, {ϕ(r)

n }, of H are eigenvectors of π̃r(u1) with pure imaginary eigenvalues.
But then π̃r(u1)|HHCr is essentially skew-adjoint. Hence HHCr is clearly the Harish-
Chandra module of πr and, by (3.9), the action of u ∈ g on HHCr is given by
Dr(u)|HHCr .

Let H1 be any nonzero closed subspace of H which is stable under πr(G). Using
the spectral theorem for π̃r(u1) it follows that there exists some n ∈ Z+ such
that ϕ(r)

n ∈ H1. But then using (3.9) it follows that Dr(U(g))(ϕ(r)
n ) ⊂ H1. Thus

HHCr ⊂ H1 by Theorem 2.6. Hence H1 = H. Thus πr is irreducible. But now if
we define ` by

r = 2`− 1,(3.10)

then ` is arbitrary in the interval (0,∞). Furthermore, Sπr = {2`, 2`+ 2, 2`+ 4, ...}
by (2.26). But Cπr = 1

8 (r2 − 1) by (1.3). But 1
8 (r2 − 1) = 1

2 `(` − 1). Thus,
recalling (3.5), (3.6) and Proposition 3.3, πr is equivalent to D−` in the notation of
[Pu]. QED

Let Q be the set of representations {πr} where 0 < |r| < 1. A representation πr
will be called special if πr ∈ Q. It is clear from (1.3) that πr is special if and only
if the infinitesimal character of πr takes a negative value on Cas. It may be noted
from Pukanszky’s list (see p. 102 in [Pu]) that this infinitesimal character is shared
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only by elements in the family (Pukanszky’s notation) Eτq . The family Eτq is the
analogue for G of the complementary series of Sl(2,R). Obviously, Q is a union of
pairs

Q =
⋃

0<r<1

{π−r, πr}.(3.11)

The pairs in (3.11) will be referred to as special pairs.

Remark 3.5. As noted earlier, for 0 < |r| < 1, it is rather striking that whereas
Dr = D−r one has that πr is not equivalent to π−r. That is, if in one case we
restrict Dr to HHCr and in a second case restrict Dr to HHC−r and apply Nelson’s
theorem in both cases, we obtain a special pair of 2 inequivalent irreducible unitary
representations of G on L2((0,∞)).

Write

Q = Q− ∪Q+

where Q− = {πr}, −1 < r < 0 (i.e. in the notation of [Pu], {D−` }, 0 < ` < 1
2 , (see

(3.10)) and where Q+ = {πr}, 0 < r < 1 (i.e. in the notation of [Pu], {D−` }, 1
2 <

` < 1).

Remark 3.6. The subset, Q−, of the unitary dual of G differs in a fundamental way
from the subset Q+. As established by Pukanszky, Q− has zero Plancherel measure
whereas Q+ has positive Plancherel measure. See [Pu], formula (2.19), p. 117. See
also the bottom of p. 102 in [Pu].

3.4. Let exp : g→ G be the exponential map for G. Since G is simply-connected,
one knows that

R→ K, t 7→ exp t(e− f)(3.12)

is a diffeomorphism. Furthermore, if Z = CentG, then Z ⊂ K. Since Z is the
kernel of the adjoint representation and (see (2.5)) e−f = ih′, it follows that Z ∼= Z
and

Z = {expmπ(e− f) | m ∈ Z}.(3.13)

Return to the representation πr. For any element exp t(e− f) ∈ K one has

πr(exp t(e− f))ϕ(r)
n = eit(2n+r+1)ϕ(r)

n(3.14)

by (2.26). The scalar value on H of any central element is then given by

πr(expmπ(e− f)) = eimπ(r+1)I.(3.15)

We have proved

Proposition 3.7. For any m ∈ Z one has expmπ(e − f) ∈ Ker πr if and only if
m(r + 1) ∈ 2Z.

For k = 1, 2, ..., clearlyG/Zk is the k-fold covering of the adjoint group PSl(2,R).
As an immediate consequence of Proposition 3.7 one has

Proposition 3.8. The unitary representation πr descends to a unitary represen-
tation of G/Zk if and only if k( r+1

2 ) ∈ Z.
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Three cases stand out, namely, when k = 1, 2, 4. We may identify

PSl(2,R) = G/Z,

Sl(2,R) = G/Z2,

Mp(2,R) = G/Z4,

(3.16)

where Mp(2,R) is the 2-fold covering of Sl(2,R), the so-called metaplectic group.
But then Proposition 3.8 implies

Proposition 3.9. The unitary representation πr descends to PSl(2,R) if and only
if r is an odd integer.

It descends to Sl(2,R) if and only if r is an integer. From the spectrum (see
(2.26)), in the latter case, πr is a holomorphic discrete series representation if
r = 1, 2, ... and is the so-called limit of such series when r = 0.

The unitary representation πr descends to the metaplectic group Mp(2,R) if and
only if r ∈ 1

2Z.

3.5. It is clear from Proposition 3.9 that {π− 1
2
, π 1

2
} is the only special pair for the

metaplectic group Mp(2,R). From the spectrum (2.26) it is clear that these repre-
sentations are the two components of the “holomorphic” metaplectic representation
µ of Mp(2,R) on L2(R). Recall µ = µeven ⊕ µodd where µeven (resp. µodd) is the
subrepresentation of µ defined by the even (resp. odd) square integrable functions
on R. In this section we will be explicit about the equivalences π− 1

2
∼= µeven and

π 1
2
∼= µodd.
We recall some well-known properties of the metaplectic representation. Let

w ∈ C∞(R) denote the linear coordinate function. Then

Dµ : U(g)→ Diff C∞(R)

is a representaion of U(g) by differential operators where

Dµ(e) =
i

2
w2,

Dµ(h) = w
d

dw
+

1
2
,

Dµ(f) =
i

2
(
d

dw
)2.

(3.17)

Let the Hermite polynomials Hm(w), m = 0, 1, ..., on R be defined as in [Sz], p.
101 (not [Ja]). Thus these polynomials are the Gram-Schmidt orthogonalization
of the monomials 1, w, w2, ..., with respect to the measure e−w

2
dw on R. It then

follows from (5.7.2) in Theorem 5.7.1, p. 104 in [Sz] that ψm(w) = e−
w2
2 Hm(w), for

m = 0, 1, ..., define an orthogonal basis of the Hilbert space L = L2(R) with respect
to Lebesgue measure dw. But now by (5.5.2), p. 102 in [Sz] one has (recalling (2.5))

Dµ(h′)ψm = (m+
1
2

)ψm.(3.18)

For m = 0, 1, ..., let LHCeven be the span ψ2m and let LHCodd be the span of ψ2m+1. Let
LHC = LHCeven ⊕ LHCodd . Now by the second equation in (5.5.10) in [Sz], p. 102 one
has

(− d

dw
+ 2w)Hm = Hm+1.(3.19)
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But then this readily implies (“creation operator”)

(− d

dw
+ w)ψm = ψm+1.(3.20)

Squaring the operator on the left side of (3.20) implies

(
d

dw
)2 − 2w

d

dw
+ w2 − 1)ψm = ψm+2.(3.21)

Lemma 3.10. For m = 0, 1, ..., one has

Dµ(e′)ψm =
i

4
ψm+2.(3.22)

Proof. It is immediate from (2.6) and (3.7) that the differential operator on the left
side of (3.21) equals 4

iDµ(e′). But then (3.22) follows from (3.21). QED

Squaring the “annihilation operator” yields

Lemma 3.11. One has
0 = Dµ(f ′)ψ0

= Dµ(f ′)ψ1.
(3.23)

Proof. Obviously, ψ0(w) = e−
w2
2 . But

d

dw
(e−

w2
2 ) = −w(e−

w2
2 ).(3.24)

Hence,

(
d

dw
+ w)ψ0 = 0.(3.25)

But (3.20) and (3.24) imply that ψ1(w) = 2we−
w2
2 . But then

(
d

dw
+ w)ψ1 = 2ψ0.(3.26)

Hence, ( d
dw +w)2 annihilates ψ0 and ψ1. But ( d

dw +w)2 = ( d
dw )2 + 2w d

dw +w2 + 1.
But then by (2.7) one has ( d

dw + w)2 = 2
iDµ(f ′). This implies (3.23). QED

The argument establishing (2.28) in the proof of Theorem 2.6 when applied in
the present case easily yields

Dµ(f ′)ψm = im(m− 1)ψm−2(3.27)

for m = 2, 3, 4, ... . It follows then from (3.18), (3.22) and (3.27) that LHCeven and LHCodd
are both stable and irreducible under Dµ(U(g)). Next note that, by (3.17), Dµ(u)
is manifestly skew-symmetric for any u ∈ g. In addition, one readily computes that

Dµ(Cas) = − 3
32
.(3.28)

Consequently, as in the proof of Theorem 3.4 one has that Dµ(
∑3

i=1 u
2
i )|LHC is

essentially self-adjoint. Furthermore, Dµ(u1)|LHC is essentially skew-adjoint by
(3.18). Let Leven (resp. Lodd) be the closure of LHCeven (resp. LHCodd ) so that Leven
(resp. Lodd) is the subspace of even (resp. odd) functions in L = L2(R) and of
course

L = Leven ⊕ Lodd.
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As in the proof of Theorem 3.4, Nelson’s Theorem 5, p. 602 in [Ne], applies and now
recovers (without needing the intervention of the Heisenberg group) the following
well-known result about the metaplectic representation.

Proposition 3.12. The representation Dµ|LHC exponentiates to define a unitary
representation µ of G on L = L2(R). Furthermore, µ descends to the metaplectic
group Mp(2,R). Moreover, Leven and Lodd are stable subspaces and respectively
define irreducible unitary representations µeven and µodd of Mp(2,R). Finally,
LHCeven (resp. LHCodd ) is the Harish-Chandra module of µeven (resp. µodd) where any
u ∈ gC operates as Dµ(u)|LHCeven (resp. Dµ(u)|LHCodd ).

Proof. The only matter to be checked is the descent to Mp(2,R). Let g ∈ Z, using
the notation of (3.13), so that g = exp kπ(e− f) for k ∈ Z. But then

µ(g)ψm = eikπ(m+ 1
2 )ψm(3.29)

by (3.18). It follows then that g ∈ Ker µ if and only if g ∈ Z4. But then the result
follows from (3.16). QED

Our definition of Laguerre polynomials L(r)
n is taken from [Ja] and not from [Sz].

Denoting the latter by L
(r)
n (Szego) it follows from a comparison of (1), p. 184 in

[Ja] and (5.1.5), p. 97 in [Sz] that

L(r)
m (Szego) = (−1)m

1
m!
L(r)
m .(3.30)

But then equations (5.6.1), p. 102 in [Sz], writing Hermite polynomials in terms of
Laguerre polynomials, simplifies to

H2m(w) = 22mL
(− 1

2 )
m (w2),

H2m+1(w) = 22m+1wL
( 1

2 )
m (w2).

But then

ψ2m(w) = 22me−
w2
2 L

(− 1
2 )

m (w2),

ψ2m+1(w) = 22m+1we−
w2
2 L

( 1
2 )
m (w2).

(3.31)

But on the other hand, the maps

ηeven : L2((0,∞))→ Leven,
ηodd : L2((0,∞))→ Lodd

are manifestly unitary isomorphisms where, for ϕ ∈ L2((0,∞)),

(ηevenϕ)(w) = |w
2
| 12 ϕ(

w2

2
),

(ηoddϕ)(w) = |w
2
| 12 ϕ(

w2

2
) signw.

(3.32)

But by definition

ϕ
(− 1

2 )
m (x) = x−

1
4 e−xL

(− 1
2 )

m (2x),

ϕ
( 1

2 )
m (x) = x

1
4 e−xL

( 1
2 )
m (2x).
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But then by (3.31) and (3.32)

(ηeven(ϕ(− 1
2 )

m ))(w) = | w
r2
| 12 2

1
4 |w|− 1

2 e−
w2
2 L

(− 1
2 )

m (w2)

= 2−
1
4 e−

w2
2 L

(− 1
2 )

m (w2)

= 2−2m− 1
4ψ2m(w).

(3.33)

Again by (3.31) and (3.32)

(ηodd(ϕ
( 1

2 )
m ))(w) = |w

2
| 12 2−

1
4 |w| 12 signw e−

w2
2 L

( 1
2 )
m (w2)

= 2−
3
4we−

w2
2 L

( 1
2 )
m (w2)

= 2−2m− 7
4ψ2m+1(w).

(3.34)

Theorem 3.13. The unitary isomorphism ηeven : L2((0,∞))→ Leven (see (3.32))
intertwines the irreducible unitary representations π− 1

2
and µeven of the metaplec-

tic group Mp(2,R). Also the unitary isomorphism ηodd : L2((0,∞)) → Lodd inter-
twines the irreducible unitary irreducible representations π 1

2
and µodd of Mp(2,R).

Proof. It is clear from (3.33) and (3.34) that

ηeven(HHC− 1
2

) = LHCeven,

ηodd(HHC1
2

) = LHCodd .
(3.35)

Since all the unitary representations in question arise by application of Nelson’s the-
orem, it suffices to show, for all u ∈ gC, (1) that ηeven|HHC− 1

2
intertwinesD− 1

2
(u)|HHC− 1

2

and Dµ(u)|LHCeven and (2) that ηodd|HHC1
2

intertwines D 1
2
(u)|HHC1

2
and Dµ(u)|LHCodd .

But since e and e′ clearly generate the Lie algebra gC it suffices to prove (1) and
(2) only for u = e and u = e′. In the case u = e, (1) and (2) are obvious from (1.1),
(3.17) and (3.32). Now assume u = e′. By (2.26), (3.22) it follows from (3.33) that

ηeven(D− 1
2
(e′)ϕ(− 1

2 )
m ) = ηeven(iϕ(− 1

2 )
m+1 )

= i2−2(m+1)− 1
4ψ2(m+1)

= 2−2m− 1
4 (
i

4
)ψ2(m+1)

= Dµ(e′)2−2m− 1
4ψ2m

= Dµ(e′)ηeven(ϕ(− 1
2 )

m ).

This establishes (1). The argument establishing (2), using (3.34) is identical. QED

4. Distribution theory on (0,∞) and the spaces H∞r and H−∞r
4.1. As usual −1 < r <∞. A function ϕ ∈ L2((0,∞))(= H) is called πr-smooth
if G → H, g 7→ πr(g)(ϕ) is a C∞-map. Let H∞r be the space of all πr-smooth
vectors in H. We recall some properties of H∞r . See [Ca]. Also see §4.4, p. 252
in [Wa]. First of all H∞r is contained in the domain of π̃r(u) for any u ∈ g. The
restriction of π̃r(u) to H∞r stabilizes H∞r and defines a representation of g on H∞r .
This then extends to a representation

U(g)→ EndH∞r .(4.1)
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Also, H∞r is stable under πr(g) for any g ∈ G. But now if Disto(G) denotes the
convolution algebra of distributions of compact support on G, then we may regard
G ⊂ Disto(G) when G is identified with the group of Dirac measures. In addition,
U(g) ⊂ Disto(G) when U(g) is identified with the algebra of distributions having
support at the identity. But one has a representation

π∞r : Disto(G)→ EndH∞r(4.2)

where if ν ∈ Disto(G) and ϕ ∈ H∞r , then

π∞r (ν)ϕ =
∫
G

πr(g)ϕν(g)dg.(4.3)

The homomorphism π∞r extends the domain of (4.1) and in addition includes
πr(g)|H∞r for any g ∈ G. If ‖ϕ‖ = {ϕ,ϕ} 1

2 for any ϕ ∈ H, one defines a Fréchet
topology on H∞r by taking as semi-norms ‖ϕ‖v = ‖πr(v)ϕ‖ for v ∈ U(g) and
ϕ ∈ H∞r . We will refer to this topology as the πr-Fréchet topology. The image of
(4.2) are continuous operators and hence, by transpose, define operators on the con-
tinuous dual to H∞r . This may be put in a neater form. One defines a ∗-operation
on Disto(G), ν 7→ ν∗, by defining ν∗ so that∫

G

ψ(g)ν∗(g)dg =
∫
G

ψ(g−1)ν(g)dg

for any ψ ∈ C∞o (G). Here C∞o (G) is the space of C∞ functions of compact support
onG. It is easy to see that this ∗-operation is an extension of the ∗-operation defined
on gC considered in (3.1). Clearly, there now exists a vector space (πr-tempered
distributions) H−∞r and a sesquilinear form {ϕ, ρ} for ϕ ∈ H∞r and ρ ∈ H−∞r such
that ϕ 7→ {ϕ, ρ} is a continuous linear functional onH∞r and every continuous linear
functional is uniquely of this form. See e.g. [Ca]. Clearly, one has a representation

π−∞r : Disto → EndH−∞r(4.4)

so that for ϕ ∈ H∞r , ρ ∈ H−∞r and ν ∈ Disto(G),

{π∞r (ν∗)ϕ, ρ} = {ϕ, π−∞r (ν)ρ}.

The map ϕ 7→ {ϕ, ψ} for ϕ ∈ H∞r and ψ ∈ H, where {ϕ, ψ} is the ordinary
inner product in H, is clearly a linear functional on H∞r which is continuous with
respect to the πr-Fréchet topology. In this way one has an embedding of L2((0,∞))
in H−∞r and hence inclusions

H∞r ⊂ L2((0,∞)) ⊂ H−∞r .(4.5)

Furthermore,

π−∞r (ν)|H∞r = π∞r (ν)(4.6)

for any ν ∈ Disto(G). Thus H∞r as a Disto(G)-module defined by (4.2) is just a
submodule of H−∞r (defined by (4.4)). In particular, both G and U(g) operate on
H−∞r and

π−∞r (g)|L2((0,∞)) = πr(g).

For any u ∈ g let Domr(u) be the domain of π̃r(u). If u ∈ g, note that

π̃r(u) = π−∞r (u)|Domr(u).(4.7)
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Indeed, this is clear since if ϕ ∈ H∞r and ψ ∈ Domr(u), one has

{−π∞r (u)ϕ, ψ} = {ϕ, π̃r(u)ψ}.(4.8)

The equality (4.8) follows from the obvious fact that H∞r ⊂ Domr(u) and

π∞r (u) = π̃r(u)|H∞r .(4.9)

For completeness we should note that, as a consequence of Theorem 3.4, one has

HHCr ⊂ H∞r(4.10)

and by (4.9) and (3.9)

Dr(u)|HHCr = π∞r (u)|HHCr .(4.11)

A vector ϕ ∈ H will be called πr-analytic if the map G → H, g 7→ πr(g)ϕ is
analytic. In such a case obviously ϕ ∈ H∞ and one knows (Harish-Chandra, see
Theorem 4.4.5.4, p. 278 in [Wa]) that there exists a neighborhood, U of 0 in g such
that for any u ∈ U the left side of (4.12), below, converges in L2 and

∞∑
m=0

1
m!
π∞r (um)ϕ = πr(exp u)ϕ.(4.12)

Proposition 4.1. Any ϕ ∈ HHCr is πr-analytic. Furthermore, if u ∈ g, then
Dr(u)|HHCr is essentially skew-adjoint. That is, π̃r(u) is the operator closure of
Dr(u)|HHCr .

Proof. One has, restating (3.9),

Dr(u)|HHCr = π̃r(u)|HHCr .(4.13)

It is a theorem of I.E. Segal (see [Se]) that π̃r(u) is the operator closure of the
restriction of π∞r (u) to the Garding space. But then π̃r(u) is the operator clo-
sure of Dr(u)|HHCr by the last statement of Nelson’s Theorem 5 in [Ne]. That is,
Dr(u)|HHCr is essentially skew-adjoint. This and more also follows directly from
[Ne]. Indeed, put A = Dr(

∑3
j=1 u

2
i ), using the notation of (3.7). Let ϕ ∈ HHCr .

But ϕ is a finite sum of eigenvectors for A. Obviously, ϕ is then an analytic vector
for A − 1, in the terminology of [Ne]. But then, by Lemma 6.2 in [Ne], ϕ is an
analytic vector for Dr(u) for any u ∈ g. This implies that Dr(u)|HHCr is essentially
skew-adjoint by Lemma 5.1 in [Ne]. Finally, any ϕ ∈ HHCr is a πr-analytic vector by
Goodman’s theorem. Stated as Theorem 4.4.6.1 in [Wa] one notes, in the notation
of that theorem, ϕ is an analytic vector for B since it is, clearly, a finite sum of
eigenvectors for B. QED

Remark 4.2. As a consequence of the phenomenon noted in Remark 3.5, one cannot
have the equality of π−∞r (u) with the differential operator Dr(u) on all infinitely
differentiable functions in L2((0,∞)) for all u ∈ g when 0 < |r| < 1. Indeed, for
such values of r the equality of π−∞r (u) and Dr(u) for all u ∈ g must already
fail on HHC−r . In fact, by Remark 3.5, (2.26), and using the notation of (3.7), the
operator Dr(u1)|HHC−r has eigenvalues which cannot be eigenvalues of π−∞r (u1)|H.
If π−∞r (u1) had such an eigenvalue, the corresponding nonzero eigenvector, by
necessity, would have to be orthogonal to each element of the orthogonal basis
{ϕrn} of H. This is of course a contradiction.
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4.2. Recall that Dr(e) = ix.

Proposition 4.3. If φ ∈ H∞r , then (ix)kφ(x) ∈ H∞r for any k ∈ Z+. Furthermore,

π∞r (ek)φ(x) = (ix)kφ(x).(4.14)

Also, for any t ∈ R,

πr(exp te)ψ(x) = eitxψ(x)(4.15)

for any ψ ∈ L2((0,∞)).

Proof. Let φ ∈ H∞r . Then φ is in the domain of the closure of Dr(e)|HHCr by
Proposition 4.1. Thus there is a sequence φn ∈ HHCr such that φn converges to
φ and ixφn converges to π∞r (e)(φ) in L2((0,∞)). But then, almost everywhere,
φnj converges to φ and ixφnj converges to π∞r (e)(φ) for some subsequence φnj of
φn. But this implies π∞r (e)(φ) = ixφ. In particular, ixφ ∈ H∞r . By iteration one
obtains (4.14) and the first statement of Proposition 4.3.

Let ψ ∈ HHCr . Then since ψ is a πr analytic vector by Proposition 4.1, there
exists a neighborhood V of 0 in R such that for t ∈ V the left side of (4.16) below
converges in L2 and

∞∑
m=0

1
m!
tmDr(em)ψ = πr(exp te)ψ.(4.16)

In particular, a subsequence of the sequence of cut-off sums on the left side of (4.16)
converges almost everywhere to the right side of (4.15). But the left side of (4.16)
converges everywhere to eitxψ(x). Thus πr(exp te)ψ(x) = eitxψ(x). But then if
A is the skew-adjoint infinitesimal generator (given by Stone’s theorem) of the 1-
parameter group, t 7→ eitx, of unitary operators on H, one has that HHCr is in the
domain of A and A|HHCr = Dr(e). But Dr(e)|HHCr is essentially skew-adjoint by
Proposition 4.1 and hence A = π̃r(e). This proves (4.15). QED

4.3. If X is a manifold, let M(X) denote the space of Borel measurable functions
on X and if µ is a Borel measure on X , let L2(x, µ) be the Hilbert space of square
integrable functions on X with respect to µ. Let α : M((0,∞)) → M((0,∞)) be
the linear isomorphism defined by putting

α(ϕ)(x) = x
1
2ϕ(x).(4.17)

It is immediate that

α : H → L2((0,∞),
dx

x
)(4.18)

is a unitary isomorphism and one notes that dx
x is Haar measure on (0,∞) as a

multiplicative group. Next note that

α : C∞((0,∞))→ C∞((0,∞))(4.19)

is a linear isomorphism and 2x d
dx is a left- (or right)-invariant vector field on (0,∞)

with respect to the multiplicative group structure. Recall that Dr(h) = 2x d
dx + 1.

One easily has

2x
d

dx
◦ α = α ◦Dr(h)(4.20)

on C∞((0,∞)). Now ε : R→ (0,∞) is an isomorphism of Lie groups where ε(w) =
ew. Let β : M((0,∞)) → M(R) be defined by putting β(ψ) = ψ ◦ ε. Then clearly
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β : L2((0,∞), dxx ) → L2(R, dw) is a unitary isomorphism and β : C∞((0,∞)) →
C∞(R) is an algebra isomorphism. Furthermore, β◦2x d

dx = 2 d
dw ◦β on C∞((0,∞)).

Finally, let γ = β ◦ α. Then by composition

γ : H → L2(R, dw)(4.21)

is a unitary isomorphism. Furthermore,

γ : C∞((0,R))→ C∞(R)(4.22)

is a linear isomorphism

2
d

dw
◦ γ = γ ◦Dr(h)(4.23)

on C∞((0,R)). We are now ready to establish that the functions in H∞r are
(infinitely) smooth.

Proposition 4.4. One has

H∞r ⊂ C∞((0,∞)).(4.24)

Also, the 1-parameter group of unitary operators on H, t 7→ πr(exp th), is given by

πr(exp th)(ϕ)(x) = etϕ(e2tx)(4.25)

for any ϕ ∈ H.

Proof. Let W be the space of all functions in L2(R, dw) which are absolutely con-
tinuous on every finite interval and whose first derivative is again in L2(R, dw).
Then it is classical that 2 d

dw operating on W defines a skew-adjoint operator B.
(See e.g. Example 3, p. 198 in [Yo].) Let V = γ(HHCr ) so that by (4.21), (4.22)
and (4.23) one has

V ⊂ C∞(R) ∩ L2(R, dw)

and that furthermore, V is stable under 2 d
dw . But clearly V ⊂ W and

B|V = 2
d

dw
|V.

But 2 d
dw |V is essentially skew-adjoint by Proposition 4.1, and hence B must be the

closure of 2 d
dw |V . Also, one must have

W = γ(Domr(h))

(using the notation of Remark 4.1) and

B ◦ γ = γ ◦ π̃r(h)(4.26)

on Domr(h). But since, obviously, H∞r ⊂ Domr(h), one has

V ⊂ Y ⊂ W(4.27)

where Y = γ(H∞r ) and

B ◦ γ = γ ◦ π∞r (h)(4.28)

on H∞r . But H∞r is stable under π∞r (h). Hence, Y is stable under B by (4.28). But
then, by the definition of B, one must have Y ⊂ C∞(R). Thus H∞r ⊂ C∞((0,∞))
by inverting (4.23).

It is classical and immediate that the 1-parameter group of unitary operators,
etB, on L2(R, dw) generated by B, is the translation group given by etBϕ(w) =
ϕ(w + 2t) for any ϕ ∈ L2(R, dw). It follows then from (4.26) and the definition of
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π̃r(h) that etB ◦ γ = γ ◦ πr(exp th). But if t 7→ π(t) is the 1-parameter group of
unitary operators on H defined by the right side of (4.25), then, by the definition
of γ, clearly etB ◦ γ = γ ◦ π(t). This proves (4.25). QED

4.4. Let C∞o ((0,∞)), Disto((0,∞)) and Dist((0,∞)) be, respectively, the spaces,
on (0,∞), of all C∞ functions of compact support, all distributions of compact
support and the space of all distributions.

Remark 4.5. As one easily sees, the differential operators, Dr(u), for u ∈ g (see
(1.1)) are “formally skew-symmetric” in the sense that they are skew-symmetric
for pairings when d

dx operates as a skew-symmetric operator. This is certainly the
case of a pairing of φ ∈ C∞((0,∞)) with ψ ∈ C∞o ((0,∞)). That is, for any u ∈ g,∫ ∞

0

Dr(u)ψ(x)φ(x)dx = −
∫ ∞

0

ψ(x)Dr(u)φ(x)dx.(4.29)

Another theorem of Nelson enables us to establish

Proposition 4.6. One has

C∞o ((0,∞)) ⊂ H∞r(4.30)

and for any u ∈ g one has

Dr(u)|C∞o ((0,∞)) = π∞r (u)|C∞o ((0,∞)).(4.31)

Proof. By (4.29) one has

{Dr(u)ψ, φ} = −{ψ,Dr(u)φ}(4.32)

for any φ ∈ HHCr and ψ ∈ C∞o ((0,∞)). Let ∆ =
∑3
i=1 u

2
i using the notation of

(3.7). Then (4.32) implies

{Dr(∆)ψ, φ} = {ψ,Dr(∆)φ}.(4.33)

But, as established in the proof of Theorem 3.4, Dr(∆)|HHCr is essentially self-
adjoint. Let A be the closure of Dr(∆)|HHCr . Then (4.33) implies

C∞o ((0,∞)) ⊂ Dom(A)(4.34)

and

A|C∞o ((0,∞)) = Dr(∆)|C∞o ((0,∞)).(4.35)

But since π∞r (∆) is clearly a symmetric extension of Dr(∆)|HHCr , it follows that
A is the closure of π∞r (∆). But C∞o ((0,∞)) is stable under A by (4.35). Thus
C∞o ((0,∞)) ⊂ Dom(Ak) for all k ∈ Z+. But then C∞o ((0,∞)) ⊂ H∞r by The-
orem 4.4.4.5, p. 270 in [Wa] (another result of Nelson). But then (4.32) implies
(4.31) since HHCr is Hilbert space dense in H. QED

4.5. We can now prove that (4.31) is true when we replace C∞o ((0,∞)) by H∞r .
Recall that H∞r ⊂ C∞((0,∞)) by (4.24). One should keep in mind the possible
non-equality of Dr(u) with π−∞r (u) on C∞((0,∞)) ∩ H when 0 < |r| < 1. See
Remark 4.2.

Proposition 4.7. For any u ∈ g one has

π∞r (u) = Dr(u)|H∞r .(4.36)
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See (4.24). Furthermore, the injection map

H∞r → C∞((0,∞))(4.37)

is continuous where H∞r has the πr-Fréchet topology (see §4.1) and C∞((0,∞))
(written as E((0,∞)) in distribution theory) has the Fréchet toplogy defined as in
distribution theory. That is, uniform convergence of all derivatives on compact sets.

Proof. Let ψ ∈ C∞o ((0,∞)), φ ∈ H∞r and u ∈ g. Then, by (4.31), {Dr(u)ψ, φ} =
−{ψ, π∞r (u)φ}. But then, by (4.29),∫ ∞

0

ψ(x)(Dr(u)φ(x) − π∞r (u)φ(x))dx = 0.

Since ψ ∈ C∞o ((0,∞)) is arbitrary, this clearly implies Dr(u)φ(x) = π∞r (u)φ estab-
lishing (4.36).

Now assume that a sequence φn converges to zero in H∞r with respect to the
πr-Fréchet topology. Then, recalling (1.1), for any k ∈ Z+, with the norm in H,
‖(2x d

dx + 1)kφn(x)‖ converges to zero. With the notation of (4.21) one has that
ϕn ∈ C∞(R) and (2 d

dw )kϕn converges to zero in L2(R, dw). That is, using the
notation of §8, p. 55 in [Sc], ϕn converges to 0 in DL2 . But then it is classical that
ϕn converges to zero in E(R). (See the inclusion on p. 166 in [Sc]. One multiplies
by a suitable function in D(R) and uses integration by parts.) But now since x is
bounded away from 0 and also from above on any closed subinterval [a, b] ⊂ (0,∞),
it follows by induction, that ( ddx )kφn converges to 0 uniformly on [a, b]. This proves
the continuity of (4.37). QED

4.6. Let ρ ∈ H−∞r . Then, by (4.30),

ψ 7→ {ψ, ρ}(4.38)

defines a linear functional on C∞o ((0,∞)).

Lemma 4.8. Let D((0,∞)) denote C∞o ((0,∞)) when endowed with the LF-
topology of distribution theory. Then (4.38) is continuous. That is, (4.38) defines
an element in Dist((0,∞)).

Proof. We have only to show that if ψn is a sequence in C∞o ((0,∞)) with support
in some closed interval [a, b] ⊂ (0,∞) such that ( d

dx)kψn converges uniformly to 0
in [a, b] for any k ∈ Z+, then

{ψn, ρ} converges to 0.(4.39)

But, recalling (4.31), the assumption on ψn clearly implies that if B is any dif-
ferential operator on (0,∞) with coefficients in the ring C[x, x−1], then, with the
H-norm, ‖B(ψn)‖ converges to zero. But then, recalling (1.1), ‖Dr(v)(ψn)‖ con-
verges to zero for any v ∈ U(g). But by (4.31) this implies ψn converges to 0 in the
πr-Fréchet topology. But then one has (4.39). QED

4.7. As a consequence of Lemma 4.8 one has a linear map

ζr : H−∞r → Dist ((0,∞))(4.40)

such that for any ρ ∈ H−∞r and ψ ∈ C∞o ((0,∞)),

{ψ, ρ} =
∫ ∞

0

ψ(x)ζr(ρ)(x)dx.(4.41)
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It will be established later, in Theorem 5.26, that C∞o ((0,∞)) is not dense in
H∞r with respect to the πr-Fréchet topology. In particular, using the Hahn-Banach
theorem, the kernel of ζr is always non-trivial. For the case 0 < |r| < 1 this can be
established now.

Proposition 4.9. If 0 < |r| < 1, then C∞o ((0,∞)) is not dense in H∞r with respect
to the Fréchet topology of §4.1. In particular, (via the Hahn-Banach theorem) the
kernel of ζr is non-trivial.

Proof. Let ψ ∈ H∞r , ϕ ∈ HHC−r and u ∈ g. Assume C∞o ((0,∞)) is dense in
H∞r . Then there exists a sequence ψn ∈ C∞o ((0,∞)) such that (see (4.31)) ψn
and Dr(u)ψn respectively converge to ψ and π∞r (u)ψ in H. But {Dr(u)ψn, ϕ} =
−{ψn, Dr(u)ϕ} by (4.29). Taking the limit implies {π∞r (u)ψ, ϕ} = −{ψ,Dr(u)ϕ}.
But {π∞r (u)ψ, ϕ} = −{ψ, π−∞r (u)ϕ}. Hence, one has the equality Dr(u)ϕ =
π−∞r (u)ϕ. This contradicts the statement of Remark 4.2. QED

Remark 4.10. For the case (metaplectic case) where r = ± 1
2 one can already exhibit

elements in Ker ζr. Indeed, let η− 1
2

= ηeven and η 1
2

= ηodd using the notation of
(3.32). Then clearly, from (3.32), ηr(ϕ) vanishes in a neighborhood of 0 for any
ϕ ∈ C∞o ((0,∞)). However, one must have that η(H∞r ) equals the space of even
Schwartz functions or odd Schwartz functions according to whether r = − 1

2 or
r = 1

2 . Upon extending the domain of ηr to H−∞r the image of H−∞r is, accordingly,
the space of even or odd tempered distributions. But then (η− 1

2
)−1(δ0) ∈ Ker ζ− 1

2

and (η 1
2
)−1(δ′0) ∈ Ker ζ 1

2
where δ0 is the Dirac measure at the origin and δ′0 is its

first derivative.

If V ⊂ Dist ((0,∞)) is a subspace, then a linear map

ξV : V → H−∞r
will be called a cross-section of ζr in case ζr ◦ ξV is the identity on V . When ξV
is a specified cross-section and there is no possibility of ambiguity we will, when
suitable, identify V with ξV (V ). We have already done so when V = L2((0,∞)).
We now do so when V = Disto((0,∞)).

Proposition 4.11. We may (and will) embed Disto((0,∞)) in H−∞r so that for
any ϕ ∈ H∞r and ν ∈ Disto((0,∞)) one has

{ϕ, ν} =
∫ ∞

0

ϕ(x) ν(x)dx.(4.42)

Proof. We have only to establish that the linear functional on H∞r defined by the
right side of (4.42) is continuous with respect to the πr-Fréchet topology on H∞r .
But this is immediate from the continuity of (4.37). Recall that Disto((0,∞)) is
the dual space to E((0,∞)). QED

Remark 4.12. A very important consequence, for us, of Proposition 4.11 is the now
established fact that δy ∈ H−∞r for any y ∈ (0,∞) where δy is the Dirac measure
at y.

Next, let V1 ⊂ Dist(R) be the space of all Borel measurable functions ρ on
(0,∞) such that (A),

ρ|(0, 1) ∈ L2((0, 1), dx)(4.43)
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and (B), there exists a positive constant C and k ∈ Z+ (with k and C dependent
on ρ) such that, on [1,∞),

|ρ(x)| < Cxk.(4.44)

We now find that V1 also embeds in H−∞r .

Proposition 4.13. We may (and will) embed V1 in H−∞r such that for any ϕ ∈
H−∞r and ρ ∈ V1 the integrand on the right side of (4.45) below is in L1((0,∞), dx)
and

{ϕ, ρ} =
∫ ∞

0

ϕ(x)ρ(x)dx(4.45)

Proof. Since ϕ ∈ H one has ϕ|(0, 1) ∈ L2((0, 1), dx). But then

ϕρ|(0, 1) ∈ L1((0, 1), dx)(4.46)

by (4.43). Let C and k be as in (4.44). Then, by (4.44),

x−(k+1)ρ(x)|[1,∞) ∈ L2([1,∞), dx).(4.47)

On the other hand, π∞r (ek+1)(ϕ) ∈ H∞r . In particular, π∞r (ek+1)(ϕ) ∈ H. But
π∞r (ek+1)(ϕ)(x) = (ix)k+1ϕ(x) by (1.1) and (4.36). Thus

(ix)k+1ϕ(x)|[1,∞) ∈ L2([1,∞), dx).

Multiplying by the conjugate of the function in (4.47), together with (4.46), proves
that the integrand on the right side of (4.45) is absolutely integrable on (0,∞).
Now assume that ϕn ∈ H∞r converges to zero in the πr-Fréchet topology. We have
only to show that ∫ ∞

0

ϕn(x)ρ(x)dx converges to 0.(4.48)

But now, among other conditions, ϕn converges to 0 in H. Thus ϕn|(0, 1) converges
to zero in L2((0, 1), dx). Hence, by (4.43),∫ 1

0

ϕn(x)ρ(x)dx converges to 0.(4.49)

But also ‖π∞r (ek+1)ϕn‖ converges to zero. Thus, in particular, xk+1ϕn(x)|[1,∞)
converges to 0 in L2([1,∞), dx). But then, upon multiplication with the conjugate
of the function in (4.47),∫ ∞

1

ϕn(x)ρ(x)dx converges to 0.

But then (4.48) follows from (4.49). QED

4.8. Let ψ(r)
n = ( 1

2r+1n! Γ(n+ r + 1))−
1
2ϕ

(r)
n so that, by (2.3), {ψ(r)

n }, n = 0, 1, ...,
is an orthonormal basis of L2((0,∞), dx). By classical Hilbert space theory any
ϕ ∈ H has the expansion

ϕ =
∞∑
n=0

anψ
(r)
n(4.50)
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where an = {ϕ, ψ(r)
n }. We will refer to (4.50) as the Fourier-Laguerre expansion (of

type r) of ϕ. For j ∈ Z+ let ϕj =
∑j

n=0 anψ
(r)
n so that ϕj ∈ HHCr and

lim
j→∞

ϕj = ϕ(4.51)

in H. Now assume ϕ ∈ H∞r . As in the proof of Proposition 4.6 let ∆ =
∑3

i=1 u
2
i .

Then, for any m ∈ Z+, clearly

{π∞r ((∆ − 1)m)ϕ, ψ(r)
n } = {ϕ, π∞r ((∆− 1)m)ψ(r)

n }.

But then since the ψ(r)
n are eigenvectors for π∞r ((∆− 1)m), by (3.8), one has

π∞r ((∆− 1)m)(ϕj) = (π∞r ((∆ − 1)m)(ϕ))j .(4.52)

But by (4.51) this implies

lim
j→∞

π∞r ((∆ − 1)m)(ϕj) = π∞r ((∆− 1)m)(ϕ)(4.53)

in H.

Lemma 4.14. Let v ∈ U(g). Then π∞r (v)(ϕj) is a Cauchy sequence in H.

Proof. Let UR(g) be the enveloping algebra of g, defined using only coefficients in
R. Since U(g) = UR(g) + iUR(g), it clearly suffices to assume v ∈ UR(g). But
then v ∈ UR(g)2m for some m ∈ Z+, using the notation of the standard filtration
of UR(g). But by (6.7), p. 588 in [Ne] there exists a constant k such that for any
i, j ∈ Z+ with i < j,

‖π∞r (v)ϕj − π∞r (v)ϕi‖ = ‖π∞r (v)(ϕj − ϕi)‖
≤ k‖π∞r ((∆− 1)m)(ϕj − ϕi)‖
= k‖π∞r ((∆− 1)m)(ϕj)− π∞r ((∆− 1)m)(ϕi)‖.

This proves the lemma since π∞r ((∆ − 1)m)(ϕj) is Cauchy by (4.53). QED

In contradistinction to the non-density statement of Theorem 4.9 for C∞o ((0,∞))
one has

Proposition 4.15. The subspace HHCr is dense in H∞r with respect to the πr-
Fréchet topology on H∞r . In fact, if ϕ ∈ HHCr and ϕj ∈ HHCr is defined as in
(4.51), then ϕj converges to ϕ in the πr-Fréchet topology of H∞r .

Proof. Let ϕ ∈ H∞r and let v ∈ U(g). Then ϕ is contained in the domain of the
closure of π∞r (v)|HHCr by (4.51) and Lemma 4.14. On the other hand, π∞r (v) is an
extension of π∞r (v)|HHCr . But, using (4.9), it is clear that π∞r (v) itself admits a
closure (the dense subspace H∞r is in the domain of its adjoint). Hence, one must
have, in the notation of Lemma 4.14,

lim
j→∞

π∞r (v)(ϕj) = π∞r (v)ϕ.(4.54)

That is ‖ϕj − ϕ‖v converges to 0. QED
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4.9. As a consequence of Proposition 4.15 we may introduce a vector space H−HCr

where

H−∞r ⊂ H−HCr(4.55)

and there is a sesquilinear form {ψ, ρ} for ψ ∈ HHCr and ρ ∈ H−HCr which extends
the sesquilinear pairing of HHCr and H−∞r and is such that every (algebraic) linear
functional on HHCr is uniquely of the form ψ 7→ {ψ, ρ} for a unique ρ ∈ H−HCr .
Furthermore, if (U(g),K) is the subalgebra of Disto(G) generated by U(g) and K
one has a representation

π−HCr : (U(g),K)→ EndH−HCr(4.56)

such that in the notation defining (4.4), for ψ ∈ HHCr , ρ ∈ H−HCr and ν ∈
(U(g),K),

{π∞r (ν∗)ψ, ρ} = {ψ, π−HCr (ν)ρ}.
It is immediate that

π−∞r (ν) = π−HCr (ν)|H−∞r(4.57)

5. Whittaker vectors, Bessel functions and the Hankel transform

5.1. We will consider the classical Bessel functions Jr(x) restricted to (0,∞)
where, as usual in this paper, r ∈ (−1,∞). By definition Jr(x) is the solution
of the differential equation

(x2(
d

dx
)2 + x

d

dx
+ x2 − r2)J(x) = 0(5.1)

which is given explicitly by the well-known power series (1.17.1), p. 14 in [Sz]. It
has the property that one can write

Jr(x) = xrJ∗r (x)(5.2)

where J∗r is an entire function on C which is real on (0,∞) and is such that J∗r (0) =
2−r.

Remark 5.1. For the special values of r where 0 < |r| < 1 the functions Jr(x) and
J−r(x) are 2 linearly independent solutions of (5.1). Hence Jr(x) and J−r(x) span
the space of all solutions. See e.g. bottom paragraph “To sum up...” of p. 43 in
[Wt].

One also knows that as, x −→∞,

Jr(x) = O(x−
1
2 ).(5.3)

See e.g. (1.71.7), p. 15 or (1.71.11), p. 16 in [Sz]. Now for any y ∈ (0,∞) let Jr,y
be the function on (0,∞) defined by putting

Jr,y(x) = Jr(2
√
yx).(5.4)

Proposition 5.2. Using the notation of Proposition 4.13 one has, for any y ∈
(0,∞), Jr,y ∈ V1 so that Jr,y ∈ H−∞r .

Proof. Clearly, by (5.2), Jr,y(x) = O(x
r
2 ) as x approaches 0. Since Jr,y is smooth,

it follows that Jr,y|(0, 1) ∈ L2((0, 1), dx). On the other hand, by (5.3), there exists
a positive constant C such that |Jr,y(x)| < Cx−

1
4 on [1,∞). In particular,

|Jr,y(x)| < C(5.5)

on [1,∞). This proves that Jr,y ∈ V1. QED
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5.2. Now for any ϕ ∈ H∞r let Tr(ϕ) be the function on (0,∞) defined so that for
y ∈ (0,∞),

Tr(ϕ)(y) = {ϕ, Jr,y}.(5.6)

Dropping the factor 2 in Jr,y let J ′r,y ∈ V1 be the function defined by putting
J ′r,y(x) = Jr(

√
yx) and let T ′r(ϕ)(y) = 1

2{ϕ, J ′r,y}. Regard Tr and T ′r as linear maps
from H∞r to the space Φ of all functions on (0,∞). Let R be the operator on Φ
defined so that, for φ ∈ Φ and y ∈ (0,∞), Rφ(y) = 1√

2
φ(y2 ). Note that, by (4.25),

if ao ∈ G is given by ao = exp toh for to = −log
√

2, then

R|H = πr(ao).(5.7)

In particular, R−1 and R stabilize H∞r and one notes that

RTrR
−1 = T ′r.(5.8)

Now recall that the Laguerre functions ϕ(r)
n are given by ϕ(r)

n (x) = x
r
2 e−xL

(r)
n (2x).

But then

Rϕ(r)
n (x) = 2−

(r+1)
2 ϕ[r]

n (x)(5.9)

where we define ϕ[r]
n ∈ H∞r by putting

ϕ[r]
n (x) = x

r
2 e−

x
2L(r)

n (x).(5.10)

Let H[HC]
r be the span of the functions {ϕ[r]

n }, n = 0, 1, . . . .

Remark 5.3. Note that, by (5.7), the functions {ϕ[r]
n }, n = 0, 1, ..., are again an

orthogonal basis of H and that H[HC]
r ⊂ H is the Harish-Chandra module for πr

when K is replaced by the conjugate group K ′ = aoK a−1
o .

The following is a famous result with a long and interesting history.

Theorem 5.4. For n = 0, 1, ..., one has

T ′rϕ
[r]
n = (−1)nϕ[r]

n .(5.11)

Remark 5.5. Carl Herz in [He] says that the result is implicit in work of Sonine.
He also cites an early 20th century reference but that reference deals only with the
case r = 0. In [He], Herz establishes the result in great generality where (0,∞) is
replaced by a space of matrices. G.H. Hardy claims the result in [Ha]. However, he
gives a proof only for a restricted set of values for r. The complete result is given
as Exercise 21, p. 371 in [Sz] with some hints and a reference to [Ha].

For an understanding of Theorem 5.4 we will present a proof given to us by John
Stalker. It begins with the following equality∫ ∞

0

Jr(at)e−st
2
tr+1dt =

ar

(2s)r+1
e−

a2
4s(5.12)

where s ∈ C and Re s > 0. Equation (5.12) is established in [Wt], §13.3 (4),
p. 394 where we have written s = p2. Watson remarks that (5.12) is the basis
of investigations of Sonine in an 1880 paper. Writing t2 = x and a2 = y, (5.12)
becomes the following Laplace transform equality

1
2

∫ ∞
0

Jr(
√
yx)x

r
2 e−sxdx =

y
r
2

(2s)r+1
e−

y
4s .(5.13)
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Remark 5.6. Note that Theorem 5.4, for the case n = 0, is established by (5.13)
by putting s = 1

2 . The proof of (5.12) in [Wt] is straightforward as soon as Watson
justifies the term-by-term integration of the power series expansion of J ′r,y(x).

Proof of Theorem 5.4. (Stalker). Now it is well-known (see e.g. [Ja], §4 of Chapter
X, p. 187) that

∞∑
n=0

(−1)nL(r)
n (x)

tn

n!
= (1− t)−(r+1)e

−xt
1−t(5.14)

as an equality of two analytic functions in (x, t) where x is arbitrary and |t| < 1.
Multiplying both sides of (5.14) by x

r
2 e−

x
2 one has

∞∑
n=0

(−1)nϕ[r]
n (x)

tn

n!
= (1− t)−(r+1)x

r
2 e−

x
2

1+t
1−t .(5.15)

Now put s = 1
2

1+t
1−t and note that Re s > 0 when |t| < 1. Substituting this

expression for s in (5.13) one has

1
2

∫ ∞
0

Jr(
√
yx)x

r
2 e−

x
2

1+t
1−t dx = y

r
2 (

1− t
1 + t

)r+1e−
y
2

1−t
1+t

and hence
1
2

∫ ∞
0

Jr(
√
yx)(1 − t)−(r+1)x

r
2 e−

x
2

1+t
1−t dx = (1 + t)(r+1)y

r
2 e−

y
2

1−t
1+t .(5.16)

But Jr(
√
yx)x

r
2 , as a function of x, is integrable at 0 by (5.2) and is bounded by a

constant multiple xk, for k sufficiently large, as x tends to ∞ by (5.3). Thus if one
differentiates (5.13) n-times for any n ∈ Z+, with respect to s, and then sets s = 1

2 ,
the computation on the left side can be carried out under the integral sign. But
since s is an analytic function of t for |t| < 1, the same differentiation statement is
true for (5.16) where t replaces s and we set t = 0. But then Theorem 5.4 follows
from (5.15). QED

Since the elements {ϕ[r]
n } are an orthogonal basis of H (see Remark 5.3), it

follows immediately from Theorem 5.4 that there exists a unique unitary operator
U ′r on H such that U ′r|H

[HC]
r = T ′r|H

[HC]
r and that furthermore U ′r has order 2.

The operator U ′r is often referred to as the Hankel transform. However, it is more
convenient here to make a slight change (conjugating by πr(a−1

o )) and refer to this
altered operator as the Hankel transform. That is, first of all, by applying πr(a−1

o )
to (5.11) it follows from (5.7), (5.8) and (5.9) that Theorem 5.4 can be rewritten as

Theorem 5.7. For n = 0, 1, ..., one has

Trϕ
(r)
n = (−1)nϕ(r)

n .(5.17)

We will let Ur be the unique unitary operator (necessarily of order 2) on H such
that

Ur|HHCr = Tr|HHCr .

Clearly,

πr(ao)Urπr(ao)−1 = U ′r.

We refer to Ur as the Hankel transform.
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5.3. If G1 is a linear semisimple Lie group and X = G1/K1 is a Hermitian sym-
metric space, where K1 is a maximal compact subgroup of G1, then the holomor-
phic discrete series of G1 is generally constructed on spaces of square integrable
holomorphic sections of line bundles on X . In case X is of tube type, Ding and
Gross in [DG] use this construction to create another model, for the holomorphic
discrete series, which is built on the symmetric cone Ω associated to X . In case
G1 = Sl(2,R), then Ω = (0,∞) and the new model is (essentially), πr, where r is
a positive integer. The main point in their construction of the new model is their
recognition of the fact that the Hankel transform can be represented, up to a scalar,
by a group element in K1. For G1 = Sl(2,R) this means that, if r is a positive
integer, then for some cr ∈ C and k ∈ K1,

Ur = crπr(k).(5.18)

Even if one went to the covering group, G, their construction does not lead to
πr for −1 < r ≤ 0 since in this range, as pointed out to us by David Vogan, πr
cannot be represented on X by spaces of square-integrable holomorphic sections
of line bundles. (If r is rational, this follows from Harish-Chandra’s classification
of discrete series represenations since, in that case, πr descends to a group in the
Harish-Chandra class.) Our construction of πr , using Nelson’s theorem, and our
knowledge of the Harish-Chandra module, immediately (see Theorem 5.8 below)
yields (5.18) for G and all −1 < r < ∞. For another representation theoretic (for
the “ax+b” group) treatment of the Hankel transform see Chapter 7 in [Ta].

It should be mentioned that if the rank of G1 is greater than 1 there are new
analogues of π0 discovered by Wallach and referred to as Wallach points (see [W`-1]
and [W`-2]). Symmetric cone models of this finite set of representations have been
constructed by Rossi and Vergne in [R-V].

Let ko ∈ K be defined by putting

ko = exp
π

2
(e− f).

Under the quotient map (see (3.16)) G→ Sl(2,R) note that ko 7→
(

0 −1
1 0

)
. It is

immediate then that Adko defines the non-trivial element of the Weyl group, with
respect to (Rh, g). One has that Adko is of order 2. In fact,

Adko(h) = −h,
Ad ko(e) = −f,
Ad ko(f) = −e.

(5.19)

In particular, k2
o is central in G. See also (3.13).

Theorem 5.8. Let cr = e−
r+1

2 πi. Then

Ur = crπr(ko).(5.20)

Proof. By (2.5) and (2.26) one has

πr(ko)ϕ(r)
n = e

π
2 (2n+r+1)i.

Hence,

crπr(ko)ϕ(r)
n = enπpϕ(r)

n

= (−1)nϕ(r)
n .

(5.21)
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But then, since both crπr(ko) and Ur are unitary operators on H, (5.20) follows
from (5.21) and (5.17). QED

One immediate consequence of Theorem 5.8 is the following property of the
Hankel transform Ur. This property is an analogue of the fact that the Fourier
transform stabilizes the Schwartz space and is continuous with respect to its Fréchet
topology.

Theorem 5.9. For the Hankel transform one has

Ur : H∞r → H∞r(5.22)

and (5.22) is continuous with respect to the πr-Fréchet topology on H∞r .

Since πr(ko) = π−∞r (ko)|H we can initially extend the domain of the Hankel
transform to H−∞r by putting Ur = crπ

−∞
r (ko). But in fact, recalling (4.57), one

can go further and extend the domain of the Hankel transform Ur to H−HCr by
putting

Ur = crπ
−HC
r (ko).(5.23)

One of course still has U2
r = Identity. See Theorem 5.7.

Remark 5.10. Note that if 0 < |r| < 1 and ρ ∈ H−∞r , the problem of computing
Ur(ρ), by Proposition 4.9, seems to be complicated by the fact that ρ may vanish
as a distribution on (0,∞).

Even if ϕ ∈ H, as in the case of the Fourier transform, it is not transparent
when Ur(ϕ) can be determined by integrating ϕ(x) against the kernel Jr(2

√
yx).

The following result says that if ϕ ∈ H∞r everything is fine.

Theorem 5.11. Let ϕ ∈ H∞r so that (by Theorem 5.9) Ur(ϕ) ∈ H∞r and hence
Ur(ϕ)(y) is a C∞-function of y. Furthermore, recalling Proposition 5.2, Ur(ϕ)(y)
is given by

Ur(ϕ)(y) = {ϕ, Jr,y}(5.24)

for any y ∈ (0,∞).

Proof. There exists, by Proposition 4.15, a sequence ψn ∈ HHCr that converges to ϕ
in the πr-Fréchet topology ofH∞r . But then ixψn converges to ixϕ in this topology
since πr(e) is certainly continuous in the πr-Fréchet topology. In particular, ψn and
ixψn converge respectively to ϕ and ixϕ in H. Let y ∈ (0,∞). Then since Jr,y(x)
is in L2 at 0 one has

lim
n→∞

∫ 1

0

ψn(x)Jr(2
√
yx)dx =

∫ 1

0

ϕ(x)Jr(2
√
yx)dx.(5.25)

On the other hand, ix−1Jr,y(x)|[1,∞) ∈ L2([1,∞), dx) by (5.3). But then∫ ∞
1

ψn(x)Jr,y(x)dx =
∫ ∞

1

ixψn(x)(ix)−1Jr,y(x)dx

converges to ∫ ∞
1

ixϕ(x)(ix)−1Jr,y(x)dx =
∫ ∞

1

ϕ(x)Jr,y(x)dx
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Hence, by (5.25)

lim
n→∞

∫ ∞
0

ψn(x)Jr,y(x)dx =
∫ ∞

0

ϕ(x)Jr,y(x)dx.(5.26)

But the left side of (5.26) is just Ur(ψn)(y), by definition of Ur. However, by
Theorem 5.9, Ur(ψn) converges to Ur(ϕ) in the πr-Fréchet topology of H∞r . But
then, by Proposition 4.7, Ur(ψn) certainly converges pointwise to Ur(ϕ). But then
Ur(ϕ)(y) is given by the right side of (5.26). QED

5.4. Let u ∈ gC. A vector ρ ∈ H−HCr will be called a u-weight vector of weight
λ ∈ C if π−HCr (u)ρ = λρ. The span of the set of all such vectors will be referred to
as the corresponding u-weight space, or simply weight space if u is understood. If
u = e (resp. u = f) and λ 6= 0, then the e-weight (resp. f -weight) vector will also
be referred to as an e-Whittaker (resp. f -Whittaker) vector. An e-weight (resp.
f -weight) vector of weight 0 will be called a highest (resp. lowest) weight vector.

Remark 5.12. The term highest and lowest is a convenient misnomer. It is a mis-
nomer since it refers, respectively to the kernels of π−HCr (e) and π−HCr (f) and not,
as in finite dimensional representation theory, to h-weights. Note that, as a con-
sequence of (5.23), ρ ∈ H−HCr is a u-weight vector of weight λ if and only if its
Hankel transform Ur(ρ) is an Adko(u)-weight vector of weight λ. In particular, if
u = h, then, by (5.19), ρ is an h-weight vector of weight λ if and only if its Hankel
transform Ur(ρ) is an h-weight vector of weight −λ. Furthermore, again by (5.19),
ρ is an e-weight vector of weight λ if and only if its Hankel transform Ur(ρ) is an
f -weight vector of weight −λ.

Now if u ∈ gC, we can write

u = α(u)h′ + β(u)e′ + γ(u)f ′

for some unique α(u), β(u), γ(u) ∈ C. Let g
(∗)
C = {u ∈ gC | γ(u) 6= 0}.

Theorem 5.13. Let u ∈ g
(∗)
C . Then for any λ ∈ C the u-weight space, in H−HCr ,

of weight λ is 1-dimensional. Furthermore h, e, f ∈ g
(∗)
C so that in particular for

u = h, e, f the u-weight space, in H−HCr , of weight λ is 1-dimensional.

Proof. Recalling the definition of the ∗-operation in gC (see (3.1)) it is clear from
(2.5), (2.6) and (2.7) that (e′)∗ = −f ′, (h′)∗ = h′ and (f ′)∗ = −e′. It then follows
immediately that β(u∗) = −γ(u). Hence,

v ∈ g
(∗)
C ⇐⇒ β(v∗) 6= 0(5.27)

However, it is immediate from (2.5), (2.6) and (2.7) that

h = i(e′ − f ′),

e =
1
2

(ih′ + e′ + f ′),

f =
1
2

(ih′ + e′ + f ′),

so that h, e, f ∈ g
(∗)
C . Let λ ∈ C and let v = u∗ − λ. To prove the theorem it

clearly suffices to prove that (recalling (4.36)) if Y = Dr(v)(HHCr ), then Y has
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codimension 1 in HHCr . For m ∈ Z+ let Xm be the span of {ϕ(r)
n }, n = 0, 1, ...,m.

But now it is immediate from (2.26), (2.27), (2.28) and (5.27) that

(a) KerDr(v)|HHCr = 0,

(b) X0 6⊂ Y,
(c) Dr(v)(Xm) ⊂ Xm+1.

(5.28)

It follows from (b) of (5.28) that Y 6= HHCr . But dimXm = m + 1. Hence
dimDr(v)(Xm) = m+ 1 by (a) of (5.28). But then

Xm = X0 ⊕Dr(v)(Xm−1)(5.29)

by (b) and (c) of (5.28). But then clearly HHCr = X0 ⊕ Y . QED

Remark 5.14. A Weyl group of G has order 2. Note that Theorem 5.13 is not
a contradiction of Theorem 6.8.1 on p. 182 of [Ko] (which, in this case, asserts
the existence of a 2-dimensional space of algebraic Whittaker vectors). Indeed the
hypothesis of this result in [Ko] requires that one must add, to HHCr , the Harish-
Chandra module of the anti-holomorphic representation corresponding to πr. See
(6.8.1) in [Ko].

An element ρ ∈ H−HCr will be called πr-tempered in case ρ ∈ H−∞r . We now
obtain explicit results on the “temperedness” of certain Whittaker vectors. For
λ = −iy, y ∈ (0,∞) the corresponding f -Whittaker vector is πr-tempered and is
given in terms of the Bessel function Jr.

Theorem 5.15. Let y ∈ (0,∞) so that δy ∈ H−∞r where δy is the Dirac measure
at y (see Remark 4.12). Then Rδy is the weight space of e-Whittaker vectors of
weight iy. In particular, any such Whittaker vector is πr-tempered.

The function Jr,y(x) = Jr(2
√
yx) is in H−∞r by Proposition 5.2. Furthermore,

RJr,y is the weight space of f -Whittaker vectors of weight −iy. In particular, any
such Whittaker vector is πr-tempered. Furthermore,

Ur(δy) = Jr,y(5.30)

where, we recall Ur is the Hankel transform.

Proof. Let ϕ ∈ H−∞r . Then (see (4.36))

{ϕ, π−∞r (e)δy} = {ixϕ, δy}
= −iyϕ(y)

= {ϕ, iyδy}.

This proves π−∞r (e)δy = iyδy.
Now,

π∞r (f)Ur(δy) = −iyUr(δy)(5.31)

by Remark 5.14. On the other hand, since Ur has order 2, it follows from (5.23)
and (5.24) that

{ϕ,Ur(δy)} = {Ur(ϕ), δy}
= {ϕ, Jr,y},

This proves (5.30). The theorem then follows from (5.31). QED
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5.5. Let ∆ ∈ U(g) be as in (4.52). Using the notation of (4.50) we may, by (3.8),
define a quadradic polynomial q on R such that for all n ∈ Z,

π∞r (∆− 1)(ψ(r)
n ) = q(n)ψ(r)

n .(5.32)

Now let ϕ ∈ H∞r and let {an} be, as in (4.50), the Fourier-Laguerre coefficients of
ϕ. Then, by (4.53), the Fourier-Laguerre expansion of π∞r ((∆ − 1)m)(ϕ) is given
by

π∞r ((∆− 1)m)(ϕ) =
∞∑
n=0

q(n)manψ(r)
n(5.33)

for any m ∈ Z+. Since this is an expansion of an element in H, the sum of norm
squares of the coefficents is finite. In particular, the norm of the coefficents is
bounded. On the other hand, the coefficents of q are positive, since r > −1. See
(3.8). Thus for all m ∈ Z+ there exists a positive constant Cm such that for all n

|an| < Cm(n2 + 1)−m.(5.34)

Now for any function ψ on (0,∞) let ψ̃ be the function on (0,∞) defined by putting
ψ̃(x) = x−

r
2ψ(x). In case the limit of ψ̃(x) exists as x tends to 0, we will put

ψ̃(0) = lim
x→0

ψ̃(x).(5.35)

In such a case if ψ is continuous on (0,∞), then of course ψ̃ is continuous on [0,∞).
If ψ ∈ HHCr , then ψ̃ is clearly the restriction to (0,∞) of an entire function and
hence ψ̃(0) exists and ψ̃ is continuous on [0,∞).

Theorem 5.16. Let ϕ ∈ H∞r . Then ϕ̃(0) exists. Furthermore, for any ω > 0,
ϕ̃j converges to ϕ̃ pointwise and uniformly on the closed interval [0, ω], using the
notation of (4.51).

Proof. In the proof of Proposition 3.12 we noted that if L(r)
n (Szego) is the normal-

ization of L(r)
n as given in (5.1.5), p. 97 of [Sz], then

L(r)
n (Szego) = (−1)n

1
n!
L(r)
n .(5.36)

It follows then from (7.6.11), p. 173 in [Sz] that there exists a > − 1
2 and positive

constants C and D such that for all x ∈ [0, ω] and n ∈ Z+,

|L(r)
n (2x)| < n! (Cna +D).

But then certainly

|e− x2L(r)
n (2x)| < n! (Cna +D)(5.37)

for all n ∈ Z+ and x ∈ [0, ω]. Let dn = ( 1
2r+1n! Γ(n + r + 1))−

1
2 . Then n! dn =

(2r+1 n!
Γ(n+r+1) )

1
2 . But

Γ(n+ r + 1) = (n+ r)(n + r − 1) · · · (r + 2)Γ(r + 2)

= (n+ r + 1)(n+ r) · · · (r + 2)(
Γ(r + 2)
n+ r + 1

).

But (n+ r + 1)(n+ r) · · · (r + 2) > n!. Hence

n! dn <
(

2r+1 (n+ r + 1)
Γ(r + 2)

) 1
2

.(5.38)
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But recalling the definition of the orthonormal basis {ψ(r)
n } (see (4.50)) one has

ψ̃
(r)
n = dne

−x2L(r)
n (2x).(5.39)

Hence, for all n ∈ Z+ and x ∈ [0, ω] there exists positive constants E,F and k ∈ N
such that

|ψ̃(r)
n (x)| < dnn! (Cnα +D)

<

(
2(r+1) (n+ r + 1)

Γ(r + 2)

) 1
2

(Cnα +D)

< Enk +D.

(5.40)

But then if we choose m = k + 1 in (5.34), one has for some constant F ,

|anψ̃(r)
n (x)| < Ck+1(n2 + 1)−(k+1)(Enk +D)

<
F

n2 + 1
.

This proves that ϕ̃j converges pointwise to a continuous function ψ on [0,∞) and
uniformly so on any closed interval [0, ω]. But, by (4.51), a subsequence ϕji con-
verges almost everywhere to ϕ on (0,∞). Hence ϕ̃ji converges almost everywhere
to ϕ̃ on (0,∞). Hence ϕ̃ = ψ on (0,∞). But then ϕ̃(0) is defined and ϕ̃ = ψ as
functions on [0,∞). QED

Now by (5.1.7), p. 97 in [Sz] and (5.45) one has

L(r)
n (0) = (−1)nn!

(
n+ r

n

)
.(5.41)

But by standard properties of the Γ-function

Γ(n+ r + 1)
n!

=
(
n+ r

n

)
Γ(r + 1).(5.42)

But using the notation of (5.39) one has, using (5.41)

ψ̃
(r)
n (0) = dn(−1)nn!

(
n+ r

n

)
=
(

2r+1

Γ(r + 1)

) 1
2

(−1)n
(
n+ r

n

) 1
2

.

(5.43)

As an immediate consequence of (5.43) and Theorem 5.16 one has

Theorem 5.17. Let ϕ ∈ H∞r and let (4.50) be its Fourier-Laguerre expansion.
Then the sum on the right side of (5.44), below, absolutely converges and

ϕ̃(0) =
(

2r+1

Γ(r + 1)

) 1
2 ∞∑
n=0

(−1)nan

(
n+ r

n

) 1
2

.(5.44)

We can determine the highest weight vector (unique up to scalar multiplication
by Theorem 5.13) of πr and establish that it is πr-tempered. Let δr,0 ∈ H−HCr be
defined so that {ψ, δr,0} = ψ̃(0) for any ψ ∈ HHCr .
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Theorem 5.18. The linear functional δr,0 is a highest weight vector and spans the
highest weight space. Furthermore, δr,0 is πr-tempered (i.e. δr,0 ∈ H−∞r ) and for
any ϕ ∈ H∞r one has

{ϕ, δr,0} = ϕ̃(0)

= lim
x→0

x−
r
2ϕ(x).

(5.45)

(See Theorm 5.8.) In particular, if (4.50) is the Fourier-Laguerre expansion of ϕ,
then {ϕ, δr,0} is given by the convergent sum (5.44).

Proof. Let ψ ∈ HHCr . Then

{ψ, π−HCr (e)(δr,0)} = {π∞r (e)(ψ), δr,0}
= {ixψ, δr,0}
= lim
x→0

ixx−
r
2ψ(x).

(5.46)

But limx→0 x
− r2ψ(x) = ψ̃(0) exists. Hence, the limit in (5.46) (with the extra x-

factor) must be zero. Thus π−HCr (e)(δr,0) = 0 so that δr,0 is a (clearly nonzero)
highest weight vector. Now let δ′r,0 be the linear functional on H∞r defined so
that δ′r,0(ϕ) = ϕ̃(0). To prove that δr,0 is πr-tempered and all the remaining
statements of the theorem, it clearly suffices only to prove that δ′r,0 is continuous
in the πr-Fréchet topology on H∞r . Indeed one would then have that δr,0 ∈ H−∞r
and {ϕ, δr,0} = δ′r,0(ϕ) for all ϕ ∈ H∞r .

Let k ∈ N be fixed such that k ≥ r. Then(
n+ r

n

)
≤
(
n+ k

n

)
=
(
n+ k

k

)
≤ (n+ k)k

k!
.

Thus, there exists positive constants A,B, such that
(
n+r
n

)
≤ Ank + B and hence

there exists positive constants C,D such that(
n+ r

n

) 1
2

≤ Cn k2 +D(5.47)

Now recalling (5.33) let m ∈ N be such that 2m ≥ k
2 + 2. But since the coefficients

of the quadratic polynomial q are positive, there exist positive constants E,F such
that for all n ∈ Z+, q(n)m ≥ En2m+F . But clearly

∑
n=0(Cn

k
2 +D)/(En2m+F )

converges. Hence, by (5.47) one has a convergent sum
∞∑
n=0

(
n+ r

n

) 1
2

/q(n)2m = M.(5.48)

Now in the notation of (5.33) let v = (∆ − 1)m ∈ U(g). Let ϕ ∈ H∞r so that, by
definition, ‖π∞r (v)(ϕ)‖ = ‖ϕ‖v. Let (4.50) be the Fourier-Laguerre expansion of ϕ.
Then, by (5.33), |q(n)man| ≤ ‖ϕ‖v for all n ∈ Z+. That is, for all n ∈ Z+,

|an| ≤ ‖ϕ‖v/q(n)m.(5.49)
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But then if N is the constant preceding the sum in (5.44), one has by (5.44), (5.48),
and (5.49)

|δ′r,0(ϕ)| ≤ N
∞∑
n=0

|an
(
n+ r

n

) 1
2

|

≤ ‖ϕ‖vN
∞∑
n=0

|
(
n+ r

n

) 1
2

/q(n)m|

≤ NM‖ϕ‖v.

(5.50)

But this proves that δ′r,0 is continuous with respect to the seminorm ‖ϕ‖v and
hence δ′r,0 is a continuous linear functional on H∞r with respect to the πr-Fréchet
topology. QED

5.6. We now turn to the lowest weight vector. Let Jr,0 = Ur(δr,0) so that, see
Remark 5.12, Jr,0 is a lowest weight vector. Furthermore, R Jr,0 is the lowest weight
space and since Ur stabilizes H∞r (see (5.23)), one has that Jr,0 is smooth. As an
easy consequence of Theorem 5.18 one has

Theorem 5.19. Let ϕ ∈ H∞r . Then

{ϕ, Jr,0} = lim
y→0

y−
r
2

∫ ∞
0

Jr(2
√
yx)ϕ(x)dx(5.51)

noting, in particular, that the limit on the right side of (5.51) exists.

Proof. Since the Hankel transform, Ur, is of order 2, it follows from (5.23), (5.24),
(5.30) and (5.45) that

{ϕ, Jr,0} = {Ur(ϕ), Ur(Jr,0)}
= {Ur(ϕ), δr,0}
= lim

y→0
y−

r
2Ur(ϕ)(y)

= lim
y→0

y−
r
2 {ϕ, Jr,y}.

But this is just the statement of (5.51). QED QED

Now consider h-weight vectors. By Theorem 5.13 any weight is possible and all
have multiplicity 1. But of course there is the question as to whether the weight
vector is πr-tempered.

Theorem 5.20. Let µ ∈ C be such that Reµ > − 1
2 so that xµ ∈ V1, in the

notation of §4.7, and hence, by Proposition 4.13, xµ ∈ H−∞r . Let λ = 2µ + 1 so
that Reλ > 0. Then xµ (uniquely up to a scalar multiple) is an h-weight vector of
weight λ. In particular, x

r
2 is a smooth h-weight vector of weight r + 1.

On the other hand, Ur(xµ) is a smooth h-weight of weight −λ for Reλ < 0. In
particular, Ur(x

r
2 ) is a smooth h-weight vector of weight −(r + 1).

Proof. Let ϕ ∈ H∞r . By (4.36)

{−(2x
d

dx
+ 1)(ϕ), xµ} = {ϕ, π−∞r (h)(xµ)}(5.52)

But now, for any k ∈ Z, xkϕ(x) ∈ H∞r , since H∞r is stable under π∞r (ek) and
hence R → H is a C∞ map, where t 7→ πr(exp (−t)h)(xkϕ(x)). But, by (4.25),
πr(exp (−t)h)(xkϕ(x)) = e−2tkxkπr(exp (−t)h)(ϕ(x)). We may multiply by e2tk
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and conclude that t 7→ xkπr(exp (−t)h)(ϕ(x)) also defines a differentiable map
from R to H. Furthermore, one must have

d

dt
(xkπr(exp (−t)h)(ϕ))t=0 = xk(−(2x

d

dx
+ 1))(ϕ)(5.53)

in H since the difference quotient whose limit in H defines the left side of (5.53)
clearly converges pointwise to the right side of (5.53), by (4.25) and the smoothness
of ϕ. But by a change of variables one has

{πr(exp (−t)h)(ϕ), xµ} =
∫ ∞

0

ϕ(e−2tx)xµe−tdt

= {ϕ, et(2µ+1)xµ}.
Hence,

d

dt
({πr(exp (−t)h)(ϕ), xµ})t=0 = {ϕ, (2µ+ 1)xµ}.(5.54)

For any ψ ∈ H∞r and i = 1, 2, let {ψ, xµi}i =
∫ bi
ai
ψ(x)xµidx where a1 = 0, b1 =

1, a2 = 1, b2 = ∞, Re µ1 > − 1
2 and µ2 ∈ C is arbitrary. Clearly, {ψ, xµ} =

{ψ, xµ}1 + {ψ, xµ}2. But now
d

dt
({πr(exp (−t)h)(ϕ), xµ}1)t=0 = {−(2x

d

dx
+ 1)(ϕ), xµ}1(5.55)

by (5.53) where we put k = 0. On the other hand, if we choose k so that xµ−k|[1,∞)
∈ L2((1,∞), dx), then by (5.53),

d

dt
({πr(exp (−t)h)(ϕ), xµ}2)t=0 =

d

dt
({xkπr(exp (−t)h)(ϕ), xµ−k}2)t=0

= {−xk(2x
d

dx
+ 1)(ϕ), xµ−k}2

= {−(2x
d

dx
+ 1)(ϕ), xµ}2.

(5.56)

But then by (5.54), (5.55) and (5.56) one has

{−(2x
d

dx
+ 1)(ϕ), xµ} = {ϕ, (2µ+ 1)xµ}.

But then π−∞r (h)(xµ) = (2µ + 1)xµ by (5.52). The last statements follow from
Remark 5.12 and the fact that Ur stabilizes H−∞r . See (5.23). QED

Remark 5.21. It is clear in Theorem 5.20 that the h-weight vectors for weights λ
when Reλ is positive is independent of r. On the other hand, there is an apparent
dependence on r when Reλ is negative. Since δr,0 has an obvious dependence on r
the dependence of the h-weight vector of weight −(r + 1), on r, will be verified in
Theorem 5.23.

From the commutation relations in g it is obvious that highest weight vector δr,0
and the lowest weight vector Jr,0 must be h-weight vectors. The question is: what
are the h-weights? This is determined in Theorem 5.23 below. Contrary to one’s
experience for finite dimensional representations, it turns out that the h-weight of
the highest weight vector (recall definitions in §5.4) is smaller than the h-weight
of the lowest weight vector. In fact, the latter is positive and the former is just
its negative. The lowest weight vector Jr,0 is given in Theorem 5.19 as a limit. In
Theorem 5.23 it will be given as an integral.
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Remark 5.22. By the multiplicity 1 statement of Theorem 5.13 and the commuta-
tion relations in g note that (up to scalar multiplication) δr,0 is the only nonzero
element in H−HCr , and a fortiori in H−∞r , which is simultaneously an h-weight
vector and an e-weight vector. The same is true of Jr,0 when f replaces e.

Theorem 5.23. One has

π∞r (h)(δr,0) = −(r + 1)(δr,0)(5.57)

and

π∞r (h)(Jr,0) = (r + 1)(Jr,0).(5.58)

Furthermore, Jr,0 given by (5.51), can also be given by

{ϕ, Jr,0} =
1

Γ(r + 1)

∫ ∞
0

ϕ(x)x
r
2 dx(5.59)

for any ϕ ∈ H∞r so that

Ur(δr,0) =
1

Γ(r + 1)
x
r
2 .(5.60)

Proof. From the commutation relations 2π∞r (e) = [π∞r (h), π∞r (e)] and −2π∞r (f) =
[π∞r (h), π∞r (f)] together with the multiplicity 1 statement of Theorem 5.13 it is
immediate that there exists scalars µ, ν ∈ C such that

π∞r (h)(δr,0) = µ δr,0,

π∞r (h)(Jr,0) = ν Jr,0.

But then

ν = −µ(5.61)

by Remark 5.12. Thus, for any ϕ ∈ H∞r one has

{−(2x
d

dx
+ 1)(ϕ), δr,0} = {ϕ, π∞r (h)(δr,0)}

= µ{ϕ, δr,0}.
Hence,

lim
x→0

x−
r
2 (−(2x

d

dx
+ 1)(ϕ))(x) = µ lim

x→0
x−

r
2ϕ(x).(5.62)

Now put ϕ = ϕ
(r)
0 so that ϕ(x) = e−xx

r
2 . Then x−

r
2 (−(2x d

dx + 1)(ϕ))(x) =
−(r + 1)e−x + 2e−xx. Thus the limit on the right side of (5.62) is −(r + 1). But
x−

r
2ϕ(x) = e−x. Hence, the limit on the right side of (5.62) is µ. This proves

µ = −(r + 1). But then ν = (r + 1) by (5.61). But then by the multiplicity
1 statement of Theorem 5.13 one must have Jr,0 = cx

r
2 for some constant c by

Theorem 5.20. Thus

lim
y→0

y−
r
2 {ϕ, Jr,y} = c

∫ ∞
0

ϕ(x)x
r
2 dx(5.63)

for any ϕ ∈ H∞r . Now as above choose ϕ = ϕ
(r)
0 . But {ϕ(r)

0 , Jr,y} = ϕ
(r)
0 (y) by

Theorem 5.7. Since ϕ(r)
0 (y) = e−yy

r
2 one has

lim
y→0

e−y = c

∫ ∞
0

e−xxrdx.(5.64)
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But the left side of (5.64) is 1 and, by definition of the Γ-function, the right side is
cΓ(r + 1). Hence c = 1

Γ(r+1) . QED

Recall the map ζr : H−∞r → Dist((0,∞)). See (4.40).

Theorem 5.24. The subspace C∞o ((0,∞)) is not dense in H∞r with respect to the
πr-Fréchet topology. In fact, the highest weight vector, δr,0, and the Category-O
module, π−∞r (U(g))(δr,0), it generates, vanishes on C∞o ((0,∞)). That is,

π−∞r (U(g))(δr,0) ⊂ Ker ζr.(5.65)

Furthermore, (see (4.37)) the injection map H∞r → C∞((0,∞)) is continuous
but is not a homeomorphism onto its image where H∞r has the πr-Fréchet topology
and C∞((0,∞)) = E((0,∞)) has the Fréchet topology of distribution theory.

Proof. It is obvious from (5.45) that δr,0 ∈ Ker ζr. But this implies (5.65) since
C∞o ((0,∞)) is stable under π∞r (U(g)) by (4.36). The continuity of (4.37) is estab-
lished in Proposition 4.7. It is not a homeomorphism onto its image since, as one
knows, C∞o ((0,∞)) is dense in E((0,∞)) with respect to the distribution theory
Fréchet topology on E((0,∞)). QED

Remark 5.25. In contrast to the highest weight vector, δr,0, note that, by (5.59),
the lowest weight vector, Jr,0, is not in the kernel of ζr. See (4.40).
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[Ca] P. Cartier, Vecteurs différentiables dans les représentations unitaires des groupes de Lie,
Séminaire Bourbaki, 454 (1974-1975). MR 57:534

[DG] H. Ding, K. J. Gross, Operator-valued Bessel functions on Jordan algebras, J. Reine Angew.
Math. 435 (1993), 157-196. MR 93m:33010

[Ha] G. Hardy, Summation of a series of polynomials of Laguerre, Journ. London Math. Soc., 7
(1932), 138-139, 192.

[He] C. Herz, Bessel functions of matrix argument, Ann. Math. 61 (1955), 474-523.
MR 16:1107e

[Ja] D. Jackson, Fourier Series and Orthogonal Polynomials, Carus Math. Monographs, 6,
MAA, 1941. MR 3:230f

[Ko] B. Kostant, On Whittaker Vectors and Representation Theory, Inventiones math., 48,
(1978), 101-184. MR 80b:22020

[Ne] E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572-615. MR 21:5901
[Pu] L. Pukanszky, The Plancherel Formula for the Universal Covering group of SL(R, 2), Math.

Annalen 156 (1964), 96-143. MR 30:1215
[R-V] H. Rossi, M. Vergne, Analytic continuation of the holomorphic discrete series of a semi-

simple Lie group, Acta Math. 136 (1976), 1-59. MR 58:1032
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