ON MINUSCULE REPRESENTATIONS AND THE PRINCIPAL SL $_{2}$

BENEDICT H. GROSS

Abstract

We study the restriction of minuscule representations to the principal $S L_{2}$, and use this theory to identify an interesting test case for the Langlands philosophy of liftings.

In this paper, we review the theory of minuscule co-weights λ for a simple adjoint group G over \mathbf{C}, as presented by Deligne [D]. We then decompose the associated irreducible representation V_{λ} of the dual group \hat{G}, when restricted to a principal $S L_{2}$. This decomposition is given by the action of a Lefschetz $S L_{2}$ on the cohomology of the flag variety $X=G / P_{\lambda}$, where P_{λ} is the maximal parabolic subgroup of G associated to the co-weight λ. We reinterpret a result of Vogan and Zuckerman [V-Z, Prop 6.19] to show that the cohomology of X is mirrored by the bigraded cohomology of the L-packet of discrete series with infinitesimal character ρ, for a real form G_{0} of G with a Hermitian symmetric space.

We then focus our attention on those minuscule representations with a non-zero linear form $t: V \rightarrow \mathbf{C}$ fixed by the principal $S L_{2}$, such that the subgroup $\hat{H} \subset \hat{G}$ fixing t acts irreducibly on the subspace $V_{0}=\operatorname{ker}(t)$. We classify them in $\S 10$; since \hat{H} turns out to be reductive, we have a decomposition

$$
V=\mathbf{C} e+V_{0}
$$

where e is fixed by \hat{H}, and satisfies $t(e) \neq 0$. We study V as a representation of \hat{H}, and give an \hat{H}-algebra structure on V with identity e.

The rest of the paper studies representations π of G which are lifted from H, in the sense of Langlands. We show this lifting is detected by linear forms on π which are fixed by a certain subgroup L of G. The subgroup L descends to a subgroup $L_{0} \rightarrow G_{0}$ over \mathbf{R}; both have Hermitian symmetric spaces \mathcal{D} with $\operatorname{dim}_{\mathbf{C}}\left(\mathcal{D}_{L}\right)=$ $\frac{1}{2} \operatorname{dim}_{\mathbf{C}}\left(\mathcal{D}_{G}\right)$. We hope this will provide cycle classes in the Shimura varieties associated to G_{0}, which will enable one to detect automorphic forms in cohomology which are lifted from H.

It is a pleasure to thank Robert Kottwitz, Mark Reeder, Gordon Savin, and David Vogan for their help.

Table of Contents

1. Minuscule co-weights
2. The real form G_{0}
3. The Weyl group

[^0]4. The flag variety
5. The representation V of the dual group \hat{G}
6. The principal $S L_{2} \rightarrow \hat{G}$
7. Examples
8. Discrete series and a mirror theorem
9. Discrete series for $S O(2,2 n)$
10. A classification theorem: $V=\mathbf{C} e+V_{0}$
11. The representation V of \hat{H}
12. Representations of G lifted from H
13. The proof of Proposition 12.4
14. The real form of $L \rightarrow G$
15. The group \hat{G} in a Levi factor

Bibliography

1. Minuscule co-weights

Let G be a simple algebraic group over \mathbf{C}, of adjoint type. Let $T \subset B \subset G$ be a maximal torus contained in a Borel subgroup, and let Δ be the corresponding set of simple roots for T. Then Δ gives a \mathbf{Z}-basis for $\operatorname{Hom}\left(T, \mathbf{G}_{m}\right)$, so a co-weight λ in $\operatorname{Hom}\left(\mathbf{G}_{m}, T\right)$ is completely determined by the integers $\langle\lambda, \alpha\rangle$, for α in Δ, which may be arbitrary. Let P_{+}be the cone of dominant co-weights, where $\langle\lambda, \alpha\rangle \geq 0$ for all $\alpha \in \Delta$.

A co-weight $\lambda: \mathbf{G}_{m} \rightarrow T$ gives a Z-grading \mathfrak{g}_{λ} of $\mathfrak{g}=\operatorname{Lie}(G)$, defined by

$$
\mathfrak{g}_{\lambda}(i)=\left\{X \in \mathfrak{g}: \operatorname{Ad} \lambda(a)(X)=a^{i} \cdot X\right\}
$$

We say λ is minuscule provided $\lambda \neq 0$ and the grading \mathfrak{g}_{λ} satisfies $\mathfrak{g}_{\lambda}(i)=0$ for $|i| \geq 2$. Thus

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{g}_{\lambda}(-1)+\mathfrak{g}_{\lambda}(0)+\mathfrak{g}_{\lambda}(1) \tag{1.1}
\end{equation*}
$$

The Weyl group $N_{G}(T) / T=W$ of T acts on the set of minuscule co-weights, and the W-orbits are represented by the dominant minuscule co-weights. These have been classified.

Proposition 1.2 ([D, 1.2]). The element λ is a dominant, minuscule co-weight if and only if there is a single simple root α with $\langle\lambda, \alpha\rangle=1$, the root α has multiplicity 1 in the highest root β, and all other simple roots α^{\prime} satisfy $\left\langle\lambda, \alpha^{\prime}\right\rangle=0$.

Thus, the W-orbits of minuscule co-weights correspond bijectively to simple roots α with multiplicity 1 in the highest root β. If λ is minuscule and dominant, $\mathfrak{g}_{\lambda}(1)$ is the direct sum of the positive root spaces \mathfrak{g}_{γ}, where γ is a positive root containing α with multiplicity 1 . Hence the dimension N of $\mathfrak{g}_{\lambda}(1)$ is given by the formula

$$
\begin{equation*}
N=\operatorname{dim} \mathfrak{g}_{\lambda}(1)=\langle\lambda, 2 \rho\rangle, \tag{1.3}
\end{equation*}
$$

where ρ is half the sum of the positive roots.
The subgroup $W_{\lambda} \subset W$ fixing λ is isomorphic to the Weyl group of T in the subalgebra $\mathfrak{g}_{\lambda}(0)$, which has root basis $\Delta-\{\alpha\}$. We now tabulate the W-orbits of minuscule co-weights by listing the simple α occurring with multiplicity 1 in β in the numeration of Bourbaki [B]. We also tabulate $N=\operatorname{dim} \mathfrak{g}_{\lambda}(1)$ and $\left(W: W_{\lambda}\right)$; a simple comparison shows that $\left(W: W_{\lambda}\right) \geq N+1$ in all cases; we will explain this inequality later.

Table 1.4.

G	α	$\left(W: W_{\lambda}\right)$	N
A_{ℓ}	α_{k}	$\binom{\ell+1}{k}$	$k(\ell+1-k)$
	$1 \leq k \leq \ell$		
B_{ℓ}	α_{1}	2ℓ	$2 \ell-1$
C_{ℓ}	α_{ℓ}	2^{ℓ}	$\frac{\ell(\ell+1)}{2}$
D_{ℓ}	α_{1}	2ℓ	$2 \ell-2$
	$\alpha_{\ell-1}, \alpha_{\ell}$	$2^{\ell-1}$	$\frac{\ell(\ell-1)}{2}$
E_{6}	α_{1}, α_{6}	27	16
E_{7}	α_{1}	56	27

2. The real form G_{0}

We henceforth fix G and a dominant minuscule co-weight λ. Let G_{c} be the compact real form for G, so $G=G_{c}(\mathbf{C})$ and $G_{c}(\mathbf{R})$ is a maximal compact subgroup of G. Let $g \mapsto \bar{g}$ be the corresponding conjugation of G.

Let $T_{c} \subset G_{c}$ be a maximal torus over \mathbf{R}. We have an identification of co-character groups

$$
\operatorname{Hom}_{\text {cont }}\left(S^{1}, T_{c}(\mathbf{R})\right)=\operatorname{Hom}_{\text {alg }}\left(\mathbf{G}_{m}, T\right)
$$

We view λ as a homomorphism $S^{1} \rightarrow T_{c}(\mathbf{R})$, and define

$$
\begin{equation*}
\theta=\operatorname{ad} \lambda(-1) \quad \text { in } \quad \operatorname{Inn}(G) \tag{2.1}
\end{equation*}
$$

Then θ is a Cartan involution, which gives another descent G_{0} of G to \mathbf{R}. The group G_{0} has real points

$$
G_{0}(\mathbf{R})=\{g \in G: \bar{g}=\theta(g)\},
$$

and a maximal compact subgroup K of $G_{0}(\mathbf{R})$ is given by

$$
\begin{aligned}
K & =\{g \in G: g=\bar{g} \quad \text { and } \quad g=\theta(g)\} \\
& =G_{0}(\mathbf{R}) \cap G_{c}(\mathbf{R}) .
\end{aligned}
$$

The corresponding decomposition of the complex Lie algebra \mathfrak{g} under the action of K is given by $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$, with

$$
\left\{\begin{array}{l}
\mathfrak{k}=\operatorname{Lie}(K) \otimes \mathbf{C}=\mathfrak{g}_{\lambda}(0) \tag{2.2}\\
\mathfrak{p}=\mathfrak{g}_{\lambda}(-1)+\mathfrak{g}_{\lambda}(1) .
\end{array}\right.
$$

The torus $\lambda\left(S^{1}\right)$ lies in the center of the connected component of K, and the element $\lambda(i)$ gives the symmetric space

$$
\mathcal{D}=G_{0}(\mathbf{R}) / K
$$

a complex structure, with

$$
\begin{equation*}
N=\operatorname{dim}_{\mathbf{C}}(\mathcal{D}) \tag{2.3}
\end{equation*}
$$

Proposition 2.4 ([D, 1.2]). The real Lie groups $G_{0}(\mathbf{R})$ and K have the same number of connected components, which is either 1 or 2 . Moreover, the following are all equivalent:

1) $G_{0}(\mathbf{R})$ has 2 connected components.
2) The symmetric space \mathcal{D} is a tube domain.
3) The vertex of the Dynkin diagram of G corresponding to the simple root α is fixed by the opposition involution of the diagram.
4) The subgroup W_{λ} fixing λ has a nontrivial normalizer in W, consisting of those w with $w \lambda= \pm \lambda$.

In fact, the subgroup $W_{c} \subset W$ which normalizes W_{λ} is precisely the normalizer of the compact torus $T_{c}(\mathbf{R})$ in $G_{0}(\mathbf{R})$. When $W_{\lambda} \neq W_{c}$, it is generated by W_{λ} and the longest element w_{0}, which satisfies $w_{0} \lambda=-\lambda$.

As an example, let $G=S O_{3}$ and

$$
\lambda(t)=\left(\begin{array}{lll}
t & & \\
& 1 & \\
& & t^{-1}
\end{array}\right)
$$

Then θ is conjugation by

$$
\lambda(-1)=\left(\begin{array}{lll}
-1 & & \\
& 1 & \\
& & -1,
\end{array}\right)
$$

and $G_{0}=S O(1,2)$ has 2 connected components. We have $K \simeq O(2), W_{c}=W$ has order 2 in this case, and $W_{\lambda}=1$. The tube domain $\mathcal{D}=G_{0}(\mathbf{R}) / K$ is isomorphic to the upper half plane.

3. The Weyl group (cf. [H])

The Weyl group W is a Coxeter group, with generating reflections s corresponding to the simple roots in Δ. Recall that ρ is half the sum of the positive roots and $W_{\lambda} \subset W$ is the subgroup fixing λ.

Proposition 3.1. Each coset $w W_{\lambda}$ of W_{λ} in W has a unique representative y of minimal length. The length $d(y)$ of the minimal representative is given by the formula

$$
d(y)=\langle\lambda, \rho\rangle-\langle w \lambda, \rho\rangle,
$$

where w is any element in the coset.
Proof. Let $R^{ \pm}$be the positive and negative roots, let $R_{\lambda}^{ \pm}$be the subsets of positive and negative roots which satisfy $\langle\lambda, \gamma\rangle=0$. Then $R^{+}-R_{\lambda}^{+}$consists of the roots with $\langle\lambda, \gamma\rangle=1$, and $R^{-}-R_{\lambda}^{-}$consists of the roots with $\langle\lambda, \gamma\rangle=-1$. These sets are stable under the action of W_{λ} on R. On the other hand, if $w \in W_{\lambda}$ stabilizes R_{λ}^{+} (or R_{λ}^{-}), then $w=1$, as W_{λ} is the Weyl group of the root system $R_{\lambda}=R_{\lambda}^{+} \cup R_{\lambda}^{-}$.

Since the length $d(y)$ of y in W is given by

$$
\begin{equation*}
d(y)=\#\left\{\gamma \text { in } R^{+}: y^{-1}(\gamma) \text { is in } R^{-}\right\} \tag{3.2}
\end{equation*}
$$

the set

$$
\begin{equation*}
Y=\left\{y \in W: y\left(R_{\lambda}^{+}\right) \subset R^{+}\right\} \tag{3.3}
\end{equation*}
$$

gives coset representatives for W_{λ} of minimal length. Moreover, for $y \in Y$ the set $y^{-1}\left(R^{+}\right)$contains $d(y)$ elements of R_{λ}^{-}, and hence $N-d(y)$ elements of R_{λ}^{+}. Hence,
if $w W_{\lambda}=y W_{\lambda}$, we find

$$
\begin{aligned}
\langle w \lambda, \rho\rangle=\langle y \lambda, \rho\rangle & =\left\langle\lambda, y^{-1} \rho\right\rangle \\
& =\frac{1}{2}((N-d(y))-d(y)) \\
& =\frac{1}{2} N-d(y)
\end{aligned}
$$

Since

$$
\langle\lambda, \rho\rangle=\frac{1}{2} N
$$

we obtain the desired formula.
As an example of Proposition 3.1, the minimal representative of W_{λ} is $y=1$, with $d(y)=0$, and the minimal representative of $s_{\alpha} W_{\lambda}$ is $y=s_{\alpha}$, with $d(y)=1$. If w_{0} is the longest element in the Weyl group, then $w_{0}\left(R^{ \pm}\right)=R^{\mp}$, so $w_{0}^{2}=1$, and $w_{0} \rho=-\rho$. Hence

$$
\left\langle w_{0} \lambda, \rho\right\rangle=\left\langle\lambda, w_{0}^{-1} \rho\right\rangle=-\langle\lambda, \rho\rangle=-N / 2
$$

Consequently, the length of the minimal representative y of $w_{0} W_{\lambda}$ is $d(y)=N$. This is the maximal value of d on W / W_{λ}, and we will soon see that d takes all integral values in the interval $[0, N]$.

Assume λ is fixed by the opposition involution $-w_{0}$, so $w_{0} \lambda=-\lambda$. Then \mathcal{D} is a tube domain, and W_{λ} has nontrivial normalizer $W_{c}=\left\langle W_{\lambda}, w_{0}\right\rangle$ in W by Proposition 2.4. The 2-group W_{c} / W_{λ} acts on the set W / W_{λ} by $w W_{\lambda} \mapsto w w_{0} W_{\lambda}$, and this action has no fixed points. Hence we get a fixed point-free action $y \mapsto y *$ on the set Y, and find that

$$
\begin{equation*}
d(y)+d(y *)=N \tag{3.4}
\end{equation*}
$$

4. The flag variety

Associated to the dominant minuscule co-weight λ is a maximal parabolic subgroup P, which contains B and has Lie algebra

$$
\begin{equation*}
\operatorname{Lie}(P)=\mathfrak{g}_{\lambda}(0)+\mathfrak{g}_{\lambda}(1) \tag{4.1}
\end{equation*}
$$

The flag variety $X=G / P$ is projective, of complex dimension N.
The cohomology of X is all algebraic, so $H^{2 n+1}(X)=0$ for all $n \geq 0$. Let

$$
\begin{equation*}
f_{X}(t)=\sum_{n \geq 0} \operatorname{dim} H^{2 n}(X) \cdot t^{n} \tag{4.2}
\end{equation*}
$$

be the Poincaré polynomial of $H^{*}(X)$. Then we have the following consequence of Chevalley-Bruhat theory, which also gives a convenient method of computing the values of the function $d: W / W_{\lambda} \rightarrow \mathbf{Z}$.

Proposition 4.3. 1) We have $f_{X}(t)=\sum_{Y} t^{d(y)}$.
2) If \underline{G} is the split adjoint group over \mathbf{Z} with the same root datum as G, and \underline{P} is the standard parabolic corresponding to λ, then

$$
f_{X}(q)=\# \underline{G}(F) / \underline{P}(F)
$$

for all finite fields F, with $q=\# F$.
3) The Euler characteristic of X is given by

$$
\chi=f_{X}(1)=\#\left(W: W_{\lambda}\right)
$$

Proof. We have the decomposition

$$
G=\bigcup_{Y} B y P
$$

where we have chosen a lifting of y from W to $N_{G}(T)$. If U is the unipotent radical of B, then $B=U T$. Since y normalizes T,

$$
U y P=B y P
$$

This gives a cell decomposition

$$
X=\bigcup_{Y} U y / P \cap y^{-1} U y
$$

where the cell corresponding to y is an affine space of dimension $d(y)$. This gives the first formula.

The formula for $f_{X}(q)$ follows from the Bruhat decomposition, which can be used to prove the Weil conjectures for X. Formula 3) for $f_{X}(1)$ follows immediately from $1)$.

For example, let $G=P S p_{2 n}$ be of type C_{n}. Then P is the Siegel parabolic subgroup, with Levi factor $G L_{n} / \mu_{2}$. From the orders of $S p_{2 n}(q)$ and $G L_{n}(q)$, we find that

$$
\begin{aligned}
\# \underline{G}(F) / \underline{P}(F) & =\frac{\left(q^{2}-1\right)\left(q^{4}-1\right) \ldots\left(q^{2 n}-1\right)}{(q-1)\left(q^{2}-1\right) \ldots\left(q^{n}-1\right)} \\
& =(1+q)\left(1+q^{2}\right) \ldots\left(1+q^{n}\right)
\end{aligned}
$$

Hence we find

$$
\begin{equation*}
f_{X}(t)=(1+t)\left(1+t^{2}\right) \ldots\left(1+t^{n}\right) \tag{4.4}
\end{equation*}
$$

The fact that $X=G / P$ is a Kahler manifold imposes certain restrictions on its cohomology. For example, if ω is a basis of $H^{2}(X)$, then $\omega^{k} \neq 0$ in $H^{2 k}(X)$ for all $0 \leq k \leq N$. Hence we find that

Corollary 4.5. The function $d: W / W_{\lambda} \rightarrow \mathbf{Z}$ takes all integral values in $[0, N]$, and $\left(W: W_{\lambda}\right) \geq N+1$.

For $0 \leq k \leq N$, let

$$
m(k)=\#\{y \in Y: d(y)=k\}
$$

We have seen that $m(0)=m(1)=1$ in all cases. By Poincaré duality

$$
\begin{equation*}
m(k)=m(N-k) \tag{4.6}
\end{equation*}
$$

Finally, the Lefschetz decomposition into primitive cohomology shows that

$$
\begin{equation*}
m(k-1) \leq m(k) \tag{4.7}
\end{equation*}
$$

whenever $2 k \leq N$. Indeed, the representation of the Lefschetz $S L_{2}$ on $H^{*}(G / P)$ has weights $N-2 d(y)$ for the maximal torus $\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right)$.

5. The representation V of the dual group \hat{G}

Let \hat{G} be the Langlands dual group of G, which is simply-connected of the dual root type. This group comes (in its construction) with subgroups $\hat{T} \subset \hat{B} \subset \hat{G}$, and an identification of the positive roots for \hat{B} in $\operatorname{Hom}\left(\hat{T}, \mathbf{G}_{m}\right)$ with the positive co-roots for B in $\operatorname{Hom}\left(\mathbf{G}_{m}, T\right)$ (cf. [G]). Hence, the dominant co-weights for T give dominant weights for \hat{T}, which are the highest weights for \hat{B} on irreducible representations of \hat{G}.

Let V be the irreducible representation of \hat{G}, whose highest weight for \hat{B} is the dominant, minuscule co-weight λ.

Proposition 5.1. The weights of \hat{T} on V consist of the elements in the W-orbit of λ. Each has multiplicity 1 , so $\operatorname{dim} V=\left(W: W_{\lambda}\right)$.

The central character χ of V is given by the image of λ in $\operatorname{Hom}\left(\hat{T}, \mathbf{G}_{m}\right) / \bigoplus \mathbf{Z} \alpha^{\vee}$, and is nontrivial.

Proof. For μ and λ dominant, we write $\mu \leq \lambda$ if $\lambda-\mu$ is a sum of positive co-roots. These are precisely the other dominant weights for \hat{T} occurring in V_{λ}. When λ is minuscule, $\mu \leq \lambda$ implies $\mu=\lambda$, so only the W-orbit of λ occur as weights. Each has the same multiplicity as the highest weight, which is 1 . Since $\mu=0$ is dominant, λ is not in the span of the co-roots, and $\chi \neq 1$.

This result gives another proof of the inequality of Corollary 4.5: $\left(W: W_{\lambda}\right) \geq$ $N+1$. Indeed, let L be the unique line in V_{λ} fixed by \hat{B}. The fixer of L is the standard parabolic \hat{P} dual to P. This gives an embedding of projective varieties:

$$
\hat{G} / \hat{P} \hookrightarrow \mathbf{P}\left(V_{\lambda}\right)
$$

Since \hat{G} / \hat{P} has dimension N, and $\mathbf{P}\left(V_{\lambda}\right)$ has dimension $\left(W: W_{\lambda}\right)-1$, this gives the desired inequality.

The real form G_{0} defined in $\S 2$ has Langlands L-group

$$
\begin{equation*}
{ }^{L} G=\hat{G} \rtimes \operatorname{Gal}(\mathbf{C} / \mathbf{R}) \tag{5.2}
\end{equation*}
$$

The action of $\operatorname{Gal}(\mathbf{C} / \mathbf{R})$ on \hat{G} exchanges the irreducible representation V with dominant weight λ with the dual representation V^{*} with dominant weight $-w_{0} \lambda$. Hence the sum $V+V^{*}$ always extends to a representation of ${ }^{L} G$. The following is a simple consequence of Proposition 2.4.

Proposition 5.3. The following are equivalent:

1) We have $w_{0} \lambda=-\lambda$.
2) The symmetric space \mathcal{D} is a tube domain.
3) The representation V is isomorphic to V^{*}.
4) The central character χ of V satisfies $\chi^{2}=1$.
5) The representation V of \hat{G} extends to a representation of ${ }^{L} G$.

6. The principal $S L_{2} \rightarrow \hat{G}$

The group \hat{G} also comes equipped with a principal $\varphi: S L_{2} \rightarrow \hat{G}$; see [G]. The co-character $\mathbf{G}_{m} \rightarrow \hat{T}$ given by the restrictionof φ to the maximal torus $\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right)$
of $S L_{2}$ is equal to 2ρ in $\operatorname{Hom}\left(\mathbf{G}_{m}, \hat{T}\right)=\operatorname{Hom}\left(T, \mathbf{G}_{m}\right)$. From this, and Proposition 5.1, we conclude the following:

Proposition 6.1. The restriction of the minuscule representation V to the principal $S L_{2}$ in \hat{G} has weights

$$
\bigoplus_{W / W_{\lambda}} t^{\langle w \lambda, 2 \rho\rangle}
$$

for the maximal torus $\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right)$ in $S L_{2}$.
On the other hand, by Proposition 3.1, we have

$$
\begin{equation*}
\langle w \lambda, 2 \rho\rangle=\langle\lambda, 2 \rho\rangle-2 d(y)=N-2 d(y) \tag{6.2}
\end{equation*}
$$

where $d(y)$ is the length of the minimal representative y in the coset $w W_{\lambda}$. Hence the weights for the principal $S L_{2}$ acting on V are the integers

$$
\begin{equation*}
N-2 d(y) \quad y \in Y \tag{6.3}
\end{equation*}
$$

in the interval $[-N, N]$. Since these are also the weights of the Lefschetz $S L_{2}$ acting on the cohomology $H^{*}(G / P)$ by $\S 4$, we obtain the following:

Corollary 6.4. The representation of the principal $S L_{2}$ of \hat{G} on V is isomorphic to the representation of the Lefschetz $S L_{2}$ on the cohomology of the flag variety $X=G / P$.

7. Examples

We now give several examples of the preceding theory, using the notation for roots and weights of $[\mathrm{B}$.

If G is of type A_{ℓ} and $\alpha=\alpha_{1}$ we have $\lambda=e_{1}$. The flag variety G / P is projective space \mathbf{P}^{N}, with $N=\ell$, and the Poincaré polynomial is $1+t+t^{2}+\cdots+t^{N}$. The dual group \hat{G} is $S L_{N+1}$, and V is the standard representation. The restriction of V to a principal $S L_{2}$ is irreducible, isomorphic to $S^{N}=\operatorname{Sym}^{N}\left(\mathbf{C}^{2}\right)$.

A similar result holds when G is of type B_{ℓ}, so $\alpha=\alpha_{1}$ and $\lambda=e_{1}$. Here G / P is a quadric of dimension $N=2 \ell-1$, with $P(t)=1+t+\cdots+t^{N}$ as before. The dual group is $\hat{G}=\mathrm{Sp}_{2 \ell}$, the representation V is the standard representation, and its restriction to the principal $S L_{2}$ is the irreducible representation S^{N}.

Next, suppose G is of type D_{ℓ} and $\alpha=\alpha_{1}$, so $\lambda=e_{1}$. Then G / P is a quadric of dimension $N=2 \ell-2$, and we have $P(t)=1+t+\cdots+2 t^{\ell-1}+\cdots+t^{N}$. The dual group \hat{G} is $\operatorname{Spin}_{2 \ell}$, and V is the standard representation of the quotient $S O_{2 \ell}$. Its restriction to the principal $S L_{2}$ is a direct sum $S^{N}+S^{0}$, where S^{0} is the trivial representation.

A more interesting case is when G is of type C_{ℓ}, so $\alpha=\alpha_{\ell}$ and $\lambda=\frac{e_{1}+e_{2}+\cdots+e_{\ell}}{2}$. Here G / P is the Lagrangian Grassmanian of dimension $N=\frac{\ell(\ell+1)}{2}$, and $P(t)=(1+t)\left(1+t^{2}\right) \ldots\left(1+t^{\ell}\right)$ was calculated in (4.4). The dual group \hat{G} is $\operatorname{Spin}_{2 \ell+1}$, and V is the spin representation of dimension 2^{ℓ}. Its decomposition to a
principal $S L_{2}$ is given by $\S 6$, and we find the following representations, for $\ell \leq 6$:

$$
\begin{align*}
S^{1} & \ell=1 \\
S^{3} & \ell=2 \\
S^{6}+S^{0} & \ell=3 \\
S^{10}+S^{4} & \ell=4 \tag{7.1}\\
S^{15}+S^{9}+S^{5} & \ell=5 \\
S^{21}+S^{15}+S^{11}+S^{9}+S^{3} & \ell=6
\end{align*}
$$

As the last example, suppose G is of type E_{6}. Then G / P has dimension 16 and Poincaré polynomial

$$
\begin{aligned}
P(t)= & 1+t+t^{2}+t^{3}+2 t^{4}+2 t^{5}+2 t^{6}+2 t^{7}+3 t^{8} \\
& +2 t^{9}+2 t^{10}+2 t^{11}+2 t^{12}+t^{13}+t^{14}+t^{15}+t^{16}
\end{aligned}
$$

The representation V has dimension 27, and its restriction to a principal $S L_{2}$ is the representation

$$
\begin{equation*}
S^{16}+S^{8}+S^{0} \tag{7.2}
\end{equation*}
$$

Proposition 7.3. The representation V of the principal $S L_{2}$ is irreducible, hence isomorphic to S^{N}, if and only if G is of type A_{ℓ} or B_{ℓ} and $\alpha=\alpha_{1}$.

The representation V of the principal $S L_{2}$ is isomorphic to $S^{N}+S^{0}$ if and only if G is of type D_{ℓ} and $\alpha=\alpha_{1}$, or G is of type D_{4} and $\alpha=\alpha_{3}$ or α_{4}, or G is of type C_{3} and $\alpha=\alpha_{3}$.
Proof. The condition $V=S^{N}$ as a representation of $S L_{2}$ is equivalent to the equality

$$
\operatorname{dim} V=\left(W: W_{\lambda}\right)=N+1
$$

The condition $V=S^{N}+S^{0}$ as a representation of $S L_{2}$ is equivalent to the equality

$$
\operatorname{dim} V=\left(W: W_{\lambda}\right)=N+2
$$

One obtains all the above cases by a consideration of the columns in Table 1.4.

8. Discrete series and a mirror theorem

Let G_{0} be the real form of G described in $\S 2$, and let $G_{0}(\mathbf{R})^{+}$be the connected component of $G_{0}(\mathbf{R})$. The L-packet of discrete series representations π^{+}of $G_{0}(\mathbf{R})^{+}$ with infinitesimal character the W-orbit of ρ is in canonical bijection with the coset space $W_{\lambda} \backslash W$. Indeed, W_{λ} is the compact Weyl group of the simply-connected algebraic cover $G_{0}^{s c}$ of G_{0}, and any discrete series for $G_{0}^{s c}(\mathbf{R})$ with infinitesimal character ρ has trivial central character, so it descends to the quotient group $G_{0}(\mathbf{R})^{+}$. On the other hand, such discrete series for $G_{0}^{s c}(\mathbf{R})$ are parameterized by their Harish-Chandra parameters in $\operatorname{Hom}\left(T_{c}^{s c}(\mathbf{R}), S^{1}\right) / W_{\lambda}$, which lie in the W-orbit of ρ. The coset $W_{\lambda} \rho$ corresponds to the holomorphic discrete series, and the coset $W_{\lambda} w_{0} \rho=W_{\lambda} w_{0}^{-1} \rho$ corresponds to the anti-holomorphic discrete series.
Proposition 8.1 ([|V-Z] Prop. 6.19]). Assume the discrete series π^{+}of $G_{0}(\mathbf{R})^{+}$ has Harish-Chandra parameter $W_{\lambda} w^{-1} \rho$. Then π^{+}has bigraded cohomology

$$
H^{p, q}\left(\mathfrak{g}, K^{+} ; \pi^{+}\right) \simeq \mathbf{C}
$$

for $p+q=N$ and $q=d(y)$, the length of the minimal representative of $w W_{\lambda}$. The cohomology of π vanishes in all other bidegrees $\left(p^{\prime}, q^{\prime}\right)$.

Proof. The bigrading of the $\left(\mathfrak{g}, K^{+}\right)$cohomology of any π^{+}in the L-packet is discussed in [V-Z, (6.18)(a-c)]. The cohomology has dimension 1 for degree N, and dimension 0 otherwise, so we must have $p+q=N$.

On the other hand, Arthur (cf. [A] pp. 62-63]) interprets the calculation of [V-Z Prop. 6.19] to obtain the formula

$$
-\frac{1}{2}(p-q)=\left\langle\lambda, w^{-1} \rho\right\rangle=\langle w \lambda, \rho\rangle .
$$

Since $\frac{1}{2}(p+q)=\langle\lambda, \rho\rangle$, we find that $q=\langle\lambda, \rho\rangle-\langle w \lambda, \rho\rangle=d(y)$, by Proposition 3.1 .

If $G_{0}(\mathbf{R}) \neq G_{0}(\mathbf{R})^{+}$, the discrete series π for $G_{0}(\mathbf{R})$ with infinitesimal character ρ correspond to the coset space $W_{c} \backslash W$, where W_{c} is the (nontrivial) normalizer of W_{λ} in W. We find that the bigraded cohomology of π with Harish-Chandra parameter $W_{c} w^{-1} \rho$ is the direct sum of two lines of type (p, q) and (q, p), with $p+q=N$ and $q=d(y)$.

The 2-group K / K^{+}acts on $H^{N}\left(\mathfrak{g}, K^{+}, \pi\right)$, switching the two lines. When $p=$ $q=N / 2$, there is a unique line in $H^{p, p}\left(\mathfrak{g}, K^{+}, \pi\right)$ fixed by K / K^{+}.

A suggestive way to restate the calculation of the bigraded cohomology is the following.
Corollary 8.2. The Hodge structure on the sum $H^{N}\left(G_{0}\right)=\underset{\pi}{\bigoplus} H^{*, *}\left(\mathfrak{g}, K^{+}, \pi\right)$ over the L-packet of discrete series for $G_{0}(\mathbf{R})$ with infinitesimal character ρ mirrors the Hodge structure on $H^{*}(G / P)$. That is,

$$
\operatorname{dim} H^{q, q}(G / P)=\operatorname{dim} H^{N-q, q}\left(G_{0}\right)
$$

Indeed, both dimensions are equal to the number of classes $w W_{\lambda}$ in W / W_{λ} with $d\left(w, W_{\lambda}\right)=q$.

9. Discrete series for $S O(2,2 n)$

Assume that G is of type D_{n+1} with $n \geq 2$, and that $\alpha=\alpha_{1}$. The group $G_{0}(\mathbf{R})$ is then isomorphic to $\operatorname{PSO}(2,2 n)=S O(2,2 n) /\langle \pm 1\rangle$, and \mathcal{D} is a tube domain of complex dimension $N=2 n$. There are $n+1$ discrete series representations π of $G_{0}(\mathbf{R})$ with infinitesimal character ρ. We will describe these as representations of $S O(2,2 n)$, with trivial central character, and will calculate their minimal K^{+}-types and Hodge cohomology.

Let V be a 2 -dimensional real vector space, with a positive definite quadratic form, and write $-V$ for the same space, with the negative form. For $k=0,1, \ldots, n$ define the quadratic space

$$
W_{k}=V_{0}+V_{1}+\cdots+\left(-V_{k}\right)+\cdots+V_{n},
$$

so $S O\left(W_{k}\right) \simeq S O(2,2 n)$, a maximal compact torus T_{c} in $S O\left(W_{k}\right)$ is given by $\prod_{i=0}^{n} S O\left(V_{i}\right)$, and a maximal compact, connected subgroup K^{+}containing T_{c} is given by $S O\left(V_{k}\right) \times S O\left(V_{k}^{\perp}\right)$. If e_{i} is a generator of $\operatorname{Hom}\left(S O\left(V_{i}\right), S^{1}\right)$, then the character group of T_{c} is $\bigoplus_{i=0} \mathbf{Z} e_{i}$, and the roots of T_{c} on \mathfrak{g} are the elements

$$
\gamma_{i j}= \pm e_{i} \pm e_{j} \quad i \neq j .
$$

The compact roots of T_{c} on k are those roots $\gamma_{i j}$ with $i \neq k+1$ and $j \neq k+1$, so the $(k+1)$ st coordinate of γ is zero.

A set of positive roots is given by

$$
R^{+}=\left\{e_{i} \pm e_{j}: i<j\right\} .
$$

This has root basis

$$
\Delta=\left\{e_{0}-e_{1}, e_{1}-e_{2}, \ldots, e_{n-1}-e_{n}, e_{n-1}+e_{n}\right\}
$$

and

$$
\rho=(n, n-1, n-2, \ldots, 1,0)
$$

On the other hand, half the sum ρ_{c} of the compact positive roots is given by

$$
\rho_{c}=(n-1, n-2, \ldots, n-k, 0, n-k-1, k, \ldots, 1,0) .
$$

At the two extremes, we find that

$$
\begin{array}{ll}
k=0 & \rho_{c}=(0, n-1, n-2, \ldots, 1,0), \\
k=n & \rho_{c}=(n-1, n-2, \ldots, 1,0,0) .
\end{array}
$$

The lowest K^{+}-type of a discrete series π^{+}for $S O(2,2 n)^{+}$with Harish-Chandra parameter $\lambda=\rho$ is given by Schmid's formula:

$$
\lambda+\rho-2 \rho_{c}=2\left(\rho-\rho_{c}\right)
$$

For the realizations $S O(2,2 n) \simeq S O\left(W_{k}\right)$ above, we obtain $n+1$ discrete series π_{k}^{+} with minimal $K^{+} \simeq S O(2) \times S O(2 n)$ type

$$
\chi^{2(n-k)} \otimes(2,2,2, \ldots, 2,0,0 \ldots 0)
$$

where χ is the fundamental character of $S O(2)$, giving the action on \mathfrak{p}^{+}. The irreducible representation of $S O(2 n)$ with highest weight $2\left(e_{1}+\cdots+e_{k}\right)$ appears with multiplicity 1 in $\operatorname{Sym}^{2}\left(\stackrel{k}{\wedge} \mathbf{C}^{2 n}\right)$, and the minimal K^{+}-type appears with multiplicity 1 in the representation $\wedge_{\wedge}^{k} \mathfrak{p}_{-} \otimes{ }^{2 n-k} \mathfrak{p}_{+}$. Hence the Hodge type of π_{k}^{+}is $(2 n-k, k)$.

Each discrete series π_{k} of $S O(2,2 n)$ with infinitesimal character ρ decomposes as $\pi_{k}=\pi_{k}^{+}+\pi_{k}^{-}$when restricted to $S O(2,2 n)^{+}$with π_{k}^{+}as above, and π_{k}^{-}its conjugate by $G_{0}(\mathbf{R}) / G_{0}(\mathbf{R})^{+}$. The minimal K^{+}-type of π_{k}^{-}is

$$
\begin{gathered}
\chi^{2(k-n)} \otimes(2,2,2, \ldots, 2,0,0 \ldots 0) \\
k \text { times }
\end{gathered}
$$

so π_{k}^{-}has Hodge type $(k, 2 n-k)$, and π_{k} has Hodge type $(k, 2 n-k)+(2 n-k, k)$.
If we label the simple roots in the Dynkin diagram for G, white for non-compact roots, black for compact roots, then the discrete series π_{k} of $S O(2,2 n)$ gives the labelled diagram below.

In the case $k=0, \pi_{k}$ is the sum of holomorphic and anti-holomorphic discrete series, and is an admissible representation of the subgroup $S O(2) \subset K^{+}$. In the case $k=n, \pi_{n}$ is admissible for the subgroup $S O(2 n) \subset K^{+}$, and has Hodge type $(n, n)+(n, n)$.

10. A CLASSIFICATION THEOREM: $V=\mathbf{C} e+V_{0}$

We now return to the restriction of a minimal representation V of \hat{G} to a principal $S L_{2}$ in \hat{G}. Since V will be fixed, we will replace the simply-connected group \hat{G} by its quotient which acts faithfully on V, and will henceforth use the symbol \hat{G} for this subgroup of $G L(V)$. The group G is therefore no longer necessarily of adjoint type. We have

$$
\begin{equation*}
X \bullet(T)=\mathbf{Z} \lambda+\bigoplus_{\text {co-roots }} \mathbf{Z} \alpha^{\vee} \tag{10.1}
\end{equation*}
$$

and $\ell \lambda$ lies in the sublattice $\bigoplus \mathbf{Z} \alpha^{\vee}$, with ℓ the order of the (cyclic) center of \hat{G}. Since $\left\langle\alpha^{\vee}, \rho\right\rangle$ is an integer for all co-roots, we find that ρ is in $X^{\bullet}(T)$ if and only if $\langle\lambda, \rho\rangle$ is an integer. By (1.3) this occurs precisely when the integer $N=\operatorname{dim}_{\mathbf{C}}(\mathcal{D})$ is even. Since the center $\langle \pm 1\rangle$ of a principal $S L_{2}$ in \hat{G} acts on V by the character $(-1)^{N}$, we see that ρ is in $X^{\bullet}(T)$ precisely when principal homomorphism $S L_{2} \rightarrow \hat{G}$ factors through the quotient group $P G L_{2}$.

Proposition 10.2. Assume that there is a non-zero linear form $t: V \rightarrow \mathbf{C}$ which is fixed by the principal $S L_{2} \rightarrow \hat{G}$, and that the subgroup \hat{H} of \hat{G} fixing t acts irreducibly on the hyperplane $V_{0}=\operatorname{ker}(t)$.

Then (up to the action of the outer automorphism group of the simply-connected cover of \hat{G}) the representation V is given by the following table:

\hat{G}	V	\hat{H}
$S L_{2 n} / \mu_{2}$	$\stackrel{2}{\wedge} \mathbf{C}^{2 n}$	$S p_{2 n} / \mu_{2}$
$S O_{2 n}$	$\mathbf{C}^{2 n}$	$S O_{2 n-1}$
E_{6}	\mathbf{C}^{27}	F_{4}
Spin_{7}	\mathbf{C}^{8}	G_{2}

Proof. By definition, \hat{H} contains the image of the principal $S L_{2}$ (which is isomorphic to $P G L_{2}$). These subgroups of simple \hat{G} have been classified by de Siebenthal
dS]. One has the chains:

$$
\begin{aligned}
& S L_{2} \rightarrow S O_{2 n+1} \rightarrow S L_{2 n+1} \\
& S L_{2} \rightarrow S p_{2 n} \rightarrow S L_{2 n} \\
& S L_{2} \rightarrow S O_{2 n-1} \rightarrow S O_{2 n} \\
& S L_{2} \rightarrow F_{4} \rightarrow E_{6} \\
& S L_{2} \rightarrow G_{2} \rightarrow \operatorname{Spin}_{7} \rightarrow S O_{8} \\
& S L_{2} \rightarrow G_{2} \rightarrow S O_{7} \rightarrow S L_{7}
\end{aligned}
$$

It is then a simple matter to check, for any V, whether an \hat{H} containing the principal $S L_{2}$ can act irreducibly on V_{0}.

Beyond the examples given in Proposition 10.2, we have one semi-simple example with the same properties:

$$
\begin{equation*}
\hat{G}=S L_{n}^{2} / \Delta \mu_{n} \quad V=\mathbf{C}^{n} \otimes\left(\mathbf{C}^{n}\right)^{*} \quad \hat{H}=P G L_{n} \tag{10.3}
\end{equation*}
$$

In all cases, \hat{H} is a group of adjoint type.
Proposition 10.4. For the groups \hat{G} in Proposition 10.2, the center is cyclic of order $\ell \geq 2$. The integer ℓ is the number of irreducible representations in the restriction of V to a principal $S L_{2}$.

The \hat{G}-invariants in the symmetric algebra on V^{*} form a polynomial algebra, on one generator $d: V \rightarrow \mathbf{C}$ of degree ℓ. The group \hat{G} has an open orbit on the projective space of lines in V, with connected stabilizer \hat{H}, consisting of the lines where $d(v) \neq 0$.

Proof. The first assertion is proved by an inspection of the following table. We derive the decomposition of V from $\S 6$.

TABLE 10.5.

\hat{G}	$\ell=$ order of center	decomp. of V
$S L_{2 n} / \mu_{2}$	$n \geq 2$	$S^{4 n-4}+S^{4 n-8}+\cdots+S^{4}+S^{0}$
$S O_{2 n}$	2	$S^{2 n-2}+S^{0}$
E_{6}	3	$S^{16}+S^{8}+S^{0}$
Spin_{7}	2	$S^{6}+S^{0}$
$S L_{n}^{2} / \Delta \mu_{n}$	$n \geq 2$	$S^{2 n-2}+S^{2 n-4}+\cdots+S^{2}+S^{0}$

The calculation of $S^{\bullet}\left(V^{*}\right)^{\hat{G}}$ follows from $\mathrm{S}-\mathrm{K}$, which also identifies the connected component of the stabilizer with \hat{H}. Note that the degree of any invariant is divisible by ℓ, as the center acts faithfully on V^{*}.

11. The representation V of \hat{H}

Recall that $\ell \geq 2$ is the order of the cyclic center of \hat{G}, tabulated in 10.5. Since the subgroup $\hat{H} \subset \hat{G}$ fixing the linear form $t: V \rightarrow \mathbf{C}$ is reductive, we have a splitting of \hat{H}-modules

$$
\begin{equation*}
V=\mathbf{C} e+V_{0} \tag{11.1}
\end{equation*}
$$

with $V_{0}=\operatorname{ker}(t)$, and e a vector fixed by \hat{H} satisfying $t(e) \neq 0$. Once t has been chosen, we may normalize e by insisting that

$$
\begin{equation*}
t(e)=\ell \tag{11.2}
\end{equation*}
$$

Proposition 11.3. The representation V_{0} of \hat{H} is orthogonal. Its weights consist of the short roots of \hat{H} and the zero weight. The zero weight space for \hat{H} in V has dimension ℓ, and V is a polar representation of \hat{H} of type $A_{\ell-1}$: the \hat{H}-invariants in the symmetric algebra of $V \simeq V^{*}$ form a polynomial algebra, with primitive generators in degrees $1,2,3, \ldots, \ell$.

Proof. The fact that V_{0} is orthogonal, and its weights, are obtained from a consideration of the table in Proposition 10.2. Since

$$
\operatorname{dim} V=\ell+\#\{\text { short roots of } \hat{H}\}
$$

this gives the dimension of the zero weight space.
Let $\hat{S} \subset \hat{H}$ be a maximal torus, with normalizer \hat{N}. The image of \hat{N} / \hat{S} in $G L\left(V^{\hat{S}}\right)=G L_{\ell}$ is the symmetric group Σ_{ℓ}. The fact that V is polar follows from the tables in [D-K], which also gives an identification of algebras: $S^{\bullet}(V)^{\hat{H}} \simeq$ $S^{\bullet}\left(V^{\hat{S}}\right)^{\hat{N} / \hat{S}}$. The latter algebra is generated by the elementary symmetric functions, of degrees $1,2,3, \ldots, \ell$.

Note 11.4. The integer ℓ is also the number of distinct summands in the restriction of V to a principal $S L_{2}$. Since each summand is an orthogonal representation of $S L_{2}, \ell=\operatorname{dim} V^{\hat{S}_{0}}$, where $\hat{S}_{0} \subset S L_{2}$ is a maximal torus. Hence $V^{\hat{S}_{0}}=V^{\hat{S}}$.

We will now define an \hat{H}-algebra structure on V, with identity element e, in a case by case manner. Although the multiplication law $V \otimes V \rightarrow V$ is not in general associative, it is power associative, and for $v \in V$ and $k \geq 0$ we can define v^{k} in V unambiguously. The primitive \hat{H}-invariants in $S^{\bullet}\left(V^{*}\right)$ can then be given by

$$
\begin{equation*}
v \mapsto t\left(v^{k}\right) \quad 1 \leq k \leq \ell \tag{11.5}
\end{equation*}
$$

In (11.5), $t: V \rightarrow \mathbf{C}$ is the \hat{H}-invariant linear form, normalized by the condition that

$$
t(e)=\ell
$$

We will also identify the \hat{G}-invariant ℓ-form det: $V \rightarrow \mathbf{C}$, normalized by the condition that

$$
\operatorname{det}(e)=1
$$

The simplest case, when the algebra structure on V is associative, is when $\hat{H}=$ $P G L_{n}$ and V is the adjoint representation (of $G L_{n}$) on $n \times n$ matrices. The algebra structure is matrix multiplication, e is the identity matrix, t is the trace, and det is the determinant (which is invariant under the larger group $\hat{G}=S L_{n} \times S L_{n} / \Delta \mu_{n}$ acting by $v \mapsto A v B^{-1}$).

Another algebra structure on V, with the same powers v^{k}, is given by the Jordan multiplication $A \circ B=\frac{1}{2}(A B+B A)$. This algebra is isomorphic to the Jordan algebra of Hermitian symmetric $n \times n$ matrices over the quadratic \mathbf{C}-algebra $\mathbf{C}+\mathbf{C}$, with involution $\overline{(z, w)}=(w, z)$.

The representation V has a similar Jordan algebra structure when $\hat{H}=P S p_{2 n}$ and when $\hat{H}=F_{4}$. In the first case, V is the algebra of Hermitian symmetric $n \times n$
matrices over the complex quaternion algebra $M_{2}(\mathbf{C})$, and in the second V is the algebra of Hermitian symmetric 3×3 matrices over the complex octonion algebra.

When $\hat{H}=S O_{2 n-1}$, the representation $V=\mathbf{C} e+V_{0}$ has a Jordan multiplication given by the quadratic form \langle,$\rangle on V$. We normalize this bilinear paring to satisfy $\langle e, e\rangle=2$, so $\operatorname{det}(v)=\frac{\langle v, v\rangle}{2}$ is the \hat{G}-invariant 2 -form on V. The multiplication is defined, with e as identity, by giving the product of two vectors v, w in $V_{0}: v \circ w=$ $-\frac{1}{2}\langle v, w\rangle e$.

Finally, when $\hat{H}=G_{2}$, the representation V of dimension 8 has the structure of an octonion algebra, with $t(v)=v+\bar{v}$ and $\operatorname{det}(v)=v \bar{v}$. In all cases but this one \hat{G} is the connected subgroup of $G L(V)$ preserving det, and \hat{H} is the subgroup of $G L(V)$ preserving all the forms $t\left(v^{k}\right)$ for $1 \leq k \leq \ell$. In the octonionic case, the subgroup $\mathrm{SO}_{8} \subset G L_{8}$ preserves det, and the subgroup $\mathrm{SO}_{7} \subset S O_{8}$ preserves $t(v)$ and $t\left(v^{2}\right)$.

In general, det: $V \rightarrow \mathbf{C}$ is a polynomial in the \hat{H}-invariants $t\left(v^{k}\right)$, given by the Newton formulae. The expression for $\ell!$ • det has integral coefficients; for example,

$$
\begin{cases}2 \operatorname{det}(v)=t(v)^{2}-t\left(v^{2}\right) & \ell=2 \tag{11.6}\\ 6 \operatorname{det}(v)=t(v)^{3}-3 t\left(v^{2}\right) t(v)+2 t\left(v^{3}\right) & \ell=3\end{cases}
$$

12. Representations of G Lifted from H

We now describe the finite dimensional irreducible holomorphic representations π of G which are lifted from irreducible representations π^{\prime} of H. This notion of lifting is due to Langlands: the parameter of π, which is a homomorphism $\varphi: \mathbf{C}^{*} \rightarrow \hat{G}$ up to conjugacy, should factor through a conjugate of \hat{H}.

We can parameterize the finite dimensional irreducible holomorphic representations π of G by their highest weights ω for B. The weight ω is a positive, integral combination of the fundamental weights ω_{i} of the simply-connected cover of G, so we may write (using the numeration of $[\mathrm{B}]$)

$$
\begin{equation*}
\omega=\sum_{i=1}^{\operatorname{rank}(G)} b_{i} \omega_{i} \quad b_{i} \geq 0 \tag{12.1}
\end{equation*}
$$

For ω to be a character of G, there are some congruences which must be satisfied by the coefficients b_{i}. (The group G is not simply connected, as its dual \hat{G} acts faithfully on the minuscule representation V.)

Since

$$
\begin{equation*}
\operatorname{rank}(G)=\operatorname{rank}(H)+(\ell-1) \tag{12.2}
\end{equation*}
$$

there are $(\ell-1)$ linear conditions on the coefficients b_{i} which are necessary and sufficient for π to be lifted from π^{\prime} of H. These conditions refine the congruences, and we tabulate them in Table 12.3 below.

When $G=S L_{2 n} / \mu_{n}, S O_{2 n}$, or $S p_{6} / \mu_{2}$ there are more classical descriptions of ω in the weight spaces $\mathbf{R}^{2 n}, \mathbf{R}^{n}$, and \mathbf{R}^{3}, respectively. We describe, in this language, which representations are lifted from H.

Table 12.3.

G	H	$\omega=\sum b_{i} \omega_{i}$ of G	ω lifted from H
$S L_{2 n} / \mu_{n}$	$\operatorname{Spin}_{2 n+1}$	$\sum_{i=1}^{n-1} i\left(b_{i}-b_{2 n-i}\right) \equiv 0(n)$	$b_{i}=b_{2 n-i}$
			$1 \leq i \leq n-1$
$S O_{2 n}$	$S p_{2 n-2}$	$b_{n-1}-b_{n} \equiv 0(2)$	$b_{n-1}=b_{n}$
E_{6} / μ_{3}	F_{4}	$\left(b_{1}-b_{6}\right)+2\left(b_{2}-b_{5}\right) \equiv 0(3)$	$b_{1}=b_{6}$
$S p_{6} / \mu_{2}$	G_{2}	$b_{1}-b_{3} \equiv 0(2)$	$b_{2}=b_{5}$
$S L_{n} \times S L_{n}^{\prime} / \Delta \mu_{n}$	$S L_{n}$	$\sum_{i=1}^{n-1} i\left(b_{i}-b_{n-1}^{\prime}\right) \equiv 0(n)$	$b_{i}=b_{n-1}^{\prime}$
			$1 \leq i \leq n-1$

For $G=S L_{2 n} / \mu_{n}$, a dominant weight ω is a vector $\left(a_{1}, a_{2}, \ldots, a_{2 n}\right)$ in $\mathbf{R}^{2 n}$ with

$$
\begin{gathered}
a_{1} \geq a_{2} \geq \cdots \geq a_{2 n} \\
a_{i} \quad \text { in } 1 / 2 \mathbf{Z} \quad 1 \leq i \leq 2 n \\
a_{i} \equiv a_{j} \quad(\quad \bmod \mathbf{Z}) \\
\\
\sum a_{i}=0
\end{gathered}
$$

The representations lifted from $\operatorname{Spin}_{2 n+1}$ give dominant weights ω with

$$
a_{i}+a_{2 n+1-i}=0 \quad 1 \leq i \leq n
$$

In particular, $a_{n} \geq 0 \geq a_{n+1}$, as $a_{n}+a_{n+1}=0$.
For $G=S O_{2 n}$, a dominant weight ω is a vector $\left(a_{1}, \ldots, a_{n}\right)$ in \mathbf{Z}^{n} with

$$
a_{1} \geq a_{2} \geq \cdots \geq a_{n-1} \geq\left|a_{n}\right|
$$

The representations lifted from $S p_{2 n-2}$ satisfy $a_{n}=0$.
Finally, for $G=S p_{6} / \mu_{2}$, a dominant weight is given classically as a vector $\left(a_{1}, a_{2}, a_{3}\right)$ in \mathbf{Z}^{3} with $a_{1} \geq a_{2} \geq a_{3} \geq 0$ and $a_{1} \equiv a_{2}+a_{3}(\bmod 2)$. The representations lifted from G_{2} are those with $a_{1}=a_{2}+a_{3}$.

Define a connected, reductive subgroup L of G as follows:

$$
\begin{array}{lll}
G=S L_{2 n} / \mu_{n} & L=S L_{n}^{2} / \Delta \mu_{n} & \begin{array}{l}
\text { fixing a decomposition of the standard } \\
\text { representation of } S L_{2 n}: \mathbf{C}^{2 n}=\mathbf{C}^{n}+\mathbf{C}^{n}, \\
\text { and having determinant } 1 \text { on each factor }
\end{array} \\
G=S O_{2 n} & L=S O_{n+1} & \begin{array}{l}
\text { fixing a non-degenerate subspace } \mathbf{C}^{n-1} \text { in } \\
\text { the standard representation } \mathbf{C}^{2 n}
\end{array} \\
G=E_{6} / \mu_{3} & L=S L_{6} / \mu_{3} & \begin{array}{l}
\text { fixing the highest and lowest root spaces in } \\
\text { fine adjoint representation }
\end{array} \\
G=S p_{6} / \mu_{2} & L=S L_{2}^{3} / \Delta \mu_{2} & \begin{array}{l}
\text { fixing a decomposition of the standard rep- } \\
\text { resentation of } S p_{6}: \mathbf{C}^{6}=\mathbf{C}^{2}+\mathbf{C}^{2}+\mathbf{C}^{2} \\
\text { into three non-degenerate, orthogonal sub- }
\end{array} \\
G=S L_{n}^{2} / \Delta \mu_{n} \quad L=P G L_{n} & \begin{array}{l}
\text { spaces } \\
\text { fixing the identity matrix in the represen- } \\
\text { tation on } M_{n}(\mathbf{C})
\end{array}
\end{array}
$$

Proposition 12.4. The finite dimensional irreducible representation π of G is lifted from H if and only if the space $\operatorname{Hom}_{L}(\pi, \mathbf{C})$ of L-invariant linear forms on π is non-zero. In this case, the dimension of the space of L-invariant linear forms is given by the following table:

TABLE 12.5.

G	ω lifted from H	$\operatorname{dim} \operatorname{Hom}_{L}(\pi, \mathbf{C})$
$S L_{2 n} / \mu_{n}$	$b_{1}\left(\omega_{1}+\omega_{2 n-1}\right)+b_{2}\left(\omega_{2}+\omega_{2 n-2}\right)+\cdots$	$b_{n}+1$
	$\cdots+b_{n-1}\left(\omega_{n-1}+\omega_{n+1}\right)+b_{n} \omega_{n}$	
$S O_{2 n}$	$b_{1} \omega_{1}+b_{2} \omega_{2}+\cdots+b_{n-2} \omega_{n-2}$	$\prod_{1 \leq i<j \leq n-2}$
	$+b_{n-1}\left(\omega_{n-1}+\omega_{n}\right)$	
E_{6} / μ_{3}	$b_{1}\left(\omega_{1}+\omega_{6}\right)+b_{3}\left(\omega_{3}+\omega_{5}\right)$	$\frac{b_{1}+b_{2}+\cdots+b_{j-1}+j-i}{j-i}$
	$+b_{2} \omega_{2}+b_{4} \omega_{4}$	
$S p_{6} / \mu_{2}$	$b_{1}\left(\omega_{1}+\omega_{3}\right)+b_{2} \omega_{2}$	
$\left.S b_{n}^{2} / \Delta \mu_{n}+1\right)\left(b_{2}+b_{4}+2\right)$		
	$V \otimes V^{*}$	$b_{2}+1$
		1

13. The proof of Proposition 12.4

The only easy case is when $G=S L_{n}^{2} / \Delta \mu_{n}$, so an irreducible π has the form $V \otimes V^{\prime}$, where V and V^{\prime} are irreducible representations of $S L_{n}$ with inverse central characters. We have

$$
\operatorname{Hom}_{L}(\pi, \mathbf{C})=\operatorname{Hom}_{S L_{n}}\left(V \otimes V^{\prime}, \mathbf{C}\right)
$$

This space is non-zero if and only if $V^{\prime} \simeq V^{*}$, when it has dimension 1 by Schur's lemma. These are exactly the π lifted from H.

When $G=S p_{6} / \mu_{2}$ and $L=S L_{2}^{3} / \mu_{2}$, the space $\operatorname{Hom}_{L}(\pi, \mathbf{C})$ was considered in G-S. In the other cases, the subgroup L may be obtained as follows. Let $G_{\mathbf{R}}$ be the quasi-split inner form of G with non-trivial Galois action on the Dynkin diagram, and let $K_{\mathbf{R}}$ be a maximal compact subgroup of $G_{\mathbf{R}}$. We have

G	$G_{\mathbf{R}}$	$K_{\mathbf{R}}$
$S L_{2 n} / \mu_{n}$	$S U_{n, n} / \mu_{n}$	$S\left(U_{n} \times U_{n}\right) / \mu_{n}$
$S O_{2 n}$	$S O_{n+1, n-1}$	$S\left(O_{n+1} \times O_{n-1}\right)$
E_{6} / μ_{3}	${ }^{2} E_{6,4} / \mu_{3}$	$\left(S U_{2} \times S U_{6} / \mu_{3}\right) / \Delta \mu_{2}$

Note that in each case we have a homomorphism

$$
L \hookrightarrow K=\text { complexification of } K_{\mathbf{R}} .
$$

The image is a normal subgroup, and the connected component of the quotient is isomorphic to $S O_{2}, S O_{n-1}$, and $S O_{3}$, respectively.

There is a real parabolic $P_{\mathbf{R}}$ in $G_{\mathbf{R}}$ associated to the fixed vertices of the Galois action on the Dynkin diagram. The derived subgroup of a Levi factor of $P_{\mathbf{R}}$ is given in the diagram below.

Let $B_{\mathbf{R}}$ be the Borel subgroup of $G_{\mathbf{R}}$ contained in $P_{\mathbf{R}}$, and let $T_{\mathbf{R}}$ be a Levi factor of $B_{\mathbf{R}}$.

In the Cartan-Helgalson theorem, one uses the Cartan decomposition $G_{\mathbf{R}}=K_{\mathbf{R}} \cdot B_{\mathbf{R}}$ to show that K has an open orbit on the complex flag variety

G / B, with stabilizer the subgroup T^{θ} of T fixed by the Cartan involution. The representations π of G with $\operatorname{Hom}_{K}(\pi, \mathbf{C}) \neq 0$ are those whose highest weight χ is trivial on T^{θ}, in which case $\operatorname{Hom}_{K}(\pi, \mathbf{C})$ has dimension 1. This is proved in G-W 12.3], where the subgroup T^{θ} is also calculated.

Similarly, one shows that the subgroup L of K has an open orbit on the flag variety G / P, with stabilizer the connected component $\left(T^{\theta}\right)^{0}$ of T^{θ}, which is a torus. The representations π of G with $\operatorname{Hom}_{L}(\pi, \mathbf{C}) \neq 0$ are those whose highest weight χ is trivial on $\left(T^{\theta}\right)^{0}$. We find that these, after a brief calculation, are those lifted from H. The space $\operatorname{Hom}_{L}(\pi, \mathbf{C})$ is isomorphic, as a representation of K / L, to the irreducible representation of the Levi factor of P which has highest weight χ. This completes the proof.

14. The real form of L

We now descend the subgroup $L \rightarrow G$ defined before Proposition 12.4 to a subgroup $L_{0} \rightarrow G_{0}$ over \mathbf{R}, by using minuscule co-weights. Let S be a maximal torus in L, and let $\lambda: \mathbf{G}_{m} \rightarrow T$ be a minuscule co-weight which occurs in the representation V of \hat{G}.

Proposition 14.1. There is an inclusion $\alpha: L \rightarrow G$ mapping S into T, and a minuscule co-weight $\mu: \mathbf{G}_{m} \rightarrow S$ of L, such that the following diagram commutes:

Proof. If $\alpha_{0}: L \rightarrow G$ is any inclusion, the image of S is contained in a maximal torus T_{0} of G. Since T and T_{0} are conjugate, we may conjugate α_{0} to an inclusion $\alpha: L \rightarrow G$ mapping S into T.

The co-character group $X_{\bullet}(S)$ then injects into $X_{\bullet}(T)$. To finish the proof, we must identify the image, and show that it intersects the W-orbit of λ in a single W_{L}-orbit of minuscule co-weights for L. We check this case by case. For example, if $G=E_{6} / \mu_{3}$ and $L=S L_{6} / \mu_{3}$, the group $X_{\bullet}(T)$ is the dual E_{6}^{\vee} of the E_{6}-root lattice, and $X_{\bullet}(S)$ is the subgroup orthogonal to a root β. One checks, using the tables in Bourbaki $[\mathrm{B}$, that precisely 15 of the 27 elements in the orbit $W \lambda$ are orthogonal to each β, and that these give a single $W_{\beta}=W_{S L_{6}}$ orbit.

In each case, we tabulate the dimension of T / S, and the size of the W_{L}-orbit $W \lambda \cap X_{\bullet}(S)=W_{L} \mu$

TABLE 14.2.

G	L	$\operatorname{dim}(T / S)$	$\# W \lambda$	$\# W_{L} \mu$	
$S L_{2 n} / \mu_{n}$	$S L_{n}^{2} / \mu_{n}$	1	$2 n^{2}-n$	n^{2}	
$S O_{2 n}$	$S O_{n+1}$	$\frac{n+1}{2} n$ odd	$2 n$	$n+1$	n odd
		$\frac{n}{2} n$ even		n	n even
E_{6} / μ_{3}	$S L_{6} / \mu_{3}$	1	27	15	
$S p_{6} / \mu_{2}$	$S L_{2}^{3} / \mu_{2}$	0	8	8	
$S L_{n}^{2} / \mu_{n}$	$P G L_{n}$	$n-1$	n^{2}	n	

Corollary 14.3. If L_{0} is the real form of L with Cartan involution $\theta=\operatorname{ad} \mu(-1)$, then L_{0} embeds as a subgroup of G_{0} over \mathbf{R}. The symmetric space $\mathcal{D}_{L}=L_{0}(\mathbf{R}) / K_{L_{0}}$ has an invariant complex structure, and embeds analytically into \mathcal{D}. Moreover,

$$
\operatorname{dim}_{\mathbf{C}} \mathcal{D}_{L}=\frac{1}{2} \operatorname{dim}_{\mathbf{C}} \mathcal{D}
$$

The last inequality is checked, case by case. We tabulate G_{0}, L_{0}, $\operatorname{dim} \mathcal{D}$, and $\operatorname{dim} \mathcal{D}_{L}$ below

TABLE 14.4.

G_{0}	L_{0}	$\operatorname{dim} \mathcal{D}$	$\operatorname{dim} \mathcal{D}_{L}$
$S U_{2,2 n-2} / \mu_{n}$	$S U_{1, n-1}^{2} / \mu_{n}$	$4 n-4$	$2 n-2$
$S O_{2,2 n-2}$	$S O_{2, n-1}$	$2 n-2$	$n-1$
${ }^{2} E_{6,2} / \mu_{3}$	$S U_{2,4} / \mu_{3}$	16	8
$S p_{6} / \mu_{2}$	$S L_{2}^{3} / \mu_{2}$	6	3
$S U_{1, n-1}^{2} / \mu_{m}$	$P U_{1, n-1}$	$2 n-2$	$n-1$

Since $\operatorname{dim} \mathcal{D}_{L}=\frac{1}{2} \operatorname{dim} \mathcal{D}$, this suggests the following problem. Let $G_{\mathbf{Q}}$ and $L_{\mathbf{Q}}$ be descents of G_{0} and L_{0} to \mathbf{Q}, with $L_{\mathbf{Q}} \hookrightarrow G_{\mathbf{Q}}$. This gives a morphism of Shimura varieties

$$
S_{L} \rightarrow S_{G}
$$

over \mathbf{C}, with $\operatorname{dim}\left(S_{L}\right)=\frac{1}{2} \operatorname{dim} S_{G}$. The algebraic cycles corresponding to S_{L} contribute to the middle cohomology $H^{\operatorname{dim} S_{G}}\left(S_{G}, \mathbf{C}\right)$. Can these Hodge classes detect the automorphic forms lifted from H ?

15. The group \hat{G} in a Levi factor

Recall that the center μ_{ℓ} of \hat{G} is cyclic. Let

$$
\begin{equation*}
\hat{J}=\mathbf{G}_{m} \times \hat{G} / \Delta \mu_{\ell} \tag{15.1}
\end{equation*}
$$

which is a group with connected center. We first observe that \hat{J} is a Levi factor in a maximal parabolic subgroup \hat{P} of a simple group of adjoint type \hat{M}. The minuscule
representation V occurs as the action of \hat{J} on the abelianization of the unipotent radical \hat{U} of \hat{P}.

Recall that the maximal parabolic subgroups \hat{P} of \hat{M} are indexed, up to conjugacy, by the simple roots α. We tabulate \hat{M}, the simple root α corresponding to \hat{P}, and the representation $\hat{U}^{a b}=V$ below:

Table 15.2.

\hat{G}	\hat{M}	α of \hat{P}	$V=U^{a b}$
$S L_{2 n} / \mu_{2}$	$P S O_{4 n}$	$\alpha_{2 n}$	$\wedge \mathbf{C}^{2 n}$
$S O_{2 n}$	$P S O_{2 n+2}$	α_{1}	$\mathbf{C}^{2 n}$
E_{6}	E_{7}	α_{7}	\mathbf{C}^{27}
Spin_{7}	F_{4}	α_{4}	\mathbf{C}^{8}
$S L_{n}^{2} / \mu_{n}$	$P G L_{2 n}$	α_{n}	$\mathbf{C}^{n} \otimes \mathbf{C}^{n}$

Proposition 15.2. The centralizer of \hat{H} in \hat{M} is $S O_{3}$, and $\hat{H} \times S_{3}$ is a dual reductive pair in \hat{M}.

This is checked case by case, and we list the pairs obtained below:

$$
\begin{gathered}
\mathrm{SO}_{3} \times P S p_{2 n} \subset P S O_{4 n}, \\
S O_{3} \times S O_{2 n-1} \subset P S O_{2 n+2}, \\
S O_{3} \times F_{4} \subset E_{7}, \\
S O_{3} \times G_{2} \subset F_{4}, \\
S O_{3} \times P G L_{n} \subset P G L_{2 n} . \\
\text { REFERENCES }
\end{gathered}
$$

[A] Jim Arthur, Unipotent automorphic representations: conjectures. In: Astérisque 171-172 (1989), 13-71. MR 91f:22030
[B] N. Bourbaki, Groupes et algèbres de Lie. Hermann, Paris, 1982.
[D] Pierre Deligne, Variétes de Shimura: Interpretation modulaire. In: Proc. Symp. Pure Math 33 (1979), part 2, 247-290. MR 81i:10032
[dS] J. de Siebenthal, Sur certains sous-groupes de rang un des groupes de Lie clos. Comptes Rendus 230 (1950), 910-912. MR 11:499b
[D-K] J. Dadok and V.G. Kac, Polar representations. J. Algebra 92 (1985) 504-524. MR 86e:14023
[G-W] Roe Goodman and Nolan Wallach, Representations and invariants of the classical groups. Cambridge University Press, Cambridge, 1998. MR 99b:20073
[G] Benedict Gross, On the motive of G and the principal homomorphism $\mathrm{SL}_{2} \rightarrow \hat{G}$. Asian J. Math. 1 (1997), 208-213. MR 99d:20077
[G-S] Benedict Gross and Gordan Savin, Motives with Galois group of type G_{2} : An exceptional theta correspondence, Compositio Math. 114 (1998), 153-217. MR 2000:11071
[H] Jim Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990. MR 92h:20002
[K] V.G. Kac, Some remarks on nilpotent orbits. J. Algebra 64 (1980), 190-213. MR 81i:17005
[S-K] M. Sato and T. Kimura, A classification of irreducible prehomogeneous spaces and their relative invariants. Nagoya Math. J. 65 (1977), 1-155. MR 55:3341
[V-Z] David Vogan and Gregg Zuckerman, Unitary representations with non-zero cohomology. Compositio Math. 53 (1984), 51-90. MR 86k:22040

Science Center 325, Harvard University, One Oxford Street, Cambridge, MA 02138
E-mail address: gross@math.harvard.edu

[^0]: Received by the editors May 9, 2000 and, in revised form, June 13, 2000.
 2000 Mathematics Subject Classification. Primary 20G05.

