ON MINUSCULE REPRESENTATIONS AND THE PRINCIPAL SL_2 #### BENEDICT H. GROSS ABSTRACT. We study the restriction of minuscule representations to the principal SL_2 , and use this theory to identify an interesting test case for the Langlands philosophy of liftings. In this paper, we review the theory of minuscule co-weights λ for a simple adjoint group G over \mathbb{C} , as presented by Deligne [D]. We then decompose the associated irreducible representation V_{λ} of the dual group \hat{G} , when restricted to a principal SL_2 . This decomposition is given by the action of a Lefschetz SL_2 on the cohomology of the flag variety $X = G/P_{\lambda}$, where P_{λ} is the maximal parabolic subgroup of G associated to the co-weight λ . We reinterpret a result of Vogan and Zuckerman [V-Z, Prop 6.19] to show that the cohomology of X is mirrored by the bigraded cohomology of the L-packet of discrete series with infinitesimal character ρ , for a real form G_0 of G with a Hermitian symmetric space. We then focus our attention on those minuscule representations with a non-zero linear form $t: V \to \mathbf{C}$ fixed by the principal SL_2 , such that the subgroup $\hat{H} \subset \hat{G}$ fixing t acts irreducibly on the subspace $V_0 = \ker(t)$. We classify them in §10; since \hat{H} turns out to be reductive, we have a decomposition $$V = \mathbf{C}e + V_0$$ where e is fixed by \hat{H} , and satisfies $t(e) \neq 0$. We study V as a representation of \hat{H} , and give an \hat{H} -algebra structure on V with identity e. The rest of the paper studies representations π of G which are lifted from H, in the sense of Langlands. We show this lifting is detected by linear forms on π which are fixed by a certain subgroup L of G. The subgroup L descends to a subgroup $L_0 \to G_0$ over \mathbf{R} ; both have Hermitian symmetric spaces \mathcal{D} with $\dim_{\mathbf{C}}(\mathcal{D}_L) = \frac{1}{2} \dim_{\mathbf{C}}(\mathcal{D}_G)$. We hope this will provide cycle classes in the Shimura varieties associated to G_0 , which will enable one to detect automorphic forms in cohomology which are lifted from H. It is a pleasure to thank Robert Kottwitz, Mark Reeder, Gordon Savin, and David Vogan for their help. #### Table of Contents - 1. Minuscule co-weights - 2. The real form G_0 - 3. The Weyl group Received by the editors May 9, 2000 and, in revised form, June 13, 2000. 2000 Mathematics Subject Classification. Primary 20G05. - 4. The flag variety - 5. The representation V of the dual group \hat{G} - 6. The principal $SL_2 \to \hat{G}$ - 7. Examples - 8. Discrete series and a mirror theorem - 9. Discrete series for SO(2,2n) - 10. A classification theorem: $V = \mathbf{C}e + V_0$ - 11. The representation V of \hat{H} - 12. Representations of G lifted from H - 13. The proof of Proposition 12.4 - 14. The real form of $L \to G$ - 15. The group \hat{G} in a Levi factor Bibliography # 1. Minuscule co-weights Let G be a simple algebraic group over \mathbb{C} , of adjoint type. Let $T \subset B \subset G$ be a maximal torus contained in a Borel subgroup, and let Δ be the corresponding set of simple roots for T. Then Δ gives a \mathbb{Z} -basis for $\operatorname{Hom}(T, \mathbb{G}_m)$, so a co-weight λ in $\operatorname{Hom}(\mathbb{G}_m, T)$ is completely determined by the integers $\langle \lambda, \alpha \rangle$, for α in Δ , which may be arbitrary. Let P_+ be the cone of dominant co-weights, where $\langle \lambda, \alpha \rangle \geq 0$ for all $\alpha \in \Delta$. A co-weight $\lambda: \mathbf{G}_m \to T$ gives a **Z**-grading \mathfrak{g}_{λ} of $\mathfrak{g} = \mathrm{Lie}(G)$, defined by $$\mathfrak{g}_{\lambda}(i) = \{ X \in \mathfrak{g} : \operatorname{Ad} \lambda(a)(X) = a^{i} \cdot X \}$$ We say λ is minuscule provided $\lambda \neq 0$ and the grading \mathfrak{g}_{λ} satisfies $\mathfrak{g}_{\lambda}(i) = 0$ for $|i| \geq 2$. Thus $$\mathfrak{g} = \mathfrak{g}_{\lambda}(-1) + \mathfrak{g}_{\lambda}(0) + \mathfrak{g}_{\lambda}(1).$$ The Weyl group $N_G(T)/T = W$ of T acts on the set of minuscule co-weights, and the W-orbits are represented by the dominant minuscule co-weights. These have been classified. **Proposition 1.2** ([D, 1.2]). The element λ is a dominant, minuscule co-weight if and only if there is a single simple root α with $\langle \lambda, \alpha \rangle = 1$, the root α has multiplicity 1 in the highest root β , and all other simple roots α' satisfy $\langle \lambda, \alpha' \rangle = 0$. Thus, the W-orbits of minuscule co-weights correspond bijectively to simple roots α with multiplicity 1 in the highest root β . If λ is minuscule and dominant, $\mathfrak{g}_{\lambda}(1)$ is the direct sum of the positive root spaces \mathfrak{g}_{γ} , where γ is a positive root containing α with multiplicity 1. Hence the dimension N of $\mathfrak{g}_{\lambda}(1)$ is given by the formula $$(1.3) N = \dim \mathfrak{g}_{\lambda}(1) = \langle \lambda, 2\rho \rangle,$$ where ρ is half the sum of the positive roots. The subgroup $W_{\lambda} \subset W$ fixing λ is isomorphic to the Weyl group of T in the subalgebra $\mathfrak{g}_{\lambda}(0)$, which has root basis $\Delta - \{\alpha\}$. We now tabulate the W-orbits of minuscule co-weights by listing the simple α occurring with multiplicity 1 in β in the numeration of Bourbaki [B]. We also tabulate $N = \dim \mathfrak{g}_{\lambda}(1)$ and $(W : W_{\lambda})$; a simple comparison shows that $(W : W_{\lambda}) \geq N + 1$ in all cases; we will explain this inequality later. Table 1.4. | \overline{G} | α | $(W:W_{\lambda})$ | N | |----------------|----------------------------------|---------------------|--------------------------| | A_{ℓ} | α_k | $\binom{\ell+1}{k}$ | $k(\ell+1-k)$ | | | $1 \le k \le \ell$ | | | | B_{ℓ} | $lpha_1$ | 2ℓ | $2\ell-1$ | | C_{ℓ} | $lpha_\ell$ | 2^ℓ | $\frac{\ell(\ell+1)}{2}$ | | D_{ℓ} | $lpha_1$ | 2ℓ | $2\ell-2$ | | | $\alpha_{\ell-1}, \alpha_{\ell}$ | $2^{\ell-1}$ | $\frac{\ell(\ell-1)}{2}$ | | E_6 | α_1, α_6 | 27 | 16^{-1} | | E_7 | α_1 | 56 | 27 | # 2. The real form G_0 We henceforth fix G and a dominant minuscule co-weight λ . Let G_c be the compact real form for G, so $G = G_c(\mathbf{C})$ and $G_c(\mathbf{R})$ is a maximal compact subgroup of G. Let $g \mapsto \overline{g}$ be the corresponding conjugation of G. Let $T_c \subset G_c$ be a maximal torus over \mathbf{R} . We have an identification of co-character groups $$\operatorname{Hom}_{\operatorname{cont}}(S^1, T_c(\mathbf{R})) = \operatorname{Hom}_{\operatorname{alg}}(\mathbf{G}_m, T).$$ We view λ as a homomorphism $S^1 \to T_c(\mathbf{R})$, and define (2.1) $$\theta = \operatorname{ad} \lambda(-1) \quad \text{in} \quad Inn(G).$$ Then θ is a Cartan involution, which gives another descent G_0 of G to \mathbf{R} . The group G_0 has real points $$G_0(\mathbf{R}) = \{ g \in G : \overline{g} = \theta(g) \},$$ and a maximal compact subgroup K of $G_0(\mathbf{R})$ is given by $$K = \{g \in G : g = \overline{g} \text{ and } g = \theta(g)\}$$ = $G_0(\mathbf{R}) \cap G_c(\mathbf{R})$. The corresponding decomposition of the complex Lie algebra \mathfrak{g} under the action of K is given by $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$, with (2.2) $$\begin{cases} \mathfrak{k} = \operatorname{Lie}(K) \otimes \mathbf{C} = \mathfrak{g}_{\lambda}(0) \\ \mathfrak{p} = \mathfrak{g}_{\lambda}(-1) + \mathfrak{g}_{\lambda}(1). \end{cases}$$ The torus $\lambda(S^1)$ lies in the center of the connected component of K, and the element $\lambda(i)$ gives the symmetric space $$\mathcal{D} = G_0(\mathbf{R})/K$$ a complex structure, with $$(2.3) N = \dim_{\mathbf{C}}(\mathcal{D}).$$ **Proposition 2.4** ([D, 1.2]). The real Lie groups $G_0(\mathbf{R})$ and K have the same number of connected components, which is either 1 or 2. Moreover, the following are all equivalent: - 1) $G_0(\mathbf{R})$ has 2 connected components. - 2) The symmetric space \mathcal{D} is a tube domain. - 3) The vertex of the Dynkin diagram of G corresponding to the simple root α is fixed by the opposition involution of the diagram. - 4) The subgroup W_{λ} fixing λ has a nontrivial normalizer in W, consisting of those w with $w\lambda = \pm \lambda$. In fact, the subgroup $W_c \subset W$ which normalizes W_{λ} is precisely the normalizer of the compact torus $T_c(\mathbf{R})$ in $G_0(\mathbf{R})$. When $W_{\lambda} \neq W_c$, it is generated by W_{λ} and the longest element w_0 , which satisfies $w_0 \lambda = -\lambda$. As an example, let $G = SO_3$ and $$\lambda(t) = \begin{pmatrix} t & & \\ & 1 & \\ & & t^{-1} . \end{pmatrix}$$ Then θ is conjugation by $$\lambda(-1) = \begin{pmatrix} -1 & & \\ & 1 & \\ & & -1, \end{pmatrix}$$ and $G_0 = SO(1,2)$ has 2 connected components. We have $K \simeq O(2)$, $W_c = W$ has order 2 in this case, and $W_{\lambda} = 1$. The tube domain $\mathcal{D} = G_0(\mathbf{R})/K$ is isomorphic to the upper half plane. The Weyl group W is a Coxeter group, with generating reflections s corresponding to the simple roots in Δ . Recall that ρ is half the sum of the positive roots and $W_{\lambda} \subset W$ is the subgroup fixing λ . **Proposition 3.1.** Each coset wW_{λ} of W_{λ} in W has a unique representative y of minimal length. The length d(y) of the minimal representative is given by the formula $$d(y) = \langle \lambda, \rho \rangle - \langle w\lambda, \rho \rangle,$$ where w is any element in the coset. Proof. Let R^{\pm} be the positive and negative roots, let R^{\pm}_{λ} be the subsets of positive and negative roots which satisfy $\langle \lambda, \gamma
\rangle = 0$. Then $R^+ - R^+_{\lambda}$ consists of the roots with $\langle \lambda, \gamma \rangle = 1$, and $R^- - R^-_{\lambda}$ consists of the roots with $\langle \lambda, \gamma \rangle = -1$. These sets are stable under the action of W_{λ} on R. On the other hand, if $w \in W_{\lambda}$ stabilizes R^+_{λ} (or R^-_{λ}), then w = 1, as W_{λ} is the Weyl group of the root system $R_{\lambda} = R^+_{\lambda} \cup R^-_{\lambda}$. Since the length d(y) of y in W is given by (3.2) $$d(y) = \#\{\gamma \text{ in } R^+ : y^{-1}(\gamma) \text{ is in } R^-\},$$ the set $$(3.3) Y = \{ y \in W : y(R_{\lambda}^{+}) \subset R^{+} \}$$ gives coset representatives for W_{λ} of minimal length. Moreover, for $y \in Y$ the set $y^{-1}(R^+)$ contains d(y) elements of R_{λ}^- , and hence N-d(y) elements of R_{λ}^+ . Hence, if $wW_{\lambda} = yW_{\lambda}$, we find $$\langle w\lambda, \rho \rangle = \langle y\lambda, \rho \rangle = \langle \lambda, y^{-1}\rho \rangle$$ $$= \frac{1}{2}((N - d(y)) - d(y))$$ $$= \frac{1}{2}N - d(y).$$ Since $$\langle \lambda, \rho \rangle = \frac{1}{2} N,$$ we obtain the desired formula. As an example of Proposition 3.1, the minimal representative of W_{λ} is y=1, with d(y)=0, and the minimal representative of $s_{\alpha}W_{\lambda}$ is $y=s_{\alpha}$, with d(y)=1. If w_0 is the longest element in the Weyl group, then $w_0(R^{\pm})=R^{\mp}$, so $w_0^2=1$, and $w_0\rho=-\rho$. Hence $$\langle w_0 \lambda, \rho \rangle = \langle \lambda, w_0^{-1} \rho \rangle = -\langle \lambda, \rho \rangle = -N/2.$$ Consequently, the length of the minimal representative y of w_0W_{λ} is d(y) = N. This is the maximal value of d on W/W_{λ} , and we will soon see that d takes all integral values in the interval [0, N]. Assume λ is fixed by the opposition involution $-w_0$, so $w_0\lambda = -\lambda$. Then \mathcal{D} is a tube domain, and W_{λ} has nontrivial normalizer $W_c = \langle W_{\lambda}, w_0 \rangle$ in W by Proposition 2.4. The 2-group W_c/W_{λ} acts on the set W/W_{λ} by $wW_{\lambda} \mapsto ww_0W_{\lambda}$, and this action has no fixed points. Hence we get a fixed point-free action $y \mapsto y*$ on the set Y, and find that (3.4) $$d(y) + d(y^*) = N.$$ # 4. The flag variety Associated to the dominant minuscule co-weight λ is a maximal parabolic subgroup P, which contains B and has Lie algebra (4.1) $$\operatorname{Lie}(P) = \mathfrak{g}_{\lambda}(0) + \mathfrak{g}_{\lambda}(1).$$ The flag variety X = G/P is projective, of complex dimension N. The cohomology of X is all algebraic, so $H^{2n+1}(X) = 0$ for all $n \ge 0$. Let (4.2) $$f_X(t) = \sum_{n>0} \dim H^{2n}(X) \cdot t^n$$ be the Poincaré polynomial of $H^*(X)$. Then we have the following consequence of Chevalley-Bruhat theory, which also gives a convenient method of computing the values of the function $d: W/W_{\lambda} \to \mathbf{Z}$. **Proposition 4.3.** 1) We have $f_X(t) = \sum_Y t^{d(y)}$. 2) If \underline{G} is the split adjoint group over \mathbf{Z} with the same root datum as G, and \underline{P} is the standard parabolic corresponding to λ , then $$f_X(q) = \#\underline{G}(F)/\underline{P}(F)$$ for all finite fields F, with q = #F. 3) The Euler characteristic of X is given by $$\chi = f_X(1) = \#(W : W_\lambda).$$ *Proof.* We have the decomposition $$G = \bigcup_{V} ByP,$$ where we have chosen a lifting of y from W to $N_G(T)$. If U is the unipotent radical of B, then B = UT. Since y normalizes T, $$UyP = ByP$$. This gives a cell decomposition $$X = \bigcup_Y Uy/P \cap y^{-1}Uy$$ where the cell corresponding to y is an affine space of dimension d(y). This gives the first formula. The formula for $f_X(q)$ follows from the Bruhat decomposition, which can be used to prove the Weil conjectures for X. Formula 3) for $f_X(1)$ follows immediately from 1). For example, let $G = PSp_{2n}$ be of type C_n . Then P is the Siegel parabolic subgroup, with Levi factor GL_n/μ_2 . From the orders of $Sp_{2n}(q)$ and $GL_n(q)$, we find that $$#\underline{G}(F)/\underline{P}(F) = \frac{(q^2 - 1)(q^4 - 1)\dots(q^{2n} - 1)}{(q - 1)(q^2 - 1)\dots(q^n - 1)}$$ $$= (1 + q)(1 + q^2)\dots(1 + q^n).$$ Hence we find $$f_X(t) = (1+t)(1+t^2)\dots(1+t^n).$$ The fact that X = G/P is a Kahler manifold imposes certain restrictions on its cohomology. For example, if ω is a basis of $H^2(X)$, then $\omega^k \neq 0$ in $H^{2k}(X)$ for all 0 < k < N. Hence we find that **Corollary 4.5.** The function $d: W/W_{\lambda} \to \mathbf{Z}$ takes all integral values in [0, N], and $(W: W_{\lambda}) \geq N + 1$. For $0 \le k \le N$, let $$m(k) = \#\{y \in Y : d(y) = k\}.$$ We have seen that m(0) = m(1) = 1 in all cases. By Poincaré duality $$(4.6) m(k) = m(N-k).$$ Finally, the Lefschetz decomposition into primitive cohomology shows that $$(4.7) m(k-1) < m(k)$$ whenever $2k \leq N$. Indeed, the representation of the Lefschetz SL_2 on $H^*(G/P)$ has weights N-2d(y) for the maximal torus $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$. # 5. The representation V of the dual group \hat{G} Let \hat{G} be the Langlands dual group of G, which is simply-connected of the dual root type. This group comes (in its construction) with subgroups $\hat{T} \subset \hat{B} \subset \hat{G}$, and an identification of the positive roots for \hat{B} in $\operatorname{Hom}(\hat{T}, \mathbf{G}_m)$ with the positive co-roots for B in $\operatorname{Hom}(\mathbf{G}_m, T)$ (cf. [G]). Hence, the dominant co-weights for T give dominant weights for \hat{T} , which are the highest weights for \hat{B} on irreducible representations of \hat{G} . Let V be the irreducible representation of \hat{G} , whose highest weight for \hat{B} is the dominant, minuscule co-weight λ . **Proposition 5.1.** The weights of \hat{T} on V consist of the elements in the W-orbit of λ . Each has multiplicity 1, so dim $V = (W : W_{\lambda})$. The central character χ of V is given by the image of λ in $\operatorname{Hom}(\hat{T}, \mathbf{G}_m)/\bigoplus_{\Delta} \mathbf{Z}\alpha^{\vee}$, and is nontrivial. *Proof.* For μ and λ dominant, we write $\mu \leq \lambda$ if $\lambda - \mu$ is a sum of positive co-roots. These are precisely the other dominant weights for \hat{T} occurring in V_{λ} . When λ is minuscule, $\mu \leq \lambda$ implies $\mu = \lambda$, so only the W-orbit of λ occur as weights. Each has the same multiplicity as the highest weight, which is 1. Since $\mu = 0$ is dominant, λ is not in the span of the co-roots, and $\chi \neq 1$. This result gives another proof of the inequality of Corollary 4.5: $(W:W_{\lambda}) \geq N+1$. Indeed, let L be the unique line in V_{λ} fixed by \hat{B} . The fixer of L is the standard parabolic \hat{P} dual to P. This gives an embedding of projective varieties: $$\hat{G}/\hat{P} \hookrightarrow \mathbf{P}(V_{\lambda}).$$ Since \hat{G}/\hat{P} has dimension N, and $\mathbf{P}(V_{\lambda})$ has dimension $(W:W_{\lambda})-1$, this gives the desired inequality. The real form G_0 defined in §2 has Langlands L-group (5.2) $${}^{L}G = \hat{G} \rtimes \operatorname{Gal}(\mathbf{C}/\mathbf{R}).$$ The action of $\operatorname{Gal}(\mathbf{C}/\mathbf{R})$ on \hat{G} exchanges the irreducible representation V with dominant weight λ with the dual representation V^* with dominant weight $-w_0\lambda$. Hence the sum $V+V^*$ always extends to a representation of LG . The following is a simple consequence of Proposition 2.4. **Proposition 5.3.** The following are equivalent: - 1) We have $w_0\lambda = -\lambda$. - 2) The symmetric space \mathcal{D} is a tube domain. - 3) The representation V is isomorphic to V^* . - 4) The central character χ of V satisfies $\chi^2 = 1$. - 5) The representation V of \hat{G} extends to a representation of ${}^{L}G$. 6. The principal $$SL_2 \to \hat{G}$$ The group \hat{G} also comes equipped with a principal $\varphi: SL_2 \to \hat{G}$; see [G]. The co-character $\mathbf{G}_m \to \hat{T}$ given by the restriction of φ to the maximal torus $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$ of SL_2 is equal to 2ρ in $\text{Hom}(\mathbf{G}_m, \hat{T}) = \text{Hom}(T, \mathbf{G}_m)$. From this, and Proposition 5.1, we conclude the following: **Proposition 6.1.** The restriction of the minuscule representation V to the principal SL_2 in \hat{G} has weights $$\bigoplus_{W/W_{\lambda}} t^{\langle w\lambda, 2\rho\rangle}$$ for the maximal torus $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$ in SL_2 . On the other hand, by Proposition 3.1, we have (6.2) $$\langle w\lambda, 2\rho \rangle = \langle \lambda, 2\rho \rangle - 2d(y) = N - 2d(y)$$ where d(y) is the length of the minimal representative y in the coset wW_{λ} . Hence the weights for the principal SL_2 acting on V are the integers $$(6.3) N - 2d(y) y \in Y$$ in the interval [-N, N]. Since these are also the weights of the Lefschetz SL_2 acting on the cohomology $H^*(G/P)$ by $\S 4$, we obtain the following: Corollary 6.4. The representation of the principal SL_2 of \hat{G} on V is isomorphic to the representation of the Lefschetz SL_2 on the cohomology of the flag variety X = G/P. #### 7. Examples We now give several examples of the preceding theory, using the notation for roots and weights of [B]. If G is of type A_{ℓ} and $\alpha = \alpha_1$ we have $\lambda = e_1$. The flag variety G/P is projective space \mathbf{P}^N , with $N = \ell$, and the Poincaré polynomial is $1 + t + t^2 + \cdots + t^N$. The dual group \hat{G} is SL_{N+1} , and V is the standard representation. The restriction of V to a principal SL_2 is irreducible, isomorphic to $S^N = \operatorname{Sym}^N(\mathbf{C}^2)$. A similar result holds when G is of type B_{ℓ} , so
$\alpha = \alpha_1$ and $\lambda = e_1$. Here G/P is a quadric of dimension $N = 2\ell - 1$, with $P(t) = 1 + t + \cdots + t^N$ as before. The dual group is $\hat{G} = \operatorname{Sp}_{2\ell}$, the representation V is the standard representation, and its restriction to the principal SL_2 is the irreducible representation S^N . Next, suppose G is of type D_{ℓ} and $\alpha = \alpha_1$, so $\lambda = e_1$. Then G/P is a quadric of dimension $N = 2\ell - 2$, and we have $P(t) = 1 + t + \dots + 2t^{\ell-1} + \dots + t^N$. The dual group \hat{G} is $\mathrm{Spin}_{2\ell}$, and V is the standard representation of the quotient $SO_{2\ell}$. Its restriction to the principal SL_2 is a direct sum $S^N + S^0$, where S^0 is the trivial representation. A more interesting case is when G is of type C_{ℓ} , so $\alpha = \alpha_{\ell}$ and $\lambda = \frac{e_1 + e_2 + \dots + e_{\ell}}{2}$. Here G/P is the Lagrangian Grassmanian of dimension $N = \frac{\ell(\ell+1)}{2}$, and $P(t) = (1+t)(1+t^2)\dots(1+t^{\ell})$ was calculated in (4.4). The dual group \hat{G} is $\text{Spin}_{2\ell+1}$, and V is the spin representation of dimension 2^{ℓ} . Its decomposition to a principal SL_2 is given by §6, and we find the following representations, for $\ell \leq 6$: (7.1) $$S^{1} \qquad \ell = 1,$$ $$S^{3} \qquad \ell = 2,$$ $$S^{6} + S^{0} \qquad \ell = 3,$$ $$S^{10} + S^{4} \qquad \ell = 4,$$ $$S^{15} + S^{9} + S^{5} \qquad \ell = 5,$$ $$S^{21} + S^{15} + S^{11} + S^{9} + S^{3} \qquad \ell = 6.$$ As the last example, suppose G is of type E_6 . Then G/P has dimension 16 and Poincaré polynomial $$P(t) = 1 + t + t^{2} + t^{3} + 2t^{4} + 2t^{5} + 2t^{6} + 2t^{7} + 3t^{8}$$ $$+ 2t^{9} + 2t^{10} + 2t^{11} + 2t^{12} + t^{13} + t^{14} + t^{15} + t^{16}.$$ The representation V has dimension 27, and its restriction to a principal SL_2 is the representation $$(7.2) S^{16} + S^8 + S^0.$$ **Proposition 7.3.** The representation V of the principal SL_2 is irreducible, hence isomorphic to S^N , if and only if G is of type A_ℓ or B_ℓ and $\alpha = \alpha_1$. The representation V of the principal SL_2 is isomorphic to $S^N + S^0$ if and only if G is of type D_ℓ and $\alpha = \alpha_1$, or G is of type D_4 and $\alpha = \alpha_3$ or α_4 , or G is of type C_3 and $\alpha = \alpha_3$. *Proof.* The condition $V = S^N$ as a representation of SL_2 is equivalent to the equality dim $$V = (W : W_{\lambda}) = N + 1$$. The condition $V = S^N + S^0$ as a representation of SL_2 is equivalent to the equality $$\dim V = (W : W_{\lambda}) = N + 2.$$ One obtains all the above cases by a consideration of the columns in Table 1.4. \Box # 8. DISCRETE SERIES AND A MIRROR THEOREM Let G_0 be the real form of G described in §2, and let $G_0(\mathbf{R})^+$ be the connected component of $G_0(\mathbf{R})$. The L-packet of discrete series representations π^+ of $G_0(\mathbf{R})^+$ with infinitesimal character the W-orbit of ρ is in canonical bijection with the coset space $W_{\lambda}\backslash W$. Indeed, W_{λ} is the compact Weyl group of the simply-connected algebraic cover G_0^{sc} of G_0 , and any discrete series for $G_0^{sc}(\mathbf{R})$ with infinitesimal character ρ has trivial central character, so it descends to the quotient group $G_0(\mathbf{R})^+$. On the other hand, such discrete series for $G_0^{sc}(\mathbf{R})$ are parameterized by their Harish-Chandra parameters in $\operatorname{Hom}(T_c^{sc}(\mathbf{R}), S^1)/W_{\lambda}$, which lie in the W-orbit of ρ . The coset $W_{\lambda}\rho$ corresponds to the holomorphic discrete series, and the coset $W_{\lambda}w_0\rho = W_{\lambda}w_0^{-1}\rho$ corresponds to the anti-holomorphic discrete series. **Proposition 8.1** ([V-Z, Prop. 6.19]). Assume the discrete series π^+ of $G_0(\mathbf{R})^+$ has Harish-Chandra parameter $W_{\lambda}w^{-1}\rho$. Then π^+ has bigraded cohomology $$H^{p,q}(\mathfrak{a},K^+;\pi^+)\simeq \mathbf{C}$$ for p + q = N and q = d(y), the length of the minimal representative of wW_{λ} . The cohomology of π vanishes in all other bidegrees (p', q'). *Proof.* The bigrading of the (\mathfrak{g}, K^+) cohomology of any π^+ in the *L*-packet is discussed in [V-Z, (6.18)(a-c)]. The cohomology has dimension 1 for degree N, and dimension 0 otherwise, so we must have p+q=N. On the other hand, Arthur (cf. [A, pp. 62–63]) interprets the calculation of [V-Z, Prop. 6.19] to obtain the formula $$-\frac{1}{2}(p-q) = \langle \lambda, w^{-1} \rho \rangle = \langle w\lambda, \rho \rangle.$$ Since $\frac{1}{2}(p+q) = \langle \lambda, \rho \rangle$, we find that $q = \langle \lambda, \rho \rangle - \langle w\lambda, \rho \rangle = d(y)$, by Proposition 3.1. If $G_0(\mathbf{R}) \neq G_0(\mathbf{R})^+$, the discrete series π for $G_0(\mathbf{R})$ with infinitesimal character ρ correspond to the coset space $W_c \backslash W$, where W_c is the (nontrivial) normalizer of W_{λ} in W. We find that the bigraded cohomology of π with Harish-Chandra parameter $W_c w^{-1} \rho$ is the direct sum of two lines of type (p,q) and (q,p), with p+q=N and q=d(y). The 2-group K/K^+ acts on $H^N(\mathfrak{g}, K^+, \pi)$, switching the two lines. When p = q = N/2, there is a unique line in $H^{p,p}(\mathfrak{g}, K^+, \pi)$ fixed by K/K^+ . A suggestive way to restate the calculation of the bigraded cohomology is the following. Corollary 8.2. The Hodge structure on the sum $H^N(G_0) = \bigoplus_{\pi} H^{*,*}(\mathfrak{g}, K^+, \pi)$ over the L-packet of discrete series for $G_0(\mathbf{R})$ with infinitesimal character ρ mirrors the Hodge structure on $H^*(G/P)$. That is, $$\dim H^{q,q}(G/P) = \dim H^{N-q,q}(G_0).$$ Indeed, both dimensions are equal to the number of classes wW_{λ} in W/W_{λ} with $d(w, W_{\lambda}) = q$. ### 9. Discrete series for SO(2,2n) Assume that G is of type D_{n+1} with $n \geq 2$, and that $\alpha = \alpha_1$. The group $G_0(\mathbf{R})$ is then isomorphic to $PSO(2,2n) = SO(2,2n)/\langle \pm 1 \rangle$, and \mathcal{D} is a tube domain of complex dimension N=2n. There are n+1 discrete series representations π of $G_0(\mathbf{R})$ with infinitesimal character ρ . We will describe these as representations of SO(2,2n), with trivial central character, and will calculate their minimal K^+ -types and Hodge cohomology. Let V be a 2-dimensional real vector space, with a positive definite quadratic form, and write -V for the same space, with the negative form. For $k=0,1,\ldots,n$ define the quadratic space $$W_k = V_0 + V_1 + \dots + (-V_k) + \dots + V_n,$$ so $SO(W_k) \simeq SO(2,2n)$, a maximal compact torus T_c in $SO(W_k)$ is given by $\prod_{i=0}^n SO(V_i)$, and a maximal compact, connected subgroup K^+ containing T_c is given by $SO(V_k) \times SO(V_k^{\perp})$. If e_i is a generator of $Hom(SO(V_i), S^1)$, then the character group of T_c is $\bigoplus_{i=0}^n \mathbf{Z}e_i$, and the roots of T_c on \mathfrak{g} are the elements $$\gamma_{ij} = \pm e_i \pm e_j \qquad i \neq j.$$ The compact roots of T_c on k are those roots γ_{ij} with $i \neq k+1$ and $j \neq k+1$, so the (k+1)st coordinate of γ is zero. A set of positive roots is given by $$R^+ = \{e_i \pm e_j : i < j\}.$$ This has root basis $$\Delta = \{e_0 - e_1, e_1 - e_2, \dots, e_{n-1} - e_n, e_{n-1} + e_n\}$$ and $$\rho = (n, n - 1, n - 2, \dots, 1, 0).$$ On the other hand, half the sum ρ_c of the compact positive roots is given by $$\rho_c = (n-1, n-2, \dots, n-k, 0, n-k-1, k, \dots, 1, 0).$$ At the two extremes, we find that $$k = 0$$ $\rho_c = (0, n - 1, n - 2, \dots, 1, 0),$ $k = n$ $\rho_c = (n - 1, n - 2, \dots, 1, 0, 0).$ The lowest K^+ -type of a discrete series π^+ for $SO(2,2n)^+$ with Harish-Chandra parameter $\lambda = \rho$ is given by Schmid's formula: $$\lambda + \rho - 2\rho_c = 2(\rho - \rho_c).$$ For the realizations $SO(2,2n) \simeq SO(W_k)$ above, we obtain n+1 discrete series π_k^+ with minimal $K^+ \simeq SO(2) \times SO(2n)$ type $$\chi^{2(n-k)} \otimes (2, 2, 2, \dots, 2, 0, 0 \dots 0)$$ k times where χ is the fundamental character of SO(2), giving the action on \mathfrak{p}^+ . The irreducible representation of SO(2n) with highest weight $2(e_1 + \cdots + e_k)$ appears with multiplicity 1 in $\operatorname{Sym}^2(\bigwedge^k \mathbf{C}^{2n})$, and the minimal K^+ -type appears with multiplicity 1 in the representation $\bigwedge^k \mathfrak{p}_- \otimes \bigwedge^2 \mathfrak{p}_+$. Hence the Hodge type of π_k^+ is (2n - k, k). Each discrete series π_k of SO(2, 2n) with infinitesimal character ρ decomposes Each discrete series π_k of SO(2,2n) with infinitesimal character ρ decomposes as $\pi_k = \pi_k^+ + \pi_k^-$ when restricted to $SO(2,2n)^+$ with π_k^+ as above, and π_k^- its conjugate by $G_0(\mathbf{R})/G_0(\mathbf{R})^+$. The minimal K^+ -type of π_k^- is $$\chi^{2(k-n)} \otimes (2, 2, 2, \dots, 2, 0, 0 \dots 0)$$ k times so π_k^- has Hodge type (k, 2n - k), and π_k has Hodge type (k, 2n - k) + (2n - k, k). If we label the simple roots in the Dynkin diagram for G, white for non-compact roots, black for compact roots, then the discrete series π_k of SO(2, 2n) gives the labelled diagram below. In the case k=0, π_k is the sum of holomorphic and anti-holomorphic discrete series, and is an admissible representation of the subgroup $SO(2) \subset K^+$. In the case k=n, π_n is admissible for the subgroup $SO(2n) \subset K^+$, and has Hodge type (n,n)+(n,n). ### 10. A Classification Theorem: $V = \mathbf{C}e + V_0$ We now return to the restriction of a minimal representation V of \hat{G} to a principal SL_2 in \hat{G} . Since V will be fixed, we will replace the simply-connected group \hat{G} by its quotient which acts faithfully on V, and will henceforth use the symbol \hat{G} for
this subgroup of GL(V). The group G is therefore no longer necessarily of adjoint type. We have (10.1) $$X_{\bullet}(T) = \mathbf{Z}\lambda + \bigoplus_{\text{co-roots}} \mathbf{Z}\alpha^{\vee}$$ and $\ell\lambda$ lies in the sublattice $\bigoplus \mathbf{Z}\alpha^{\vee}$, with ℓ the order of the (cyclic) center of \hat{G} . Since $\langle \alpha^{\vee}, \rho \rangle$ is an integer for all co-roots, we find that ρ is in $X^{\bullet}(T)$ if and only if $\langle \lambda, \rho \rangle$ is an integer. By (1.3) this occurs precisely when the integer $N = \dim_{\mathbf{C}}(\mathcal{D})$ is even. Since the center $\langle \pm 1 \rangle$ of a principal SL_2 in \hat{G} acts on V by the character $(-1)^N$, we see that ρ is in $X^{\bullet}(T)$ precisely when principal homomorphism $SL_2 \to \hat{G}$ factors through the quotient group PGL_2 . **Proposition 10.2.** Assume that there is a non-zero linear form $t: V \to \mathbf{C}$ which is fixed by the principal $SL_2 \to \hat{G}$, and that the subgroup \hat{H} of \hat{G} fixing t acts irreducibly on the hyperplane $V_0 = \ker(t)$. Then (up to the action of the outer automorphism group of the simply-connected cover of \hat{G}) the representation V is given by the following table: $$\begin{array}{cccc} \hat{G} & V & \hat{H} \\ SL_{2n}/\mu_2 & \stackrel{?}{\wedge} \mathbf{C}^{2n} & Sp_{2n}/\mu_2 \\ SO_{2n} & \mathbf{C}^{2n} & SO_{2n-1} \\ E_6 & \mathbf{C}^{27} & F_4 \\ Spin_7 & \mathbf{C}^8 & G_2 \end{array}$$ *Proof.* By definition, \hat{H} contains the image of the principal SL_2 (which is isomorphic to PGL_2). These subgroups of simple \hat{G} have been classified by de Siebenthal [dS]. One has the chains: $$SL_2 \to SO_{2n+1} \to SL_{2n+1},$$ $$SL_2 \to Sp_{2n} \to SL_{2n},$$ $$SL_2 \to SO_{2n-1} \to SO_{2n},$$ $$SL_2 \to F_4 \to E_6,$$ $$SL_2 \to G_2 \to \text{Spin}_7 \to SO_8,$$ $$SL_2 \to G_2 \to SO_7 \to SL_7.$$ It is then a simple matter to check, for any V, whether an \hat{H} containing the principal SL_2 can act irreducibly on V_0 . Beyond the examples given in Proposition 10.2, we have one semi-simple example with the same properties: (10.3) $$\hat{G} = SL_n^2/\Delta\mu_n \qquad V = \mathbf{C}^n \otimes (\mathbf{C}^n)^* \qquad \hat{H} = PGL_n.$$ In all cases, \hat{H} is a group of adjoint type. **Proposition 10.4.** For the groups \hat{G} in Proposition 10.2, the center is cyclic of order $\ell \geq 2$. The integer ℓ is the number of irreducible representations in the restriction of V to a principal SL_2 . The \hat{G} -invariants in the symmetric algebra on V^* form a polynomial algebra, on one generator $d: V \to \mathbf{C}$ of degree ℓ . The group \hat{G} has an open orbit on the projective space of lines in V, with connected stabilizer \hat{H} , consisting of the lines where $d(v) \neq 0$. *Proof.* The first assertion is proved by an inspection of the following table. We derive the decomposition of V from $\S 6$. \hat{G} $\ell = \text{order of center}$ decomp. of V $S^{4n-4} + S^{4n-8} + \dots + S^4 + S^0$ SL_{2n}/μ_2 $n \ge 2$ $S^{2n-2} + S^0$ 2 SO_{2n} $S^{16} + S^8 + S^0$ E_6 3 $S^6 + S^0$ 2 Spin₇ $S^{2n-2} + S^{2n-4} + \dots + S^2 + S^0$ $SL_n^2/\Delta\mu_n$ $n \ge 2$ Table 10.5. The calculation of $S^{\bullet}(V^*)^{\hat{G}}$ follows from [S-K], which also identifies the connected component of the stabilizer with \hat{H} . Note that the degree of any invariant is divisible by ℓ , as the center acts faithfully on V^* . ## 11. The representation V of \hat{H} Recall that $\ell \geq 2$ is the order of the cyclic center of \hat{G} , tabulated in 10.5. Since the subgroup $\hat{H} \subset \hat{G}$ fixing the linear form $t \colon V \to \mathbf{C}$ is reductive, we have a splitting of \hat{H} -modules $$(11.1) V = \mathbf{C}e + V_0$$ with $V_0 = \ker(t)$, and e a vector fixed by \hat{H} satisfying $t(e) \neq 0$. Once t has been chosen, we may normalize e by insisting that $$(11.2) t(e) = \ell.$$ **Proposition 11.3.** The representation V_0 of \hat{H} is orthogonal. Its weights consist of the short roots of \hat{H} and the zero weight. The zero weight space for \hat{H} in V has dimension ℓ , and V is a polar representation of \hat{H} of type $A_{\ell-1}$: the \hat{H} -invariants in the symmetric algebra of $V \simeq V^*$ form a polynomial algebra, with primitive generators in degrees $1, 2, 3, \ldots, \ell$. *Proof.* The fact that V_0 is orthogonal, and its weights, are obtained from a consideration of the table in Proposition 10.2. Since dim $$V = \ell + \#\{\text{short roots of } \hat{H}\},\$$ this gives the dimension of the zero weight space. Let $\hat{S} \subset \hat{H}$ be a maximal torus, with normalizer \hat{N} . The image of \hat{N}/\hat{S} in $GL(V^{\hat{S}}) = GL_{\ell}$ is the symmetric group Σ_{ℓ} . The fact that V is polar follows from the tables in [D-K], which also gives an identification of algebras: $S^{\bullet}(V)^{\hat{H}} \simeq S^{\bullet}(V^{\hat{S}})^{\hat{N}/\hat{S}}$. The latter algebra is generated by the elementary symmetric functions, of degrees $1, 2, 3, \ldots, \ell$. Note 11.4. The integer ℓ is also the number of distinct summands in the restriction of V to a principal SL_2 . Since each summand is an orthogonal representation of SL_2 , $\ell = \dim V^{\hat{S}_0}$, where $\hat{S}_0 \subset SL_2$ is a maximal torus. Hence $V^{\hat{S}_0} = V^{\hat{S}}$. We will now define an \hat{H} -algebra structure on V, with identity element e, in a case by case manner. Although the multiplication law $V \otimes V \to V$ is not in general associative, it is power associative, and for $v \in V$ and $k \geq 0$ we can define v^k in V unambiguously. The primitive \hat{H} -invariants in $S^{\bullet}(V^*)$ can then be given by $$(11.5) v \mapsto t(v^k) 1 < k < \ell.$$ In (11.5), $t: V \to \mathbf{C}$ is the \hat{H} -invariant linear form, normalized by the condition that $$t(e) = \ell$$. We will also identify the \hat{G} -invariant ℓ -form det: $V \to \mathbf{C}$, normalized by the condition that $$det(e) = 1.$$ The simplest case, when the algebra structure on V is associative, is when $\hat{H} = PGL_n$ and V is the adjoint representation (of GL_n) on $n \times n$ matrices. The algebra structure is matrix multiplication, e is the identity matrix, t is the trace, and det is the determinant (which is invariant under the larger group $\hat{G} = SL_n \times SL_n/\Delta\mu_n$ acting by $v \mapsto AvB^{-1}$). Another algebra structure on V, with the same powers v^k , is given by the Jordan multiplication $A \circ B = \frac{1}{2}(AB + BA)$. This algebra is isomorphic to the Jordan algebra of Hermitian symmetric $n \times n$ matrices over the quadratic **C**-algebra $\mathbf{C} + \mathbf{C}$, with involution $\overline{(z,w)} = (w,z)$. The representation V has a similar Jordan algebra structure when $\hat{H} = PSp_{2n}$ and when $\hat{H} = F_4$. In the first case, V is the algebra of Hermitian symmetric $n \times n$ matrices over the complex quaternion algebra $M_2(\mathbf{C})$, and in the second V is the algebra of Hermitian symmetric 3×3 matrices over the complex octonion algebra. When $\hat{H} = SO_{2n-1}$, the representation $V = \mathbf{C}e + V_0$ has a Jordan multiplication given by the quadratic form \langle , \rangle on V. We normalize this bilinear paring to satisfy $\langle e, e \rangle = 2$, so $\det(v) = \frac{\langle v, v \rangle}{2}$ is the \hat{G} -invariant 2-form on V. The multiplication is defined, with e as identity, by giving the product of two vectors v, w in $V_0 : v \circ w = -\frac{1}{2}\langle v, w \rangle e$. Finally, when $H = G_2$, the representation V of dimension 8 has the structure of an octonion algebra, with $t(v) = v + \bar{v}$ and $\det(v) = v\bar{v}$. In all cases but this one \hat{G} is the connected subgroup of GL(V) preserving det, and \hat{H} is the subgroup of GL(V) preserving all the forms $t(v^k)$ for $1 \le k \le \ell$. In the octonionic case, the subgroup $SO_8 \subset GL_8$ preserves det, and the subgroup $SO_7 \subset SO_8$ preserves t(v) and $t(v^2)$. In general, det: $V \to \mathbf{C}$ is a polynomial in the \hat{H} -invariants $t(v^k)$, given by the Newton formulae. The expression for $\ell!$ det has integral coefficients; for example, (11.6) $$\begin{cases} 2 \det(v) = t(v)^2 - t(v^2) & \ell = 2\\ 6 \det(v) = t(v)^3 - 3t(v^2)t(v) + 2t(v^3) & \ell = 3. \end{cases}$$ #### 12. Representations of G lifted from H We now describe the finite dimensional irreducible holomorphic representations π of G which are lifted from irreducible representations π' of H. This notion of lifting is due to Langlands: the parameter of π , which is a homomorphism $\varphi: \mathbf{C}^* \to \hat{G}$ up to conjugacy, should factor through a conjugate of \hat{H} . We can parameterize the finite dimensional irreducible holomorphic representations π of G by their highest weights ω for B. The weight ω is a positive, integral combination of the fundamental weights ω_i of the simply-connected cover of G, so we may write (using the numeration of [B]) (12.1) $$\omega = \sum_{i=1}^{\operatorname{rank}(G)} b_i \omega_i \qquad b_i \ge 0.$$ For ω to be a character of G, there are some congruences which must be satisfied by the coefficients b_i . (The group G is *not* simply connected, as its dual \hat{G} acts faithfully on the minuscule representation V.) Since (12.2) $$\operatorname{rank}(G) = \operatorname{rank}(H) + (\ell - 1),$$ there are $(\ell - 1)$ linear conditions on the coefficients b_i which are necessary and sufficient for π to be lifted from π' of H. These conditions refine the congruences, and we tabulate them in Table 12.3 below. When $G = SL_{2n}/\mu_n$, SO_{2n} , or Sp_6/μ_2 there are more classical descriptions of ω in the weight spaces \mathbf{R}^{2n} ,
\mathbf{R}^n , and \mathbf{R}^3 , respectively. We describe, in this language, which representations are lifted from H. #### Table 12.3. $$G \qquad H \qquad \omega = \sum b_{i}\omega_{i} \text{ of } G \qquad \omega \text{ lifted from } H$$ $$SL_{2n}/\mu_{n} \qquad \operatorname{Spin}_{2n+1} \qquad \sum_{i=1}^{n-1} i(b_{i}-b_{2n-i}) \equiv 0(n) \qquad b_{i}=b_{2n-i}$$ $$1 \leq i \leq n-1$$ $$SO_{2n} \qquad Sp_{2n-2} \qquad b_{n-1}-b_{n} \equiv 0(2) \qquad b_{n-1}=b_{n}$$ $$E_{6}/\mu_{3} \qquad F_{4} \qquad (b_{1}-b_{6})+2(b_{2}-b_{5}) \equiv 0(3) \qquad b_{1}=b_{6}$$ $$b_{2}=b_{5}$$ $$Sp_{6}/\mu_{2} \qquad G_{2} \qquad b_{1}-b_{3} \equiv 0(2) \qquad b_{1}=b_{3}$$ $$SL_{n} \times SL'_{n}/\Delta\mu_{n} \qquad SL_{n} \qquad \sum_{i=1}^{n-1} i(b_{i}-b'_{n-1}) \equiv 0(n) \qquad b_{i}=b'_{n-1}$$ $$1 \leq i \leq n-1$$ For $G = SL_{2n}/\mu_n$, a dominant weight ω is a vector $(a_1, a_2, \dots, a_{2n})$ in \mathbb{R}^{2n} with $$a_1 \ge a_2 \ge \dots \ge a_{2n},$$ $$a_i \quad \text{in} \quad 1/2 \mathbf{Z} \qquad 1 \le i \le 2n,$$ $$a_i \equiv a_j \quad (\mod \mathbf{Z}),$$ $$\sum a_i = 0.$$ The representations lifted from Spin_{2n+1} give dominant weights ω with $$a_i + a_{2n+1-i} = 0$$ $1 \le i \le n$. In particular, $a_n \ge 0 \ge a_{n+1}$, as $a_n + a_{n+1} = 0$. For $G = SO_{2n}$, a dominant weight ω is a vector (a_1, \ldots, a_n) in \mathbb{Z}^n with $$a_1 \ge a_2 \ge \dots \ge a_{n-1} \ge |a_n|.$$ The representations lifted from Sp_{2n-2} satisfy $a_n = 0$. Finally, for $G = Sp_6/\mu_2$, a dominant weight is given classically as a vector (a_1, a_2, a_3) in \mathbb{Z}^3 with $a_1 \geq a_2 \geq a_3 \geq 0$ and $a_1 \equiv a_2 + a_3 \pmod{2}$. The representations lifted from G_2 are those with $a_1 = a_2 + a_3$. Define a connected, reductive subgroup L of G as follows: | $G = SL_{2n}/\mu_n$ | $L = SL_n^2/\Delta\mu_n$ | fixing a decomposition of the standard representation of $SL_{2n}: \mathbf{C}^{2n} = \mathbf{C}^n + \mathbf{C}^n$, and having determinant 1 on each factor | |--------------------------|--------------------------|---| | $G = SO_{2n}$ | $L = SO_{n+1}$ | fixing a non-degenerate subspace \mathbf{C}^{n-1} in the standard representation \mathbf{C}^{2n} | | $G = E_6/\mu_3$ | $L = SL_6/\mu_3$ | fixing the highest and lowest root spaces in the adjoint representation | | $G = Sp_6/\mu_2$ | $L = SL_2^3/\Delta\mu_2$ | fixing a decomposition of the standard representation of Sp_6 : $\mathbf{C}^6 = \mathbf{C}^2 + \mathbf{C}^2 + \mathbf{C}^2$ into three non-degenerate, orthogonal subspaces | | $G = SL_n^2/\Delta\mu_n$ | $L = PGL_n$ | fixing the identity matrix in the representation on $M_n(\mathbf{C})$ | **Proposition 12.4.** The finite dimensional irreducible representation π of G is lifted from H if and only if the space $\operatorname{Hom}_L(\pi, \mathbf{C})$ of L-invariant linear forms on π is non-zero. In this case, the dimension of the space of L-invariant linear forms is given by the following table: #### Table 12.5. $$G \qquad \omega \text{ lifted from } H \qquad \dim \text{ Hom}_L(\pi, \mathbf{C})$$ $$SL_{2n}/\mu_n \quad b_1(\omega_1 + \omega_{2n-1}) + b_2(\omega_2 + \omega_{2n-2}) + \cdots \qquad b_n + 1$$ $$\cdots + b_{n-1}(\omega_{n-1} + \omega_{n+1}) + b_n\omega_n$$ $$SO_{2n} \qquad b_1\omega_1 + b_2\omega_2 + \cdots + b_{n-2}\omega_{n-2} \qquad \prod_{1 \le i < j \le n-2} \frac{b_1 + b_2 + \cdots + b_{j-1} + j - i}{j - i}$$ $$+ b_{n-1}(\omega_{n-1} + \omega_n)$$ $$E_6/\mu_3 \qquad b_1(\omega_1 + \omega_6) + b_3(\omega_3 + \omega_5) \qquad \frac{(b_2 + 1)(b_4 + 1)(b_2 + b_4 + 2)}{2}$$ $$+ b_2\omega_2 + b_4\omega_4$$ $$Sp_6/\mu_2 \qquad b_1(\omega_1 + \omega_3) + b_2\omega_2 \qquad b_2 + 1$$ $$SL_n^2/\Delta\mu_n \qquad V \otimes V^* \qquad 1$$ #### 13. The proof of Proposition 12.4 The only easy case is when $G = SL_n^2/\Delta\mu_n$, so an irreducible π has the form $V \otimes V'$, where V and V' are irreducible representations of SL_n with inverse central characters. We have $$\operatorname{Hom}_{L}(\pi, \mathbf{C}) = \operatorname{Hom}_{SL_{n}}(V \otimes V', \mathbf{C})$$ This space is non-zero if and only if $V' \simeq V^*$, when it has dimension 1 by Schur's lemma. These are exactly the π lifted from H. When $G = Sp_6/\mu_2$ and $L = SL_2^3/\mu_2$, the space $\text{Hom}_L(\pi, \mathbf{C})$ was considered in [G-S]. In the other cases, the subgroup L may be obtained as follows. Let $G_{\mathbf{R}}$ be the quasi-split inner form of G with non-trivial Galois action on the Dynkin diagram, and let $K_{\mathbf{R}}$ be a maximal compact subgroup of $G_{\mathbf{R}}$. We have $$G$$ $G_{\mathbf{R}}$ $K_{\mathbf{R}}$ SL_{2n}/μ_n $SU_{n,n}/\mu_n$ $S(U_n \times U_n)/\mu_n$ SO_{2n} $SO_{n+1,n-1}$ $S(O_{n+1} \times O_{n-1})$ E_6/μ_3 $^2E_{6,4}/\mu_3$ $(SU_2 \times SU_6/\mu_3)/\Delta\mu_2$ Note that in each case we have a homomorphism $$L \hookrightarrow K = \text{complexification of } K_{\mathbf{R}}.$$ The image is a normal subgroup, and the connected component of the quotient is isomorphic to SO_2 , SO_{n-1} , and SO_3 , respectively. There is a real parabolic $P_{\mathbf{R}}$ in $G_{\mathbf{R}}$ associated to the fixed vertices of the Galois action on the Dynkin diagram. The derived subgroup of a Levi factor of $P_{\mathbf{R}}$ is given in the diagram below. Let $B_{\mathbf{R}}$ be the Borel subgroup of $G_{\mathbf{R}}$ contained in $P_{\mathbf{R}}$, and let $T_{\mathbf{R}}$ be a Levi factor of $B_{\mathbf{R}}$. In the Cartan-Helgalson theorem, one uses the Cartan decomposition $G_{\mathbf{R}} = K_{\mathbf{R}} \cdot B_{\mathbf{R}}$ to show that K has an open orbit on the complex flag variety G/B, with stabilizer the subgroup T^{θ} of T fixed by the Cartan involution. The representations π of G with $\operatorname{Hom}_K(\pi, \mathbf{C}) \neq 0$ are those whose highest weight χ is trivial on T^{θ} , in which case $\operatorname{Hom}_K(\pi, \mathbf{C})$ has dimension 1. This is proved in [G-W, 12.3], where the subgroup T^{θ} is also calculated. Similarly, one shows that the subgroup L of K has an open orbit on the flag variety G/P, with stabilizer the connected component $(T^{\theta})^0$ of T^{θ} , which is a torus. The representations π of G with $\operatorname{Hom}_L(\pi, \mathbf{C}) \neq 0$ are those whose highest weight χ is trivial on $(T^{\theta})^0$. We find that these, after a brief calculation, are those lifted from H. The space $\operatorname{Hom}_L(\pi, \mathbf{C})$ is isomorphic, as a representation of K/L, to the irreducible representation of the Levi factor of P which has highest weight χ . This completes the proof. #### 14. The real form of L We now descend the subgroup $L \to G$ defined before Proposition 12.4 to a subgroup $L_0 \to G_0$ over \mathbf{R} , by using minuscule co-weights. Let S be a maximal torus in L, and let $\lambda : \mathbf{G}_m \to T$ be a minuscule co-weight which occurs in the representation V of \hat{G} . **Proposition 14.1.** There is an inclusion $\alpha: L \to G$ mapping S into T, and a minuscule co-weight $\mu: \mathbf{G}_m \to S$ of L, such that the following diagram commutes: $$\begin{array}{ccc} \mathbf{G}_m & \xrightarrow{\mu} & S & \longrightarrow L \\ & & \downarrow^{\alpha} & \downarrow^{\alpha} \\ & BG_m & \xrightarrow{\lambda} & T & \longrightarrow G \end{array}$$ *Proof.* If $\alpha_0: L \to G$ is any inclusion, the image of S is contained in a maximal torus T_0 of G. Since T and T_0 are conjugate, we may conjugate α_0 to an inclusion $\alpha: L \to G$ mapping S into T. The co-character group $X_{\bullet}(S)$ then injects into $X_{\bullet}(T)$. To finish the proof, we must identify the image, and show that it intersects the W-orbit of λ in a single W_L -orbit of minuscule co-weights for L. We check this case by case. For example, if $G = E_6/\mu_3$ and $L = SL_6/\mu_3$, the group $X_{\bullet}(T)$ is the dual E_6^{\vee} of the E_6 -root lattice, and $X_{\bullet}(S)$ is the subgroup orthogonal to a root β . One checks, using the tables in Bourbaki [B], that precisely 15 of the 27 elements in the orbit W_{λ} are orthogonal to each β , and that these give a single $W_{\beta} = W_{SL_6}$ orbit. In each case, we tabulate the dimension of T/S, and the size of the W_L -orbit $W\lambda \cap X_{\bullet}(S) = W_L\mu$ Table 14.2. | G | L | $\dim(T/S)$ | $\#W\lambda$ | $\#W_L\mu$ | | |-----------------|----------------|-----------------------|--------------|------------|--------| | SL_{2n}/μ_n | SL_n^2/μ_n | 1 | $2n^2 - n$ | n^2 | | | SO_{2n} | SO_{n+1} | $\frac{n+1}{2}$ n odd | 2n | n+1 | n odd | | | | $\frac{n}{2}$ n even | | n | n even | | E_6/μ_3 | SL_6/μ_3 | 1 | 27 | 15 | | | Sp_6/μ_2 | SL_2^3/μ_2 | 0 | 8 | 8 | | | SL_n^2/μ_n | PGL_n | n-1 | n^2 | n | | Corollary 14.3. If L_0 is the real form of L with Cartan involution $\theta = \operatorname{ad} \mu(-1)$, then L_0 embeds as a subgroup of G_0 over \mathbf{R} . The symmetric space $\mathcal{D}_L = L_0(\mathbf{R})/K_{L_0}$ has an invariant complex structure, and embeds analytically into \mathcal{D} . Moreover, $$\dim_{\mathbf{C}} \mathcal{D}_L = \frac{1}{2} \dim_{\mathbf{C}} \mathcal{D}.$$ The last inequality is checked, case by case. We tabulate G_0 , L_0 , dim \mathcal{D} , and dim \mathcal{D}_L below Table 14.4. $$\begin{array}{cccccc} G_0 & L_0 & \dim \mathcal{D} & \dim \mathcal{D}_L \\ SU_{2,2n-2}/\mu_n & SU_{1,n-1}^2/\mu_n & 4n-4 & 2n-2 \\ SO_{2,2n-2} & SO_{2,n-1} & 2n-2 & n-1 \\ ^2E_{6,2}/\mu_3 & SU_{2,4}/\mu_3 & 16 & 8 \\ Sp_6/\mu_2 & SL_2^3/\mu_2 & 6 & 3 \\ SU_{1,n-1}^2/\mu_m & PU_{1,n-1} & 2n-2 & n-1 \end{array}$$ Since dim $\mathcal{D}_L = \frac{1}{2}$ dim \mathcal{D} , this
suggests the following problem. Let $G_{\mathbf{Q}}$ and $L_{\mathbf{Q}}$ be descents of G_0 and L_0 to \mathbf{Q} , with $L_{\mathbf{Q}} \hookrightarrow G_{\mathbf{Q}}$. This gives a morphism of Shimura varieties $$S_L \to S_G$$ over \mathbb{C} , with $\dim(S_L) = \frac{1}{2} \dim S_G$. The algebraic cycles corresponding to S_L contribute to the middle cohomology $H^{\dim S_G}(S_G, \mathbb{C})$. Can these Hodge classes detect the automorphic forms lifted from H? ### 15. The group \hat{G} in a Levi factor Recall that the center μ_{ℓ} of \hat{G} is cyclic. Let $$\hat{J} = \mathbf{G}_m \times \hat{G}/\Delta\mu_{\ell},$$ which is a group with connected center. We first observe that \hat{J} is a Levi factor in a maximal parabolic subgroup \hat{P} of a simple group of adjoint type \hat{M} . The minuscule representation V occurs as the action of \hat{J} on the abelianization of the unipotent radical \hat{U} of \hat{P} . Recall that the maximal parabolic subgroups \hat{P} of \hat{M} are indexed, up to conjugacy, by the simple roots α . We tabulate \hat{M} , the simple root α corresponding to \hat{P} , and the representation $\hat{U}^{ab} = V$ below: Table 15.2. **Proposition 15.2.** The centralizer of \hat{H} in \hat{M} is SO_3 , and $\hat{H} \times SO_3$ is a dual reductive pair in \hat{M} . This is checked case by case, and we list the pairs obtained below: $$SO_3 \times PSp_{2n} \subset PSO_{4n},$$ $SO_3 \times SO_{2n-1} \subset PSO_{2n+2},$ $SO_3 \times F_4 \subset E_7,$ $SO_3 \times G_2 \subset F_4,$ $SO_3 \times PGL_n \subset PGL_{2n}.$ # References - [A] Jim Arthur, Unipotent automorphic representations: conjectures. In: Astérisque 171–172 (1989), 13–71. MR 91f:22030 - [B] N. Bourbaki, Groupes et algèbres de Lie. Hermann, Paris, 1982. - [D] Pierre Deligne, Variétes de Shimura: Interpretation modulaire. In: Proc. Symp. Pure Math 33 (1979), part 2, 247–290. MR 81i:10032 - [dS] J. de Siebenthal, Sur certains sous-groupes de rang un des groupes de Lie clos. Comptes Rendus 230 (1950), 910–912. MR 11:499b - [D-K] J. Dadok and V.G. Kac, Polar representations. J. Algebra 92 (1985) 504–524. MR 86e:14023 - [G-W] Roe Goodman and Nolan Wallach, Representations and invariants of the classical groups. Cambridge University Press, Cambridge, 1998. MR 99b:20073 - [G] Benedict Gross, On the motive of G and the principal homomorphism $SL_2 \to \hat{G}$. Asian J. Math. 1 (1997), 208–213. MR **99d**:20077 - [G-S] Benedict Gross and Gordan Savin, Motives with Galois group of type G_2 : An exceptional theta correspondence, Compositio Math. **114** (1998), 153–217. MR **2000**:11071 - [H] Jim Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990. MR 92h:20002 - [K] V.G. Kac, Some remarks on nilpotent orbits. J. Algebra 64 (1980), 190–213. MR 81i:17005 - [S-K] M. Sato and T. Kimura, A classification of irreducible prehomogeneous spaces and their relative invariants. Nagoya Math. J. 65 (1977), 1–155. MR 55:3341 - [V-Z] David Vogan and Gregg Zuckerman, Unitary representations with non-zero cohomology. Compositio Math. 53 (1984), 51–90. MR 86k:22040 Science Center 325, Harvard University, One Oxford Street, Cambridge, MA 02138 $E\text{-}mail\ address$: gross@math.harvard.edu