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ON MINUSCULE REPRESENTATIONS
AND THE PRINCIPAL SL2

BENEDICT H. GROSS

Abstract. We study the restriction of minuscule representations to the prin-
cipal SL2, and use this theory to identify an interesting test case for the
Langlands philosophy of liftings.

In this paper, we review the theory of minuscule co-weights λ for a simple adjoint
group G over C, as presented by Deligne [D]. We then decompose the associated
irreducible representation Vλ of the dual group Ĝ, when restricted to a principal
SL2. This decomposition is given by the action of a Lefschetz SL2 on the cohomol-
ogy of the flag variety X = G/Pλ, where Pλ is the maximal parabolic subgroup of
G associated to the co-weight λ. We reinterpret a result of Vogan and Zuckerman
[V-Z, Prop 6.19] to show that the cohomology of X is mirrored by the bigraded
cohomology of the L-packet of discrete series with infinitesimal character ρ, for a
real form G0 of G with a Hermitian symmetric space.

We then focus our attention on those minuscule representations with a non-zero
linear form t : V → C fixed by the principal SL2, such that the subgroup Ĥ ⊂ Ĝ
fixing t acts irreducibly on the subspace V0 = ker(t). We classify them in §10; since
Ĥ turns out to be reductive, we have a decomposition

V = Ce+ V0

where e is fixed by Ĥ, and satisfies t(e) 6= 0. We study V as a representation of Ĥ,
and give an Ĥ-algebra structure on V with identity e.

The rest of the paper studies representations π of G which are lifted from H , in
the sense of Langlands. We show this lifting is detected by linear forms on π which
are fixed by a certain subgroup L of G. The subgroup L descends to a subgroup
L0 → G0 over R; both have Hermitian symmetric spaces D with dimC(DL) =
1
2 dimC(DG). We hope this will provide cycle classes in the Shimura varieties
associated to G0, which will enable one to detect automorphic forms in cohomology
which are lifted from H .

It is a pleasure to thank Robert Kottwitz, Mark Reeder, Gordon Savin, and
David Vogan for their help.
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1. Minuscule co-weights

Let G be a simple algebraic group over C, of adjoint type. Let T ⊂ B ⊂ G be a
maximal torus contained in a Borel subgroup, and let ∆ be the corresponding set
of simple roots for T . Then ∆ gives a Z-basis for Hom(T,Gm), so a co-weight λ
in Hom(Gm, T ) is completely determined by the integers 〈λ, α〉, for α in ∆, which
may be arbitrary. Let P+ be the cone of dominant co-weights, where 〈λ, α〉 ≥ 0 for
all α ∈ ∆.

A co-weight λ : Gm → T gives a Z-grading gλ of g = Lie(G), defined by

gλ(i) = {X ∈ g : Ad λ(a)(X) = ai ·X}

We say λ is minuscule provided λ 6= 0 and the grading gλ satisfies gλ(i) = 0 for
|i| ≥ 2. Thus

g = gλ(−1) + gλ(0) + gλ(1).(1.1)

The Weyl group NG(T )/T = W of T acts on the set of minuscule co-weights,
and the W -orbits are represented by the dominant minuscule co-weights. These
have been classified.

Proposition 1.2 ([D, 1.2]). The element λ is a dominant, minuscule co-weight if
and only if there is a single simple root α with 〈λ, α〉 = 1, the root α has multiplicity
1 in the highest root β, and all other simple roots α′ satisfy 〈λ, α′〉 = 0.

Thus, theW -orbits of minuscule co-weights correspond bijectively to simple roots
α with multiplicity 1 in the highest root β. If λ is minuscule and dominant, gλ(1) is
the direct sum of the positive root spaces gγ , where γ is a positive root containing
α with multiplicity 1. Hence the dimension N of gλ(1) is given by the formula

N = dim gλ(1) = 〈λ, 2ρ〉,(1.3)

where ρ is half the sum of the positive roots.
The subgroup Wλ ⊂ W fixing λ is isomorphic to the Weyl group of T in the

subalgebra gλ(0), which has root basis ∆− {α}. We now tabulate the W -orbits of
minuscule co-weights by listing the simple α occurring with multiplicity 1 in β in
the numeration of Bourbaki [B]. We also tabulate N = dim gλ(1) and (W : Wλ);
a simple comparison shows that (W : Wλ) ≥ N + 1 in all cases; we will explain this
inequality later.
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Table 1.4.

G α (W : Wλ) N

A` αk
(
`+1
k

)
k(`+ 1− k)

1 ≤ k ≤ `
B` α1 2` 2`− 1
C` α` 2` `(`+1)

2
D` α1 2` 2`− 2

α`−1, α` 2`−1 `(`−1)
2

E6 α1, α6 27 16
E7 α1 56 27

2. The real form G0

We henceforth fix G and a dominant minuscule co-weight λ. Let Gc be the
compact real form for G, so G = Gc(C) and Gc(R) is a maximal compact subgroup
of G. Let g 7→ g be the corresponding conjugation of G.

Let Tc ⊂ Gc be a maximal torus over R. We have an identification of co-character
groups

Homcont(S1, Tc(R)) = Homalg(Gm, T ).

We view λ as a homomorphism S1 → Tc(R), and define

θ = ad λ(−1) in Inn(G).(2.1)

Then θ is a Cartan involution, which gives another descent G0 of G to R. The
group G0 has real points

G0(R) = {g ∈ G : g = θ(g)},
and a maximal compact subgroup K of G0(R) is given by

K = {g ∈ G : g = g and g = θ(g)}
= G0(R) ∩Gc(R).

The corresponding decomposition of the complex Lie algebra g under the action
of K is given by g = k + p, with{

k = Lie(K)⊗C = gλ(0)
p = gλ(−1) + gλ(1).

(2.2)

The torus λ(S1) lies in the center of the connected component of K, and the element
λ(i) gives the symmetric space

D = G0(R)/K

a complex structure, with

N = dimC(D).(2.3)

Proposition 2.4 ([D, 1.2]). The real Lie groups G0(R) and K have the same num-
ber of connected components, which is either 1 or 2. Moreover, the following are
all equivalent:

1) G0(R) has 2 connected components.
2) The symmetric space D is a tube domain.
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3) The vertex of the Dynkin diagram of G corresponding to the simple root α is
fixed by the opposition involution of the diagram.

4) The subgroup Wλ fixing λ has a nontrivial normalizer in W , consisting of
those w with wλ = ±λ.

In fact, the subgroup Wc ⊂ W which normalizes Wλ is precisely the normalizer
of the compact torus Tc(R) in G0(R). When Wλ 6= Wc, it is generated by Wλ and
the longest element w0, which satisfies w0λ = −λ.

As an example, let G = SO3 and

λ(t) =

t 1
t−1.


Then θ is conjugation by

λ(−1) =

−1
1
−1,


and G0 = SO(1, 2) has 2 connected components. We have K ' O(2), Wc = W has
order 2 in this case, and Wλ = 1. The tube domain D = G0(R)/K is isomorphic
to the upper half plane.

3. The Weyl group (cf. [H])

The Weyl group W is a Coxeter group, with generating reflections s correspond-
ing to the simple roots in ∆. Recall that ρ is half the sum of the positive roots and
Wλ ⊂W is the subgroup fixing λ.

Proposition 3.1. Each coset wWλ of Wλ in W has a unique representative y
of minimal length. The length d(y) of the minimal representative is given by the
formula

d(y) = 〈λ, ρ〉 − 〈wλ, ρ〉,

where w is any element in the coset.

Proof. Let R± be the positive and negative roots, let R±λ be the subsets of positive
and negative roots which satisfy 〈λ, γ〉 = 0. Then R+ − R+

λ consists of the roots
with 〈λ, γ〉 = 1, and R−−R−λ consists of the roots with 〈λ, γ〉 = −1. These sets are
stable under the action of Wλ on R. On the other hand, if w ∈ Wλ stabilizes R+

λ

(or R−λ ), then w = 1, as Wλ is the Weyl group of the root system Rλ = R+
λ ∪R

−
λ .

Since the length d(y) of y in W is given by

d(y) = #{γ in R+ : y−1(γ) is in R−},(3.2)

the set

Y = {y ∈W : y(R+
λ ) ⊂ R+}(3.3)

gives coset representatives for Wλ of minimal length. Moreover, for y ∈ Y the set
y−1(R+) contains d(y) elements of R−λ , and hence N−d(y) elements of R+

λ . Hence,
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if wWλ = yWλ, we find

〈wλ, ρ〉 = 〈yλ, ρ〉 = 〈λ, y−1ρ〉

=
1
2

((N − d(y)) − d(y))

=
1
2
N − d(y).

Since

〈λ, ρ〉 =
1
2
N,

we obtain the desired formula.

As an example of Proposition 3.1, the minimal representative of Wλ is y = 1,
with d(y) = 0, and the minimal representative of sαWλ is y = sα, with d(y) = 1.
If w0 is the longest element in the Weyl group, then w0(R±) = R∓, so w2

0 = 1, and
w0ρ = −ρ. Hence

〈w0λ, ρ〉 = 〈λ,w−1
0 ρ〉 = −〈λ, ρ〉 = −N/2.

Consequently, the length of the minimal representative y of w0Wλ is d(y) = N .
This is the maximal value of d on W/Wλ, and we will soon see that d takes all
integral values in the interval [0, N ].

Assume λ is fixed by the opposition involution −w0, so w0λ = −λ. Then D
is a tube domain, and Wλ has nontrivial normalizer Wc = 〈Wλ, w0〉 in W by
Proposition 2.4. The 2-group Wc/Wλ acts on the set W/Wλ by wWλ 7→ ww0Wλ,
and this action has no fixed points. Hence we get a fixed point-free action y 7→ y∗
on the set Y , and find that

d(y) + d(y∗) = N.(3.4)

4. The flag variety

Associated to the dominant minuscule co-weight λ is a maximal parabolic sub-
group P , which contains B and has Lie algebra

Lie(P ) = gλ(0) + gλ(1).(4.1)

The flag variety X = G/P is projective, of complex dimension N .
The cohomology of X is all algebraic, so H2n+1(X) = 0 for all n ≥ 0. Let

fX(t) =
∑
n≥0

dim H2n(X) · tn(4.2)

be the Poincaré polynomial of H∗(X). Then we have the following consequence of
Chevalley-Bruhat theory, which also gives a convenient method of computing the
values of the function d : W/Wλ → Z.

Proposition 4.3. 1) We have fX(t) =
∑

Y t
d(y).

2) If G is the split adjoint group over Z with the same root datum as G, and P
is the standard parabolic corresponding to λ, then

fX(q) = #G(F )/P (F )

for all finite fields F , with q = #F .
3) The Euler characteristic of X is given by

χ = fX(1) = #(W : Wλ).
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Proof. We have the decomposition

G =
⋃
Y

ByP,

where we have chosen a lifting of y from W to NG(T ). If U is the unipotent radical
of B, then B = UT . Since y normalizes T ,

UyP = ByP.

This gives a cell decomposition

X =
⋃
Y

Uy/P ∩ y−1Uy

where the cell corresponding to y is an affine space of dimension d(y). This gives
the first formula.

The formula for fX(q) follows from the Bruhat decomposition, which can be used
to prove the Weil conjectures for X . Formula 3) for fX(1) follows immediately from
1).

For example, let G = PSp2n be of type Cn. Then P is the Siegel parabolic
subgroup, with Levi factor GLn/µ2. From the orders of Sp2n(q) and GLn(q), we
find that

#G(F )/P (F ) =
(q2 − 1)(q4 − 1) . . . (q2n − 1)
(q − 1)(q2 − 1) . . . (qn − 1)

= (1 + q)(1 + q2) . . . (1 + qn).

Hence we find

fX(t) = (1 + t)(1 + t2) . . . (1 + tn).(4.4)

The fact that X = G/P is a Kahler manifold imposes certain restrictions on its
cohomology. For example, if ω is a basis of H2(X), then ωk 6= 0 in H2k(X) for all
0 ≤ k ≤ N . Hence we find that

Corollary 4.5. The function d : W/Wλ → Z takes all integral values in [0, N ],
and (W : Wλ) ≥ N + 1.

For 0 ≤ k ≤ N , let

m(k) = #{y ∈ Y : d(y) = k}.

We have seen that m(0) = m(1) = 1 in all cases. By Poincaré duality

m(k) = m(N − k).(4.6)

Finally, the Lefschetz decomposition into primitive cohomology shows that

m(k − 1) ≤ m(k)(4.7)

whenever 2k ≤ N . Indeed, the representation of the Lefschetz SL2 on H∗(G/P )

has weights N − 2d(y) for the maximal torus
(
t 0
0 t−1

)
.
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5. The representation V of the dual group Ĝ

Let Ĝ be the Langlands dual group of G, which is simply-connected of the dual
root type. This group comes (in its construction) with subgroups T̂ ⊂ B̂ ⊂ Ĝ,
and an identification of the positive roots for B̂ in Hom(T̂ ,Gm) with the positive
co-roots for B in Hom(Gm, T ) (cf. [G]). Hence, the dominant co-weights for T
give dominant weights for T̂ , which are the highest weights for B̂ on irreducible
representations of Ĝ.

Let V be the irreducible representation of Ĝ, whose highest weight for B̂ is the
dominant, minuscule co-weight λ.

Proposition 5.1. The weights of T̂ on V consist of the elements in the W -orbit
of λ. Each has multiplicity 1, so dim V = (W : Wλ).

The central character χ of V is given by the image of λ in Hom(T̂ ,Gm)/
⊕
∆

Zα∨,

and is nontrivial.

Proof. For µ and λ dominant, we write µ ≤ λ if λ−µ is a sum of positive co-roots.
These are precisely the other dominant weights for T̂ occurring in Vλ. When λ
is minuscule, µ ≤ λ implies µ = λ, so only the W -orbit of λ occur as weights.
Each has the same multiplicity as the highest weight, which is 1. Since µ = 0 is
dominant, λ is not in the span of the co-roots, and χ 6= 1.

This result gives another proof of the inequality of Corollary 4.5: (W : Wλ) ≥
N + 1. Indeed, let L be the unique line in Vλ fixed by B̂. The fixer of L is the
standard parabolic P̂ dual to P . This gives an embedding of projective varieties:

Ĝ/P̂ ↪→ P(Vλ).

Since Ĝ/P̂ has dimension N , and P(Vλ) has dimension (W :Wλ)− 1, this gives the
desired inequality.

The real form G0 defined in §2 has Langlands L-group

LG = ĜoGal(C/R).(5.2)

The action of Gal(C/R) on Ĝ exchanges the irreducible representation V with
dominant weight λ with the dual representation V ∗ with dominant weight −w0λ.
Hence the sum V + V ∗ always extends to a representation of LG. The following is
a simple consequence of Proposition 2.4.

Proposition 5.3. The following are equivalent:

1) We have w0λ = −λ.
2) The symmetric space D is a tube domain.
3) The representation V is isomorphic to V ∗.
4) The central character χ of V satisfies χ2 = 1.
5) The representation V of Ĝ extends to a representation of LG.

6. The principal SL2 → Ĝ

The group Ĝ also comes equipped with a principal ϕ : SL2 → Ĝ; see [G]. The

co-character Gm → T̂ given by the restrictionof ϕ to the maximal torus
(
t 0
0 t−1

)



232 BENEDICT H. GROSS

of SL2 is equal to 2ρ in Hom(Gm, T̂ ) = Hom(T,Gm). From this, and Proposition
5.1, we conclude the following:

Proposition 6.1. The restriction of the minuscule representation V to the prin-
cipal SL2 in Ĝ has weights ⊕

W/Wλ

t〈wλ,2ρ〉

for the maximal torus
(
t 0
0 t−1

)
in SL2.

On the other hand, by Proposition 3.1, we have

〈wλ, 2ρ〉 = 〈λ, 2ρ〉 − 2d(y) = N − 2d(y)(6.2)

where d(y) is the length of the minimal representative y in the coset wWλ. Hence
the weights for the principal SL2 acting on V are the integers

N − 2d(y) y ∈ Y(6.3)

in the interval [−N,N ]. Since these are also the weights of the Lefschetz SL2 acting
on the cohomology H∗(G/P ) by §4, we obtain the following:

Corollary 6.4. The representation of the principal SL2 of Ĝ on V is isomorphic
to the representation of the Lefschetz SL2 on the cohomology of the flag variety
X = G/P .

7. Examples

We now give several examples of the preceding theory, using the notation for
roots and weights of [B].

If G is of type A` and α = α1 we have λ = e1. The flag variety G/P is projective
space PN , with N = `, and the Poincaré polynomial is 1 + t + t2 + · · ·+ tN . The
dual group Ĝ is SLN+1, and V is the standard representation. The restriction of
V to a principal SL2 is irreducible, isomorphic to SN = SymN (C2).

A similar result holds when G is of type B`, so α = α1 and λ = e1. Here G/P
is a quadric of dimension N = 2`− 1, with P (t) = 1 + t+ · · ·+ tN as before. The
dual group is Ĝ = Sp2`, the representation V is the standard representation, and
its restriction to the principal SL2 is the irreducible representation SN .

Next, suppose G is of type D` and α = α1, so λ = e1. Then G/P is a quadric
of dimension N = 2`− 2, and we have P (t) = 1 + t + · · · + 2t`−1 + · · · + tN . The
dual group Ĝ is Spin2`, and V is the standard representation of the quotient SO2`.
Its restriction to the principal SL2 is a direct sum SN + S0, where S0 is the trivial
representation.

A more interesting case is when G is of type C`, so α = α` and λ = e1+e2+···+e`
2 .

Here G/P is the Lagrangian Grassmanian of dimension N = `(`+1)
2 , and

P (t) = (1 + t)(1 + t2) . . . (1 + t`) was calculated in (4.4). The dual group Ĝ is
Spin2`+1, and V is the spin representation of dimension 2`. Its decomposition to a
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principal SL2 is given by §6, and we find the following representations, for ` ≤ 6:

S1 ` = 1,

S3 ` = 2,

S6 + S0 ` = 3,

S10 + S4 ` = 4,

S15 + S9 + S5 ` = 5,

S21 + S15 + S11 + S9 + S3 ` = 6.

(7.1)

As the last example, suppose G is of type E6. Then G/P has dimension 16 and
Poincaré polynomial

P (t) = 1 + t+ t2 + t3 + 2t4 + 2t5 + 2t6 + 2t7 + 3t8

+ 2t9 + 2t10 + 2t11 + 2t12 + t13 + t14 + t15 + t16.

The representation V has dimension 27, and its restriction to a principal SL2 is
the representation

S16 + S8 + S0.(7.2)

Proposition 7.3. The representation V of the principal SL2 is irreducible, hence
isomorphic to SN , if and only if G is of type A` or B` and α = α1.

The representation V of the principal SL2 is isomorphic to SN + S0 if and only
if G is of type D` and α = α1, or G is of type D4 and α = α3 or α4, or G is of
type C3 and α = α3.

Proof. The condition V = SN as a representation of SL2 is equivalent to the
equality

dim V = (W : Wλ) = N + 1.

The condition V = SN +S0 as a representation of SL2 is equivalent to the equality

dim V = (W : Wλ) = N + 2.

One obtains all the above cases by a consideration of the columns in Table 1.4.

8. Discrete series and a mirror theorem

Let G0 be the real form of G described in §2, and let G0(R)+ be the connected
component of G0(R). The L-packet of discrete series representations π+ of G0(R)+

with infinitesimal character the W -orbit of ρ is in canonical bijection with the coset
space Wλ\W . Indeed, Wλ is the compact Weyl group of the simply-connected al-
gebraic cover Gsc0 of G0, and any discrete series for Gsc0 (R) with infinitesimal char-
acter ρ has trivial central character, so it descends to the quotient group G0(R)+.
On the other hand, such discrete series for Gsc0 (R) are parameterized by their
Harish-Chandra parameters in Hom(T scc (R), S1)/Wλ, which lie in the W -orbit of
ρ. The coset Wλρ corresponds to the holomorphic discrete series, and the coset
Wλw0ρ = Wλw

−1
0 ρ corresponds to the anti-holomorphic discrete series.

Proposition 8.1 ([V-Z, Prop. 6.19]). Assume the discrete series π+ of G0(R)+

has Harish-Chandra parameter Wλw
−1ρ. Then π+ has bigraded cohomology

Hp,q(g,K+;π+) ' C
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for p+ q = N and q = d(y), the length of the minimal representative of wWλ. The
cohomology of π vanishes in all other bidegrees (p′, q′).

Proof. The bigrading of the (g,K+) cohomology of any π+ in the L-packet is dis-
cussed in [V-Z, (6.18)(a-c)]. The cohomology has dimension 1 for degree N , and
dimension 0 otherwise, so we must have p+ q = N .

On the other hand, Arthur (cf. [A, pp. 62–63]) interprets the calculation of [V-Z,
Prop. 6.19] to obtain the formula

−1
2

(p− q) = 〈λ,w−1ρ〉 = 〈wλ, ρ〉.

Since 1
2 (p + q) = 〈λ, ρ〉, we find that q = 〈λ, ρ〉 − 〈wλ, ρ〉 = d(y), by Proposition

3.1.

If G0(R) 6= G0(R)+, the discrete series π for G0(R) with infinitesimal character
ρ correspond to the coset space Wc\W , where Wc is the (nontrivial) normalizer
of Wλ in W . We find that the bigraded cohomology of π with Harish-Chandra
parameter Wcw

−1ρ is the direct sum of two lines of type (p, q) and (q, p), with
p+ q = N and q = d(y).

The 2-group K/K+ acts on HN (g,K+, π), switching the two lines. When p =
q = N/2, there is a unique line in Hp,p(g,K+, π) fixed by K/K+.

A suggestive way to restate the calculation of the bigraded cohomology is the
following.

Corollary 8.2. The Hodge structure on the sum HN (G0) =
⊕
π
H∗,∗(g,K+, π)

over the L-packet of discrete series for G0(R) with infinitesimal character ρ mirrors
the Hodge structure on H∗(G/P ). That is,

dim Hq,q(G/P ) = dim HN−q,q(G0).

Indeed, both dimensions are equal to the number of classes wWλ in W/Wλ with
d(w,Wλ) = q.

9. Discrete series for SO(2, 2n)

Assume that G is of type Dn+1 with n ≥ 2, and that α = α1. The group G0(R)
is then isomorphic to PSO(2, 2n) = SO(2, 2n)/〈 ± 1〉, and D is a tube domain of
complex dimension N = 2n. There are n + 1 discrete series representations π of
G0(R) with infinitesimal character ρ. We will describe these as representations of
SO(2, 2n), with trivial central character, and will calculate their minimal K+-types
and Hodge cohomology.

Let V be a 2-dimensional real vector space, with a positive definite quadratic
form, and write −V for the same space, with the negative form. For k = 0, 1, . . . , n
define the quadratic space

Wk = V0 + V1 + · · ·+ (−Vk) + · · ·+ Vn,

so SO(Wk) ' SO(2, 2n), a maximal compact torus Tc in SO(Wk) is given by∏n
i=0 SO(Vi), and a maximal compact, connected subgroup K+ containing Tc is

given by SO(Vk) × SO(V ⊥k ). If ei is a generator of Hom(SO(Vi), S1), then the

character group of Tc is
n⊕
i=0

Zei, and the roots of Tc on g are the elements

γij = ±ei ± ej i 6= j.
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The compact roots of Tc on k are those roots γij with i 6= k + 1 and j 6= k + 1, so
the (k + 1)st coordinate of γ is zero.

A set of positive roots is given by

R+ = {ei ± ej : i < j}.

This has root basis

∆ = {e0 − e1, e1 − e2, . . . , en−1 − en, en−1 + en}

and

ρ = (n, n− 1, n− 2, . . . , 1, 0).

On the other hand, half the sum ρc of the compact positive roots is given by

ρc = (n− 1, n− 2, . . . , n− k, 0, n− k − 1, k, . . . , 1, 0).

At the two extremes, we find that

k = 0 ρc = (0, n− 1, n− 2, . . . , 1, 0),

k = n ρc = (n− 1, n− 2, . . . , 1, 0, 0).

The lowest K+-type of a discrete series π+ for SO(2, 2n)+ with Harish-Chandra
parameter λ = ρ is given by Schmid’s formula:

λ+ ρ− 2ρc = 2(ρ− ρc).

For the realizations SO(2, 2n) ' SO(Wk) above, we obtain n+ 1 discrete series π+
k

with minimal K+ ' SO(2)× SO(2n) type

χ2(n−k) ⊗ (2, 2, 2,
↑

k times

. . . , 2, 0, 0 . . .0)

where χ is the fundamental character of SO(2), giving the action on p+. The irre-
ducible representation of SO(2n) with highest weight 2(e1 + · · ·+ ek) appears with

multiplicity 1 in Sym2(
k
∧C2n), and the minimal K+-type appears with multiplicity

1 in the representation
k
∧ p− ⊗

2n−k
∧ p+. Hence the Hodge type of π+

k is (2n− k, k).
Each discrete series πk of SO(2, 2n) with infinitesimal character ρ decomposes

as πk = π+
k + π−k when restricted to SO(2, 2n)+ with π+

k as above, and π−k its
conjugate by G0(R)/G0(R)+. The minimal K+-type of π−k is

χ2(k−n) ⊗ (2, 2, 2,
↑

k times

. . . , 2, 0, 0 . . .0)

so π−k has Hodge type (k, 2n− k), and πk has Hodge type (k, 2n− k) + (2n− k, k).
If we label the simple roots in the Dynkin diagram for G, white for non-compact

roots, black for compact roots, then the discrete series πk of SO(2, 2n) gives the
labelled diagram below.

In the case k = 0, πk is the sum of holomorphic and anti-holomorphic discrete
series, and is an admissible representation of the subgroup SO(2) ⊂ K+. In the
case k = n, πn is admissible for the subgroup SO(2n) ⊂ K+, and has Hodge type
(n, n) + (n, n).
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k = 0

k = 1

k + 1

k = n – 1

k
2 ≤ k ≤ n – 2

k = n

10. A classification theorem: V = Ce+ V0

We now return to the restriction of a minimal representation V of Ĝ to a principal
SL2 in Ĝ. Since V will be fixed, we will replace the simply-connected group Ĝ by
its quotient which acts faithfully on V , and will henceforth use the symbol Ĝ for
this subgroup of GL(V ). The group G is therefore no longer necessarily of adjoint
type. We have

X•(T ) = Zλ +
⊕

co−roots

Zα∨(10.1)

and `λ lies in the sublattice
⊕

Zα∨, with ` the order of the (cyclic) center of Ĝ.
Since 〈α∨, ρ〉 is an integer for all co-roots, we find that ρ is in X•(T ) if and only if
〈λ, ρ〉 is an integer. By (1.3) this occurs precisely when the integer N = dimC(D)
is even. Since the center 〈 ± 1〉 of a principal SL2 in Ĝ acts on V by the character
(−1)N , we see that ρ is in X•(T ) precisely when principal homomorphism SL2 → Ĝ
factors through the quotient group PGL2.

Proposition 10.2. Assume that there is a non-zero linear form t : V → C which
is fixed by the principal SL2 → Ĝ, and that the subgroup Ĥ of Ĝ fixing t acts
irreducibly on the hyperplane V0 = ker(t).

Then (up to the action of the outer automorphism group of the simply-connected
cover of Ĝ) the representation V is given by the following table:

Ĝ V Ĥ

SL2n/µ2

2
∧C2n Sp2n/µ2

SO2n C2n SO2n−1

E6 C27 F4

Spin7 C8 G2

Proof. By definition, Ĥ contains the image of the principal SL2 (which is isomor-
phic to PGL2). These subgroups of simple Ĝ have been classified by de Siebenthal
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[dS]. One has the chains:

SL2 → SO2n+1 → SL2n+1,

SL2 → Sp2n → SL2n,

SL2 → SO2n−1 → SO2n,

SL2 → F4 → E6,

SL2 → G2 → Spin7 → SO8,

SL2 → G2 → SO7 → SL7.

It is then a simple matter to check, for any V , whether an Ĥ containing the principal
SL2 can act irreducibly on V0.

Beyond the examples given in Proposition 10.2, we have one semi-simple example
with the same properties:

Ĝ = SL2
n/∆µn V = Cn ⊗ (Cn)∗ Ĥ = PGLn.(10.3)

In all cases, Ĥ is a group of adjoint type.

Proposition 10.4. For the groups Ĝ in Proposition 10.2, the center is cyclic of
order ` ≥ 2. The integer ` is the number of irreducible representations in the
restriction of V to a principal SL2.

The Ĝ-invariants in the symmetric algebra on V ∗ form a polynomial algebra,
on one generator d : V → C of degree `. The group Ĝ has an open orbit on the
projective space of lines in V , with connected stabilizer Ĥ, consisting of the lines
where d(v) 6= 0.

Proof. The first assertion is proved by an inspection of the following table. We
derive the decomposition of V from §6.

Table 10.5.

Ĝ ` = order of center decomp. of V
SL2n/µ2 n ≥ 2 S4n−4 + S4n−8 + · · ·+ S4 + S0

SO2n 2 S2n−2 + S0

E6 3 S16 + S8 + S0

Spin7 2 S6 + S0

SL2
n/∆µn n ≥ 2 S2n−2 + S2n−4 + · · ·+ S2 + S0

The calculation of S•(V ∗)Ĝ follows from [S-K], which also identifies the con-
nected component of the stabilizer with Ĥ . Note that the degree of any invariant
is divisible by `, as the center acts faithfully on V ∗.

11. The representation V of Ĥ

Recall that ` ≥ 2 is the order of the cyclic center of Ĝ, tabulated in 10.5. Since
the subgroup Ĥ ⊂ Ĝ fixing the linear form t : V → C is reductive, we have a
splitting of Ĥ-modules

V = Ce+ V0(11.1)
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with V0 = ker(t), and e a vector fixed by Ĥ satisfying t(e) 6= 0. Once t has been
chosen, we may normalize e by insisting that

t(e) = `.(11.2)

Proposition 11.3. The representation V0 of Ĥ is orthogonal. Its weights consist
of the short roots of Ĥ and the zero weight. The zero weight space for Ĥ in V has
dimension `, and V is a polar representation of Ĥ of type A`−1: the Ĥ-invariants
in the symmetric algebra of V ' V ∗ form a polynomial algebra, with primitive
generators in degrees 1, 2, 3, . . . , `.

Proof. The fact that V0 is orthogonal, and its weights, are obtained from a consid-
eration of the table in Proposition 10.2. Since

dim V = `+ #{short roots of Ĥ},
this gives the dimension of the zero weight space.

Let Ŝ ⊂ Ĥ be a maximal torus, with normalizer N̂ . The image of N̂/Ŝ in
GL(V Ŝ) = GL` is the symmetric group Σ`. The fact that V is polar follows
from the tables in [D-K], which also gives an identification of algebras: S•(V )Ĥ '
S•(V Ŝ)N̂/Ŝ . The latter algebra is generated by the elementary symmetric functions,
of degrees 1, 2, 3, . . . , `.

Note 11.4. The integer ` is also the number of distinct summands in the restriction
of V to a principal SL2. Since each summand is an orthogonal representation of
SL2, ` = dim V Ŝ0 , where Ŝ0 ⊂ SL2 is a maximal torus. Hence V Ŝ0 = V Ŝ .

We will now define an Ĥ-algebra structure on V , with identity element e, in a
case by case manner. Although the multiplication law V ⊗V → V is not in general
associative, it is power associative, and for v ∈ V and k ≥ 0 we can define vk in V
unambiguously. The primitive Ĥ-invariants in S•(V ∗) can then be given by

v 7→ t(vk) 1 ≤ k ≤ `.(11.5)

In (11.5), t : V → C is the Ĥ-invariant linear form, normalized by the condition
that

t(e) = `.

We will also identify the Ĝ-invariant `-form det : V → C, normalized by the condi-
tion that

det(e) = 1.

The simplest case, when the algebra structure on V is associative, is when Ĥ =
PGLn and V is the adjoint representation (of GLn) on n×n matrices. The algebra
structure is matrix multiplication, e is the identity matrix, t is the trace, and det is
the determinant (which is invariant under the larger group Ĝ = SLn × SLn/∆µn
acting by v 7→ AvB−1).

Another algebra structure on V , with the same powers vk, is given by the Jordan
multiplication A ◦ B = 1

2 (AB + BA). This algebra is isomorphic to the Jordan
algebra of Hermitian symmetric n×n matrices over the quadratic C-algebra C+C,
with involution (z, w) = (w, z).

The representation V has a similar Jordan algebra structure when Ĥ = PSp2n

and when Ĥ = F4. In the first case, V is the algebra of Hermitian symmetric n×n
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matrices over the complex quaternion algebra M2(C), and in the second V is the
algebra of Hermitian symmetric 3× 3 matrices over the complex octonion algebra.

When Ĥ = SO2n−1, the representation V = Ce+V0 has a Jordan multiplication
given by the quadratic form 〈, 〉 on V . We normalize this bilinear paring to satisfy
〈e, e〉 = 2, so det(v) = 〈v,v〉

2 is the Ĝ-invariant 2-form on V . The multiplication is
defined, with e as identity, by giving the product of two vectors v, w in V0 : v ◦w =
− 1

2 〈v, w〉e.
Finally, when Ĥ = G2, the representation V of dimension 8 has the structure

of an octonion algebra, with t(v) = v + v̄ and det(v) = vv̄. In all cases but this
one Ĝ is the connected subgroup of GL(V ) preserving det, and Ĥ is the subgroup
of GL(V ) preserving all the forms t(vk) for 1 ≤ k ≤ `. In the octonionic case, the
subgroup SO8 ⊂ GL8 preserves det, and the subgroup SO7 ⊂ SO8 preserves t(v)
and t(v2).

In general, det : V → C is a polynomial in the Ĥ-invariants t(vk), given by the
Newton formulae. The expression for `! · det has integral coefficients; for example,{

2 det(v) = t(v)2 − t(v2) ` = 2
6 det(v) = t(v)3 − 3t(v2)t(v) + 2t(v3) ` = 3.

(11.6)

12. Representations of G lifted from H

We now describe the finite dimensional irreducible holomorphic representations π
of G which are lifted from irreducible representations π′ of H . This notion of lifting
is due to Langlands: the parameter of π, which is a homomorphism ϕ : C∗ → Ĝ
up to conjugacy, should factor through a conjugate of Ĥ .

We can parameterize the finite dimensional irreducible holomorphic representa-
tions π of G by their highest weights ω for B. The weight ω is a positive, integral
combination of the fundamental weights ωi of the simply-connected cover of G, so
we may write (using the numeration of [B])

ω =
rank(G)∑
i=1

biωi bi ≥ 0.(12.1)

For ω to be a character of G, there are some congruences which must be satisfied
by the coefficients bi. (The group G is not simply connected, as its dual Ĝ acts
faithfully on the minuscule representation V .)

Since

rank(G) = rank(H) + (`− 1),(12.2)

there are (` − 1) linear conditions on the coefficients bi which are necessary and
sufficient for π to be lifted from π′ of H . These conditions refine the congruences,
and we tabulate them in Table 12.3 below.

When G = SL2n/µn, SO2n, or Sp6/µ2 there are more classical descriptions of ω
in the weight spaces R2n, Rn, and R3, respectively. We describe, in this language,
which representations are lifted from H .
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Table 12.3.

G H ω =
∑
biωi of G ω lifted from H

SL2n/µn Spin2n+1

n−1∑
i=1

i(bi − b2n−i) ≡ 0(n) bi = b2n−i

1 ≤ i ≤ n− 1
SO2n Sp2n−2 bn−1 − bn ≡ 0(2) bn−1 = bn
E6/µ3 F4 (b1 − b6) + 2(b2 − b5) ≡ 0(3) b1 = b6

b2 = b5
Sp6/µ2 G2 b1 − b3 ≡ 0(2) b1 = b3

SLn × SL′n/∆µn SLn
n−1∑
i=1

i(bi − b′n−1) ≡ 0(n) bi = b′n−1

1 ≤ i ≤ n− 1

For G = SL2n/µn, a dominant weight ω is a vector (a1, a2, . . . , a2n) in R2n with

a1 ≥ a2 ≥ · · · ≥ a2n,

ai in 1/2 Z 1 ≤ i ≤ 2n,

ai ≡ aj ( mod Z),∑
ai = 0.

The representations lifted from Spin2n+1 give dominant weights ω with

ai + a2n+1−i = 0 1 ≤ i ≤ n.
In particular, an ≥ 0 ≥ an+1, as an + an+1 = 0.

For G = SO2n, a dominant weight ω is a vector (a1, . . . , an) in Zn with

a1 ≥ a2 ≥ · · · ≥ an−1 ≥ |an|.
The representations lifted from Sp2n−2 satisfy an = 0.

Finally, for G = Sp6/µ2, a dominant weight is given classically as a vector
(a1, a2, a3) in Z3 with a1 ≥ a2 ≥ a3 ≥ 0 and a1 ≡ a2 + a3 (mod 2). The represen-
tations lifted from G2 are those with a1 = a2 + a3.

Define a connected, reductive subgroup L of G as follows:

G = SL2n/µn L = SL2
n/∆µn fixing a decomposition of the standard

representation of SL2n : C2n = Cn + Cn,
and having determinant 1 on each factor

G = SO2n L = SOn+1 fixing a non-degenerate subspace Cn−1 in
the standard representation C2n

G = E6/µ3 L = SL6/µ3 fixing the highest and lowest root spaces in
the adjoint representation

G = Sp6/µ2 L = SL3
2/∆µ2 fixing a decomposition of the standard rep-

resentation of Sp6 : C6 = C2 + C2 + C2

into three non-degenerate, orthogonal sub-
spaces

G = SL2
n/∆µn L = PGLn fixing the identity matrix in the represen-

tation on Mn(C)
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Proposition 12.4. The finite dimensional irreducible representation π of G is
lifted from H if and only if the space HomL(π,C) of L-invariant linear forms on π
is non-zero. In this case, the dimension of the space of L-invariant linear forms is
given by the following table:

Table 12.5.

G ω lifted from H dim HomL(π,C)
SL2n/µn b1(ω1 + ω2n−1) + b2(ω2 + ω2n−2) + · · · bn + 1

· · ·+ bn−1(ωn−1 + ωn+1) + bnωn

SO2n b1ω1+b2ω2+· · ·+bn−2ωn−2

∏
1≤i<j≤n−2

b1+b2+···+bj−1+j−i
j−i

+bn−1(ωn−1 + ωn)
E6/µ3 b1(ω1 + ω6) + b3(ω3 + ω5) (b2+1)(b4+1)(b2+b4+2)

2

+b2ω2 + b4ω4

Sp6/µ2 b1(ω1 + ω3) + b2ω2 b2 + 1
SL2

n/∆µn V ⊗ V ∗ 1

13. The proof of Proposition 12.4

The only easy case is when G = SL2
n/∆µn, so an irreducible π has the form

V ⊗V ′, where V and V ′ are irreducible representations of SLn with inverse central
characters. We have

HomL(π,C) = HomSLn(V ⊗ V ′,C)

This space is non-zero if and only if V ′ ' V ∗, when it has dimension 1 by Schur’s
lemma. These are exactly the π lifted from H .

When G = Sp6/µ2 and L = SL3
2/µ2, the space HomL(π,C) was considered in

[G-S]. In the other cases, the subgroup L may be obtained as follows. Let GR

be the quasi-split inner form of G with non-trivial Galois action on the Dynkin
diagram, and let KR be a maximal compact subgroup of GR. We have

G GR KR

SL2n/µn SUn,n/µn S(Un × Un)/µn
SO2n SOn+1,n−1 S(On+1 ×On−1)
E6/µ3

2E6,4/µ3 (SU2 × SU6/µ3)/∆µ2

Note that in each case we have a homomorphism

L ↪→ K = complexification of KR.

The image is a normal subgroup, and the connected component of the quotient is
isomorphic to SO2, SOn−1, and SO3, respectively.

There is a real parabolic PR in GR associated to the fixed vertices of the Galois
action on the Dynkin diagram. The derived subgroup of a Levi factor of PR is
given in the diagram below.

Let BR be the Borel subgroup of GR contained in PR, and let TR be a Levi
factor of BR.

In the Cartan-Helgalson theorem, one uses the Cartan decomposition
GR = KR · BR to show that K has an open orbit on the complex flag variety
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SL 2

SO n + 1, n – 1 SL n – 1

SL 3

SU n, n /µ n

E 6 /µ 3

GR diagram derived subgroup of Levi

G/B, with stabilizer the subgroup T θ of T fixed by the Cartan involution. The
representations π of G with HomK(π,C) 6= 0 are those whose highest weight χ is
trivial on T θ, in which case HomK(π,C) has dimension 1. This is proved in [G-W,
12.3], where the subgroup T θ is also calculated.

Similarly, one shows that the subgroup L of K has an open orbit on the flag
variety G/P , with stabilizer the connected component (T θ)0 of T θ, which is a
torus. The representations π of G with HomL(π,C) 6= 0 are those whose highest
weight χ is trivial on (T θ)0. We find that these, after a brief calculation, are those
lifted from H . The space HomL(π,C) is isomorphic, as a representation of K/L,
to the irreducible representation of the Levi factor of P which has highest weight
χ. This completes the proof.

14. The real form of L

We now descend the subgroup L → G defined before Proposition 12.4 to a
subgroup L0 → G0 over R, by using minuscule co-weights. Let S be a maximal
torus in L, and let λ : Gm → T be a minuscule co-weight which occurs in the
representation V of Ĝ.

Proposition 14.1. There is an inclusion α : L → G mapping S into T , and a
minuscule co-weight µ : Gm → S of L, such that the following diagram commutes:

Gm µ
// S

α

��

// L

α

��

BGm
λ

// T // G

Proof. If α0 : L → G is any inclusion, the image of S is contained in a maximal
torus T0 of G. Since T and T0 are conjugate, we may conjugate α0 to an inclusion
α : L→ G mapping S into T .

The co-character group X•(S) then injects into X•(T ). To finish the proof, we
must identify the image, and show that it intersects the W -orbit of λ in a single
WL-orbit of minuscule co-weights for L. We check this case by case. For example,
if G = E6/µ3 and L = SL6/µ3, the group X•(T ) is the dual E∨6 of the E6-root
lattice, and X•(S) is the subgroup orthogonal to a root β. One checks, using the
tables in Bourbaki [B], that precisely 15 of the 27 elements in the orbit Wλ are
orthogonal to each β, and that these give a single Wβ = WSL6 orbit.
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In each case, we tabulate the dimension of T/S, and the size of the WL-orbit
Wλ ∩X•(S) = WLµ

Table 14.2.

G L dim(T/S) #Wλ #WLµ

SL2n/µn SL2
n/µn 1 2n2 − n n2

SO2n SOn+1
n+1

2 n odd 2n n+ 1 n odd
n
2 n even n n even

E6/µ3 SL6/µ3 1 27 15
Sp6/µ2 SL3

2/µ2 0 8 8
SL2

n/µn PGLn n− 1 n2 n

Corollary 14.3. If L0 is the real form of L with Cartan involution θ = ad µ(−1),
then L0 embeds as a subgroup of G0 over R. The symmetric space DL = L0(R)/KL0

has an invariant complex structure, and embeds analytically into D. Moreover,

dimCDL =
1
2

dimCD.

The last inequality is checked, case by case. We tabulate G0, L0, dim D, and
dim DL below

Table 14.4.

G0 L0 dim D dim DL
SU2,2n−2/µn SU2

1,n−1/µn 4n− 4 2n− 2
SO2,2n−2 SO2,n−1 2n− 2 n− 1
2E6,2/µ3 SU2,4/µ3 16 8
Sp6/µ2 SL3

2/µ2 6 3
SU2

1,n−1/µm PU1,n−1 2n− 2 n− 1

Since dim DL = 1
2 dim D, this suggests the following problem. Let GQ and LQ

be descents of G0 and L0 to Q, with LQ ↪→ GQ. This gives a morphism of Shimura
varieties

SL → SG

over C, with dim(SL) = 1
2 dim SG. The algebraic cycles corresponding to SL

contribute to the middle cohomology Hdim SG(SG,C). Can these Hodge classes
detect the automorphic forms lifted from H?

15. The group Ĝ in a Levi factor

Recall that the center µ` of Ĝ is cyclic. Let

Ĵ = Gm × Ĝ/∆µ`,(15.1)

which is a group with connected center. We first observe that Ĵ is a Levi factor in a
maximal parabolic subgroup P̂ of a simple group of adjoint type M̂ . The minuscule
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representation V occurs as the action of Ĵ on the abelianization of the unipotent
radical Û of P̂ .

Recall that the maximal parabolic subgroups P̂ of M̂ are indexed, up to conju-
gacy, by the simple roots α. We tabulate M̂ , the simple root α corresponding to
P̂ , and the representation Ûab = V below:

Table 15.2.

Ĝ M̂ α of P̂ V = Uab

SL2n/µ2 PSO4n α2n

2
∧C2n

SO2n PSO2n+2 α1 C2n

E6 E7 α7 C27

Spin7 F4 α4 C8

SL2
n/µn PGL2n αn Cn ⊗Cn

Proposition 15.2. The centralizer of Ĥ in M̂ is SO3, and Ĥ × SO3 is a dual
reductive pair in M̂ .

This is checked case by case, and we list the pairs obtained below:

SO3 × PSp2n ⊂ PSO4n,

SO3 × SO2n−1 ⊂ PSO2n+2,

SO3 × F4 ⊂ E7,

SO3 ×G2 ⊂ F4,

SO3 × PGLn ⊂ PGL2n.
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