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IRREDUCIBLE GENUINE CHARACTERS
OF THE METAPLECTIC GROUP:

KAZHDAN-LUSZTIG ALGORITHM AND VOGAN DUALITY

DAVID A. RENARD AND PETER E. TRAPA

Abstract. We establish a Kazhdan-Lusztig algorithm to compute characters
of irreducible genuine representations of the (nonlinear) metaplectic group
with half-integral infinitesimal character. We then prove a character multi-
plicity duality theorem for representations of Mp(2n,R) at fixed half-integral
infinitesimal character. This allows us to extend some of Langlands’ ideas to
Mp(2n,R).

0. Introduction

Let GR be a real reductive group. A fundamental problem in the representation
theory of GR, originating in the character theory of Harish-Chandra, is to give an
explicit description of the character of an irreducible admissible representation of
GR. When one fixes an infinitesimal character, the problem becomes a finite one, in
the sense that the span of such characters is finite-dimensional. One consequence
of the Langlands classification is that this space is also spanned by certain standard
characters. Subsequent work of a number of people imply that (at least in principle)
the standard characters are readily computable. Hence the problem amounts to
explicitly expressing the irreducible characters in terms of the standard ones.

For linear groups (and integral infinitesimal character), the character problem
was solved by Vogan in a seminal series of papers ([V1]–[V3], [LV]). A final pa-
per [V4] is devoted to a latent symmetry of the answer, which is encoded in a kind of
duality between representations of a real form of a complex group and those of a real
form of a reductive subgroup of its Langlands dual. Subsequently this duality was
interpreted as a key representation-theoretic ingredient in a geometric reformula-
tion of Langlands’ ideas at the real place and, in particular, the Langlands-Shelstad
theory of endoscopy for real groups [ABV].

The papers cited above are not enough to handle general nonlinear groups, and
for them the character problem (and hence any aspect of a duality theory) remains
open. Yet nonlinear groups (especially the metaplectic double cover of the symplec-
tic group) play an important role in the construction of automorphic forms, and
it is clearly desirable to extend Langlands’ ideas to encompass them as well. The
purpose of the present paper is to give a solution of the character problem for the
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metaplectic group at certain kinds of infinitesimal character; in Theorem 7.13 and
Corollary 7.11 we give an explicit description of an algorithm to compute the charac-
ters of irreducible representations with regular half-integral infinitesimal character
(i.e. with an infinitesimal character which coincides with that of a genuine discrete
series). We then establish the following duality theorem.

Theorem 0.1. Fix an infinitesimal character χ so that Mp(2n,R) has a genuine
discrete series representation with infinitesimal character χ. Then there is an in-
volution on the set Pχ of Langlands parameters of genuine representations with
infinitesimal character χ

γ −→ γ̌

so that if δ ∈ Pχ and

[irr(δ)] =
∑
γ∈Pχ

M(γ, δ)[std(γ)],

then

[std(γ̌)] =
∑
δ̌∈Pχ

εγδM(γ, δ)[irr(δ̌)];

here εγδ = ±1, and is explicitly computable.

Sharper versions of Theorem 0.1 appear in Theorems 6.34 and 8.3 below, and
the cases of Mp(2,R) and Mp(4,R) are treated extensively in Section 4 and Exam-
ple 6.22. Note that Theorem 0.1 is consistent with the long-standing philosophic
belief that the metaplectic group is a real form of the Langlands dual of its com-
plexification (which doesn’t exist of course); see the introduction of [R] for example.

In future joint work, we will explore the representation theoretic applications
of Theorem 0.1 which, as motivation for the present paper, we briefly sketch now.
Following the philosophy of [ABV], Theorem 0.1 immediately allows us to define L-
packets of representations with a fixed half-integral regular infinitesimal character:
irr(γ) and irr(δ) are in the same L-packet if and only if the support of the appro-
priate D-module localization of their duals irr(γ̌) and irr(δ̌) coincide. Of course
Theorem 0.1 begs the questions of general infinitesimal character, but it turns out
that the half-integral case is by far the most difficult to understand. In a future
paper, we will show how to reduce the case of general infinitesimal character to the
half-integral case ultimately to obtain a complete duality theory for the metaplectic
group. We can thus extend the intrinsic definition of L-packets to all representa-
tions of the metaplectic group. (Previously L-packets for the metaplectic group
were defined as theta-lifts of super L-packets of equal-size orthogonal groups [A]. It
is an interesting and nontrivial fact that the extrinsic definition coincides with the
intrinsic one.) More importantly, we can define a microlocal refinement of L-packets
(called geometric packets in the argot of [ABV]) which, except in extremely special
cases, are not preserved by theta-lifting. Hence their definition is a genuinely new
consequence of the duality. Using them, it should be possible to give a geometric
formulation of the results of [R], as well as extend them to nontempered packets.

We now return to the present paper in a little more detail. Our computation
of characters follows Vogan’s treatment of the linear case quite closely, but there
are some important new ingredients. The first and most obvious concerns the
ubiquitous reduction to rank one subgroups: in the linear case, one need essentially
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only consider SU(2), SL(2,R), and GL(2,R); but in our setting we also need to
include Mp(2,R), the nonlinear double cover of SL(2,R). Said differently, we have
to consider a new kind of noncompact and real root (in addition to the usual Type
I and Type II roots). This difference, which of course is conceptually very easy, is
spelled out carefully in Sections 3.3 and 4. The next ingredient is the Hecht-Miličić-
Schmid-Wolf standard module reducibility criterion (extending the linear group
criterion of Speh-Vogan); this is recalled in Theorem 1.11. Until this point, we have
incorporated no essential features of the metaplectic group in our discussion1, but
we must invoke that setting for the final and most difficult ingredient: a technical
vanishing theorem for Lie algebra cohomology (Theorem 1.14)2.

With these ingredients in place, we are able to retrace the arguments (with
appropriate but generally not serious modifications) of [V3]. In order to prove
Theorem 0.1, we introduce a closed form of the algorithm to compute irreducible
characters. By “closed form” we mean an axiomatic (and then ultimately a re-
cursive) description of the multiplicities of a standard character in an irreducible
one. (Actually, as usual, one does not characterize the multiplicities themselves,
but rather certain polynomials whose numerical value at 1 is the actual multiplic-
ity.) In doing so, we are able to make the theory of the metaplectic group closely
mimic the linear theory, except for one crucial difference. It turns out that the clas-
sical role of the representation of the Hecke algebra (of the integral Weyl group)
on the Grothendieck group of formal characters is insufficient for our needs. For
instance, for Mp(2,R) at infinitesimal character 1

2ρ, the integral Weyl group is
trivial, yet the relevant character formulas are nontrivial. Instead we need to add a
new operator which is the analog of a nonintegral wall crossing translation functor.
(In contrast to integral wall-crosses, this functor does not preserve blocks; indeed,
our algorithm computes characters in one block only by simultaneously computing
them in another.) The resulting algebra is not a Hecke algebra, though it contains
the Hecke algebra of the integral Weyl group as a subalgebra. At any rate, we are
able to use the representation of this generalized Hecke algebra, together with a
‘Verdier duality’ endomorphism, to characterize the basis of irreducible characters
of the Grothendieck group. It is this characterization which we use in the proof of
Theorem 0.1.

After completing the generalized Hecke algebra formalism, we made a key obser-
vation: our formulas bear a striking resemblance to those considered in [MS]. This
suggests the possibility of a purely geometric treatment of the results presented
here.

We conclude the introduction with a slightly more detailed survey of the con-
tents below. In Section 1, after recalling a few generalities, we describe the shape
of Vogan’s representation-theoretic algorithm in the linear case. We then state
the crucial vanishing theorem in Lie algebra cohomology on which the existence
of the algorithm hinges (Theorem 1.13), and our nontrivial extension of it in the
metaplectic setting (Theorem 1.14). In other words, the key modification is that

1Strictly speaking, this is not quite accurate. For other nonlinear groups, one must consider ad-
ditional covers (instead of just the double cover) of SL(2,R) in the rank-one reductions mentioned
above. But this is very easy.

2For general nonlinear groups, a serious problem is finding an appropriate length function
satisfying the requirements of this theorem; indeed, it is not clear that one need even exist. For
this reason, one may expect that the character problem for general nonlinear groups need not
have a “closed form” solution of the kind we describe below.
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the ordinary length function replaces the integral length. Once this is established
(which is done later in Section 5) the existence of an algorithm to compute irre-
ducible characters relies only on a semisimplicity conjecture; roughly speaking, the
semisimplicity of the modules Uα(X). This, in turn, can be deduced in a number
of ways. Conceptually, the simplest argument rests on the decomposition theorem,
which we explain in Theorem 1.6.

In order to prove Theorem 1.14, we need a few more structure theoretic facts
(Section 2) and general representation theoretic preliminaries (Section 3). Sec-
tion 3.3 pinpoints the fundamental differences between the linear theory and the
theory of Mp(2n,R), and develops the technical devices used in the inductive proof
of Theorem 1.14. Section 4 deals with Mp(2,R), i.e. the nonlinear base-case of
the induction. Finally, we prove Theorem 1.14 in Section 5. The proof proceeds
along the lines of Vogan’s original and relies on the rather miraculous fact that cer-
tain nonintegral wall crossing translation functors always invert the relevant parity
condition. (As mentioned above, this fact is a special feature of the Mp(2n,R)
setting.)

The remainder of the paper is devoted to establishing Theorem 0.1. As in [V4],
we deduce it from a statement about certain Hecke algebra (actually, in our case,
generalized Hecke algebra) representations. This is the content of Proposition 8.2.
To prove it, one could proceed by suitably modifying the arguments of [V4] to en-
compass the nonlinear phenomena sketched in Section 3.3. Here we elect to bypass
the generalities of graded root systems (developed in [V4]) and instead explicitly
define the duality. The hope is that this approach will be more useful to the reader
seeking examples rather than abstraction. To proceed in this direction, we need
to establish explicit information about the representation theory of Mp(2n,R) at
half-integral infinitesimal character.

In a little more detail, in Section 6 we work out the Langlands parameteriza-
tion in terms of combinatorially defined objects called diagrams. These are in-
troduced out of convenience rather than necessity, but are useful for visualizing
certain fundamental computations. Explicit statements relating our diagrammatic
parameterization to the Langlands classification or the Beilinson-Bernstein param-
eterization may be found in Proposition 6.3 and Proposition 6.8. We work out the
representation-theoretic constructions of Section 3 (Cayley transforms, cross ac-
tion, etc.) in terms of simple pictorial descriptions (Lemmas 6.17 and 6.20). From
this we obtain a characterization of the blocks of genuine representations with half-
integral infinitesimal character (Proposition 6.9). Finally, we define the bijection
of Theorem 0.1 in Definition 6.31. The especially informative example of Mp(4,R)
is given in Example 6.32.

Section 7 sets the stage for the proof of Theorem 0.1. As explained above, we
need to introduce (what turns out to be) a completely equivalent closed form of the
representation-theoretic algorithm for computing irreducible characters. We define
the action of the generalized Hecke algebra on the Grothendieck group of formal
characters in Definition 7.4, and use the representation of the generalized Hecke al-
gebra to axiomatically define certain canonical elements in the Grothendieck group
(Corollary 7.11). Assuming the existence of these elements, we obtain a recursive
procedure to compute them. At this point, it is still not clear that the recursion
scheme is self-consistent, i.e. it is not clear that the special elements exist. How-
ever, we then give a combinatorial verification (Theorem 7.12) that the recursion
relations are exactly the same as those implicit in the algorithm given at the end
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of Section 5. Since these latter relations give the irreducible characters, the former
must also, and hence we obtain the closed form we were seeking.

Finally, in Section 8, we use the closed form developed in Section 7 to prove
Theorem 0.1. As mentioned above, the key statement here is Proposition 8.2. The
proof we sketch is an explicit computation with the combinatorics developed in
Section 6.
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1. Kazhdan-Lusztig algorithm

for Harish-Chandra modules: generalities

1.1. Notations. In this section, we recall some material from [V1] and [V2]. Al-
though stated only for linear groups, the definitions and results of [Vgr] also con-
stitute a convenient reference. In this section GR denotes an arbitrary connected
real reductive group in the Harish-Chandra class, and KR a maximal compact
subgroup of GR with corresponding Cartan involution θ and complexification K.
Furthermore, we assume that rk(GR) = rk(KR), i.e. GR admits discrete series
representations, and that all Cartan subgroups of GR are abelian. We denote real
Lie algebras with subscripts R and delete the subscript for the corresponding com-
plexification. We fix a compact Cartan subgroup Ha

R of GR contained in KR. The
corresponding Cartan subalgebra ha of g, will be considered as an ‘abstract’ Cartan
subalgebra, and we fix a positive root system ∆+

a of ∆(g, ha). (In [Vgr], Vogan uses
the opposite convention by choosing haR to be maximally split, but this difference
is not serious.) If h is a Cartan subalgebra of g, and λ is a regular element in h∗,
we will write ∆+(λ) for a positive root system of ∆(g, h) making λ dominant. (In
this context, dominant means that the pairing of the canonical real part of λ with
any positive coroot is weakly positive.) We also need

R(λ) = {α ∈ ∆(g, h)| 2 〈α, λ〉〈α, α〉 ∈ Z},

the integral roots for λ, and

R+(λ) = R(λ) ∩∆+(λ) and W (λ) = W (R(λ)),

the positive integral roots and the integral Weyl group. Fix once and for all a ∆+
a -

dominant nonsingular weight λa. Let S ⊂Wa := W (g, ha) be the set of reflections
with respect to simple roots in ∆+

a , and Sint ⊂ W (λa) the set of reflections with
respect to simple roots in R+(λa). When the choice of λa is clear, we sometimes
denote the integral Weyl group by Wint.

Let h be any Cartan subalgebra of g, and suppose that λ ∈ h∗ defines the same
infinitesimal character as λa; i.e. suppose that there exists an inner automorphism
iλ of g, sending (λa, (ha)∗) onto (λ, h∗). If λi ∈ (hi)∗, i = 1, 2 define the same
infinitesimal character as λa, we set iλ1,λ2 := iλ2 ◦ (iλ1)−1. The restriction of iλ to
(ha)∗ is unique.
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Let us denote by HC(g,K) the category of (finite-length) Harish-Chandra mod-
ules for GR. For any infinitesimal character χ ∈ (ha)∗, HC(g,K)χ is the full sub-
category of modules having infinitesimal character χ, and we have a well-defined
and exact projection functor (see [Vgr, Section 0.3])

Pχ : HC(g,K)→ HC(g,K)χ.

The Grothendieck groups of these categories are denoted respectively by KHC(g,K)
and KHC(g,K)χ. We will write [X ] for the image of a module X ∈ obHC(g,K)
in KHC(g,K), and define Pχ([X ]) = [Pχ(X)]. By the exactness of the functor Pχ,
this defines a map between Grothendieck groups.

1.2. Pseudocharacters and the Langlands classification. We recall the def-
inition of a pseudocharacter ([Vgr]). A pseudocharacter of GR is a pair (HR, γ)
where HR is a θ-stable Cartan subgroup of GR, and γ = (Γ, γ), consists of an irre-
ducible representation Γ of HR and an element γ ∈ h∗, with certain compatibility
conditions. We write the Cartan decomposition

hR = tR ⊕ aR,

and let MR exp aR be the Langlands decomposition of the centralizer Cent(GR, aR).
We require:

(i) γ|tR is purely imaginary and regular with respect to ∆(m, h).
(ii) Let ∆+(m, h) be the positive root system making γ|t dominant. We impose

dΓ = γ + ρI − 2ρc, where ρI =
1
2

∑
α∈∆+(m,h)

α , ρc =
1
2

∑
α∈∆+(m,h)
α compact

α .(1.1)

We write (ĤR)′ for the set of pseudocharacters having HR as their first component.
The pair γ = (Γ, γ) defines in a natural way a discrete series representation δ(γ)
of MR (specified by the requirement that its lowest K-type have highest weight Γ)
and a character eν = Γ| exp aR of exp aR.

An important invariant of a pseudocharacter is its length, which we now define.

Definition 1.1. Let (HR, γ) be a pseudocharacter of GR. The length of γ is

l(γ) =
1
2
|{α ∈ ∆+(γ) | θ(α) /∈ ∆+(γ)}|+ 1

2
dim a.

We are interested in irreducible admissible Harish-Chandra modules of GR with
our fixed infinitesimal character λa ∈ (ha)∗. We write (ĤR)′λa for the subset of (ĤR)′

of pseudocharacters γ such that γ and λa are conjugate by an inner automorphism
of g (i.e. they define the same infinitesimal character); in this case, we say that γ
is a λa-pseudocharacter.

Definition 1.2. Let γ ∈ (ĤR)′λa and recall that λa was assumed to be nonsingular.
Choose a cuspidal parabolic subgroup PR = MRARNR associated to HR in such a
way that if ν = γ|aR , then

Re〈α, ν〉 ≤ 0

for every root α of a in n. The Langlands standard module with parameter γ is
defined by

X(γ) = IndGRPR (δ(γ)⊗ eν ⊗ 1).
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Theorem 1.3 (Langlands [La], see [V2]). Let the notations be as in the definition
above, and recall that λa is regular.

(a) The standard module X(γ) admits a unique irreducible submodule X(γ).
(b) Let X be an irreducible Harish-Chandra module of GR with regular infinites-

imal character λa. Then there exist a θ-stable Cartan subgroup HR of GR and a
pseudocharacter γ ∈ (ĤR)′λa such that X is equivalent to X(γ).

(c) Let γi ∈ (Ĥi
R)′λa , i = 1, 2 be two pseudocharacters. The irreducible modules

X(γi), i = 1, 2 are equivalent if and only if (H1
R, γ

1) and (H2
R, γ

2) are conjugate
under KR.

(d) Write cl(HR, γ) for the KR-conjugacy class of pseudocharacters containing
(HR, γ), and Pλa for the (finite) set of KR-conjugacy classes of λa pseudochar-
acters. By (c), Pλa parameterizes the irreducible Harish-Chandra modules with
infinitesimal character λa. The following two sets are bases of the Grothendieck
group KHC(g,K)λa:

{ [X(γ)] }cl(γ)∈Pλa and { [X(γ)] }cl(γ)∈Pλa .(1.2)

Remark. We slightly abuse notation by writing γ for the pseudocharacter (HR, γ),
and often γ for cl(γ). The context will make clear what we mean.

Since characters of modules induced from discrete series are fairly well-under-
stood (see for example [H] or [GKM]), a way to compute the character of an irre-
ducible module X ∈ obHC(g,K)λa is to express [X ] in the second basis of (1.2).
That is, we look for an expression

[X(δ)] =
∑
γ∈Pλa

M(γ, δ)[X(γ)],(1.3)

where the M(γ, δ)’s are nonnegative integers. The inverse and equivalent problem
of decomposing a standard module in terms of its irreducible constituents consists
of finding nonnegative integers m(γ, δ) such that

[X(δ)] =
∑
γ∈Pλa

m(γ, δ)[X(γ)].(1.4)

In [V2] (building on [V1]), Vogan gave an explicit conjectural algorithm com-
puting the integers m(γ, δ) in the case where GR is linear. In the case that λa
is integral, the conjectural part amounted to the complete reducibility of certain
modules Uα(X) (see Theorem 1.4 below), where α is a simple root. In [V3] Vogan
used the results of [LV] to establish the requisite semisimplicity. It has been known
from various experts in the field how to drop the integrality assumption; see [ABV,
Chapter 17], for instance. In any case, the hypothesis of linearity makes its key ap-
pearance in [V2, Proposition 7.2]. We will explain this in more detail in Section 1.5
below, but first we need to recall a few more definitions.

1.3. Translation functors. The weight lattice of a Cartan subgroup HR of GR is
the set of weights of HR in finite dimensional representations of GR. The weights
of a finite dimensional representation of GR in Ha

R can be identified with their
differential in (ha)∗ since Ha

R is connected. (Recall that Ha
R is a Cartan subgroup

of the connected compact group KR.)
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Let µ be an extremal weight in (ha)∗ of a finite dimensional representation Fµ
of GR. The translation functor ψχ+µ

χ : HC(g,K)χ −→ HC(g,K)χ+µ is defined by

ψχ+µ
χ (X) = Pχ+µ(Fµ ⊗X).

We now define translation functors that push-to and push-off walls defined by
simple integral roots. Since such a root need not be simple for ∆+

a , we need to
perform translations into a chamber for which our simple integral root is actually
simple. The details are as follows. Let α be a simple root in R+(λa). Since α is not
necessary simple in ∆+

a , we choose a positive root system Ψα of ∆(g, ha) containing
R+(λa) such that α is simple for Ψα. Next we choose an integral weight µ1

α such
that λa + µ1

α is strictly dominant for Ψα. (If α was already simple for ∆+
a , we take

µ1
α = 0.) Now let

m = 2
〈α, λa + µ1

α〉
〈α, α〉

and define µ2
α to be m times the fundamental weight corresponding to α. It follows

that if β ∈ R+(λa),

〈β, λa + µ1
α − µ2

α〉 ≥ 0

with equality if and only if β = α. Let F iα denote the finite dimensional module of
highest weight µiα with respect to Ψα. We set

ψ1
α := ψ

λ+µ1
α

λ , ψ2
α := ψ

λ+µ1
α−µ2

α

λ+µ1
α

, φ2
α := ψ

λ+µ1
α

λ+µ1
α−µ2

α
, φ1

α := ψλλ+µ1
α
,

ψα = ψ2
α ◦ ψ1

α, φα = φ1
α ◦ φ2

α.

The functors ψα and φα are adjoint (e.g. [V1], Lemma 3.4).
Note that in the case that α is a simple integral root that is not simple for ∆+

a ,
the composition φαψα can be envisioned as the conjugation of a simple wall-cross
by a nonintegral wall-cross. We will return to this in Remark 7.6 below.

The τ -invariant of X ∈ obHC(g,K) is the set of simple roots in R+(λa) such that
ψα(X) = 0 and is denoted by τa(X). Sometimes it will be convenient to transport
this to another Cartan subalgebra h of g. Suppose we have fixed λ ∈ h∗ such that
λ is inner conjugate to λa in g. The τ -invariant of X with respect to (h, λ) is the
subset τ(X) = iλ(τa(X)) of simple roots in R+(λ). Although not explicit in the
notation, the choice of (h, λ) is usually clear from the context.

Theorem 1.4. Let X ∈ obHC(g,K)λa be an irreducible module, and let α be a
simple root in R+(λa) not in τa(X). Then φαψα(X) has X as its unique irreducible
submodule and irreducible quotient, and the following sequence

0→ X → φαψα(X)→ X → 0,

defined by the adjointness of the two functors ψα and φα, is a chain complex. Define
Uα(X) to be its cohomology. Then the module Uα(X) has finite composition series,
and α ∈ τ(Uα(X)).

Proof. See Section 7.3 of [Vgr].

Conjecture 1.5. The modules Uα(X) are semisimple.

As we said above, this conjecture is proved by Vogan for linear groups at integral
infinitesimal character in [V3]. For nonintegral infinitesimal character (but still for
linear groups), a sketch of the proof can be found in [ABV, Chapter 17]. For
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a nonlinear group, the exact status of the conjecture is unclear, at least to the
authors of the present paper. Fortunately, we will need only a special case which
we now state.

Theorem 1.6. Let X ∈ obHC(g,K)λa be an irreducible module. Suppose α ∈
R+(λa) is simple, α /∈ τa(X), and α is also simple as a root in ∆+

a . Then Uα(X)
is a semisimple module in HC(g,K)λa .

Sketch. The Beilinson-Bernstein localization theory gives an equivalence of the
category between HC(g,K)λa and M(D−λa ,K), the category of Harish-Chandra
sheaves on the flag manifold. The functor Uα has a geometric counterpart Ugα from
M(D−λa ,K) into itself. If F is an irreducible Harish-Chandra sheaf inM(D−λa ,K),
the semisimplicity of Ugα(F) is a consequence of the Riemann-Hilbert correspon-
dence and the decomposition theorem of Beilinson-Bernstein-Deligne-Gabber
[BBD]. For more details and a similar argument for Verma modules, see [Mi2].

We will also need to define translation functors across nonintegral walls.

Theorem 1.7 ([Vgr], Proposition 7.3.3). Let α ∈ ∆+
a be a simple nonintegral root,

and choose a weight µα ∈ (ha)∗ such that λa+µα is dominant and regular for sα·∆+
a .

If X ∈ obHC(g,K), define

ψα(X) := ψλa+µα
λa

(X), φα(X) := ψλaλa+µα
(X).

The functor ψα realizes an equivalence of the categories between HC(g,K)λa and
HC(g,K)λa+µ; its inverse is φα.

The notation ψα across a nonintegral wall depends (in an inessential way) on
the choice of µ. Nonetheless, we will find it convenient to adhere to the following
convention.

Convention 1.8. If sα · λa − λa = −2 〈α,λa〉〈α,α〉 α in the theorem above is an integral
weight, then we choose µα to be this weight.

1.4. Cohomology of Harish-Chandra modules. Let q = l + u be a θ-stable
parabolic subalgebra of g. Up to KR-conjugacy, our fixed (compact) Cartan subal-
gebra ha is contained in l, since l is the centralizer of an elliptic element of gR. If
X ∈ obHC(g,K), the cohomology groups H i(u, X) are (l, L ∩K) modules. Set

ρu =
1
2

∑
β∈∆(ha,u)

β.

We introduce translation functors for modules in HC(l, L ∩K) similar to the ones
in the previous section. Because of the following result there is a ρ-shift in the
definitions.

Theorem 1.9 ([V2], Theorem 4.1). Let X ∈ obHC(g,K)λa . Then Y = Hi(u, X)
decomposes as

Y =
⊕

w∈W (ha,l)\W (ha,g)

Pwλa−ρu
(Y ).

For Harish-Chandra modules, one needs an appropriate analog of a highest
weight of a Verma module. Roughly speaking, the next definition is related to
such an analog.
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Definition 1.10 ([V2], Definitions 6.8, 6.9). Let q = l + u be a θ-stable parabolic
subalgebra of g containing a θ-stable Cartan subalgebra h of g defined over R. Let
HR = TR exp aR be the Cartan decomposition of HR. Suppose γ ∈ (ĤR)′. Let γq

be the regular pseudocharacter of HR with respect to l specified by
(a) γq = (Γq, γq);
(b) γq = γ − ρu;
(c) (Γq)|TR = Γ|TR ⊗V where V is a one-dimensional character in the root lattice

of TR.
In this context, set

lq(γ) =
1
2
|{α ∈∆(h, u)| θ(α) 6= α}|+ |{α ∈ ∆(h, u)|α compact and

〈α, γ〉 < 0 or α imaginary noncompact and 〈α, γ〉 > 0}|.

Finally, we will need translation functors for l. Define for α simple in ∆+
a

ψl
α = ψλ−ρu+µα

λ−ρu
, φl

α = ψλ−ρu

λ−ρu+µα

where µα is chosen as in the previous section.

1.5. Kazhdan-Lusztig algorithm: first remarks. The Kazhdan-Lusztig algo-
rithm for Harish-Chandra modules, for linear groups, is described in [V2] or [Vgr].
It proceeds by induction on the length, l(γ), of a pseudocharacter (HR, γ) and
computes

(a) the composition series of X(γ);
(b) the cohomology groups H i(u, X(γ)) as a (l, L ∩K)-module, for each θ-stable

parabolic subalgebra q = l + u of g;
(c) for each simple root α ∈ R+(γ) such that α /∈ τ(X(γ)), the composition series

of Uα(X(γ)).
When X(γ) is irreducible, we say that γ is minimal. For linear groups, [Vgr,

Theorem 8.6.4] gives a necessary and sufficient condition for a pseudocharacter γ
to be minimal. For nonlinear groups we need a generalization of this result, found
in [Mi1, Theorem 2.1].

Theorem 1.11. Suppose γ ∈ (ĤR)′λa is a regular pseudocharacter. Then γ is
minimal if and only if the following conditions are satisfied:

(a) For any complex root α ∈ R+(γ):
(i) θ(α) ∈ R+(γ); or
(ii) θ(α) /∈ R+(γ) and α is not minimal in {α,−θ(α)} with respect to the

standard ordering of R+
α ; here Rα is the smallest θ-stable root system

containing α and −θ(α) and R+
α = Rα ∩R+(γ).

(b) No real root in ∆+(γ) satisfies the parity condition.

For a minimal pseudocharacter γ, step (a) in the algorithm is trivial by definition.
Part (b) is Theorem 6.13 of [V2] which computes the cohomology of standard
irreducible modules. Part (c) is obtained by observing that the only constituents
of Uα(X(γ)) are the ‘special constituents’ of [V1, Theorem 4.12]. For non-minimal
γ, it is possible to find a pseudocharacter γ′ of length l(γ′) = l(γ) − 1 obtained
from γ either by Cayley transform with respect to a simple real root satisfying the
parity conditions, or coherent continuation across a simple complex wall. Steps
(a), (b), and (c) for γ are computable from the corresponding ones for γ′ and
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other pseudocharacters of smaller length—this will briefly be recalled at the end of
Section 5. For linear groups, what is needed is an important intermediate result,
namely a vanishing theorem in cohomology ([V2]). To state it we first need a
definition.

Definition 1.12. Suppose GR is linear and (HR, γ) is a regular pseudocharacter
of GR. Put

lI(γ) =
1
2
|{α ∈ R+(γ) | θ(α) /∈ R+(γ)}|+ 1

2
dim a− c0,

where c0 is a constant independent of γ chosen such that lI(γ) is an integer for all
pseudocharacters γ.

Remark. If GR is not linear, the definition still makes sense, but it may be false that
there exists c0 with the property that lI(γ) is an integer for all γ, as the example
of Mp(2,R) and modules with infinitesimal character 1

2ρ shows (see Section 4).

Now we come to the vanishing theorem alluded to above. The hypothesis of
linearity is crucial here, essentially because in the nonlinear case it is not obvious
what the correct analog of lI should be, or even if such an analog exists.

Theorem 1.13 ([V2], Theorem 7.2). Suppose that GR is linear and let γi ∈ (Ĥi
R)′,

i = 1, 2 be two regular pseudocharacters of GR. Let q = l + u be a θ-stable parabolic
subalgebra of g containing h2. Then

(a) Hi(u, X(γ1)) contains X
L

(γ2
q) as a composition factor only if (lI(γ1) −

lI(γ2))− (lq(γ2)− i) is even.
(b) If X(γ1) and X(γ2) are distinct, l(γ1) ≥ l(γ2), and

Ext1
(g,K)(X(γ1), X(γ2)) 6= 0,

then (lI(γ1)− lI(γ2)) is odd.
(c) Hi(u, X(γ1)) is completely reducible as an l module.
(d) Suppose that α ∈ ∆+(γ2) is a simple integral root not in τ(X(γ1)), with

n = 2 〈α,γ
2〉

〈α,α〉 .

(d1) If α ∈ ∆(h2, u), then the multiplicity of X
L

(γ2
q) in Hi(u, Uα(X(γ1)) is its

multiplicity in H i+1(u, X(γ1)) plus the multiplicity of X
L

(γ2
q−nα) in Hi(u, X(γ1)).

(d2) If α ∈ ∆(h2, l), then the multiplicity of X
L

(γ2
q) in Hi(u, Uα(X(γ1)) is zero

unless ψl
α(X

L
(γ2

q)) = 0 (i.e. α lies in the τ-invariant with respect to l) and in that

case it is the multiplicity of X
L

(γ2
q) in

φl
αψ

l
α(Hi(u, X(γ1))⊕Hi−1(u, X(γ1))⊕Hi+1(u, X(γ1)).

(d3) If −α ∈ ∆(h2, u), then the multiplicity of X
L

(γ2
q) in Hi(u, Uα(X(γ1)) is its

multiplicity in H i−1(u, X(γ1)) plus the multiplicity of X
L

(γ2
q−nα) in Hi(u, X(γ1)).

(e) In the setting of (d), X(γ3) occurs in Uα(X(γ1)) only if (lI(γ1)− lI(γ3)) is
odd.

Our main result in this section is an analog of this theorem when GR =
Mp(2n,R), and λa is the infinitesimal character of a genuine discrete series. What
we need is an appropriate length function to replace lI . It turns out that the length
(Definition 1.1) is what we want. (Since the proof of Theorem 1.14 proceeds by
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induction on the dimension of Levi factors in Mp(2n,R), we need to slightly enlarge
the class of groups under consideration.)

Theorem 1.14. For representations having the same infinitesimal character as a
genuine discrete series representation, Theorem 1.13 is valid for any group in the
class L(Mp) (defined in Section 3.1 below) with lI replaced by l.

We will prove this theorem in Section 3, after introducing some material about
the metaplectic group. Once this result is in place, we can proceed as in the linear
case and arrive at the following conclusion, which is one of our main results.

Corollary 1.15. There is an effective algorithm for computing composition series
of genuine standard Harish-Chandra modules for Mp(2n,R) whose infinitesimal
character coincides with that of a genuine discrete series representation.

For completeness, we will describe steps (a), (b), (c) of the Kazhdan-Lusztig
algorithm for Mp(2n,R) in Section 3. This closely follows Section 9.6 of [Vgr], but
we will give the few extra arguments needed in our setting.

2. Notation and structure theory

In this section we recall the structural facts that we need for our study of the
representation theory of Mp(2n,R).

2.1. Sp(2n,R). To make the pictures in Section 6 a little cleaner, we choose a
different realization of the symplectic group than is usually considered, and define
Sp(2n,R) to be the set of real 2n-dimensional matrices preserving the form defined
by

J =



1
. . .

1
−1

. . .
−1


.

In the foregoing, we will let GR denote Sp(2n,R) and will write gR for its Lie
algebra. With our choice of J , we have that gR consists of all 2n-dimensional real
matrices of the form(

A B
C D

)
∈ gl(2n,R) such that A = −Datr, B = Batr, and C = Catr;

here Xatr denotes the antitranspose of X, i.e. the flip of X about its antidiagonal.
We write g for the complexification of gR and let θ denote the Cartan involution

of negative transpose.

2.2. Cartan subalgebras in gR. Given xk, yk ∈ R, define the 2-by-2 matrices
M

(k)
ij as follows:

(
M

(k)
11 M

(k)
12

−M (k)
12 −M (k)

11

)
=


xk yk

xk yk
−yk −xk

−yk −xk

 .
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Given positive integers m, r and s such that 2m+r+s = n, we define h
m,r,s
R to

be the subset of gR consisting of those matrices of the form(
A B
−B −Aatr

)
with

A =



M
(1)
11

. . .
M

(m)
11

0
. . .

0
a1

. . .
as


and

B =



M
(1)
12

. . .
M

(m)
12

t1
. . .

tr
0

. . .
0


.

The various entries xj , yj , tj and aj are arbitrary real numbers.
It will be convenient to single out the above element in h

m,r,s
R . We will denote it

by H(z1, . . . , zm; t1, . . . , tr; a1, . . . , as) or H(z; t; a); here zj = xj+iyj.

Lemma 2.1. The h
m,r,s
R (such that 2m + r + s = n) exhaust the GR-conjugacy

classes of Cartan subalgebras in gR.

Clearly, h
m,r,s
R is θ-stable, and so we write its eigenspace decomposition as

h
m,r,s
R = t

m,r,s
R ⊕ a

m,r,s
R with dimR(am,r,sR ) = m+s. In particular, h

0,n,0
R = t

0,n,0
R

and h
0,0,n
R = a

0,0,n
R . As usual, we write hm,r,s for the complexification of h

m,r,s
R ,

and tR for the compact Cartan subalgebra h0,n,0. We also view t as our ‘abstract’
Cartan subalgebra ha.

2.3. Roots. Consider the (complexified) anti-diagonal Cartan subalgebra h0,n,0.
For 1 ≤ j ≤ n, define the linear functional ej ∈ (h0,n,0)∗ via

ej(H(t1, . . . , tn)) = itj.

The functionals {±ej ± ek,±2ej} are roots of h0,n,0 in g. We choose the standard
positive roots

∆+
a = ∆+

0,n,0 = {ej ± ek | j < k} ∪ {2ej}.
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Suppose α is a noncompact imaginary root for h in g. We write cα for the Cayley
transform through α. There is some ambiguity in the normalization of cα; rather
than give the normalization explicitly, we simply note that it is specified by (2.1)
below.

In any case, we can explicitly relate h
m,r,s
R to h0,n,0 as follows:

hm,r,s = cm,r,s(h0,n,0); cm,r,s =
∏

1≤j≤m
ce2j−1+e2j ◦

∏
n−s+1≤j≤n

c2ej .

(There is something to check in this definition; namely, that in each appearance
of some cα, α is actually a noncompact imaginary root for the domain of cα.)
Transposing this isomorphism allows us to define a choice of positive roots ∆+

m,r,s =
[(cm,r,s)tr]−1(∆+

0,n,0) for the roots of hm,r,s in g. When it is clear from the context,
we will be sloppy and write ej ∈ (hm,r,s)∗ for the transport (via the transpose of
cm,r,s) of the functional ej ∈ h0,n,0.

With this understood, one checks that for H = H(z; t; a),

e2j−1(H) = xj + iyj, 1 ≤ j ≤ m;(2.1)

e2j(H) = xj − iyj, 1 ≤ j ≤ m;

ej(H) = itj, 2m+ 1 ≤ j ≤ 2m+ r;

ej(H) = aj , n− s ≤ j ≤ n.
Hence we compute

θ(e2j−1) = −e2j, 1 ≤ j ≤ m;(2.2)

θ(ej) = ej, 2m+ 1 ≤ j ≤ 2m+ r;

θ(ej) = −ej, 2m+ r + 1 ≤ j ≤ n;

from which we can easily compute the real, complex, and imaginary roots in ∆+
m,r,s

(see Lemma 6.14 below).
Finally, for 1 ≤ j ≤ n, define elements

Hj = H(

j−1︷ ︸︸ ︷
0, . . . , 0,−i, 0, . . . , 0) ∈ itR.

(So, in the canonical normalization, Hj is the coroot of e2j.) Unlike the case
of roots, we will not transport the element Hj to other Cartan subalgebras, and
instead always consider Hj as an element of itR.

2.4. The metaplectic group and its center. Let G̃R := Mp(2n,R) be the
metaplectic group of rank n. It is a nontrivial central extension of order two of
of GR = Sp(2n,R), defined by an explicit cocycle (see for example [Tor]). For the
remainder of Section 2, we will let G̃R = Mp(2n,R) and GR = Sp(2n,R).

We denote the projection G̃R −→ GR by pr , and write z for the nontrivial
element of G̃R in pr−1({Id2n}). We will use the following notational convention.
Preimages (in G̃R) of subgroups of GR will be denoted by adding a tilde. For
instance, we write KR for the maximal compact subgroup of GR and set K̃R :=
pr−1(KR). Note that K̃R is a maximal compact subgroup of G̃R. Here is a list of
some easy but important structure theoretic facts.

Lemma 2.2. Recall the elements Hj ∈ itR (defined at the end of Section 2.3).
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(a) The element z ∈ G̃R is central; it has order 2. Moreover, independent of j,
we have

z = expMp(2iπHj),

(b) The center Z(G̃R) has order four. We may write Z(G̃R) = {e,x,y, z} with

x = expMp(iπ(H1 + . . .+Hn)), and y = zx.

Moreover,
(i) if n is odd, then x2 = z and Z(G̃R) ' Z/4;
(ii) if n is even, then x2 = e, and Z(G̃R) ' Z/2× Z/2.

2.5. Cartan subgroups in GR and G̃R, Weyl groups. Recall the notation of
the previous section; in particular, GR = Sp(2n,R) and G̃R = Mp(2n,R). Let
Hm,r,s
R denote the centralizer in GR of h

m,r,s
R . We have

Hm,r,s
R ' (C×)m × (S1)r × (R×)s,

which has 2s connected components. The Weyl group Wm,r,s
R = NGR(T )/ZGR(T )

is isomorphic to

(Sm nW (D2)m)× Sr ×W (Cs);

here W (Ck) ' Sk n (Z/2)k is the complex Weyl group of type Ck, and similarly
for W (D2). In other words, Wm,r,s

R acts by negation, complex conjugation and
permutation of the first m coordinates of H(z; t; a) ∈ h

m,r,s
R ; Sr acts by permuting

the next r coordinates; and W (Cs) acts by permutation and sign changes on the
last s coordinates. We write Wm,r,s for the complex Weyl group of hm,r,s in g. In
the next section, we realize these groups concretely inside S2n.

Let H̃m,r,s
R denote the centralizer in G̃R of h

m,r,s
R . Because G̃R is a central

extension of GR, we have that pr−1(Hm,r,s
R ) ⊂ H̃m,r,s

R . In fact, it turns out that
pr−1(Hm,r,s

R ) = H̃m,r,s
R , and H̃m,r,s

R is an abelian double cover of Hm,r,s
R . Moreover,

we can canonically identify Wm,r,s
R with N

G̃R
(hm,r,sR )/Z

G̃R
(hm,r,sR ). There is a little

subtlety in describing the connected components of H̃m,r,s
R which we now explain.

Let mj = expMp(iπHj) ∈ T̃R. From Lemma (2.2) above, we see that mj has
order 4. Assume now that s 6= 0 or s = m = 0, and define Fm,r,s to be the group
generated by the mj for n−s < j ≤ n. (Note that z ∈ Fm,r,s.) On the other hand,
if s = 0 and m 6= 0, then we define Fm,r,s to be {e, z}. In either case, we have the
direct product decomposition

H̃m,r,s
R = Fm,r,s × expMp(h

m,r,s
R ).

Thus H̃m,r,s
R has either 4s components (if s 6= 0 or s = m = 0) or exactly 2

components (if s = 0 and m 6= 0).

2.6. Weyl groups. We need to discuss the Weyl groups Wm,r,s
R (introduced in the

previous section) in a little more explicit detail. Let G′ = GL(2n,C), write h′ for
the diagonal Cartan subalgebra in gl(2n,C), and H ′ for the centralizer in G′ of h′.
Let W ′C denote the Weyl group NG′(H ′)/ZG′(H ′). With these choices, there is a
standard way to identify W ′C with S2n.

Now consider h = h0,0,n (notation as in Section 2.2). Write H for the centralizer
in G of h, and WC = W 0,0,n for the Weyl group NG(H)/ZG(H). The inclusion
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of normalizers NGR(H
0,0,n
R ) ↪→ NG(H) identifies W 0,0,n

R with WC, and the isomor-
phisms cm,r,s (notation as in Section 2.2) allow us to consider each Wm,r,s

R as a
subgroup of WC. Finally, it is not difficult to verify that NG′(H ′) ⊂ NG(H), and
in fact this inclusion descends to an inclusion WC ⊂ W ′C. Hence we can consider
each Wm,r,s

R as a subgroup of a fixed S2n.
In order to describe explicitly Wm,r,s

R as a subgroup of S2n, we need to introduce
a little notation. Given w ∈ S2n, let F denote the number of fixed-points of w, i.e.
F = {j | w(j) = j}. For each j ∈ F , choose a sign εj ∈ Z/2, and write ε for the
tuple (εj)j∈F . We say that the pair (w, ε) is an involution with signed fixed points.
We can consider the normalizer of (w, ε) in WC ⊂ S2n,

NWC(w, ε) = {x ∈ WC | xwx−1 = w, εx(j) = εj , for all j ∈ F}.
The point of this section is that Wm,r,s

R can be written as such a normalizer. This
is the content of Lemma 2.3, but first we need some notation. We define a particular
involution with signed fixed points called the canonical orbit diagram om,r,s. (The
terminology ‘orbit diagram’ will be explained in Section 6.3.) Explicitly om,r,s is
specified by

σ(j) = 2n+ 1− j − 1, for 1 ≤ j ≤ 2m and j odd,

σ(j) = 2n+ 1− j + 1, for 1 ≤ j ≤ 2m and j even,

σ(j) = j, 2m+ 1 ≤ j ≤ 2m+ r or 2n− 2m− r + 1 ≤ j ≤ 2n− 2m,

σ(j) = 2n+ 1− j, else, i.e. for n− s ≤ j ≤ n+ 1 + s,

εj = +, for 2m+ 1 ≤ j ≤ 2m+ r,

εj = −, for 2n− 2m− r + 1 ≤ j ≤ 2n− 2m.

For instance, o2,1,1 looks like

Lemma 2.3. Identify WC and Wm,r,s with subgroups of S2n as explained above.
Then

WC = NS2n(o0,0,n);

and, moreover,

Wm,r,s
R = NWC(o

m,r,s).

2.7. An outer automorphism. Consider the matrix

A =
(

0 iJ
iJ 0

)
∈ Sp(2n,C);

here J is defined as in Section 2.1. Conjugation by A defines an outer automor-
phism of Sp(2n,R) of order two which we denote by ι. It lifts to an order two
automorphism of Mp(2n,R) denoted ι̃. On the level of roots (Section 2.3), ι in-
duces the mapping εj 7→ −εj . The reason that ι̃ will be important for us is the
following trivial observation.

Proposition 2.4. Suppose γ 7→ γ̌ is a bijection satisfying the requirements of The-
orem 0.1. Then the bijection γ 7→ ι̃(γ̌) also satisfies the requirements of the theorem.
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3. Preliminaries

3.1. Genuine modules. As mentioned above, our main results on Mp(2n,R) rely
on an inductive reduction to its Levi factors, and so we need to enlarge the class
of groups under consideration. With this in mind, define L(Mp) to be the class of
groups formed by Mp(2n,R) and the normalizers L̃R = Norm(Mp(2n,R), q) where
q is a θ-stable parabolic subalgebra of sp(2n,C).

Notation for Section 3. When we write G̃R, we will always mean a group in
L(Mp). We will always denote pr(G̃R) by GR. (This generalizes the notation of
Section 2 where G̃R = Mp(2n,R) and GR = Sp(2n,R).) Moreover, K̃R and KR
will denote maximal compact subgroups in G̃R and GR, and T̃R and TR will denote
their respective maximal tori. (Since we always have KR = pr(K̃R), the notation
is consistent.)

An important observation to make is that L(Mp) is closed in an appropriate
sense. Note that we may (and do) assume that the Cartan involution of G̃R is
obtained by restricting the one for Mp(2n,R).

Lemma 3.1. Fix G̃R ∈ L(Mp) and suppose q is a θ-stable parabolic in Lie(G̃R)C.
Then Norm(G̃R, q) ∈ L(Mp).

The notation T̃R was used in the previous section to denote a fixed compact
Cartan subgroup in Mp(2n,R). The notation (outlined above) indicates that in
this section T̃R denotes a compact Cartan subgroup in G̃R. The next lemma insures
that in fact these notations are consistent.

Lemma 3.2. Let G̃R be in the class L(Mp) and adhere to the notations outlined
above for Section 3. Then K̃R is the intersection of G̃R with K̃Mp

R , the maximal
compact subgroup in Mp(2n,R). Consequently, T̃R is a compact Cartan subgroup
of Mp(2n,R). Hence by conjugating with K̃Mp

R , we may assume that T̃R = H̃0,n,0

(with notation as in Section 2.5).

Remark 3.3. In the setting of the lemma, and when it is appropriate, we will still
consider ha = t as our abstract Cartan subalgebra.

Finally, note that it follows directly from the definition (or, alternatively, the
above lemma) that each group in L(Mp) (and each of its Cartan subgroups) con-
tains Z(Mp(2n,R)) = {e,x,y, z}. In particular, Z(Mp(2n,R)) ⊂ Z(G̃R). We
utilize these central elements as follows.

Definition 3.4. Fix G̃R ∈ L(Mp), and let X be a module in HC(g, K̃). We say X
admits a central character if each element of Z(G̃R) acts by a scalar. In this case,
we obtain a homomorphism χX : Z(G̃R) −→ C×. We call X genuine if χX(z) = −1,
and denote the full subcategory of HC(g, K̃) of genuine modules by HC(g, K̃)gen.

Now let H̃R be a θ-stable Cartan subgroup of G̃R. Let γ = (Γ, γ) be a λa-
pseudocharacter for H̃R. We say that γ is genuine if Γ(z) = −1, and write (HR)gen

λa

for the subset of genuine λa-pseudocharacters for H̃R.

Fix a pseudocharacter γ = (Γ, γ). Since X(γ) is induced from a discrete series
whose lowest K-type has highest weight Γ, and since the action of a central element
commutes (in a suitable sense) with induction, we make the following conclusion.
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Lemma 3.5. The standard and irreducible modules X(γ) and X(γ) are genuine if
and only if γ is.

Hence we can restate Theorem 1.3 for genuine modules.

Corollary 3.6. Fix G̃R ∈ L(Mp). The K̃R-conjugacy classes of genuine pseu-
docharacters with regular infinitesimal character λa parameterize the irreducible
objects in HC(g, K̃)gen

λa
.

3.2. Half-integral infinitesimal character. The main results of this paper con-
cern only a certain kind of infinitesimal character, and we make that restriction
precise now. Suppose Λ is a genuine character of the compact Cartan subgroup
T̃R = H̃0,n,0 (notation as above). Then its differential λ = dΛ takes purely imagi-
nary values on tR, and we can write λ =

∑
j bjej (Notation as in Section 2.3). The

condition that Λ is a genuine character of T̃R means that each bi ∈ 1
2 + Z. More

generally, we say that λ ∈ t∗ is half-integral if its restriction to t is of the above
form.

Recall that the infinitesimal character of an irreducible admissible representation
of G̃R is specified by a Weyl group orbit Wa ·λa ∈ h∗a/Wa. It is convenient to single
out a dominant representative in this orbit. For this purpose, we fix the positive
root system ∆+

a for the roots of ha in g by restricting the positive root system
∆+
a (Mp(2n,R)) of Section 2.3. We then define dominance with respect to this

choice of positive roots.
The next lemma is part of Harish-Chandra’s characterization of the discrete

series.

Lemma 3.7. The infinitesimal character of any genuine discrete representation of
G̃R ∈ L(Mp) is given by (the Weyl group orbit) of a dominant, regular, half-integral
λa ∈ (ha)∗.

Remark 3.8. Consider the special case when G̃R = Mp(2n,R), and consider a dom-
inant, half-integral, regular element λa ∈ (ha)∗. In the basis {e1, . . . , en}, we can
write

λa =
(

2a1 − 1
2

, . . . ,
2an − 1

2

)
with a1 > a2 > . . . > an > 0, ai ∈ N. In particular, note that the simple roots
which are integral for such a λa are precisely the short roots

Sint = {ei − ei+1 | i = 1, . . . , n} ∪ {en−1 + en}.
More generally, we have the following lemma, whose simple verification we leave to
the reader.

Lemma 3.9. Let G̃R be a group in L(Mp), H̃R a θ-stable Cartan subgroup of G̃R,
and let γ be a genuine λa pseudocharacter for H̃R (of half-integral infinitesimal
character). We have the following conclusions:

(a) The integral root system R(γ) consists of the short roots in ∆(g, h); in par-
ticular, it is θ-stable.

(b) The positive root system ∆+
a contains at most two simple long roots. If such

a root does not exist, then (a) implies that Wa = W (λa). If such roots do
exist, then Wa is generated by W (λa) and the simple reflections through the
long simple roots.
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(c) Finally, if α is a long root in ∆(g, h), then

m = 2
〈α, γ〉
〈α, γ〉 ∈ Z+

1
2

and mα is a weight of a finite-dimensional representation of g.

3.3. Coherent continuation, cross action and Cayley transforms. Fix G̃R ∈
L(Mp) and consider a dominant, regular, half-integral element λa ∈ (ha)∗. The
point of this section is to develop the theory of coherent continuation, cross action,
and Cayley transforms. Each of these concepts can be defined in terms of simple
roots. When the simple root is integral (equivalently, according to Lemma 3.9(b),
when the simple root is short) the appropriate definitions reduce to those given
in [Vgr] for linear groups. However, for a simple long root, certain phenomena
(different from the linear theory) present themselves. From the geometric view-
point, this amounts to the observation that there is an extra case to consider in
the geometric partition of [LV, Lemma 3.5]. At any rate, most of the interesting
phenomena can be seen already in the case of Mp(2,R) and for this reason, the
reader may find the example of Section 4 helpful.

We begin by recalling the coherent continuation action of the integral Weyl
group W (λa) on KHC(g, K̃)λa . For applications which we consider below, we find
it convenient to extend this action to the entire complex Weyl group Wa. By
Lemma 3.9(c), this amounts (at most) to defining the action of a long simple root.
The one detail that we will need to check (Proposition 3.10 below) is that this
extended action is good (in the sense that the action of W (λa) is) for computing
translation functors.

Fix a coherent family Θ (for T̃R) based at an irreducible representation X ∈
obHC(g, K̃)λa . For w ∈Wa, we define

w · [X ] = Θ(w−1λa) ∈ KHC(g, K̃)λa .(3.1)

When w actually is an element of W (λa), this action and its properties are carefully
explained in [Vgr, Chapter 7]. (One word of warning is in order here: some of the
results in Chapter 7 do not hold for the extended action of Wa.)

Suppose we are in the setting where W (λa) ( Wa. According to Lemma 3.9,
let α be the unique simple long root in Wa. The point of extending the coherent
continuation action to Wa is that the action of sα keeps track of the (nonintegral)
wall-cross over the wall defined by α.

Proposition 3.10. Retain the setting of the previous paragraph. Then

sα · [X ] = [ψα(X)];

here ψα is the nonintegral wall crossing functor described in Convention 1.8.

Proof. This follows directly from the definition of coherent families, together with
the last assertion of Lemma 3.9.

The next topic we address is Cayley transforms through noncompact imaginary
roots. Again we stress that the theory is different for short roots and long roots, al-
though the difference is more easily seen in the setting of inverse Cayley transforms
described below.

Let (γ, H̃R) be a λa-pseudocharacter of G̃R, and let β be a noncompact root
in ∆+(g, h). Let H̃β

R be the Cartan subgroup associated to the standard Cayley
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transform cβ . The type (I or II) of β is defined in [Vgr, Definition 8.3.4]. The
Cayley transform cβ(γ) of γ by β is defined in [Vgr, Definition 8.3.6], and with the
notation there, cβ(γ) = {γβ} if γ is type I, cβ(γ) = {γβ+, γ

β
−} if γ is type II, where

γβ, γβ± are pseudocharacters of H̃β
R .

The difference alluded to above manifests itself in the following guise: for a long
noncompact imaginary root β (which, in fact, is always type I), γ is the unique
pseudocharacter such that cβ(γ) = γβ . This is to be contrasted with the type I
setting in the linear case, where there always exists δ 6= γ such that cβ(δ) = γβ.
We will explain this in more detail below.

Next we need to recall some of the material required to define inverse Cayley
transforms of pseudocharacters by real roots satisfying the parity condition. We
refer to [Vgr, Section 8.3] for omitted details.

Definition 3.11. Suppose that H̃R is a θ-stable Cartan subgroup of G̃R, and α ∈
∆(g, h) is a real root. Choose root vectors Xα, X−α in gR such that [Xα, X−α] =
Hα, where Hα ∈ hR is the coroot of α. Let cα = Ad(ξα), where ξα = exp( iπ4 (Xα +
X−α)) is an element of the adjoint group of g. Define hα := cα(h). This is a θ-
stable Cartan subalgebra of g defined over R, and β = trc−1

α (α) is a noncompact
imaginary root in ∆(g, hα). Define mα = exp

G̃R
(iπHβ) ∈ G̃R; here Hβ is the β-

coroot in i(hα)R. One can check that mα is an element of H̃R ∩ (H̃α)R, which
depends on the choices only up to a replacement of mα by m−1

α .

Definition 3.12. In the setting above, let εα = ±1 be the sign defined in [Vgr,
Definition 8.3.11]. Let γ = (Γ, γ) be a λa-pseudocharacter for H̃R. We say that α
satisfies the parity condition with respect to γ if and only if

Γ(mα) = εα exp
(
±iπ2

〈α, γ〉
〈α, α〉

)
.(3.2)

Lemma 3.13. Let G̃R be a group in L(Mp), and H̃R a θ-stable Cartan subgroup
of G̃R. Let γ be a genuine λa-pseudocharacter for H̃R. Suppose that α is a real root
in ∆(g, h). If α is short, then m2

α = e, thus the left-hand side of (3.2) is equal to
+1 or −1, and since α is integral, then the right-hand-side of (3.2) takes only one
value, equal to +1 or −1. If α is a long root, then m2

α = z, thus since Γ(z) = −1
the left-hand side of (3.2) is equal to +i or −i, and the right-hand-side of (3.2)
takes values +i and −i. Therefore, the parity condition is always satisfied for long
real roots.

Proof. Up to conjugacy, we can take H̃R to be one of the fixed Cartan subgroups
H̃m,r,s in Mp(2n,R) (Section 2.5), and make explicit computations there.

Remark 3.14. Notice that the last assertion is ‘dual’ to the fact that a long imagi-
nary root is always noncompact.

Suppose we are in the setting of the previous lemma, and that α is a simple short
real root in ∆+(γ) satisfying the parity condition. Type I and II, and the pseu-
docharacter inverse Cayley transform cα(γ) are defined in [Vgr, Definition 8.3.16].
With the notations there cα(γ) = {γα} in the type II case and cα(γ) = {γ+

α , γ
−
α } in

the type I case. Let us just notice here that these definitions extend easily in our
nonlinear setting because we require α to be simple in ∆+(γ).

Now consider the case of a nonintegral simple root. According to Lemma 3.9,
this case arises only when W (λa) (Wa. In this case, let α be the simple long root
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in ∆+(γ). By the Lemma 3.12, α satisfies the parity condition with respect to γ.
Let (Hα)R be the Cartan subgroup defined by the map cα of Definition 3.12, and
let us denote by α̃ the noncompact imaginary root tr(cα)−1(α) of hα in g. Since α
satisfies the parity condition, we can write

Γ(mα) = εεα exp
(
iπ2
〈α, γ〉
〈α, α〉

)
.

Notice that mα is well-defined only up to inverse, and so ε = ±1 will be replaced
by −ε for choices leading to m−1

α instead of mα. We now define γα = (Γα, γα) by

γα|h∩hα = γ|h∩hα ,

〈α̃, γα〉 = ε〈α, γ〉,
Γα|TRAαR∩HαR = Γ|TRAαR∩HαR ,

Γα(exp(irHα̃)) = e(m+d)ir,

where m = 2 〈α,γ〉〈α,α〉 and d is defined as in [Vgr, Definition 8.3.15]. We check as in
[Vgr, Lemma 8.3.16] that γα is well-defined. Notice that replacement of mα by
m−1
α would lead to the same pseudocharacter γ. (This is to be contrasted with the

setting of a type I real root in the linear case.) Thus we put cα(γ) = {γα}.
Let us write the Hecht-Schmid identities in this context.

Proposition 3.15 ([V1], Theorem 4.4). Let G̃R be a group in L(Mp), and H̃R
a θ-stable Cartan subgroup of GR. Let γ be a genuine λa-pseudocharacter for
H̃R. Suppose that there exist a simple long imaginary root, say α, in ∆+(γ). By
Lemma 3.9(b), α is necessarily unique; moreover, α is noncompact imaginary and
type I. Define cα, H̃α

R , γα as above. Write n = 2 〈α,γ〉〈α,α〉 . Then

[X(γ)] + sα · [X(sα × γ)] = X(γα);

here sα× γ is, by definition, the λa-pseudocharacter (Γ− (n+ 1)α, γ−nα), and we
are using the extended coherent continuation action of equation (3.1) and Proposi-
tion 3.10.

The pseudocharacter sα × γ in Proposition 3.15 above is an example of pseu-
docharacter obtained by cross action. In fact, the proposition defines the cross
action for a reflection in the simple long root when such a root exists. We can ap-
peal to [Vgr, Definition 8.3.1] for the cross action of reflections in the simple short
(i.e. integral) roots. Hence given an element w ∈ W (g, h) and a λa-pseudocharacter
γ for H̃R, we can consider w × γ which is a new λa-pseudocharacter. As usual, we
transport the action of W (g, h) to one of Wa.

Alternatively, to define the pseudocharacter w × γ (even for w ∈ Wa but not
W (λa)), we could simply have used [Vgr, Definition 8.3.1]. The final assertion of
Lemma 3.9 implies that the definition makes sense in the extended setting. The
reader may check that the definition in Proposition 3.15 agrees with that of [Vgr,
Definition 8.3.1].

Here is a collection of easy facts about the cross action that we will need below.

Lemma 3.16. Let s ∈ W (g, h) be a reflection with respect to a simple root α in
∆+(γ), and write s × γ = (s × Γ, s × γ). By definition we have s × γ = s · γ.
Furthermore, we have:
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(a) If α is long, then s× Γ(x) = −Γ(x); in particular, X(γ) and X(s × γ) have
different central character.

(b) If α is short, then s × Γ(x) = Γ(x). Moreover, X(γ) and X(s × γ) have the
same central character.

(c) Suppose α is not imaginary. Then s×γ = (Γ−nα, γ−nα), where n = 2 〈α,γ〉〈α,α〉 .
(d) If α is compact imaginary, then s× γ = (Γ− (n− 1)α, γ − nα).
(e) If α is noncompact imaginary, then s× γ = (Γ− (n+ 1)α, γ − nα).
(f) Finally, suppose α is long imaginary, and denote by α̃ its Cayley transform,

and s̃ the corresponding reflection. Then γα, s × γ, (s × γ)α, s̃ × γα are
defined, and s̃×γα = (s×γ)α. (See [Vgr, Lemma 8.3.7] for the corresponding
statement in case α is short.)

3.4. Nonintegral wall-crosses. For the record, we state a result of Vogan’s de-
scribing translation functors across a nonintegral wall.

Theorem 3.17 ([V1], Corollary 4.8 and Lemma 4.9). Let G̃R be a group in L(Mp)
and let γ be a genuine λa-pseudocharacter of G̃R. Suppose α is a long simple root
in ∆+(γ). Then, with the translation functor ψα chosen as in Convention 1.8 and
n = 2 〈α,γ〉〈α,α〉 ,

ψα(X(γ)) =


X(sα × γ) if α is complex,
X((sα × γ)α) if α is imaginary,
X((sα × γ)α) if α is real.

3.5. Reducibility of Standard Modules. Using [Vgr, Lemmas 8.6.1–3], we de-
duce from Theorem 1.11 the following necessary condition for the reducibility of a
standard module.

Proposition 3.18. Fix half-integral infinitesimal character λa. Let G̃R be in
L(Mp), H̃R a Cartan subgroup, and γ a genuine λa-pseudocharacter for H̃R. The
standard module X(γ) is reducible only if there exists a simple root α ∈ ∆+(γ) such
that

(a) θ(α) /∈ ∆+(γ);
(b) if α is real, then α satisfies the parity condition with respect to γ.

The point of this result is that it is stated only in terms of simple roots, and
this will be crucial in the proof of 1.14. We do not, however, give a necessary and
sufficient condition purely in terms of simple roots.

4. Mp(2,R)

The inductive proofs of our main results eventually rely on detailed information
about three dimensional groups. In the linear case, SL(2,R) and SL±(2,R) suffice.
In our setting we must also include Mp(2,R). The point of this section is to recall
the theory of Mp(2,R) at regular half-integral infinitesimal character.

So let G̃R = Mp(2,R) and let g denote its complexified Lie algebra sp(2,C).
Write T̃R = H̃0,1,0 (Notation 2.5) for the compact Cartan in G̃R and ÃR = H̃0,0,1

for the split one. They form a system of representatives of the two conjugacy
classes of Cartan subgroups in G̃R. The roots of t in g are {±α}, where α = 2e1.
Recall that we have fixed a Cayley transform c0,0,1 : t → a. We will denote by
α̂ the transport of α to a by c0,0,1. Thus ∆(a, g) = {±α̂}, and α̂ is real. We fix
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infinitesimal character λa = aα ∈ it∗R with a ∈ N+ 1
2 . Note that here the integral

Weyl group is trivial, while the complex Weyl group is S2.
The next results explicitly describe the parameterization of irreducible Harish-

Chandra modules with infinitesimal character λa.

Proposition 4.1. There are four K̃R-conjugacy classes of genuine λa-pseudochar-
acter in Mp(2,R). The following pseudocharacters form a system of representatives
of these classes.

(i) γ+
ds = (Γ+

ds, γ
+
ds) ∈ (T̃R)′λa ; here γ+

ds = aα and Γ+
ds is determined by the condi-

tion that dΓ+
ds = (a+ 1)e1.

(ii) γ−ds = (Γ−ds, γ
−
ds) ∈ (T̃R)′λa ; here γ−ds = −aα and Γ−ds is determined by the

condition dΓ−ds = −(a+ 1)e1.
(iii) γ+

ps = (Γ+
ps, γ

+
ps) ∈ (ÃR)′λa ; here γ+

ps = aα̂ and Γ+
ps is determined by requiring

dΓ+
ps = γ+

ps and Γ+
ps(x) = i2a.

(iv) γ−ps = (Γ−ps, γ
−
ps) ∈ (ÃR)′λa ; here γ−ps = aα̂ and Γ−ps is determined by requiring

dΓ−ps = γ−ps and Γ−ps(x) = i2a+2.
The first two pseudocharacters have length zero, while the latter two have length
one. Moreover, we have the following character formulas:

[X(γ+
ds)] = [X(γ+

ds)],

[X(γ+
ps)] = [X(γ+

ps)]− [X(γ+
ds)];

the analogous formulas hold for X(γ−ds), X(γ−ps), etc.

Note that there are two blocks of representations of Mp(2,R) and that this
partition is determined by the sign of the action of the element x. The reader may
now confirm Theorem 0.1 using the definitions

(γ±ds)
∨ = γ∓ps; (γ±ps)

∨ = γ∓ds;

εγγ′ =

{
+1 if γ = γ′,

−1 if γ 6= γ′.

One may note that, on the level of irreducible representations, the bijection de-
scribed above coincides with the nonintegral wall cross ψα (Theorem 3.17), but
this coincidence is a very special feature of the Mp(2,R) setting. In fact, according
to Lemma 6.23, we can compose the above bijection with ι̃ to obtain another choice
of the duality; namely,

(γ±ds)
∨ = γ±ps; (γ±ps)

∨ = γ±ds.

It is worth mentioning a few words about the geometric equivalent of Proposi-
tion 4.1. In this setting the complex flag variety is isomorphic to P1, K̃ acts through
K, and hence the description of K̃ orbits on X is the familiar one: there is a unique
open orbit, say Qps, which contains in its closure the two distinct points, say Q±ds,
which constitute the other two K̃ orbits. Recall our fixed dominant half-integral in-
finitesimal character λa, and write Dλa for the sheaf of G homogeneous λa-twisted
differential operators on X . (By abuse of notation, we also let Dλa denote the
K̃-homogeneous sheaf of operators on a K̃ orbit Q induced by the inclusion of the
orbit into X .) There is a unique irreducible K̃ homogeneous Dλa -connection on
each orbit Q±ds, and these correspond to the two discrete series representations in
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Proposition 4.1(i–ii). On the other hand, there are four irreducible K̃ homogeneous
Dλa-connections on Qps, but only two of these, sayL±ps, give rise to genuine rep-
resentations; these correspond to parts (iii) and (iv) of Proposition 4.1. The key
geometric feature here is that the connection L+

ps extends to Q+
ds but not to Q−ds

(and similarly for L−ps). This is to be contrasted with the case of SL(2,R) where
an irreducible K-homogeneous connection on the open orbit either extends to both
closed orbits, or to neither (but never to just one); see [LV, Lemma 3.5], for in-
stance. It is this difference which accounts for the variations on the linear theory
which we introduced in Section 3.3.

Let s be the reflection with respect to α. As examples of some of the general defi-
nitions of Section 3.3, we have the following relations between the four (equivalence
classes of) pseudocharacters.

γ+
ds = (γ+

ps)α; γ+
ds = s× γ−ds;

γ+
ps = (γ+

ds)
α; γ+

ps = s× γ−ps.

Similar equations are obtained by reversing the signs + and −.
Next we include some cohomology computations. There are two K̃ conjugacy

classes of proper θ-stable parabolics in g. As representatives, we can take q = t⊕ u

and q̄ = t ⊕ ū, with u = gα. Since all of the modules X(γ) in this section are all
essentially irreducible Verma modules for sl(2,C), the next result is very easy.

Proposition 4.2. Retain the notations outlined above. We have

H i(u, X(γ+
ps)) =

{
Γ+

ds ⊗ e−α i = 0,
0 i 6= 0;

Hi(ū, X(γ+
ps)) =

{
0 i 6= 1,
Γ+

ds i = 1.

We leave it to the reader to formulate the analogous statements for X(γ−ps). At
any rate, we have now given enough details so that the reader can easily check the
validity of Theorem 1.14 for Mp(2,R).

5. Proof of theorem 1.14

Recall that G̃R is a group in L(Mp), and that we have fixed a half-integral
infinitesimal character λa. The proof is similar to the one of Proposition 7.2 in
[V2]. It proceeds by induction on the dimension of g, for G̃R in L(Mp), and then
by induction on pseudocharacter length. The induction step in the proof differs
from the one in [V2] because the root α that reduces the length of a nonminimal
pseudocharacter need not be integral. In that case, the induction makes use of
nonintegral wall-crossing translation functors. The key point that we have to check
is these functors preserve (in a suitable sense) the parity conditions in the statement
of the theorem. In contrast, when α is in fact integral, replacing lI by l doesn’t
affect the arguments in [V2] for purely formal reasons (which we sketch below).

We begin by establishing the theorem in the case that dim g is minimal. This is
straightforward.

Lemma 5.1. Suppose g is of the form

g = t⊕ gα ⊕ g−α,

where α is a root in ∆(sp(2n,C), t). If G̃R is linear, then the length function l
coincides with the integral length lI, and Theorem 1.14 is a special case of [V2,
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Proposition 7.2]. If G̃R is not linear, then α is necessarily long, G̃R ' Mp(2,R),
and Theorem 1.14 follows from the considerations of Section 4.

Let us now go back to the induction steps of the proof. The notations are as in
the statement of the theorem. Consider first (a). If X(γ1) is a standard irreducible,
(a) is a consequence of Theorem 6.13 in [V2]. So suppose X(γ1) is not a standard
irreducible. Then by Proposition 3.18, we can find a simple root α ∈ ∆+(γ1) such
that θ(α) /∈ ∆+(γ1) and if α is real, then α satisfies the parity condition. Let α2

be the root in ∆+(γ2) corresponding to α under the isomorphism iγ1,γ2 .

If α is not integral, by [V2, Proposition 4.4], X
L

(γ2
q) is a composition factor of

H i(u, X(γ1)) if and only if ψl
α(X

L
(γ2

q)) is a composition factor of Hi(u, ψα(X(γ1))).
Let

n = 2
〈α, γ1〉
〈α, α〉 .

Then nα is an extremal weight for some finite dimensional representation of g. By
Theorem 3.17, we have

ψα(X(γ1)) =

{
X((sα × γ)α) if α is real satisfying the parity condition,
X(sα × γ) if α is complex with θ(α) /∈ ∆+(γ).

(5.1)

Let us denote by γ′ the pseudocharacter appearing in the right-hand side of these
equalities, so that l(γ′) = l(γ1)− 1.

Case 1: α2 is complex. Then, by (5.1),

ψl
α(X

L
(γ2

q)) = X
L

(γ2
q − nα2).

Furthermore, γ2 − nα2 is a pseudocharacter in (Ĥ2)′ and (γ2 − nα2)q = γ2
q − nα2.

The inductive hypothesis applied to X(γ′) gives

(l(γ′)− l(γ2 − nα2))− (lq(γ2 − nα2)− i) = 0 mod 2.

Since l(γ2 − nα2) = l(γ2)± 1, and lq(γ2 − nα2) = lq(γ2), we obtain (a).
Case 2: α2 is real, satisfying the parity condition in ∆(l, h2) or non-compact

imaginary in ∆(l, h2). To fix the notations, assume, that α2 is noncompact imagi-
nary, the other case being entirely similar. Then

ψl
α(X

L
(γ2

q)) = X
L

((γ2
q − nα2)α

2
).

Furthermore, (γ2−nα2)α
2

is a pseudocharacter in ((Ĥ2)α
2
)′ and ((γ2−nα2)α

2
)q =

(γ2
q − nα2)α

2
. Since l((γ2 − nα2)α

2
) = l(γ2) + 1, and lq(γ2 − nα2) = lq(γ2), we get

(a) from the inductive hypothesis. To prove the last equality, we use Lemma 9.5.10
of [Vgr], with lI replaced by l (the proof given there applies).

Case 3: α2 is non-compact imaginary not in ∆(l, h2). Then

ψl
α(X

L
(γ2

q)) = X
L

(γ2
q − nα2).

In that case γ2−nα2 = (Γ2−nα2, γ2−nα) is not a pseudocharacter of (Ĥ2)′, but
γ′′ = s× γ = (Γ2 − (n+ 1)α2, γ2 − nα) is, and γ′′q = γ2

q − nα2. Since l(γ′′) = l(γ2)
and lq(γ′′) = lq(γ2)± 1, we get (a) from the inductive hypothesis.

Notice α2 cannot be real not satisfying the parity condition because of Lemma
3.13. Similarly, α2 cannot be real not in ∆(l, h2) because q is θ-stable.
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Suppose now that α is integral. As mentioned above, the proof in [V2] implies
that (a) holds for γ1 and γ2. Similarly, since parts (b)–(e) of Theorem 1.14 are
statements that involve only integral roots, their proofs also follow from arguments
of [V2]. �

Let us say a few words about the algorithm computing composition series. It is
essentially the same as in [Vgr, Chapter 9] with the following small adjustments.
First of all, in step (c), Theorem 3.18 implies that we we may assume that α is
actually simple in ∆+(γ). The proof of (c) given in [V2, Theorem 7.3] is then still
valid in our context.

Now consider step (a); i.e. suppose we want to compute composition series of
X(γ), γ not minimal. Then there exists a simple root α ∈ ∆+(γ) with α either real
satisfying the parity condition, or complex such that θ(α) /∈ ∆+(γ). If α is integral,
we follow [Vgr], except that we replace the integral length lI by l everywhere. Now,
if α is nonintegral and complex, there are no significant changes in the algorithm. So
let us consider the case where α is real and nonintegral. We write the Hecht-Schmid
character identities of Proposition 3.15 as

[X(γα)] + sα · [X(sα̃ × γα)] = [X(γ)],(5.2)

with α̃ = cα · α. Since l(γα) = l(sα̃ × γα) = l(γ) − 1, we know the composition
series of these two standard modules. We deduce from (5.2) the composition series
of X(γ), using [Vgr, Lemma 7.3.20].

Finally, consider step (b). When α is integral, the arguments in [Vgr] remain
unchanged. When α is nonintegral, we use Theorem 1.7, and [V2, Proposition 4.4]
to compute the cohomology of X(γ).

6. Representation theory of Mp(2n,R)

In this section we explicitly parameterize the irreducible admissible genuine rep-
resentations of the metaplectic group whose infinitesimal character is regular and
half-integral. The parameterization is in terms of certain combinatorially defined
objects called diagrams, which are simply a convenient way to organize the data
of a pseudocharacter. In terms of this parameterization, we work out the general
theory of Section 3 explicitly (see Lemmas 6.17 and 6.29, for example) and state a
sharper version of Theorem 0.1 in Theorem 6.34.

To get started, we need to define the combinatorial sets that will parameterize
pseudocharacters for Mp(2n,R).

6.1. Metaplectic diagrams: definitions and examples. Let

Σ(n) = {σ ∈ Sn | σ2 = 1}
denote the set of involutions in the symmetric group Sn. Let Σ±(n) = Σ(n) ×
(Z/2Z)n, which we will view primarily as a set and not a group. Define D0(2n) to
be the subset consisting of those pairs (σ, (εi)) ∈ Σ±(2n) subject to the restrictions

1. (Symmetry of signs) ε2n+1−j = −εj;
2. (Symmetry of involution) σ(2n+ 1− j) = 2n+ 1− σ(j); and
3. (Orientations of non-fixed points) If σ(j) 6= j, then εjεσ(j) = −1.

A coordinate-free version of the first two conditions reads: (1′) εwoj = −εj; and
(2′) woσwo = σ, where wo denotes the long element in S2n.
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We find it convenient to think of the elements in D0(2n) pictorially, i.e. as
some kind of diagrams. For instance, if σ = (1 11)(2 12)(34)(58)(9 10) and ε =
(−,−,+,−,−,+,−,+,+,−,+,+). we think of (σ, ε) as

Here an arrow (or orientation) between j and σ(j) points to the index k such that
εk = +; i.e. our arrows start at a − and end at a +.

For reasons that will be clear in Section 6.2 below, we want to forget about certain
orientations of elements in D0(2n). This amounts to making some identifications
among the elements in D0(2n). At first we want to forget only about the arrows
between pairs j and σ(j) where σ(j) 6= 2n+1−j; for instance, we want to identify
the following two elements in D0(4):

So we introduce an equivalence relation on D0(2n) generated by (σ, ε) ∼ (σ, ε′) if

εj = ε′j, for all j such that σ(j) ∈ {j, 2n+ 1− j}.

We define the set of metaplectic diagrams (or just diagrams) to be the equivalence
classes of this equivalence relation, and denote this set by D(2n). Pictorially, for
instance, we will denote the equivalence class consisting of the above two elements
of D0(4) as

It will be convenient to forget about all the orientations of an element in D(2n),
so we define a further equivalence on representatives (σ, ε) ∈ D(2n) generated by
(σ, ε) ∼′ (σ, ε′) if

εj = ε′j , for all j such that j = σ(j).

Because of Lemma 6.5 below, we call the equivalence classes of this relation the
orbit diagrams for Mp(2n,R) (or Sp(2n,R)). We denote this set by OD(2n), and
write orb for the projection D(2n) −→ OD(2n), and call orb(γ) the underlying
orbit of γ. Note that the data of an element is OD(2n) is simply an involution
(subject to the symmetry condition (2) above) together with a choice of signs for
its fixed points (subject to the symmetry condition (1) above). This is consistent
with the canonical orbit diagram introduced in Section 2.6. Pictorially, for instance,
the image of the above element of D(12) under orb will be drawn as

Associated to each γ ∈ D(2n), represented by a pair (σ, ε) say, we can associate
three numbers m(γ), r(γ), and s(γ) which depend only on σ (and hence only on
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orb(γ) ∈ OD(2n)). We define

m(γ) =
1
4

#{j | σ(j) /∈ {j, 2n+1−j} },

r(γ) =
1
2

#{j | σ(j) = 2n+1−j},

s(γ) =
1
2

#{j | σ(j) = j}.

Because of conditions (1) and (2) in the definition of D0(2n), we have that 2m(γ)+
r(γ) + s(γ) = n. We say that γ ∈ D(2n) is of type (m, r, s) if m = m(γ), r = r(γ),
and s = s(γ), and denote the set of all type (m, r, s) diagrams (or orbit diagrams)
as D(2n)m,r,s (or OD(2n)m,r,s). For example, the diagrams listed above are in
D(4)1,0,0 and D(12)2,1,1.

In the next section, we will think of the elements of D(2n)m,r,s parameterizing
pseudocharacters for H̃m,r,s

R , and we will need to define an action of WC ⊂ S2n on
them. This is the reason for the next definition.

Definition 6.1. Recall the identification of WC as a subgroup of S2n (Lemma 2.3).
We define an action (denoted by ×) of WC on S2n × (Z/2)n via

w × (σ, ε) = (wσ, ε′), with ε′w(j) = εj.

Clearly this descends to D(2n) and OD(2n).

This will turn out to be the cross action on pseudocharacters; see Section 6.6
below.

6.2. Diagrams and pseudocharacters. Fix λa ∈ (ha)∗ and suppose λa is half-
integral, dominant, and regular (see Remark 3.8). We are in a position to de-
scribe a bijection between D(2n) and conjugacy classes of λa-pseudocharacters for
Mp(2n,R). In particular, we will associate to each δ ∈ D(2n)m,r,s a K̃R conjugacy
class of pseudocharacters γ = (Γ, γ̄) (with notation as in Section 1.2). (In fact,
we will think of the Cartan subgroup for γ as being fixed, so that K̃R conjugacy
reduces to Wm,r,s conjugacy.) The basic idea is that the data of orb(δ) determines
γ̄ and dΓ, while the extra data of the orientations of the arrows of δ nails down Γ
globally. (As is explained in Section 6.3, this is equivalent to the fact that orb(δ)
specifies a K̃ orbit on the flag variety while the data of the orientations of δ specify
a local system.)

Recall our realization of the complex Weyl group WC and the real Weyl groups
Wm,r,s
R inside S2n (Section 2.6), and the the canonical orbit diagram om,r,s intro-

duced in Section 2.6.

Lemma 6.2. The action of WC on OD(2n)m,r,s (Definition 6.1) is transitive.
Hence we obtain a bijection

WC/W
m,r,s
R −→ OD(2n)m,r,s

wWm,r,s
R −→ w × om,r,s.

Proof. The transitivity is clear from the definitions. The final assertion follows
from Lemma 2.3.
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Recall that we are trying to build a Wm,r,s conjugacy class of λa-pseudochar-
acters, say Wm,r,s · γ, from the data of δ ∈ D(2n). Given δ ∈ D(2n)m,r,s, the
lemma says that we can find a w ∈WC (defined only up to Wm,r,s

R ) so that

orb(δ) = w × om,r,s.
The pair (H̃m,r,s

R , wλ) is thus well-defined up to Wm,r,s conjugacy. We define
the second component of the pseudocharacter to be γ̄ = wλ, and it remains only
to define Γ on H̃m,r,s

R = Fm,r,s × expMph
m,r,s
R . The compatibility condition (1.1)

specifies the differential dΓ and hence we need only specify the value of Γ on Fm,r,s.
Thus far we have only utilized the data of orb(δ), but now the extra data of the
orientations of δ must come into play.

First consider the case where m 6= 0 but s = 0. (Actually there are no orienta-
tions involved in this case.) Here Fm,r,s is generated by z, and we define Γ(z) = −1,
as we must in order to obtain a genuine pseudocharacter.

Next assume either (m, s) 6= (0, 0) or m = 0. In the latter case, if s = 0, then
H̃m,r,s
R = T̃R is connected and Γ is specified already by its differential; hence,

in either case, we may assume s is nonzero. Recall the elements mn+1−j =
expMp(iπHn+1−j), 1 ≤ j ≤ s, which generate Fm,r,s (see Section 2.5). Write
(σ, ε) for a representative of δ ∈ D(2n)m,r,s, and enumerate the s element set

{j | 1 ≤ j ≤ n such that σ(j) = 2n+1−j}
as {ks < ks−1 < · · · < k1}. We define

Γ(mn−j+1) := εkj exp(dΓ(iπHn−j+1));(6.1)

here we use our Cayley transforms cm,r,s to make sense of evaluating dΓ ∈ (hm,r,s)∗

on Hj ∈ itR. The above equation defines Γ. Observe that for λa regular and
half-integral Γ(z) = −1, so the pseudocharacter constructed here is genuine.

At last we can state the result for which we have been aiming. Once we unwind
the definitions, its proof is essentially obvious.

Proposition 6.3. Fix a regular half-integral infinitesimal character λa. The above
description implements a bijection between D(2n)m,r,s and Wm,r,s conjugacy classes
of genuine λa-pseudocharacters for H̃m,r,s

R .

Notation 6.4. Given δ ∈ D(2n) and half-integral infinitesimal character λa, we
write Xλa(δ) and Xλa(δ) for the standard and irreducible genuine Harish-Chandra
modules of infinitesimal character λa attached to the λa-pseudocharacter corre-
sponding (via Proposition 6.3) to δ. If it is clear from the context, we may omit
the subscript λa from the notation.

6.3. Diagrams and Beilinson-Bernstein parameters. In this section, we give
an equivalent interpretation of the parameter set D(2n). In a little more detail,
let Dλa denote the sheaf of G homogeneous λa twisted differential operators on
the complex flag variety X . (We give X the complex structure specified by G/B,
where B is constructed from the negative roots.) As in Section 4, we also let
Dλa denote the corresponding sheaf on any K̃ orbit on X . Given δ ∈ D(2n),
we first describe a K̃ orbit Qδ on X (Lemma 6.5), and then an irreducible K̃
homogeneousDλa-connection on Qδ denoted Lδ. It turns out (Proposition 6.8) that
the correspondence δ 7→ Lδ is a bijection and that the Harish-Chandra module X(δ)
(Notation 6.4) is isomorphic to the one attached to Lδ by the Beilinson-Bernstein
theory.
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The next lemma explains the terminology ‘orbit diagrams’ that we introduced
in the preceding section.

Lemma 6.5. The set of K̃ orbits on the complex flag variety X is parameterized
by the set OD(2n).

Proof. The K̃ action on X factors though K, so the K orbits on X coincide with
the K̃ orbits. The result for K orbits can be found in [MaO]; see also [Ya, Corol-
lary 3.2.6]. (In the latter paper, the set OD(2n) is denoted C(Sp(2n,R)).) For
completeness, we describe the orbit Q = K̃ · b parameterized by δ′ ∈ OD(2n)m,r,s.
Lemma 6.2 attaches a coset wWm,r,s to δ′, and then we define

=
¯
hm,r,s ⊕

∑
α∈w∆m,r,s

+

g−α.

Notation 6.6. Given δ ∈ D(2n), let Qδ denote the orbit parameterized by orb(δ) in
Lemma 6.5.

For future reference, we include a dimension computation. (For explicit exam-
ples, see Proposition 4.1 or Example 6.22 below.)

Lemma 6.7. Fix half-integral infinitesimal character λa. Consider δ ∈ D(2n) be
represented by (σ, ε), and let γ denote the corresponding λa-pseudocharacter (Propo-
sition 6.3). Recall the pseudocharacter length l(γ) of Definition 1.1. Then (in
Notation 6.6)

dim(Qδ) = l(γ) +
1
2
n(n− 1),

and

2l(γ) =
∑

j : j<σ(j)

(σ(j) − j −#{k | k < j < σ(k) < σ(j)})

+ #{j | j ≤ n < σ(j) ≤ 2n+1−j}.

Proof. The first assertion can be found in the proof of Lemma 4.5 in [V3]. The
second follows from the definition and Lemma 6.14 below; see also [Ya, Proposition
3.4.2].

For a fixed δ ∈ D(2n)m,r,s, we now describe an irreducible K̃ homogeneous
Dλa-connection on Qδ. Let bδ ∈ Qδ denote the Borel subalgebra defined in the
proof of Lemma 6.5, and write Bδ for the corresponding subgroup of G. Recall
that Hm,r,s ⊂ Bδ. For simplicity of notation, temporarily write HR for Hm,r,s

R ,
and H̃R for its preimage under pr. Next recall that we can build an irreducible K̃
homogeneous connection on Qδ from a character, say Λ, of T̃R = H̃R∩K̃. Explicitly,
the complexification and subsequent restriction of Λ to Z

K̃
(bδ) = pr−1(K ∩ Bδ)

define a K̃-equivariant line bundle K̃ ×Z
K̃

(bδ) CΛ, and the sheaf of differential
operators of this bundle is a connection supported on Qδ = K̃/Z

K̃
(bδ). Finally,

recall the the character Γδ of H̃R constructed just before Proposition 6.3. The basic
idea is to build the connection we are seeking from the restriction of Γ to T̃R, but
there are some delicate ρ-shifts involved which we now recall.
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Set ∆+
δ = w∆m,r,s as in the proof of Lemma 6.5, and recall from [V3, Lemma 2.6]

that there exists a character Φδ of T̃R (which is trivial on Fm,r,s) with differential

dΦδ = [ρ(∆+
δ ) + ρimag(∆+

δ )− 2ρcpt, imag(∆+
δ )]|tR .

Then we define a character Λδ = Γδ ⊗ Φ−1
δ on T̃R; note that by construction,

dΛδ + ρ(∆+
δ ) = wλa. Write Lδ for the corresponding irreducible K̃ homogeneous

Dλa-connection on Qδ. (Note that in the definition of Lδ, we made a choice of the
representative of the coset wWm,r,s; in fact, Lδ is independent of this choice.)

Once we unwind the definitions, it is fairly easy to see that the map δ 7→ Lδ
is bijective. The Beilinson-Bernstein theory describes how to pass from Lδ to an
irreducible Harish-Chandra module for Mp(2n,R) with infinitesimal character λa.
We write Lλa(δ) for this representation. (Keep in mind that we choose to localize at
the dominant weight λa, but with respect to the opposite complex structure on X ,
so Lλa(δ) appears as sections of the appropriate Dλa module.) The main point is
that we have arranged the bijection δ 7→ Lδ to be compatible with Proposition 6.3,
at least for a fixed infinitesimal character.

Proposition 6.8. Fix half-integral infinitesimal character

λa = (
2n− 1

2
,

2n− 3
2

, . . . ,
1
2

) ∈ (ha)∗.

Then (in the notation described just before the proposition and Notation 6.4),

Xλa(δ) = Lλa(δ).

To get a statement at arbitrary half-integral infinitesimal character, one must
make a further twist of Φδ along the lines of [V3, Proposition 2.7a]. Since we do
not need it here, we leave such a formulation to the reader.

6.4. Central character. Using the parameterization of Proposition 6.3, we can
now explicitly compute representation theoretic information on the level of dia-
grams. We will need this information in various guises; for orientation, here is one
of the results for which we are aiming.

Proposition 6.9. Fix regular half-integral infinitesimal character λa. There are
two blocks of genuine representations of G̃R of infinitesimal character λa and they
are characterized by the central action of x (defined in Section 2.4): on one block
x acts by a nonzero scalar C, and on the other block it acts by −C. Moreover,
each block is an equivalence class of the equivalence relation generated by the cross
action (in the integral Weyl group) and Cayley transforms.

The proposition is proved in Section 6.6 below.
It is clearly desirable to read off the action of x on Xλa(δ) (Notation 6.4) directly

from the diagram δ. This is the content of the next proposition in certain special
cases. First we isolate a trivial lemma.

Lemma 6.10. Recall the elements Hj of Section 2.3. As usual let ρ denote the
half-sum of the positive roots ∆+

a and view ρ as an element of (itR)∗. Then

exp(iπ
∑
j

ρ(Hj)) = (−1)N ,

where N denotes the smallest integer greater than or equal to n/2.
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Proposition 6.11. Fix regular dominant half-integral infinitesimal character λa =∑n
j=1 λjej with λi > · · · > λn, let c denote the constant exp(iπ

∑
j λj), and let N

denote the smallest integer greater than or equal to n/2.
(a) Let δ ∈ D(2n)0,n,0 be represented by the pair (e, ε), and let

m = #{j | 1 ≤ j ≤ n and εj = −}.
Then the central element x (Section 2.4) acts on the discrete series represen-
tation Xλa(δ) (Notation 6.4) by the scalar (−1)m+Nc.

(b) Let δ ∈ D(2n)0,0,n be represented by the pair (wo, ε) (where wo is the long
element in S2n), and define p as in (a). Then x acts on the principal series
representation Xλa(δ) (Notation 6.4) by (−1)mc.

(c) Suppose n = 2m and let δ ∈ D(2n)m,0,0 be represented by (σ, δ). (This m has
nothing to do with the one defined in part (a).) Write

M = #{j | 1 ≤ j ≤ n, and σ(j) > 2n+1−j}.
Then x acts on Xλa(δ) by the scalar (−1)Mc.

Proof. In each case, write γ = (Γ, γ) for the pseudocharacter corresponding to δ

by Proposition 6.3. Consider first (a). Recall that the character Γ of T̃R is the
highest weight of a lowest K̃ type of X(γ). Hence we need only compute Γ(x). By
definition, x = expMp(iπ

∑
j Hj), and since T̃R is connected, we conclude

Γ(x) = exp

iπ∑
j

dΓ(Hj)


= exp

iπ∑
j

(γ + ρ− 2ρc)(Hj)

 ,

here the second equality follows from the compatibility condition 1.1 on dΓ. Since,∑
j ρc(H2ej ) = 0, Lemma 6.10 implies that the sums appearing in the above equa-

tion reduce to

(−1)N exp

iπ n∑
j=1

εjλj

 .

A little easy manipulation leads to the formula in the lemma.
Next consider (b). Since x is central, it follows from the definition of the induced

action that x acts on Xλa(δ) by Γ(x). Equation 6.1 gives

Γ(mj) = −εj exp(iπλj).

Since x =
∏
jmj , part (b) now follows.

Part (c) follows in exactly the same way, and so we omit the details.

Remark 6.12. Combining the above proposition with Theorem 1.3, it is not difficult
to compute the scalar by which x acts on Xλa(δ) for arbitrary δ. The precise
statement is quite cumbersome, so we do not include it here.

Example 6.13. For instance, consider Mp(4,R) and consider infinitesimal char-
acter (3

2 ,
1
2 ). The element x acts by −1 on the on the two discrete and principal

series representations parameterized by + + −− and , and by +1 on those
parameterized by +−+− and in D(4).
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6.5. Cayley transforms. In this section, we compute Cayley transforms on the
level of diagram. To get started, we need the following classification of roots on
the level of diagrams. The reader is invited to consult the example following the
lemma.

Lemma 6.14. Fix δ ∈ D(2n)m,r,s, let (σ, ε) be a representative for δ, and let w be
any element in the coset of Wm,r,s specified by Lemma 6.2. Consider a simple root
α′ ∈ ∆+

a . For definiteness, define an index j according to whether α′ = ej − ej+1

or α′ = e2j (so in the latter case j necessarily equals n). Then for the root α :=
w · (ctrm,r,s)−1(α′) (which is simple for w ·∆m,r,s

+ ) we have the following conclusions:
(a) α is compact imaginary if and only if α is short, σ(j) = j, σ(j+1) = j+1,

and εj = εj+1;
(b) α is type I noncompact imaginary if and only if one of the following cases

holds:
(i) α is short, σ(j) = j, σ(j+1) = j+1, and εj 6= εj+1,
(ii) α is long and σ(n) = n (and so εn 6= εn+1 and σ(n+ 1) = n+ 1);

(c) α is type II noncompact imaginary if and only if α is short and σ(j) =
(2n+1−j)−1 (and hence σ(j+1) = (2n+1−(j+1))+1);

(d) α is type I real if and only if one of the following cases holds:
(i) α is short, and σ(j) = j + 1, or
(ii) α is long, and σ(n) = n+ 1;

(e) α is type II real if and only if α is short, σ(j) = (2n+1− j), σ(j+1) =
(2n+1−(j+1)), and εj = −εj+1;

(f) α is complex in the remaining cases, which we can enumerate as follows:
(i) α is short and {σ(j), σ(j + 1)} 6= {j, j + 1} and {σ(j), σ(j + 1)} 6=
{2n+ 1− j, 2n+ 1− (j + 1)}. In this case θ(α) > 0 if and only if
(A) σ(j) ≤ n and σ(j + 1) > σ(j), or
(B) σ(j) > n and σ(j + 1) < 2n+ 1− σ(j);

(ii) α is long and {σ(n), σ(n+ 1)} 6= {n, n+ 1}. In this case θ(α) > 0 if and
only if σ(n) < n (and so σ(n+ 1) > n+ 1).

Proof. This follows directly from the definitions and Equations (2.1) and (2.2) in
Section 2.3.

Example 6.15. We give examples of the cases arising in the lemma.
(a) Let α′ = e1 − e2, and consider the diagram δ = + + −− ∈ D(4). Construct

α as in Lemma 6.14. Then α is compact imaginary for w · ∆0,2,0
+ . (In the

following statements, we will use the abbreviated terminology “e1 − e2 is
compact imaginary for δ”.)

(b) We have the following examples of type I noncompact imaginary roots:
(i) e1 − e2 (short) type I noncompact imaginary for +−+− ∈ D(4).
(ii) 2e1 is (long) type I noncompact imaginary for +− ∈ D(2).

(c) e1 − e2 is type II noncompact imaginary for .
(d) We have the following examples of type I real roots:

(i) e1 − e2 is (short) type I real for .
(ii) 2e2 is (long) type I real for .

(e) e1 − e2 is type II real for .
(f) (i) The following roots are short and complex:

(A) e1 − e2 is complex for ; after applying θ, the root is positive.
(B) e1 − e2 is complex for ; after applying θ, the root is negative.

(ii) 2e2 is long, complex, and after applying θ negative for .
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Next we describe the operations of Cayley transforms and inverse Cayley trans-
forms on the level of diagrams.

Definition 6.16. Suppose δ ∈ D(2n)m,r,s and let (σ, ε) be a representative of δ.
Suppose α is noncompact imaginary and simple for δ. If α is type I, we are going
to define a new element δα ∈ D(2n)m,r−1,s+1; and if α is type II, we will define
two elements δα± ∈ D(2n)m,r−1,s+1. These will be called the Cayley transform of
δ through α. In each case (σα, εα) (or (σα±, εα±)) will denote a representative of the
corresponding diagram. We proceed case by case.

(a) α = ej − ej+1 (short) type I. We define

σα(k) = k for k /∈ {j, j + 1, 2n+ 1− j, 2n+ 1− (j + 1)},
σα(j) = j + 1, σα(j + 1) = j,

σα(2n+ 1− j) = 2n+ 1− (j + 1), σα(2n+ 1− (j + 1)) = 2n+ 1− j, and
εα = ε.

For example, in Mp(4,R) consider the diagram represented by (σ, ε) with σ
trivial and ε = (+,−,+,−). Pictorially, we can write δ = + − +−, and we
have

(+−+−)e1−e2 = .

(b) α = 2en (long) type I. We define

σα(k) = σ(k) for k /∈ {n, n+ 1},
σα(n) = n+ 1, σα(n+ 1) = n,

εαj = εj for j /∈ {n, n+ 1}, and

(εαn, ε
α
n+1) = (+,−) if (εn, εn+1) = (−,+) and #{k | σ(k) = k} = 0 (mod 4); or

if (εn, εn+1) = (+,−) and #{k | σ(k) = k} = 2 (mod 4);

and

(εαn, ε
α
n+1) = (−,+) if (εn, εn+1) = (+,−) and #{k | σ(k) = k} = 0 (mod 4); or

if (εn, εn+1) = (−,+) and #{k | σ(k) = k} = 2 (mod 4).

(The above parity considerations are manifestations of those discussed in Sec-
tion 3.3 when Cayley transforms for long roots were defined.) For example,
in Mp(2,R), we have

(+−)2e1 = ,

while in Mp(4,R) we have

(+ +−−)2e2 = .

(Recall that our arrows begin at minus signs and end at plus signs.)
(c) α = ej − ej+1 type II. We define

σα±(k) = k and (εα±)k = εk for k /∈ {j, j + 1, 2n+ 1− j, 2n+ 1− j − 1};
σα±(j) = 2n+ 1− j, σα±(j + 1) = 2n+ 1− (j + 1),

σα±(2n+ 1− j) = j, σα±(2n+ 1− (j + 1)) = j + 1.
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Finally, we define

((εα+)j , (εα+)2n+1−j) = (+,−); and ((εα−)j , (εα−)2n+1−j) = (−,+);

((εα+)j+1, (εα+)2n+1−(j+1)) = (−,+); and ((εα−)j+1, (εα−)2n+1−(j+1)) = (+,−).

For example, in Mp(4,R), we have( )e1−e2
+

=

and ( )e1−e2
−

= .

The point of the definition is that, under the correspondence of Proposition 6.3,
we have really defined the representation theoretic Cayley transforms of Section 3.3
(at least for a fixed infinitesimal character).

Lemma 6.17. Fix infinitesimal character λa = (2n−1
2 , . . . , 1

2 ). Consider δ∈D(2n),
suppose α is a noncompact imaginary root for δ, and write δα for the Cayley trans-
form of the diagram δ defined above. Write γ for the λa-pseudocharacter parame-
terized by δ (Proposition 6.3), and γ′ for the one parameterized by δα. Write γα

for the pseudocharacter Cayley transform of Section 3.3. Then γ′ = γα.

Proof. This is an exercise in tracking down the definitions. We omit the details.

Remark 6.18. From the discussion in Section 3.3, we know that X(γ) and X(γα)
have the same central character. Using Proposition 6.11 and Definition 6.16, one
can verify this directly. (The verification involves some rather delicate parity ma-
nipulations.)

Remark 6.19. By inverting Definition 6.16, one can define inverse Cayley trans-
forms on the level of diagrams. As mentioned in Section 3.3, it is important to note
that the inverse Cayley transform through a long type I real root (satisfying the
parity condition) is single valued, unlike the linear type I case.

6.6. The cross action. In this section, we begin by observing that the action of
Wa on D(2n) coincides with the cross action of Section 3.3. More precisely, we
have

Lemma 6.20. Fix infinitesimal character λa = (2n−1
2 , . . . , 1

2 ). Consider δ∈D(2n),
w ∈ Wa, and write γ and γ′ for the λa-pseudocharacters corresponding to δ and
w × δ via Proposition 6.3. Write w × γ for the pseudocharacter cross action of
Section 3.3. Then γ′ = w × γ.

Remark 6.21. Using Proposition 6.11, one can explicitly check that the cross action
in the integral Weyl group preserves the central action of the element x, and that
the cross action in the long simple root e2n always negates the scalar by which x
acts. See Lemma 3.16.

Example 6.22. In Figure 1, we enumerate the set D(4). By Proposition 6.3 and
the Langlands classification (Theorem 1.3), D(4) parameterizes the set of irre-
ducible genuine representations of Mp(4,R) with fixed regular half-integral infini-
tesimal character. Here we fix infinitesimal character (3

2 ,
1
2 ), and will thus think of

the vertices of the graph in Figure 1 as genuine irreducible representations with
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Figure 1. The set of Langlands parameters for Mp(4,R) at reg-
ular half-integral infinitesimal character.

this infinitesimal character. We have arranged the length zero representations
on the bottom line—these are the discrete series, with the holomorphic and anti-
holomorphic ones in the bottom left and right corners. Representations in the first
row have length one, those in the second have length two, and so on. Dotted lines
indicate cross action in simple roots in the integral Weyl group which are simple
for Wa (i.e. through se1−e2 here), while solid lines indicate Cayley transforms.

Note that there are two connected components of the graph. From Proposi-
tion 6.11 (see Example 6.13), we see that the discrete series in each component
have opposite central character with respect to x. Since Cayley transforms and the
cross action of the integral Weyl group preserve central character (see Remarks 6.18
and 6.21), we conclude that the representations in each connected component have
opposite central character with respect to x. Hence a single block of representations
in Mp(4,R) cannot intersect both connected components nontrivially. On the other
hand, two representations that are related by the cross action (in the integral Weyl
group) and Cayley transforms lie in the same block; see the references in the proof
of Proposition 6.9 below. Hence, if the intersection of a block with a connected
component is nontrivial, it must be the entire connected component. We conclude
that each connected component of the graph is a block of representations. This is
consistent with Proposition 6.9.

Proof of Proposition 6.9. The translation principle reduces the proposition to the
case of λa = (2n−1

2 , . . . , 1
2 ). In fact, the arguments of the preceding example are

enough to handle this case. It is not difficult to see that one can always perform a
sequence of Cayley transforms, inverse Cayley transforms, and integral Weyl group
cross actions to arrive at a discrete series. The arguments of [Vgr, Corollary 8.2.9]
apply to our setting to show that this sequence of operations preserves blocks.
According to Proposition 6.11 and the arguments of the Mp(4,R) example above,
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we need only show that we can move (via a sequence of Cayley transforms and
cross actions) between any two given two discrete series representations with the
same central character. This amounts to showing that via such a sequence, we
can replace the first n signs of a diagram in D(2n)0,n,0 by any other sequence of n
signs, so long as the parity of the number of pluses is preserved. In turn we need
only show how to exchange two adjacent inequivalent signs, and how to replace
two adjacent identical signs by their negatives. We saw explicitly how to do this
in Mp(4,R) above, and the general case amounts to embedding this argument in
Mp(2n,R). The (easy) details are left to the reader.

For future reference, we now return to the outer automorphism ι̃ of Section 2.7.
In the following lemma, we also let ι̃ denote the corresponding action on pseu-
docharacters.

Lemma 6.23. On the level of pseudocharacters we have

ι̃(γ) = wo × γ;

here wo is the long element in S2n. Moreover,
(a) if n is even, x acts by the same scalar on X(γ) and X(ι̃(γ));
(b) if n is odd and x acts by the scalar c on X(γ), then x acts by the scalar −c

on X(ι̃(γ)).

Proof. The first statement is very easy. The latter two can be proved by examining
how the conditions in Proposition 6.11 change under the action of ι̃. (The signs in
(a) and (b) of that proposition change depending on the parity of n; the sign in (c)
doesn’t change.)

6.7. Nonintegral wall crossing. Fix infinitesimal character λa = (2n−1
2 , . . . , 1

2 ).
Let α = 2en, and recall the (nonintegral) wall-crossing translation functor ψ = ψα
defined in Convention 1.8. In terms of the Langlands classification, we recalled Vo-
gan’s computation of ψα in Theorem 3.17. Our goal here is to give this computation
on the level of diagrams.

Definition 6.24. We define an involution ψ : D(2n) −→ D(2n) specified by the
following three cases (and the requirement that ψ2 is the identity). In each case
the pair (σ, ε) is a representative for δ ∈ D(2n).

(a) σ(n) /∈ {n, n+1}. Then ψ(δ) = s2en × δ (with notation as in Definition 6.1).
For example,

ψ
( )

= .

(b) σ(n) = n. Then ψ(δ) is represented by a pair (σ′, ε′) with σ′(j) = σ(j) and
ε′j = εj for j /∈ {n, n+1}, σ′(n) = n+1, σ′(n+1) = n, and

(εαn, ε
α
n+1) = (+,−) if (εn, εn+1) = (+,−) and #{k | σ(k) = k} = 0 (mod 4), or

if (εn, εn+1) = (−,+) and #{k | σ(k) = k} = 2 (mod 4),

and

(εαn, ε
α
n+1) = (−,+) if (εn, εn+1) = (−,+) and #{k | σ(k) = k} = 0 (mod 4), or

if (εn, εn+1) = (+,−) and #{k | σ(k) = k} = 2 (mod 4).
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For example, in Mp(2,R), we have

ψ(+−) = ,

while in Mp(4,R) we have

ψ(+ +−−) = .

(c) σ(n) = n+1. This is covered by the preceding case and the stipulation that
ψ is an involution.

Note that the second case of the definition formally resembles the definition of a
Cayley transform on the level of diagrams (see Definition 6.16), but notice that the
arrows are oriented in the opposite direction. At any rate, the next result justifies
the definition.

Lemma 6.25. Fix infinitesimal character λa = (2n−1
2 , . . . , 1

2 ), let α = 2en, and
recall the functor ψ = ψα (defined in Convention 1.8). Fix δ ∈ D(2n) and write
γ and γ′ for the λa-pseudocharacters corresponding (via Proposition 6.3) to δ and
ψ(δ) (Definition 6.24). Then

ψ(X(γ)) = X(γ′).

Proof. This is a translation of Theorem 3.17 into the case at hand. We leave the
details to the reader.

Corollary 6.26. Fix regular half-integral infinitesimal character λa and otherwise
retain the setting of Lemma 6.25. Then ψ is an equivalence of categories between
the full subcategories of HC(g, K̃)genλa respectively generated by each of the two blocks
(see Proposition 6.9) of genuine irreducible representations of Mp(2n,R) with in-
finitesimal character λa.

Proof. A translation principle reduces to a single infinitesimal character λ. All that
remains to check is that x acts oppositely on X(γ) and ψ(X(γ)). All the relevant
details can be seen in the Mp(4,R) case (Example 6.22). We leave the details of
the general case to the reader.

6.8. Some τ-invariant computations. Fix a half-integral infinitesimal character
λa. From the data of a diagram δ ∈ D(2n), it is desirable to read off the τ -
invariant (see Section 1.2) of the corresponding irreducible representation Xλa(δ)
(Notation 6.4). We describe how to do that in this section.

First we recall Vogan’s fundamental computation ([V1, Corollary 4.13]).

Theorem 6.27. Consider an irreducible Harish-Chandra module X (of infinitesi-
mal character λa) of a reductive Lie group of the class considered in [V1]. In the
notation of the Langlands classification (Section 1.2), write X = X(γ). Suppose α
is a simple root in the integral root system R+(γ). Moreover, suppose α is simple
in the entire root system ∆+(γ). Then α is in the (abstract) τ-invariant of X if
and only if

(a) α is compact imaginary for ∆+(γ), or
(b) α is complex for ∆+(γ) and θ(α) /∈ ∆+(γ), or
(c) α is real and satisfies the parity condition (Definition 3.12).
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Recall the set of simple integral roots Sint for regular half-integral infinitesimal
character (Remark 3.8). Using the theorem, together with Lemma 6.14, we can eas-
ily determine whether a root ej−ej+1 is in the τ -invariant of Xλ(δ) (Notation 6.4).
(Now we are no longer speaking of the abstract τ -invariant, but rather the relative
one defined with respect to the choices implicit in Sint.) Notice, however, that the
theorem does not apply to the simple long root en−1 + en since it is not simple for
the entire root system. Instead, we must apply the following lemma (which follows
from the considerations of Section 4 in [V1]).

Lemma 6.28. Let X be an irreducible Harish-Chandra module of regular half-
integral infinitesimal character for Mp(2n,R). Then en−1 +en is in the τ-invariant
of X if and only if en−1 − en satisfies the conditions of Theorem 6.27 for the irre-
ducible module ψ(X) (where ψ is the nonintegral e2n-wall crossing functor defined
in Convention 1.8).

Since we have explicitly computed ψ, Lemma 6.28 and Theorem 6.27 constitute
a complete description of the τ -invariant of an irreducible Harish-Chandra module
of half-integral infinitesimal character for Mp(2n,R). For instance, the next result
now follows easily.

Proposition 6.29. Fix infinitesimal character λa = (2n−1
2 , . . . , 1

2 ).

(a) Let δ ∈ D(2n)0,n,0 be represented by the pair (e, ε), and consider the corre-
sponding discrete series Xλa(δ). Then

τ(Xλa(δ)) = {ej − ej+1 | 1 ≤ j ≤ n, εj = εj+1}.
(b) Let δ ∈ D(2n)0,0,n be represented by the pair (wo, ε) (where wo is the long

element in S2n) and consider the corresponding irreducible quotient of the
principal series Xλa(δ). Then

τ(Xλa(δ)) = {ej − ej+1 | 1 ≤ j ≤ n, εj 6= εj+1} ∪ {en−1 + en}.

Corollary 6.30. Fix half-integral infinitesimal character λa and let δ ∈ D(2n)0,n,0

be represented by the pair (e, ε). There exist exactly two Langlands quotients of
principal series (of infinitesimal character λa) whose τ-invariant is complementary
to the τ-invariant of Xλa(δ). Explicitly, the two principal series representations
are Xλa(δ̌) and its outer automorphism conjugate Xλa(ι̃(δ̌)) (Notation 6.23) where
δ̌ is defined to be the diagram represented by the pair (wo, ε). Moreover,

(a) if n ≡ 1 or 2 modulo 4, then if x acts by the scalar C on Xλa(δ), it acts by
−C on Xλa(δ̌);

(b) if n ≡ 0 or 3 modulo 4, then x acts by the same scalar on Xλa(δ) and Xλa(δ̌).

Proof. This follows from Proposition 6.29, Proposition 6.11, and Lemma 6.23.

6.9. Definition of the duality. In this section, we extend the definition of δ̌ in
Corollary 6.30 to define the full duality of Theorem 0.1 on the level of diagrams.
This amounts to an involution

D(2n)→ D(2n)

δ 7→ δ̌.

Definition 6.31. Write (σ, ε) for a representative of δ ∈ D(2n). We will define a
representative (σ̌, ε̌) for δ̌ according to the following rules.
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(a) If σ(j) = j (and so σ(2n−1−j) = 2n−1−j by condition (2) in Section 6.1), then
σ̌(j) = 2n−1−j and σ̌(2n−1−j) = j while ε̌j = −εj and ε̌2n−1−j = −ε2n−1−j.

(b) If σ(j) = 2n−1−j (and so σ(2n−1−j) = j), then σ̌(j) = j and σ̌(2n−1−j) =
2n−1−j while ε̌j = −εj and ε̌2n−1−j = −ε2n−1−j .

(c) If σ(j) = k /∈ {j, 2n−1−j} (and so σ(2n−1−k) = 2n−1−j), then

σ̌(j) = 2n−1−k,
σ̌(k) = 2n−1−j,
σ̌(2n−1−j) = k,

σ̌(2n−1−k) = j,

ε̌l = εl, for l = j, k, 2n−1−j, 2n−1−k.
For instance, the dual of the diagram

is

.

(Again recall that our arrows point from minus signs to plus signs.)

Example 6.32. Consider again Example 6.22. The duality amounts to picking
up one of the connected components of the graph given in Figure 1, turning it
upside down, and overlaying on the other connected component. Note that, since
the graph is symmetric about flipping the (vertical) center, there is an ambiguity
in this process. For instance, we could match a given discrete series with either
principal series. The symmetry is a manifestation of the outer automorphism ι̃ of
Section 2.7, and will be explained more thoroughly below.

The next result, like Proposition 6.29, examines how the duality affects the
central action of the element x.

Proposition 6.33. Fix half-integral infinitesimal character λ, and fix δ ∈ D(2n).
Then we have the following conclusions:

(a) If n ≡ 1 or 2 modulo 4, then if x acts by the scalar C on Xλa(δ), it acts by
−C on Xλa(δ̌).

(b) If n ≡ 0 or 3 modulo 4, then x acts by the same scalar on Xλa(δ) and Xλa(δ̌).

Proof. This follows exactly in the same way as Proposition 6.29.

Here is a sharpened version of Theorem 0.1, which we prove in Section 8 below.

Theorem 6.34. Fix half-integral infinitesimal character λa, write B± for the two
blocks of Pλa (Proposition 6.9), and recall Notation 6.4. Suppose that n ≡ 1 or 2
modulo 4. Then the map γ 7→ γ̌ (Definition 6.31) is a bijection between Bε and
B−ε such that if

[Xλa(δ)] =
∑
δ′∈Bε

cδδ′ [Xλa(δ′)],

then

[Xλa(δ̌′)] =
∑
δ∈Bε

εδδ′cδ′δ[Xλa(δ̌)];
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here

εδδ′ = (−1)dim(Qδ)−dim(Qδ′ ) (Notation 6.6)

= −1l(δ)−l(δ
′),

which is computed explicitly in Lemma 6.7.
If n ≡ 0 or 3 modulo 4, then γ 7→ γ̌ is a bijection between Bε and Bε (or B−ε

and B−ε) and the analogous statements hold.

Remark 6.35. According to Lemma 6.23, the map γ 7→ ι̃(γ̌) gives another choice
of the duality. Note that since a module and its dual must have complementary
τ -invariants, Corollary 6.30 implies that these two bijections are the only choices of
the duality. Next note that Lemma 6.23 implies that if n is even ι̃ preserves blocks,
and that if n is odd ι̃ switches blocks. Hence we arrive at the following table.

( )∨ ( )∨ ◦ ι̃
n ≡ 0 (4) preserves blocks preserves blocks
n ≡ 1 (4) switches blocks preserves blocks
n ≡ 2 (4) switches blocks switches blocks
n ≡ 3 (4) preserves blocks switches blocks

Remark 6.36. We close by remarking on an equivalent formulation of Definition 6.36
closer to Vogan’s original formulation in [V4]. By Proposition 6.29, the condition
that a representation and its dual have complementary τ -invariant and comple-
mentary length, essentially specifies the duality on the discrete and principal series.
(The modifier ‘essentially’ is needed only up to the two possible choices discussed in
Remark 6.35.) We can move from any representation in a given block to a discrete
series representation via a sequence of integral Weyl group cross actions and Cayley
transforms. As is clear from the example of Mp(4,R), there is an obvious dual se-
quence of cross actions and Cayley transforms. Applied to the dual of the discrete
series, we arrive at the dual of the original representation in question. Since we do
not need it here, we leave the details to the reader.

7. Kazhdan-Lusztig algorithm for Mp(2n,R): closed form

7.1. Bruhat G-order. Due to the presence of nonintegral noncompact imaginary
roots, the definition of the Bruhat G-order on the set of λa-pseudocharacter Pλa is
a little bit more complicated than the one in [V3] for linear groups. Recall that we
do not distinguish in the notations a pseudocharacter γ and its KR conjugacy class
in Pλa .

Definition 7.1. Let γ and γ′ be two elements of Pλa , and s ∈ S. We write γ′ s→ γ
in the following cases:

(a) The simple root α in ∆+(γ) corresponding to s ∈ S is noncompact imaginary
and short, and γ′ ∈ cα(γ).

(b) The simple root α in ∆+(γ) corresponding to s ∈ S is complex such that
θ(α) ∈ ∆+(γ) and γ′ = s× γ.

(c) The simple root α in ∆+(γ) corresponding to s ∈ S is noncompact imaginary
and long, and γ′ = (s× γ)α.
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Definition 7.2. The Bruhat G-order is the smallest order relation on Pλa having
the following properties:

(i) If γ ∈ Ĥ ′λa is a pseudocharacter, and α is a noncompact imaginary simple
root in ∆+(γ), then for all γ′ ∈ cα(γ), we have γ < γ′.

(ii) If γ ∈ Ĥ ′λa is a pseudocharacter, and α is a complex simple short root in
∆+(γ), such that θ(α) ∈ ∆+(γ), then γ < s× γ.

(iii)(exchange condition) If γ′ ≤ δ′, γ s→ γ′ and δ s→ δ′, then γ ≤ δ.
If s is the reflection with respect to the long root, γ′ ≤ δ′, δ s→ δ′, and γ

s→ γ′,
then γ ≤ δ.

As a motivation for this complicated definition we state the following result.

Theorem 7.3. Consider γ, δ ∈ Pλa .
(a) If γ < δ in the Bruhat G-order, then l(γ) < l(δ). Moreover, if (Qγ ,Lγ)

and (Qδ,Lδ) are the Beilinson-Bernstein parameters corresponding to γ and
δ (cf. Proposition 6.8), then Qγ ⊂ Qδ.

(b) Suppose γ, δ in Pλa and X(γ) occurs as a composition factor in X(δ). Then
γ ≤ δ.

Proof. The first part follows from Lemma 5.5 in [V3] the same way one proves the
relation between the Bruhat order and the containment of Schubert varieties. The
definition of the Bruhat G-order is tailored exactly to fit the second assertion. The
proof is by induction on l(δ). If l(δ) = 0, δ is minimal, i.e. X(δ) is a discrete series
representation, then the assertion is trivially seen to hold. Otherwise, we know
from Proposition 3.18 that there exists a simple root α in ∆+(δ) such that either α
is complex with θ(α) /∈ ∆+(δ), or α is real, satisfying the parity condition. Let s be
the corresponding reflection in the Weyl group. If α is a short root, the induction
step is similar to the one given for linear groups. Notice that the differences in
the definition of the Bruhat G-order above with the one in [V3] are only in the use
of the long simple root. So suppose that α is long, and say, complex. Then by
Theorem 3.17 we have X(δ) = ψα(X(s × δ)). The hypothesis (ii) of the Theorem
is satisfied if and only if ψα(X(γ)) occurs in X(s × δ). Let γ′ ∈ Pλa such that
ψα(X(γ)) = X(γ′). Since l(s × δ) = l(δ) − 1, by induction hypothesis we have
γ′ ≤ s× δ. The explicit form of γ′ is known and corresponds to the different cases
in the exchange condition above. We conclude that γ ≤ δ. In the case where α
is real and long, the use of the Hecht-Schmid identity (Proposition 3.15) and the
exchange condition lead us to the same conclusion.

7.2. Kazhdan-Lusztig polynomials for the metaplectic group. Let B be an
abelian group containing an element u of infinite order. Let M (respectively M′)
be the free Z[u, u−1]-module (respectively B-module) with basis Pλa . Recall the
simple reflections

S = {sei−ei+1 , 1 ≤ i ≤ n− 1; s2en};
and, for regular half-integral infinitesimal character, the simple integral reflections

Sint = {sei−ei+1 , 1 ≤ i ≤ n− 1; sen−1+en}.
By analogy with [V3, Definition 6.4] for s ∈ S, we now define operators Ts on the
basis elements γ. (In the definition below, we denote by α the simple root in ∆+(γ)
corresponding to s.) Note that if α is a short root, the formulas below are the ones
given in [V3].
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Definition 7.4. (a1) If α is compact imaginary, then α is short Tsγ = uγ.
(a2) If α is real not satisfying the parity condition, Tsγ = −γ.
(b1) If α is complex and θ(α) ∈ ∆+(γ), then Tsγ = s× γ.
(b2 short) If α is short, complex and θ(α) /∈ ∆+(γ), then

Tsγ = u(s× γ) + (u− 1)γ.

(b2 long) If α is long, complex and θ(α) /∈ ∆+(γ), then

Tsγ = u(s× γ).

(c1) If α is type II non-compact imaginary (and thus α is necessarily short), then

Tsγ = γ + γα+ + γα−.

(c2) If α is short and real type II (and thus α is necessarily short) satisfying the
parity condition, then

Tsγ = (u− 1)γ − s× γ + (u− 1)γα.

(d1 short) If α is type I non-compact imaginary short, then

Tsγ = s× γ + γα.

(d1 long) If α is type I non-compact imaginary long, then

Tsγ = (s× γ)α + s× γ.
(d2 short) If α is short and real type I, satisfying the parity condition, then

Tsγ = (u− 2)γ + (u− 1)(γ+
α + γ−α ).

(d2 long) If α is long and real type I, satisfying the parity condition, then

Tsγ = −s× γ + (u− 1)(s× γ)α.

By analogy with the linear case, one might expect that the Z[u, u−1] algebra H
generated by 〈Ts | s ∈ S〉 is isomorphic to H(W ), the Hecke algebra of the complex
Weyl group. This isn’t quite true. What is true, however, is that H contains the
Hecke algebra of the integral Weyl group. More precisely, we have the following
result.

Proposition 7.5. Extend the definitions of the various Ts (in Definition 7.4) to
Z[u, u−1]-linear endomorphisms of M, and write H for the algebra that they gen-
erate. We have the following conclusions:

(a) If s ∈ S is short, then operator Ts satisfies

(Ts − 1)(Ts + u) = 0.

(b) If s ∈ S is long, the operator Ts satisfies

T 2
s = u Id .

In particular, H is not isomorphic to the Hecke algebra of the complex Weyl
group.

(c) Define

Ten−1+en = (u−
1
2 Te2n)−1Ten−1−enu

− 1
2Te2n .

Then the algebra 〈Ts | s ∈ Sint〉 is isomorphic to the Hecke algebra of the
integral Weyl group.
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Proof. To prove the proposition, one need only appeal to the definitions and check
the relevant relations. For (a) and (b), this is quite easy. The final assertion involves
a more complicated check, but it too is elementary.

Remark 7.6. Note that the definition of Ten−1+en in (c) formally mimics the defini-
tion of an integral wall-cross with respect to a simple integral root that is not simple
in the whole roots system. (See the comments after the definition in Section 1.3.)

The next ingredient we need is a ‘Verdier duality’ endomorphism ofM′.

Proposition 7.7. There exists at most one B-linear map D :M′ →M′ with the
following properties. Define Rγ,δ by

D(δ) = u−l(δ)
∑
γ∈D

Rγ,δ(u)γ :(7.1)

(a) D(bm) = b−1D(m) (m ∈M′, b ∈ B).
(b short) If s ∈ S is a reflection with respect to a short root and m ∈ M′, then

D((Ts + 1)m) = u−1(Ts + 1)D(m).

(b long) If s ∈ S is the reflection with respect to the long root and m ∈ M′, then

D((Ts)m) = u−1Ts(D(m)).

(c) Rγ,γ = 1.
(d) Rγ,δ 6= 0 only if γ ≤ δ.
Suppose that D exists. There is an algorithm for computing the various Rγ,δ;

there are polynomials in u of degree at most l(δ)− l(γ). Furthermore:
(e) D2 is the identity.
(f) D preserves M.
(g) On M, the specialization of D to u = 1 is the identity.

Proof. Again, the proof is essentially in [V3], and we concentrate only on the dif-
ferences. The proof is by induction on l(δ), and for fixed δ by downward induction
on l(γ). If δ is minimal, all the claims are trivial. If not, there exists a simple root
α in ∆+(δ) such that either α is complex with θ(α) /∈ ∆+(δ), or α is real, satisfying
the parity condition. If α is a short root, the induction step is similar to the one
given for linear groups. So suppose that α is long and complex. Then

l(s× δ) = l(δ)− 1,

Ts(s× δ) = δ.

The identity (b long) in Definition 7.4 for m = s× δ can be written as

D(δ) = u−1Ts(D(s× δ)).
Equating the coefficient of γ in the expression of the left- and right-hand sides in
terms of R polynomials gives formulas for Rγ,δ. Suppose now that α is long and
real. We have

l((s× δ)α) = l(δ)− 1,

Ts((s× δ)α) = δ.

We conclude by the same arguments. The rest of the proof is essentially no different
than the linear case.
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We see that for combinatorial purpose, the role of this odd long root is not a
bad thing: if it is imaginary or real, it is always type I, and the formulas tend to
be simpler.

Corollary 7.8. Suppose D exists, and suppose that for some δ ∈ Pλa there is an
element

Cδ =
∑
γ≤δ

Pγ,δ(u)γ

with the following properties:
(a) D(Cδ) = u−l(δ)Cδ.
(b) Pδ,δ = 1.
(c) If γ 6= δ, then Pγ,δ is a polynomial in u of degree at most 1

2 (l(δ)− l(γ)− 1).
Then Pγ,δ is computable. (In particular, Cδ is unique).

The proof, which we omit, is similar to the one in [V3].

Lemma 7.9. Suppose that δ ∈ Pλa , let s ∈ S be the reflections with respect to the
long root and α ∈ ∆+(δ) the corresponding simple root. Suppose the elements Cδ,
Cs×δ, etc., of the previous corollary exist.

(a) If α is complex, θ(α) ∈ ∆+(δ), then TsCδ = Cs×δ.
(b) If α is complex, θ(α) /∈ ∆+(δ), then TsCδ = uCs×δ.
(c) If α is imaginary, then TsCδ = C(s×δ)α .
(c) If α is real, then TsCδ = uC(s×δ)α .

Proof. Suppose we are in case (a). The element Cs×δ is characterized by the list
of properties of the previous corollary. Thus, it is sufficient to show that TsCδ also
satisfies them to prove the equality. We have

D(TsCδ) = u−1Ts(D(Cδ)) = u−l(δ)−1TsCδ = u−l(s×δ)TsCδ.

Furthermore,

TsCδ = Tsδ +
∑
γ<δ

Pγ,δ(u)Tsγ

= s× δ +
∑

α real for γ
γ<δ

Pγ,δ(u)[−(s× γ) + (u− 1)(s× γ)α]

+
∑

α imaginary for γ
γ<δ

Pγ,δ(u)[s× γ + (s× γ)α]

+
∑

α complex for γ, θ(α)∈∆+(γ)
γ<δ

Pγ,δ(u)[s× γ]

+
∑

α complex for γ, θ(α)/∈∆+(γ)
γ<δ

uPγ,δ(u)[s× γ].

(7.2)

Using the exchange condition, all elements γ′ appearing on the right-hand side are
seen to be lower or equal to s×δ in the Bruhat G-order, and the polynomials satisfy
the degree estimate in (c). Furthermore, s× δ appears with coefficient 1. Thus the
claim is proved. Case (b) follows from (a) and the equality T 2

s = u Id. Cases (c)
and (d) are established similarly.
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Identifying the coefficient of γ′ in the right-hand side of (7.2) with

Cs×δ =
∑

γ′≤s×δ
Pγ′,s×δ(u) γ′,

we conclude
(a) if α is real for γ′,

Pγ′,s×δ = −Ps×γ′,δ + P(s×γ′)α,δ;

(b) if α is imaginary for γ′,

Pγ′,s×δ(u) = Ps×γ′,δ(u) + (u− 1)P(s×γ′)α,δ(u);

(c) if α is complex for γ′, with θ(α) ∈ ∆+(γ′),

Pγ′,s×δ = Ps×γ′,δ;

(d) if α is complex for γ′, with θ(α) /∈ ∆+(γ′),

Pγ′,s×δ(u) = uPs×γ′,δ(u).

Formulas corresponding to cases (b), (c), (d) of the corollary are obtained similarly.
Summarizing, we have the following result.

Proposition 7.10. In the setting above (α is the long simple root in ∆+
a ), we have

the following identities.
Case I: If α is complex for δ, θ(α) /∈ ∆+(δ), and
(i) α is complex for γ, θ(α) /∈ ∆+, then(γ)

Pγ,δ = Ps×γ,s×δ;

(ii) α is complex for γ, θ(α) ∈ ∆+(γ), then

uPγ,δ(u) = Ps×γ,s×δ(u);

(iii) α is real for γ, then

Pγ,δ = −Ps×γ,s×δ + P(s×γ)α,s×δ;

(iv) α is imaginary for γ, then

Pγ,δ(u) = Ps×γ,s×δ(u) + (u− 1)P(s×γ)α,s×δ(u).

Case II: If α is complex for δ, θ(α) ∈ ∆+(δ), and
(i) α is complex for γ, θ(α) /∈ ∆+(γ), then

Pγ,δ(u) = uPs×γ,s×δ(u);

(ii) α is complex for γ, θ(α) ∈ ∆+(γ), then

Pγ,δ = Ps×γ,s×δ;

(iii) α is real for γ, then

uPγ,δ(u) = −Ps×γ,s×δ(u) + P(s×γ)α,s×δ(u);

(iv) α is imaginary for γ, then

uPγ,δ(u) = Ps×γ,s×δ(u) + (u− 1)P(s×γ)α,s×δ(u).

Case III: If α is real for δ, and
(i) α is complex for γ, θ(α) /∈ ∆+(γ), then

Pγ,δ(u) = Ps×γ,(s×δ)α(u);(7.3)
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(ii) α is complex for γ, θ(α) ∈ ∆+(γ), then

Pγ,δ = Ps×γ,(s×δ)α ;

(iii) α is real for γ, then

Pγ,δ(u) = −Ps×γ,(s×δ)α(u) + P(s×γ)α,(s×δ)α(u);

(iv) α is imaginary for γ, then

Pγ,δ(u) = Ps×γ,(s×δ)α(u) + (u− 1)P(s×γ)α,(s×δ)α(u).

Case IV: If α is imaginary for δ, and
(i) α is complex for γ, θ(α) /∈ ∆+(γ), then

uPγ,δ(u) = Ps×γ,(s×δ)α(u);

(ii) α is complex for γ, θ(α) ∈ ∆+(γ), then

uPγ,δ(u) = Ps×γ,(s×δ)α(u);

(iii) α is real for γ, then

uPγ,δ(u) = −Ps×γ,(s×δ)α(u) + P(s×γ)α,(s×δ)α(u);

(iv) α is imaginary for γ, then

uPγ,δ(u) = Ps×γ,(s×δ)α(u) + (u− 1)P(s×γ)α,(s×δ)α(u).

Corollary 7.11. The formulas of Proposition 7.10, cases I and III, together with
the ones of Proposition 6.14 in [V3], the fact that Pγ,γ = 1 and the fact that Pγ,δ 6= 0
only if γ ≤ δ completely characterize the polynomials Pγ,δ. More precisely, if Pγ′,δ′
is known when l(δ′) < l(δ), or l(δ′) = l(δ) and l(γ′) > l(γ), then these formulas
determine Pγ,δ.

Proof. The argument is again the same as in [V3].

Notice that the formulas in cases II and IV are easily obtained from the ones
in cases I and III respectively. The formulas in Proposition 6.14 of [V3] relate
the Kazhdan-Lusztig polynomials Pγ,δ with polynomials Pγ′,δ′ , where γ′ and δ′ are
obtained from γ and δ using cross-action or Cayley transform with respect to simple
integral reflections.

7.3. Kazhdan-Lusztig algorithm. In this section, we will use some results of
[ABV], Section 17. The Langlands parameters there are not the ones we consider
here, unfortunately. They are what the authors call equivalence classes of final
limit characters, and we will refer to them as ABV-parameters. Of course, the
two parametrizations are equivalent, and a procedure to obtain a pseudocharacter
from a final limit character, or conversely, is described in Section 11 of [ABV]. If
γ ∈ Pλa , we will denote by γ̃ the corresponding ABV-parameter.

Let γ, δ in Pa, b = h + n be a representative of the K-orbit on the flag manifold
associated to γ, with h defined over R and θ-stable. Write d for the codimension of
the orbit corresponding to δ in the flag manifold. Define

Qγ,δ(u) =
∑
q∈Z

u
1
2 (q−d)mult(γ̃ ⊗ ρ(n);Hq(n, X(δ))).(7.4)

Let q = l + u be a θ-stable parabolic subalgebra of g, chosen for γ as in [V3], (A.2).
Set

r = l(δ)− l(γ)− dim u ∩ p.



292 DAVID A. RENARD AND PETER E. TRAPA

Then, by Corollary A.10 and Proposition 4.3 of [V3]

Qγ,δ(u) =
∑
q∈Z

u
1
2 (q+r)mult[X

L
(γq), Hq(u, X(δ))].

Theorem 7.12. The polynomials Qγ,δ defined above are the Kazhdan-Lusztig poly-
nomials Pγ,δ of the previous section.

Proof. The idea is to prove that the formulas in Corollary 7.11 are satisfied by the
Q-polynomials. The proof is by induction on l(δ). So fix δ and suppose that Pγ′,δ′ =
Qγ′,δ′ for all δ′ such that l(δ′) < l(δ). Formulas coming from transformations with
respect to an integral reflection s ∈ S (the ones of Proposition 6.14 of [V3]) are
obtained as in Lemma 7.8 of [V3]. So we concentrate on the formulas in Proposition
7.10. In that case, we won’t need the induction hypothesis. Suppose we are in case
I, (i). Using the translation functor ψα, we obtain

mult[X
L

(γq), Hq(u, X(δ))] = mult[ψl
α ·X

L
(γq), ψl

α ·Hq(u, X(δ))]

= mult[ψl
α ·X

L
(γq), Hq(u, ψα ·X(δ))]

= mult[X
L

((s× γ)q), Hq(u, X(s× δ))].
Now, the θ-stable parabolic q has the same properties with respect to s×γ as to γ,
and l(s× δ)− l(s× γ) = l(δ)− l(γ). Thus we obtain Qs×γ,s×δ = Qγ,δ, as we wish.

Suppose we are in case I, (ii). The difference with (i) is only that l(s × δ) −
l(s× γ) = l(δ)− l(γ)− 2. This accounts for the factor u in the formula Qs×γ,s× =
uQγ.δ.

Suppose we are in case I, (iii). Then,

mult[X
L

(γq), Hq(u, X(δ))] = mult[ψl
α ·X

L
(γq), ψl

α ·Hq(u, X(δ))]

= mult[ψl
α ·X

L
(γq), Hq(u, ψα ·X(δ))]

= mult[X
L

((s× γα)q), Hq(u, X(s× δ))].
The parabolic subalgebra q does not satisfy the properties of [V3], (A.2) with

respect to s× γα. Let q0 = lα + u0 ⊂ l which satisfies these properties for (s× γα)q

in L̃. Then

qα = lα + u + u0 = lα + uα

satisfies the properties with respect to s× γα. In the proof of Lemma 7.8 in [V3],
we find the following identity:

mult[X
L

((s× γα)q), Hq(u, X(s× δ))]

= mult[X
Lα((s× γα)qα), Hq+dim(u0∩p)(uα, X(s× δ))]

−mult[X
L

((s× γ)q), Hq+1(u, X(s× δ))].
As above, straightforward computations gives the formula we want.

Suppose we are now in case I, (iv). Notice that the formula we want can be
derived from the formulas in case I, (iii) and case II, (iii). We have already obtained
the first one, and the second can be proved the same way. Thus we are done.

Formulas in case III are obtained similarly.

Finally, we can state the main result of this section.



IRREDUCIBLE GENUINE CHARACTERS OF THE METAPLECTIC GROUP 293

Theorem 7.13. The value at 1 of the Kazhdan-Lusztig polynomials Pγ,δ gives the
multiplicity of X(γ) in X(δ). More precisely, with the notations of Equation 1.3,

M(γ, δ) = (−1)l(δ)−l(γ)Pγ,δ(1).

This is a consequence of the previous theorem, and [ABV, Theorem 16.21(d)].

8. Proof of Theorem 6.34

In this section, we at last prove Theorem 6.34. Given the theory of Section 7,
the argument is essentially the same as the linear case.

Recall the Z[u, u−1] algebraH (Proposition 7.5) and theH moduleM. Partition
the set of λa-pseudocharacters according to the action of the central element x and
write

Pλa = P+
λa

∐
P−λa .

Correspondingly, as Z[u, u−1] modules, we can write M =M+ ⊕M−. For orien-
tation, we include the following result.

Proposition 8.1. As an H(Wint) module (Proposition 7.5), M decomposes as

M =M+ ⊕M−.

Proof. This follows from the formulas of Definition 7.4. The point is that when the
reflection s corresponds to an integral root (i.e. a short one), the terms on the right
side of the definition of Tsγ all have the same central character as γ.

Now we head toward the duality theorem. Define the dual Z[u, u−1] module

M∗ = HomZ[u,u−1](M,Z[u, u−1]).

The transposed action of H onM defines an action of Hop onM∗; choosing an an-
tiautomorphism of H (identifying H with Hop) makesM an H module. Concretely,
for µ ∈M∗ and for a simple reflection s we define

Ts · µ = [−u(Ts)−1]tr · µ;(8.1)

here the invertibility of Ts follows directly from Proposition 7.5.
Write {µγ | γ ∈ Pλa} for the basis ofM∗ dual to the basis Pλa ofM, and recall

the bijection

P+
λa
−→ P−λa

γ −→ γ̌

of Definition 6.31.

Proposition 8.2. The Z[u, u−1] linear isomorphism

M−→M∗

γ −→ µγ̌

is an isomorphism of H modules.

Proof. We have defined the H module structures on M and M∗ explicitly
(Definition 7.4 and Equation 8.1), and we have explicitly defined the map γ 7→ γ̌
(Definition 6.31). So the verification of the theorem amounts to some rather serious
bookkeeping. We omit the details. The reader is advised to consider the example
of Mp(4,R) (Example 6.32).
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The proof of Theorem 6.34 now proceeds exactly as the proof of Theorem 13.13
in [V4]. Consequently, we have the following stronger result.

Theorem 8.3. Recall the Kazhdan-Lusztig polynomials Pγδ of Section 7. The in-
verse of the matrix

(Pγδ)γ,δ∈Pλa

is the matrix

(εγδPδ̌γ̌)γ,δ∈Pλa ;

here εγδ is defined as in Theorem 6.34.
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[Mi1] Miličić, D., Intertwining functors and irreducibility of standard Harish-Chandra sheaves,
in Harmonic analysis on reductive groups (Brunswick 1989), Progr. Math., Birkhäuser
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