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ON THE SPANNING VECTORS OF LUSZTIG CONES

ROBERT BÉDARD

Abstract. For each reduced expression i of the longest element w0 of the
Weyl group W of a Dynkin diagram ∆ of type A, D or E, Lusztig defined a
cone Ci such that there corresponds a monomial in the quantized enveloping
algebra U of ∆ to each element of Ci and he asked under what circumstances
these monomials belong to the canonical basis of U. In this paper, we consider
the case where i is a reduced expression adapted to a quiver Ω whose graph
is ∆ and we describe Ci as the set of non-negative integral combination of
spanning vectors. These spanning vectors are themselves described by using
the Auslander-Reiten quiver of Ω and homological algebra.

0. Introduction

Let C be the Cartan matrix of a complex finite dimensional simple simply laced
Lie algebra of rank n. We can attach to C its quantized enveloping algebra U
over Q(v). Recall that U is an associative algebra with generators Ei, Fi, Ki, K−1

i

(1 ≤ i ≤ n) and relations (see 4.1 for the notations and a precise presentation of U).
Let U+ be the subalgebra of U generated by the Ei (1 ≤ i ≤ n). Using different
methods, both Kashiwara [8] and Lusztig [9] have constructed a canonical basis B
of U+ with remarkable properties. Lusztig has shown in [10] that both methods
give the same basis B.

A monomial E(c1)
i1

E
(c2)
i2
· · ·E(cm)

im
, where i = (i1, i2, . . . , im) is a sequence of el-

ements of {1, 2, . . . , n} and c1, c2, . . . , cm ∈ N, is said to be tight (respectively
semi-tight) if it belongs to B (respectively it is a linear combination of elements in
B with constant coefficients). Lusztig gave in [11] a criterion involving the positivity
of a non-homogeneous quadratic form Q for a monomial to be tight or semi-tight.

In [11], Lusztig defined a subset Ci of Nν for each reduced expression i =
(i1, i2, . . . , iν) of the longest element w0 (i.e. w0 = si1si2 · · · siν ) of the finite
Weyl group (W,S) associated to C where S = {s1, s2, . . . , sn} and asked under
what circumstances is the monomial E(c1)

i1
E

(c2)
i2
· · ·E(cν)

iν
tight or semi-tight for

c = (c1, c2, . . . , cν) ∈ Ci. We will recall the definition of Ci in 3.1. Ci is related
to the linear part of the non-homogeneous quadratic form Q. In the case that C is
of type An for n = 1, 2, 3, 4 and c = (c1, c2, . . . , cν) ∈ Ci, then E

(c1)
i1

E
(c2)
i2
· · ·E(cm)

im
is tight. This result has been proved by Lusztig in the case where n = 1, 2, 3 (see
[11]) and by Marsh in the case where n = 4 (See [12]).

R. Marsh has described in [13] these subsets Ci as the non-negative integer span
of ν independent integral vectors (called its spanning vectors) for all reduced ex-
pressions i of w0 when the Cartan matrix C is of type An. He also called them
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Lusztig cones. The combinatorics that he uses to describe these ν spanning vectors
involves the chamber diagram of the reduced expression i. These spanning vec-
tors were used by Marsh in [14] and by Carter and Marsh in [5] in relation with
parametrizations of the canonical basis using strings of root operators and with
piecewise linear functions defined by Lusztig.

In this paper, we will describe Ci as the non-negative integer span of ν inde-
pendent integral vectors when i is a reduced expression of w0 adapted to a quiver
Ω of the Dynkin graph associated to a Cartan matrix C of type An (n ≥ 1), Dn

(n ≥ 4) or En (n = 6, 7, 8). This description is done using the Auslander-Reiten
quiver ΓΩ of Ω and homological algebra. This is done in section 3 of this article.
In the first two chapters, we will recall the basic facts about representations of
algebras, Auslander-Reiten quivers, almost split sequences and reduced expressions
of w0 adapted to a quiver. The main theorem of the paper is Theorem 3.8 where
the spanning vectors are described. In the last section, we consider monomials in
U+ corresponding to elements of Lusztig cones and show that some of them are
independent of a quiver Ω.

1. Notations and basic facts

1.1. Fix an (n×n) positive definite symmetric matrix C = (aij)1≤i,j≤n such that
aii = 2 for 1 ≤ i ≤ n and aij = aji ∈ {0,−1} if 1 ≤ i 6= j ≤ n. Let Q be the
free abelian group with basis α1, α2, . . . , αn. Define an inner product ( | ) on Q
by (αi | αj) = aij . Let R = {α ∈ Q | (α | α) = 2}, R+ = {α ∈ R | α =

∑
biαi with

bi ∈ N} and R− = −R+. R is a simply laced root system with basis B = {α1, α2,
. . . , αn} and R+ is the corresponding set of positive roots. We will assume from
now on that R is irreducible.

For each α ∈ R, we will denote the corresponding reflection by sα : Q → Q.
Recall that sα(z) = z − (α | z)α for all z ∈ Q. We will denote sαi by si. Thus
si(αj) = αj −aijαi for all 1 ≤ i, j ≤ n. Let W be the Weyl group of R. Recall that
W is the subgroup of Aut(Q) generated by S = {s1, s2, . . . , sn}. We will denote
by `(w) the length of w ∈ W relative to S.

We will denote the Dynkin graph associated to the Cartan matrix C by ∆. Recall
that the set of vertices of ∆ is {1, 2, . . . , n} where i is identified with the simple root
αi ∈ B and there is an edge between the vertices i and j if and only if aij = −1.

1.2. It is well known that there exists a unique element w0 of the Weyl group W
that is of maximal length and, in this case, `(w0) = #(R+). We will also denote
this length by ν.

Let σ be the unique permutation of the vertices of ∆ such that w0(αi) = −ασ(i).
In other words, if ∆ is of type Dn with n even or of type A1, E7 or E8, then σ is
the identity; while if ∆ is of type An with n > 1, Dn with n odd or E6, then σ
is the unique non-trivial automorphism of the graph ∆. Denote by h, the Coxeter
number of ∆. In other words, h is (n+1), 2(n−1), 12, 18 or 30, if ∆ is respectively
of type An, Dn, E6, E7 or E8.

If si1si2 · · · siν = w0 is a reduced expression of w0, then we will abbreviate it
by writing i = (i1, i2, . . . , iν). It is well known that if i = (i1, i2, . . . , iν) is a
reduced expression of w0, then the sequence α(1)(i), α(2)(i), . . . , α(ν)(i) defined by
α(j)(i) = si1si2 · · · sij−1 (αij ) for j = 1, 2, . . . , ν contains each root of R+ once and
exactly once.
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1.3. If i = (i1, i2, . . . , iν) and i′ = (i′1, i
′
2, . . . , i

′
ν) are two reduced expressions of

w0, we say that i′ is related to i by a short braid relation if i′ is obtained from i by
replacing two consecutive entries x, y in i (with axy = 0) by y, x; while we say that
i′ is related to i by a long braid relation if i′ is obtained from i by replacing three
consecutive entries x, y, x in i (with axy = −1) by y, x, y.

It is known that given two reduced expressions i and j of w0, there is a sequence
i = i0, i1, i2, . . . , ip = j of reduced expressions of w0 starting with i, ending with j
and such that, for each q = 0, 1, 2, . . . , (p−1), iq+1 is related to iq by either a short
braid relation or by a long braid relation. This is part of a theorem of Tits (see
[17]).

We say that two reduced expressions i and j of w0 are commutation-equivalent if
there exists a sequence Π: i = i0, i1, . . . , ip = j of reduced expressions of w0 starting
with i, ending with j and such that iq+1 is related to iq by a short braid relation for
q = 0, 1, . . . , (p − 1). We will write in this case i ∼ j and an equivalence class for
this relation is called a commutation class. We also denote by [i] the commutation
class containing i.

1.4. Given a graph G whose edges are oriented, we say that a vertex i is a sink
(respectively a source) if and only if each edge {i, j} having i as one of its vertices
is oriented as follows: i ← j, the arrow pointing toward i (respectively i → j, the
arrow pointing away from i).

1.5. We will recall the notations of section 4 of [9] for the theory of representations
of a quiver. Let Ω be a quiver with underlying graph ∆. In other words, we have
oriented the edges of ∆. Let F be an algebraically closed fixed field. The category
Mod(Ω) of modules or representations of the quiver Ω is given as follows. An object
is a collection of finite-dimensional F -vector space Vi (i ∈ {1, 2, . . . , n}) and of F -
linear maps fij : Vi → Vi defined for each arrow i → j in Ω and a morphism from
the object V = ((Vi)1≤i≤n, (fij)i→j) to the object V′ = ((V ′i )1≤i≤n, (f ′ij)i→j) is a
collection of F -linear maps gi : Vi → V ′i (i ∈ {1, 2, . . . , n}) such that f ′ij◦gi = gj◦fij
for all arrows i→ j in Ω. This category is in an obvious way an abelian category.

Recall that if i is a sink (respectively a source) of Ω, then
(a) si(Ω) denotes the quiver obtained from Ω by reversing the orientation of each

arrow that ends (respectively starts) at i;
(b) Φ+

i (respectively Φ−i ) denotes the corresponding reflection functor from the
category of modules of Ω to the category of modules of si(Ω). (The precise
definition of these functors is given in 4.3 of [9]).

1.6. A reduced expression i = (i1, i2, . . . , iν) of w0 is said to be adapted to the
quiver Ω if and only if ik is a sink of sik−1sik−2 · · · si1(Ω) = Ωk for all k = 1, 2, . . . , ν.

For example, in the case A3, the reduced expression i = (2, 1, 3, 2, 1, 3) of w0 is
adapted to the quiver 1 → 2 ← 3, while the reduced expression j = (2, 1, 2, 3, 2, 1)
of w0 is not adapted to any quiver.

The following facts are known:
(a) A reduced expression i of w0 is adapted to at most one quiver Ω of ∆.
(b) For each quiver Ω with graph ∆, there is a reduced expression i of w0 adapted

to Ω.
(c) Let i, j be two reduced expressions of w0 such that j ∼ i. If i is adapted to

the quiver Ω with graph ∆, then so is j.
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For (a), see 4.13 in [9]. For (b), see Proposition 4.12 (b) in [9]. Finally, it is easy
to verify (c) by simply considering the case where j is related to i by a short braid
relation.

1.7. Let Ω be a quiver with graph ∆ and i = (i1, i2, . . . , iν), a reduced expression
of w0 adapted to Ω. Let eik be the simple module V = ((Vi)1≤i≤n, (fij = 0)i→j) of
Ωk, as in [9], such that

Vi =

{
F, if i = ik;
0, otherwise;

and eα = Φ−i1Φ−i2 · · ·Φ
−
ik−1

(eik) for α = α(k)(i) = si1si2 · · · sik−1(αik ). Then it is
possible to prove that eα is an indecomposable module of Ω whose dimension is α.
Here the dimension dim(V) of the module V = ((Vi)1≤i≤n, (fij)i→j) of Ω is defined
as
∑n

i=1(dimF Vi) αi. We will denote the isomorphism class of the module V of Ω
by [V].

Theorem 1.8 (Gabriel). The map [eα] → α = dim(eα) gives a bijection between
the set of isomorphism classes of indecomposable modules of Ω with graph ∆ and
the set R+ of positive roots of ∆.

Proof. See Proposition 4.12 in [9] for example. There are also proofs of this result
in [6] and [4].

1.9. For k ∈ {1, 2, . . . , n}, denote by P(k) the following module of Ω: P(k)i is the
vector space over F with basis the set of paths k = k0 → k1 → k2 → · · · → km = i
from k to i in Ω and for any arrow i → j in Ω, let fij : P(k)i → P(k)j be defined
by sending the basis element k = k0 → k1 → k2 → · · · → km = i to k = k0 →
k1 → k2 → · · · → km = i→ j. It is easy to prove that P(k) = (P(k)i, (fij)i→j)) is
an indecomposable projective module of Ω and that all indecomposable projective
modules are isomorphic to some P(k) for k ∈ {1, 2, . . . , n}.

1.10. We will denote by P(Ω) the set of positive roots α such that the indecom-
posable module eα of Ω is projective. In other words, α ∈ P(Ω) if and only if α is
the dimension dim(P(k)) of the projective indecomposable module P(k) for some
k ∈ {1, 2, . . . , n}.

2. Auslander-Reiten quivers and reduced expressions

2.1. We will also need to recall some notations and results on the Auslander-
Reiten quiver ΓΩ of Ω. For this theory, we refer the reader either to section 6.5 in
[7] or to section 2.2 in [15] or the book [2].

The vertices of the Auslander-Reiten quiver ΓΩ are the isomorphism classes of
indecomposable modules of the quiver Ω and two isomorphism classes [V] and [W]
of indecomposable modules of Ω are linked by an arrow [V] → [W] in ΓΩ if and
only if there exists an irreducible morphism V→W.

As seen above, the set of isomorphism classes of indecomposable modules of Ω is
in bijection with R+ and we will represent below each vertex [eα] of ΓΩ by simply
writing the corresponding positive root α = dim(eα). We won’t need to explicitly
determine the irreducible morphisms between two vertices who are linked together
in ΓΩ, we will just draw the arrow in ΓΩ corresponding to the fact that there are
irreducible morphisms.
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The Auslander-Reiten quiver can be computed in a very combinatorial way using
the dimension type of the indecomposable projective modules and the additivity
property of the dimension types on the Auslander-Reiten sequences.

Let NΩ be the following quiver: its set of vertices is N × {1, 2, . . . , n} and,
whenever there is an arrow i ← j in Ω, we draw one arrow (z, i) → (z, j) and one
arrow (z, j)→ (z+ 1, i) for each z ∈ N. Define A(Ω) as the full subquiver of NΩ of
all vertices (z, i) such that 1 ≤ z ≤ (h+ ai− bi)/2 where, for each i ∈ {1, 2, . . . , n},
ai (respectively bi) is the number of arrows in the unoriented path from i to σ(i)
that are directed towards i (respectively σ(i)).

There is a unique isomorphism Ψ: ΓΩ → A(Ω) of quivers such that Ψ([P(k)]) =
(1, k) for each k ∈ {1, 2, . . . , n}. From the dimension types of the indecomposable
projective modules, we can then easily compute ΓΩ using this isomorphism Ψ and
the additivity property of the dimension on the Auslander-Reiten sequences.

We define ρΩ : R+ → {1, 2, . . . n} by ρΩ(α) = i for each α ∈ R+, where Ψ([eα]) =
(z, i) ∈ A(Ω) for some z ∈ N.

Let Z∆ denote the translation quiver associated to the Dynkin graph ∆ as
presented in Figure 13 of section 6.5 of [7]. Note that this implies a choice of indices
for the vertices of ∆. Recall that the set of vertices of Z∆ is Z×{1, 2, . . . , n}. The
translation τ is the function on the set of vertices of Z∆ defined by τ(z, i) = (z−1, i).
There is a unique embedding Ξ of ΓΩ (or A(Ω) under the isomorphism Ψ) into Z∆
such that [P(1)] = Ψ−1(1, 1) is mapped to the vertex (1, 1) of Z∆.

In the examples below, we write the root α =
∑n

i=1 diαi by simply displaying
the values (d1, d2, . . . , dn) in the same pattern as the Dynkin graph ∆ and we have
identified α ∈ R+ with the vertex [eα] of ΓΩ.
Example 2.2. For the quiver Ω: 1 ← 2 → 3 → 4 ← 5 with an underlying graph
of type A5, the Auslander-Reiten quiver is

00011

$$JJJJJJJJJ 00100

$$JJJJJJJJJ 11000

$$JJJJJJJJJ

00010

::ttttttttt

$$JJJJJJJJJ 00111

::ttttttttt

$$JJJJJJJJJ 11100

::ttttttttt

$$JJJJJJJJJ 01000

00110

::ttttttttt

$$JJJJJJJJJ 11111

::ttttttttt

$$JJJJJJJJJ 01100

::ttttttttt

11110

::ttttttttt

$$JJJJJJJJJ 01111

::ttttttttt

$$JJJJJJJJJ

10000

::ttttttttt
01110

::ttttttttt
00001

Example 2.3. For the quiver

3

Ω: 1 // 2

@@�������

��
>>>>>>>

4
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with underlying graph of type D4, the Auslander-Reiten quiver is

001
0

��
@@@@@@@

010
1

��
@@@@@@@

111
0

��
@@@@@@@

000
1

// 011
1

??~~~~~~~
//

��
@@@@@@@

011
0

// 121
1

??~~~~~~~
//

��
@@@@@@@

110
1

// 110
0

��
@@@@@@@

111
1

??~~~~~~~

010
0

??~~~~~~~

100
0

2.4. For two positive roots α, β ∈ R+, we will write β ≺Ω α if and only if there
is a path β = α0 → α1 → α2 → . . . → αk = α from β to α in the Auslander-
Reiten quiver ΓΩ. Here we have identified the positive roots with the corresponding
isomorphism classes of indecomposable modules as in 2.1. For a quiver Ω of ∆
corresponding to our Cartan matrix C, it is known that ≺Ω is a partial order.

2.5. Let i = (i1, i2, . . . , iν) be a reduced expression of w0 adapted to the quiver
Ω. We will now describe all the reduced expressions i′ of w0 in the commutation
class [i].

Theorem. Let EΩ be the set of bijections f : R+ → {1, 2, . . . , ν} such that f(β) <
f(α) whenever α, β ∈ R+ and β → α in ΓΩ. In other words, EΩ is the set of total
orders on R+ compatible with ≺Ω. For a reduced expression i′ of w0, denote by
πi′ : R+ → {1, 2, . . . , ν} the function defined by πi′(α(j)(i′)) = j for j = 1, 2, . . . , ν.

(a) If i′ ∼ i, then πi′ ∈ EΩ.
(b) The function [i]→ EΩ defined by i′ 7→ πi′ is a bijection whose inverse EΩ → [i]

is given by f 7→ (i′1, i
′
2, . . . , i

′
ν) where i′k = ρΩ(f−1(k)) for k = 1, 2, . . . , ν.

Proof. This is Theorem 2.17 of [3] applied to the case of w0.

Example 2.6. If we consider the quiver Ω of Example 2.2 and we represent an
element of EΩ by writing f(α) in the position corresponding to the positive root α
in ΓΩ, then the function f defined by

5

��
>>>>>>> 9

��
@@@@@@@@ 12

  BBBBBBBB

1

@@�������

��
>>>>>>> 7

@@�������

��
>>>>>>> 10

>>||||||||

  BBBBBBBB 15

3

@@�������

��
>>>>>>> 8

??~~~~~~~~

��
@@@@@@@@ 13

>>||||||||

4

@@�������

��
>>>>>>> 11

>>||||||||

  BBBBBBBB

2

@@�������
6

??~~~~~~~~
14

is an element of EΩ and the corresponding reduced expression of w0 adapted to the
quiver Ω (under the bijection given in the above theorem) is (4, 1, 3, 2, 5, 1, 4, 3, 5, 4,
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2, 5, 3, 1, 4). We get this because the quiver A(Ω) is simply

(1, 5)

##GGGGGGGG
(2, 5)

##GGGGGGGG
(3, 5)

##GGGGGGGG

(1, 4)

;;xxxxxxxx

##GGGGGGGG
(2, 4)

;;xxxxxxxx

##GGGGGGGG
(3, 4)

;;xxxxxxxx

##GGGGGGGG
(4, 4)

(1, 3)

;;xxxxxxxx

##GGGGGGGG
(2, 3)

;;xxxxxxxx

##GGGGGGGG
(3, 3)

;;xxxxxxxx

(1, 2)

;;xxxxxxxx

##GGGGGGGG
(2, 2)

;;xxxxxxxx

##GGGGGGGG

(1, 1)

;;xxxxxxxx
(2, 1)

;;xxxxxxxx
(3, 1)

Here the isomorphism Ψ simply maps corresponding vertices of the two quivers ΓΩ

and A(Ω).

2.7. To conclude this section, we will recall some results on almost split sequences
(also called Auslander-Reiten sequences) and Grothendieck groups of artin algebras.
We will describe these results not in full generality as they appeared in [1] and [2],
but rather as they are needed for our situation.

Let V, V′ and V′′ be three modules of the quiver Ω. A morphism f : V → V′′

(respectively g : V′ → V) is said to be right (respectively left) almost split if
(a) it is not a split epimorphism (respectively monomorphism);
(b) any morphism M→ V′′ (respectively V′ →M′) which is not a split epimor-

phism (respectively monomorphism) factors through f (respectively g).

An exact sequence 0→ V′
g→V

f→V′′ → 0 is said to be an almost split sequence
if g is left almost split and f is right almost split.

2.8. Let K(Ω, 0) be the free abelian group with basis the isomorphism classes [M]
of modules M of Ω modulo the subgroup generated by the elements of the form
[V] + [W]− [V⊕W]. It is well known that the set {[M] |M is an indecomposable
module of Ω} is a basis of K(Ω, 0). Due to Theorem 1.8, this means that {[eα] |
α ∈ R+} is a basis of K(Ω, 0).

K(Ω, 0) modulo the subgroup generated by the elements of the form [V′] +
[V′′] − [V] whenever there is an exact sequence 0 → V′ → V → V′′ → 0 is the
Grothendieck group K(Ω) of the category Mod(Ω) of modules of Ω. Denote by
φ : K(Ω, 0)→ K(Ω) the canonical epimorphism.

Consider the bilinear form 〈 , 〉 : K(Ω, 0) ×K(Ω, 0) → Z such that, whenever
V and W are modules of Ω, we have 〈[V], [W]〉 = dimF HomΩ(V,W), where
HomΩ(V,W) is the vector space of morphisms V → W in the category Mod(Ω)
of modules of Ω.

Let V′′ be an indecomposable module of Ω. If V′′ is nonprojective, then there
is a unique, up to isomorphism, almost split sequence 0 → V′

g→V
f→V′′ → 0. We

then associate to V′′, the element rV′′ = [V′] + [V′′] − [V] in K(Ω, 0). If V′′
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is projective, we define rV′′ = [V′′] − [rV′′] ∈ K(Ω, 0) where rV′′ is the unique
maximal submodule of V′′.

From now on, we will denote the element reα of K(Ω, 0) by rα. Here α ∈ R+.

Proposition 2.9. (a) For all α, β ∈ R+, we have

〈[eα], rβ〉 =

{
0, if α 6= β;
1, if α = β.

(b) {rα | α ∈ R+} is a basis of K(Ω, 0).
(c) {rα | α ∈ R+ \ P(Ω)} is a basis of Ker(φ)
(d) For each x ∈ K(Ω, 0), we have

x =
∑
α∈R+

〈[eα], x〉 rα.

Proof. (a) Let i = (i1, i2, . . . , iν) be a reduced expression of w0 adapted to the
quiver Ω. By Lemma 1.1 in [1], we get that

〈[eα], rβ〉 =

{
0, if α 6= β;
〈[eα], [eα]〉, if α = β.

Because eα = Φ−i1Φ−i2 · · ·Φ
−
ik−1

(eik) for some k, 1 ≤ k ≤ ν, and the functors Φ−i give
equivalences between appropriate full subcategories of modules, we get that

〈[eα], [eα]〉 = dimF HomΩk(eik , eik) = 1.

Thus (a) is proved.
(b) and (d) are simply Proposition 2.1 of [1] applied to our situation.
(c) is Theorem 2.3 of [1].

2.10. ΓΩ comes equipped with a translation τ = D ◦Tr where Tr is the transpose
(see chapter IV of [2] for the definition) and D is a duality (see chapter II of [2] for
the definition). We will just list some of the properties of τ that are verified in our
situation.

(a) If P is a projective module, then τ(P) = 0.
(b) If V and W are modules of Ω without projective summands, then V and W

are isomorphic if and only if τ(V) and τ(W) are isomorphic.
(c) τ(

⊕m
i=1 V(i)) is isomorphic to

⊕m
i=1 τ(V(i)) where V(1), V(2), . . . ,V(m)

are modules of Ω.
(d) τ induces a bijection [V] 7→ [τ(V)] (also denote by τ) from the set of in-

decomposable nonprojective modules of Ω into the set of indecomposable
noninjective modules of Ω with Tr ◦D as inverse.

(e) If V is an indecomposable nonprojective module of Ω and Ξ([V]) = (k, i) for
some i ∈ {1, 2, . . . , n} and k ∈ Z, where Ξ is the unique embedding of ΓΩ

into Z∆ defined in 2.1, then Ξ(τ [V]) = (k − 1, i).
(f) If W is an indecomposable nonprojective module, then the set of vertices [V]

of ΓΩ such that [V] → [W] in ΓΩ is equal to the set of vertices [V′] of ΓΩ

such that τ [W]→ [V′] in ΓΩ.
(g) If α ∈ R+\P(Ω), then, for the nonprojective indecomposable module eα of Ω,

there exists an almost split sequence 0→ τ(eα)→ V→ eα → 0 whose middle
term V is isomorphic to the direct sum

⊕
eβ of indecomposable modules eβ

where the sum is over all the positive roots β such that β → α in ΓΩ and this
way we get all almost split sequences of modules of Ω up to isomorphism.
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3. The subset Ci
3.1. Let i = (i1, i2, . . . , iν) be a reduced expression of w0. As in 16 of [11], consider
the set Ci of sequences c = (c1, c2, . . . , cν) ∈ Nν with the following property: for
any two indices p < p′ in {1, 2, . . . , ν} such that ip = ip′ = i and iq 6= i whenever
p < q < p′, we have ∑

q

cq ≥ cp + cp′(∗)

(sum over all q with p < q < p′ such that iq is joined by an edge to i in the Dynkin
graph ∆).

3.2. For the rest of this section, Ω will be a fixed quiver with graph ∆ and i =
(i1, i2, . . . , iν) will be a fixed reduced expression of w0 adapted to the quiver Ω.

3.3. For c = (c1, c2, . . . , cν) ∈ Zν , we will denote by λi,c the unique homomor-
phism of K(Ω, 0) into Z such that λi,c([eα(j)(i)]) = cj for all j ∈ {1, 2, . . . , ν} and
c ∈ Zν . Note that λi,c is well defined because K(Ω, 0) is a free abelian group with
basis {[eα] | α ∈ R+}.

Lemma 3.4. (a) The function Λi : Zν → Hom(K(Ω, 0),Z) defined by c 7→ λi,c

is a well defined isomorphism of abelian groups (dependent on i) whose inverse is
given by λ 7→ c = (c1, c2, . . . , cν) where cj = λ([eα(j)(i)]) for all j ∈ {1, 2, . . . , ν}
and all λ ∈ Hom(K(Ω, 0),Z).

(b) The image Λi(Ci) of Ci under Λi is the subset C′Ω of Hom(K(Ω, 0),Z) con-
sisting of the homomorphisms λ : K(Ω, 0)→ Z such that

λ([eα]) ≥ 0 for all α ∈ R+and λ(rα′ ) ≤ 0 for all α′ ∈ R+ \ P(Ω).

Proof. (a) The proof is left to the reader. It follows easily from the fact that K(Ω, 0)
is a free abelian group with basis {[eα] | α ∈ R+}.

(b) If c = (c1, c2, . . . , cν) ∈ Ci, we want to prove that λi,c ∈ C′Ω. If α ∈ R+,
then α = α(j)(i) for some j ∈ {1, 2, . . . , ν}. Consequently, we get that λi,c([eα]) =
λi,c([eα(j)(i)]) = cj ≥ 0 for all α ∈ R+. If α′ ∈ R+ \ P(Ω), then τ([eα′ ]) = [eα] for
some α ∈ R+ and rα′ = [eα′ ] + [eα]−

∑
β→α′ [eβ] where the last summation is over

all positive roots β such that β → α′ in ΓΩ. This is due to 2.10 (g). By Theorem
2.5 and 2.10 (e), there are two indices p < p′ in {1, 2, . . . , ν} such that α = α(p)(i),
α′ = α(p′)(i), ip = ip′ = i and iq 6= i whenever p < q < p′. By Theorem 2.5 and
2.10 (f), if β ∈ R+ is such that β → α′ in ΓΩ, then α → β in ΓΩ, β = α(q)(i) for
some p < q < p′ and iq = ρΩ(β) is joined by an edge to i = ρΩ(α) in ∆. Conversely,
if q ∈ {1, 2, . . . , ν} is such that p < q < p′, iq is joined by an edge to i in ∆, then
β = α(q)(i) is such that β → α′ in ΓΩ. Because c ∈ Ci, we get that

rα′ = [eα(p′)(i)] + [eα(p)(i)]−
∑
q

[eα(q)(i)] and λi,c(rα′) = cp′ + cp −
∑
q

cq ≤ 0

where the summations
∑
q are over all q such that p < q < p′ and iq is joined to i

by an edge in ∆. So λi,c ∈ C′Ω if c ∈ Ci.
Reciprocally if λ ∈ C′Ω, we want to prove that Λ−1

i (λ) = c = (c1, c2, . . . , cν) ∈ Zν ,
defined by cj = λ([eα(j)(i)]) for j ∈ {1, 2, . . . , ν}, is an element of Ci. First because
λ ∈ C′Ω, we get that cj ≥ 0 for all j and c ∈ Nν . Secondly for any two indices p < p′
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in {1, 2, . . . , ν} such that ip = ip′ = i and iq 6= i whenever p < q < p′, we have for
α = α(p)(i), α′ = α(p′)(i) that eα′ is nonprojective, [eα] = τ([eα′ ]) by 2.10 and

rα′ = [eα′ ] + [eα]−
∑
β→α′

[eβ] = [eα(p′)(i)] + [eα(p)(i)]−
∑
q

[eα(q)(i)]

by the same argument as above. Here the summation
∑

β→α′ is over all positive
roots β such that β → α′ in ΓΩ and the summation

∑
q is over all q such that

p < q < p′ and iq is joined by an edge to i in ∆. Thus cp′+cp−
∑
q cq = λ(rα′ ) ≤ 0.

So c = Λ−1
i (λ) ∈ Ci if λ ∈ C′Ω.

From now on, we will study C′Ω rather that Ci. By the previous lemma, this is
equivalent to studying Ci.

To define C′Ω, there are (2ν − n) inequalities: ν of them of the form λ([eα]) ≥ 0
for α ∈ R+ and (ν − n) of the form λ(rα′ ) ≤ 0 for α′ ∈ R+ \ P(Ω). The next
proposition shows that we only need ν inequalities.

Proposition 3.5. C′Ω is equal to the subset of elements λ of Hom(K(Ω, 0),Z) such
that

λ([eα]) ≥ 0 for all α ∈ B and λ(rα′ ) ≤ 0 for all α′ ∈ R+ \ P(Ω).

Recall that B is the set of simple roots.

Proof. If λ ∈ Hom(K(Ω, 0),Z) is such that λ([eα]) ≥ 0 for all α ∈ B and λ(rα′ ) ≤ 0
for all α′ ∈ R+ \ P(Ω), then we want to prove that λ([eα]) ≥ 0 for all α ∈ R+.
We will do this by induction on the height ht(α) =

∑n
i=1 bi of the positive root

α =
∑n
i=1 biαi.

If ht(α) = 1, then α ∈ B and we have by hypothesis λ([eα]) ≥ 0. If ht(α) > 1,
assume that the result is true for all positive roots with height strictly smaller than
ht(α). Because ht(α) > 1, then α is not a simple root and eα is not a simple module
of Ω. Let V′ be a nonzero proper submodule of eα and V′′ be the quotient eα/V′.
Because eα is not simple, there exist such a proper submodule V′ 6= 0 and we get
V′′ 6= 0. Both V′ and V′′ are sums of indecomposable modules whose dimensions
are positive roots with height smaller than ht(α). Consider x = [V′]+ [V′′]− [eα] ∈
K(Ω, 0). Because 0 → V′ → eα → V′′ → 0 is an exact sequence of modules of Ω,
then x belongs to Ker(φ) and

x =
∑

α′∈R+\P(Ω)

〈[eα′ ], x〉 rα′ .

Note that 〈[eα′ ], x〉 ≥ 0 for all α ∈ R+ \ P(Ω). In fact, by applying the functor
HomΩ(eα′ , ·) to the exact sequence 0 → V′ → eα → V′′ → 0, we get the exact
sequence

0→ HomΩ(eα′ ,V′)→ HomΩ(eα′ , eα)→ HomΩ(eα′ ,V′′)

and consequently

dimF (HomΩ(eα′ ,V′′)) ≥ dimF (HomΩ(eα′ , eα))− dimF (HomΩ(eα′ ,V′)).

This last inequality means that 〈[eα′ ], x〉 ≥ 0.
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Thus we have

λ(x) = λ([V′] + [V′′]− [eα]) = λ

 ∑
α′∈R+\P(Ω)

〈[eα′ ], x〉 rα′


=

∑
α′∈R+\P(Ω)

〈[eα′ ], x〉 λ(rα′ ) ≤ 0,

because λ(rα′ ) ≤ 0 and 〈[eα′ ], x〉 ≥ 0 in the summation. So λ([V′]+[V′′]) ≤ λ([eα]).
Because V′ and V′′ are sums of indecomposable modules whose dimensions are
positive roots with height smaller than ht(α), we get that 0 ≤ λ([V′]) and 0 ≤
λ([V′′]) by induction hypothesis. We can conclude that 0 ≤ λ([eα]). This proves
the proposition.

Lemma 3.6. For each α ∈ R+, define the element xα ∈ K(Ω, 0) by

xα =

{
[eαi ], if α = dim(P(i)) ∈ P(Ω) for some i;
rα, if α ∈ R+ \ P(Ω).

Then {xα | α ∈ R+} is a basis of K(Ω, 0).

Proof. First, note that

dimF HomΩ(P(k), eαi) =

{
1, if k = i;
0, if k 6= i.

The proof of this follows easily from the description of the projective indecom-
posable modules of Ω in 1.9 and the simple module eαi . In fact, if k 6= i, then
either there is no path from k to i in Ω and, in this case P(k)i = 0 and clearly
HomΩ(P(k), eαi) = 0, or there is a path from k to i in Ω and, in this case P(k)i ∼= F ,
P(k)j ∼= F , where j is the unique vertex in this path from k to i such that j → i
in Ω, and P(k)j → P(k)i is an invertible homomorphism, but if there is a ho-
momorphism from P(k) to eαi such that P(k)i → (eαi)i is invertible, then we
get a contradiction by considering the induced map P(k)j → (eαi)i. It is in-
vertible being the composition P(k)j → P(k)i → (eαi)i and it is 0 being the
composition P(k)j → (eαi)j = 0 → (eαi)i. Thus for all k 6= i, we have that
HomΩ(P(k), eαi) = 0.

If k = i, then there is a linear map from P(i)i to (eαi)i sending the constant path
at i (the basis element of P(i)i) to 1 ∈ F = (eαi)i and being 0,P(i)j → (eαi)j for
j 6= i. This gives a basis of HomΩ(P(i), eαi) and we get that dimF HomΩ(P(i), eαi)
= 1.

By Proposition 2.9 (d) and the above remark, we get that

[eαi ] =
∑
β∈R+

〈[eβ ], [eαi ]〉 rβ

= rdim(P(i)) +
∑

β∈R+\P(Ω)

〈[eβ ], [eαi ]〉 rβ .

From this and Proposition 2.9 (b), we get that {[eα] | α ∈ B}∪{rα | α ∈ R+\P(Ω)}
is a basis of K(Ω, 0). So the lemma is proved.
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3.7. For α ∈ R+, define εα to be equal to 1 if α ∈ P(Ω) and −1 if α ∈ R+ \P(Ω).

Theorem 3.8. (a) For each α ∈ R+, there is a unique well defined homomorphism
λα ∈ Hom(K(Ω, 0),Z) such that

λα(xβ) =

{
0, if β 6= α;
εα, if β = α.

Moreover, {λα | α ∈ R+} is a basis of Hom(K(Ω, 0),Z).
(b) λα ∈ C′Ω for all α ∈ R+ and each λ ∈ C′Ω is a linear combination of the λα

with non-negative coefficients. In fact, λ =
∑

α∈R+ εαλ(xα)λα where εαλ(xα) ∈ N
for all α ∈ R+.

(c) If α ∈ P(Ω), then λα is the homomorphism λα = 〈[eα], ·〉 : K(Ω, 0) → Z
defined by x 7→ 〈[eα], x〉 for all x ∈ K(Ω, 0). In particular, if α = dim(P(i)) for
some i ∈ {1, 2, . . . , n} and β =

∑n
k=1 bkαk ∈ R+, then λα([eβ]) = bi.

(d) If α ∈ R+ \ P(Ω), then λα is the homomorphism

λα =

(
n∑
i=1

〈[eα], [eαi ]〉 〈[P(i)], ·〉
)
− 〈[eα], ·〉 : K(Ω, 0)→ Z

defined by

x 7→
(

n∑
i=1

〈[eα], [eαi ]〉 〈[P(i)], x〉
)
− 〈[eα], x〉

for all x ∈ K(Ω, 0).

Proof. (a) Because {xβ | β ∈ R+} is a basis of K(Ω, 0), we easily get that the
λα are unique well defined homomorphisms. Each λ ∈ Hom(K(Ω, 0),Z) can be
written uniquely as the linear combination λ =

∑
α∈R+ εαλ(xα)λα. To see this, we

compute ∑
α∈R+

εαλ(xα)λα(xβ) = εβλ(xβ)εβ = λ(xβ)

for all β ∈ R+ and consequently λ =
∑

α∈R+ εαλ(xα)λα because {xβ | β ∈ R+} is
a basis of K(Ω, 0). This proves (a).

(b) First we will prove that λα ∈ C′Ω for all α ∈ R+. If α = dim(P(i)) ∈ P(Ω)
for some i ∈ {1, 2, . . . , n}, then we have, for β ∈ B, that

λα([eβ ]) =

{
1, if β = αi;
0, if β 6= αi;

and λα(rα′) = 0 for all α′ ∈ R+ \P(Ω). If α ∈ R+ \P(Ω), then λα([eβ ]) = 0 for all
β ∈ B and, for α′ ∈ R+ \ P(Ω),

λα(rα′) =

{
−1, if α′ = α;
0, if α′ 6= α.

Due to Proposition 3.5, λα ∈ C′Ω for all α ∈ R+.
If λ ∈ C′Ω, we see in the proof of (a) that λ =

∑
α∈R+ εαλ(xα)λα. We must

prove that εαλ(xα) ∈ N. If α = dim(P(i)) ∈ P(Ω) for some i ∈ {1, 2, . . . , n},
then εαλ(xα) = λ([eαi ]) ≥ 0 because λ ∈ C′Ω. If α ∈ R+ \ P(Ω), then εαλ(xα) =
−λ(rα) ≥ 0, because λ ∈ C′Ω. In all cases, we have that εαλ(xα) ∈ N.
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(c) If α = dim(P(i)) ∈ P(Ω) for some i ∈ {1, 2, . . . , n}, then we will first prove
that, for β ∈ R+, we have

λα(rβ) =

{
1, if β = α;
0, if β 6= α.

If β ∈ R+ \ P(Ω), then we have λα(rβ) = 0 by definition of λα. If β =
dim(P(k)) ∈ P(Ω) for some k ∈ {1, 2, . . . , n}, then either β is a simple root or
it is not. If β is a simple root, i.e. β = αk, then we have that rβ = [eαk ] and

λα([eαk ]) =

{
1, if k = i (i.e. β = α);
0, if k 6= i (i.e. β 6= α).

If β is not a simple root, then we have a short exact sequence

0→ rP(k)→ P(k)→ eαk → 0

of modules of Ω where rP(k) is the unique maximal submodule of P(k) and con-
sequently the element x = [rP(k)]− [P(k)] + [eαk ] = [eαk ]− rβ belongs to Ker(φ).
Thus x is a sum of the form x =

∑
α′∈R+\P(Ω)〈[eα′ ], x〉 rα′ and

λα(x) = λα([eαk ]− rβ) = λα

 ∑
α′∈R+\P(Ω)

〈[eα′ ], x〉 rα′


=

∑
α′∈R+\P(Ω)

〈[eα′ ], x〉 λα(rα′ ) = 0.

So

λα(rβ) = λα([eαk ]) =

{
1, if k = i (i.e. β = α);
0, if k 6= i (i.e. β 6= α).

We can now use what we have just proved. By Proposition 2.9 (d), we have that
x =

∑
β∈R+〈[eβ ], x〉 rβ for all x ∈ K(Ω, 0). By applying λα, we get that

λα(x) = λα

 ∑
β∈R+

〈[eβ ], x〉 rβ


=
∑
β∈R+

〈[eβ ], x〉 λα(rβ) = 〈[eα], x〉

for all x ∈ K(Ω, 0).
To complete the proof of (c), we need to prove λdim(P(i))([eβ ]) = 〈[P(i)], [eβ ]〉 = bi

where β =
∑n

k=1 bkαk. This is proved by Ringel in the lemma of section 2.4 in [16].
This finishes the proof of (c).

(d) Recall that we have shown in the proof of Lemma 3.6 that

〈[P(k)], [eαi ]〉 =

{
1, if k = i;
0, if k 6= i.
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If α ∈ R+ \ P(Ω), then we will first show that

λα(rβ) =


−1, if β ∈ R+ \ P(Ω) and β = α;
0, if β ∈ R+ \ P(Ω) and β 6= α;
〈[eα], [eαi ]〉, if β = dim(P(i)) ∈ P(Ω) for some i.

For β ∈ R+ \ P(Ω), we have by definition of λα that

λα(rβ) =

{
−1, if β = α;
0, if β 6= α.

Now we consider the root β = dim(P(i)) ∈ P(Ω) for some i ∈ {1, 2, . . . , n}. By
Proposition 2.9 (d) and the above remark, we get that

[eαi ] =
∑
α′∈R+

〈[eα′ ], [eαi ]〉 rα′ =
∑

α′∈P(Ω)

〈[eα′ ], [eαi ]〉 rα′ +
∑

α′∈R+\P(Ω)

〈[eα′ ], [eαi ]〉 rα′

= rdim(P(i)) +
∑

α′∈R+\P(Ω)

〈[eα′ ], [eαi ]〉 rα′ .

By applying λα and because λα([eαi ]) = 0, we get that

0 = λα(rdim(P(i))) + λα

 ∑
α′∈R+\P(Ω)

〈[eα′ ], [eαi ]〉 rα′


= λα(rdim(P(i))) +

∑
α′∈R+\P(Ω)

〈[eα′ ], [eαi ]〉λα(rα′ )

= λα(rdim(P(i))) + (−1)〈[eα], [eαi ]〉.
Thus λα(rdim(P(i))) = 〈[eα], [eαi ]〉.

We can now use this. By Proposition 2.9 (d), we have for all x ∈ K(Ω, 0) that
x =

∑
β∈R+〈[eβ ], x〉rβ . By applying λα, we get that

λα(x) = λα

 ∑
β∈R+

〈[eβ ], x〉 rβ

 =
∑
β∈R+

〈[eβ ], x〉 λα(rβ)

=

(
n∑
i=1

〈[eα], [eαi ]〉 〈[P(i)], x〉
)
− 〈[eα], x〉.

This proves (d).

3.9. The previous theorem can easily be applied to compute the values of λα on
[eβ] for all α, β ∈ R+. In other words, we can easily get Λ−1

i (λα) = (c1, c2, . . . , cν),
because cj = λα([eα(j)(i)]).

After recalling the notion of additive functions on Z∆ as defined in 6.5 of [7],
we will also recall how these functions can be used to compute λα([eβ ]) for all
α, β ∈ R+. We will later illustrate this process in an example.

An integer-valued function δ on the set of vertices of Z∆ is said to be additive
if, for each vertex x, it satisfies the equation

δ(x) + δ(τ(x)) =
∑
y→x

δ(y)

where the sum is over all arrows y → x in Z∆.
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A slice of Z∆ is any connected full subquiver of Z∆ which contains a unique
representative of the vertices (z, i), z ∈ Z, for each i ∈ {1, 2, . . . , n}. For each vertex
x of Z∆, there is a unique well determined slice admitting x as its unique source
and we will call it the slice starting at x.

It is easy to verify that an additive function δ is uniquely determined by its
values on a slice and these values can be chosen arbitrarily. We will denote by δx
the unique additive function which has value 1 on the slice starting at x and we
will call it the additive function starting at x. It is possible to prove that if S is a
slice through x and y ∈ S, then δx(y) = 1 or 0 according to whether or not there is
a path from x to y within S.

If α ∈ P(Ω), then the homomorphism λα = 〈[eα], ·〉 : K(Ω, 0) → Z of Theorem
3.8 (c) has the following values on the basis {[eβ] | β ∈ R+} of K(Ω, 0):

λα([eβ ]) = 〈[eα], [eβ ]〉 = δΞ([eα])(Ξ([eβ ])),

where Ξ is the unique embedding of ΓΩ into Z∆ given in 2.1 and δΞ([eα]) is the
additive function on Z∆ starting at Ξ([eα]).

We can see this as follows. Because eα is projective, 〈[eα], ·〉 is such that
〈[eα], [V′]〉 + 〈[eα], [V′′]〉 − 〈[eα], [V]〉 = 0 for all short exact sequences 0 → V′ →
V → V′′ → 0 of modules of Ω. In particular, this is true for all almost split se-
quences of modules of Ω and this means that the function f defined on {Ξ([eβ ]) |
β ∈ R+} by f(Ξ([eβ ])) = 〈[eα], [eβ]〉 is the restriction of an additive function on
Z∆. By using the description of the projective indecomposable modules of Ω, it is
easy to prove that for i, j ∈ {1, 2, . . . , n}, we have

〈P(i),P(j)〉 =

{
1, if there is a path in Ω from j to i;
0, otherwise.

From this we get that the above additive function δ is the additive function δΞ([P(i)])

for α = dim(P(i)).
If α ∈ R+ \ P(Ω), then the homomorphism 〈[eα], ·〉 : K(Ω, 0)→ Z that appears

in the formula of λα in Theorem 3.8 (d) has the following values on the basis
{[eβ] | β ∈ R+} of K(Ω, 0):

〈[eα], [eβ]〉 =

{
δΞ([eα])(Ξ([eβ ])), if α ≺Ω β;
0, otherwise;

where δΞ([eα]) is the additive function on Z∆ starting at Ξ([eα]) and ≺Ω has been
defined in 2.4.

We can see this as follows. For α, β ∈ R+ and α 6= β, then any f ∈ HomΩ(eα, eβ)
is a sum of compositions of irreducible morphisms between indecomposable modules
of Ω because of Theorem 7.8 and Exercise 7 of chapter V of [2]. If 〈[eα], [eβ]〉 6= 0,
then there exists a nonzero f ∈ HomΩ(eα, eβ) and consequently by expressing this f
as a sum of compositions of irreducible morphisms, we see that there is a path in ΓΩ

from [eα] to [eβ ] corresponding to one of these nonzero compositions of irreducible
morphisms. Thus α ≺Ω β.

If α ≺Ω β, we would like to show that

〈[eα], [eβ]〉 = δΞ([eα])(Ξ([eβ ])).

We can fix an irreducible expression i = (i1, i2, . . . , iν) of w0 adapted to Ω. Then
α = si1si2 · · · sik−1(αik), β = si1si2 · · · sik′−1

(αik′ ) with k < k′, because α ≺Ω β

and by using Theorem 2.5. We have eα = Φ−i1Φ−i2 · · ·Φ
−
ik−1

(eik), eβ = Φ−i1Φ−i2 · · ·
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Φ−ik′−1
(eik′ ) and HomΩ(eα, eβ) ' HomΩk(eik ,Φ

−
ik
· · ·Φik′−1

(eik′ )) using the fact that
the Φ−i are equivalences between appropriate subcategories of modules. But eik is
a projective indecomposable module of Ωk and we can then use the same argument
as above when α is projective to see that dimF (HomΩk(eik , ·)) can be described
by an additive function. Analysing the relation between the Auslander-Reiten
quivers of Ω and Ωk (see for example Lemma 2.10 in [3]) we can conclude that
〈eα, eβ〉 = δΞ([eα])(Ξ([eβ ])) when α ≺Ω β.

For α ∈ R+ \ P(Ω), we can use this description of 〈[eα], ·〉 to determine the
values 〈[eα], [eαi ]〉 for i = 1, 2, . . . , n. Note that α ≺Ω αi if 〈[eα], [eαi ]〉 6= 0. Denote
IΩ(α) = {1 ≤ i ≤ n | α ≺Ω αi}. Thus if α ≺Ω β, we have

λα([eβ]) =

 ∑
i∈IΩ(α)

δΞ([eα])(Ξ([eαi ])) δΞ([P(i)])(Ξ([eβ ]))

− δΞ([eα])(Ξ([eβ ])).

Otherwise, we have

λα([eβ ]) =

 ∑
i∈IΩ(α)

δΞ([eα])(Ξ([eαi ])) δΞ([P(i)])(Ξ([eβ ]))

 .

Example 3.10. Let Ω be the quiver with underlying graph of type D4 of Example
2.3. If we consider first the root α = α2 + α3 + α4 represented by 011

1 in the
Auslander-Reiten quiver ΓΩ, then eα = P(2) and α ∈ P(Ω). The slice starting at
011

1 goes through the vertices

110
0, 011

1, 010
1, 011

0.

The values λα([eβ]) = 〈[P(2)], [eβ ]〉 given by Theorem 3.8 (c) are written below at
the position of β in ΓΩ:

0

��
>>>>>>> 1

��
>>>>>>> 1

��
>>>>>>>

0 // 1

@@�������
//

��
>>>>>>> 1 // 2

@@�������
//

��
>>>>>>> 1 // 1

��
>>>>>>>

1

@@�������
1

@@�������
0

They are given by the restriction of the additive function starting at 011
1.

We now consider the root α = α1 + 2α2 + α3 + α4 represented by 121
1 in the

Auslander-Reiten quiver ΓΩ. In this case, α ∈ R+ \P(Ω). The slice starting at 121
1

goes through the vertices

010
0, 121

1, 111
0, 110

1.



322 ROBERT BÉDARD

The values 〈[eα], [eβ]〉 for β ∈ R+ are written below at the position of β in ΓΩ:

0

��
>>>>>>> 0

��
>>>>>>> 1

��
>>>>>>>

0 // 0

@@�������
//

��
>>>>>>> 0 // 1

@@�������
//

��
>>>>>>> 1 // 2

��
>>>>>>>

0

@@�������
1

@@�������
1

We have {β ∈ B | α ≺Ω β} = {α1, α2}. In fact, 〈[eα], [eα1 ]〉 = 〈[eα], [eα2 ]〉 = 1.
Thus λα = 〈[P(1)], ·〉 + 〈[P(2)], ·〉 − 〈[eα], ·〉. The values 〈[P(1)], [eβ ]〉 for β ∈ R+

are written below at the position of β in ΓΩ:

0

��
>>>>>>> 0

��
>>>>>>> 1

��
>>>>>>>

0 // 0

@@�������
//

��
>>>>>>> 0 // 1

@@�������
//

��
>>>>>>> 1 // 1

��
>>>>>>>

1

@@�������
0

@@�������
1

We gave above the values 〈[P(2)], [eβ ]〉 for β ∈ R+. Finally, we get that the
values λα([eβ]) are written below at the position of β in ΓΩ:

0

��
>>>>>>> 1

��
>>>>>>> 1

��
>>>>>>>

0 // 1

@@�������
//

��
>>>>>>> 1 // 2

@@�������
//

��
>>>>>>> 1 // 0

��
>>>>>>>

2

@@�������
0

@@�������
0

To end this section, we will describe for each α ∈ R+ the set of i, 1 ≤ i ≤ n, such
that 〈eα, eαi〉 6= 0 and also give these nonzero values 〈eα, eαi〉 6= 0 in two cases:
first, in the case where the underlying graph of the quiver Ω is of type An and
second, in the case where the quiver is alternating for any underlying graph of type
A, D or E. In these two cases, the formula of Theorem 3.8 (d) can then easily be
made more explicit.

3.11. Given a quiver Ω with underlying graph ∆ and a positive root α =
∑n

i=1 biαi
∈ R+, we recall that the support of α is supp(α) = {1 ≤ i ≤ n | bi 6= 0}. We will
denote by Ω(α) the subquiver of Ω whose underlying graph consists of the full
subgraph of ∆ whose set of vertices is the support supp(α) of α.

Proposition 3.12. Let Ω be a quiver whose underlying graph ∆ is of type An and
a positive root α ∈ R+. Then 〈[eα], [eαi ]〉 6= 0 if and only if i is a source of Ω(α).
In the case that i is a source of Ω(α), then 〈[eα], [eαi ]〉 = 1.

Proof. It is possible to describe eα. In fact, we easily get that eα is isomorphic to
the module V = ((Vj)1≤j≤n, (fjk)j→k) such that

Vj =

{
F, if j ∈ supp(α);
0, otherwise;
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and

fjk =

{
IdF , if j, k ∈ supp(α) and j → k in Ω;
0, otherwise.

Also, eαi is isomorphic to the module W = ((Wj)1≤j≤n, (gjk)j→k) such that

Wj =

{
F, if j = i;
0, otherwise

and gjk = 0 for all j → k in Ω.

If i is a source of Ω(α), then it is not difficult to verify that Υ(a) : V → W
defined by

Υ(a)j =

{
a IdF , if j = i;
0, otherwise;

for each a ∈ F gives a homomorphism of modules of Ω. Because both dimF (Vi) =
dimF (Wi) = 1 and dimF (Wj) = 0 for j 6= i, we get that 〈[eα], [eαi ]〉 = 1.

If i is not a source of Ω(α), then there exists a vertex i′ ∈ supp(α) such that
i′ → i is an edge in Ω(α). If Υ : V →W is a morphism, then by considering the
commuting diagram

F = Vi′

0

��

IdF // Vi = F

Υi

��

0 = Wi′
0 // Wi = F

we get that Υi = 0 and consequently that 〈[eα], [eαi ]〉 = 0. This proves the propo-
sition.

3.13. Let Ω be a quiver whose underlying graph is of type An with n ≥ 1, Dn

with n ≥ 4 or En with n = 6, 7, 8. We say that Ω is alternating if and only if each
vertex is either a sink or a source.

For example the quiver

4

1 // 2 3oo

@@�������

��
>>>>>>>

5
is such an alternating quiver of type D5.

Proposition 3.14. Let Ω be an alternating quiver as defined above and a positive
root α =

∑n
i=1 biαi ∈ R+. Then 〈[eα], [eαi ]〉 6= 0 if and only if i is a source of Ω(α).

In the case that i is a source of Ω(α), then 〈[eα], [eαi ]〉 = bi.

Proof. Write eα = V = ((Vj)1≤j≤n, (fjk)j→k). We have dimF (Vj) = bj for all j =
1, 2, . . . , n. Note that eαi is isomorphic to the module W = ((Wj)1≤j≤n, (gjk)j→k)
such that

Wj =

{
F, if j = i;
0, otherwise;

and gjk = 0 for all j → k in Ω.
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If i is a source of Ω(α), then for each A ∈ HomF (Vi,Wi), we get a homomorphism
ΥA : V→W defined by Υ(A)i = A and Υ(A)j = 0. It is not difficult to check that
A 7→ Υ(A) gives an isomorphism HomΩ(eα, eαi) ' HomF (Vi,Wi). From this, we
can conclude that 〈[eα], [eαi ]〉 = dimF (HomF (Vi,Wi)) = dimF (Vi) = bi, because
Wi = F .

If i is not a source of Ω(α), then i is a sink of Ω. We will first prove that⊕
i′→i

fi′i :
⊕
i′

i′→i

Vi′ → Vi

is surjective, where the sum
⊕

i′→i fi′i is over all edges in Ω ending at i. Assume
that

⊕
i′→i fi′i is not surjective. Let V′ = ((V ′j )1≤j≤n, (f ′jk)j→k) be defined by

V ′j =

image(
⊕
i′→i

fi′i), if j = i;

Vj , if j 6= i;
and f ′jk = fjk whenever j → k in Ω

and also let V′′ = ((V ′′j )1≤j≤n, (f ′′jk)j→k) be defined by

V ′′j =

{
V ′′i , if j = i;
0, if j 6= i;

and f ′′jk = 0 whenever j → k in Ω,

where V ′′i is any subspace of Vi such that Vi = V ′′i ⊕ (image(
⊕

i′→i fi′i)). Note
that we have dimF (V ′′i ) 6= 0, because we assume that

⊕
i′→i fi′i is not surjective.

It is not difficult to verify that both V′ and V′′ are submodules of V and that
V = V′ ⊕ V′′. But this contradicts the fact that eα is indecomposable. Thus⊕

i′→i fi′i is surjective.
If Υ : V→W is a morphism, then, by considering the commuting diagram⊕

i′ Vi′

0

��

⊕
i′→i fi′i // Vi

Υi

��

0 =
⊕

i′Wi′
0 // Wi = F

where the direct sum
⊕

i′ Vi′ is over all the vertices i′ joined to i by an edge, we get
that Υi ◦ (

⊕
i′→i fi′i) = 0. Because (

⊕
i′→i fi′i) is surjective, we get that Υi = 0.

Because Wj = 0 for all j 6= i, we can conclude that 〈[eα], [eαi ]〉 = 0 when i is not a
source of Ω(α).

4. Monomials

In this last section, we will recall the definition of the quantized enveloping
algebra U associated to the Cartan matrix C and then consider monomials in U
corresponding to elements in the Lusztig cones.

4.1. Let v be an indeterminate. We can attach to C its quantized enveloping
algebra U. This is an associative algebra over Q(v) with generators Ei, Fi, Ki,
K−1
i (1 ≤ i ≤ n) and relations

(r.1) KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi;
(r.2) KiEj = vaijEjKi, KiFj = v−aijFjKi;
(r.3) EiFj − FjEi = δij((Ki −K−1

i )/(v − v−1)), where δij = 1 if i = j and δij = 0
if i 6= j;
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(r.4) E2
i Ej − (v+ v−1)EiEjEi+EjE

2
i = 0 if aij = −1, EiEj −EjEi = 0 if aij = 0;

(r.5) F 2
i Fj − (v + v−1)FiFjFi + FjF

2
i = 0 if aij = −1, FiFj − FjFi = 0 if aij = 0.

We denote by U+ the subalgebra generated by the elements Ei for all i ∈
{1, 2, . . . , n}.

Given an integer N ≥ 0 and 1 ≤ i ≤ n, we define

[N ]! = ΠN
k=1((vk − v−k)/(v − v−1)) ∈ Q(v)

and we will denote ENi /[N ]! by E(N)
i .

4.2. Let MΩ be the set of pairs (f, g) of functions f : R+ → {1, 2, . . . , ν} and
g : R+ → N such that f is a bijection belonging to EΩ. (EΩ has been defined in
2.5.)

To such a pair (f, g) ∈MΩ, we can associate a monomial E(f, g) in U+ by

E(f, g) = E
(c1)
i1

E
(c2)
i2
· · ·E(cν)

iν

where ij = ρΩ(f−1(j)) and cj = g(f−1(j)) for j = 1, 2, . . . , ν.

Example 4.3. Let Ω be the quiver Ω : 1 ← 2 → 3 → 4 ← 5 of type A5. The
Auslander-Reiten quiver ΓΩ of Ω is given in Example 2.2. Consider the pair (f, g) of
functions f : R+ → {1, 2, . . . , ν} and g : R+ → N such that each value (f(α), g(α))
is written below at the position of the positive root α in the quiver ΓΩ:

(5, 1)

$$HHHHHHHHH (9, 2)

$$IIIIIIIII (12, 3)

$$IIIIIIIII

(1, 4)

;;wwwwwwwww

##GGGGGGGGG (7, 5)

::vvvvvvvvv

$$HHHHHHHHH (10, 6)

99ttttttttt

%%JJJJJJJJJ (15, 7)

(3, 8)

::vvvvvvvvv

$$HHHHHHHHH (8, 9)

::uuuuuuuuu

$$IIIIIIIII (13, 10)

::uuuuuuuuu

(4, 11)

::vvvvvvvvv

$$HHHHHHHHH (11, 12)

99ttttttttt

%%JJJJJJJJJ

(2, 13)

::vvvvvvvvv
(6, 14)

::uuuuuuuuu
(14, 15)

We have that (f, g) ∈MΩ and

E(f, g) = E
(4)
4 E

(13)
1 E

(8)
3 E

(11)
2 E

(1)
5 E

(14)
1 E

(5)
4 E

(9)
3 E

(2)
5 E

(6)
4 E

(12)
2 E

(3)
5 E

(10)
3 E

(15)
1 E

(7)
4 .

Lemma 4.4. Let (f1, g) and (f2, g) be two elements of MΩ. Then E(f1, g) =
E(f2, g).

Proof. Fix a reduced expression i of w0 adapted to the quiver Ω. Because f1

and f2 both belong to EΩ, there exist two reduced expressions i′ and i′′ of w0

both belonging to the commutation class [i] such that f1 = πi′ and f2 = πi′′ .
This follows from Theorem 2.5. So there is a sequence i′ = i0, i1, . . . , ip = i′′ of
reduced expressions of w0 such that iq+1 is related to iq by a short braid relation
for q = 0, 1, . . . , (p− 1). To prove the lemma, it is then enough to prove it with the
hypothesis that f1 = πi′ , f2 = πi′′ and i′′ is related to i′ by a short braid relation.
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If i′ = (i′1, i
′
2, . . . , i

′
ν) and i′′ = (i′′1 , i

′′
2 , . . . , i

′′
ν), then there exists 1 ≤ m < ν such

that

i′′j =


i′j , if j 6= m, (m+ 1);
i′m+1, if j = m;
i′m, if j = m+ 1;

and ai′mi′m+1
= 0. We easily get that

α(j)(i′′) =


α(j)(i′), if j 6= m,m+ 1;
α(m+1)(i′), if j = m;
α(m)(i′), if j = m+ 1.

If we write c′′j = g(f−1
2 (j)) and c′j = g(f−1

1 (j)) for j = 1, 2, . . . , ν, then we also get
that

c′′j =


c′j , if j 6= m, (m+ 1);
c′m+1, if j = m;
c′m, if j = (m+ 1).

Because ai′mi′m+1
= 0, we get that

E(f2, g) = E
(c′′1 )

i′′1
E

(c′′2 )

i′′2
· · ·E(c′′ν )

i′′ν

= E
(c′1)

i′1
E

(c′2)

i′2
· · ·E(c′(m−1))

i′(m−1)
E

(c′(m+1))

i′(m+1)
E

(c′m)
i′m

E
(c′(m+2))

i′(m+2)
· · ·E(c′ν)

i′ν

= E
(c′1)

i′1
E

(c′2)

i′2
· · ·E(c′(m−1))

i′(m−1)
E

(c′m)
i′m

E
(c′(m+1))

i′(m+1)
E

(c′(m+2))

i′(m+2)
· · ·E(c′ν)

i′ν

= E(f1, g).

4.5. For a quiver Ω and a function g : R+ → N, we define E(Ω, g) to be E(f, g)
where f is any element of EΩ. By the previous lemma, E(Ω, g) is well defined. Note
also that if λ ∈ C′Ω and g : R+ → N is defined by g(α) = λ([eα]) for all α ∈ R+,
then the monomials E(Ω, g) are the ones considered by Lusztig in section 16 of [11].

Theorem 4.6. Let Ω, Ω′ be two quivers with the same underlying graph ∆ and let
g : R+ → N be a function such that g(α + β) = g(α) + g(β) whenever α, β and
α+ β ∈ R+. Then

E(Ω, g) = E(Ω′, g).

Proof. Let i = (i1, i2, . . . , iν) be a reduced expression of w0. Denote by E(i, g) the
monomial

E(i, g) = E
(c1)
i1

E
(c2)
i2
· · ·E(cν)

iν
where g(α(j)(i)) = cj for j = 1, 2, . . . , ν.

We will first prove that E(i, g) = E(j, g) for any reduced expressions i, j of w0, As we
have indicated in 1.3, there is a sequence i = i0, i1, . . . , ip = j of reduced expressions
of w0 such that iq+1 is related to iq by either a short braid relation or by a long
braid relation. So it is enough to prove that E(i, g) = E(j, g) whenever j is related
to i by a short braid relation or by a long braid relation. Write i = (i1, i2, . . . , iν),
j = (j1, j2, . . . , jν), ck = g(α(k)(i)) and c′k = g(α(k)(j)).
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If j is related to i by a short braid relation, then there exists an integer m,
1 ≤ m ≤ (ν − 1) such that

jk =


ik, if k 6= m, (m+ 1);
im+1, if k = m;
im, if k = (m+ 1);

with aimim+1 = 0. We also have

α(k)(j) =


α(k)(i), if k 6= m, (m+ 1);
α(m+1)(i), if k = m;
α(m)(i), if k = (m+ 1);

and

c′k =


ck, if k 6= m, (m+ 1);
c(m+1), if k = m;
cm, if k = (m+ 1).

Thus

E(j, g) = E
(c′1)
j1

E
(c′2)
j2
· · ·E(c′ν)

jν

= E
(c1)
i1

E
(c2)
i2
· · ·E(c(m−1))

i(m−1)
E

(c(m+1))

i(m+1)
E

(cm)
im

E
(c(m+2))

i(m+2)
· · ·E(cν)

iν

= E
(c1)
i1

E
(c2)
i2
· · ·E(c(m−1))

i(m−1)
E

(cm)
im

E
(c(m+1))

i(m+1)
E

(c(m+2))

i(m+2)
· · ·E(cν)

iν

= E(i, g),

because aimim+1 = 0 and EimEi(m+1) = Ei(m+1)Eim .
If j is related to i by a long braid relation, then there exists an integer m,

1 ≤ m ≤ (ν − 2) such that

jk =


ik, if k 6= m, (m+ 1), (m+ 2);
im+1, if k = m, (m+ 2);
im, if k = (m+ 1);

with im = i(m+2) and aimim+1 = −1. We also have that

α(k)(j) =


α(k)(i), if k 6= m, (m+ 2);
α(m+2)(i), if k = m;
α(m)(i), if k = (m+ 2);

and

c′k =


ck, if k 6= m, (m+ 2);
c(m+2), if k = m;
cm, if k = (m+ 2).

Because we have that α(m+1)(i) = α(m)(i) + α(m+2)(i), we get that c(m+1) =
g(α(m+1)(i)) = g(α(m)(i)) + g(α(m+2)(i)) = cm + c(m+2).

Note also that we have E(b)
i E

(b+c)
i′ E

(c)
i = E

(c)
i′ E

(b+c)
i E

(b)
i′ where aii′ = −1 and

b, c ∈ N. See for example Proposition 2.3 or Example 3.4 in [9].



328 ROBERT BÉDARD

Thus

E(j, g) = E
(c′1)
j1

E
(c′2)
j2
· · ·E(c′ν)

jν

= E
(c1)
i1

E
(c2)
i2
· · ·E(c(m−1))

i(m−1)
E

(c(m+2))

i(m+1)
E

(c(m+1))

im
E

(cm)
i(m+1)

E
(c(m+3))

i(m+3)
· · ·E(cν)

iν

= E
(c1)
i1

E
(c2)
i2
· · ·E(c(m−1))

i(m−1)
E

(cm)
im

E
(c(m+1))

i(m+1)
E

(c(m+2))

im
E

(c(m+3))

i(m+3)
· · ·E(cν)

iν

= E(i, g).

If i is adapted to the quiver Ω, then we easily get that E(i, g) = E(πi, g) = E(Ω, g).
By choosing i adapted to Ω and j adapted to Ω′, then we have that E(Ω, g) =
E(i, g) = E(j, g) = E(Ω′, g).

Proposition 4.7. Let Ω be a quiver and λ ∈ C′Ω be such that λ(rα′ ) = 0 for all
α′ ∈ R+ \P(Ω). Define the function g : R+ → N by g(α) = λ([eα]) for all α ∈ R+.
Then g(α+ β) = g(α) + g(β) whenever α, β and α+ β belong to R+.

Proof. By Theorem 3.8 (b) and because xα = rα and λ(rα) = 0 if α ∈ R+ \
P(Ω), we have that λ =

∑
α∈R+ εα λ(xα) λα =

∑
α∈P(Ω) λ([xα]) λα. So λ =∑n

i=1 λ([eαi ])λdim(P(i)). By Theorem 3.8 (c), we get easily that, whenever α,
β and α + β belong to R+, we have that λdim(P(i))([eα]) + λdim(P(i))([eβ ]) =
λdim(P(i))([e(α+β)]). From this, we get that g(α + β) = g(α) + g(β) whenever
α, β and α+ β belong to R+.
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E-mail address: bedard@lacim.uqam.ca

http://www.ams.org/mathscinet-getitem?mr=99j:17023
http://www.ams.org/mathscinet-getitem?mr=82j:16056
http://www.ams.org/mathscinet-getitem?mr=87f:16027
http://www.ams.org/mathscinet-getitem?mr=40:7339

	0. Introduction
	1. Notations and basic facts
	1.1. 
	1.2. 
	1.3. 
	1.4. 
	1.5. 
	1.6. 
	1.7. 
	1.9. 
	1.10. 

	2. Auslander-Reiten quivers and reduced expressions
	2.1. 
	2.4. 
	2.5. 
	2.7. 
	2.8. 
	2.10. 

	3. The subset Ci
	3.1. 
	3.2. 
	3.3. 
	3.7. 
	3.9. 
	3.11. 
	3.13. 

	4. Monomials
	4.1. 
	4.2. 
	4.5. 

	Acknowledgment
	References

