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COMMUTATIVE QUANTUM CURRENT OPERATORS,
SEMI-INFINITE CONSTRUCTION

AND FUNCTIONAL MODELS

JINTAI DING AND BORIS FEIGIN

Abstract. We construct the commutative current operator x̄+(z) inside

Uq(ŝl(2)). With this operator and the condition of quantum integrability on

the quantum currents of Uq(ŝl(2)), we derive the quantization of the semi-

infinite construction of integrable modules of ŝl(2) which has been previously

obtained by means of the current operator e(z) of ŝl(2). The quantization of

the functional models for ŝl(2) is also given.

1. Introduction

In this paper, we fix the notation that z, w, zi are commuting formal variables.
Given a current operator

ā(z) =
∑
Z
ā(n)z−n,

if

[ā(z), ā(w)] = 0,

which is equivalent to the condition that all the components ā(n) commute with
each other, then we call the current operator ā(z) a commutative current operator.
Here, we also assume that the current operator ā(z) always acts on a space F in
a truncated way such that, for any element v ∈ F , there exists an integer m such
that

ā(n)v = 0

if n > m. In this case, if a current operator ā(z) is commutative, then ā(z)n =
ā(z)× ā(z) · · · ×ā(z), for n ∈ Z>0, is a well defined current operator.

For any integrable highest weight module of ŝl(2) of level k, the commutative
current operators e(z) and f(z) of ŝl(2) satisfy the following relations:

e(z)k+1 = f(z)k+1 = 0,

which we call the condition of integrability [LP]. For any integrable highest weight
module of ŝl(2), there is a natural grading such that the grade of any homogeneous
element is always larger or equal to zero and the action of x(n) changes the grade of
a homogeneous element by −n. This ensures that the current operators from ŝl(2)
always act in a truncated way. For the case of quantum affine algebras, Drinfeld
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presented a formulation of affine quantum groups with generators in the form of
current operators [Dr3], which, for the case of Uq(ŝl(2)), give us the quantized
current operators corresponding to e(z) and f(z) of ŝl(2). In [DM], we derive the
quantum integrability condition for Uq(ŝl(2)). On any level k integrable highest
weight module of Uq(ŝl(2)), the matrix coefficients of x+(z1)x+(z2) · · ·x+(zk+1) are
zero at z2/z1 = z3/z2 = · · · = zk+1/zk = q2, and those of x−(z1)x−(z2) · · ·x−(zk+1)
are zero at z1/z2 = z2/z3 = · · · = zk/zk+1 = q2, where x+(z) and x−(z) are the
quantized current operators of Uq(ŝl(2)) corresponding to e(z) and f(z) of ŝl(2)
respectively. In the case of ŝl(2), the condition of integrability was used by Feigin
and Stoyanovsky [FS1], [FS2] to construct a level k module from a semi-infinite
tensor of the components of the current operator e(z) of ŝl(2) and to use the function
models to describe the dual spaces. With the condition of quantum integrability,
still we cannot simply derive the quantization of the semi-infinite construction,
because of the noncommutativity of the current operator x+(z), which is that

[x+(z), x+(w)] 6= 0.

Thus we have to modify the current operator x+(z) to “force” it to be a commuta-
tive current operator. We use the subalgebra coming from the Heisenberg algebra
of Uq(ŝl(2)) to construct a commutative current operator x̄+(z) = Σx̄iz−i such that
the condition

x̄+(z1)x̄+(z1q
2) · · · x̄+(z1q

2k) = 0

is satisfied as well. Then the quantization of the semi-infinite construction simply
follows. Namely, the integrable modules of Uq(ŝl(2)) can be identified with the
space consisting of semi-infinite expressions x̄+

i1
· · · x̄+

in · · · , whose tails stabilize in a
certain way and x̄+

i acts by multiplication. Due to the introduction of the parameter
q, we can describe the action of the operators explicitly, especially the action of the
operator a−1 which corresponds to the operator h−1 of ŝl(2). As in the case of [FS2],
the functional models for the dual spaces of the subspace generated by x̄+(z) on
the highest weight vector in any irreducible integrable module of level k are derived
by using symmetric functions f(t1, . . . , tn), which are zero when t1 = t2q

2 = · · · =
tk+1q

2k.

2. Uq(ŝl(n)) and commutative quantum current operators

For the case of affine quantum groups, Drinfeld gave a realization of those alge-
bras in the form of current operators [Dr3]. We will first present such a realization
for the case of Uq(ŝl(n)).

Let A = (aij) be the Cartan matrix of type An−1.

Definition 1. The algebra Uq(sln) is an associative algebra with unit 1 and the
generators ϕi(−m), ψi(m), x±i (l), for i = 1, . . . , n − 1, l ∈ Z and m ∈ Z≥0 and a
central element c. Let x±i (z) =

∑
l∈Z x

±
i (l)z−l, ϕi(z) =

∑
m∈Z≤0

ϕi(m)z−m and
ψi(z) =

∑
m∈Z≥0

ψi(m)z−m. In terms of the formal variables, the defining relations



332 JINTAI DING AND BORIS FEIGIN

are

ϕi(0)ψi(0) = ψi(0)ϕi(0) = 1,

ϕi(z)ϕj(w) = ϕj(w)ϕi(z),

ψi(z)ψj(w) = ψj(w)ψi(z),

ϕi(z)ψj(w)ϕi(z)−1ψj(w)−1 =
gij( zwq

−c)
gij( zwq

c)
,

ϕi(z)x±j (w)ϕi(z)−1 = gij(
z

w
q∓

1
2 c)±1x±j (w),

ψi(z)x±j (w)ψi(z)−1 = gij(
w

z
q∓

1
2 c)∓1x±j (w),

[x+
i (z), x−j (w)] =

δi,j
q − q−1

{
δ(
z

w
q−c)ψi(wq

1
2 c)− δ( z

w
qc)ϕi(zq

1
2 c)
}
,

(z − q±aijw)x±i (z)x±j (w) = (q±aijz − w)x±j (w)x±i (z),

[x±i (z), x±j (w)] = 0 for aij = 0,

x±i (z1)x±i (z2)x±j (w)− (q + q−1)x±i (z1)x±j (w)x±i (z2)

+ x±j (w)x±i (z1)x±i (z2) + {z1 ↔ z2} = 0, for aij = −1

where

δ(z) =
∑
k∈Z

zk, gij(z) =
qaijz − 1
z − qaij about z = 0.

We define a grading on this algebra such that x±i (n), ϕi(n) and ψi(n) are of
degree n. We also assume that q is a non-zero complex number, which is also not
a root of unity; c always acts as a constant; and qc is defined by the value of the
analytic function ex log q at x = c.

Clearly, we have that x+(z) is not a commutative current operator. In order to
modify this operator, we have to rewrite the operators ϕi(z) and ψi(z) with new
operators ai,n for n ∈ Z6=0. From now on, we assume that our current operators
act on a highest weight module, where ϕi(0) and ψi(0), with a suitable weighted
basis of the module, act as invertible and diagonal operators.

For the case of Uq(sl2), where we will write x±1 (z) as x±(z), a1,n as an, ψ1(z)
as ψ(z) and ϕ1(z) as ϕ(z). Because ψ(0) and ϕ(0) are invertible and diagonal, the
new operators are defined as

− (q − q−1)
∑
k>0

a−kz
k = log(1 + (ϕ(z)ϕ(0)−1 − 1))

=
∑
n>0

(−ϕ(z)ϕ(0)−1 + 1)n/n,

(q − q−1)
∑
k<0

a−kz
k = log(1 + (ψ(z)ψ(0)−1 − 1))

=
∑
n>0

(−ψ(z)ψ(0)−1 + 1)n/n,
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where the right side of the first formula is understood as an infinite series over
n > 0. We also have that

ϕ(z) = ϕ(0) exp[−(q − q−1)
∑
k>0

a−kz
k],

ψ(z) = ψ(0) exp[(q − q−1)
∑
k<0

a−kz
k].

Proposition 2.

[ak, al] = δk+l,0(q2k − q−2k)(qc − q−c)/(k(q − q−1)2),

[ak, x±(l)] = (q2k − q−2k)q∓|c|/2x±(k + l)/(k(q − q−1)),

where k, l are not zero.

Let k−(z) be a current operator in Uq(ŝl(2)) such that

(I) k−(z) = 1 +
∑
n>0

k−(n)z−n,

(II) k−(z)x+(w) =
z − wq2

z − w x+(w)k−(z),

where k−(n) are operators of degree n, k−(n)k−(m) = k−(m)k−(n) and z−wq2

z−w is
expanded about zero.

Let x̄+(w) = x+(w)k−(w), then we have

Proposition 3.

(z − w)x̄+(z)x̄+(w) = (z − w)x̄+(w)x̄+(z).

The proof comes from the following calculation:

(z − w)x̄+(z)x̄+(w) = (z − w)x+(z)k−(z)x+(w)k−(w)

= (z − w)
z − wq2

z − w x+(z)x+(w)k−(z)k−(w)

= (zq2 − w)x+(w)x+(z)k−(w)k−(z)

= x+(w)k−(w)x+(z)k−(z)(zq2 − w)
(
w − zq2

w − z

)−1

= (z − w)x̄+(w)x̄+(z).

Theorem 4.

x̄+(z)x̄+(w) = x̄+(w)x̄+(z).

Proof. Let Vk be a highest weight module of Uq(ŝl(2)) and V ∗k be its restricted
dual. Let v ∈ Vk and v∗ ∈ V ∗k . First, we have that 〈v∗, x+(z)x+(w)v〉 is a formal
infinite series in z, w, z−1, w−1. However, we know that this infinite series converges
in the complex domain 0 < |w| << |z| in C2, which we can extend to C2 as a
single-valued holomorphic function through analytic continuation. Now, we treat
〈v∗, x+(z)x+(w)v〉 as this complex function. We will denote it by F (z, w)v,v∗ , which
we call the correlation function. From the commutation relation between x+(z) and
x+(w), we know that the function F (z, w)v,v∗ is zero when z = w, thus F (z, w)v,v∗
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always has a factor z − w. This implies that F (z, w)v,v∗ does not have a pole at
z = w, thus

x̄+(z)x̄+(w) = x̄+(w)x̄+(z)

follows from

(z − w)x̄+(z)x̄+(w) = (z − w)x̄+(w)x̄+(z).

Proposition 5. Let

k−(z) = exp[(q − q−1)
∑
n>0

−qn(2+c/2)/(1 + q2n)anz−n].

Then k−(z) satisfies (I) and (II).

Now, we will denote x+(z) exp[(q − q−1)
∑

n>0−qn(2+c/2)/(1 + q2n)anz−n] by
x̄+(z) throughout this paper.

Let k+(z) be a current operator in Uq(ŝl(2)) such that

(I’) k+(z) = 1 + Σn<0k
+(n)z−n,

(II’) k+(z)x+(w) =
z − w
zq2 − wx

+(w)k+(z),

where k+(n) are operators of degree n, k+(n)k+(m) = k+(m)k+(n) and z−w
zq2−w is

expanded about zero. Let x̃+(w) = k+(w)x+(w). Then we have

Proposition 6.

(z − w)x̃+(z)x̃+(w) = (z − w)x̃+(w)x̃+(z).

The proof comes from the following calculation:

(z − w)x̃+(z)x̃+(w) = (z − w)k+(z)x+(z)k+(w)x+(w)

= (z − w)
z − wq2

z − w k+(z)k+(w)x+(z)x+(w)

= (zq2 − w)k+(z)k+(w)x+(w)x+(z)

= k+(w)x+(w)k+(z)x+(z)(zq2 − w)
(

z − w
zq2 − w

)
= (z − w)x̃+(w)x̃+(z).

Theorem 7.

x̃+(z)x̃+(w) = x̃+(w)x̃+(z).

The proof is the same as that of Theorem 4 above.

Proposition 8. Let

k+(z) = exp[−(q − q−1)
∑
n<0

−qn(2+c/2)/(1 + q2n)anz−n].

Then k+(z) satisfies the condition (I’) and (II’).
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Now, we will denote the operator

exp[−(q − q−1)
∑
n<0

−qn(2+c/2)/(1 + q2n)anw−n]x+(w)

by x̃+(w).
For the case of Uq(sln), the new operators are defined as

− (q − q−1)
∑
k>0

ai,−kz
k = log(1 + (ϕi(z)ϕi(0)−1 − 1))

=
∑
n>0

(−ϕi(z)ϕi(0)−1 + 1)n/n,

(q − q−1)
∑
k<0

ai,−kz
k = log(1 + (ψi(z)ψi(0)−1 − 1))

=
∑
n>0

(−ψi(z)ψi(0)−1 + 1)n/n.

We also have that

ϕi(z) = ϕi(0) exp[−(q − q−1)
∑
k>0

ai,−kz
k],

ψi(z) = ψi(0) exp[(q − q−1)
∑
k<0

ai,−kz
k].

Let

k+
i (z) = exp[−(q − q−1)

∑
n<0

−qn(2+c/2)/(1 + q2n)ai,nz−n],

and

k−i (z) = exp[(q − q−1)
∑
n>0

−qn(2+c/2)/(1 + q2n)ai,nz−n].

Let

x̄+
i (z) = x+

i (z)k−i (z),

and

x̃+
i (z) = k+

i (z)x+
i (z).

Theorem 9.

x̄+
i (z)x̄+

i (w) = x̄+
i (w)x̄+

i (z),

x̃+
i (z)x̃+

i (w) = x̃+
i (w)x̃+

i (z).

It is obvious that both the set of current operators ϕi(z), ψi(z), x̃+
i (z) and x−i (z)

and the set of the current operators ϕi(z), ψi(z), x̄+
i (z) and x−i (z) generate the

quantum affine algebra Uq(ŝl(n)). The reformulation of the quantum affine algebra
Uq(ŝl(n)) with current operators ϕi(z), ψi(z), x̄+

i (z) and x−i (z) is the key for the
quantized semi-infinite construction in the next section; namely, we need to use the
kernel coming from the current operator x̄+

i (z) to define the semi-infinite space.
Now, we will restrict ourselves to the case of Uq(ŝl(2)). The case for Uq(ŝl(n)) can
be dealt with in a similar way [FS1].

For the case of Uq(ŝl(2)), the relations between ψ(z), x̄+(z) is the same as that
of ψ(z), x+(z), however, the rest are changed, which we write below.
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Proposition 10.

ϕ(z)x̄+(w)ϕ(z)−1 = f1(
z

w
)g(

z

w
q−

1
2 c)x̄+(w),

f2(w/z)x̄+(z)x−(w) − x−(w)x̄+(z)

=
δi,j

q − q−1

{
δ(
z

w
q−c)ψ(wq

1
2 c)k−(z)− δ( z

w
qc)ϕ(zq

1
2 c)k−(z)

}
,

x̄+(z)x̄+(w) = x̄+(w)x̄+(z),

where

f1(
z

w
) =

(
(1− z

w q
2qc/2)(1 − z

wq
c/2)

(1− z
w q

2q3c/2)(1 − z
wq

3c/2)

)−1

and

f2(w/z) = (q2qcw/z − 1)(w/zqc − 1).

Similarly, one can write down the relations between ϕ(z), ψ(z), x̃+(z) and x−(z),
which we omit here. In the next section, we will use x̄+(z) instead of x+(z) as the
current operator for our semi-infinite construction of representations of Uq(ŝl(2)).

3. Quantum integrability condition and semi-infinite construction

The integrability condition of the current operator e(z) induces the semi-infinite
construction for the unquantized case. The quantum integrability condition was
studied in [DM], which is stated as the following:

Theorem 11. For any level k ≥ 1 integrable highest weight module of Uq(ŝl(2)),
the correlation function of x+(z1)x+(z2) · · ·x+(zk)x+(zk+1) is zero if z2/z1 = z3/z2

= · · · = zk+1/zk = q2, the correlation function of x−(z1)x−(z2) · · ·x−(zk)x−(zk+1)
is zero if z1/z2 = z2/z3 = · · · = zk/zk+1 = q2.

However, this condition cannot be directly used for the semi-infinite construc-
tion, because of the noncommutativity of the current operator x+(z) of Uq(ŝl(2)).
However, the theorem above implies:

Corollary 12. For any level k ≥ 1 integrable highest weight module of Uq(ŝl(2)),

x̄+(z1)x̄+(z2) · · · x̄+(zk)x̄+(zk+1) = 0

if z2/z1 = z3/z2 = · · · = zk+1/zk = q2.

Proof. Let F̄ (z1, . . . , zn) be the correlation function of a vector v in any level k ≥ 1
integrable module of Uq(ŝl(2)) and v∗ in the dual space of this level k module,
〈v∗, x̄+(z1)x̄+(z2) · · · x̄+(zk)x̄+(zk+1)v〉. Then we have

〈v∗, x̄+(z1)x̄+(z2) · · · x̄+(zk)x̄+(zk+1)v〉

= 〈v∗,
∏
i<j

(zi − zjq2)
zi − zj

x+(z1)x+(z2) · · ·x+(zk)x+(zk+1)

× k+(z1)k+(z2) · · · k+(zk)k+(zk+1)v〉.

Because 〈v∗, x+(z1)x+(z2) · · ·x+(zk)x+(zk+1)v1〉 for a vector v1 is zero in any level
k ≥ 1 integrable module of Uq(ŝl(2)) if z2/z1 = z3/z2 = · · · = zk+1/zk = q2, and
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the function (
∏
i<j

(zi−zjq2)
zi−zj )−1 is not zero if z2/z1 = z3/z2 = · · · = zk+1/zk = q2,

we have

F̄ (z1, . . . , zn) = 0.

With the preparation above, in this section, we will describe a quantized semi-
infinite construction along the line of [FS1], [FS2]. Their starting point for the
case of ŝl(2) is the integrability condition for level k integrable modules, namely,
any level k highest weight module is an integrable module if and only if e(z)k+1 is
zero.

Similarly, we can make the following claim:

Theorem 13. Any level k module of Uq(ŝl(2)) from the category of representations
with highest weight is a sum of irreducible integrable representations if and only if
x̄+(z)x̄+(zq2) · · · x̄+(zq2k) is zero.

Proof. The theorem above already gives the proof for half of the theorem. The other
half comes from the fact that if we quotient by the relation q = 1, the condition
that x̄+(z)x̄+(zq2) · · ·x+(zq2k) is zero simply degenerates into the condition that
e(z)k+1 is zero. Thus, it is integrable as a module of ŝl(2). From the theory of
Lusztig, we know that all the integrable highest weight modules must come from
the corresponding quantized module. Thus the module is also an integrable module
when q is generic.

We will start our semi-infinite construction with the irreducible integrable mod-
ule V0,1 with the highest weight vector v0,1 such that the weight of the highest
weight vector is 0 and the central element c acts as 1.

Let x̄+(z) = Σx̄+
i z
−i and U(x̄) be the subalgebra generated by x̄+

i . We denote
by U(x̄)− the subalgebra generated by x̄+

n , n ≥ 0 and by U(x̄)+ the subalgebra
generated by x̄+

n , n < 0. Let W = U(x̄)v0,1. Because U(x̄)+v0,1 = 0, we have that
W is equivalent to U(x̄)+/Iv0,1, where I is an ideal.

Lemma 14. The ideal I is generated by S1
k =

∑
i≤k−i x̄ix̄k−i(q

2i + q2k−2i), for
k < −1.

Proof. From the quantum integrability condition above, we know that the elements
S1
k for k < −1 are inside the ideal I. We will denote the ideal generated by those

elements by I ′. The proof follows from that fact that U(x̄)+/Iv0,1 has the same
character as the case when we quotient by the relation q− 1 = 0. Thus I = I ′.

Definition 15. V̄0,1 is a vector space with the basis of infinite monomials M of
xi1xi2 · · ·xin · · · , where {i1, i2, . . . } is an infinite sequence of indices such that, for
some n, in is odd and ip+1 = ip + 2, if p > n. Let V0,1 be a quotient space of V̄0,1,
the quotient is given by the following relations:

(1) x̄i and x̄j commute, if i 6= j.
(2) If an element m ∈ V̄0,1 contains a segment x̄ux̄2N+1x̄2N+3x̄2N+5 · · · and u >

2N − 1, then m = 0.
(3) The operator Sk =

∑
a+b=k,a≤b x̄ax̄b(q

2b + q2a) acts on V̄0,1 by Skv = 0 for
v ∈ V̄0,1.
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We define the action of x̄i simply by multiplication. The action of ai for i > 0
is given by

aix̄i1 x̄i2 · · ·
= [ai, x̄i1 ]x̄i2 · · ·+ x̄i1 [ai, x̄i2 ]x̄i3 · · ·

+ x̄i1 x̄i2 · · · [ai, x̄in ]x̄in+1 · · · .
This is a finite expression. We define the action of a0 by

a0(x̄2N+1x̄2N+3x̄2N+5 · · · ) = −2Nx̄2N+1x̄2N+3x̄2N+5 · · · .
The action of a−1 is defined as

a−1x̄1x̄3x̄5 · · ·
= x̄0x̄3x̄5 · · ·+ x̄1x̄2x̄5 · · ·+ x̄1x̄3x̄4x̄7x̄9 · · ·+ x̄1x̄3x̄5x̄6x̄9 + · · ·

= x̄0x̄3x̄5 · · · −
(q6 + 1)
(q4 + q2)

x̄0x̄3x̄5 · · ·+
(q6 + 1)
(q4 + q2)

(q10 + q4)
(q6 + q8)

x̄0x̄3x̄5 + · · ·

= x̄0x̄3x̄5 · · ·
1

1 + (q6+1)
(q4+q2)

.

Thus, it converges if | (q6+1)
(q4+q2) | < 1.

We would like to define the action of a−2 as

a−2x̄1x̄3x̄5 · · ·
= (q2 − q−2)(x̄−1x̄3x̄5 · · ·+ x̄1x̄1x̄5 · · ·+ x̄1x̄3x̄3x̄7x̄9 · · ·+ x̄1x̄3x̄5x̄5x̄9 + · · · )

= (q2 − q−2)(x̄−1x̄3x̄5 · · · −
(

(q4 + 1)
(2q)

x̄0x̄2x̄5 · · ·+
(q6 + q−2)

(2q)
x̄−1x̄3x̄5 · · ·

)
−
(

(q10 + q2)
(q6 + q6)

x̄1x̄1x̄5x̄7 · · ·+
(q8 + q4)
(q6 + q6)

x̄1x̄2x̄4x̄7 · · ·
)
· · · .

To use the relations (1), (2), (3) to reduce this expression to prove the convergence
of the expression is very complicated. Similar problems appears in defining the
action of a−n, n > 2.

Thus, we will use the same trick played in [FS1]. Let V̄0,1(r) be the subspace of
V̄0,1, which consists of the elements x̄i1 · · · x̄in · · · and ij > r for any j.

Lemma 16. V̄0,1(r) spans the whole space V0,1.

Proof. The proof is the same as that of Lemma 2.5.1 in [FS1] by using the relation
(3) to express any element in V0,1 with linear combination of elements in V0,1(r).

For any element expressed in a linear combination of elements in V̄0,1(r), we
define the action of x−(k) from x−(z) =

∑
x−(k)z−k, for k+ r > 0, as that of a−1

by using the commutation relations between x̄+(z) and x̄−(z). Because k + r > 0,
we know that it is well defined. As in [FS1], this is a well defined action, namely, if
we express an element in two different ways in V̄0,1(r), the actions of x−(k) defined
above coincide. Again, with the commutation relation between x̄+(z) and x−(z),
we can define the action of an, n < −1, because x̄+(z) and x−(z) generate the whole
algebra. Thus, we have

Theorem 17. There exists an action of Uq(ŝl(2)) on the space V̄0,1, such that V̄0,1

is equivalent to V0,1 as a representation of Uq(ŝl(2)) and the action of x̄i acts by
multiplication.
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Let W̄ be the set of the elements x̄i1 · · · x̄in · · · in V̄0,1, such that ij+1 − ij > 1.

Proposition 18. W̄ forms a basis of the space V̄0,1.

The proof is the same as in [FS1] which gives the character of the representation.
Similarly, as in [FS2], a functional model for the description of W̄ ∗, the dual

space of W̄ , can be derived from the lemma above.
As a commutative algebra, U(x̄) can be identified with the space C[t, t−1]. Let

U(x̄)+ =
⊕
U(x̄)+(n), where U(x̄)+(n) consists of the elements x̄+

i1
x̄+
i2
· · · x̄+

in
. We

identify any element x̄+
i1
x̄+
i2
· · · x̄+

in
in U(x̄)+(n) as ti11 · · · tinn , where ti are vari-

ables. Similarly, we can express any element x̄+
i1
x̄+
i2
· · · x̄+

im
in W̄ as ti11 · · · timm . Let

Sn(Ω1C) be the space spanned by the expressions f(t1, . . . , tn)dt1 · · · dtn, such that
f(t1, . . . , tn) is a symmetric function. Sn(Ω1C) is also called the space of n particles.
We can pair Sn(Ω1C) with U(x̄)+(n) by

〈f(t1, . . . , tn)dt1 · · · dtn, ti11 · · · tinn 〉
= Residuet1=···=tn=0(f(t1, . . . , tn)ti11 · · · tinn dt1 · · · dtn).

Thus, W̄ ∗ =
⊕
W̄ ∗

⋂
Sn(Ω1C).

Theorem 19.

W̄ ∗
⋂
Sn(Ω1C) = {f(t1, . . . , tn)dt1 · · · dtn : f = 0, if t1 = t2q

2}.
Similarly, we can present the semi-infinite constructions for the higher level cases.
Let Vl,k be the irreducible highest weight representation of Uq(ŝl(2)) with the

action of c as k, the highest weight as l times the fundamental weight and vl,k its
highest weight vector. Let Wl,k = U(x̄)vl,k. Because U(x̄)+vl,k = 0, we have that
Wl,k is equivalent to U(x̄)+/Il,kvl,k, where Il,k is an ideal.

Lemma 20. The ideal Il,k is generated by

Sk+1
i =

∑
∑
ai=−i,ai≤aj

x̄a1 x̄a2 · · · x̄ak+1(
∑

σ∈Sk+1

(q
∑
σ(i)=2,K+1 2(σ(i)−1)aσi)),

i < −k and x̄k−l+1
−1 , if k − l + 1 > 0.

Definition 21. Let V̄l,k be the space spanned by the elements of

x̄i1 · · · x̄in x̄l2N x̄k−l2N+1x̄
l
2N+2x̄

k−l
2N+3 · · · ,

such that
(1) x̄i commutes with x̄j ;
(2) if an element m ∈ V̄ contains a part x̄ix̄l2N x̄

k−l
2N+1x̄

l
2N+2x̄

k−l
2N+3 · · · , i > 2N−1

or x̄ix̄k−l2N+1x̄
l
2N+2x̄

k−l
2N+3 · · · , i > 2N , then m = 0;

(3) the operator

Sk =
∑

∑
ai=n

x̄a1 x̄a2 · · · x̄ak+1(
∑

σ∈Sk+1

(q
∑
σ(i)=2,K+1 2(σ(i)−1)aσi))

acts on V̄l,k by Skv = 0 for v ∈ V̄l,k, where Sk+1 is the permutation group on
k + 1 numbers.

Theorem 22. On the space V̄l,k, there is an action of Uq(ŝl(2)) , such that the
action of x̄+(n) is given by comultiplication. This representation is the irreducible
highest weight representation of Uq(ŝl(2)) with the action of c as k and the highest
weight is l times the fundamental weight.
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Let W̄(l,k) be the set of the elements x̄i1 · · · x̄in · · · in V̄l,k, such that ij+k−ij > 1.

Proposition 23. W̄(l,k) forms a basis of the space V̄l,k.

As in the case of V̄0,1, let U(x̄)+ =
⊕
U(x̄)+(n), where U(x̄)+(n) consists of

the elements x̄+
i1
x̄+
i2
· · · x̄+

in
. We identify any element x̄+

i1
x̄+
i2
· · · x̄+

in
in U(x̄)+(n) as

ti11 · · · tinn , where ti are variables. Similarly, we can express any element x̄+
i1
x̄+
i2
· · · x̄+

im

in Wl,k as ti11 · · · timm . Let Sn(Ω1C) be the space of expressions f(t1, . . . , tn)dt1 · · ·
dtn, such that f(t1, . . . , tn) is a symmetric function and different dti commute.
Sn(Ω1C) is also called the space of n particles. We can pair Sn(Ω1C) with U(x̄)+(n)
by

〈f(t1, . . . , tn)dt1 · · · dtn, ti11 · · · tinn 〉
= Residuet1=···=tn=0(f(t1, . . . , tn)ti11 · · · tinn dt1 · · · dtn).

Thus W̄ ∗l,k =
⊕
W̄ ∗l,k

⋂
Sn(Ω1C).

Theorem 24.

W̄ ∗l,k
⋂
Sn(Ω1C) = {f(t1, . . . , tn)dt1 · · · dtn : f = 0

if t1 = t2q
2 = · · · = tk+1q

2(k) or t1 = · · · tk−l+1 = 0}

if k − l+ 1 > 0.

In Section 2, we define the operator x̄+
i (z). It is clear that this can also be

applied to other cases. Our next step is to extend the semi-infinite construction to
the cases of Uq(ĝ), where g is a simply-laced simple Lie algebra, for which we need
to define the proper x̄+

α (z) associated to the roots of g. The simplest case g = sl(3)
will be the subject of a subsequent paper. On the other hand, this paper follows the
algebraic theory developed in [FS1], [FS2], [FS3]. The semi-infinite constructions
can be geometrically understood according to the structure of the corresponding
infinite dimensional flag manifold and the infinite Schubert cells. The geometric
interpretation of the quantized semi-infinite construction is still an open problem.
This is related to another immediate problem to extend the explicit construction
of the modular functors [FS2] to the quantized case. This should lead us toward
the quantization of conformal field theory. It is also possible to extend such a
construction to even more general cases. From the point of view of the functional
realization of the dual space, one generalization is to substitute the condition x1 =
x2q

2, which is a generalization of the classical condition x1 = x2, with more general
conditions, for example, x1 = x2q1 = x3q2. One would like to ask the following
question: what kind of structures are behind the corresponding generalized spaces?
We believe it is related to the recent work about the generalization of the quantum
affine algebras [DI], where these kind of new conditions should be satisfied for the
quantum current operators. We hope our construction can help us to understand
the structures of those new algebras in [DI], for which we have not yet been able
to give any concrete realization of the non-trivial integrable representations.
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