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ON THE GENERIC DEGREES OF CYCLOTOMIC ALGEBRAS

GUNTER MALLE

Abstract. We determine the generic degrees of cyclotomic Hecke algebras
attached to exceptional finite complex reflection groups. The results are used
to introduce the notion of spetsial reflection group, which in a certain sense is
a generalization of the finite Weyl group. In particular, to spetsial W there is
attached a set of unipotent degrees which in the case of a Weyl group is just
the set of degrees of unipotent characters of finite reductive groups with Weyl
group W , and in general enjoys many of their combinatorial properties.

1. Introduction

Cyclotomic algebras are certain deformations of the group algebras of finite
complex reflection groups, defined analogously to Iwahori-Hecke algebras for Weyl
groups. These cyclotomic algebras seem to play an important role in the under-
standing of the representation theory of finite groups of Lie type (see for example
[3]). At the moment, the properties of cyclotomic algebras are not yet fully under-
stood. This paper is devoted to the study of certain numerical invariants attached
to them, the generic degrees.

It is conjectured (and known in all but finitely many cases [16]) that the cyclo-
tomic algebra H = H(W,u) of an irreducible finite complex reflection group W is
symmetric over the ground ring A = Z[u,u−1], such that the corresponding trace
form t vanishes on all basis elements Tw for w ∈ W , w 6= 1 reduced. Since t is a
trace form, it can be expressed as a sum t =

∑
φ 1/cφ φ of irreducible characters

of H with non-vanishing coefficients. The cφ appearing as coefficients are called
the Schur elements of H (with respect to t). In this paper we compute the Schur
elements with respect to any trace form as above for the exceptional complex re-
flection groups. The method is an extension of [13] where the 2-dimensional case
was considered.

In the final section we use the results obtained so far to introduce the so-called
spetsial reflection groups (as announced in [14]). This is a subclass of all finite
complex reflection groups, which includes in particular all those which can already
be defined over the real numbers. It can be defined by a variety of equivalent char-
acterizations all related to the Schur elements (see Prop.8.1). At present there is no
conceptual understanding of the equivalence of these properties, even in the case
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of finite Coxeter groups (where they are always satisfied). It would be very inter-
esting to find such an explanation, since this property is a necessary and sufficient
condition for the existence of unipotent degrees attached to a complex reflection
group W , i.e., for W behaving like the Weyl group of some as yet mysterious object
generalizing the concept of an algebraic group see (Section 8.3).

2. Cyclotomic Hecke algebras

We recall the definition and some properties of cyclotomic Hecke algebras, some
facts about character values, and some basic properties of symmetric algebras.

2A. The cyclotomic algebra of a complex reflection group. Let W be a
finite irreducible complex reflection group on the vector space V . The ring of
invariants of W in the symmetric algebra S(V ) of V is a polynomial ring, generated
by homogeneous invariants of degrees d1, . . . , dn, with n = dim(V ). The Poincaré
polynomial PW of W is given by PW :=

∏n
j=1(xdj − 1)/(x− 1). For an irreducible

character φ ∈ Irr(W ) the fake degree is defined as

Rφ := (x − 1)nPW
1
|W |

∑
w∈W

detV (w)φ(w)
detV (x− w)

∈ Z[x] ,(2.1)

where detV denotes the determinant on V . The b-value of φ ∈ Irr(W ) is the order
of zero at x = 0 of the fake degree Rφ.

Let D be the diagram associated to W in [5]. This defines a presentation of W
on a set of generators S with order relations sds = 1 for s ∈ S, together with certain
homogeneous relations, the so-called braid relations. The braid group B = B(W )
associated to W is by definition the group generated by a set {s | s ∈ S} in bijection
with S, subject to the braid relations of D. Let u = (us,j | s ∈ S, 0 ≤ j ≤ ds − 1)
be transcendentals over Z, such that us,j = ut,j whenever s and t are conjugate in
W . The generic cyclotomic Hecke algebra H(W,u) of W with parameter set u is
defined to be the quotient

H(W,u) := Z[u,u−1]B/I, with I = (
ds−1∏
j=0

(s− us,j) | s ∈ S)(2.2)

of the group algebra of B over A := Z[u,u−1] by the ideal I generated by certain
deformed order relations. We will write Tw for the image in H(W,u) of an element
w = s1 . . . sk ∈ B. Any ring homomorphism f : Z[u,u−1] → R endows R with an
A-module structure, and we write

HR(W,u) := H(W,u)⊗A R
for the corresponding specialization. Note that such a homomorphism f is uniquely
determined by the images f(us,j), s ∈ S, 0 ≤ j ≤ ds− 1. A specialization of H will
be called admissible if the specialization

us,j 7→ exp(2πij/ds) for s ∈ S, 0 ≤ j ≤ ds − 1,(2.3)

to the group algebra of the complex reflection group W factors through it. One par-
ticularly important example is the 1-parameter specialization H(W,x) of H(W,u)
induced by the map

fx : us,j 7→
{
x j = 0,
exp(2πij/ds) j > 0,

(2.4)
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where x is an indeterminate. This is the analogue of the usual 1-parameter Iwahori-
Hecke algebra for real W .

Henceforth, we will make the following assumption:

Assumption 2.5 . The cyclotomic algebra H(W,u) is free over A = Z[u,u−1] of
rank |W |.

This assumption is known to hold for all infinite families of irreducible reflection
groups and for some of the remaining 34 exceptional groups (see the references in
[15]). We conjecture it to be true in all cases [5, Sect. 4].

2B. Character values. Let k be the character field of the reflection representation
of W . So k is a finite cyclotomic extension of Q and we write µ(k) for the group
of roots of unity in k. For s ∈ S, 0 ≤ j ≤ ds − 1, let vs,j be such that v|µ(k)|

s,j =
exp(−2πij/ds)us,j and set KW := k(v). We extend the specialization (2.3) to
Z[v,v−1] by

vs,j 7→ 1 for s ∈ S, 0 ≤ j ≤ ds − 1 .(2.6)

By [15, Thm. 5.2] it is known that KW is a splitting field for H. In particular,
the values of all irreducible characters on an A-basis of H are contained in KW .
Furthermore, it follows from Assumption 2.5 and Tits’ deformation theorem that
HKW is isomorphic to the group algebra KWW , and the specialization (2.6) induces
a bijection

Irr(W ) ∼−→ Irr(HKW ), φ 7→ φv ,(2.7)

between Irr(HKW ) and Irr(W ) which furthermore carries over to any admissible
specialization of Hk[v,v−1].

In [5] we defined a certain central element π ∈ Z(B) which maps to the identity
under the canonical epimorphism B → W . Clearly, its image Tπ in H is also
central. Thus, it acts as a scalar in any (absolutely) irreducible representation
of HKW . Extending an idea of Springer, Broué and Michel have observed that
this allows evaluation of irreducible characters on roots of Tπ without knowing the
corresponding representation explicitly. Let us describe this method.

Let S′ be a system of representatives of the generators in S up to conjugation
in W . Write π = s1 . . . sl in B. For s ∈ S′ let Ns = |{j | sj ∼ s}| denote the
number of factors in the decomposition of π conjugate to s. (This does not depend
on the chosen expression for π, as is seen by evaluating linear characters of B.) For
an irreducible character φ of W let mφ

s,j denote the multiplicity of the eigenvalue
exp(2πij/ds) of s in a representation affording φ.

Proposition 2.8 (Broué-Michel [6]). Let w ∈ B such that wd = π for some d ≥ 1.
Then the value of the irreducible character φv ∈ Irr(HKW ) on T lw is given by

φv(T lw) = φ(wl)
∏
s∈S′

ds−1∏
j=0

v
l|µ(k)|mφs,jNs/dφ(1)

s,j .

It can be shown by a general argument that mφ
s,jNs/φ(1) is always an integer

(see [6, 4.17]). As a consequence of [15, Thm. 5.2], which relies on a case-by-case
analysis, the exponent |µ(k)|mφ

s,jNs/dφ(1) in Proposition 2.8 has to be integral
unless φ(w) = 0.
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2C. Symmetrizing forms. By what we saw in 2A the cyclotomic algebra H is
isomorphic to the group algebra of W over the splitting field KW . Since KWW
is a symmetric algebra, the same is true for HKW . Thus there exists a symmetric
form 〈 , 〉 : H⊗H → KW on H . Moreover, this can be normalized such that the
associated trace form tu : H(W,u) → KW defined by tu(h) := 〈1, h〉 under (2.3)
specializes to the canonical trace form on the group algebra of W . Over the splitting
field KW of H(W,u), we may write tu as a sum over the irreducible characters of
HKW with non-vanishing coefficients:

tu =
∑

φ∈Irr(W )

1
cφ
φv .

The cφ are called Schur elements of H(W,u) (with respect to tu). A basis C of
H with 1 ∈ C is called quasi-symmetric (with respect to tu) if tu(T ) = δT,1 for
T ∈ C. Thus for any quasi-symmetric basis, the (inverses of the) Schur elements
are uniquely determined by the linear system∑

φ∈Irr(W )

c−1
φ φv(T ) = δT,1 (for T ∈ C) .(2.9)

Here, already the equations on a subset of C whose image under specialization to
W covers all conjugacy classes yield a system of maximal rank.

It is well-known that for Coxeter groups W the Iwahori-Hecke algebra H(W )
carries a canonical symmetrizing form endowing it with a structure of symmetric
algebra over A. This form is characterized by the fact that the standard basis
elements form a quasi-symmetric basis (see [8, Prop. 8.1.1]). The Schur elements
with respect to this form are explicitly known in all cases.

It was shown in [16] for all but finitely many irreducible complex reflection groups
W that there exists a symmetrizing form tu on H(W,u) making it a symmetric al-
gebra over A (i.e., the form has Gram matrix invertible over A). Moreover, there
exists a quasi-symmetric basis with respect to tu consisting of monomials in the gen-
erators Ts, s ∈ S. Furthermore, restriction of tu to parabolic subalgebras gives the
corresponding symmetrizing form there. The Schur elements of this symmetrizing
form were determined explicitly in [7].

On the other hand, in [13] we dealt with the 2-dimensional primitive groups. It is
the purpose of the present paper to analyze the remaining exceptional cases. More
precisely, we will determine explicitly the Schur elements cφ with respect to any
symmetrizing form which behaves nicely under restriction to parabolic subalgebras
and which vanishes on some suitable monomials in the generators.

2D. Symmetries and action on Irr(W ). It will be convenient to introduce and
study the action of several groups of automorphisms on cyclotomic algebras and as-
sociated objects. Let k̃ := k(exp(2πi/|µ(k)|2)), and K̃W := k̃(v) the composite with
KW . Then K̃W is a Galois extension ofQ(u). Its Galois groupG := Gal(K̃W /Q(u))
acts naturally on HK̃W , hence on Irr(H). Via the bijection (2.7) we thus obtain a
G-action on Irr(W ) where g(φ) is defined by the condition g(φ)v = g(φv).

On the other hand, the factor group Gal(k̃(u)/Q(u)) of G acts naturally on
Irr(W ). Now restriction yields an isomorphism between the subgroup G0 :=
Gal(K̃W /Q(v)) of G and Gal(k̃/Q). The definition of the bijection (2.7) via the
specialization (2.6) shows that the natural action of Gal(k/Q) on Irr(W ) and its
action induced by the identification with G0 do coincide. If H is symmetric over
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A, the linear independence of the irreducible characters together with (2.9) shows
that the corresponding Schur elements satisfy

Lemma 2.10. If H is symmetric with the corresponding Schur elements
cφ (φ ∈ Irr(W )) and G := Gal(K̃W /Q(u)), then we have

cg(φ) = g(cφ) for all φ ∈ Irr(W ), g ∈ G.(2.11)

Next observe that for s ∈ S′ = S/W the symmetric group Sds acts (from the
left) on the set of indeterminates {us,j | 0 ≤ j ≤ ds − 1} by

σ(us,j) := us,σ(j) .

Let S = S(W ) :=
∏
s∈S′ Sds , the symmetry group of W . By (2.2) H(W,u) is

already defined over the ring of invariants Z[u,u−1]S under this symmetry group.
By trivial action on the constants k̃ the S-action on Z[u,u−1] extends to an action
on k̃[u,u−1]. Setting

σ(vs,j) := exp(2πi(σ(j) − j)/ds|µ(k)|)vs,σ(j)

further extends to an action on k̃[v,v−1]. This induces an S-action on H and then
also on Irr(H) by

σ(φ)(T ) := σ(φ(σ−1(T ))) for φ ∈ Irr(H), T ∈ HKW , σ ∈ S.

Via (2.7) this defines an S-action on Irr(W ).
Now assume that H has a quasi-symmetric S-invariant basis, for example, one

consisting of images of group elements in the braid group under the natural epi-
morphism Z[u,u−1]B → H, i.e., of monomials in the generators Ts, s ∈ S. Then
H is symmetric already over Z[u,u−1]S and (2.9) shows

Lemma 2.12 . If H is symmetric with respect to an S-invariant quasi-symmetric
basis, with corresponding Schur elements cφ (φ ∈ Irr(W )), then we have

cσ(φ) = σ(cφ) for all φ ∈ Irr(W ), σ ∈ S.(2.13)

This observation on symmetries together with (2.11) will be used later on in
order to reduce the number of Schur elements to be printed explicitly.

By (2.9) the Schur elements are rational functions in v. But, moreover, we have

Lemma 2.14. Assume that H has a quasi-symmetric basis C consisting of mono-
mials in the Ts. Then for any s ∈ S the Schur elements are homogeneous of degree 0
in {vs,j | 0 ≤ j ≤ ds − 1}.

Proof. Indeed, let (αs | s ∈ S) be invertible elements αs ∈ k× such that αs = αt
whenever s ∼ t. Then the elements {αsTs | s ∈ S} of H(W,u) satisfy the relations
of the cyclotomic algebra H(W,u′) with u′ = (αsus,j | s ∈ S, 0 ≤ j ≤ ds − 1). Any
monomial in the Ts is a non-zero scalar multiple of a monomial in the αsTs. But
if C is quasi-symmetric, then any basis C′ containing 1 and consisting of non-zero
scalar multiples of the elements of C is quasi-symmetric with respect to the same
symmetrizing form. Thus the Schur elements of H remain invariant by replacing
the vs,j with non-zero scalar multiples (which only depend on s) as claimed.



ON THE GENERIC DEGREES OF CYCLOTOMIC ALGEBRAS 347

3. Generic degrees for G24, G27, G29

Here and in the next section we compute the Schur elements for those excep-
tional non-real reflection groups of dimension n ≥ 3, which are generated by n
involutive reflections. In the classification of Shephard and Todd, these are the
groups Gi, i ∈ {24, 27, 29, 33, 34}. In these cases, all reflections are conjugate, so
the cyclotomic algebra has just two parameters (u1, u2). Since the Schur elements
are homogeneous in the parameters, they can be recovered from the Schur elements
for the (admissible) specialization with parameters (x,−1). So it suffices to consider
this latter case.

It turns out that in all cases the Schur elements (with the above specialization)
divide the Poincaré polynomial P (W ) of W , considered as elements of the ring k[x].
We call δφ := P (W )/cφ the generic degree of φ. Clearly, it is enough to know the
generic degrees in order to recover the Schur elements.

We denote the irreducible characters φ ∈ Irr(W ) as φd,b, where d = φ(1) is the
degree and b is the b-invariant, that is, the order of zero at x = 0 of the fake degree
Rφ (see 2A). In most cases, this distinguishes the characters unambiguously. In the
few remaining cases, we give more detailed information below.

In the tables, we only list one character from each pair of complex conjugate
ones, since the generic degree of the other one can be obtained by applying complex
conjugation, according to (2.11). Moreover, if ε denotes the sign character of W ,
we only list one of φ, ε⊗ φ, since, as it turns out,

δφ(x) = xN δε⊗φ(x−1)(3.1)

in all cases, where N is the number of reflections in W . Combining this with (2.11)
it can be rephrased to say that δφ is semi-palindromic in the sense of [15, 6B].

3A. The complex reflection group G24. The 3-dimensional primitive complex
reflection group W = G24, abstractly isomorphic to L2(7)×2, has twelve irreducible
characters. It is generated by three conjugate reflections s1, s2, s3 of order 2. It has
two classes of maximal parabolic subgroups, one of type B2 and one of type A2,
hence both are Coxeter groups.

Let c := s1s2s3 be a Coxeter element in the braid group B(W ) of W . Then the
central element π ∈ B(W ) is given by π = c14 (see [5, Table 4]).

Theorem 3.2. Let t be a symmetrizing form on H(G24; (x,−1)) restricting to the
canonical symmetrizing form on the maximal parabolic subalgebras and such that
there exists a quasi-symmetric basis containing T lc (1 ≤ l ≤ 7). Then the generic
degrees with respect to t are given in Table 3.3.

Proof. Assume that t is a symmetrizing form onH(W ) which restricts to the canon-
ical symmetrizing forms of the Iwahori-Hecke algebras of these parabolic subgroups.
Since the generic degrees of finite Coxeter groups are known, restriction of char-
acters to these subgroups yields conditions on the generic degrees of H(W ) with
respect to t. More precisely, since five of the conjugacy classes of W have represen-
tatives in one of these parabolic subgroups, we obtain five equations.

Since π is a power of c, Proposition 2.8 allows us to compute the values of all
irreducible characters on T lc. Plugging these into (2.9) gives linear equations for
the unknown generic degrees, which together with the equations from restriction to
parabolic subalgebras yield a system of full rank.
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Table 3.3. Generic degrees for G24

φ δφ φ̄ ε⊗ φ ε⊗ φ̄
φ1,0 1 φ1,21

φ3,1

√
−7
14 xΦ3Φ4Φ6Φ′7Φ′′14 φ3,3 φ3,8 φ3,10

φ6,2
1
2xΦ2

2Φ3Φ6Φ14 φ6,9

φ7,3 x3Φ7Φ14 φ7,6

φ8,4
1
2x

4Φ3
2Φ4Φ6Φ14 φ8,5

Here, as in the subsequent tables, Φn denotes the n-th cyclotomic polynomial
over Q. Moreover, with µ = (−1 +

√
−7)/2 = ζ7 + ζ2

7 + ζ4
7 , µ = (−1 −

√
−7)/2,

where ζ7 := exp(2πi/7), we let Φ′7 = x3 − µx2 + µx− 1, Φ′14 = x3 + µx2 + µx+ 1.

3B. The complex reflection group G27. The 3-dimensional primitive complex
reflection group W = G27, abstractly isomorphic to 3.A7 × 2, has 34 irreducible
characters. It is generated by three conjugate reflections s1, s2, s3 of order 2. It has
four conjugacy classes of maximal parabolic subgroups, of types H2, B2 and A2 (two
classes). All of these are Coxeter groups, hence their Iwahori-Hecke algebras have a
canonical symmetrizing form. Restriction to these subgroups gives eight equations
for the generic degrees. The Coxeter element c := s1s2s3 satisfies c30 = π [5,
Table 4]. Its fifth power c5 is central, thus more generally we may compute the
value of any irreducible character on products TwT

5l
c for all Tw lying in proper

parabolic subalgebras of H. This yields enough independent equations, and as
above we obtain:

Theorem 3.4. Let t be a symmetrizing form on H(G27; (x,−1)) such that there
exists a quasi-symmetric basis containing TwT

5l
c (0 ≤ l ≤ 5) for w running through

representatives of minimal length of the conjugacy classes of the maximal parabolic
subgroups of W . Then the generic degrees with respect to t are given in Table 3.5.

Table 3.5. Generic degrees for G27

φ δφ φ̄ ε⊗ φ ε⊗ φ̄
φ1,0 1 φ1,45

φ3,1,25 −
√
−15ζ23
30

xΦ′′3
3
Φ4Φ′5Φ′6

3
Φ′10Φ12Φ′15Φba15Φ′30Φab30 φ3,5,29 φ3,16,40 φ3,20,44

φ3,5,23 −
√
−15ζ3
30

xΦ′3
3
Φ4Φ′′5 Φ′′6

3
Φ′′10Φ12Φ′′15Φaa15 Φ′30Φba30 φ3,7,25 φ3,20,38 φ3,22,40

φ′5,6
1
2
x3Φ4Φ5Φ10Φ12Φ15Φ30 φ′′5,15

φ′′5,6
1
2
x3Φ4Φ5Φ10Φ12Φ15Φ30 φ′5,15

φ6,2
1−ζ23

6
xΦ2

2Φ′3
3
Φ2

6Φ′′6 Φ10Φ′12Φ′′15Φ30 φ6,4 φ6,17 φ6,19

φ8,6,36
(3−λ)

10
x6Φ3

2Φ4Φ′5Φ3
6Φ10Φ12ΦB15Φ30 φ8,9,39

φ8,9,33
(2+λ)

10
x6Φ3

2Φ4Φ′′5 Φ3
6Φ10Φ12ΦA15Φ30 φ8,12,36

φ9,4
1
3
x4Φ3

3Φ3
6Φ12Φ15Φ30 φ9,8 φ9,13 φ9,11

φ9,6
1
3
x4Φ3

3Φ3
6Φ12Φ15Φ30 φ9,9

φ10,3
1
2
x3Φ2

2Φ5Φ2
6Φ10Φ15Φ30 φ10,12

φ15,5
1−ζ23

3
x5Φ′′3

3
Φ5Φ′6

3
Φ10Φ′′12Φ15Φ30 φ15,7 φ15,8 φ15,10

Here, Φ′3 = x − ζ3, Φ′6 = x + ζ2
3 , Φ′12 = x2 + ζ2

3 , Φ′′5 = x2 + λx + 1, Φ′10 =
x2 − λx + 1, Φ′15 = x4 + ζ2

3x
3 + ζ3x

2 + x + ζ2
3 , ΦA15 = x4 − λx3 + λx2 − λx + 1,

Φaa15 = x2 +λζ2
3x+ ζ3, Φab15 = x2 +λζ3x+ ζ2

3 , Φ′′30 = Φ′15(−x), Φaa30 = Φaa15 (−x), with
λ = (1 +

√
5)/2 = 1 + ζ5 + ζ4

5 .
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Here, in order to distinguish the characters of degree 3 and of degree 8 among
themselves, we have given as a third index the degree in x of the fake degree Rφ.
We denote by φ′5,6, φ′5,15 the characters of degree 5 which occur in the permutation
character of W on the parabolic subgroup of type A2, and by φ′′5,6, φ′′5,15 the other
two. (It turns out that the two characters φ5,6, respectively φ5,15 have identical
generic degrees.)

3C. The complex reflection group G29. The 4-dimensional primitive complex
reflection group W = G29 has 37 irreducible characters. It is generated by four
conjugate reflections s1, . . . , s4 of order 2, satisfying the relations implied by the
Coxeter diagram

together with (s2s3s4)2 = (s4s2s3)2. It has five conjugacy classes of maximal
parabolic subgroups, of types B3, A3 (2 classes), A2 +A1, G(4, 4, 3). While the first
four of these are Coxeter groups, the last one is an imprimitive non-real reflection
group.

In order to use induction we first determine generic degrees for G(4, 4, 3). Now
all maximal parabolic subgroups of G(4, 4, 3) are Coxeter groups, and restriction
of characters to these yields five equations. Furthermore, evaluation of characters
on the first five powers of the Coxeter element gives five additional equations,
thus determining the generic degrees with respect to any quasi-symmetric basis
containing these elements. We give the results in Table 3.7.

Let us return to W = G29. Restriction to the maximal parabolic subgroups gives
16 equations. The Coxeter element c := s1s2s3s4 in the braid group B(W ) of W
satisfies c20 = π. The equations given by evaluating the irreducible characters of H
on T lc, 1 ≤ l ≤ 18, are linearly independent from the equations obtained by restric-
tion. The character tables of all maximal parabolic subalgebras of H(G29; (x,−1))
are known, respectively, and can easily be computed for the non-Coxeter group
G(4, 4, 3). Since c5 is central in B(W ), the values of irreducible characters on
elements TwT

5
c with Tw in some parabolic subalgebra of H are known. The corre-

sponding equations determine the generic degrees uniquely.

Theorem 3.6. Let t be a symmetrizing form on H(G29; (x,−1)) restricting to the
canonical symmetrizing form on the maximal parabolic subalgebras of Coxeter type
(respectively to the form determined above for G(4, 4, 3)) and such that there exists
a quasi-symmetric basis containing T lc (1 ≤ l ≤ 18) and elements TwT

5
c for w run-

ning through representatives of minimal length of the conjugacy classes of parabolic
subgroups of W . Then the generic degrees with respect to t are given in Table 3.8.

All characters of W are distinguished by their degree and their b-invariant, except
for four characters of degree 6 with b = 10 and for two pairs of characters of
degree 15. We denote by φ′′15,4 the character of degree 15 occurring in the tensor
product of the reflection character φ4,1 with φ4,3, and by φ′′15,12 its tensor product
with the sign character φ1,40. We denote by φ′6,10 the real character of type (6, 10)
occurring in the permutation character of W on the parabolic subgroup of type
A3, and by φ′′6,10 the other real character of degree 6 with b = 10 (these two have
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identical generic degrees). By φ′′′6,10 we denote the character of degree 6 appearing
in the tensor product of the reflection character with itself, and by φ′′′′6,10 its complex
conjugate.

Table 3.7. Generic degrees for G(4, 4, 3)

φ δφ φ̄ ε⊗ φ ε⊗ φ̄
φ1,0 1 φ1,12

φ2,4 x4Φ8

φ3,1
1+i
4 xΦ3Φ′4

2Φ′′8 φ3,2 φ3,5 φ3,6

φ3,2
1
2xΦ3Φ8 φ3,6

φ6,3 x3Φ3Φ8

Table 3.8. Generic degrees for G29

φ δφ φ̄ ε⊗ φ ε⊗ φ̄
φ1,0 1 φ1,40

φ4,1
1+i
4 xΦ2

2Φ′′4
2Φ6Φ′8Φ10Φa12Φ′′20 φ4,3 φ4,21 φ4,23

φ4,4
1
2xΦ3

4Φ12Φ20 φ4,24

φ5,8
1
2x

4Φ5Φ8Φ10Φ12Φ20 φ5,16

φ′6,10
1
5x

6Φ3Φ5Φ6Φ8Φ10Φ12Φ20 φ′′6,10

φ′′′6,10 − 1
20x

6Φ3Φ′4
4Φ5Φ6Φ8Φ10Φ12Φ′′20 φ′′′′6,10

φ6,12
1
4x

6Φ3Φ2
4Φ6Φ8Φ10Φ12Φ20

φ10,2 x2Φ5Φ8Φ10Φ20 φ10,18

φ10,6
1
2x

4Φ2
4Φ5Φ10Φ12Φ20 φ10,14

φ′15,4 x4Φ3Φ5Φ6Φ10Φ12Φ20 φ′15,12

φ′′15,4
1
2x

4Φ3Φ5Φ6Φ8Φ10Φ20 φ′′15,12

φ16,3
1
2x

3Φ4
4Φ8Φ12Φ20 φ16,5 φ16,15 φ16,13

φ20,5
1−i

4 x5Φ2
2Φ′′4

2Φ5Φ6Φ′′8Φ10Φa12Φ20 φ20,7 φ20,9 φ20,11

φ20,6
1
2x

5Φ3
4Φ5Φ10Φ12Φ20 φ20,10

φ24,6
1
20x

6Φ4
2Φ3Φ5Φ6Φ8Φ12Φ20

φ24,7
1
4x

6Φ2
2Φ3Φ3

4Φ6Φ10Φ12Φ20 φ24,9

φ30,8
1
4x

6Φ3Φ2
4Φ5Φ6Φ8Φ12Φ20

Here Φ′4 = x− i, Φ′8 = x2 − i, Φa12 = x2 − ix− 1, Φ′′20 = x4 − ix3 − x2 + ix+ 1.

4. Generic degrees for G33 and G34

Here we conclude the determination of Schur elements for exceptional non-real
reflection groups of dimension n ≥ 3 generated by n involutive reflections by con-
sidering the cases G33 and G34 in the Shephard-Todd classification.

4A. Some imprimitive groups. We first compute the generic degrees for some
imprimitive complex reflection groups which occur as parabolic subgroups in the
primitive groups G33 and G34. More precisely, these are the groups G(3, 3, 3),
G(3, 3, 4) and G(3, 3, 5). Again, the results can easily be obtained by the methods
presented so far, and we give the lists in Tables 4.1–4.3.
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Table 4.1. Generic degrees for G(3, 3, 3)

φ δφ φ̄ ε⊗ φ ε⊗ φ̄
φ1,0 1 φ1,9

φ2,3 x3Φ2Φ6

φ3,1
1−ζ2

3
3 xΦ′3

3Φ′′6 φ3,2 φ3,4 φ3,5

Table 4.2. Generic degrees for G(3, 3, 4).

φ δφ φ̄ ε⊗ φ ε⊗ φ̄
φ1,0 1 φ1,18

φ2,6
1
3x

4Φ4Φ6Φ9

φ3,3 x3Φ9 φ3,9

φ4,1
1−ζ2

3
3 xΦ2Φ4Φ′6Φ′′9 φ4,2 φ4,10 φ4,11

φ6,2 x2Φ4Φ9 φ6,8

φ′6,5 − ζ
2
3
3 x

4Φ′3
3Φ4Φ6Φ′′9 φ′′6,5

φ8,4
1
3x

4Φ2
2Φ4Φ9 φ8,5

φ12,3 x3Φ2Φ4Φ9 φ12,6

Here, we have denoted by φ′6,5 the character of degree 6 with b-value 5 appearing
in the tensor square of the reflection character φ4,1, by φ′′6,5 its complex conjugate.

Table 4.3. Generic degrees for G(3, 3, 5)

φ δφ φ̄ ε⊗ φ ε⊗ φ̄
φ1,0 1 φ1,30

φ4,3 x3Φ2Φ4Φ6Φ12 φ4,18

φ5,1
1−ζ2

3
3 xΦ5Φ′6Φ′9Φ′′12 φ5,2 φ5,19 φ5,20

φ5,6
1
3x

4Φ5Φ6Φ9Φ12 φ5,12

φ6,9 x9Φ4Φ9Φ12

φ10,2
1−ζ2

3
3 x2Φ4Φ5Φ′6Φ′′9Φ12 φ10,3 φ10,14 φ10,15

φ10,5 − ζ
2
3
3 x

4Φ4Φ5Φ′6
2Φ9Φ′′12 φ10,6 φ10,11 φ10,12

φ10,7
1
3x

6Φ4Φ5Φ6Φ9Φ12 φ10,8

φ15,4
1
3x

4Φ′′3
3Φ5Φ′6

2Φ′′9Φ12 φ15,5 φ15,10 φ15,11

φ20,3 x3Φ2Φ4Φ5Φ2
6Φ12 φ20,12

φ20,5
1−ζ3

3 x5Φ2Φ4Φ5Φ6Φ′′6Φ′9Φ12 φ20,6 φ20,8 φ20,9

φ30,4 x4Φ4Φ5Φ9Φ12 φ30,10

φ′30,7
1
3x

6Φ′3
3Φ4Φ5Φ′′6

2Φ′9Φ12 φ′′30,7

φ40,6
1
3x

6Φ2
2Φ4Φ5Φ9Φ12

Here, φ′′30,7 denotes the character of degree 30 occurring in the fourth tensor
power of the reflection character φ5,1, and φ′30,7 its complex conjugate.

In all tables of this section the notation for cyclotomic polynomials is as follows.
Let ζ3 := exp(2πi/3) be a third root of unity. Then for any j multiple of 3 we
have a factorization Φj = Φ′jΦ

′′
j over Q(ζ3) and we choose notation such that
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Φ′j(exp(2πi/j)) = 0. More specifically, this means that Φ′3 = x − ζ3, Φ′6 = x + ζ2
3 ,

Φ′9 = x3 − ζ3, Φ′12 = x2 + ζ2
3 , Φ′18 = x3 + ζ2

3 , ...

4B. The complex reflection group G33. The 5-dimensional primitive complex
reflection group W = G33, abstractly isomorphic to 2 × O5(3), has 40 irreducible
characters. It is generated by five conjugate reflections s1, . . . , s5 of order 2 satis-
fying the relations implied by the Coxeter diagram

together with (s2s3s4)2 = (s3s4s2)2 = (s4s2s3)2. It has four conjugacy classes
of maximal parabolic subgroups, of types D4, A4, A3 + A1, G(3, 3, 4). The first
three are Coxeter groups, and the last one was considered in 4A. Restriction to
these subgroups gives 22 equations. The Coxeter element c := s1s2s3s4s5 satisfies
c18 = π. The equations given by evaluating the irreducible characters of H on Tmc ,
1 ≤ m ≤ 17, are linearly independent from the equations obtained by restriction.
Furthermore, the defining relations of B(W ) (i.e., the braid relations of W ) show
that w5 = c9 for the element w := cs1s2s3s4 ∈ B(W ) of length 9, hence it is a
10-th root of π. Evaluating characters on Tw gives a further independent equation,
to yield a system of full rank.

Theorem 4.4. Let t be a symmetrizing form on H(G33; (x,−1)) restricting to the
canonical symmetrizing form on the maximal parabolic subalgebras of Coxeter type
(respectively to the form determined above for G(3, 3, 4)) and such that there exists
a quasi-symmetric basis containing T lc (1 ≤ l ≤ 17) and Tw. Then the generic
degrees with respect to t are given in Table 4.5.

Table 4.5. Generic degrees for G33

φ δφ φ̄ ε⊗ φ ε⊗ φ̄
φ1,0 1 φ1,45

φ5,1
1−ζ2

3
3 xΦ5Φ′9Φ10Φ′12Φ′′18 φ5,3 φ5,28 φ5,30

φ6,5
1
2x

3Φ2
4Φ9Φ10Φ12Φ18 φ6,20

φ′10,8
ζ2
3
6 x

4Φ2
4Φ5Φ′′6

3Φ9Φ10Φ12Φ′18 φ′′10,8 φ′10,17 φ′′10,17

φ15,2 x2Φ5Φ9Φ10Φ18 φ15,23

φ15,9 x9Φ5Φ9Φ10Φ12Φ18 φ15,12

φ20,6
1
3x

4Φ2
4Φ5Φ9Φ10Φ12Φ18 φ20,15

φ24,4
1
2x

3Φ4
2Φ2

6Φ9Φ10Φ18 φ24,19

φ30,3
1
2x

3Φ2
4Φ5Φ9Φ12Φ18 φ30,18

φ30,4 − ζ
2
3
6 x

4Φ′3
3Φ2

4Φ5Φ′′9Φ10Φ12Φ18 φ30,6 φ30,13 φ30,15

φ′40,5
1−ζ3

6 x4Φ4
2Φ5Φ2

6Φ′′6Φ′′9Φ10Φ′12Φ18 φ′′40,5 φ′40,14 φ′′40,14

φ45,7
1−ζ2

3
3 x7Φ′′3

3Φ5Φ′6
3Φ9Φ10Φ′′12Φ18 φ45,9 φ45,10 φ45,12

φ60,7 x7Φ2
4Φ5Φ9Φ10Φ12Φ18 φ60,10

φ64,8
1
2x

8Φ5
2Φ2

4Φ3
6Φ10Φ12Φ18 φ64,9

φ81,6 x6Φ3
3Φ3

6Φ9Φ12Φ18 φ81,11
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All irreducible characters of W are determined by their degree and their b-value,
except for two pairs of characters of degree 10 and two pairs of characters of de-
gree 40. We denote by φ′10,8 the character of degree 10 whose fake degree is of the
form x28 + x26+ lower powers of x, and by φ′40,5 the one of degree 40 with fake
degree x31 + x29+ lower powers of x. The notation for the other characters is now
fixed by the information given in Table 4.5.

4C. The complex reflection group G34. The 6-dimensional primitive complex
reflection group W = G34, abstractly isomorphic to 6.U4(2).2, has 169 irreducible
characters. It is generated by a set S = {s1, . . . , s6} of six conjugate reflections of
order 2, satisfying the relations implied by the Coxeter diagram

together with (s2s3s4)2 = (s3s4s2)2 = (s4s2s3)2. It has eight conjugacy classes of
maximal parabolic subgroups of types G33, G(3, 3, 5), D5, A5 (2 classes), G(3, 3, 4)+
A1, A4 +A1, A3 +A2. All of these only involve real groups, one of the imprimitive
groups considered above, or G33. Thus for all maximal parabolic subgroups we
have a well defined symmetrizing form. Restriction to these subgroups gives 71
equations.

As usual we denote by sj the canonical preimage in B(W ) of the generator
sj ∈ S. The Coxeter element c := s1 . . . s6 satisfies c42 = π in B(W ) [5, Table 4].
Its seventh power is central in B(W ).

Theorem 4.6. The generic degrees of the cyclotomic Hecke algebra H(G34; (x,−1))
with respect to any quasi-symmetric basis containing only Tmc , 1 ≤ m ≤ 41, and
elements of the form TvT

7l
c (1 ≤ l ≤ 5) for v running through representatives of

minimal length of the conjugacy classes of the maximal parabolic subgroups of W
are given in Table 4.7.

Proof. The character values of H on the powers of Tc can be evaluated with Propo-
sition 2.8. Moreover, character values on a basis of any proper parabolic subalgebra
are known by the preceding section, respectively by [3]. Since T 7l

c is central inH, the
values on any product TvT

5l
c can be determined, once those on Tv are known. Thus

the values of all irreducible characters on all the elements occurring in the statement
can be computed. Using the computer algebra system GAP it was checked that this
system has maximal rank, and thus determines the generic degrees uniquely.

All irreducible characters of W are determined by their degree and their b-value,
except for seven pairs and three triples of characters. The notation for the charac-
ters of degree 105 and 840 is fixed by Table 4.7, since for each ambiguous character,
its complex conjugate is determined by its degree and b-value. In the three triples,
we choose φ′70,9, φ′70,45, φ′560,18 to be the real characters. We denote by φ′′20,33,
φ′′′70,9 the characters of degree 20, respectively 70 occurring in the tensor product
of the reflection character φ6,1 with φ15,14, and by φ′20,33, φ′′70,9 their complex con-
jugates. The tensor product of φ′′70,9 with the sign character is φ′′70,45, its complex
conjugate φ′′′70,45. We write φ′120,21 for the character of type (120, 21) occurring
in the permutation character on the parabolic subgroup of type A5. Finally, we
call φ′280,12, φ′′280,30, φ′′′560,18 the characters of the respective types which occur in
φ6,1⊗φ336,17, and φ′540,21 the one occurring in φ6,1⊗φ105,20. This fixes the notation
for all elements of Irr(W ).
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Table 4.7. Generic degrees for G34

φ δφ φ̄ ε ⊗ φ ε ⊗ φ̄

φ1,0 1 φ1,126

φ6,1 −
√
−3
3 ζ3xΦ′3

3Φ′′6
3Φ8Φ′12Φ24Φ′′15Φ′21Φ′30Φ′′42 φ6,5 φ6,85 φ6,89

φ15,14
ζ3
6 x4Φ′3

3Φ5Φ′′6
3Φ8Φ′9Φ10Φ′12

2Φ14Φ15Φ′18Φ21Φ24Φ30Φ′′42 φ15,16 φ15,56 φ15,58
φ′20,33

1
42x

15Φ2
4Φ5Φ′6

6Φ7Φ8Φ9Φ10Φ2
12Φ14Φ15Φ18Φ21Φ24Φ30Φ′′42 φ′′20,33

φ21,2 −
√
−3
3 ζ3x

2Φ′′3
3Φ′6

3Φ7Φ′′12Φ14Φ′15Φ21Φ′24Φ′′30Φ42 φ21,4 φ21,68 φ21,70
φ21,6

1
2x

3Φ7Φ8Φ9Φ10Φ14Φ21Φ24Φ30Φ42 φ21,60
φ35,6

1
2x

3Φ5Φ7Φ8Φ14Φ15Φ18Φ21Φ24Φ42 φ35,60
φ35,18

1
3x

10Φ5Φ7Φ9Φ10Φ2
12Φ14Φ15Φ18Φ21Φ24Φ30Φ42 φ35,36

φ56,3
1
2x

3Φ4
2Φ4

6Φ7Φ10Φ14Φ18Φ30Φ21Φ42 φ56,57
φ56,9

1
3x

5Φ2
4Φ7Φ8Φ9Φ14Φ15Φ18Φ21Φ24Φ30Φ42 φ56,45

φ′70,9 x9Φ5Φ7Φ8Φ10Φ14Φ15Φ21Φ24Φ30Φ42 φ′70,45

φ′′70,9 − ζ
2
3
3 x5Φ5Φ7Φ8Φ9Φ10Φ′12

2Φ14Φ′15Φ18Φ21Φ24Φ′′30Φ42 φ′′′70,9 φ′′70,45 φ′′′70,45

φ84,13 − ζ
2
3
6 x7Φ′′3

3Φ2
4Φ′6

3Φ7Φ8Φ′9Φ10Φ2
12Φ14Φ15Φ′18Φ21Φ24Φ′′30Φ42 φ84,17 φ84,37 φ84,41

φ90,6
1
3x

4Φ3
3Φ5Φ3

6Φ8Φ10Φ12Φ15Φ21Φ24Φ30Φ42 φ90,48

φ105,4 − ζ
2
3
6 x4Φ′′3

3Φ5Φ′6
3Φ7Φ8Φ′9Φ10Φ′′12

2Φ15Φ′18Φ′′21Φ24Φ30Φ42 φ′105,8 φ105,46 φ105,50

φ′′105,8
1
3x

6Φ′′3
3Φ5Φ′6

3Φ7Φ′′9 Φ10Φ′′12
2Φ14Φ15Φ′18Φ21Φ24Φ30Φ42 φ105,10 φ105,38 φ105,40

φ105,20 − 1
6x

13Φ′3
3Φ5Φ′′6

6Φ7Φ8Φ′′9 Φ10Φ2
12Φ14Φ15Φ18Φ21Φ24Φ′30Φ42 φ105,22 φ105,26 φ105,28

φ120,5 −
√
−3
6 ζ3x

4Φ4
2Φ′3

3Φ5Φ4
6Φ′′6 Φ10Φ′12Φ14Φ15Φ18Φ′21Φ′′24Φ30Φ42 φ120,7 φ120,47 φ120,49

φ′120,21
1
7x

15Φ2
4Φ5Φ7Φ8Φ9Φ10Φ2

12Φ14Φ15Φ18Φ21Φ24Φ30Φ42 φ′′120,21
φ126,5

1
3x

5Φ3
3Φ3

6Φ7Φ8Φ12Φ14Φ15Φ21Φ24Φ30Φ42 φ126,7 φ126,41 φ126,43
φ140,12

1
2x

9Φ2
4Φ5Φ7Φ8Φ10Φ2

12Φ14Φ15Φ18Φ21Φ24Φ30Φ42 φ140,30
φ140,21

1
2x

18Φ2
4Φ5Φ7Φ8Φ10Φ2

12Φ14Φ15Φ18Φ21Φ24Φ30Φ42
φ189,18

1
6x

13Φ3
3Φ3

6Φ7Φ8Φ9Φ10Φ2
12Φ14Φ15Φ21Φ24Φ30Φ42 φ189,24

φ210,8
1
3x

6Φ′′3
3Φ5Φ′6

3Φ7Φ8Φ′9Φ10Φ′′12
2Φ14Φ15Φ′′18Φ21Φ′24Φ30Φ42 φ210,10 φ210,38 φ210,40

φ210,12 x12Φ5Φ7Φ8Φ9Φ10Φ14Φ15Φ18Φ21Φ24Φ30Φ42 φ210,30

φ210,13 − ζ33 x11Φ′3
3Φ5Φ′′6

3Φ7Φ8Φ′′9 Φ10Φ2
12Φ14Φ15Φ′18Φ21Φ24Φ30Φ42 φ210,17 φ210,25 φ210,29

φ′280,12 −
ζ23
3 x10Φ2

4Φ5Φ7Φ8Φ9Φ10Φ′12
2Φ14Φ15Φ18Φ21Φ′′24Φ30Φ42 φ′′280,12 φ′280,30 φ′′280,30

φ315,6
1
3x

6Φ3
3Φ5Φ3

6Φ7Φ10Φ12Φ14Φ15Φ21Φ24Φ30Φ42 φ315,36
φ315,10

1
3x

10Φ3
3Φ5Φ3

6Φ7Φ10Φ2
12Φ14Φ15Φ21Φ24Φ30Φ42 φ315,14 φ315,28 φ315,32

φ315,18
1
6x

13Φ3
3Φ5Φ3

6Φ7Φ8Φ2
12Φ14Φ15Φ18Φ21Φ24Φ30Φ42 φ315,24

φ336,8 −
√
−3
6 ζ3x

7Φ4
2Φ′3

3Φ4
6Φ′′6 Φ7Φ8Φ10Φ′12Φ14Φ′′15Φ18Φ21Φ24Φ30Φ42 φ336,10 φ336,32 φ336,34

φ336,17 −
ζ23
6 x13Φ4

2Φ′3
3Φ4

6Φ′′6
2Φ7Φ8Φ′9Φ10Φ′12

2Φ14Φ15Φ18Φ21Φ′′24Φ30Φ42 φ336,19 φ336,23 φ336,25

φ384,8 −
√
−3
6 ζ3x

8Φ5
2Φ′′3

3Φ2
4Φ5

6Φ′6Φ8Φ10Φ2
12Φ14Φ′15Φ18Φ′′21Φ24Φ30Φ42 φ384,10 φ384,32 φ384,34

φ384,11 −
√
−3
6 ζ3x

8Φ5
2Φ′′3

3Φ2
4Φ5

6Φ′6Φ8Φ10Φ2
12Φ14Φ′15Φ18Φ′′21Φ24Φ30Φ42 φ384,13 φ384,29 φ384,31

φ420,7 − ζ
2
3
6 x7Φ′′3

3Φ2
4Φ5Φ′6

3Φ7Φ8Φ′′9 Φ2
12Φ14Φ′15Φ′′18Φ21Φ24Φ30Φ42 φ420,11 φ420,31 φ420,35

φ420,12
1
2 x

9Φ2
4Φ5Φ7Φ8Φ9Φ10Φ2

12Φ14Φ15Φ21Φ24Φ30Φ42 φ420,30

φ420,14
ζ23
6 x13Φ′3

3Φ2
4Φ5Φ′′6

6Φ7Φ8Φ′9Φ′12
2Φ14Φ15Φ18Φ21Φ24Φ30Φ42 φ420,16 φ420,20 φ420,22

φ420,21
1
2x

18Φ2
4Φ5Φ7Φ8Φ9Φ10Φ2

12Φ14Φ15Φ21Φ24Φ30Φ42
φ504,9

1
3x

7Φ3
3Φ2

4Φ3
6Φ7Φ8Φ2

12Φ14Φ15Φ21Φ24Φ30Φ42 φ504,33
φ504,15

1
6x

13Φ4
2Φ3

3Φ5
6Φ7Φ10Φ12Φ14Φ15Φ18Φ21Φ24Φ30Φ42 φ504,21

φ540,17
1
6x

15Φ3
3Φ2

4Φ5Φ3
6Φ8Φ9Φ10Φ2

12Φ14Φ15Φ21Φ24Φ30Φ42 φ540,19
φ′540,21 − 1

42 x
15Φ′′3

6Φ2
4Φ5Φ7Φ8Φ9Φ10Φ2

12Φ14Φ15Φ18Φ′21Φ24Φ30Φ42 φ′′540,21
φ560,9

1
2 x

9Φ4
2Φ5Φ4

6Φ7Φ8Φ10Φ14Φ15Φ18Φ21Φ24Φ30Φ42 φ560,27
φ′560,18

1
2x

18Φ4
2Φ5Φ4

6Φ7Φ8Φ10Φ14Φ15Φ18Φ21Φ24Φ30Φ42

φ′′560,18
1
6 x

15Φ4
2Φ5Φ4

6Φ′6
2Φ7Φ8Φ9Φ10Φ′′12

2Φ14Φ15Φ18Φ′21Φ24Φ30Φ42 φ′′′560,18

φ630,11 −
√
−3
3 ζ3x

11Φ′′3
3Φ5Φ′6

3Φ7Φ8Φ9Φ10Φ′′12Φ14Φ15Φ18Φ21Φ24Φ30Φ42 φ630,13 φ630,23 φ630,25

φ630,14

√
−3
3 ζ23x

14Φ′3
3Φ5Φ′′6

3Φ7Φ8Φ9Φ10Φ′12Φ14Φ15Φ18Φ21Φ24Φ30Φ42 φ630,16 φ630,20 φ630,22
φ630,15

1
3x

11Φ3
3Φ5Φ3

6Φ7Φ8Φ10Φ2
12Φ14Φ15Φ21Φ24Φ30Φ42 φ630,27

φ720,16
1
6x

15Φ4
2Φ3

3Φ5Φ5
6Φ8Φ10Φ12Φ14Φ15Φ18Φ21Φ24Φ30Φ42 φ720,20

φ729,10
1
3x

10Φ6
3Φ6

6Φ9Φ2
12Φ15Φ18Φ21Φ24Φ30Φ42 φ729,14 φ729,28 φ729,26

φ729,12
1
3x

10Φ6
3Φ6

6Φ9Φ2
12Φ15Φ18Φ21Φ24Φ30Φ42 φ729,24

φ756,14 −
ζ23
6 x13Φ′3

6Φ2
4Φ′′6

3Φ7Φ8Φ9Φ10Φ′12
2Φ14Φ15Φ′′18Φ21Φ24Φ30Φ42 φ756,16 φ756,20 φ756,22

φ840,11
1
3 x

11Φ′′3
3Φ2

4Φ5Φ′6
3Φ7Φ8Φ′′9 Φ10Φ′′12

2Φ14Φ15Φ′18Φ21Φ24Φ30Φ42 φ′840,13 φ′′840,23 φ840,25

φ′′840,13
1
6x

13Φ4
2Φ′′3

3Φ5Φ4
6Φ′6

2Φ7Φ′9Φ10Φ′′12
2Φ14Φ′15Φ18Φ21Φ24Φ30Φ42 φ840,17 φ840,19 φ′840,23

φ896,12
1
2x

12Φ5
2Φ2

4Φ5
6Φ7Φ8Φ10Φ2

12Φ14Φ18Φ21Φ24Φ30Φ42 φ896,24
φ896,15

1
2x

12Φ5
2Φ2

4Φ5
6Φ7Φ8Φ10Φ2

12Φ14Φ18Φ21Φ24Φ30Φ42 φ896,21
φ945,14

1
6 x

13Φ′3
6Φ5Φ′′6

3Φ7Φ8Φ9Φ10Φ2
12Φ14Φ′′15Φ′18Φ21Φ24Φ30Φ42 φ945,16 φ945,20 φ945,22

φ1260,17
1
6x

15Φ3
3Φ2

4Φ5Φ3
6Φ7Φ8Φ10Φ2

12Φ15Φ18Φ21Φ24Φ30Φ42 φ1260,19
φ1280,15

1
42x

15Φ6
2Φ2

4Φ5Φ7Φ8Φ9Φ10Φ2
12Φ15Φ18Φ21Φ24Φ30Φ42

φ1280,18
1
6x

15Φ6
2Φ2

4Φ5Φ4
6Φ8Φ9Φ10Φ14Φ15Φ18Φ21Φ24Φ30Φ42
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5. Schur elements for G31

The 4-dimensional primitive complex reflection group W = G31 has a single class
of reflections. It differs from all other exceptional reflection groups of dimension
n at least three in that it cannot be generated by n of its reflections. It has 59
irreducible characters and 3 conjugacy classes of maximal parabolic subgroups, of
types G(4, 2, 3), A3, A2 + A1. In order to be able to use induction on parabolic
subalgebras, we first have to compute the Schur elements of the imprimitive group
G(4, 2, 3).

5A. The imprimitive group G(4, 2, 3). There exists a unique symmetrizing form
on the cyclotomic Hecke algebra of the imprimitive group G(4, 2, 3) restricting to
the canonical symmetrizing form on the maximal parabolic subalgebras (of Coxeter
type) and vanishing on T lc (1 ≤ l ≤ 5). The corresponding Schur elements can then
be computed from (2.9). It turns out that they agree with the values conjectured
in [12, Satz 5.13].

They can also be described in the following way. The group G(4, 2, 3) occurs as
the relative Weyl group of the Φ4-Sylow torus in finite reductive groups of type D6.
Conjecturally, this should imply that the Schur elements ofH(G(4, 2, 3); (x,−1)) are
related to the degree polynomials of the unipotent characters of 2D6 in the principal
Φ4-block (see [3]). It turns out that this is in fact true. For this, let U4(2D6) denote
the set of unipotent characters of 2D6 whose degree polynomial is not divisible by
Φ4, and write deg(γ) ∈ Q[x] for the degree polynomial of γ ∈ U4(2D6).

Theorem 5.1. There is a bijection

Irr(G(4, 2, 3)) −→ U4(2D6), φ 7→ γφ,

between the irreducible characters of the cyclotomic algebra H(G(4, 2, 3); (x,−1))
and U4(2D6) (see Table 5.3) such that the Schur element cφ of φ ∈ Irr(G(4, 2, 3))
is given by

cφ(x) =
(x+ 1)(x2 − 1)(x4 − 1)(x5 + 1)(x6 − 1)

(x− 1)3 deg(γφ)(i
√
x)

.

5B. The complex reflection group G31. We return to the primitive reflection
group W = G31. Twenty of its conjugacy classes have non-empty intersection with
proper parabolic subgroups, so by restriction we obtain 20 independent equations
for the Schur elements. Let {s1, . . . , s5} denote the set of standard generators of
W , with the relations implied by the Coxeter diagram

together with s1s2s3 = s2s3s1 = s3s1s2. The Coxeter element c := s1s2s3s4s5 of
the braid group B(W ) satisfies c24 = π (see [5]). The equations given by evaluating
the irreducible characters of H on Tmc , 1 ≤ m ≤ 23, are linearly independent from
the equations obtained by restriction.
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Table 5.2. A bijection Irr(G(4, 2, 3))←→ U4(2D6)

φ γφ φ̄ ε⊗ φ ε⊗ φ̄
φ1,0 (06|−) φ1,15

φ1,3 (016|1) φ1,12

φ2,4 (0126|12) φ2,7

φ3,2,6 (24|−) φ3,9

φ3,5,9 (124|1) φ3,6,10

φ3,1 (012|5) φ3,3 φ3,8 φ3,6,14

φ3,2,10 (013|4) φ3,4 φ3,7 φ3,5,13

φ6,3 (023|3) φ6,4

Here, we denote the unipotent characters of 2D6 by symbols of rank 6 as in [10].

Table 5.3. A bijection Irr(G31)←→ U4(E8)

φ γφ φ̄ ε⊗ φ ε⊗ φ̄
φ1,0 φ1,0 φ1,60

φ4,1 D4, φ1,0 φ4,7 φ4,37 φ4,31

φ5,4 φ35,2 φ5,40

φ5,12 φ525,12 φ5,24

φ6,14 φ70,32 φ6,18

φ9,8 φ567,6 φ9,28

φ10,2 φ50,8 φ10,6 φ10,30 φ10,26

φ10,12 φ1050,10 φ10,24

φ′15,8 φ1575,10 φ′15,20

φ′′15,8 φ175,12 φ′′15,20

φ16,16 D4, φ16,5

φ20,3 D4, φ
′
1,12 φ20,5 φ20,23 φ20,21

φ20,7 φ2800,13 φ′20,13 φ20,19 φ′′20,13

φ20,14 φ2100,20

φ24,6 EII
8 [1] φ24,14

φ30,4 φ350,14 φ30,16

φ′30,10 φ1134,20 φ′′30,10

φ36,5 φ1296,13 φ36,7 φ36,17 φ36,15

φ36,10 φ420,20

φ40,6 D4, φ
′
8,3 φ40,18

φ40,7 φ3360,13 φ40,9 φ40,15 φ40,13

φ40,10 φ2688,20 φ40,14

φ′45,8 φ2835,14 φ′45,12

φ′′45,8 φ6072,14 φ′′45,12

φ64,9 E8[i] φ64,11

Furthermore, let w = s1s2s3s4s5s1 = cs1. From the defining relations of B(W )
it follows that w5 = c6, hence w is a 20-th root of π in B(W ). (In fact, the
image of w in W is a Coxeter element in the maximal rank reflection subgroup
G29 < G31.) Evaluating characters on powers of Tw give 14 independent equations.
The remaining two equations are obtained by evaluating the irreducible characters
on products of central elements by elements in proper parabolic subalgebras.
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The group G31 occurs as the relative Weyl group of the Φ4-Sylow torus in finite
reductive groups of type E8. Conjecturally, this should imply that the Schur ele-
ments of H(W,x) are related to the degree polynomials of the unipotent characters
of E8 in the principal Φ4-block. It turns out that this is in fact true. For this, let
U4(E8) denote the set of unipotent characters of E8 whose degree polynomial is not
divisible by Φ4, and write deg(γ) ∈ Q[x] for the degree polynomial of γ ∈ U4(E8).
We follow the naming convention in [10] for the unipotent characters of E8.

Theorem 5.4. There is a bijection

Irr(G31) −→ U4(E8), φ 7→ γφ,

between the irreducible characters of the cyclotomic Hecke algebra H(G31; (x,−1))
and U4(E8) (given by Table 5.3). This bijection is such that the Schur element cφ of
φ ∈ Irr(G31) with respect to any quasi-symmetric basis containing Tmc (1 ≤ m ≤ 23)
and Tmw (1 ≤ m ≤ 16) and elements of the form TvT

6l
c (0 ≤ l ≤ 3) with v contained

in a proper parabolic subgroups of B(W ) is given by

cφ(x) =
(x+ 1)(x4 − 1)(x6 − 1)(x7 + 1)(x9 + 1)(x10 − 1)(x12 − 1)(x15 + 1)

(x − 1)4 deg(γφ)(i
√
x)

.

Except for five pairs the irreducible characters of G31 are determined by their
degree and their b-invariant. We denote by φ′15,8, φ′15,20, φ′′45,8 the irreducible char-
acters of the respective types occurring in the tensor product φ4,1 ⊗ φ20,7, and we
let φ′30,10 be the character of degree 30 with fake degree x50 + x46+ lower powers
of x. The remaining notation is now fixed by the information in Table 5.3.

6. Schur elements for G25, G26 and G32

The three exceptional reflection groups G25, G26 and G32 do contain reflections
of order 3. Thus their Schur elements cannot be recovered from a 1-parameter
specialization.

6A. The complex reflection group G26. The 3-dimensional primitive complex
reflection group W = G26 is the direct product of G25 with a central element of
order 2. It can be shown (see [3, Bem. 4.14(b)]) that the generic cyclotomic algebra
for G25 is a subalgebra of index 2 of a suitable specialization of the cyclotomic
algebra for G26. This allows us to study G25 using results from G26. So we will
first consider the latter group.

The complex reflection group W = G26 is generated by three reflections s1, s2, s3

of orders 3,3,2 respectively, which satisfy the defining relations indicated by this
Coxeter type diagram:

We denote by Ts1, Ts2 , Ts3 the corresponding generators of the generic cyclotomic
algebra H = H(W, (x,y)) of type G26, hence

(Tsj − y1)(Tsj − y2)(Tsj − y3) = 0 for j = 1, 2, (Ts3 − x1)(Ts3 − x2) = 0,

with the five parameters x = (x1, x2),y = (y1, y2, y3). The group W has three
conjugacy classes of maximal parabolic subgroups of types G(3, 1, 2), G(3, 1, 1)+A1

and G4. Fifteen of the 48 conjugacy classes of G26 have a representative in one
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of these parabolic subgroups. The Coxeter element c := s1s2s3 of the braid group
B(W ) satisfies c18 = π (see [5]). Its third power c3 is central. Since the irreducible
representations of all proper parabolic subalgebras are explicitly known by [13, 3A]
and [3, 5B], we may evaluate the irreducible characters of H on all elements of the
form T lc or TwT

3l
c where Tw lies in some maximal parabolic subalgebra. This gives

enough linear independent equations for the determination of Schur elements.
For 1 ≤ j ≤ 3 let z := (z1, z2, z3) with zj :=

√
−x1x2y1y2y3/yj in an algebraic

closure of Q(x,y). We consider the specialization

xj 7→ (−1)j−1, yj 7→ ζj−1
3 , zj 7→ (−ζ2

3 )j ,

of the generic cyclotomic algebraH to the group algebra ofW . By [15, Table 8.2] (or
[3, 6A]) the field Q(ζ3)[x,y, z] is a splitting field for H(W ), so by Tits’ deformation
theorem this identifies Irr(H(W )) with Irr(W ). According to 2D the symmetry
group S = S2 ×S3 of W acts on Irr(W ) by permuting the first two and the last
three parameters among themselves. In order to minimize the number of Schur
elements to be printed, we record in Table 6.1 the action of S on Irr(W ) induced
by the (left) action on {x1, x2, y1, y2, y3}. We let τ1 := (x1, x2), τ2 := (y1, y2) and
σ := (y1, y2, y3).

Table 6.1. S2 ×S3-action on Irr(G26)

ι σ σ2 τ2 στ2 τ2σ τ1 τ1σ τ1σ
2 τ1τ2 τ1στ2 τ1τ2σ

φ1,0 φ1,12 φ1,24 φ1,12 φ1,24 φ1,0 φ1,9 φ1,21 φ1,33 φ1,21 φ1,33 φ1,9

φ2,3 φ2,15 φ2,9 φ2,3 φ2,15 φ2,9 φ2,12 φ2,24 φ2,18 φ2,12 φ2,24 φ2,18

φ3,1 φ′3,13 φ′′3,13 φ′′3,5 φ3,17 φ′3,5 φ3,4 φ′3,16 φ′′3,16 φ′′3,8 φ3,20 φ′3,8
φ3,6 φ3,15

φ6,2 φ′6,8 φ′′6,8 φ′′6,4 φ6,10 φ′6,4 φ6,5 φ′6,11 φ′′6,11 φ′′6,7 φ6,13 φ′6,7
φ8,3 φ′′8,6 φ′′8,9 φ′′8,6 φ′′8,9 φ8,3

φ′8,6 φ′8,9 φ8,12 φ′8,9 φ8,12 φ′8,6
φ9,5 φ9,8

φ9,7 φ9,10

We denote the elements of Irr(W ) by φd,b, where d = φd,b(1) and b is the b-value
of φd,b. This distinguishes the characters except for ten pairs. The eight pairs with
d = 3 or d = 6 have the property that the complex conjugate of any character in
a pair is already determined by d, b. We will see in Theorem 6.2 that the generic
degrees for the relevant characters are Q(x,y)-rational. Thus interchanging y2 with
y3 induces complex conjugation on Irr(W ). So the complex conjugates can be read
of from Table 6.1 and thus also the notation for the first eight ambiguous pairs
is fixed. In each of the two pairs of characters of degree 8, although the b-values
agree, the fake degrees themselves are different for the members of a pair. We choose
notation such that the fake degrees of φ′8,6 and φ′8,9 are monic as polynomials in x.
This fixes the notation for the irreducible characters of W .

Theorem 6.2. The Schur elements of the cyclotomic algebra H(G26; (x,y)) with
respect to any quasi-symmetric basis containing T lc (1 ≤ l ≤ 7) and TwT

3l
c (0 ≤ l ≤

5) for w running through representatives of minimal length of the conjugacy classes
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of the maximal parabolic subgroups of W are as given below:

φ1,0 :(x2 − x1)(y1 − y2)(y1 − y3)(x1y1 + x2y2)(x1y1 + x2y3)(x1y
2
1 − x2y

2
2)

(x1y
2
1 − x2y

2
3)(x1y

3
1 + x2y

2
2y3)(x1y

3
1 + x2y2y

2
3)(x2

1y
4
1 − x1x2y

2
1y2y3 + x2

2y
2
2y

2
3)

(y2
1 + y2y3)(y2

1 − y1y2 + y2
2)(y2

1 − y1y3 + y2
3)/x9

2y
12
2 y12

3 ,

φ2,3 :(x1 − x2)(y1 − y3)(y2 − y3)(x1y1 − x2y3)(x1y2 − x2y3)(x1y1 + x2y3)

(x1y2 + x2y3)(x1y1 + x2y2)(x1y2 + x2y1)(x2
1y

2
1y

2
2 − x1x2y1y2y

2
3 + x2

2y
4
3)

(y1y2 + y2
3)(y2

1 − y1y2 + y2
2)/x9

2y
2
1y

2
2y

12
3 ,

φ3,1 :(x1 − x2)(y1 − y2)(y2
1 − y2

3)(y2 − y3)(y1y2 + y2
3)(y2

1 + y2y3)(y2
1 − y1y3 + y2

3)

(x1y1 + x2y3)(x1y2 + x2y1)(x1y
2
1 − x2y

2
2)(y2

1y2x1 + y3
3x2)/x1x

4
2y1y

4
2y

12
3 ,

φ3,6 :(x3
2 − x3

1)(x1y1 + x2y2)(x1y1 + x2y3)(x1y2 + x2y1)(x1y2 + x2y3)(x1y3 + x2y1)

(x1y3 + x2y2)(y1y2 + y2
3)(y1y3 + y2

2)(y2y3 + y2
1)/x9

2y
4
1y

4
2y

4
3 ,

φ6,2 :(x2 − x1)(y1 − y2)(y1 − y3)(y2 − y3)(y3
1 + y3

3)(y1y3 + y2
2)(x1y2 − x2y3)

(x1y3 + x2y1)(x1y2 + x2y3)(x1y
3
1 + x2y

2
2y3)/x1x

4
2y

2
1y

4
2y

8
3 ,

φ8,3 :2(y1 − y2)(y1 − y3)(x1y2 + x2y3)(x2y2 + x1y3)(z3y1 + x2y
2
3)(x2y1y2 − z3y3)

(z3y1 + x2y
2
2)(x2y1y3 − z3y2)(x1y

2
1 − z3y1 − x2y2y3)

(x2y
2
1 − z3y1 − x1y2y3)/x3

1x
5
2y

2
1y

7
2y

7
3 ,

φ9,5 :(ζ2
3 − 1)(y2

1 − y1y2 + y2
2)(y2

1 − y1y3 + y2
3)(y2

2 − y2y3 + y2
3)(x2y

2
1 + ζ2

3x1y2y3),

(x2y
2
2 + ζ2

3x1y1y3)(x2y
2
3 + ζ2

3x1y1y2)(x1 − x2)(x1 − ζ3x2)/x1x
4
2y

4
1y

4
2y

4
3 .

The Schur element of φ′8,6 is the image of the one for φ8,3 under the non-trivial
automorphism of k(x,y, z3)/k(x,y), the Schur element of φ9,7 is the complex con-
jugate of the one for φ9,5.

6B. The complex reflection group G25. In order to treat the 3-dimensional
primitive complex reflection group W1 := G25 we consider the specialization

x1 7→ 1, x2 7→ −1

of the generic cyclotomic algebra for G26. By [3, Bem. 4.14] its generic cyclotomic
algebra H1 := H(G25; y) is a subalgebra of index 2 of the specialization H′ :=
H(G26; ((1,−1),y)). It was shown in [3, Satz 4.7] that H1 satisfies Assumption 2.5.
Furthermore, by [15, Table 8.2] (or [3, Bem. 6.5]) the field Q(ζ3)(y) is a splitting
field for H1. So by Tits’ deformation theorem the specialization yj 7→ ζj3 induces
a bijection between Irr(H1) and Irr(W1). On the other hand, W is isomorphic to
the direct product of W1 with the cyclic group of order 2. Since W1 has no normal
subgroup of order 2, this allows us to identify Irr(W1) with the subset of elements of
Irr(W ) having this direct factor in the kernel. It turns out that these are precisely
the characters appearing in the first six columns of Table 6.1.

Having thus given a labeling for the irreducible characters of H(W1) by a subset
of Irr(W ), we may state the following:

Theorem 6.3. The generic degree dφ of an irreducible character φ of the cyclo-
tomic Hecke algebra H1 = H(G25; y) with respect to the restriction of a symmetric
form on H′ = H(G26; y, 1,−1) as in Theorem 6.2 is given by twice the corresponding
generic degree for H′.
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Proof. This follows from the above observations by an easy descent argument given
for example in [12, Lemma 5.11].

These Schur elements were already computed in [3, Bem. 5.15], but without
giving the labeling by irreducible characters of G25, so we include them once more
for the convenience of the reader:

φ1,0 :(y1 − y2)2(y1 − y3)2(y2
1 + y2

2)(y2
1 + y2

3)(y3
1 − y2

2y3)(y3
1 − y2y

2
3)(y2

1 + y2y3)

(y4
1 + y2

1y2y3 + y2
2y

2
3)(y2

1 − y1y2 + y2
2)(y2

1 − y1y3 + y2
3)/y12

2 y12
3

φ2,3 :(y1 − y2)2(y1 − y3)2(y2 − y3)2(y1 + y3)(y2 + y3)(y2
1y

2
2 + y1y2y

2
3 + y4

3)

(y1y2 + y2
3)(y2

1 − y1y2 + y2
2)/y2

1y
2
2y

12
3 ,

φ3,1 :− (y1 − y2)2(y1 − y3)2(y2 − y3)(y1y2 + y2
3)(y2

1 + y2y3)(y3
1 + y3

3)(y2
1 + y2

2)

(y2
1y2 − y3

3)/y1y
4
2y

12
3 ,

φ3,6 :− (y1 − y2)2(y1 − y3)2(y2 − y3)2(y1y2 + y2
3)(y1y3 + y2

2)(y2
1 + y2y3)/y4

1y
4
2y

4
3 ,

φ6,2 :(y1−y2)(y1−y3)2(y2−y3)2(y3
1 + y3

3)(y1y3 + y2
2)(y2 + y3)(y3

1 − y2
2y3)/y2

1y
4
2y

8
3 ,

φ8,3 :(y1−y3)(y1−y2)(y2−y3)2(y3
2−y2

1y3)(y2
1y2−y3

3)(y2
2y

2
3 + y2

1y2y3 + y4
1)/y2

1y
6
2y

6
3 ,

φ9,5 :(ζ3 − ζ2
3 )(y2

1 − y1y2 + y2
2)(y2

1 − y1y3 + y2
3)(y2

2 − y2y3 + y2
3)(y2

1 − ζ2
3y2y3)

(y2
2 − ζ2

3y1y3)(y2
3 − ζ2

3y1y2)/y4
1y

4
2y

4
3 .

The Schur element of φ9,7 is the complex conjugate of the one for φ9,5.

6C. The complex reflection group G32. The 4-dimensional primitive complex
reflection group W = G32 is generated by four reflections s1, . . . , s4 of order 3,
which satisfy the braid relations of the A4-diagram. It has two conjugacy classes
of maximal parabolic subgroups of types G25 and G(3, 1, 1) + G4. Out of the
102 conjugacy classes of G32, 32 have a representative in one of these parabolic
subgroups. For both of these, a symmetrizing form and the corresponding Schur
elements are known by virtue of the previous section and by [3], respectively. Let
Ts1, . . . , Ts4 be the generators of the generic cyclotomic algebra H = H(W,y) of
type G32 satisfying

(Tsj − y1)(Tsj − y2)(Tsj − y3) = 0 for j = 1, . . . , 4 ,

with the parameters y = (y1, y2, y3).
We consider the specialization yj 7→ ζj−1

3 of H to the group algebra of W . By
[15, Table 8.2] (or [3, 6A]) the field KW := Q(ζ3)[ 6

√
yj | 1 ≤ j ≤ 3] is a splitting

field for H(W ; y). By 2D the symmetry group S = S3 of W in its action on the
parameters induces an action on Irr(W ). As in the case of G26 we first give a table
showing the action of S on Irr(W ) induced by the (left) action on {y1, y2, y3}.

The three characters φ81,10, φ81,12, φ81,14 are invariant under the S3-action.
We denote the elements of Irr(W ) by φd,b, where d = φd,b(1) and b is the b-value

of φd,b. This distinguishes the characters except for six pairs. We denote by φ′′30,12

and φ′′60,15 the only two rational characters in these pairs. The other characters in
these pairs have the property that their complex conjugate is already determined
by its d, b. Interchanging y2 with y3 induces complex conjugation on Irr(W ). So
the complex conjugates can be read of from Table 6.4 and thus the notation for the
ambiguous pairs is fixed.
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Table 6.4. S3-action on Irr(G32)

(1) (1, 2, 3) (1, 3, 2) (1, 2) (1, 3) (2, 3)
φ1,0 φ1,40 φ1,80 φ1,40 φ1,80 φ1,0

φ4,1 φ4,41 φ4,51 φ4,21 φ4,61 φ4,11

φ5,4 φ5,44 φ5,36 φ5,12 φ5,52 φ5,20

φ6,8 φ6,48 φ6,28 φ6,8 φ6,48 φ6,28

φ10,2 φ10,30 φ10,34 φ10,14 φ10,42 φ10,10

φ15,6 φ15,22 φ15,38 φ15,22 φ15,38 φ15,6

φ15,8 φ15,24 φ15,16 φ15,8 φ15,24 φ15,16

φ20,3 φ20,25 φ′20,29 φ20,13 φ20,35 φ′20,9

φ20,5 φ20,33 φ20,19 φ20,5 φ20,33 φ20,19

φ20,7 φ′′20,29 φ20,21 φ′′20,9 φ20,31 φ20,17

φ20,12 φ20,16 φ20,20 φ20,16 φ20,20 φ20,12

φ24,6 φ24,16 φ24,26 φ24,16 φ24,26 φ24,6

φ30,4 φ′′30,20 φ30,24 φ′30,12 φ30,28 φ30,8

φ′′30,12 φ30,16 φ′30,20 φ30,16 φ′30,20 φ′′30,12

φ36,5 φ36,15 φ36,25 φ36,15 φ36,25 φ36,5

φ36,7 φ36,17 φ36,27 φ36,17 φ36,27 φ36,7

φ40,8 φ40,18 φ40,22 φ40,14 φ40,24 φ40,10

φ45,6 φ45,22 φ45,14 φ45,6 φ45,22 φ45,14

φ45,10 φ45,26 φ45,18 φ45,10 φ45,26 φ45,18

φ60,7 φ60,17 φ′60,15 φ60,9 φ60,19 φ′60,11

φ′′60,11 φ′′60,15 φ60,13 φ′′60,11 φ′′60,15 φ60,13

φ60,12 φ60,16 φ60,20 φ60,16 φ60,20 φ60,12

φ64,8 φ64,18 φ64,13 φ64,8 φ64,18 φ64,13

φ64,11 φ64,21 φ64,16 φ64,11 φ64,21 φ64,16

φ80,9 φ80,13 φ80,17 φ80,13 φ80,17 φ80,9

We denote by c := s1s2s3s4 the Coxeter element of the braid group B(W ) of W .
It satisfies c30 = π and its fifth power is central in B(W ). Let w := s2

1s2s3s4 = s1c.
By direct computation with the defining relations of B(W ) we find that w4 = c5,
hence w is a 24-th root of π in the braid group.

Theorem 6.5. The Schur elements of the cyclotomic Hecke algebra H(G32; y)
with respect to any quasi-symmetric basis only containing T lc (1 ≤ l ≤ 29), T lw
(1 ≤ l ≤ 23) and elements of the form TvT

5l
c (1 ≤ l ≤ 5) for v running through

representatives of minimal length of the conjugacy classes of the maximal parabolic
subgroups of B(W ) are given in the table below.

Proof. The character values of H on the powers of Tc and of Tw can be evaluated
with Proposition 2.8. Moreover, character values on all elements of proper parabolic
subalgebras are known by the preceding section, respectively by [3]. Since T 5l

c is
central in H, the values on any product TvT

5l
c can be determined, once those on

Tv are known. Thus the values of all irreducible characters on all the elements
occurring in the statement can be computed. Using the computer algebra system
GAP it was checked that this system has maximal rank, and thus determines the
generic degrees uniquely.
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φ1,0 :(y2z2 + yzx2 + x4)(y2 − yx+ x2)(z2 − zx+ x2)(y2z − x3)(yz2 − x3)

(y4z4 + y3z3x2 + y2z2x4 + yzx6 + x8)(y4 − y3x+ y2x2 − yx3 + x4)

(z4 − z3x+ z2x2 − zx3 + x4)(y3z + x4)(yz3 + x4)(y4z2 − y2zx3 + x6)

(y2z4 − yz2x3 + x6)(y2z3 − x5)(y3z2 − x5)(y2z2 + x4)(y3z3 + x6)(y2 + x2)

(z2 + x2)(yz + x2)(y − x)2(z − x)2/y40z40,

φ4,1 :(x8 − x7z + z3x5 − x4z4 + z5x3 − z7x+ z8)(y4 − y3x+ y2x2 − yx3 + x4)

(z2y2 + zyx2 + x4)(x3 + z3)(y2 − yx+ x2)(z4y + x5)(yx3 + z4)(z3y − x4)

(z2y − x3)(zy2 − x3)(yx2 − z3)(z2y + x3)(x2 + z2)(yz + x2)(xy + z2)

(x − z)2(x − y)(y − z)/xy15z40,

φ5,4 :(y2x2 + yxz2 + z4)(z4 − z2x2 + x4)(x4y + z5)(y2x3 − z5)(z2 − zx+ x2)2

(y2 − yx+ x2)(yx2 − z3)(z2y + x3)(y2x+ z3)(y2 + x2)(zy + x2)(yx+ z2)

(z − x)2(y − x)2(z − y)2(z + y)(z + x)2/x2y6z40,

φ6,8 :(x4y4 + x3y3z2 + x2y2z4 + xyz6 + z8)(x4 − x3y + x2y2 − xy3 + y4)

(x3y3 + z6)(z2 − zy + y2)(z2 − zx+ x2)(z3 − x2y)(xy2 − z3)(x2y + z3)

(xy2 + z3)(zx+ y2)(zy + x2)(xy + z2)(z − y)2(x− y)2(z − x)2(z + x)

(z + y)/x4y4z40,

φ10,2 :− (x4y2 − x2yz3 + z6)(y2z2 + yzx2 + x4)(x2 − xz + z2)(x2 − xy + y2)

(y3z + x4)(x2y − z3)(yz2 − x3)(yz2 + x3)(x2 + z2)(xy + z2)

(xz + y2)(yz + x2)(x− z)3(y − z)2(x− y)(x+ z)2(y + z)/x2y12z30,

φ15,6 :(y2z2 − yzx2 + x4)(y2z2 + x4)(x2 − xz + z2)(x2 − xy + y2)(x3y + z4)

(x3z + y4)(x3 − y2z)(yz2 − x3)(xy + z2)(xz + y2)(yz + x2)2(x− z)2

(y − z)2(x− y)2(x+ y)(x+ z)/x2y20z20,

φ15,8 :(x2y2 + z4)(z2 − zy + y2)(z2 − zx+ x2)(zx2 − y3)(x3 − y2z)(zx+ y2)

(zy + x2)(xy + z2)2(z − y)2(x− y)2(z − x)2(z + x)2(z + y)2/x6y6z20,

φ20,3 :(y4z2 − y2zx3 + x6)(x2y2 + xyz2 + z4)(z2 − zx+ x2)(z3y − x4)(zx2 − y3)

(yz2 − x3)(xy2 + z3)(z2 + x2)(zx+ y2)(zy + x2)(xy + z2)(z − y)(x− y)2

(z − x)2(z + x)2/x3y12z25,

φ20,5 :(y2x2 + xyz2 + z4)(y2x2 − xyz2 + z4)(y2 − yx+ x2)(z2 − zx+ x2)

(y2 − yz + z2)(x3 − y2z)(x2y − z3)(xy2 − z3)(zx2 − y3)(yz2 + x3)

(z2x+ y3)(yx+ z2)2(z − x)2(y − z)2/x5y5z30,

φ20,7 :− (y2z2 + yzx2 + x4)(x3 + z3)2(y2 − yz + z2)(x3z + y4)(x3y − z4)

(xy2 − z3)(xy2 + z3)(xy + z2)(xz + y2)(x − y)2(x− z)2(y − z)2/x5y6z25,

φ20,12 :2 (z2y2 + yzx2 + x4)(z2 − zy + y2)2(z2x+ y3)(xy2 + z3)(zy + x2)2(y − z)2

(x − y)3(z − x)3(x+ z)2(x+ y)2/x6y12z12,

φ24,6 :(y4z4+y3z3x2+y2z2x4+yzx6+x8)(x3 + z3)(x3 + y3)(x2y − z3)(y3 − zx2)

(x2 + z2)(x2 + y2)(xy + z2)(xz + y2)(x − y)2(x− z)2(y − z)2/x4y15z15,
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φ30,4 :(x5 − z2y3)(x3 + y3)(y3 + z3)(x3 + z3)(yz4 + x5)(xz2 + y3)(x4 − z4)

(xz + y2)(zy + x2)(x− y)2(y − z)2(x − z)2/x4y12z20,

φ′30,12 :(y3 + z3)2(x2 − xy + y2)(z2 − zx+ x2)(zx2 − y3)(x2y − z3)(zx+ y2)

(xy + z2)(x− y)3(x− z)3(x+ z)2(x+ y)2/x6y12z12,

φ36,5 :(ζ2
3 − 1)(ζ3z3 + x2y)(ζ3y3 + x2z)(xy − ζ3z2)(xz − ζ3y2)(x2 − ζ2

3yz)(x− y)

(ζ2
3y

4 + xy3 + ζ3x
2y2 + ζ2

3x
3y + x4)(ζ2

3z
4 + xz3 + ζ3x

2z2 + ζ2
3x

3z + x4)

(x6 + y3z3)(x2 − xz + z2)(y2 − yz + z2)(x2 − xy + y2)(x− z)/x4y15z15,

φ40,8 :(x2z2 + xzy2 + y4)(y2x3 − z5)(x3 + y3)(z2 − zy + y2)(zy2 − x3)(x2 + y2)

(x2 + z2)(xy + z2)(zy + x2)(x− y)2(z − y)(x − z)3(x + z)/x5y12z15,

φ45,6 :(1 − ζ2
3 )(ζ3x3 + y2z)(ζ3y3 + zx2)(−ζ2

3y
2 + zx)(−ζ2

3x
2 + zy)(ζ3xy − z2)

(ζ3xy + z2)(ζ2
3xy + z2)(ζ2

3y
2 + z2)(ζ2

3x
2 + z2)(ζ3y + z)2(ζ2

3y + z)

(x2 − xy + y2)(ζ3x+ z)2(ζ2
3x+ z)(xy + z2)(z − y)(z − x)/x6y6z20,

φ60,7 :(x3 + y3)(z2 − zy + y2)(yx4 + z5)(y2x− z3)(z2y − x3)(x2 + y2)(xz + y2)

(x2 + yz)(x− y)2(y2 − z2)2(x− z)2/x6y9z15,

φ′′60,11 :(y2x2 − xyz2 + z4)(y2 − yx+ x2)(yz3 − x4)(z3x− y4)(yz + x2)(yx+ z2)2

(zx+ y2)(x2 − y2)2(x− z)2(y − z)2/x9y9z12,

φ60,12 :2 (y2z2 − yzx2 + x4)(y3 + z3)2(xy2 − z3)(z2x− y3)(x2 + z2)(x2 + y2)

(yz + x2)2(x − z)3(x − y)3/x6y12z12,

φ64,8 :2 (x2y2 − rxyz + xyz2 − rz3 + z4)(x2y2 + xyz2 + z4)(zx2 + ry2)(rx2 + zy2)

(y4 − ry3 + rxy2 − x2y2 + rx2y − rx3 + x4)(xr − z2)(ry − z2)(y3 − z2x)

(x3 − yz2)(y − z)(x− y)2(x− z)/rx8y8z15,

φ80,9 :2 (y2z2 + yzx2 + x4)(y4 − y2z2 + z4)(y2z2 + x4)(xy2 − z3)(z2x− y3)

(x2 + z2)(x2 + y2)(x − z)2(y − z)2(x− y)2(x+ y)(x+ z)/x6y12z12,

φ81,10 :3 (sx2 + syz + s2x+ yzx+ x3)(sz2 + sxy + s2z + yzx+ z3)

(sy2 + sxz + s2y + yzx+ y3)(xy + sz)(xz + sy)(yz + sx)(sz + x2)

(sz + y2)(sx + z2)(sy + x2)(sx+ y2)(sy + z2)(xy + z2)(xz + y2)

(x2 + yz)(s+ z)(s+ y)(s+ x)/x12y12z12.

In the table, we do not print the Schur elements for φ36,7, φ45,10, since they are
the complex conjugates of those for φ36,5, φ45,6, respectively. In order to avoid
indices, we write (x, y, z) instead of (y1, y2, y3). Finally, r, s denote elements of KW

with r2 = xy and s3 = xyz.

7. d-Howlett-Lehrer-Lusztig theories for unipotent blocks

It was first noted by Springer that non-real reflection groups naturally appear
inside Weyl groups as what is now called relative Weyl groups, that is, normalizers
modulo centralizers of subspaces in the natural reflection representation. By the
standard dictionary between Weyl groups and finite reductive groups these relative
Weyl groups can also be seen as normalizer modulo centralizer of (so-called d-split)
Levi subgroups in groups of Lie type. The importance of this construction was
revealed in the work of Broué, Michel and the author on the `-blocks of characters
of finite groups of Lie type. There it was shown that the unipotent characters inside
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an `-block are parametrized by the irreducible characters of a relative Weyl group,
which in general is a non-real reflection group.

A possible conceptual interpretation of this result was subsequently proposed
by Broué and the author [3]. Namely, it was conjectured there that the cyclo-
tomic Hecke algebras attached to relative Weyl groups govern the decomposition of
Lusztig-induced d-cuspidal characters. If this does in fact hold, it implies that the
degrees of the constituents of those Lusztig induced characters can be expressed in
terms of the Schur elements of the corresponding cyclotomic algebras.

This latter fact was already verified in [12, Folg. 3.16 and 6.11] for all relative
Weyl groups which are imprimitive in their natural reflection representation, in [13,
Prop. 5.2] for the 2-dimensional ones, and in [3, Folg. 5.16] for G25. With the Schur
elements computed above, we can check the remaining cases and thus obtain (we
refer to [3] or [13] for the notation):

Proposition 7.1. Let G be a group of Lie type, E(G, (L, λ)) a Φd-block of unipotent
characters. Then the degrees of the unipotent characters γ ∈ E(G, (L, λ)) satisfy
conjecture (d-HV6) in [3] with respect to the values of parameters given in [3, 2B
and Table 8.1].

Proof. By the references cited above, it only remains to consider the cases

(G, d) ∈ {(E7, 3), (E7, 6), (E8, 4), (E8, 3), (E8, 6)},

with relative Weyl groups G26, G26, G31, G32, G32 respectively. The Schur elements
for the cyclotomic Hecke algebras of these latter groups have all been determined
above, and the result follows by comparing the specialized Schur elements with the
unipotent character degrees. (This was done explicitly in Theorem 5.4 for the case
(E8, 4).)

8. Spetsial reflection groups

In this last section we observe some general properties of the Schur elements
of complex reflection groups, using the explicit results derived here, respectively
in [7] and [13]. These will bring to light an important property shared by certain
finite complex reflection groups which seems to lie at the heart of the existence of
so-called unipotent degrees (see for example [12] and Section 8.3). This result was
announced in the ICM-report [14].

8A. A property of some complex reflection groups. Let W be a finite irre-
ducible complex reflection group defined over k, Zk the ring of integers of k,H(W,x)
the 1-parameter cyclotomic algebra (2.4) over Z[x, x−1], k(y) with y|µ(k)| = x a
splitting field for H(W,x) (see 2A).

We now associate a certain rational function cφ in y to each irreducible character
of W . If W is a real reflection group, cφ denotes the Schur element of φ with respect
to the canonical symmetrizing form on the Iwahori-Hecke algebra of W (see [8, 9.4]).
Similarly, if W = G(m, p, n), cφ denotes the Schur element of φ with respect to the
symmetrizing form on H(W,x) constructed by Bremke and the author. According
to [7, Cor. 1.5] and [12, Satz 5.13], it is given as follows. The irreducible characters
of W are indexed by so-called m-symbols S. For each symbol S let DS be the
rational function defined in [12, (5.12)]. We let cφ = 1/DS(x;w0, . . . , wm−1) if φ is
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indexed by S, where the wj are given by

wj =


x

1
p−1 if j = 0,

x
1
p ζjm if t|j, j 6= 0,

ζjm otherwise,

with ζm := exp(2πi/m). If W is a 2-dimensional exceptional reflection group, we
let cφ be the Schur element corresponding to φ computed in [13]. Finally, if W
is a non-real exceptional reflection group in dimension at least 3, then cφ is the
1-parameter specialization of the Schur element computed in the previous sections.

Thus, at least conjecturally, the cφ are the Schur elements with respect to a nice
(natural) symmetric form on the 1-parameter cyclotomic algebra H(W,x) of W .

For φ ∈ Irr(W ) we now call δφ := P (W )/cφ the generic degree of φ. It is a
rational function in y. We write a(φ) for |µ(k)|−1 times the order of zero of δφ at
y = 0, and b(φ) for the order of zero of the fake degree Rφ at x = 0. Following the
notation of Lusztig [9] for the real case, a character φ with a(φ) = b(φ) is called
special.

The explicit formulae for the generic degrees now allow us to observe the follow-
ing:

Proposition 8.1. Let W be a finite irreducible complex reflection group. Then the
following are equivalent:

(i) for all φ ∈ Irr(W ) there exists a special ψ ∈ Irr(W ) with a(φ) = a(ψ);
(ii) a(φ) ≤ b(φ) for all φ ∈ Irr(W );
(iii) (rationality) δφ ∈ k(x) for all φ ∈ Irr(W );
(iv) (integrality) δφ ∈ k[y] for all φ ∈ Irr(W );
(v) δ1 = 1 (i.e. c1 = P (W ));
(vi) (representability) the k-subspaces 〈δφ | φ〉 and 〈Rφ | φ〉 of k(y) coincide.

Proof. First note that the fake degrees Rφ lie in Z[x], so statement (vi) implies
(iii) and (iv). For the other implications, the proof is case by case. If W is a real
reflection group, then it is known that statements (i)–(vi) hold. For example, they
can be checked from the explicitly known values of the cφ. In the case of Weyl
groups, it is possible to give general proofs for some of the statements by using
the fact that the generic degrees specialize to the degrees of actual characters of
groups of Lie type with this Weyl group. Properties (i) and (v) for all real types
but H4 are contained in [9, 12.d) and e)], property (ii) in [9, (2.1)], (iii) and (iv) in
[2, Th. 2.6], and (vi) in [10, (4.24)]. The case of H4 is treated in [1].

For the monomial groups G(m, 1, n), (i) and (ii) hold by [12, Bem. 2.24], (iii)
by definition of the cφ in this case (see [12, (2.21)]), (iv) by [12, Folg. 3.17], (v) by
inspection and (vi) by [12, Satz 4.17]. For the imprimitive groups G(m,m, n), (i)
and (ii) are shown in [12, Lemma 5.16], (iii) follows from [12, (5.14)], (iv) from [12,
Folg. 6.12], (v) again by inspection and (vi) from [12, Satz 6.26].

Now assume that W = G(m, p, n) with n ≥ 2, p 6= 1,m. We claim that none
of the statements (i)–(vi) holds for W . For this we compute the generic degrees
of the trivial character and of the reflection character. The trivial character is
parametrized by the m-tuple of partitions (n,−, . . . ,−). The formula in [12] yields

δ1 =
xnt − 1
xn − 1

n∏
k=1

x(k−1)p+1 − 1
x(k−1)m+t − 1

n−1∏
k=1

xmk − 1
xpk − 1

,
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where t := m/p. For p 6= 1,m the factor x(n−1)m+t−1 in the denominator does not
cancel, hence δ1 is not integral and (iv), (v) and (vi) fail. The reflection character
ρ is parametrized by the multi-partition (n − 1, 1,−, . . . ,−). Here, for p 6= m we
find

δρ =
x2− 1

p (xn − 1)(xm(n−1)+t − 1)(xp(n−1) − 1)(xn−2+ 1
p − ζ)(x

1
p − ζ)

(xn−1 − 1)(xp(n−1)+1 − 1)(x− 1)(xn−1+ 1
p − ζ)(x

p−1
p − ζ−1)(x − ζp)

δ1 ,

with ζ = exp(2πi/m). Thus a(ρ) = 2− 1
p is not integral, and (i), (iii) cannot hold.

Moreover, by definition the reflection character occurs in the first symmetric power
of the natural representation of W , so b(ρ) = 1 < a(ρ), and (ii) is violated.

The generic degrees of the 2-dimensional primitive reflection groups were com-
puted in [13]. From these, it can be checked that (i)–(vi) hold for the groups
G4, G6, G8, G14.

For the remaining 2-dimensional groups, the explicit formulae in [13] show that
δ1 is not integral, so (iv), (v) and (vi) fail to hold. Also, in all cases there exists
a non-rational degree, so (iii) is violated. For all groups except G12 and G22 there
even exists some φ with non-integral a(φ), which contradicts (i). For G12, the
reflection character ρ has a(ρ) = 2, but there is no ψ with b(ψ) = 2. Thus (i) and
(ii) do not hold. The group G22 has a 3-dimensional character φ with a(φ) = 1, but
a(ρ) = 3, so there is no special character ψ with a(ψ) = 1, again contradicting (i)
and (ii). It can be checked that a(ρ) > b(ρ) for G7, G11, G13, G15 and G19. For the
remaining groups, condition (ii) is violated for some other irreducible character.

It remains to consider the exceptional, non-real groups of dimension at least 3.
The results of the previous sections show that for G31, none of the statements hold,
while the other groups satisfy (i)–(vi).

A reflection group all of whose irreducible components satisfy the above (very
special) equivalent conditions will be called spetsial. From the proof of Proposi-
tion 8.1 we see that the irreducible spetsial groups are

Sn, G(m, 1, n), G(m,m, n), Gi with i ∈ {4, 6, 8, 14, 23, . . . , 30, 32, . . . , 37}.
With this list it is straightforward to verify that spetsiality is in a certain sense a
local property:

Proposition 8.2. A reflection group is spetsial if and only if all of its 2-dimen-
sional parabolic subgroups are spetsial.

Since taking parabolic subgroups is transitive, we obtain the immediate conse-
quence that all parabolic subgroups of a spetsial reflection group are spetsial.

8B. Special characters of spetsial groups. The explicit formulae for the generic
degrees obtained in the previous sections or given in the above-mentioned references
allow us to compile the list of all special characters of irreducible spetsial reflection
groups W . For real W , the special characters were listed in [9] and [1]. For W =
G(m, 1, n) the special characters are described in [12, Bem. 2.24] in terms of the
associated symbols, for W = G(m,m, n) in [12, Lemma 5.16]. For the exceptional
spetsial reflection groups, the special characters can be read off from the explicit
data in [13] and in the previous sections. Thus we obtain the following lists:
G4: φ1,0, φ2,1, φ3,2, φ1,4.
G6: φ1,0, φ2,1, φ3,4, φ2,5,13, φ1,10.
G8: φ1,0, φ2,1, φ3,2, φ4,3, φ1,6.
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G14: φ1,0, φ2,1, φ4,5, φ3,6, φ2,9, φ1,20.
G24: φ1,0, φ3,1, φ7,3, φ8,4, φ7,6, φ3,8, φ1,21.
G25: φ1,0, φ3,1, φ6,2, φ

′′
6,4, φ8,6, φ

′
6,8, φ1,12.

G26: φ1,0, φ3,1, φ6,2, φ8,3, φ
′
6,4, φ6,5, φ

′′
8,6, φ

′′
6,11, φ

′′
3,16, φ1,21.

G27: φ1,0, φ3,1, φ10,3, φ9,4, φ15,5, φ8,6, φ15,8, φ9,9, φ10,12, φ3,16, φ1,45.
G29: φ1,0, φ4,1, φ10,2, φ16,3, φ

′
15,4, φ

′′
15,4, φ20,5, φ24,6, φ20,9, φ

′′
15,12, φ

′
15,12, φ16,13,

φ10,18, φ4,21, φ1,40.
G32: φ1,0, φ4,1, φ10,2, φ20,3, φ30,4, φ20,5, φ45,6, φ64,8, φ60,9, φ81,10, φ30,12, φ36,15,

φ30,20, φ20,25, φ10,30, φ1,40.
G33: φ1,0, φ5,1, φ15,2, φ30,3, φ30,4, φ81,6, φ60,7, φ45,7, φ64,8, φ15,9, φ45,10, φ81,11,

φ60,10, φ15,12, φ30,13, φ30,18, φ15,23, φ5,28, φ1,45.
G34: φ1,0, φ6,1, φ21,2, φ56,3, φ105,4, φ126,5, φ315,6, φ420,7, φ384,8, φ

′
70,9, φ560,9, φ315,10,

φ729,10, φ630,11, φ840,11, φ896,12, φ210,12, φ
′
840,13, φ630,14, φ1280,15, φ

′
560,18,

φ630,20, φ840,19, φ210,30, φ896,21, φ
′′
840,23, φ630,23, φ729,24, φ315,28, φ560,27,

φ′70,45, φ384,29, φ420,31, φ315,36, φ126,41, φ105,46, φ56,57, φ21,68, φ6,85, φ1,126.
Recall that an n-dimensional irreducible finite complex reflection group W is

called well-generated if it can be generated by n of its reflections. The proof of
Proposition 8.1, together with results from [15], immediately yields the following
characterization:

Corollary 8.3. Let W be irreducible. Then the following are equivalent:
(i) W is well-generated;
(ii) the reflection character ρ of W is special;
(iii) the generic degree δρ is rational.

Proof. We proceed case by case. The groups G(m, p, n), n ≥ 2, p 6= 1,m, are
not well-generated. In the proof of Proposition 8.1 we saw that a(ρ) = 2− 1/p, so
neither is ρ special nor δρ rational. For the remaining non-well-generated groupsGi,
i ∈ {7, 11, 12, 13, 15, 19, 22, 31} the assertion has either been verified in the course
of proving Proposition 8.1, or it is a consequence of the explicit formulae for δρ in
Theorem 5.4 or in [13].

Now assume that W is well-generated. Moreover, if W is spetsial, then δρ is
rational by Proposition 8.1. The a-value can be checked from the lists of Schur
elements determined here or in [12]. All non-spetsial well-generated groups are
2-dimensional, and for them the result follows from the formulae in loc. cit.

8C. Unipotent degrees and spetses. We end by giving some motivation for
the study of spetsial reflection groups. In the course of his classification of the
irreducible characters of finite reductive groups G(q) = GF Lusztig [10] determined
the important class of unipotent characters and showed that they can be indexed
by a set which only depends on the Weyl group W of the associated algebraic group
G, together with the action of the Frobenius endomorphism F on it. Moreover, the
degrees of these unipotent characters can naturally be written as polynomials with
rational coefficients in the size q of the underlying field. We call this the (multi-) set
of unipotent degrees attached to (W,F ). Many properties of unipotent characters
are already reflected by combinatorial properties of the unipotent degrees, for exam-
ple, the distribution into Harish-Chandra series, and the distribution into families
(which restricted to principal series characters are just the Kazhdan-Lusztig cells).

In the course of this classification Lusztig observed that similar sets can formally
also be attached to those finite real reflection groups W which are not Weyl groups
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[11]. We showed in [12] that in fact such sets of unipotent degrees exist for all
imprimitive spetsial complex reflection groups, and in [4] corresponding sets are
constructed for the primitive spetsial groups (using the results of the present paper).

More precisely, we obtain sets E(W ) together with a degree map

Deg : E(W )→ 1
|W |OK [x],

where OK denotes the ring of integers of the character field K of W (the field of
definition of the reflection representation of W ). The Galois group Gal(K/Q) acts
on E(W ) such that Deg is equivariant. The set E(W ) falls into Φ-Harish-Chandra
series for each cyclotomic polynomial Φ over K, and into families. The Φ-Harish-
Chandra series are completely described by the Schur elements of cyclotomic Hecke
algebras attached to certain relative Weyl groups. For Φ = x − 1 and W a Weyl
group, these are just the ordinary Harish-Chandra series of unipotent characters.
Each family contains a unique special character, and the degrees in the family
are connected to the corresponding fake degrees by a Fourier transform matrix. To
each element of E(W ) is attached a root of unity (called Frobenius eigenvalue), such
that for each family the diagonal matrix of Frobenius eigenvalues together with the
Fourier matrix give a representation of SL2(Z). For details and references we refer
to [12] and [14]. It turns out that all (equivalent) conditions in Proposition 8.1 are
necessary for the existence of such sets of unipotent degrees, so that we can state:

Theorem 8.4. A finite complex reflection group has unipotent degrees if and only
if it is spetsial.

Thus in a certain sense spetsial complex reflection groups behave just as if they
were the Weyl groups of an algebraic group. It is tempting to speculate about an
underlying algebraic structure, baptized ‘spets‘ in [14], giving rise to the unipotent
degrees attached to complex reflection groups. We don’t yet know what these
spetses should be, but a lot of intriguing evidence for their existence has been
collected.
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