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ON THE GENERIC DEGREES OF CYCLOTOMIC ALGEBRAS

GUNTER MALLE

ABSTRACT. We determine the generic degrees of cyclotomic Hecke algebras
attached to exceptional finite complex reflection groups. The results are used
to introduce the notion of spetsial reflection group, which in a certain sense is
a generalization of the finite Weyl group. In particular, to spetsial W there is
attached a set of unipotent degrees which in the case of a Weyl group is just
the set of degrees of unipotent characters of finite reductive groups with Weyl
group W, and in general enjoys many of their combinatorial properties.

1. INTRODUCTION

Cyclotomic algebras are certain deformations of the group algebras of finite
complex reflection groups, defined analogously to Iwahori-Hecke algebras for Weyl
groups. These cyclotomic algebras seem to play an important role in the under-
standing of the representation theory of finite groups of Lie type (see for example
[3]). At the moment, the properties of cyclotomic algebras are not yet fully under-
stood. This paper is devoted to the study of certain numerical invariants attached
to them, the generic degrees.

It is conjectured (and known in all but finitely many cases [16]) that the cyclo-
tomic algebra H = H(W, u) of an irreducible finite complex reflection group W is
symmetric over the ground ring A = Z[u,u™!], such that the corresponding trace
form ¢ vanishes on all basis elements T3, for w € W, w # 1 reduced. Since t is a
trace form, it can be expressed as a sum t = ) ol /ce ¢ of irreducible characters
of H with non-vanishing coefficients. The c4 appearing as coefficients are called
the Schur elements of H (with respect to ¢). In this paper we compute the Schur
elements with respect to any trace form as above for the exceptional complex re-
flection groups. The method is an extension of [13] where the 2-dimensional case
was considered.

In the final section we use the results obtained so far to introduce the so-called
spetsial reflection groups (as announced in [14]). This is a subclass of all finite
complex reflection groups, which includes in particular all those which can already
be defined over the real numbers. It can be defined by a variety of equivalent char-
acterizations all related to the Schur elements (see Prop.8.1). At present there is no
conceptual understanding of the equivalence of these properties, even in the case
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of finite Coxeter groups (where they are always satisfied). It would be very inter-
esting to find such an explanation, since this property is a necessary and sufficient
condition for the existence of unipotent degrees attached to a complex reflection
group W, i.e., for W behaving like the Weyl group of some as yet mysterious object
generalizing the concept of an algebraic group see (Section 8.3).

2. CYCLOTOMIC HECKE ALGEBRAS

We recall the definition and some properties of cyclotomic Hecke algebras, some
facts about character values, and some basic properties of symmetric algebras.

2A. The cyclotomic algebra of a complex reflection group. Let W be a
finite irreducible complex reflection group on the vector space V. The ring of
invariants of W in the symmetric algebra S(V') of V' is a polynomial ring, generated
by homogeneous invariants of degrees dy, ... ,d,, with n = dim(V). The Poincaré
polynomial Py of W is given by Py := H;.l:l(xdi —1)/(x —1). For an irreducible
character ¢ € Irr(W) the fake degree is defined as

detv )
(2.1) Ry :=(z—1)" |W| Z P — € Zlx],
where dety denotes the determinant on V. The b-value of ¢ € Irr(W) is the order
of zero at x = 0 of the fake degree Ry.

Let D be the diagram associated to W in [b]. This defines a presentation of W
on a set of generators S with order relations s% = 1 for s € S, together with certain
homogeneous relations, the so-called braid relations. The braid group B = B(W)
associated to W is by definition the group generated by a set {s | s € S} in bijection
with S, subject to the braid relations of D. Let u = (us,; | s € 5,0<j <ds —1)
be transcendentals over Z, such that us ; = u;; whenever s and ¢ are conjugate in
W. The generic cyclotomic Hecke algebra H(W,u) of W with parameter set u is
defined to be the quotient

ds—1
(22) HW,u):=Zuu'|B/I, withI=([](s—us;)|s€S)

§=0
of the group algebra of B over A := Z[u,u"!] by the ideal I generated by certain
deformed order relations. We will write Ty, for the image in H(W, u) of an element
W =81...8; € B. Any ring homomorphism f : Z[u,u™!] — R endows R with an
A-module structure, and we write

Hr(W,u) := H(W,u) ®4 R

for the corresponding specialization. Note that such a homomorphism f is uniquely
determined by the images f(us;), s € S, 0 < j < ds—1. A specialization of H will
be called admissible if the specialization

(2.3) us,j — exp(2mij/ds) forse S,0<j<ds—1,

to the group algebra of the complex reflection group W factors through it. One par-
ticularly important example is the 1-parameter specialization H(W, z) of H(W,u)
induced by the map

z J=0,
2.4 CUg g
( ) fx s J w {exp(?wlj/ds) .] > O;
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where x is an indeterminate. This is the analogue of the usual 1-parameter Iwahori-
Hecke algebra for real W.
Henceforth, we will make the following assumption:

Assumption 2.5 . The cyclotomic algebra H(W,u) is free over A = Z[u,u"'] of
rank |W|.

This assumption is known to hold for all infinite families of irreducible reflection
groups and for some of the remaining 34 exceptional groups (see the references in
[15]). We conjecture it to be true in all cases [5l, Sect. 4].

2B. Character values. Let k be the character field of the reflection representation
of W. So k is a finite cyclotomic extension of Q and we write u(k) for the group
of roots of unity in k. For s € §, 0 < j < d, — 1, let v, ; be such that vls’fj(k)l =
exp(—2mij/ds)us; and set Ky = k(v). We extend the specialization (2.3) to
Zv,v~] by

(2.6) Vgj 1 forseS,0<5<ds—1.

By [I5, Thm. 5.2] it is known that Ky is a splitting field for H. In particular,
the values of all irreducible characters on an A-basis of H are contained in Ky .
Furthermore, it follows from Assumption 2.5 and Tits’ deformation theorem that
Hi,, is isomorphic to the group algebra Ky W, and the specialization (2.6) induces
a bijection

(2.7) Irr(W) — Trr(Hicy, ), ¢ — Py,

between Irr(Hg,, ) and Irr(W) which furthermore carries over to any admissible
specialization of Hy[y v-1)-

In [5] we defined a certain central element w € Z(B) which maps to the identity
under the canonical epimorphism B — W. Clearly, its image T, in H is also
central. Thus, it acts as a scalar in any (absolutely) irreducible representation
of Hk, . Extending an idea of Springer, Broué and Michel have observed that
this allows evaluation of irreducible characters on roots of T without knowing the
corresponding representation explicitly. Let us describe this method.

Let S’ be a system of representatives of the generators in S up to conjugation
in W. Write # = s;...s5;in B. For s € S’ let Ny = |{j | s; ~ s}| denote the
number of factors in the decomposition of 7 conjugate to s. (This does not depend
on the chosen expression for 7, as is seen by evaluating linear characters of B.) For
an irreducible character ¢ of W let mﬁ ; denote the multiplicity of the eigenvalue
exp(2mij/ds) of s in a representation affording ¢.

Proposition 2.8 (Broué-Michel [6]). Letw € B such that w? = m for somed > 1.
Then the value of the irreducible character ¢y € Irr(Hye, ) on T is given by

ds—1
[T B()Im? N do(1)
ov(Ty) = o) [T TT vas™ "7

seS’ j=0

It can be shown by a general argument that mf’ ;Ns/#(1) is always an integer
(see [6l 4.17]). As a consequence of [I5l Thm. 5.2], which relies on a case-by-case
analysis, the exponent |u(k)|mf7st/d¢>(1) in Proposition 2.8 has to be integral
unless ¢(w) = 0.
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2C. Symmetrizing forms. By what we saw in 2A the cyclotomic algebra H is
isomorphic to the group algebra of W over the splitting field Ky . Since Ky W
is a symmetric algebra, the same is true for H g, . Thus there exists a symmetric
form (, ) : H®H — Kw on H . Moreover, this can be normalized such that the
associated trace form ty : H(W,u) — Ky defined by t4(h) := (1,h) under (2.3)
specializes to the canonical trace form on the group algebra of W. Over the splitting
field Kw of H(W,u), we may write ¢, as a sum over the irreducible characters of
H i, with non-vanishing coefficients:

1
ty = Z - ¢v .
Co
pelrr(W)

The ¢, are called Schur elements of H(W,u) (with respect to ty). A basis C' of
H with 1 € C is called quasi-symmetric (with respect to ty) if t4(T) = dr1 for
T € C. Thus for any quasi-symmetric basis, the (inverses of the) Schur elements
are uniquely determined by the linear system

(2.9) Y et o) =6r1  (for TeC).

¢EIrr(W)

Here, already the equations on a subset of C' whose image under specialization to
W covers all conjugacy classes yield a system of maximal rank.

It is well-known that for Coxeter groups W the Iwahori-Hecke algebra H(W)
carries a canonical symmetrizing form endowing it with a structure of symmetric
algebra over A. This form is characterized by the fact that the standard basis
elements form a quasi-symmetric basis (see [8] Prop. 8.1.1]). The Schur elements
with respect to this form are explicitly known in all cases.

It was shown in [16] for all but finitely many irreducible complex reflection groups
W that there exists a symmetrizing form ¢,, on H(W, u) making it a symmetric al-
gebra over A (i.e., the form has Gram matrix invertible over A). Moreover, there
exists a quasi-symmetric basis with respect to ¢, consisting of monomials in the gen-
erators Tg, s € S. Furthermore, restriction of ¢,, to parabolic subalgebras gives the
corresponding symmetrizing form there. The Schur elements of this symmetrizing
form were determined explicitly in [7].

On the other hand, in [13] we dealt with the 2-dimensional primitive groups. It is
the purpose of the present paper to analyze the remaining exceptional cases. More
precisely, we will determine explicitly the Schur elements cs with respect to any
symmetrizing form which behaves nicely under restriction to parabolic subalgebras
and which vanishes on some suitable monomials in the generators.

2D. Symmetries and action on Irr(W). It will be convenient to introduce and
study the action of several groups of automorphisms on cyclotomic algebras and as-
sociated objects. Let k := k(exp(27i/|n(k)|?)), and Ky := k(v) the composite with
Ky . Then Ky is a Galois extension of Q(u). Its Galois group G := Gal(f(w/(@(u))
acts naturally on H ., hence on Irr(H). Via the bijection (2.7) we thus obtain a
G-action on Irr(W) where g(¢) is defined by the condition g(¢)y = g(dv)-

On the other hand, the factor group Gal(k(u)/Q(u)) of G acts naturally on
Irr(W). Now restriction yields an isomorphism between the subgroup Gy :=
Gal(Kw/Q(v)) of G and Gal(k/Q). The definition of the bijection (2.7) via the
specialization (2.6) shows that the natural action of Gal(k/Q) on Irr(W) and its
action induced by the identification with Go do coincide. If H is symmetric over
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A, the linear independence of the irreducible characters together with (2.9) shows
that the corresponding Schur elements satisfy

Lemma 2.10. If 'H is symmetric with the corresponding Schur elements
cp (¢ € Irr(W)) and G := Gal(Kw/Q(u)), then we have

(2.11) Cq(¢) = 9(Co) for all ¢ € Ir(W), g € G.

Next observe that for s € S" = S/W the symmetric group &, acts (from the
left) on the set of indeterminates {us ; | 0 < j < ds — 1} by

(s j) 7= Us,o(j) -

Let & = &6(W) := [[,cq Ga., the symmetry group of W. By (2.2) H(W,u) is
already defined over the ring of invariants Z[u, u™']® under this symmetry group.
By trivial action on the constants & the G-action on Z[u,u"'] extends to an action
on k[u,u™']. Setting

o (vs,;) = exp(2mi(o(j) — J)/ds|(k)])vs 05

further extends to an action on l~c[v, v~1]. This induces an G-action on H and then
also on Irr(H) by

o (o) (T) := o(d(aH(T))) for ¢ € Irr(H), T € Hiy, 0 € 6.

Via (2.7) this defines an G-action on Irr(W).

Now assume that H has a quasi-symmetric G-invariant basis, for example, one
consisting of images of group elements in the braid group under the natural epi-
morphism Z[u,u~!]B — H, i.e., of monomials in the generators Ty, s € S. Then
H is symmetric already over Z[u,u™!]® and (2.9) shows

Lemma 2.12 . If 'H is symmetric with respect to an S-invariant quasi-symmetric
basis, with corresponding Schur elements cy (¢ € Irr(W)), then we have

(2.13) Co(g) = 0(Cy) for all p € Irr(W), o € 6.

This observation on symmetries together with (2.11) will be used later on in
order to reduce the number of Schur elements to be printed explicitly.
By (2.9) the Schur elements are rational functions in v. But, moreover, we have

Lemma 2.14. Assume that H has a quasi-symmetric basis C' consisting of mono-
mials in the Tg. Then for any s € S the Schur elements are homogeneous of degree O
in{vs; |0<j<ds—1}.

Proof. Indeed, let (a5 | s € S) be invertible elements a; € k* such that as, = oy
whenever s ~ t. Then the elements {a,Ts | s € S} of H(W, u) satisfy the relations
of the cyclotomic algebra H(W,u’) with v’ = (asus; | s € S5, 0<j <ds—1). Any
monomial in the Ty is a non-zero scalar multiple of a monomial in the as7Ts. But
if C is quasi-symmetric, then any basis C’ containing 1 and consisting of non-zero
scalar multiples of the elements of C' is quasi-symmetric with respect to the same
symmetrizing form. Thus the Schur elements of H remain invariant by replacing
the vs ; with non-zero scalar multiples (which only depend on s) as claimed. O
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3. GENERIC DEGREES FOR Ga4, Ga7, Gag

Here and in the next section we compute the Schur elements for those excep-
tional non-real reflection groups of dimension n > 3, which are generated by n
involutive reflections. In the classification of Shephard and Todd, these are the
groups Gi, i € {24,27,29,33,34}. In these cases, all reflections are conjugate, so
the cyclotomic algebra has just two parameters (uq,u2). Since the Schur elements
are homogeneous in the parameters, they can be recovered from the Schur elements
for the (admissible) specialization with parameters (z, —1). So it suffices to consider
this latter case.

It turns out that in all cases the Schur elements (with the above specialization)
divide the Poincaré polynomial P(W) of W, considered as elements of the ring k[z].
We call 64 := P(W)/cy the generic degree of ¢. Clearly, it is enough to know the
generic degrees in order to recover the Schur elements.

We denote the irreducible characters ¢ € Irr(W) as ¢q,, where d = ¢(1) is the
degree and b is the b-invariant, that is, the order of zero at x = 0 of the fake degree
Ry (see 2A). In most cases, this distinguishes the characters unambiguously. In the
few remaining cases, we give more detailed information below.

In the tables, we only list one character from each pair of complex conjugate
ones, since the generic degree of the other one can be obtained by applying complex
conjugation, according to (2.11). Moreover, if ¢ denotes the sign character of W,
we only list one of ¢, € ® ¢, since, as it turns out,

(3.1) Sp(x) = 2N begg (™)

in all cases, where N is the number of reflections in W. Combining this with (2.11)
it can be rephrased to say that d4 is semi-palindromic in the sense of [I5] 6B].

3A. The complex reflection group Gs4. The 3-dimensional primitive complex
reflection group W = Ga4, abstractly isomorphic to La(7) x 2, has twelve irreducible
characters. It is generated by three conjugate reflections s1, s, s3 of order 2. It has
two classes of maximal parabolic subgroups, one of type Bs and one of type As,
hence both are Coxeter groups.

Let ¢ := s1s2s3 be a Coxeter element in the braid group B(W) of W. Then the
central element w € B(W) is given by m = ¢!* (see [5] Table 4]).

Theorem 3.2. Let t be a symmetrizing form on H(Gaq; (x,—1)) restricting to the
canonical symmetrizing form on the mazimal parabolic subalgebras and such that
there exists a quasi-symmetric basis containing T. (1 <1 < 7). Then the generic
degrees with respect to t are given in Table 3.3.

Proof. Assume that ¢ is a symmetrizing form on H (W) which restricts to the canon-
ical symmetrizing forms of the Iwahori-Hecke algebras of these parabolic subgroups.
Since the generic degrees of finite Coxeter groups are known, restriction of char-
acters to these subgroups yields conditions on the generic degrees of H(W) with
respect to t. More precisely, since five of the conjugacy classes of W have represen-
tatives in one of these parabolic subgroups, we obtain five equations.

Since 7 is a power of ¢, Proposition 2.8 allows us to compute the values of all
irreducible characters on T!. Plugging these into (2.9) gives linear equations for
the unknown generic degrees, which together with the equations from restriction to
parabolic subalgebras yield a system of full rank. O
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TABLE 3.3. Generic degrees for Gay

¢ o | @ ERP eR9
®1,0 1 $1,21

$3,1 giﬂ‘bs@z@e@%@ﬁ $33 ¢38  $3,10
®6,2 12033 PPy ®6,9

o73 230, Py o7.6

®8,4 121030, PPy ®8,5

Here, as in the subsequent tables, ®,, denotes the n-th cyclotomic polynomial
over Q. Moreover, with u = (=1 ++/=7)/2 =+ G+ ¢, = (-1-+V-7)/2,
where (7 1= exp(2mi/7), we let ®, = 23 — pz? +z — 1, ), = 23 + px? + pzr + 1.

3B. The complex reflection group Gs7. The 3-dimensional primitive complex
reflection group W = (a7, abstractly isomorphic to 3.A7 x 2, has 34 irreducible
characters. It is generated by three conjugate reflections s1, s, s3 of order 2. It has
four conjugacy classes of maximal parabolic subgroups, of types Ha, Ba and As (two
classes). All of these are Coxeter groups, hence their Iwahori-Hecke algebras have a
canonical symmetrizing form. Restriction to these subgroups gives eight equations
for the generic degrees. The Coxeter element c := siss3 satisfies ¢30 = 7 [5]
Table 4]. Its fifth power c® is central, thus more generally we may compute the
value of any irreducible character on products Ty T2 for all Ty lying in proper
parabolic subalgebras of H. This yields enough independent equations, and as
above we obtain:

Theorem 3.4. Let t be a symmetrizing form on H(Gar; (x,—1)) such that there
exists a quasi-symmetric basis containing TwTo! (0 <1 < '5) for w running through
representatives of minimal length of the conjugacy classes of the maximal parabolic
subgroups of W. Then the generic degrees with respect to t are given in Table 3.5.

TABLE 3.5. Generic degrees for Ga7

¢ ds | @ ER P ERQ P
®1,0 1 @1,45
#3125 — \/ﬁgg 2@ By DL DL B P1a Pl BIE DL | P3520 B3i6a0  B320,44
¢3,523 — %1’@%3‘@4@,{‘1)%/3 Yo®12®Ys PEDL PES | h3,7,25 P32038  $3,22,40
5.6 12°®,P5P10P12P15 P30 5.15

56 , 1%, P5P10P12P15P30 ®5.15
6,2 1_;3 P3P, DY D19 D], DY B0 | de.a 06,17 6,19
¢8,6,36 %1'6@%‘1)4‘1),5‘1)2‘1)10¢12¢{35 P39 $8,9,39
s8,9,33 (2%3)2:6@%@4@’5’@%@10@12@{‘5 RN ?8,12,36
b9,4 %$4¢§¢g¢12¢15 D30 | P98 9,13 b9,11
b9,6 Lrt®3 0l ®,5P15P30 ®9,9
?10,3 , 127 @305 05D 10P15 P30 10,12
$15,5 %965@5/3‘1)5 D P10 P P1sPao | 157 Piss 15,10

Here, (bg = m_c& (I>,6 = $+C§, q)/12 = $2+C§, q)g = J)2+/\J)+1, ‘I’/lo -
22— e+ 1, Oy =2 + G+ Ga? G P =t -\ - 41,

8 = 0 FAGT + o, B = 2%+ Ayt + (G, Bl = Pg(—2), B = D4 (), with
A=(1+V5)/2=1+(+G.
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Here, in order to distinguish the characters of degree 3 and of degree 8 among
themselves, we have given as a third index the degree in z of the fake degree R.
We denote by ¢f 4, #5 15 the characters of degree 5 which occur in the permutation
character of W on the parabolic subgroup of type Az, and by ¢5 g, ¢g715 the other
two. (It turns out that the two characters ¢s ¢, respectively ¢5 15 have identical
generic degrees.)

3C. The complex reflection group Gaog. The 4-dimensional primitive complex
reflection group W = Gag has 37 irreducible characters. It is generated by four
conjugate reflections s1,...,s4 of order 2, satisfying the relations implied by the
Coxeter diagram

()54

oL

81 S2 83
together with (sgs354)2 = (s4s283)%. It has five conjugacy classes of maximal
parabolic subgroups, of types Bs, Az (2 classes), Ay + A1, G(4,4,3). While the first
four of these are Coxeter groups, the last one is an imprimitive non-real reflection
group.

In order to use induction we first determine generic degrees for G(4,4,3). Now
all maximal parabolic subgroups of G(4,4,3) are Coxeter groups, and restriction
of characters to these yields five equations. Furthermore, evaluation of characters
on the first five powers of the Coxeter element gives five additional equations,
thus determining the generic degrees with respect to any quasi-symmetric basis
containing these elements. We give the results in Table 3.7.

Let us return to W = Gag. Restriction to the maximal parabolic subgroups gives
16 equations. The Coxeter element ¢ := sqs2s3s4 in the braid group B(W) of W
satisfies ¢2° = 7. The equations given by evaluating the irreducible characters of H
on T!, 1 <1< 18, are linearly independent from the equations obtained by restric-
tion. The character tables of all maximal parabolic subalgebras of H(Ga9; (2, —1))
are known, respectively, and can easily be computed for the non-Coxeter group
G(4,4,3). Since c® is central in B(W), the values of irreducible characters on
elements Ty, 722 with Ty, in some parabolic subalgebra of H are known. The corre-
sponding equations determine the generic degrees uniquely.

Theorem 3.6. Let t be a symmetrizing form on H(Gag; (x,—1)) restricting to the
canonical symmetrizing form on the mazimal parabolic subalgebras of Cozeter type
(respectively to the form determined above for G(4,4,3)) and such that there exists
a quasi-symmetric basis containing T. (1 <1 < 18) and elements Ty T2 for w run-
ning through representatives of minimal length of the conjugacy classes of parabolic
subgroups of W. Then the generic degrees with respect to t are given in Table 3.8.

All characters of W are distinguished by their degree and their b-invariant, except
for four characters of degree 6 with b = 10 and for two pairs of characters of
degree 15. We denote by ¢>’1’574 the character of degree 15 occurring in the tensor
product of the reflection character ¢4,1 with ¢4 3, and by ¢75 ;5 its tensor product
with the sign character ¢ 40. We denote by ¢ 1, the real character of type (6,10)
occurring in the permutation character of W on the parabolic subgroup of type
Az, and by ¢g 1o the other real character of degree 6 with b = 10 (these two have
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identical generic degrees). By ’6’f10 we denote the character of degree 6 appearing

in the tensor product of the reflection character with itself, and by ¢g'1, its complex

conjugate.

TABLE 3.7. Generic degrees for G(4,4,3)

¢ o | ERP R
®1,0 1 $1,12

?2,4 ‘ idg

31 %x‘bﬂ’f‘bg $32 P35 P36
®3,2 s2P3Pg ®3.6

96,3 23P3Dg

TABLE 3.8. Generic degrees for Gag

) 3 o ERP €R¢
91,0 4 , 1 ®1,40

P41 030 PP P 10D, PYy | P13 a1 da2s
P44 1203P 1P $4,24

?5.8 121P5 PP P12Pag ®5,16

$6,10 225D 3P D PsP10P12 P20 6.10

g,’m _%x6¢3©24©5¢6¢)8@10¢12¢g0 Iﬁlﬁo
6,12 1200303 PgP 1 P12 P2
10,2 22 O5P5P1(Poy 10,18
10,6 12435 P10P12Pag | B10,14

P54 1 P35 PP 10 P12Pao P15.12

15,4 $24 D3 P5 D PsP10Pao 512
16,3 4 , 13045 P1oPog | G165 P65 P16,13
$205  FLadPIPY <I>5<I>§<I>g<1>10<1>‘f2<1>20 20,7 P20,  G2011
®20,6 125 PFD5 D1 P12Pag $20,10

®24.6 %$6@3@3§5@6¢8@12@20

G247 F20P3D3 DT P10 P12 Do | P24,

®30,8 1250325 PPsP12Pog

Here &) =z — i, ®f = 2% — i, &y = 2% — iz — 1, &Yy = 2 —izd — 22 +ix + 1.

4. GENERIC DEGREES FOR (33 AND (34

Here we conclude the determination of Schur elements for exceptional non-real
reflection groups of dimension n > 3 generated by n involutive reflections by con-
sidering the cases G33 and (34 in the Shephard-Todd classification.

4A. Some imprimitive groups. We first compute the generic degrees for some
imprimitive complex reflection groups which occur as parabolic subgroups in the
primitive groups Gss and Gsz4. More precisely, these are the groups G(3,3,3),
G(3,3,4) and G(3,3,5). Again, the results can easily be obtained by the methods
presented so far, and we give the lists in Tables 4.1-4.3.
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TABLE 4.1. Generic degrees for G(3,3,3)

2 by | ¢ €09 e®9¢
?1,0 1 91,9

?2,3 2253‘1)2(1)6

¢3,1 1;34156‘1’/33‘1)'6/ ¢32 ¢34 P35

TABLE 4.2. Generic degrees for G(3,3,4).

¢ o | @ ERP €9
?1,0 1 ®1,18

2,6 %334‘1)4‘1’6‘1)9

?3,3 . 23 ®q ?3,9

P41 %&x@z‘h@%@g Ga2  Pa10 P41
®6,2 . 2234y ?6,3

‘15%,5 _%$4@§3@4@6@g g,5

?8,4 121 030,4Dg | ds s

?12,3 3PP,y ?12,6

Here, we have denoted by ¢>g75 the character of degree 6 with b-value 5 appearing
in the tensor square of the reflection character ¢4, 1, by ’6’75 its complex conjugate.

TABLE 4.3. Generic degrees for G(3,3,5)

¢ bp |¢  e®R¢ e®9¢
?1,0 1 ?1,30
4,3 2300, P D1y 04,18

.2
5.1 ! 343 @5 PEPHDYy | P52 Bs519  P5.20
95,6 %334‘1)5‘1’6‘1’9‘1)12 5,12
96,9 . 294 PP
©10,2 %J?Q‘I)M%‘%‘I’g@u 10,3 P10,14  P10,15
10,5 —%334‘1)4‘1’5‘1)%2‘1’9‘1)'1'2 0106 P10,11  P10,12
10,7 %376%4‘1)5‘1’26‘1’9‘1)12 ?10,8
®15,4 21O s O DI D1y | Pr155 P1s10 D151
$20,3 T3P0, D5 PZD 1o $20,12
20,5 %335‘1’2‘1’4‘1)5‘1’6‘1)2{‘1’5@12 ®206 P208 $20,9
30,4 , 334‘1)4‘1’3(1’9‘1)12 30,10
¢7§0,7 %xﬁq)g Oy D505 oDy g0,7
®40,6 128030, P5 Py P10

Here, ¢35, ; denotes the character of degree 30 occurring in the fourth tensor
power of the reflection character ¢s 1, and qsgw its complex conjugate.

In all tables of this section the notation for cyclotomic polynomials is as follows.
Let (3 := exp(2mi/3) be a third root of unity. Then for any j multiple of 3 we
have a factorization ®; = ®’®7 over Q(¢3) and we choose notation such that
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@’ (exp(27i/j)) = 0. More specifically, this means that ®3 =z — (3, oL =z + (3,
Oy =% — (3, Py =22+ (3, Py =23+ (3, ...

4B. The complex reflection group Gs3. The 5-dimensional primitive complex
reflection group W = Gs3, abstractly isomorphic to 2 x Os(3), has 40 irreducible
characters. It is generated by five conjugate reflections si, ... , s5 of order 2 satis-
fying the relations implied by the Coxeter diagram

SR
O—-=O—0

together with (s2s354)? = (835452)% = (s15283)%. It has four conjugacy classes
of maximal parabolic subgroups, of types Dy, A4, A3 + Ay, G(3,3,4). The first
three are Coxeter groups, and the last one was considered in 4A. Restriction to
these subgroups gives 22 equations. The Coxeter element ¢ := s1S9838485 satisfies
c'® = . The equations given by evaluating the irreducible characters of H on T,
1 < m < 17, are linearly independent from the equations obtained by restriction.
Furthermore, the defining relations of B(W) (i.e., the braid relations of W) show
that w® = c? for the element w := csysys3sy € B(W) of length 9, hence it is a
10-th root of 7. Evaluating characters on Ty, gives a further independent equation,
to yield a system of full rank.

Theorem 4.4. Let t be a symmetrizing form on H(Gss; (x,—1)) restricting to the
canonical symmetrizing form on the mazimal parabolic subalgebras of Coxeter type
(respectively to the form determined above for G(3,3,4)) and such that there exists
a quasi-symmetric basis containing Tcl (1 <1 <17) and Ty. Then the generic
degrees with respect to t are given in Table 4.5.

TABLE 4.5. Generic degrees for Gsg

¢ b |¢ @b e®¢
®1,0 . 1 @145
®5,1 1_;33?‘1’5‘1)5‘1’10‘1)'12‘1)'1'8 ®53  P528  P530
®6,5 . 223 03Pg P10 P12P15 $6,20
¢,10,8 C?3554‘1’:21‘1)5‘I)/s/?’q@‘1)10‘1)12‘1)/18 ,110,8 ¢/10,17 ¢/1/0,17
P15,2 225D P10 P 15 15,23
?15,9 295D P10 P12P15 15,12
20,6 %334‘1)421‘1’5‘1)9‘1’10‘1)12‘1)18 $20,15
$24,4 %333‘1)3‘1)%‘1)9‘1)10‘1)18 24,19
$30,3 . 722 PID5 PP D15 30,18
$30,4 —%$4@§3‘1’i¢5‘1’g‘1’10¢12¢18 30,6 030,13 $30.15
‘15210,5 %2‘%4@421@5@%@,6@5@10@/12@18 Zo,5 ¢£10,14 21/0,14
G457 %3‘557@%/3(1)5@%3@9@10@/{2@18 G459 Q45,10 Pas,12
®60,7 2T PIP5 DD P 12D s ®60,10
64,8 128 D5D2DED 10 P12P15 P64,9
81,6 20P3DZDgD 15D 15 ®s1,11
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All irreducible characters of W are determined by their degree and their b-value,
except for two pairs of characters of degree 10 and two pairs of characters of de-
gree 40. We denote by ¢}, ¢ the character of degree 10 whose fake degree is of the
form x2® 4+ 2254 lower powers of z, and by ¢l,5 the one of degree 40 with fake
degree 23! 4+ 2%+ lower powers of z. The notation for the other characters is now
fixed by the information given in Table 4.5.

4C. The complex reflection group Gs4. The 6-dimensional primitive complex
reflection group W = G4, abstractly isomorphic to 6.U4(2).2, has 169 irreducible
characters. It is generated by a set S = {s1,...,s6} of six conjugate reflections of
order 2, satisfying the relations implied by the Coxeter diagram

(2) 53
—@—@

together with (s25354)? = (535452)% = (s45253)%. It has eight conjugacy classes of
maximal parabolic subgroups of types Gss, G(3,3,5), D5, A5 (2 classes), G(3,3,4)+
Ay, Ay + Ay, Az + As. All of these only involve real groups, one of the imprimitive
groups considered above, or G33. Thus for all maximal parabolic subgroups we
have a well defined symmetrizing form. Restriction to these subgroups gives 71
equations.

As usual we denote by s; the canonical preimage in B(W) of the generator
s; € S. The Coxeter element ¢ := s; ...sg satisfies ¢*> = 7 in B(W) [5, Table 4].
Its seventh power is central in B(WW).

Theorem 4.6. The generic degrees of the cyclotomic Hecke algebra H(Gsq; (x,—1))
with respect to any quasi-symmetric basis containing only T7*, 1 < m < 41, and
elements of the form T,TS' (1 <1 < 5) for v running through representatives of
minimal length of the conjugacy classes of the mazximal parabolic subgroups of W
are given in Table 4.7.

Proof. The character values of H on the powers of T, can be evaluated with Propo-
sition 2.8. Moreover, character values on a basis of any proper parabolic subalgebra
are known by the preceding section, respectively by [3]. Since 7" is central in , the
values on any product 7, 72! can be determined, once those on Ty are known. Thus
the values of all irreducible characters on all the elements occurring in the statement
can be computed. Using the computer algebra system GAP it was checked that this
system has maximal rank, and thus determines the generic degrees uniquely. [l

All irreducible characters of W are determined by their degree and their b-value,
except for seven pairs and three triples of characters. The notation for the charac-
ters of degree 105 and 840 is fixed by Table 4.7, since for each ambiguous character,
its complex conjugate is determined by its degree and b-value. In the three triples,
we choose ¢%q g, ¢79 45, P08 tO be the real characters. We denote by ¢5 33,
(b’7’(’)79 the characters of degree 20, respectively 70 occurring in the tensor prodﬁct
of the reflection character ¢g 1 with ¢15 14, and by @b 33, ¢%, o their complex con-
jugates. The tensor product of d)’7’0’9 with the sign character is d)’7’0’45, its complex
conjugate ¢4f 45. We write @04, for the character of type (120,21) occurring
in the permufation character on the parabolic subgroup of type As. Finally, we
call ¢hgo 12, Pas0.30, D601 the characters of the respective types which occur in
06,1 ® ¢336,17, and ¢g40721 the one occurring in ¢ 1 ® ¢105,20. This fixes the notation
for all elements of Irr(WV).



354
GUNT
ER
¢ TA MALL
BLE E

o1 4.7. G
,0 . .

eneric

b6 e
1 grees f

b15 s or G

¢' ,14 & 34
20,3 <

3 £3 -

4’211 N atefle 3 ¢gzohs

® 2 azo'0e] 594 ey oht ey e 5
21 1P 76 @ 8P ¢

B .6 ses0ere LP10®h 2P | B0y s B) 1
35 _¥/=3 sPo® 14®15®) 15 P51 P c®¢

6 T3¢ 5 1032,® 150 g® 51 %502 _

35 222030 fo®14® g P21 Poy® 12 | ¢ 1 c®¢

o 18 Y3030, 0l 1515 P 4 P30/, 6,5 1126

¢56v3 lelere X SPR IR 1%4@’30@2{2 415,16 46,85 s

P ’ 2 ’

(;6'9 %"510@”1) %"53‘1)“1)8 9€P10(P14cp21¢24¢/3/0<1> 50,33 15,56 ¢6'89
7 5P7® 5P7Pgd 21® 42 ’ 15
0,9 9®10P2 gP14P15P 24P30® $21.4 5,58

Py 1,:¢ 41245144)1[_{) 5P18Po1 P 42 ? b9
70,9 1,5 2 ESL T 5P18P 24P 1,68

37 P25 o7 21® 42 & b2

b84 2 B 78329 10914 24®30® 21,60 1,70

13 _%3 .5 9% 9P14® 18®30® 42 b
990,6 <3 IR A 5P7 PP 15%18%P21 % 0%21%42 35,60
’ AR YL T 728 P9 P 10%P14® 1®24% #35,3
$105.4 3 <I>4<I>é3q> 10<1>/122<I> 15P01 Po 30%P42 ® ,36
) r® 14%] 4P 56

#105 c3 1 48%‘1’10<I>2 15P18%2 80%42 5 o

$1 - —gatel? totedes o} 12%14%15%] 192425 ® 06,45

. 05,20 %x%”% o530, 0 5PEPg P10 5B gPo1 Boy Y, a2 | ¥4 70,45
120,5 C1dagd LI A 72825 P10P] 12%15® 1%50 P 9 ol

o <I>53(I> 6 Cb7<b” 10<I>1/ 24 21 Py ® 2 P 70.4
120,21 _ V=3 s524% ST T 2 @15 5P 30%4 84,17 145 pU!

¢126’ =3 (gotatal’ 7B DY D Vy2@1 407 @}84’2/1@24@ 2 b84.37 70,45

5 2 1 »2 5 ’

$140, %x15¢23 5P 0P12%14® 18%21 30®az | ¢ 90,4 84,41

o 0,12 235d70 6<P10C1,/1 ® 15P18Po 24®30P42 105.8 ,48
140,2 8Po® 2%14P15% 1924 %% 31 $105

[ 2 1 1,53 1027, 5P18%5 50P42 05,10 5,46
189 1,942 3 LEES: 2®14® 51 PH P ¢ $10 105,5

® ,18 12 @350 orage 15218 1 P30 Py 105,22 5,38 d) ,50
210 jxls 5 0 7 PgP 8P12® 21 Py ® 2 | ¢ b1 105

® ,8 i 32350,0 10@%2<} LaPi5Poq d 1®30P42 120,7 05,26 5 ,40
2 1 1,1 7 1 1 ’ 1
10,12 §:c6<1>//3 s 34)%(1)3 g @102, 4P 15P1g® 24 P30 ® $120,47 05,28

9210 3 ‘I’5<1>/3 preg® 120®14® 21 Py ® 42 s ", b12

13 130, 550! §PgP10P? 15P18%P 4®30%P4 126,7 120,21 0,49

¢,280 1 7%&',;114),3 y:12(b8 94’10@&/ 2 12@14¢15®21¢24<}30¢ 2 : ‘1’126'41

[ 12 AL PR HES 5P7® 2" P14® 21® 42 6140, o1
315 ¢ 596 @ gPg® 15<1>// 24%3 140 26,43

. 5,6 7‘3&1'10@2 74)8@&’@ 10914 ® 18{’21<I>/2 ® 0®42 ,30 ’
15,1 P 1023 15% 1®30®

.10 159 i2® 18%® 0%q

7P 2 219 2
#315 1.6 §PgP10P] 14%15®] 24®30® $210 $189,2
,18 1,653 10® 2 18% 4 ,10 ,24

$3 3 e3o503 12714 ® 21%24® 2 $210

36,8 = N §m10¢3¢0 dorP0® 15P18Po , 30P42 - ® ,38 b1
_ V= 1,1 3 3 K34 2 0
$336,17 2 =3 5T 04 6/”33«?%«;;5(?2‘1’6¢7¢10¢§2‘1’14¢15¢2 @24@3@42 210,17 ¢210,3o 40
—=23 @ P P 1 1 1
b384,8 5 m13¢4¢/32 3adale 6 7¢8¢,%2¢12 14® 5% 24®30®40 550,12 ; 0,25 921
351 7@<2 LBadal2e T Pg®10P) 14D 150 18P 1 Pogda0® ’ #hs0.30 0,29
11 6 33”8 5 7P P 12® " 21 42 ’ Y
$420,7 -~ 8%@3’3‘1’2@58%%0‘1”1 215 Tt @24@30@42 fa10.14 23“”36 s
=883 2@ 27 1P24® 3

$120. 2 R 6Ps® 14® 4P30P 15,2
420,12 _83,7 Yiedagal 810972 ® 15P18® ’ 0Paz | ¢ ¢ 8 315

@ 6° (Pl3/3<b2 o 64)8{’10@22 14®75® 21254230 336,10 315,24 5,32
420 5P /3 18 P4 4 ’ @ :

14 5% i2® ’ 21® 2 3

¢ ’ 2 129 6° o7 PPy 14%15® 1%24®P30® $336 36,32 ¢

420,21 751x13 /3 2" eie50 8Py *ip® 185, ® 0Paz | ¢ 1o b3 336,34
’ @ 5P7® 1494 24 3 3 ’

$504,9 130305040 7 s<1>9¢10¢24 LB dor @ S 84,10 on 6.25 336

?504 %:{:18 g By oy BB 10®14® 1Py P30 P 384,13 84,32 ,25
,15 P2 9® 2 15P01 @ 0®P42 b b38

@5 125 1272 1 @ 384 4,34
pa0.17 La” 37(}8‘1’9@ 14®15% 24%30%4 420,11 20 3

o5 1,13 jo’efe] 1091 18%21® 2 ' 2 84,31
540,2 golde] fejede 12 1P24® 420,3 ’

21 1 io303 7ozl 14%15% 30® 31 ¢

b5 1,15 3PgP 8P 5P21 P 42 ) 42
560,9 7;w156 <I>§q>2 8e7®10® 12®14® 1P24® b40 420,30 0,35

#56 fpetoeyte] irsode 0P12%14® 15%21 % 3042 016 ¢

0 @ 24®

ol .18 14@5@74)8@ 8PgP10P7 @15‘1’18451@ 1230P42 420,20 ¢

560,18 ) 1§m9¢%¢r<§4 94)10@%2@12 14®15%5 24®30P 40 420,22
1 @

$630,11 \/_gm15q>%q> ixls®%®;¢2¢7¢8¢10¢14®15®18®/1 243042 $504,33

P — 3 5PRD. P 14® 21 '

¢630,14 ﬁc3w11®/336¢62¢7¢8¢6 T BgP10P 4P15P gDy @24<1>30¢42 ¢;540)19 $504,21

= 149® 1 ’

630,15 T334 Y3e503 0B 108452 4215® 24®30® 540

& 3z L3 6 PrPg® ORE PR 18P21 P 42 ,21
720,16 t33,003 g Bod 10D, 4P15 D1, 24B30®

b72 1,11 7P8® 12P14® 8021 P24 ® 42 ¢5

o 9,10 N 23503 9210®]2® 15®1gPo 4230 P42 560,27
7 6T 4 2 1P 17
2012 %¢g¢5<1>5?:7q)8¢’10¢>;4¢15¢18‘1’2 @24@30@42 ¢560,18

@ 628 ® 12® 1242 ¢
756,14 2 1,10 10P12% 14®15%2 430 P42 630,13

*8 _< $2100Gef 1% 19249 ® b6
40,11 3 2130/ 1,1 Sapfaga? 15P18% 4®30® 630,16 30,23

Y 111 46020 12109808 9P7o® 21 Pos® 42 ’ b6 ’ 630

¢840’13 3113 i’;/g/3<p2 44)63@7@ 3 6<1’9<p2 @15@18451@ 30%42 ’ 30,20 5 ,25

1.1 Fo52¢ 8P 12 24% [ 63

896,12 et 34)‘21@“3 54)63@7@, /9«?104),1 2 15P15P01 @ 4P30%P42 720,20 630,27 0,22

$896,15 Y3o5pdal? 8<P9/<p10¢”22<b14<1>15®,, 24P30Py $720.14

b94 PRTR P7PH® 12" 214® IgP21® 2 ' b72

5,14 12120303 4102 15%4 24®30® 9,28

P12 1 112 3e3ale 2@y g4 18®21® 42 ® b7 #7209 2

¢ 60,17 gw13¢/62x ‘1"25@2@? 7By PP Ls®1g®o 24P30P 40 756.16 9,24 ,26

¢1280’15 1 ?55,’%’34’71 6%@8‘1’10@;2@14@18@ 1%24%30%42 510,13 #756,20 ¢

s @ 21® ’ "o
1280.18 £ k‘l’%@?@r;s 94’10¢%2©12q’14¢18¢21@24%0@42 $840,17 $810,23 ¢756,22
Heitel 5PgP7P 14®Y, 1224 ® ' 8 840
So3e 7P P 5@ 4230 P 40,1 125
1..15 1®5® 1()<I>2 18% 4 ,19 Py
5= 546 57 P > 219 2
oS3 728 Po® 12®15P18® 24®30® #896,2 840,23
es0d 10®2 18 4 ,24
dpg® 2p®15® 21P24® 2 | %9 #89
9®10® 5P18P01 P 30%42 45,16 6,21
14%215® 1924 % P12 b945
18Poq @ 30P42 60,19 20 o4
24® 5,2
30%42 122




ON THE GENERIC DEGREES OF CYCLOTOMIC ALGEBRAS 355

5. SCHUR ELEMENTS FOR G'31

The 4-dimensional primitive complex reflection group W = GJ3; has a single class
of reflections. It differs from all other exceptional reflection groups of dimension
n at least three in that it cannot be generated by n of its reflections. It has 59
irreducible characters and 3 conjugacy classes of maximal parabolic subgroups, of
types G(4,2,3), As, As + A;. In order to be able to use induction on parabolic
subalgebras, we first have to compute the Schur elements of the imprimitive group
G(4,2,3).

5A. The imprimitive group G(4,2,3). There exists a unique symmetrizing form
on the cyclotomic Hecke algebra of the imprimitive group G(4,2,3) restricting to
the canonical symmetrizing form on the maximal parabolic subalgebras (of Coxeter
type) and vanishing on T (1 <1 < 5). The corresponding Schur elements can then
be computed from (2.9). It turns out that they agree with the values conjectured
in [I2] Satz 5.13].

They can also be described in the following way. The group G(4,2,3) occurs as
the relative Weyl group of the ®4-Sylow torus in finite reductive groups of type Ds.
Conjecturally, this should imply that the Schur elements of H(G(4, 2, 3); (x, —1)) are
related to the degree polynomials of the unipotent characters of 2Dg in the principal
®4-block (see [3]). It turns out that this is in fact true. For this, let Uy(?Dg) denote
the set of unipotent characters of 2Dg whose degree polynomial is not divisible by
®,, and write deg(y) € Q[z] for the degree polynomial of v € Uy(?Ds).

Theorem 5.1. There is a bijection
II‘I‘(G(4, 2; 3)) - U4(2D6)a d) = Yo,

between the irreducible characters of the cyclotomic algebra H(G(4,2,3); (x,—1))
and Uy(*Dg) (see Table 5.3) such that the Schur element cy of ¢ € Irr(G(4,2,3))
is given by

() = (x4 1) (22 — 1) (z* — 1) (2 + 1)(2® — 1)
¢ (2 — 1)% deg(7) (iv/)

5B. The complex reflection group Gs3;. We return to the primitive reflection
group W = G31. Twenty of its conjugacy classes have non-empty intersection with
proper parabolic subgroups, so by restriction we obtain 20 independent equations
for the Schur elements. Let {s1,...,s5} denote the set of standard generators of
W, with the relations implied by the Coxeter diagram

together with s1s983 = s2s3s1 = s3s182. The Coxeter element ¢ := s1S9838485 of
the braid group B(W) satisfies ¢** = 7 (see [5]). The equations given by evaluating
the irreducible characters of H on T[*, 1 < m < 23, are linearly independent from
the equations obtained by restriction.
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TABLE 5.2. A bijection Irr(G(4,2,3)) «— Us(*Dg)

¢ Ve P QP R0
$10  (06]-) b1,15

¢13  (016[1) b1,12

¢274 (0126|12) ¢277

$326  (24]-) $3.9

$3590  (124]1) $3,6,10

?3,1 (012[5) $33 038 ©3,6,14
¢3.210 (013]4) P34 P37 ?3,5,13
be3  (023[3) P64

Here, we denote the unipotent characters of 2Dg by symbols of rank 6 as in [10].

TABLE 5.3. A bijection Irr(G3;) «— Us(Fx)

¢ Yo ¢ ERP xR
¢10 P10 ®1,60
041 Dasro | Par Paszr  Paz
¢54  $352 $5,40
0512 $525,12 $5,24
06,14 P70,32 06,18
P98 ®567,6 09,28
0102  P50,8 ®10,6 91030 ¢10,26
010,12 $1050,10 $10,24
58 157510 15,20
Hss  P175,12 15.20

016,16 Da, d16,5
$203  Da, 12 | 205  $2023 2021
$207 280013 | Pro13 B20,19  Phoas
020,14 $2100,20
¢2a6 B[] | ¢2ama

$304  $350,14 ?30,16
010 P113420 | D010

36,5 ®1206,13 | P36,7  P36,17 36,15
36,10  P420,20
ba0,6 D1, ¢ 3 $40,18

40,7 ©3360,13 | P40,9 Pa0,15 40,13
040,10 P2688,20 | Pa0,14

Piss  P2835,14 G5 12
/! /!
45,8 ¢6072,14 ¢45,12

oea,9  Esli] P64,11

Furthermore, let w = s18283848581 = ¢s1. From the defining relations of B(W)
it follows that w® = ¢ hence w is a 20-th root of « in B(W). (In fact, the
image of w in W is a Coxeter element in the maximal rank reflection subgroup
G29 < G31.) Evaluating characters on powers of Ty, give 14 independent equations.
The remaining two equations are obtained by evaluating the irreducible characters
on products of central elements by elements in proper parabolic subalgebras.
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The group G3; occurs as the relative Weyl group of the ®4-Sylow torus in finite
reductive groups of type FEg. Conjecturally, this should imply that the Schur ele-
ments of H(W, z) are related to the degree polynomials of the unipotent characters
of Eg in the principal ®4-block. It turns out that this is in fact true. For this, let
U4 (Es) denote the set of unipotent characters of Es whose degree polynomial is not
divisible by ®4, and write deg(y) € Q[z] for the degree polynomial of v € Us(E3).
We follow the naming convention in [10] for the unipotent characters of Ej.

Theorem 5.4. There is a bijection
II‘I‘(G31) — U4(E8)7 ¢ = Yo,

between the irreducible characters of the cyclotomic Hecke algebra H(Gs1; (z,—1))
and Us(Eg) (given by Table 5.3). This bijection is such that the Schur element cy of
¢ € Irr(G31) with respect to any quasi-symmetric basis containing To™ (1 < m < 23)
and T (1 < m < 16) and elements of the form T, TS (0 <1 < 3) with v contained

in a proper parabolic subgroups of B(W) is given by
(2) (x4 1) (2t = 1) (2% — 1) (2" + 1) (2 + 1) (2! — 1) (212 = 1)(2!® + 1)

co(T) = -
’ (x — 1)*deg()(i/7)

Except for five pairs the irreducible characters of G3; are determined by their
degree and their b-invariant. We denote by ¢’1578, ¢’15720, ¢Z578 the irreducible char-
acters of the respective types occurring in the tensor product ¢4,1 ® ¢20,7, and we

let ¢34 19 be the character of degree 30 with fake degree 259 + 2%+ lower powers
of . The remaining notation is now fixed by the information in Table 5.3.

6. SCHUR ELEMENTS FOR (a5, G2g AND G

The three exceptional reflection groups Gaos, Gog and G3o do contain reflections
of order 3. Thus their Schur elements cannot be recovered from a 1l-parameter
specialization.

6A. The complex reflection group Gss. The 3-dimensional primitive complex
reflection group W = Gag is the direct product of Gos with a central element of
order 2. It can be shown (see [3, Bem. 4.14(b)]) that the generic cyclotomic algebra
for Go5 is a subalgebra of index 2 of a suitable specialization of the cyclotomic
algebra for Gag. This allows us to study Gas using results from Gag. So we will
first consider the latter group.

The complex reflection group W = Gag is generated by three reflections sq, s2, s3
of orders 3,3,2 respectively, which satisfy the defining relations indicated by this
Coxeter type diagram:

A—0a—=2)

81 S2 83

We denote by Ts,,Ts,, Ts, the corresponding generators of the generic cyclotomic
algebra H = H(W, (x,y)) of type Gag, hence

(TS;' - yl)(TSj - yQ)(TSj - y3) =0 forj=1,2, (TS:s - xl)(TSS - 1‘2) =0,

with the five parameters x = (z1,22),y = (Y1,2,y3). The group W has three
conjugacy classes of maximal parabolic subgroups of types G(3,1,2), G(3,1,1)+ Ay
and G4. Fifteen of the 48 conjugacy classes of Go¢ have a representative in one
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of these parabolic subgroups. The Coxeter element ¢ := s1s8283 of the braid group
B(W) satisfies ¢'® = 7 (see [5]). Its third power ¢ is central. Since the irreducible
representations of all proper parabolic subalgebras are explicitly known by [13], 3A]
and [3] 5B], we may evaluate the irreducible characters of H on all elements of the
form T! or Ty T3! where Ty lies in some maximal parabolic subalgebra. This gives
enough linear independent equations for the determination of Schur elements.

For 1 < j < 3let z := (21,22, 23) With z; := \/—z12231Y2y3/y; in an algebraic

closure of Q(x,y). We consider the specialization
. - 4
Tj = (_1)j 17 Y — § ) zj = (_Cg)ja

of the generic cyclotomic algebra H to the group algebra of W. By [15], Table 8.2] (or
[3, 6A)) the field Q({3)[x,y, 2] is a splitting field for H (W), so by Tits’ deformation
theorem this identifies Irr(H(W)) with Irr(W). According to 2D the symmetry
group & = Gy x 63 of W acts on Irr(W) by permuting the first two and the last
three parameters among themselves. In order to minimize the number of Schur
elements to be printed, we record in Table 6.1 the action of & on Irr(W) induced
by the (left) action on {1, 22, y1,y2,ys}. We let 71 := (z1,22), 72 := (y1,y2) and
0= (yla y27y3)'

TABLE 6.1. G5 x G3-action on Irr(Gag)

L g (7'2 T2 gT2 T20 T1 T10 T1(7'2 T172 T10T2 T1T20
d10 | P1,12 Dr2a D112 Pir24 P10 P19 P21 P1,33 121 P33 Pig
@23 | P25 P29 P23 P15 P29 P212 P24 P28 P22 P224 D218
b3 | 313 P33 P55 baar Bss P4 Phae P Pis P32 Phs
3,6 ¢3,15

Po2 | dos  Pos  Pea P10 Pea Pes Do Do Por  Peasz Do
P83 | ds6  Pse  Bse  Pso P83

bs6 | P Psiz Bso  Psi2 Pse

®9,5 P9,8

o7 9,10

We denote the elements of Irr(W) by ¢q.p, where d = ¢q5(1) and b is the b-value
of ¢q . This distinguishes the characters except for ten pairs. The eight pairs with
d = 3 or d = 6 have the property that the complex conjugate of any character in
a pair is already determined by d,b. We will see in Theorem 6.2 that the generic
degrees for the relevant characters are Q(x,y)-rational. Thus interchanging yo with
ys induces complex conjugation on Irr(W). So the complex conjugates can be read
of from Table 6.1 and thus also the notation for the first eight ambiguous pairs
is fixed. In each of the two pairs of characters of degree 8, although the b-values
agree, the fake degrees themselves are different for the members of a pair. We choose
notation such that the fake degrees of qbgﬁ and q5g79 are monic as polynomials in x.
This fixes the notation for the irreducible characters of W.

Theorem 6.2. The Schur elements of the cyclotomic algebra H(Gas; (x,y)) with
respect to any quasi-symmetric basis containing T. (1 <1< 7) and T T (0 <1 <
5) for w running through representatives of minimal length of the conjugacy classes
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of the mazimal parabolic subgroups of W are as given below:

G0 :(z2 — 1) (41 — y2) (Y1 — y3) (T1y1 + T2y2) (T1y1 + T2ys) (2107 — 22y3)

21yt — xay3) (T1y] + w2y3ys) (w197 + wayoy3) (elyi — Tr22yTy2ys + 259303
+y2y3) (i — vave + U3) (U7 — v1ys + u3) /25y s,

z1 — 22)(y1 — y3)(y2 — y3)(z1y1 — T2y3) (T1y2 — 2y3)(T1y1 + T2Y3)

$2,3: )

21y2 + Tays) (T1y1 + Tay2) (T1y2 + T2y1) (TTYTY5 — 2122014205 + T5Y3)
3)
3)

(
(v
(
(
(1y2 + ¥3) (W — v1y2 +43) /23T y3us”,
$s.1 (w1 — x2)(y1 — y2) (Ui — v3) (y2 — ys) (yryz + ¥3) (U5 + v2us) (U7 — v1ys +43)
(z1y1 + 22ys) (x1y2 + T201) (T17 — 2203) (YT Y221 + Y32) /21250193937,
(x5
(
(
(

93,6 (5 — $1)($1y1 + zoy2)(x1y1 + T2ys3)(T1y2 + T2y1) (Z1y2 + T2y3) (T1y3 + T2y1)

213 + T2y2) (Y192 + 43) (n1y3 + ¥3) (23 + U7 ) /25Y1 95 Y3,

w2 —x1)(y1 — y2) (1 — y3)(y2 — y3) (¥} +¥3)(1ys + ¥3) (2192 — T2y3)

213 + 22y1) (€1y2 + Toya) (1197 + T293y3)/T125YT Y55,

$8,3 2(y1 — y2) (Y1 — y3) (@1y2 + T2ys)(Taya + 21y3) (2391 + 22y3) (T2y192 — 23y3)
(231 + 223) (@2y1y3 — 23Y2) (2197 — 2Z3y1 — T2Y2ys3)
($2y% — Z3Y1 — xlygyg)/xfmgyfygyg,

bos (G — V)i — vz +u3) (W7 — vays + ¥3) (U3 — yays + u3) (297 + (3T132y3),
(225 + Grryrys)(w2y3 + Grryiys)(T1 — 22)(21 — (32) /T125Y1 Y553 -

The Schur element of ¢g ¢ is the image of the one for ¢s 3 under the non-trivial
automorphism of k(x,y, z3)/k(x,y), the Schur element of ¢g 7 is the complex con-
jugate of the one for ¢g 5.

06,2

6B. The complex reflection group Gss. In order to treat the 3-dimensional
primitive complex reflection group Wi := G5 we consider the specialization

:L'li—>]., LEQ'—>—1

of the generic cyclotomic algebra for Gas. By [Bl Bem. 4.14] its generic cyclotomic
algebra Hy := H(Ga2s5;y) is a subalgebra of index 2 of the specialization H’ :=
H(Ga26; ((1,—-1),y)). It was shown in [3] Satz 4.7] that H; satisfies Assumption 2.5.
Furthermore, by [15] Table 8.2] (or [3] Bem. 6.5]) the field Q({3)(y) is a splitting
field for H;. So by Tits’ deformation theorem the specialization y; — {g induces
a bijection between Irr(H;) and Irr(W7). On the other hand, W is isomorphic to
the direct product of Wi with the cyclic group of order 2. Since W; has no normal
subgroup of order 2, this allows us to identify Irr(WW;) with the subset of elements of
Irr(W) having this direct factor in the kernel. It turns out that these are precisely
the characters appearing in the first six columns of Table 6.1.

Having thus given a labeling for the irreducible characters of H(W7) by a subset
of Irr(W'), we may state the following:

Theorem 6.3. The generic degree dy of an irreducible character ¢ of the cyclo-
tomic Hecke algebra Hy1 = H(Gas;y) with respect to the restriction of a symmetric
form on H' = H(G6;y, 1, —1) as in Theorem 6.2 is given by twice the corresponding
generic degree for H'.
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Proof. This follows from the above observations by an easy descent argument given
for example in [I2, Lemma 5.11]. O

These Schur elements were already computed in [3] Bem. 5.15], but without
giving the labeling by irreducible characters of G5, so we include them once more
for the convenience of the reader:

b1,0 :(y1 — y2)* (1 — y3)* (Wi + 13) (W5 + v3) (WF — vaus) (Wi — w2u3) (U5 + yays)
(Yt + yiyays + ¥3y2) (Y3 — viye + y2) (i — yays + y2) [y ys?

b2,3 :(y1 — y2)% (y1 — y3)? (2 — y3)? (1 + y3) (y2 + y3) (Y1Y3 + v1y2y5 + ¥s3)
(

y1ye +y2) (Y2 — vy + v2) [y yays2,

b31 = (y1 — y2)*(y1 — y3)* (2 — y3) (yry2 + ¥3) (U7 + vous) (U5 + ¥3) (U5 + v3)
(Y2 — ¥3)/1192y3°,
G360 — (1 — y2)* (1 — y3)*(y2 — y3)* (v1y2 + ¥3) (W1ys + ¥3) (U7 + y2u3) /Y1 Yays,
6,2 (Y1 —2) (1= u3)* (y2—u3)* (3 + ¥3) (193 + ¥3) (v2 + y3) (47 — Y5u3) /43 Yav5,
08,3 :(y1—ys) (1 —v2) (Y2 —v3)? (Y5 —yiys) (VT v2—u3) (U3Y3 + vivays + vi) /y5 s ys,
bo,5 :(Cs — G (Wi — vaye + ¥3) (Wi — v1ys +v3) (Y3 — vous + v3) (Wi — (yays)
(v3 — GGyrys) (v3 — C3y1ya) /yiYays-

The Schur element of ¢g 7 is the complex conjugate of the one for ¢g 5.

6C. The complex reflection group Gs2. The 4-dimensional primitive complex
reflection group W = G3o is generated by four reflections si,...,s4 of order 3,
which satisfy the braid relations of the As-diagram. It has two conjugacy classes
of maximal parabolic subgroups of types Gas and G(3,1,1) + G4. Out of the
102 conjugacy classes of G2, 32 have a representative in one of these parabolic
subgroups. For both of these, a symmetrizing form and the corresponding Schur
elements are known by virtue of the previous section and by [3], respectively. Let
Ts,y- -, Ts, be the generators of the generic cyclotomic algebra H = H(W,y) of
type Gso satisfying

(T5j _yl)(TS] _y2)(T5j _yJ) =0 fOI'j =1,... .4,

with the parameters y = (y1, Y2, ys3).

We consider the specialization y; — Cg_l of H to the group algebra of W. By
[15, Table 8.2] (or [3, 6A]) the field Kw := Q(¢3)[¢/y; | 1 < j < 3] is a splitting
field for H(W;y). By 2D the symmetry group & = &3 of W in its action on the
parameters induces an action on Irr(WW). As in the case of Gag we first give a table
showing the action of & on Irr(W) induced by the (left) action on {y1,y2,ys}.

The three characters ¢si,10, ¢s1,12, ¢s1,14 are invariant under the &s-action.

We denote the elements of Irr(W) by ¢q.p, where d = ¢q5(1) and b is the b-value
of ¢4. This distinguishes the characters except for six pairs. We denote by ¢z 15
and ¢f; 15 the only two rational characters in these pairs. The other characters in
these pziirs have the property that their complex conjugate is already determined
by its d,b. Interchanging y> with y3 induces complex conjugation on Irr(W). So
the complex conjugates can be read of from Table 6.4 and thus the notation for the
ambiguous pairs is fixed.
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TABLE 6.4. G3-action on Irr(Gss)

(1) (1,2,3) (1,3,2) (1,2) (1,3) (2,3)
$10 D140 ?1,80 ¢140 P180 P10

P41 Paan 4,51 G421 Pael  Pa11
P54  P5.44 05,36 @512 P52 @520
P68 D648 06,28 P68 P4z D628
0102 010,30  P10,34  P10,14 Pro42  D10,10
156 P1522 P1538  P1522 P1538 D156
158 P1524  P1516 D158  Pi524  P15.16

20,3 $20,25 020  $2013 $2035 Phoo
205  P2033  $20,19 P05 P2033 $20,19
$207  P0029  P2021 2.0 2031 $2017

$20,12 $20,16 20,20  P20,16 P20,20 P20,12
$24,6 P2a16  P24,26  P2416 P24,26 24,6
$304  P3020  P3024a  Pio12 P3028 P08
P3012 3016  Pro20  P30,16 P00 D012
36,5  P36,15  P36,25  P36,15 P36,25 P36,5
36,7 P36,17  $36,27  P36,17  P36,27  P36,7
®40,8 040,18  Pa0,22  Pa0,14 Pa0,24  Pa0,10
G456  Pas22 G454 Pase Pas22 Pas 14
45,10 Pas26  Pas18 Q45,10 Pa526  Pas,18
be0,7  Pe017  Peoas P09 Peo1e Beon
6011 Peo1s 6013 Peoa1 Peoas  P60.13
®60,12  P60,16  Pe0,20  Pe0,16 P60,20 P60,12
Pe4,8  Pea,18  Pea,13  Peas  Pea18 P64,13
Pe4,11  Pea21  Peaie Do il Pea2l  Pea,l6
80,9  P80,13  Pso,17  P80,13  Pg0,17  $80,9

We denote by ¢ := s1898384 the Coxeter element of the braid group B(W) of W.
It satisfies ¢®* = 7 and its fifth power is central in B(W). Let w := s2s9s38; = s;c.
By direct computation with the defining relations of B(W) we find that w* = ¢,

hence w is a 24-th root of 7r in the braid group.

Theorem 6.5. The Schur elements of the cyclotomic Hecke algebra H(Gsz;y)
with respect to any quasi-symmetric basis only containing T, (1 < 1 < 29), T
(1 <1 < 23) and elements of the form TyT2' (1 <1 < 5) for v running through
representatives of minimal length of the conjugacy classes of the maximal parabolic
subgroups of B(W) are given in the table below.

Proof. The character values of H on the powers of T, and of Ty, can be evaluated
with Proposition 2.8. Moreover, character values on all elements of proper parabolic
subalgebras are known by the preceding section, respectively by [3]. Since T2 is
central in H, the values on any product T, T2 can be determined, once those on
T, are known. Thus the values of all irreducible characters on all the elements
occurring in the statement can be computed. Using the computer algebra system
GAP it was checked that this system has maximal rank, and thus determines the
generic degrees uniquely. O
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®1,0

YR

5.4

P6,8

¢10,2 .

D15,6 :

¢15,8 :

20,3 :

?20.,5

20,7 :

$20,12

D246
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(Y22 +yza® + 2 (v —yr +2?)(2° - 2z + 2?) (P2 - 2%)(y2® - )
(g2t + 432322 4 2220 4 yea® 4+ 2% (Yt — P+ yPa? — yad + ah)
(2% = 22 4 222% — 223 + 2N (P2 + 2b) (y23 + 2Y) (y*2? — yP2a® + )
(y*2" = y2?2® +2%)(y?2° = 2°) (2% — 2°)(v?2° + 2")(y°2° + 2°) (v* + 2°)
(2% +a?)(yz +a®)(y —)*(z — @) [y*0=",

(28 — 272 + 2%2° — 2t + 2P0 — 2T + 22 (vt — P 4+ y%2? — 2 ot
(%9 + zya® + 2*) (2 + 2°)(y® — ya + 2°) (Y + 2°) (ya® + 2*) (%Y — a?)
(2y — %) (zy® — 2°)(y2® = 2°)(z%y + 2°)(2® + 2°)(yz + 2®)(ay + 2°)
(= 2)%(x = y)(y — 2)/xy'°=",

(y22? + yx2® + 24 (2* - 2% +x4)(x4y+z5)(y2x3 — 29 (2% — 2z + 2?)?
(v =y + %) (y2® = 2°)(2Py + 2°) (e + 2°) (v? + 2?) (zy + 22) (y2 + 2°)
(z = 2)*(y — 2)*(z = y)* (2 + y) (2 + 2)?/2°y°2",

(a
(
(
(

iyt + 23327 + 2yt 4 ay2S + 28 (2t

—x y+x2y2—xy3+y4)
23y 4+ 20)(2% — 2y + ) (27 — 2w+ 2%) (2% — 2Py) (wy® — 2°) (@Y + 2°)
xy® + 2 )(Z$+y zy + 2%)(xy + 2°)(z — y)*(x — y)*(z — 2)* (2 + 2)
(2" — 2%yz Jrzﬁ)(yzfwhuzx2+964)(x2 —zz+2°)(2® —xy +y°)
v’z +at)(2Py — 2°)(y2? — 2%)(y2® + 27) (@® + 2%)(2y + 2?)
2z + ) (yz + %) (@ — 2)*(y — 2)*(z — y)(w + 2)(y + 2) /2y "2,

Y22 —yza® + ) (yP 2 + 2')(2? — w2z + 2°) (2% — ay + ) (2Py + 2Y)

Bz 4+ yh) (@ — yP2) (Y2 — ) (wy + 22) (w2 + y°) (yz + 27) % (x — 2)?

y—2)%(z = y)*(z +y)(a +2)/a?y*2*,

2y + 2 -2y +y?) (P -zt )(zx2 -y (@ —y*2)(ze + )

(v°

(

(

(

(

(

(zy + 2%)(zy + 2°)°(z — 9)*(x — 1)*(z — 2)* (2 + 2)* (2 + )* /2% ° 2,
(2" — y?22® + 2°)(2%y® + 2y2” + 21) (2% — 22 + 2°) (2%y — 2*) (22? —y3)
(y2* = 2°)(wy® + 2°)(2° + 2%) (22 + v*) (zy + %) (wy + 2°) (z — y) (x — )°
(Z ) (z—i—x) /SCB 12 25

(y?
(
(

ya? + xyz® + 21 (y? —xy22+z4)(y2 —yx + 23 (2? — 2z + %)
v —yz+2%)(a’ —y Z)(ny— 2)(ay® = 2%)(za? - y°)(y2* +2°)
a4 y%) (e + 22 (2 — 2)*(y — 2)° [a”y°2,
—(y%2? +yza® +ah) (@ + 27y —yz + 2 )($32+y4)($3y— )
(

(@y® = 2°)(ay® + 2°)(ay + 2°) (22 + *) (@ = 9)*(x — 2)°(y — 2)*/2”y"2*,

2 (227 +yza® +a) (27 — 2y + ) (o + o) (wy® + 2% (2y + 27)? (:L/—Z)2

(x —y)°(z — 2)*(x + 2)*(z + y)* /Oy 2212,
(yt 2yt P et yaa®4a®) (2 +Z3)($3 + %) (@Py — 2°)(y® — z2?)
(@ + 22 (@ + y°) (y + 2°) (w2 + y7) (@ — y)P(z — 2)°(y — ) /2y 'P2"2,
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b30.4 :(2° — 22y (2% + 42 (3 + 23) (@ + 23) (g2t + 2°) (22 + y3) (2 — 27)
($Z+y )(zy + 2°)(x —y)?(y — 2)*(x — 2)* /2ty '?2,

P12 (4 + 2°)7 (2" —ay + 7)) (2° — 22+ 27) (22" — ?) (2 y—z3)(zx+y2)
(zy + 2%)(x — y)* (2 — 2)* (2 + 2)*(z + y)? /2% "?2"2,

b365 (¢ — 1)(G2° + o y)(ng +2%2)(zy — G32 )(xz—§3y2)(x2—§§yz)(x—y)
Gyt + a2y + Ga*y® + G’y + 0 (G2t + 22° + (a2 + G’z + 2?)
(2° +9°2°) (2% — 22+ 22) (Y —yz + 2°) (2% — 2y + ) (z — 2) /2ty 2",

pa0,8 :(2%2° + w2y + y")(yP2® — 2°)(@® + ) (27 — 2y + ) (2° — 2%) (2 +y)
(2% + 2°)(zy + 2°)(2y + 2°) (2 — ) (2 — y) (z — 2)*(z + 2) /2%y "22"2,

bas6 :(1 — C3)(C3a® + 22) (Gsy® + 22°) (= 3y + 22) (—(32° +zy)(43wy—2)
(Cszy + 2°)(Gay + 2°) Gy + 22 (G2 + 2°) Gy + 2)*(GBy + 2)
(2* — 2y + )Gz + 2)*(Gr + 2)(wy + 2°) (2 — y) (2 — ) /2°y°2%,

ge0,7 :(2° +y°) (22 — 2y + y?) (yz* + 2°)(Px — 2%)(2Py — 2%)(2® + y?) (22 + °)
(% +y2)(x — y)*(y* — 2%)* (2 — 2)? Ja®y°217,

G011 :(y°2" — wy2® + 2N)(y® — ya + %) (y2® - )(z3x—y4)(y2+x2)(yrﬂ+22)2
(22 +y°)(2® — 4*)*(z — 2)*(y — 2)*/2"y"2"%,

bonis 277~y b2 4 PR — ) e+ ) 4 )

(g2 +22)2(0 — 2)(x — y)? fa5y 1222,

boas 2 (2%y? — rayz +ay? —r2d 4+ 2 )(x2y2 + zy2® + 24 (z2? + ry?) (ra® + 29°)
(y* —ry® +ray? — 2%y* 4 rady —ra® 4+ o) (or — 22) (ry — 22)(y® - 222)
(@ —y2*)(y — 2)(z — y)*(z — Z)/ms 521,

0,9 2 (y° 2% + yza® +at)(y" — o7 + 2P+ a)(wy® - ) (P o)

(22 + 22) (2 + 1) (@ — 2)%(y — 2)2(z — 1)@ + y)(@ + ) /251212,

bs1.10 3 (52 + syz + 2w + yzw + ) (s2% + sxy + 572 +yzw + 2%)
(sy® + sxz + %y +yza + ) (zy + s2)(z2 + sy)(yz + sx)(sz + 2?)

(52 +y%)(sz + 2°) (sy +2)(s2 + y*) (sy + ) (zy + 2%) (22 +y?)
(2

o® +yz)(s+2)(s +y)(s + ) /2"y

In the table, we do not print the Schur elements for ¢3¢ 7, 45,10, since they are
the complex conjugates of those for ¢s65, ¢a56, respectively. In order to avoid
indices, we write (x,y, z) instead of (y1,y2,ys). Finally, r, s denote elements of Ky,
with r? = zy and s3 = zyz.

7. d-HOWLETT-LEHRER-LUSZTIG THEORIES FOR UNIPOTENT BLOCKS

It was first noted by Springer that non-real reflection groups naturally appear
inside Weyl groups as what is now called relative Weyl groups, that is, normalizers
modulo centralizers of subspaces in the natural reflection representation. By the
standard dictionary between Weyl groups and finite reductive groups these relative
Weyl groups can also be seen as normalizer modulo centralizer of (so-called d-split)
Levi subgroups in groups of Lie type. The importance of this construction was
revealed in the work of Broué, Michel and the author on the ¢-blocks of characters
of finite groups of Lie type. There it was shown that the unipotent characters inside
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an £-block are parametrized by the irreducible characters of a relative Weyl group,
which in general is a non-real reflection group.

A possible conceptual interpretation of this result was subsequently proposed
by Broué and the author [3]. Namely, it was conjectured there that the cyclo-
tomic Hecke algebras attached to relative Weyl groups govern the decomposition of
Lusztig-induced d-cuspidal characters. If this does in fact hold, it implies that the
degrees of the constituents of those Lusztig induced characters can be expressed in
terms of the Schur elements of the corresponding cyclotomic algebras.

This latter fact was already verified in [12, Folg. 3.16 and 6.11] for all relative
Weyl groups which are imprimitive in their natural reflection representation, in [13]
Prop. 5.2] for the 2-dimensional ones, and in [3], Folg. 5.16] for Ga5. With the Schur
elements computed above, we can check the remaining cases and thus obtain (we
refer to [3] or [13] for the notation):

Proposition 7.1. Let G be a group of Lie type, E(G, (L, X)) a ®4-block of unipotent
characters. Then the degrees of the unipotent characters v € E(G, (L, \)) satisfy
conjecture (d-HV6) in [3] with respect to the values of parameters given in [3| 2B
and Table 8.1].

Proof. By the references cited above, it only remains to consider the cases
(Ga d) S {(E77 3)) (E77 6)) (E87 4)) (ESa 3)7 (ESa 6)}7

with relative Weyl groups Gag, Gog, G31, G2, G32 respectively. The Schur elements
for the cyclotomic Hecke algebras of these latter groups have all been determined
above, and the result follows by comparing the specialized Schur elements with the
unipotent character degrees. (This was done explicitly in Theorem 5.4 for the case
(ESa 4)) O

8. SPETSIAL REFLECTION GROUPS

In this last section we observe some general properties of the Schur elements
of complex reflection groups, using the explicit results derived here, respectively
in [7] and [I3]. These will bring to light an important property shared by certain
finite complex reflection groups which seems to lie at the heart of the existence of
so-called unipotent degrees (see for example [12] and Section 8.3). This result was
announced in the ICM-report [14].

8A. A property of some complex reflection groups. Let W be a finite irre-
ducible complex reflection group defined over k, Zj, the ring of integers of k, H(W, x)
the l-parameter cyclotomic algebra (2.4) over Z[z,z 1], k(y) with ylt®l = 2 a
splitting field for H(W, x) (see 2A).

We now associate a certain rational function ¢4 in y to each irreducible character
of W. If W is a real reflection group, c4 denotes the Schur element of ¢ with respect
to the canonical symmetrizing form on the Iwahori-Hecke algebra of W (see [8] 9.4]).
Similarly, if W = G(m,p,n), ¢ denotes the Schur element of ¢ with respect to the
symmetrizing form on H(W, z) constructed by Bremke and the author. According
to [T, Cor. 1.5] and [12, Satz 5.13], it is given as follows. The irreducible characters
of W are indexed by so-called m-symbols S. For each symbol S let Ds be the
rational function defined in [12, (5.12)]. We let ¢y = 1/Ds(z;wo, . .. , Wm—1) if ¢ is
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indexed by S, where the w; are given by
zrlifj =0,
wj = qarch il j A0,
¢ otherwise,

with (, := exp(2mi/m). If W is a 2-dimensional exceptional reflection group, we
let ¢4 be the Schur element corresponding to ¢ computed in [13]. Finally, if W
is a non-real exceptional reflection group in dimension at least 3, then c4 is the
1-parameter specialization of the Schur element computed in the previous sections.

Thus, at least conjecturally, the cg are the Schur elements with respect to a nice
(natural) symmetric form on the 1-parameter cyclotomic algebra H(W, z) of W.

For ¢ € Irr(W) we now call §; := P(W)/cs the generic degree of ¢. It is a
rational function in y. We write a(¢) for |u(k)|~! times the order of zero of J4 at
y =0, and b(¢) for the order of zero of the fake degree Ry at x = 0. Following the
notation of Lusztig [9] for the real case, a character ¢ with a(¢) = b(¢) is called
special.

The explicit formulae for the generic degrees now allow us to observe the follow-
ing:

Proposition 8.1. Let W be a finite irreducible complex reflection group. Then the
following are equivalent:

(i) for all ¢ € Irr(W) there exists a special ¢ € Irr(W) with a(p) = a(y);

(ii) a(e) <b(¢) for all ¢ € Irr(W);

(iii) (rationality) 64 € k(x) for all ¢ € Irr(W);
(iv) (integrality) 6 € kly| for all ¢ € Irr(W);
(v) 61 =1 (i.e. ¢ = P(W));
(vi) (representability) the k-subspaces (3¢ | ¢) and (Ry | ¢) of k(y) coincide.

Proof. First note that the fake degrees Ry lie in Z[z], so statement (vi) implies
(iii) and (iv). For the other implications, the proof is case by case. If W is a real
reflection group, then it is known that statements (i)—(vi) hold. For example, they
can be checked from the explicitly known values of the cy. In the case of Weyl
groups, it is possible to give general proofs for some of the statements by using
the fact that the generic degrees specialize to the degrees of actual characters of
groups of Lie type with this Weyl group. Properties (i) and (v) for all real types
but Hy are contained in [9, 12.d) and e)], property (ii) in [9] (2.1)], (iii) and (iv) in
[2, Th. 2.6], and (vi) in [I0} (4.24)]. The case of Hy is treated in [IJ.

For the monomial groups G(m,1,n), (i) and (ii) hold by [1Z, Bem. 2.24], (iii)
by definition of the ¢y in this case (see [I2, (2.21)]), (iv) by [12, Folg. 3.17], (v) by
inspection and (vi) by [12, Satz 4.17]. For the imprimitive groups G(m,m,n), (i)
and (ii) are shown in [12] Lemma 5.16], (iii) follows from [12| (5.14)], (iv) from [12]
Folg. 6.12], (v) again by inspection and (vi) from [12| Satz 6.26].

Now assume that W = G(m,p,n) with n > 2, p # 1,m. We claim that none
of the statements (i)—(vi) holds for W. For this we compute the generic degrees
of the trivial character and of the reflection character. The trivial character is
parametrized by the m-tuple of partitions (n, —,... ,—). The formula in [12] yields

ot 1 n x(kfl)erl -1 n—1 xmk -1

51 = v — 1 H pk=)m+t _ | xpk — 17
k=1 k=1
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where ¢t := m/p. For p # 1, m the factor z(n=m+t _ 1 in the denominator does not
cancel, hence 47 is not integral and (iv), (v) and (vi) fail. The reflection character
p is parametrized by the multi-partition (n — 1,1, —,...,—). Here, for p # m we
find

(@ = 1)@ - )@ D — )" (e — Q)
(@71 — 1) (zp(r=D+ —1)(z — 1)(z" 5 =) (27 — ¢ V)(z —(P)

with ¢ = exp(2mi/m). Thus a(p) =2 — ]—1) is not integral, and (i), (iii) cannot hold.
Moreover, by definition the reflection character occurs in the first symmetric power
of the natural representation of W, so b(p) = 1 < a(p), and (ii) is violated.

The generic degrees of the 2-dimensional primitive reflection groups were com-
puted in [I3]. From these, it can be checked that (i)—(vi) hold for the groups
G4, Gs,Gs, G1a.

For the remaining 2-dimensional groups, the explicit formulae in [13] show that
01 is not integral, so (iv), (v) and (vi) fail to hold. Also, in all cases there exists
a non-rational degree, so (iii) is violated. For all groups except G12 and Gaa there
even exists some ¢ with non-integral a(¢), which contradicts (i). For Gio, the
reflection character p has a(p) = 2, but there is no ¢ with b(¢p) = 2. Thus (i) and
(ii) do not hold. The group Gz has a 3-dimensional character ¢ with a(¢) = 1, but
a(p) = 3, so there is no special character ¢ with a(y) = 1, again contradicting (i)
and (ii). It can be checked that a(p) > b(p) for G7, G11, G13, G15 and G1g. For the
remaining groups, condition (ii) is violated for some other irreducible character.

It remains to consider the exceptional, non-real groups of dimension at least 3.
The results of the previous sections show that for (G31, none of the statements hold,
while the other groups satisfy (i)—(vi). O

(Sp: 61;

A reflection group all of whose irreducible components satisfy the above (very
special) equivalent conditions will be called spetsial. From the proof of Proposi-
tion 8.1 we see that the irreducible spetsial groups are

Sn, G(m,1,n), G(m,m,n), G, withie {4,6,8,14,23,...,30,32,...,37}.

With this list it is straightforward to verify that spetsiality is in a certain sense a
local property:

Proposition 8.2. A reflection group is spetsial if and only if all of its 2-dimen-
stonal parabolic subgroups are spetsial.

Since taking parabolic subgroups is transitive, we obtain the immediate conse-
quence that all parabolic subgroups of a spetsial reflection group are spetsial.

8B. Special characters of spetsial groups. The explicit formulae for the generic
degrees obtained in the previous sections or given in the above-mentioned references
allow us to compile the list of all special characters of irreducible spetsial reflection
groups W. For real W, the special characters were listed in [9] and [I]. For W =
G(m,1,n) the special characters are described in [I2] Bem. 2.24] in terms of the
associated symbols, for W = G(m,m,n) in [I12] Lemma 5.16]. For the exceptional
spetsial reflection groups, the special characters can be read off from the explicit
data in [I3| and in the previous sections. Thus we obtain the following lists:

Ga: @10, $2,1, $3,2, P14
Ge: ¢1,0, $2,1, 93,4, 2,513, 1,10
Gg: ¢1,0, P21, 3,2, P43, P16
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Gia: ¢1,0, $2,1, Pa5, P3.6, 2,9, $1,20-

Gaa: $1,0, 93,15 97,3, P84, 97,6, P38, P1,21-

Gas: ¢1,0, 93,1, $6.2, PG 4> P8.6, P81 P1,12-

Gae: }1,0, 3,1, 6,2, 8,3, B6.45 P6,5, Ps.60 D6,11> D5160 P1,21-

Gar: ¢1,0, 03,1, $10.3, P94, P155, 8.6, P15,8, P99, P10,12, P3,16, P1,45-

Ga9: 91,0, Pa,15 P10,2, 916,35 D545 Pl5,45 $20,5, P24,6, 20,9, 5 12, Pl5.125 P16,13,
010,18, P4a,21, P1,40-

G32: $1,0, $4,1, $10,2, 20,3, D30,4, $20,5, P45,6, P64,8, P60,9, P81,10, $30,125 P36,15,
030,20, 20,25, 10,305 1,40

G33: 91,0, $5,1, P15,2, $30,35 930,45 P81,6, P60,7, P45,7, D648, P15,9, P45,10, Ps1,11,
060,105 $15,12, $30,13, $30,18, P15,23, P5,28, P1,45-

G3a: 01,0, P6,1, P21,2, B56,3, P105.4, P126,5, P315,6, $420,7, P384,8, Pr.9, P560,9, P315,10,
$729,105 $630,11, P840,11, P896,12, $210,125 P840,135 $630,14; P1280,155 Ph60.185
$630,20, $840,195 $210,30, P896,21, P840,235 P630,23, P729,24, P315,28, P560,27
70,455 $384,29, P420,315 $315,36, P126,41, P105,465 P56,57, P21,68, 6,85, P1,126-

Recall that an n-dimensional irreducible finite complex reflection group W is
called well-generated if it can be generated by n of its reflections. The proof of

Proposition 8.1, together with results from [15], immediately yields the following

characterization:

Corollary 8.3. Let W be irreducible. Then the following are equivalent:

(i) W is well-generated;
(ii) the reflection character p of W is special;
(iii) the generic degree 6, is rational.

Proof. We proceed case by case. The groups G(m,p,n), n > 2, p # 1,m, are
not well-generated. In the proof of Proposition 8.1 we saw that a(p) =2 —1/p, so
neither is p special nor J,, rational. For the remaining non-well-generated groups Gj,
1€ {7,11,12,13,15,19,22,31} the assertion has either been verified in the course
of proving Proposition 8.1, or it is a consequence of the explicit formulae for J, in
Theorem 5.4 or in [13].

Now assume that W is well-generated. Moreover, if W is spetsial, then ¢, is
rational by Proposition 8.1. The a-value can be checked from the lists of Schur
elements determined here or in [I2]. All non-spetsial well-generated groups are
2-dimensional, and for them the result follows from the formulae in loc. cit. ([l

8C. Unipotent degrees and spetses. We end by giving some motivation for
the study of spetsial reflection groups. In the course of his classification of the
irreducible characters of finite reductive groups G(q) = G Lusztig [10] determined
the important class of unipotent characters and showed that they can be indexed
by a set which only depends on the Weyl group W of the associated algebraic group
G, together with the action of the Frobenius endomorphism F' on it. Moreover, the
degrees of these unipotent characters can naturally be written as polynomials with
rational coefficients in the size ¢ of the underlying field. We call this the (multi-) set
of unipotent degrees attached to (W, F'). Many properties of unipotent characters
are already reflected by combinatorial properties of the unipotent degrees, for exam-
ple, the distribution into Harish-Chandra series, and the distribution into families
(which restricted to principal series characters are just the Kazhdan-Lusztig cells).

In the course of this classification Lusztig observed that similar sets can formally
also be attached to those finite real reflection groups W which are not Weyl groups
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[11]. We showed in [I2] that in fact such sets of unipotent degrees exist for all

imprimitive spetsial complex reflection groups, and in [4] corresponding sets are

constructed for the primitive spetsial groups (using the results of the present paper).
More precisely, we obtain sets £(W) together with a degree map

1
Deg: E(W) — WOK[J?],

where Ok denotes the ring of integers of the character field K of W (the field of
definition of the reflection representation of W). The Galois group Gal(K/Q) acts
on E(W) such that Deg is equivariant. The set £(W) falls into ®-Harish-Chandra
series for each cyclotomic polynomial ® over K, and into families. The ®-Harish-
Chandra series are completely described by the Schur elements of cyclotomic Hecke
algebras attached to certain relative Weyl groups. For ® = z — 1 and W a Weyl
group, these are just the ordinary Harish-Chandra series of unipotent characters.
Each family contains a unique special character, and the degrees in the family
are connected to the corresponding fake degrees by a Fourier transform matrix. To
each element of £(W) is attached a root of unity (called Frobenius eigenvalue), such
that for each family the diagonal matrix of Frobenius eigenvalues together with the
Fourier matrix give a representation of SLy(Z). For details and references we refer
to [12] and [T4]. It turns out that all (equivalent) conditions in Proposition 8.1 are
necessary for the existence of such sets of unipotent degrees, so that we can state:

Theorem 8.4. A finite complex reflection group has unipotent degrees if and only
if it is spetsial.

Thus in a certain sense spetsial complex reflection groups behave just as if they
were the Weyl groups of an algebraic group. It is tempting to speculate about an
underlying algebraic structure, baptized ‘spets‘ in [14], giving rise to the unipotent
degrees attached to complex reflection groups. We don’t yet know what these
spetses should be, but a lot of intriguing evidence for their existence has been
collected.
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