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ON THE REPRESENTATION THEORY OF IWAHORI–HECKE
ALGEBRAS OF EXTENDED FINITE WEYL GROUPS

MEINOLF GECK

Abstract. We apply Lusztig’s theory of cells and asymptotic algebras to the
Iwahori–Hecke algebra of a finite Weyl group extended by a group of graph
automorphisms. This yields general results about splitting fields (extending
earlier results by Digne–Michel) and decomposition matrices (generalizing ear-
lier results by the author). Our main application is to establish an explicit
formula for the number of simple modules in type Dn (except in character-
istic 2), using the known results about type Bn due to Dipper, James, and
Murphy and Ariki and Mathas.

1. Introduction

1.1. We consider a finite Weyl group W1 and let S1 be the set of simple reflec-
tions of W1. In addition, we assume that we are given a group homomorphism
π : Ω → Aut(W1, S1) where Ω is a finite group and Aut(W1, S1) is the group
of all automorphisms of W1 which leaves the set S1 invariant. (This is slightly
more general than the set-up in [27] where it is assumed that π is injective.) We
form the semidirect product W = W1 o Ω so that, in W , we have the identity
ωw1ω

−1 = π(ω)(w1) for w1 ∈ W1 and ω ∈ Ω. The group W is called an ex-
tended Weyl group. We have a length function l : W → N0 given by the formula
l(w1ω) := l1(w1) where w1 ∈ W1, ω ∈ Ω, and l1 : W1 → N0 is the usual length
function on W1. In particular, this means that all elements of Ω have length 0.

1.2. We now define the corresponding extended Iwahori–Hecke algebra. Let F
be a finite extension field of Q and R be the ring of algebraic integers in F or
the localization of that ring of integers in some prime ideal. (The relevance of
this assumption will become more transparent in Definition 3.3 below.) Let A =
R[v, v−1] be the ring of Laurent polynomials in an indeterminate v and H be the
generic Iwahori–Hecke algebra associated with (W1, S1,Ω). By definition, H is a
free A-module with basis {Tw | w ∈W} and multiplication given by TwTw′ = Tww′
if l(ww′) = l(w) + l(w′) and T 2

s = uT1 + (u − 1)Ts for s ∈ S1, where we have set
u := v2. In particular, we have

Tw1Tω = Tw1ω and TωTw1 = Tωw1 for w1 ∈W1 and ω ∈ Ω.

The unit element of H is T1. (For more details about the construction of Iwahori–
Hecke algebras corresponding to extended finite Weyl groups, even in a slightly
more general context, see [3, §10.11].) Let H1 be the A-subspace of H spanned by
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all Tw1 with w1 ∈ W1. Then H1 is nothing but the (ordinary) generic Iwahori–
Hecke algebra associated with (W1, S1). If θ : A → k is any ring homomorphism
into a field k, we consider k as an A-module and obtain a corresponding specialized
algebra Hk := k ⊗A H .

The aim of this paper is to develop some basic aspects of the representation
theory of extended Iwahori–Hecke algebras and their specializations in a systematic
way, using Lusztig’s asymptotic algebra and the related constructions in [25, 26,
27]. Our motivation comes from applications to the following situations, in which
extended finite Weyl groups and their Iwahori–Hecke algebras arise naturally.

Example 1.3. Let G be a connected reductive group defined over a finite field Fq.
Let W1 be the Weyl group of G with a set of simple reflections S1 and consider
a graph automorphism σ ∈ Aut(W1, S1). If σ is induced by the Frobenius map
corresponding to the Fq-rational structure of G, then the character theory of HK

(where K is the field of fractions of A) plays a role in the study of L-functions
of the Deligne–Lusztig varieties of G; see [23] and [5]. In a different direction,
assume that σ is induced by a graph automorphism σ̃ : G → G. In this setting,
HK occurs as the endomorphism algebra of an induced representation for the finite
group G(Fq) o 〈σ̃〉. For applications to certain problems arising in inverse Galois
theory, see [28, 29].

Example 1.4. Assume that V is a finite dimensional Euclidean vector space and
that we have an embedding W1 ⊂ GL(V ), where the elements of S1 are represented
by reflections. Let W ⊂ GL(V ) be a subgroup such that W1 is a normal subgroup
of W . Then, by a result due to Howlett, W1 has a natural complement Ω in W
which leaves S1 invariant. This situation arises in the study of induced cuspidal k-
representations of a reductive group over the finite field Fq, where k is a field whose
characteristic is either 0 or a prime which does not divide q. From this point of
view, it is of considerable interest to understand the representations of the algebra
Hk, which occurs as the endomorphism algebra of the induced reresentation; see [3,
Chap. 10] for ordinary representations and [15] for modular representations. For
example, in order to determine [15, Table 5.4], it is required to know the number
of isomorphism classes of simple Hk-modules where Hk is non-semisimple.

Example 1.5. Assume that (W1, S1) is of type Dn and that Ω is the group gen-
erated by a single graph automorphism of order 2. Then W can be identified with
a Weyl group of type Bn. (This case will be studied in detail in Section 6.) Now
the modular representation theory of Iwahori–Hecke algebras of type Bn has been
studied extensively; see the work of Dipper, James, and Murphy [8], Ariki [1] and
Ariki and Mathas [2]. On the other hand, the representation theory of Iwahori–
Hecke algebras of type Dn can be developed to some extent along similar lines as
that of type Bn (see [32]) but there are some particularly intricate problems in the
case where n is even. It is therefore desirable to develop tools which allow us to
obtain information on type Dn from known results on type Bn.

In Section 2, we introduce the basic notation and the results from Lusztig’s
papers [25, 26, 27] that we shall need here. A first demonstration of the power
of the asymptotic methods is given towards the end of that section, where we
consider the question of splitting fields for the extended Iwahori–Hecke algebras in
the semisimple case. This puts the results of Digne and Michel (which are concerned
with the case where Ω is cyclic) into a general framework.
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In Section 3, we use the structure as symmetric algebra to obtain general results
about splitting fields and semisimplicity for extended Iwahori–Hecke algebras under
specialization.

In Section 4, we apply Clifford theory to study relations between the irreducible
representations of extended and non-extended Iwahori–Hecke algebras. In combi-
nation with the results in Section 3 this leads to general semisimplicity criteria
for extended asymptotic algebras and Iwahori–Hecke algebras; see Theorem 3.2,
Corollary 4.7, and (4.8).

The main purpose of Section 5 is to extend the results of [14, 18] to the extended
Iwahori–Hecke algebra. In particular, this shows that decomposition matrices for
extended Iwahori–Hecke algebras again have a unitriangular shape. In terms of
Lusztig’s a-function, we obtain a basic result relating the triangular shapes for the
extended and the non-extended algebra; see Theorem 5.5 and its corollary. This
result allows us to prove in Theorem 5.8 a basic formula on the number of simple
modules for specialized algebras. See Examples 5.9 and 5.10.

Finally, Section 6 contains the applications to type Dn. The main result is
Theorem 6.3 which yields an explicit formula for the number of simple modules.
We point out that our proof requires, in an essential way, the results of Ariki and
Mathas [2] about type Bn and the methods developed in Section 4 (involving the
extended asymptotic algebra). These methods yield a classification of the simple
modules in type Bn which may be different from that of Dipper, James, and Murphy
[8]. Towards the end of Section 6, we consider the problem of relating the two
classifications. A solution to that problem (which remains open) would lead to a
natural parametrization of the simple modules for type Dn (in the modular case).

2. The extended asymptotic algebra

In this section, we briefly recall the basic results about Lusztig’s asymptotic
version of the extended generic Iwahori–Hecke algebra H as defined in (1.2). Origi-
nally, the asymptotic algebra was only defined for the case Ω = {1} in [25]. But, as
remarked in [26, 27], the theory trivially extends to the general case. We indicate
at some places exactly how this extension works; see, for example, the formulas in
(2.1) and (2.2).

2.1. As in [27, 3.1], for any y, w ∈ W , we define a polynomial Py,w ∈ Z[u] as follows.
Writing y = y1ω and w = w1ω

′ with y1, w1 ∈ W1 and ω, ω′ ∈ Ω, we have Py,w = 0
if ω 6= ω′ and Py,w = Py1,w1 if ω = ω′, where Py1,w1 ∈ Z[u] is the Kazhdan–Lusztig
polynomial corresponding to y1, w1 ∈ W1. (Note that Py1,w1 = 0 unless y1 ≤ w1

where ≤ denotes the Bruhat–Chevalley order on W1; see [22].) Then we have a new
basis {Cw | w ∈W} of H , where

Cw :=
∑
y∈W

(−1)l(w)−l(y)vl(w)−2l(y)Py,w(v−2)Ty.

For any x, y ∈W , we write Cx Cy =
∑

z∈W hxyz Cz with hx,y,z ∈ A. Given z ∈W ,
we denote by a(z) the smallest integer i ≥ 0 such that vihx,y,z ∈ R[v] for all
x, y ∈ W . This yields a function a : W → N0. A deep fact about that function is
the following result due to Lusztig [24, Theorem 5.4]:

(a) If hx,y,z 6= 0, then a(z) ≥ a(x) and a(z) ≥ a(y).
Furthermore, for any w1 ∈W1 and ω ∈ Ω, we have

(b) Cw1ω = Cw1Cω and Cω = Tω,
(c) a(w1ω) = a(w1).

The latter two properties are immediate consequences of the definition.
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2.2. For x, y, z ∈W , we denote by γx,y,z ∈ R the constant term of (−v)a(z)hx,y,z−1.
Following [27, 3.1i], the constants {γx,y,z} can be used to construct an asymptotic
algebra, as follows. Let J be the free R-module with basis {tw | w ∈ W} and
multiplication defined by txty =

∑
z∈W γx,y,z tz−1 . Then J is an associative algebra

with unit element
∑
d∈D td, where D is a certain set of involutions in W . We have

D = {d ∈W | a(d) = l(d)− 2 degP1,d}.
(For proofs in the case where Ω = {1} see [25].) Let JA be the A-algebra obtained
from J by extending scalars from R to A. Then, by [27, 3.2a], the map φ : H → JA
defined by

φ(Cw) =
∑

d∈D, z∈W
a(d)=a(z)

hw,d,z tz

is a homomorphism of A-algebras which preserves the unit elements. The formula
in [26, 1.3c] shows that the determinant of φ is a polynomial in R[v] with constant
term 1. A deep fact about the constants γx,y,z is the following result due to Lusztig
[24, Theorem 6.1] (see also [26, Theorem 1.8]):

(a) For any x, y, z ∈ W , we have γx,y,z = γy,z,x.
On the other hand, the following properties are immediate consequences of the
definition. For any w1 ∈ W1 and ω ∈ Ω, we have

(b) D ⊆W1 and tw1ω = tw1tω,
(c) φ(Cw1ω) = φ(Cw1 )tω.

Let J1 be the A-submodule of J spanned by all elements tw1 for w1 ∈W1. Then J1 is
nothing but the (ordinary) asymptotic algebra associated with H1 and φ : H → JA
restricts to the homomorphism φ1 : H1 → (J1)A defined with respect to (W1, S1)
and H1.

Now we turn to the application of the above constructions to the representation
theory of H and its specializations.

2.3. Let θ : A → k be any homomorphim into a field k. By extension of scalars,
we obtain corresponding algebras Hk = k ⊗A H , Jk = k ⊗A JA, and an induced
homomorphism φk : Hk → Jk. We write again Cw and tw for 1 ⊗ Cw and 1 ⊗ tw,
respectively. Then any Jk-module E can also be regarded as an Hk-module via
φk; we denote that Hk-module by E∗. The assignment E 7→ E∗ induces a group
homomorphism φ∗ : R0(Jk)→ R0(Hk). (For any finite dimensional algebra T over
a field, R0(T ) denotes the Grothendieck group of the category of finite dimensional
T -modules; the class of a T -module V in R0(R) will be denoted by [V ].) We have
the following basic result:

Theorem 2.4 (Lusztig [26, Lemma 1.9]). Let M be a simple Hk-module and E be
a simple Jk-module. Then we define corresponding integers aM ≥ 0 and aE ≥ 0 as
follows:

aM := max{i ≥ 0 | CwM 6= 0 for some w ∈W with a(w) = i},
aE := a(w), where w ∈ W is such that twE 6= 0.

(Note that aE is well-defined; see the remarks below.) With these definitions, the
following holds. For any simple Hk-module M , there exists a Jk-module M̃J and
a surjective Hk-module homomorphism p : M̃∗J → M such that the following two
conditions are satisfied:
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(a) We have aE = aM for each simple Jk-module E which occurs as a composition
factor of M̃J .

(b) We have aM ′ < aM for each simple Hk-module M ′ which occurs as a compo-
sition factor of ker(p).

Thus, in R0(Hk), we have φ∗k([M̃J ]) = [M ]+ sum of terms [M ′] where M ′ are simple
Hk-modules with aM ′ < aM . Consequently, the homomorphism φ∗ : R0(Hk) →
R0(Jk) is surjective.

We briefly sketch the main ingredients of the proof. For any i ≥ 0, we introduce
the following subspaces, following [26, §1]:

J ik = subspace of Jk generated by all tw with a(w) = i,

H≥ik = subspace of Hk generated by all Cw with a(w) ≥ i.

As a consequence of the deep results (2.1a) and (2.2a), the subspaces J ik and H≥ik
are in fact two-sided ideals. Moreover, we have Jk =

⊕
i J

i
k; see [26, 1.3d]. In

particular, this shows that aE is well-defined. Let Hi
k := H≥ik /H≥i+1

k ; this is an
(Hk, Hk)-bimodule in a natural way. There is also a natural left action of Jk on Hi

k

which we denote by j : f 7→ j ◦ f ; we have

hf = φk(h) ◦ f for all h ∈ Hk and f ∈ Hi
k.

Now we construct M̃J as follows. Let M̃ := Ha
k⊗HkM , where a = aM and where we

regard Ha
k as a right Hk-module and M as a left Hk-module. Then M̃ is naturally

a left Hk-module. Let M̃J be the Jk-module whose underlying vector space is M̃
and Jk acts via j : (f ⊗m) 7→ (j ◦ f)⊗m. Then we have M̃ = M̃∗J and (b) follows
by the argument in (b) of the proof of [26, Cor. 3.6] (see also [14, 2.7(2)]). The
map p is defined by p(f ⊗m) = ḟm, where ḟ ∈ H≥ak is a representative of f ∈ Ha

k .
Then (a) and the last assertion are proved by the same arguments as those in the
proof of [26, Lemma 1.9].

Corollary 2.5. The kernel of φk : Hk → Jk is contained in the Jacobson radical
of Hk. In particular, φk is an isomorphism if Hk is semisimple.

Proof. As already mentioned in [14, Remark 2.9], this immediately follows from the
fact that φ∗k is surjective.

Example 2.6. Consider the specialization homomorphism θ : A → F , v 7→ 1.
Then, inHF , we have T 2

s = T1 for all s ∈ S, and soHF is naturally isomorphic to the
group algebra F [W ]. Thus, we have an F -algebra homomorphism φF : F [W ]→ JF .
Note that JF is just obtained from J by extending scalars from R to F .

Since F has characteristic 0, Maschke’s Theorem shows that F [W ] is semisimple
and so, by Corollary 2.5, φF is an isomorphism. In particular, this means that JF
is semisimple. This can also be proved using the fact that J is a based ring; see
[27, 1.2a and 3.1j]. If F is also a splitting field for W , we can conclude that JF is
a split semisimple algebra.

Theorem 2.7. Assume that F is a splitting field for W . Let K be the field of
fractions of A. Then HK is a split semisimple algebra. Moreover, if every simple
JF -module can be realized over R, then every simple HK-module can be realized
over A.
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Proof. By Example 2.6, JF is split semisimple. Since K is an extension field of
F , it follows that JK is also split semisimple. We have already remarked in (2.2)
that the determinant of φ is non-zero and so φK : HK → JK is an isomorphism.
Consequently, HK must be split semisimple, too. To prove the last assertion note
that, since JF is already split semisimple, every simple JK-module can be realized
over F . The assertion then follows from the fact that φK is defined over A.

Remark 2.8. Every simple JF -module can be realized over R if R is a principal ideal
domain. (This follows by a general argument which is explained in [19, Satz 12.2].)
This is the case, for example, when R is the localization of the ring of integers of F
in some prime ideal. In general, if R is not a principal ideal domain, a realization
of the simple JF -modules over R can always be achieved by passing to a suitable
finite extension of F . (This follows from a general number theoretic argument; see
[19, Satz 12.5(b)].)

Example 2.9. Assume that Ω is the group generated by a single graph automor-
phism σ : W1 → W1. Furthermore, we assume that σ is ordinary in the sense of
[23, 3.1], i.e., whenever s 6= s′ in S1 are in the same σ-orbit, the product ss′ has
order 2 or 3. This is the case which arises naturally in the representation theory of
finite groups of Lie type; see [23] and [5, Chap. II].

Assume that σ has order d ≥ 1 and let ζd ∈ C be a primitive d-th root of unity.
We claim that

(a) Q(ζd) is a splitting field for W .
To prove this we may assume, by a standard reduction technique (see the proof of
[23, Prop. 3.2]) that (W1, S1) is irreducible. Using the classification of irreducible
finite Weyl groups, we then see that d ∈ {1, 2, 3}. Now we use Clifford theory for
the complex irreducible characters of W with respect to W1. Let χ be an irreducible
character of W . We must show that χ can be realized over Q(ζd). Now, since Ω is
cyclic of prime order, there exists an irreducible character ψ of W1 such that χ is
obtained by either inducing or by extending ψ from W1 to W (see [20, 6.20]). Since
Q is a splitting field for every finite Weyl group (see [16, Theorem 6.3.8]), we know
that ψ can be realized over Q. Thus, if χ is obtained by inducing ψ, then χ certainly
is realized over Q. On the other hand, if ψ can be extended to χ, then Lusztig [23,
Prop. 3.2] has shown that ψ can be extended to an irreducible character ψ̃ of W
which can be realized over Q. But then there exists a linear character η of W with
W1 in its kernel such that χ is obtained from ψ̃ by tensoring with η (see [20, 6.17]).
The character η can be regarded as a character of Ω and, hence, is realized over
Q(ζd). Thus, (a) is proved.

Finally, if d ≤ 2, then we have F = Q and R = Z; if d = 3, then Q(ζ3) = Q(
√
−3)

and R is a principal ideal domain (see [34, Theorem 4.17]). So, in all cases, the
simple JF -modules can be realized over R (see Remark 2.8). Hence, assuming that
F is a splitting field for W and using Theorem 2.7, we conclude that

(b) HK is split semisimple and every simple HK-module can be realized over A.
More precise results about the possible character values of HK have been obtained
by Digne and Michel in [5, Théorème II.3.3].

Example 2.10. We keep the setting of the previous example but drop the as-
sumption that σ is ordinary. This case arises if σ is the unique non-trivial graph
authorphism of order 2 for (W1, S1) of type B2, G2 or F4. By checking the complex



376 MEINOLF GECK

character tables of W (see [17, §7]), one sees that not all character values are ratio-
nal. In fact, all the values of all irreducible characters of W lie in Q(

√
2) (for type

B2 or F4) or in Q(
√

3) (for type G2). The constructions in [17, Example 7.6] show
that these fields are splitting in type B2 and G2. As far as type F4 is concerned,
the explicit computations required to obtain [17, Table 5] show that Q(

√
2) is a

splitting field.

We can summarize the above results as follows.

Theorem 2.11. Assume that Ω is the group generated by an arbitrary graph au-
tomorphism σ : W1 → W1. Let d ≥ 1 be the order of σ and ζd ∈ C be a primitive
d-th root of unity. For any s, t ∈ S1, denote by mst the order of st ∈W1. Then

F := Q(ζd, cos(π/msσ(s)) | s ∈ S1)

is a splitting field for W . (Note that F = Q if σ is the identity.)

Proof. By a standard reduction technique (see the proof of [23, Prop. 3.2]), we
may assume that (W1, S1) is irreducible. If σ is ordinary, we have already seen in
Example 2.9 that Q(ζd) is a splitting field. So it remains to consider the case where
σ is not ordinary. Then σ has order 2 and (W1, S1) is of type B2, G2 or F4. In these
cases, there exist a generator s ∈ S1 such that msσ(s) equals 4 (in type B2, F4) or
6 (in type G2). Thus, F (as defined above) contains

√
2 (in type B2, F4) or

√
3 (in

type G2). Hence F is a splitting field for W by the remarks in Example 2.10.

3. Splitting fields and semisimplicity

We will now use the methods in Section 2 to obtain results about splitting fields
for specialized algebras. Recall that R is the ring of algebraic integers in a number
field F or the localization of that ring in some prime ideal. Furthermore, K = F (v)
is the field of fractions of A = R[v, v−1]. We begin with the asymptotic algebra J .

3.1. Assume that F is a splitting field for W . Then we have seen in Exam-
ple 2.6 that JF is a split semisimple algebra. Since R is integrally closed in F ,
we have Trace(tw, E) ∈ R for every simple JF -module E and every w ∈W (see [16,
Prop. 7.3.8]). Moreover, since J is a based ring by [27, 3.1j], there exist non-zero
elements fE ∈ F such that

fE dimF E =
∑
w∈W

Trace(tw, E) Trace(tw−1 , E);

we have in fact fE ∈ R (see [26, 1.3]). Now consider the linear map τ0 : J → R
defined by τ(tw) = 1 if w ∈ D and τ(tw) = 0 otherwise. Then, by [27, 1.1c], τ0 is a
trace function and the Gram matrix of the bilinear form J×J → R, (j, j′) 7→ τ0(jj′),
is invertible over R. Thus, J is a symmetric algebra. The bases {tw} and {tw−1} are
dual bases of J with respect to the above bilinear form. Hence, using the notation
of [16, §7.2], we see that the elements fE are the Schur elements of JF with respect
to the canonical extension of τ0 to JF .

Theorem 3.2. Assume that F is a splitting field for W . Let p ⊂ R be a prime
ideal and k be the field of fractions of R/p. Then Jk = k ⊗R J is split semisimple
if and only if fE 6∈ p for all simple JF -modules E.
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Proof. First assume that Jk is split semisimple. Then we necessarily have fE 6∈ p

for all simple JF -modules E, by a general semisimplicity criterion for symmetric
algebras (see [16, Theorem 7.4.7]).

To prove the converse, first note that if p = {0}, then F = k and the desired
assertions are already contained in (3.1). Assume now that p 6= {0} and, thus,
k is a finite field. Then there exists a finite Galois extension k′ ⊇ k such that
Jk′ is split; moreover, Jk is semisimple if and only if Jk′ is semisimple (see [4,
Cor. 7.14]). We can extend the canonical map R 7→ k to a ring homomorphism
R′ → k′ where R′ is the ring of algebraic integers in a finite extension F ′ ⊇ F .
Since JF is split semisimple by Example 2.6, the same holds for JF ′ ; moreover, the
scalar extension from F to F ′ defines a bijection between the isomorphism classes of
simple JF -modules and simple JF ′ -modules. Clearly, if E is a simple JF -module,
fE ∈ R is also the Schur element of the simple JF ′-module F ′ ⊗F E. Hence, if
fE 6∈ p for all E, the above mentioned semisimplicity criterion now implies that Jk′
is split semisimple. Consequently, Jk is also semisimple. It remains to show that
Jk is split, i.e., that every simple JF ′ -module M ′ can be realized over k. Since k′

is still a finite field, it is enough to show that Trace(tw,M ′) ∈ k for all w ∈ W
(see [9, Theorem I.19.3]). But, since JF and Jk′ are both split semisimple, we
can apply Tits’ Deformation Theorem (see [4, §68A]). This shows that, for each
M ′ there exists a simple JF ′ -module E′ (unique up to isomorphism) such that,
for any w ∈ W , we have Trace(tw, E′) 7→ Trace(tw,M ′) under the canonical map
R′ 7→ k′. (Note that Trace(tw, E′) ∈ R′ since R′ is integrally closed in F ′.) Hence
it is enough to show that Trace(tw, E′) ∈ F for all w ∈ W . But this follows from
the fact (already mentioned earlier in the proof), that every simple JF ′-module is
obtained by scalar extension from a simple JF -module.

Now we turn to the algebra H and its specializations. The basic result The-
orem 2.4 is valid for any ring homomorphism from A into a field. For further
applications, it will be convenient to introduce the following notation.

Definition 3.3. Let k be a field. We say that a ring homomorphism θ : A → k is
an admissible specialization if the following conditions are satisfied.

(a) F is a splitting field for W . This implies that JF and HK are split semisimple
algebras; see Example 2.6 and Theorem 2.7.

(b) R is the localization of the ring of algebraic integers of F in a prime ideal
p, say, and k is the residue field of R. (We allow the case that p = {0}
and R = F = k.) In particular, R is a discrete valuation ring and so every
simple HK-module can be realized over A and every simple JF -module can
be realized over R; see Theorem 2.7 and Remark 2.8.

(c) There exists an invertible element ζ ∈ R such that θ is the composition of the
specialization A→ R, v 7→ ζ, followed by the canonical map R 7→ k = R/p.

It also follows that p is either 0 or contains a rational prime number ` > 0 and so k
is either equal to F or a finite field of characteristic `. Note that, for any invertible
element ζ ∈ R, the specialization map

θ : A→ F, v 7→ ζ,

is an admissible specialization. See also [13, §3] for examples and a discussion of
the connections with the modular representation theory of finite reductive groups.
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Note that Jk only depends on p but not on the specialization v 7→ ζ, since
JA is already defined over R. More precicely, we have a canonical isomorphism
Jk = k ⊗A JA = k ⊗R J .

3.4. Define an A-linear map τ : H → A by τ(Tw) = 0 if 1 6= w ∈ W and τ(T1) = 1.
Then we have τ(TwTw′) = ul(w) if w′ = w−1 and τ(TwTw′) = 0 otherwise. (For
details of the proof, see [3, Prop. 10.9.1].) It follows that τ is a symmetrizing trace
for H and, hence, H is a symmetric algebra. The basis dual to {Tw | w ∈ W}
is given by {u−l(w)Tw−1 | w ∈ W}. We extend τ canonically to a trace function
on HK . Then, for any simple HK-module V , we also have a corresponding Schur
element cV ∈ K given by

cV dimK V =
∑
w∈W

u−l(w) Trace(Tw, V ) Trace(Tw−1 , V ).

By [16, Prop. 7.3.9], we have in fact cV ∈ A, since A is integrally closed in K.
Moreover, we have cV 6= 0, since HK is semisimple; see [16, Theorem 7.2.6].

Theorem 3.5. Let θ : A → k be an admissible specialization and assume that
θ(fE) 6= 0 for all simple JF -modules E. Then the algebra Hk is split. Further-
more, Hk is semisimple if and only if θ(cV ) 6= 0 for all simple HK -modules V .

Proof. By Theorem 2.7, HK is split semisimple. Let us first show that Hk is split
under the above assumptions on θ. For this purpose, we argue as follows. (Compare
with the proof of Theorem 3.2.) Since k is a perfect field, there exists a finite Galois
extension k′ ⊇ k such that Hk′ is split (see [4, Cor. 7.14]). Then we can extend
the canonical map R 7→ k to a ring homomorphism R′ → k′ where R′ is the ring of
algebraic integers in a finite extension F ′ ⊇ F . Let A′ = R′[v, v−1] and K ′ = F ′(v)
be the field of fractions of A′. We extend θ to a ring homomorphism θ′ : A′ → k′.

Now we fix a simple Hk′ -module M ′. We must show that M ′ can be realized
over k. First we show that

Trace(Tw,M ′) ∈ k for all w ∈ W.(∗)
To see this, we consider the group homomorphism φ∗k′ : R0(Jk′ ) → R0(Hk′) of
(2.3). By Theorem 2.4, φ∗k′ is surjective. On the level of characters, this means
that every irreducible character of Hk′ is an integral linear combination of the
irreducible characters of Jk′ . Thus, it remains to show that if E′ is any simple Jk′ -
module, then we have Trace(tw, E′) ∈ k for all w ∈W . This is seen as follows. By
Theorem 3.2, Jk is split semisimple. Hence the same holds for Jk′ and, moreover,
the scalar extension from k to k′ defines a bijection between the isomorphism classes
of simple Jk-modules and simple Jk′ -modules. Thus, (∗) follows.

Now, if k is a finite field, then k′ is still finite and (∗) implies that M ′ can be
realized over k (see [9, Theorem I.19.3]). So we can now assume that k = F . To
proceed, we note that Theorem 2.4 actually shows more than just the surjectivity
of φ∗k′ . Namely, there exists a Jk′ -module E′ and a surjective Hk′ -module homo-
morphism p : (E′)∗ → M ′ such that M ′ does not occur as a composition factor of
ker(p). We may certainly assume that E′ is simple. Then (as already mentioned),
E′ is obtained by scalar extension from a simple Jk-module E. Hence (E′)∗ is
obtained by scalar extension from E∗ and so we have a natural action of the Ga-
lois group of k′/k on (E′)∗. Now, since F has characteristic 0, the composition
factors of any HF ′-module are uniquely determined by the character of that mod-
ule. Therefore, using (∗) and the fact that M ′ has multiplicity 1 in (E′)∗, the
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submodule ker(p) ⊂ (E′)∗ is seen to be invariant under the action of the Galois
group. So, by [19, Hilfssatz 13.2], that submodule is obtained by scalar extension
from a submodule U ⊂ E∗. Thus, we have M ′ ∼= (E′)∗/ ker(p) ∼= k′ ⊗k (E∗/U), as
required.

Finally, since Hk is split, we can now apply the general semisimplicity criterion
for symmetric algebras which we already used in the proof of Theorem 3.2. It yields
that Hk is semisimple if and only if θ(cV ) 6= 0 for all simple HK-modules V .

In order to be able to apply the above results in a concrete example, we therefore
need to solve the following two problems:
(A) Determine a splitting field F for W .
(B) Find the Schur elements fE of JF , where F is a splitting field.

In the case where Ω is cyclic and generated by a graph automorphism of (W1, S1),
the answer to (A) is given in Theorem 2.11. In general, it is always enough to take
a field F containing all m-th roots of unity, where m is the exponent of W ; see [20,
Theorem 10.3]. In the case where Ω = {1}, a complete answer to (B) is given by the
formula [27, 3.4e] (see also (4.5b) below) and the tables in [23, Chap. 4]. A solution
to this problem in general will be given in the following section; see Corollary 4.7.

4. Clifford theory

We assume from now on that F is a splitting field for W , so that JF and HK are
split semisimple algebras; see Example 2.6 and Theorem 2.7. The Clifford theory
for characters of finite groups yields information about the induction and restriction
of characters between W and its normal subgroup W1. In this section, we apply a
generalization of that theory (see [4, §11C]) to obtain similar results for the algebras
H , H1, and their specializations. We begin with the following discussion concerning
simple modules over K.

4.1. Consider the isomorphism φF : F [W ] → JF of Example 2.6. By extension of
scalars from F to K, we obtain an isomorphism of K-algebras φ′F : K[W ] → JK .
Now consider the composition ΨK := (φ′F )−1 ◦ φK : HK → K[W ], where φK is
obtained from φ in (2.2) by extending scalars from A to K. We already remarked
above that the determinant of φK is non-zero. Hence, φK is an isomorphism which
is defined over A. Since (φ′F )−1 is an isomorphism which is defined over F , we
conclude that ΨK is an isomorphism such that

ΨK(Tw) =
∑
z∈W

ξz,w(v) z ∈ K[W ] with ξz,w(v) ∈ F [v, v−1](a)

for all w, z ∈W , where the coefficients ξz,w(v) satisfy the condition that

ξw,z(1) = 1 if w = z and ξw,z(1) = 0 otherwise.(b)

Now let E be a K[W ]-module. Via composition with ΨK , we can also regard
E as an HK-module, which we denote by Ev. Since ΨK is an isomorphism, the
correspondence E 7→ Ev defines a bijection between the isomorphism classes of
simple modules for K[W ] and for HK , respectively. By construction, we have
Trace(Tw, Ev) ∈ F [v, v−1] for all w ∈W . Furthermore, (b) implies that

Trace(w,E) = Trace(Tw, Ev)|v=1 for all w ∈ W.(c)

Thus, the correspondence E 7→ Ev is entirely determined by the specialization v 7→
1. Alternatively, that correspondence can be established using Tits’ Deformation
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Theorem; see [4, §68A]. Applying the above constructions to W1 and H1, we obtain
a corresponding K-algebra isomorphism Ψ1,K : H1,K → K[W1], which is just the
restriction of ΨK from HK to H1,K .

Lemma 4.2. Let V be a simple HK-module and V1 be a simple H1,K-module.
Then the multiplicity of V1 in the restriction of V to H1,K equals the multiplicity
of E1 in the restriction of E to W1, where E is a simple K[W ]-module such that
V ∼= Ev and E1 is a simple K[W1]-module such that V1

∼= (E1)v. Furthermore, if
the above multiplicity is non-zero, then dimK V1 divides dimK V and the quotient
(dimK V )/(dimK V1) divides |Ω|.
Proof. The first statement follows immediately from the fact that Ψ1,K is the re-
striction of ΨK from HK to H1,K . This also reduces the proof of the second
statement to E1 and E. The required assertion in this case is contained in [20,
Lemma 6.8 and Cor. 11.29].

The above result is just a special case of a more general compatibility relation
which we will consider next.

4.3. Let θ : A→ k be any ring homomorphism into a field k. For ω ∈ Ω, we set

Hk,ω := 〈Tw1ω | w1 ∈ W1〉k ⊆ Hk.

Then H1,k = k⊗AH1 is the Iwahori–Hecke algebra associated with (W1, S1) and we
have Hω = H1,kTω for all ω ∈ Ω. Since Hk =

⊕
ω∈ΩHk,ω and Hk,ω ·Hk,ω′ = Hk,ωω′

for all ω, ω′ ∈ Ω, we see that the family of subspaces {Hk,ω} forms an Ω-graded
Clifford system in Hk, in the sense of [4, Def. 11.12].

For any ω ∈ W and w1 ∈ W1, we have T−1
ω Tw1Tω = Tω−1w1ω. Thus, conjugation

by a fixed Tω defines a k-algebra automorphism of H1,k. Given any H1,k-module
M1, we can define a new H1,k-module structure on M1 by composing the original
action with the above automorphism. We denote that new H1,k-module by ωM1.
Thus, we have ωM1 = M1 as k-vector spaces, but h1 ∈ H1,k acts on ωM1 in the same
way as T−1

ω h1Tω acts on M1. Now, by Clifford’s Theorem (see [4, Prop. 11.16]), we
have:

(a) Let M be a simple Hk-module and let M1 be a simple submodule of the
restriction of M to H1,k. Then that restriction is the direct sum of simple
H1,k-modules which are all of the form ωM1 for various ω ∈ Ω.

Similarly, if we define Jω,k = 〈tw1ω | w1 ∈ W1〉k ⊆ Jk for any ω ∈ Ω, then the
subspaces {Jω,k} form an Ω-graded Clifford system in Jk and a statement analogous
to (a) also holds for the restriction of a simple Jk-module to J1,k.

We use the symbol Res1 to denote the restriction of modules from Hk to H1,k

(resp., from Jk to J1,k). Now consider the homomorphisms φk : Hk → Jk and
(φ1)k : H1,k → J1,k. We have already remarked in (2.2) that (φ1)k is the restriction
of φk to H1,k. This yields the following compatibility result:

(b) For any Jk-module E, we have Res1(E)∗ = Res1(E∗).
Here, E∗ is regarded as an Hk-module via φk and Res1(E)∗ is regarded as an
H1,k-module via (φ1)k; see (2.3).

Lemma 4.4. In the above set-up, assume that M is a simple Hk-module and let
M1 be a simple submodule of the restriction of M of H1,k. Then all modules ωM1

(ω ∈ Ω) have the same a-invariant and this is equal to the a-invariant of M .
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Proof. First we show that ωM1 has the same a-invariant as M1 for all ω ∈ Ω. Let
w1 ∈ W1. Using the formulas in (2.1b) and (1.2), we have

T−1
ω Cw1Tω = Tω−1Cw1Tω = Cω−1w1ω.

Thus, we see that Cw1(ωM1) 6= 0 if and only if Cω−1w1ωM1 6= 0. Since a(ω−1w1ω) =
a(w1) by (2.1c), we conclude that the a-invariants of ωM1 and M1 are the same.

Now we can show that aM1 = aM . Indeed, since M1 is a submodule of M , it
is clear that aM1 ≤ aM . In order to prove the reverse inequality, let w ∈ W be
such that a(w) = aM and CwM 6= 0. We write w = w1ω

′ with w1 ∈ W1, ω′ ∈ Ω.
Then we have Cw = Cw1Tω′ ; see (2.1b). Now Tω′ is an invertible element in Hk,
so the condition that CwM 6= 0 implies that Cw1M 6= 0. Hence, using Clifford’s
Theorem as in (4.3a), we see that Cw1 does not act as 0 on some simple direct
summand of Res1(M). Thus, there exists some ω ∈ Ω such that Cw1(ωM1) 6= 0.
Consequently, a(w1) is less than or equal to the a-invariant of ωM1. We have seen
before that the latter a-invariant equals that of M1. Thus, using (2.1c), we have
aM = a(w) = a(w1) ≤ aM1 , as desired.

As far as the simple HK-modules are concerned, we can even obtain a more
precise result involving the Schur elements. This is based on the following remarks.

4.5. Let V be a simple HK-module. Since φK is an isomorphism, there exists a
simple JK -module E such that V is isomorphic to E∗. Then the question arises in
which way the a-invariants and the Schur elements of E and V are related. As far
as the a-invariants are concerned, the answer is that we have

aE = aV = min{i ≥ 0 | vi−l(w) Trace(Tw, V ) ∈ R[v] for all w ∈W}.(a)

First note that, since A is integrally closed in K, we have Trace(Tw, V ) ∈ A for
every w ∈ W (see [16, Prop. 7.3.8]). Now, if w ∈ W is such that a(w) = aV and
CwV 6= 0, then, since V ∼= E∗, we also have φ(Cw)E 6= 0. The defining formula for
φ shows that there exists some z ∈W and d ∈ D such that a(d) = a(z), hw,d,z 6= 0
and tzE 6= 0. Then we have aE = a(z) = a(d). But, since hw,d,z 6= 0, we must have
a(d) ≥ a(w) by (2.1a) and so aE ≤ aV . The reverse inequality and the identity
relating aV with the character values of V are contained in [27, Prop. 3.3 and 3.4a].

The above identity shows that vaV −l(w)Trace(Tw, V ) is a polynomial in R[v] for
all w ∈ W . Moreover, by [27, 3.4b], the constant term of that polynomial in fact
equals (−1)aV Trace(tw, E). As shown in [27, 3.4e], this implies that

cV = u−aV fE +R-linear combination of higher powers of v,(b)

where 0 6= fE ∈ R is the Schur element of E; see (3.1).

Proposition 4.6. Let V be a simple HK-module and 0 6= cV ∈ A be the corre-
sponding Schur element. Then we have

cV dimK V = |Ω| cV1 dimK V1

for any simple H1,K-module V1 which occurs in the restriction of V to H1,K . Con-
sequently, we have aV = aV1 and

fE dimK V = |Ω| fE1 dimK V1,

where E is a simple JK-module such that V ∼= E∗ and E1 is a simple J1,K-module
such that V1

∼= E∗1 .
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Proof. We use the following interpretation of the Schur elements (see [16, Theo-
rem 7.2.1]). Assume that dimK V = m and let ρ : HK → Mm(K) be the matrix
representation afforded by V with respect to some basis of V . Then we have

mcV idm =
∑
w∈W

u−l(w)ρ(Tw) ρ(Tw−1),

where idm denotes the m ×m-identity matrix. Now, writing each w ∈ W in the
form w = w1ω (with w1 ∈ W1, ω ∈ Ω) and using the relations in (1.2), we find that

mcV idm =
∑

w1∈W1,ω∈Ω

u−l(w1)ρ(Tw1Tω)ρ(Tω−1Tw−1
1

)

=
∑

w1∈W1

u−l(w1)ρ(Tw1)
(∑
ω∈Ω

ρ(Tω)ρ(Tω−1)
)
ρ(Tw−1

1
)

= |Ω|
∑

w1∈W1

u−l(w1)ρ(Tw1)ρ(Tw−1
1

)

where the last equality holds since Tω−1 = T−1
ω for all ω ∈ Ω. Now, by (4.3a), we

may assume that the restriction of ρ to H1,K is the matrix direct sum of irreducible
representations of H1,K affording the simple direct summands of the restriction of
V . Denote these direct summands by V1, . . . , Vd, let m1, . . . ,md be their dimen-
sions and ρ1, . . . , ρd the corresponding matrix representations. Then we have

mi cVi idmi =
∑

w1∈W1

u−l(w1)ρi(Tw1)ρi(Tw−1
1

) for 1 ≤ i ≤ d.

So we conclude that mcV idm is |Ω| times a block diagonal matrix, where each
diagonal block has the form mi cVi idmi . Thus, we have mcV = |Ω|micVi for 1 ≤
i ≤ d, as desired. The assertions about the a-invariants and the Schur elements
then follow from the formula in (4.5b).

In order to state the following result about the Schur elements of JF , we recall
the notion of “bad primes”. A prime number p is “bad” for (W1, S1) if p divides a
Schur element of J1,F . (Note that Q is a splitting field for W1 (see Theorem 2.11)
and so all Schur elements of J1,F are rational integers by (3.1).) Thus, p is bad
if p is bad for some irreducible component of (W1, S1). Using the tables in [23,
Chap. 4], we see that the conditions for the various irreducible types are as follows:

An : none,
Bn, Cn, Dn : p = 2,

G2, F4, E6, E7 : p ∈ {2, 3},
E8 : p ∈ {2, 3, 5}.

Corollary 4.7. Recall that F is assumed to be a splitting field for W . Then we
have fE ∈ Z for all simple JF -modules E. Furthermore, the only primes dividing
fE are the “bad primes” for (W1, S1) and the prime divisors of the order of Ω.

Proof. By Proposition 4.6 and Lemma 4.2 we have fE = mfE1, where m is an
integer dividing the order of Ω. It remains to use the fact that Q is a splitting field
for W1 (see Theorem 2.11) and so fE1 ∈ Z by (3.1).

4.8. The results in Proposition 4.6 and Lemma 4.2 show that the Schur elements
of HK are, up to integer factors which divide the order of |Ω|, equal to the Schur
elements of H1,K . Now the latter are explicitly known for all types of (W1, S1);
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see, for example, [16]. These explicit results show that each cV is a product of an
integral power of u, various cyclotomic polynomials in u, and an integer which is
only divisible by bad primes and the prime divisors of the order of |Ω|.

Now assume that θ : A→ k is an admissible specialization such that the charac-
teristic of k is either 0 or a prime which is neither a bad prime nor a prime divisor
of |Ω|. Then θ(cV ) can only be zero for some V ∈ Irr(HK) if θ(u) is a root of unity
in k. Hence, by Theorem 3.5, the specialized algebra Hk if semisimple unless θ(u)
is a root unity.

5. Decomposition numbers

In order to study modular representations of H , we will now place ourselves in
the following standard setting.

5.1. We assume that F is a splitting field for W . Then HK and JF are split
semisimple algebras. Now let θ : A→ k be an admissible specialization as in Defi-
nition 3.3. We assume that the characteristic of k is either 0 or a prime which is not
bad for (W1, S1) and which does not divide the order of Ω. Then, by Corollary 4.7,
the Schur elements of JF remain non-zero in k and so, by Theorem 3.2 and The-
orem 3.5, Jk is split semisimple and Hk is a split algebra. The same statements
also hold for the algebras J1,F , J1,k, H1,K and H1,k (see also [14]). Then, by [16,
Theorem 7.4.3], we have well-defined decomposition maps

dθ : R0(HK)→ R0(Hk) and d1
θ : R0(H1,K)→ R0(H1,k).

Since all simple HK-modules can be realized over A, the map dθ is given as follows.
Let V be a simple HK-module. The condition that V can be realized over A
means that there exists an H-module V̂ which is finitely generated and free as an
A-module such that V ∼= K ⊗A V̂ . Then dθ([V ]) = [k ⊗A V̂ ]. The map d1

θ is
determined similarly. We shall write

dθ([V ]) =
∑

M∈Irr(Hk)

(V : M) [M ] for all V ∈ Irr(HK),

d1
θ([V1]) =

∑
M1∈Irr(H1,k)

(V1 : M1) [M1] for all V1 ∈ Irr(H1,K),

where (V : M) ∈ N0 and (V1 : M1) ∈ N0 are called the decomposition numbers.
(For any finite dimensional algebra T over a field, we denote by Irr(T ) the set of
simple T -modules, up to isomorphism.) As we have seen in (4.8), the algebras Hk

and H1,k are semisimple unless θ(u) is a root of unity. Note that, if this is the
case, the decomposition matrices are the identity matrices by Tits’ Deformation
Theorem [4, §68A]. Thus, we will be mainly interested in the case where θ(u) is a
root of unity. We define e by

e = min{i ≥ 2 | 1 + θ(u) + θ(u)2 + · · ·+ θ(u)i−1 = 0}.
(If no integer i ≥ 2 satisfying the above condition exists, we set e =∞.) Note that,
if θ(u) = 1 and k has characteristic ` ≥ 0, then e = ∞ (for ` = 0) or e = ` (for
` > 0); in all other cases, e is the order of θ(u) in the multiplicative group of k.

Lemma 5.2. The restriction of modules from HK to H1,K (resp., from Hk to
H1,k) induces maps on the level of Grothendieck groups and we have a commutative
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diagram

R0(HK) -Res1
R0(H1,K)

?
dθ

?
d1
θ

R0(Hk) -Res1
R0(H1,k)

Moreover, for any V1 ∈ Irr(H1,K) and M1 ∈ Irr(H1,K), we have

(V1 : M1) = (ωV1 : ωM1) for all ω ∈ Ω.(∗)

Proof. The commutativity of the diagram is readily established using the charac-
terization of decomposition maps in [13, §2]. To prove (∗), it suffices to note that,
for any ω ∈ Ω, the map Tw1 7→ Tω−1w1ω defines algebra automorphisms of H1,K

and of H1,k. The compatibility with the decomposition map is again established
using [13, §2].

The following result extends [14, Theorem 3.3] and [18, Cor. 4.3].

Theorem 5.3. Let θ : A → k be an admissible specialization satisfying the condi-
tions in (5.1). We consider the following subset of Irr(HK):

B := {V ∈ Irr(HK) | (V : M) 6= 0 and aV = aM for some M ∈ Irr(Hk)}.
Then there exists a unique bijection B ↔ Irr(Hk), V ↔ V , such that the following
two conditions hold:

(a) For all V ∈ B, we have (V : V ) = 1 and aV = aV .
(b) If V ∈ Irr(HK) and M ∈ Irr(Hk) are such that (V : M) 6= 0, then we have

aM ≤ aV , with equality only for V ∈ B and M = V .

In particular, the matrix of all decomposition numbers (V : V
′
) (V, V ′ ∈ B) is square

unitriangular, if we order the simple modules according to increasing a-invariants.

Proof. In the case where Ω = {1}, this has been proved in [14, Theorem 3.3] and
[18, Cor. 4.3]. The same proofs apply here again, based on the observation that Jk is
split semisimple and that dθ can be interpreted in terms of Lusztig’s homomorphism
φk : Hk → Jk. All the required properties of that homomorphism also hold in the
case where Ω 6= {1} (see [25], [26], [27] and the remarks in Section 2).

5.4. Note that, while the a-invariants of the simple HK-modules are known via the
formulas in (4.5), Proposition 4.6 and the tables in [23, Chap. 4], there does not
seem to be an efficient way of determining directly the a-invariants of the simple
Hk-modules. However, once the numbers (V : M) are known (for some labelling of
the simple Hk-modules) the a-invariant of M ∈ Irr(Hk) is determined by

aM = min{aV | (V : M) 6= 0};
see also [14, Remark 3.4]. Moreover, Theorem 5.3 shows that for a given M ∈
Irr(Hk), there exists a unique V ∈ Irr(HK) such that (V : M) 6= 0 and aV = aM .
Thus, the decomposition matrix uniquely determines B and the bijection B ↔
Irr(Hk).

Theorem 5.3 applies, in particular, to H1 (the case where Ω = {1}). Denote by
B1 the corresponding subset of Irr(H1,K). The following result shows that B and
B1 determine each other.
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Theorem 5.5. Under the assumptions of Theorem 5.3, the following hold:
(a) B1 is the set of all V1 ∈ Irr(H1,K) such that V1 ⊆ Res1(V ) for some V ∈ B.
(b) B is the set of all V ∈ Irr(HK) such that V1 ⊆ Res1(V ) for some V1 ∈ B1.

In particular, if V1 ∈ B1, then all conjugates of V1 lie in B1; furthermore, if V ∈ B
then all simple submodules of Res1(V ) lie in B1.

Proof. Let V ∈ Irr(HK) and V1 ∈ Irr(H1,K) be such that V1 occurs in Res1(V ).
We must show that V ∈ B if and only if V1 ∈ B1.

First assume that V ∈ B. Then we have aV = aV and dθ([V ]) = [V ]+ lower
terms, where the expression “lower terms” stands for a sum of simple Hk-modules
whose a-invariants are strictly less than that of V . The commutative diagram in
Lemma 5.2 and the statements in Lemma 4.4 yield that

d1
θ ◦ Res1([V ]) = Res1 ◦ dθ([V ]) = Res1([V ]) + lower terms.

Now let M1 ∈ Irr(H1,K) be a simple submodule of Res1(V ). Then, by Lemma 4.4,
the a-invariant of M1 equals aV = aV . On the other hand, by (4.3), we can write
[Res1(V )] as a sum of terms [ωV1], for various ω ∈ Ω. It follows that there exists
some ω ∈ Ω such that

d1
θ([

ωV1]) = [M1] + sum of further terms [M ′1] with M ′1 ∈ Irr(H1,k).

Now, by Lemma 4.4, ωV1 has the same a-invariant as V , and this equals aM1 . Thus,
we have ωV1 ∈ B1. But then the compatibility relation (∗) in Lemma 5.2 implies
also that V1 ∈ B1, as desired.

Now assume that V 6∈ B. Using (4.3) and once more Lemma 5.2, we have that

Res1 ◦ dθ([V ]) = d1
θ([Res1(V )]) = d1

θ([V1]) + sum of terms d1
θ([

ωV1]),

for various ω ∈ Ω. Now, the fact that V is not in B means that dθ([V ]) is a sum
of terms [M ], where M ∈ Irr(Hk) are such that aM < aV . Using Lemma 4.4, it
follows that the left-hand side of the above identity is a sum of terms [M1], where
M1 ∈ Irr(H1,k) are such that aM1 < aV . Consequently, a similar statement also
holds for d1

θ([V1]). This means that V1 6∈ B1.

Corollary 5.6. Let V ∈ B and write Res1(V ) = V1⊕· · ·⊕Vm with Vi ∈ Irr(H1,K).
Then Vi ∈ B1 for all i and we have

Res1(V ) = V 1 ⊕ · · · ⊕ Vm,
where V and V 1, . . . , V m are defined as in Theorem 5.3.

Proof. By Theorem 5.5, we have Vi ∈ B1 for all i. So, as in the above proof, we
can write d1

θ([Vi]) = [V i]+ lower terms. It follows that

d1
θ([Res1(V )]) = [V 1] + · · ·+ [V m] + lower terms.(a)

On the other hand, the fact that V ∈ B implies that dθ([V ]) = [V ]+ lower terms.
So, using Lemma 4.4, we can also write

Res1(dθ([V ])) = [Res1(V )] + lower terms.(b)

Comparing (a) and (b) using the compatibility in Lemma 5.2, we conclude that
[Res1(V )] = [V 1] + · · · + [V m]. Thus, the composition factors of Res1(V ) are
determined. On the other hand, by Clifford’s Theorem (see (4.3a)), we know that
Res1(V ) is a direct sum of simple modules.
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Example 5.7. Assume that the order of Ω is a prime number p. Then we have the
following relations between the simple modules for Hk and for H1,k, respectively.

Let V ∈ B. Then, via Lemma 4.2 and [20, 6.20], there are two cases:
(1) V1 := Res1(V ) is simple and V1 ∈ B1. Then we also have V 1 = Res1(V ).

Moreover, there are precisely p non-isomorphic simple Hk-modules whose
restriction to H1,k is V 1.

(2) Res1(V ) is the direct sum of p pairwise non-isomorphic simple H1,K-modules
V1, . . . , Vp ∈ B1. Then we also have Res1(V ) = V 1 ⊕ · · · ⊕ V p and V i 6∼= V j
for i 6= j.

This follows immediately from Corollary 5.6. Thus, knowing the decomposition
pattern for the restriction of the simple HK-modules, we see that a classification of
the simple Hk-modules determines a classification of the simple H1,k-modules and
vice versa.

Let us consider in more detail the case where p = 2. We introduce the following
notation. Let BI (resp., BII) be the set of all V ∈ B such that Res1(V ) is simple
(resp., splits into a direct sum of two simple modules). Then we have B = BI ∪BII
and we obtain a corresponding decomposition of B1 = BI1 ∪ BII1 , where BI1 (resp.,
BII1 ) is the set of all V1 ∈ B1 such that V1 occurs in Res1(V ) for some V ∈ BI
(resp., for some V ∈ BII). From the above discussion we see that

|BI | = 2 |BI1 | and 2 |BII | = |BII1 |.
Using the bijection in Theorem 5.3, we also obtain corresponding decompositions

Irr(Hk) = Irr(Hk)I ∪ Irr(Hk)II and Irr(H1,k) = Irr(H1,k)I ∪ Irr(H1,k)II ,

where Irr(Hk)I ↔ BI , Irr(Hk)II ↔ BII , Irr(H1,k)I ↔ BI1 and Irr(H1,k)II ↔ BII1 .
With this notation, we have the following relations between the decomposition
numbers of Hk and H1,k. Let V ∈ B and V1 ∈ B1 be such that V1 ⊆ Res1(V ). Let
M ∈ Irr(Hk) and M1 ∈ Irr(H1,k) be such that M1 ⊆ Res1(M). Then we have

(V1 : M1) = (V : M) + (V : M ′) if V ∈ BI and M ∈ Irr(Hk)I ,

(V1 : M1) = (V : M) if V ∈ BI and M ∈ Irr(Hk)II ,

(V1 : M1) =
1
2

((V : M) + (V : M ′)) if V ∈ BII and M ∈ Irr(Hk)I ,

where M ′ is the second simple Hk-module such that Res1(M ′) = Res1(M) in
the case where M ∈ Irr(Hk)I . Thus, the remaining problem is to describe the
decomposition numbers (V1 : M1) where V ∈ BII1 and M ∈ Irr(Hk)II .

Finally, we will establish a formula relating the cardinalities of the sets Irr(Hk)
and Irr(H1,k) (in the case where Ω is cyclic of order 2). This will be based on an
argument involving the character table of H1,K , which is defined in [16, 8.2.9]. In
the following discussion, we identify Irr(HK) and Irr(H1,K) with the sets of the
corresponding characters. Let R be a set of representatives of minimal length in
the conjugacy classes of W1. Then the character table of H1,K is the matrix of
all character values χ(Tw) for χ ∈ Irr(H1,K) and w ∈ R. We decompose R as a
disjoint union of subsets R0,R1,R′1, where R0 consists of all w ∈ R such that σwσ
is conjugate to w in W1, R1 ∪R′1 = R\R0, and R′1 = {σwσ | w ∈ R1}. We define
the following matrix of character values:

∆(H1, σ) := [χ(Tw)− σχ(Tw)]χ,w ,
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where χ runs over all irreducible characters of H1,K such that χ 6= σχ and w runs
over all elements in R1. Now consider the specialization map θ : A→ k. We denote
this map simply by a 7→ ā. Since all character values at basis elements Tw lie in A,
we can apply θ to all entries of the above matrix; we denote the specialized matrix,
with coefficients in k, by ∆̄(H1, σ). Now we can state

Theorem 5.8. Recall that we assume that Ω is cyclic of order 2 and that the
characteristic of k is not 2. Then, with the above notation, we have |BII | =
rank ∆̄(H1, σ) and

2 |Irr(H1,k)| = |Irr(Hk)|+ 3 rank ∆̄(H1, σ).

Proof. First note that |Irr(H1,k)| = |B1|, by Theorem 5.3. Next, by the discussion
in Example 5.7, we have

|B1| =
1
2
|BI |+ 2 |BII | = 1

2
(|B|+ 3 |BII |) =

1
2

(|Irr(Hk)|+ 3 |BII |).

Thus, we must show that

|BII | = rank ∆̄(H1, σ).(∗)
In order to prove (∗), let us write Irr(HK) = {χ1, χ

′
1, . . . , χr, χ

′
r, ψ1, . . . , ψs} for

r, s ≥ 1, where the notation is such that χi and χ′i have the same restriction to
H1,K and the restriction of ψj to H1,K is of the form ψ+

j +ψ−j with ψ±j ∈ Irr(H1,K).
Now note that we have the following relations among the character values:

χi(Tw) = χ′i(Tw) and ψ+
j (Tw) = ψ−j (Tw) for w ∈ R0,

χi(Tw) = χi(Tσwσ) and ψ+
j (Tw) = ψ−j (Tσwσ) for w ∈ R1.

(For proofs in the case where (W1, S1) is of type Dn, see [16, 10.4.6]; the same
proofs work in general.) These relations allow us to partition the whole character
table of H1,K into blocks. We define

X0 := (χi(Tw)) 16i6r
w∈R0

, Y0 := (ψj(Tw)) 16j6s
w∈R0

,

X1 := (χi(Tw)) 16i6r
w∈R1

, Y ±1 := (ψ±j (Tw)) 16j6s
w∈R1

.

Then the character table of H1,K is of the following form:

X :=


X0 X1 X1

1
2Y0 Y +

1 Y −1

1
2Y0 Y −1 Y +

1

 .
Applying the specialization map θ : A→ k, we obtain a new matrix with coefficients
in k (note that the characteristic of k is not 2)

X̄ =


X̄0 X̄1 X̄1

1
2 Ȳ0 Ȳ +

1 Ȳ −1

1
2 Ȳ0 Ȳ −1 Ȳ +

1

 .
Now, we know from the discussion in Example 5.7 that there are subsets I ⊆
{1, . . . , r} and J ⊆ {1, . . . , s} such that

B1 = {χi | i ∈ I} ∪ {ψ+
j | j ∈ J} ∪ {ψ−j | j ∈ J}.
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We denote by X0[I] and X1[I] the submatrices of X0 and X1, respectively, with
rows in I. A similar notation will be used for submatrices of Y0 and Y ±1 . Recalling
the definition of ∆(H1, σ), we see that (∗) is equivalent to

|J | = rank (Ȳ +
1 − Ȳ −1 ).(∗′)

Since the decomposition matrix of H1,k has a triangular shape with 1 along the
diagonal by Theorem 5.3, we can apply [16, 7.5.7 and 8.2.9] and deduce that
|Irr(H1,k)| = rank X̄. More precisely, since the triangular shape is given by the
subset B1 ⊆ Irr(H1,K), we have that rank X̄ = rank X̄(I, J), where

X̄(I, J) :=


X̄0[I] X̄1[I] X̄1[I]

1
2 Ȳ0[J ] Ȳ +

1 [J ] Ȳ −1 [J ]

1
2 Ȳ0[J ] Ȳ −1 [J ] Ȳ +

1 [J ]

 .
In the following discussion, we will consider the matrix X̄(I, J ′) where J ′ is any
subset of {1, . . . , s}. First note that we have

rank X̄(I, J ′) = rank X̄(I, J) = rank X̄ if J ′ ⊇ J.(∗∗)
Now, after some elementary row and column operations, we see that X̄(I, J ′) has
the same rank as the following block diagonal matrix:

Ȳ(I, J ′) :=


X̄0[I] X̄1[I] 0

Ȳ0[J ′] Ȳ +
1 [J ′] + Ȳ −1 [J ′] 0

0 0 Ȳ +
1 [J ′]− Ȳ −1 [J ′]

 .
By (∗∗), the rows of the above matrix are linearly independent for J ′ = J . Hence
the rows of each of the two diagonal blocks are linearly independent. In particular,
this shows that

|J | = rank (Ȳ +
1 [J ]− Ȳ −1 [J ]).

Furthermore, if we replace J by any subset J ′ of {1, . . . , s} with J ′ ⊇ J , the rank
does not change by (∗∗). This must hold for each of the two diagonal blocks in
Ȳ(I, J ′) and so we conclude that

rank (Ȳ +
1 [J ′]− Ȳ −1 [J ′]) = rank (Ȳ +

1 [J ]− Ȳ −1 [J ]) = |J | for all J ′ ⊇ J.
Consequently, (∗′) follows by taking J ′ = {1, . . . , s}.

Example 5.9. Let w0 ∈ W1 be the unique element of maximal length. Then w0

has order 2 and conjugation with w0 defines an automorphism σ0 ∈ Aut(W1, S1).
Let Ω = 〈σ0〉. (Note that σ0 may be the identity.) Then, with the above nota-
tion, we clearly have R = R0 and so ∆(H1, σ0) is the empty matrix. Thus, by
Theorem 5.8, we have

|Irr(Hk)| = 2 |Irr(H1,k)|.
This can also be seen as follows. Define σ′0 := w0σ0 ∈ W . Then σ′0 has order 2 and
it is readily checked that σ′0 commutes with all elements of W1. Thus, W is the
direct product of W1 and 〈σ′0〉. Using Lemma 4.2, we conclude that

Res1(V ) ∈ Irr(H1,K) for all V ∈ Irr(HK).
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Moreover, for each V1 ∈ Irr(H1,K) there exist precisely two simple HK-modules
V, V ′ ∈ Irr(HK) such that Res1(V ) = Res1(V ′) = V1. Thus, only case (1) in
Example 5.7 occurs.

The cases in which w0 is not central arise when (W1, S1) is of type An−1, E6

or Dn with n odd. If (W1, S1) is of type An−1 (n ≥ 1), then it is known by [7]
that the simple H1,k-modules have a natural labelling by the e-regular partitions
of n, with e defined as in (5.1). (See [14, 3.5] for the identification of the set B1 in
this case.) Recall that a partition, written in exponential form (1n1 , 2n2 , 3n3 , . . . ),
is called e-regular if ni < e for all i. Hence we conclude that the number of simple
Hk-modules is 2pe(n), where pe(n) is the number of e-regular partitions of n. A
generating function for pe(n) is given by

1 +
∑
n≥1

pe(n)Xn =
∏
i≥1

1−Xei

1−X i
;

see the proof of [15, Lemma 2.6].
If (W1, S1) is of type E6, the cardinalities of the sets Irr(H1,k) are known from

[12]; they are given by 8, 13, 19, 23, 20, 24, 24, 24 for e = 2, 3, 4, 5, 6, 8, 9, 12, respec-
tively, and 25 otherwise. Finally, type Dn will be considered in detail in Section 6.
Thus, whenever Ω is generated by a non-trivial graph automorphism which is given
by conjugation with w0, we know explicitly the number of simple Hk-modules (with
the assumptions on k as specified in (5.1)).

Example 5.10. Assume that (W1, S1) and σ are as in Example 2.10.
If (W1, S1) is of type B2 or G2 with generators S1 = {s, t}, then the character

tables in [16, Table 8.1] show that all irreducible characters of H1,K are invariant
under σ except for the two linear characters εs and εt given by εs(Ts) = u, εs(Tt) =
−1 and εt(Ts) = −1, εt(Tt) = u. Hence, in these cases, the matrix ∆(H1, σ) only
has one row and one column. Taking R1 = {s}, we obtain

∆(H1, σ) =
[
εs(Ts)− εt(Ts)

]
=
[
u+ 1

]
.

Thus, we see that the rank of ∆̄(H1, σ) is 0 or 1 according to whether θ(u) = −1
or θ(u) 6= −1. The cardinalities of the sets Irr(H1,k) are easily computed using
the character tables in [16, Table 8.1]. (By [16, 7.5.7], the required cardinality is
the rank of the specialized character table.) In type B2 they are given by 2, 4 for
e = 2, 4, respectively, and 5 otherwise. In type G2 they are given by 3, 5, 5 for
e = 2, 3, 6, respectively, and 6 otherwise.

Finally, assume that (W1, S1) is of type F4 with generators S1 = {a, b, c, d}
such that σ(a) = d and σ(b) = c. From the known character table of H1,K (see [16,
Chap. 11]), we extract the matrix ∆(H1, σ). The result is given in Table 1. (For the
labelling of the irreducible characters, see also [3, p. 413].) Then it can be computed
that the rank of ∆̄(H1, σ) is 1, 3, 6, 5 for e = 2, 3, 4, 6, respectively, and 7 otherwise,
where e is the smallest integer i ≥ 2 such that 1 + θ(u) + θ(u)2 + · · ·+ θ(u)i−1 =
0. The cardinalities of the sets Irr(H1,k) are known from [11]; they are given by
8, 15, 19, 20, 24, 24 for e = 2, 3, 4, 6, 8, 12, respectively, and 25 otherwise.

6. Modular representations in type Dn

Throughout this section, we let (W1, S1) be a Weyl group of type Dn (n ≥ 2) and
consider the case where Ω is generated by a graph automorphism of order 2. Then
it turns out that W is a Weyl group of type Bn. Using the techniques developed
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Table 1. The matrix ∆(W1, σ) in type F4

ψ+−ψ− w1 w2 w3 w4

13−12 −u2+1 u6−u4 −u−1 −u6−u3

23−21 −2u2−u −u8−2u7 −u−1 u9−3u6

22−24 u+2 2u3+u2 −u−1 −3u3+1
44−43 −2u2+2 u6−u4 −2u−2 −u6+3u5+3u4−u3

83−81 −3u2−u+1 2u6+u5 −2u−2 u9−3u6+3u5+3u4

82−84 −u2+u+3 −u5−2u4 −2u−2 3u5+3u4−3u3+1
93−92 −3u2+3 0 −3u−3 −6u6+3u5+3u4−6u3

ψ+−ψ− w5 w6 w7

13−12 −u2−u −u2−u −u3−u2 w1 = ba

23−21 u3 u3 −u5−u3 w2 = bcbcdcbacd

22−24 1 1 −u2−1 w3 = a

44−43 u3+1 −u2−u 0 w4 = bcbcdcbcd

83−81 u3−u2−u u3 −u5+u2 w5 = adc

82−84 −u2−u+1 1 u3−1 w6 = dcb

93−92 u3−u2−u+1 0 u3+u2 w7 = bcbac

in the previous sections, we shall obtain results about modular representations
of the Iwahori–Hecke algebra associated with (W1, S1) from known results about
Iwahori–Hecke algebras of type Bn.

6.1. We assume that W1 is generated by S1 = {s′1, s1, s2, . . . , sn−1}, where the
defining relations are given as follows:

s′1s1 = s1s
′
1, s′1s2s

′
1 = s2s

′
1s2, s′1si = sis

′
1 for i ≥ 3,

sisj = sjsi if |i− j| ≥ 2, sisi+1si = si+1sisi+1 for i ≥ 1.

We consider the graph automorphism σ : W1 →W1 defined by σ(s′1) = s1, σ(s1) =
s′1, and σ(si) = si for all i ≥ 2. Then, since σs1σ = s′1, we find that W has a
presentation with generators S = {σ, s1, . . . , sn−1} and defining relations

σs1σs1 = s1σs1σ, σsi = siσ for i ≥ 2,

sisj = sjsi if |i− j| ≥ 2, sisi+1si = si+1sisi+1 for i ≥ 1.

Thus, we see that (W,S) is a Weyl group of type Bn. Let F be any finite extension
field of Q. The corresponding extended Iwahori–Hecke algebra H is an Iwahori–
Hecke algebra of type Bn where the generators satisfy the following relations:

T 2
σ = T1 and T 2

si = uT1 + (u− 1)Tsi for 1 ≤ i ≤ n− 1.

By Example 2.9 and Corollary 4.7, we have:
(a) K = F (v) is a splitting field for HK and all simple HK-modules can be

realized over A = R[v, v−1].
(b) fE is a power of 2 for all simple JF -modules E.

Finally, let H1 be the subalgebra of H generated by Tw1 (w1 ∈ W1). Then H1 is
the generic Iwahori–Hecke algebra of (W1, S1) and K is also a splitting field for H1.
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We consider an admissible specialization θ : A → k as in Definition 3.3, where
the characteristic of k is not equal to 2. Then all the assumptions in (5.1) are
satisfied. The difficulty in finding the decomposition numbers depends strongly on
whether e (defined as in (5.1)) is even or odd. Note that we have that

(c) e is even if and only if −1 ∈ k is a power of θ(u).
Indeed, let f ≥ 1 be the multiplicative order of θ(u). Since −1 has order 2 and the
multiplicative group of k is cyclic, it follows that θ(u)i = −1 for some i ≥ 1 if and
only if f is even. Now, if θ(u) 6= 1, then e = f . On the other hand, suppose that
θ(u) = 1 and let ` be the characteristic of k. Then we have e = ∞ if ` = 0 and
e = ` if ` > 0.

6.2. The simple HK-modules are naturally parametrized by the set Λ consisting
of all pairs of partitions (λ, µ) such that |λ|+ |µ| = n. Denote by V (λ,µ) the simple
HK-module labelled by (λ, µ). Thus, we have

Irr(HK) = {V (λ,µ) | (λ, µ) ∈ Λ}.
A classification of the simple H1,K-modules is obtained as follows. If λ 6= µ, then
V (λ,µ) and V (µ,λ) have the same restriction to H1,K and this restriction is a simple
H1,K-module which will be denoted by V [λ,µ]. If λ = µ, then the restriction of
V (λ,λ) splits into a direct sum of two non-isomorphic simple H1,K-modules which
are denoted by V [λ,+] and V [λ,−]. Every simple H1,K-module arises exactly once in
this way. For more details see, for example, [16, §10.4]. The a-invariant of a simple
module of HK or of H1,K labelled by (λ, µ) is given by

a(λ, µ) = −1
6
m(m− 1)(2m− 1) +

m∑
i=1

(i− 1)(λi + µi)

+
m∑

i,j=1

min{λi +m− i, µj +m− j},

where we assume that m ≥ 1 is chosen such that λ and µ have m parts λ1 ≥ λ2 ≥
. . . ≥ λm ≥ 0 and µ1 ≥ µ2 ≥ . . . ≥ µm ≥ 0, respectively. (The above formula is
obtained by rewriting that in [23, 4.6.3], which is in terms of symbols.)

Our first main result determines the number of simple H1,k-modules in terms of
the number of simple Hk-modules.

Theorem 6.3. Set d = e/2 if e is an even integer and d = e otherwise. Further-
more, recall that the characteristic of k is not equal to 2. Then the number of simple
H1,k-modules is given by

1
2

(
|Irr(Hk)|+ 3 pd(n/2)

)
,

where pd(n/2) denotes the number of d-regular partitions of n/2 if n is even (see
the definition in Example 5.9) and where this number is interpreted as 0 if n is odd.

Proof. Using Theorem 5.8, we see that it is enough to prove that

rank ∆̄(H1, σ) = pd(n/2).

Now, if n is odd, then ∆(H1, σ) is empty and so both sides of the above identity
are 0. So it remains to consider the case where n is even. By [16, Theorem 10.4.7],
the rows and columns of ∆(H1, σ) have a natural labelling by the partitions of n/2.
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Furthermore, there is a choice for the class representatives in R1 such that the entry
of ∆(H1, σ) in the row labelled by λ ` n/2 and the column labelled by µ ` n/2 is
given by

(u+ 1)l(µ)χµλ(u2),

where l(µ) denotes the number of parts of µ and (χλµ(u2))λµ is the character table of
the generic Iwahori–Hecke algebra with parameter u2 associated with the symmetric
group Sn/2. Now, if θ(u) = −1, the above matrix specializes to 0. On the other
hand, we have e = 2 and d = 1 in this case and there are no 1-regular partitions.
Thus, the desired formula holds if θ(u) = −1.

Now assume that θ(u) 6= −1. Then note that d is the smallest i ≥ 2 such that
1 + θ(u2) + θ(u2)2 + · · · + θ(u2)i−1 = 0. Furthermore, ∆̄(H1, σ) is the product
of a diagonal matrix (with non-zero diagonal entries) and the specialized character
table (χ̄µλ(ū2))λµ. By a similar argument as in the proof of Theorem 5.8, the rank of
the specialized character table is the number of simple modules for the specialized
algebra. Thus, using the known results for the Iwahori–Hecke algebra associated
with Sn/2 (see Example 5.9), we obtain again the desired formula.

Remark 6.4. (a) Using [2, Theorem A], we see that the number of simple modules
in type Bn only depends on e. Hence the above result establishes a similar state-
ment for type Dn (assuming that the characteristic of k is not 2). Furthermore, [2,
Theorem C] actually provides a generating function for the number of simple mod-
ules in type Bn. Combining this with the above formula we also obtain a generating
function for the number of simple modules in type Dn.

(b) Recall that we assume that the characteristic of k is not 2. In the case where
the characteristic of k is 2, the above formula need no longer be true. This can be
seen, for example, in the case n = 4. The following table contains the cardinalities
of Irr(Hk) and Irr(H1,k):

n = 4 char(k) = 0 char(k) = 2
e = 2 e = 3 e = 2 e = 3

|Irr(Hk)| 6 16 2 8
|Irr(H1,k)| 3 11 2 10

Thus, in characteristic 2, the cardinalities of Irr(Hk) and Irr(H1,k) are not related
by the formula in Theorem 6.3.

(c) The above result shows that the cardinality of BII is given by pd(n/2). It
may be conjectured that BII consists precisely of all (λ, µ) ∈ Λ such that λ = µ
and λ is d-regular. This is certainly true in the case where e = 2, since then
d = 1 and there are no 1-regular partitions of n/2. Hence, in this case, we have
B = BI . Consequently, the decomposition numbers of the simple modules in B1 are
completely determined for e = 2 by the decomposition numbers of Hk.

The remainder of this section will deal with the problem of describing the set
B ⊆ Irr(HK) explicitly. For this purpose, we first recall some facts about the
Dipper–James–Murphy construction of the simple Hk-modules.

6.5. For any (λ, µ) ∈ Λ, Dipper, James, and Murphy [8] have constructed a so-
called Specht module S(λ,µ) which is an H-module, finitely generated and free
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over A, such that K⊗AS(λ,µ) ∼= V (λ,µ). By extension of scalars from A to k, we ob-
tain a corresponding Specht module S(λ,µ)

k for Hk. Furthermore, each Specht mod-
ule for Hk has a natural Hk-invariant bilinear form and D(λ,µ) := S

(λ,µ)
k /rad S(λ,µ)

k

is either zero or a simple module. Let Λ0 be the set of all pairs of partitions (λ, µ)
such that D(λ,µ) 6= {0}. Then we have

Irr(Hk) = {D(λ,µ) | (λ, µ) ∈ Λ0}.
For any (λ, µ) ∈ Λ0 and (σ, τ) ∈ Λ, the following hold (see [8, §6]):

(a) We have (V (λ,µ) : D(λ,µ)) = 1.
(b) We have (V (σ,τ) : D(λ,µ)) = 0 unless (σ, τ) E (λ, µ).

Here, E denotes the dominance order on Λ; see [8, p. 508]. (Note that the results
in [8] are formulated in terms of “dual” Specht modules S̃(λ,µ); the passage from
Specht modules to their duals is provided by the map (λ, µ) 7→ (µt, λt), where λt

and µt denote the conjugate partitions.) Thus, we have a similar statement as in
Theorem 5.3. The following result shows that, using the a-invariants, we obtain a
canonical bijection between Λ0 and B.

Lemma 6.6. For any (λ, µ) ∈ Λ0, there exists a unique simple HK-module, de-
noted aV (λ,µ), such that the following two conditions are satisfied:

(a) We have (aV (λ,µ) : D(λ,µ)) 6= 0.
(b) For any V ∈ Irr(HK) with (V : D(λ,µ)) 6= 0, the a-invariant of V is bigger

than or equal to the a-invariant of aV (λ,µ).
Thus, we have a canonical bijection Λ0 ↔ B, (λ, µ)↔ aV (λ,µ), and we have in fact
(aV (λ,µ) : D(λ,µ)) = 1.

Proof. Fix (λ, µ) ∈ Λ0 and let M := {V ∈ Irr(HK) | (V : D(λ,µ)) 6= 0}. As
remarked in (5.4), the function V 7→ aV takes its minimum at exactly one element
of M, which we denote by aV (λ,µ). Thus, in the notation of Theorem 5.3, we have

aV (λ,µ) = D(λ,µ).

Moreover, we have (aV (λ,µ) : D(λ,µ)) = 1 by Theorem 5.3(a).

Thus, it is possible to obtain a description of the set B via a description of
the set Λ0 and the bijection Λ0 ↔ B. Using the deep results of Ariki [1] and
Ariki and Mathas [2], it is known that a pair of partitions (λ, µ) belongs to Λ0 if
and only if (λ, µ) is a Kleshchev bipartition (see the definition in [2]).1 We may
therefore concentrate on the bijection Λ0 ↔ B. The following examples show that
this bijection is not the “identity”, in general.

Example 6.7. Assume that (W,S) is of type B2, B3 or B4. We consider the case
where F = k and θ(u) is a primitive e-th root of unity, with e ∈ {2, 4}. Using the
methods described in [11, 12], we obtain the corresponding decomposition matrices;
they are printed in Table 2 (where . stands for 0). In all cases, the ordering of Λ
is chosen such that if (σ, τ) E (λ, µ), then (λ, µ) comes before (σ, τ). Then the

1It is conjectured by Dipper, James, and Murphy [8] that (λ, µ) ∈ Λ0 if and only if (λ, µ) is
(1, e)-restricted in the sense of [8, Def. 8.12]. When e = 2 this holds by Mathas [30]; as Ariki

informed me, the general case is still open. Ariki and the referee independently pointed out that
it might also be interesting to compare this with the labelling of the simple modules given by
Jimbo et al. [21] and Foda et. al. [10]. For small values of n, that labelling is consistent with the
examples in Table 2. Ariki found that this does not seem to be the case for larger values of n.
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Table 2. Decomposition numbers for type B2, B3, B4, where u
is specialized to a primitive e-th root of unity in C

B2 aV e = 2
(2,∅) 0 ∗ 1 .
(11,∅) 2 1 .
(1, 1) 1 1 1
(∅, 2) 0 ∗ . 1
(∅, 11) 2 . 1

B3 aV e = 2
(3,∅) 0 ∗ 1 . . .
(21,∅) 2 . 1 . .
(111,∅) 6 1 . . .

(2, 1) 1 ∗ . 1 1 .
(11, 1) 3 . 1 1 .
(1, 2) 1 ∗ 1 . . 1
(1, 11) 3 1 . . 1
(∅, 3) 0 ∗ . . 1 .
(∅, 21) 2 . . . 1
(∅, 111) 6 . . 1 .

B4 aV e = 2 e = 4
(4,∅) 0 ∗ 1 . . . . . ∗ 1 . . . . . . . . . . . . . .
(31,∅) 2 1 1 . . . . ∗ 1 1 . . . . . . . . . . . . .
(22,∅) 3 . 1 . . . . ∗ . . 1 . . . . . . . . . . . .
(211,∅) 6 1 1 . . . . . 1 . 1 . . . . . . . . . . .
(1111,∅) 12 1 . . . . . . . . 1 . . . . . . . . . . .

(3, 1) 1 ∗ 1 1 1 . . . ∗ . . . . 1 . . . . . . . . . .
(21, 1) 3 ∗ . . . 1 . . ∗ 1 1 . 1 . 1 . . . . . . . . .
(111, 1) 7 1 1 1 . . . ∗ . . . . . . 1 . . . . . . . .
(2, 2) 2 1 1 1 . 1 . ∗ 1 . . . . 1 . 1 . . . . . . .
(11, 2) 3 1 1 1 . 1 . ∗ . . . . . . . . 1 . . . . . .
(2, 11) 3 1 1 1 . 1 . ∗ . . . . . . . . . 1 . . . . .
(11, 11) 6 1 1 1 . 1 . . . . 1 . 1 . . . . 1 . . . .
(1, 3) 1 ∗ 1 . 1 . 1 . ∗ . . . . . . . . . . . 1 . . .
(1, 21) 3 ∗ . . . . . 1 ∗ . . . . . 1 . 1 . . 1 . 1 . .
(1, 111) 7 1 . 1 . 1 . ∗ . . . . . . . . . . . . . 1 .
(∅, 4) 0 ∗ . . 1 . . . ∗ . . . . . . . 1 . . . . . . .
(∅, 31) 2 . . 1 . 1 . ∗ . . . . . . . 1 . . . . 1 . .
(∅, 22) 3 . . . . 1 . ∗ . . . . . . . . . . . . . . 1
(∅, 211) 6 . . 1 . 1 . . . . . . . . . . . 1 . 1 . .
(∅, 1111) 12 . . 1 . . . . . . . . . . . . . 1 . . . .

two conditions (a) and (b) in (6.5) determine Λ0 uniquely from the decomposition
matrices. The sets B are determined by the method in (5.4); they are marked with
a star in the tables. From these tables, one obtains the canonical bijections Λ0 ↔ B
using the conditions in Lemma 6.6; see Table 3. (We do not know how to describe
in general the sets B and the bijections Λ0 ↔ B in a purely combinatorial way.)

In any case, we see that the labelling of Irr(Hk) provided by the asymptotic
algebra is not the same as that given by Dipper, James, and Murphy! Note that,
for example in type B2, the restriction of D(2,−) to H1,k remains simple and the
restriction of D(1,1) splits into a sum of two simple H1,k-modules, one of which is
the restriction of D(2,−). Thus, it seems to be difficult to obtain a classification of
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Table 3. The canonical bijections Λ0 ↔ B for type B2, B3 and B4

Λ0 ↔ B
for n = 2, e = 2

(2,∅) ↔ (2,∅)
(1, 1) ↔ (∅, 2)

Λ0 ↔ B
for n = 3, e = 2

(3,∅) ↔ (3,∅)
(21,∅) ↔ (2, 1)
(2, 1) ↔ (∅, 3)
(1, 2) ↔ (1, 2)

Λ0 ↔ B
for n = 4, e = 2

(4,∅) ↔ (4,∅)
(31,∅) ↔ (3, 1)
(3, 1) ↔ (∅, 4)
(21, 1) ↔ (21, 1)
(2, 2) ↔ (1, 3)
(1, 21) ↔ (1, 21)

Λ0 ↔ B
for n = 4, e = 4

(4,∅) ↔ (4,∅)
(31,∅) ↔ (31,∅)
(22,∅) ↔ (22,∅)
(211,∅) ↔ (21, 1)

(3, 1) ↔ (3, 1)
(21, 1) ↔ (2, 2)
(111, 1) ↔ (111, 1)
(2, 2) ↔ (∅, 4)
(11, 2) ↔ (11, 2)
(2, 11) ↔ (2, 11)
(11, 11) ↔ (1, 21)
(1, 3) ↔ (1, 3)
(1, 21) ↔ (∅, 31)
(1, 111) ↔ (1, 111)
(∅, 22) ↔ (∅, 22)

the simple H1,k-modules using the modules D(λ,µ). On the other hand, once B is
known, the set B1 ↔ Irr(H1,k) is readily determined; see Theorem 5.5.

The above example was only concerned with cases where e is even. What happens
if e is odd? In this case, we have θ(u)i 6= −1 for 0 ≤ i ≤ n− 1 and so we can apply
the results of Dipper and James [7]. In particular, by [7, Theorem 5.8] (see also [8,
§7]), the set Λ0 consists precisely of all (λ, µ) ∈ Λ where both λ and µ are e-regular.

Proposition 6.8. If e is odd, then the canonical bijection Λ0 ↔ B of Lemma 6.6
is the identity, i.e., we have aV (λ,µ) = V (λ,µ) for all (λ, µ) ∈ Λ0.

Proof. The results in [7] yield a description of the decomposition numbers in terms
of decomposition numbers for Iwahori–Hecke algebras associated with the symmet-
ric groups Sr for 0 ≤ r ≤ n. Let H(Sr) be the generic Iwahori–Hecke algebra over
A associated with Sr. Then the specialization θ also determines a decomposition
map between the Grothendieck groups of HK(Sr) and Hk(Sr). Dipper and James
[6] have shown that the simple HK(Sr)-modules have a natural parametrization by
the partitions λ ` r and the simple Hk(Sr)-modules have a natural parametrization
by the e-regular partitions of r. Denote by dλ′λ the corresponding decomposition
numbers, where λ′, λ ` r and λ is e-regular. With this notation, we have

(V (λ′,µ′) : D(λ,µ)) =
{
dλ′λ · dµ′µ if |λ′| = |λ| and |µ′| = |µ|,

0 otherwise,

for any (λ′, µ′) ∈ Λ and (λ, µ) ∈ Λ0. Taking into account the conditions in
Lemma 6.6, we must establish the following relation, for a fixed (λ, µ) ∈ Λ0:

dλ′λ 6= 0 and dµ′µ 6= 0 ⇒ a(λ, µ) ≤ a(λ′, µ′).
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To prove this, we first note that if λ′, µ′ are such that dλ′λ 6= 0 and dµ′µ 6= 0, then
we have λ′ E λ and µ′ E µ by [6, Theorem 7.6]. Hence it is enough to prove that

κ′ E κ and ν′ E ν ⇒ a(κ, ν) ≤ a(κ′, ν′)(∗)
for any (κ, ν), (κ′, ν′) ∈ Λ with |κ| = |κ′| and |ν| = |ν′|. Now, since a(κ, ν) does not
change if we interchange the roles of κ and ν, it is actually enough to prove (∗) in
the case where κ = κ′. But this follows easily using the formula in (6.2).

6.9. We can now draw the following conclusions about modular representations
in type Dn. Assume that e is odd. First, Proposition 6.8 in combination with
Example 5.7 shows that we have

B1 = {V [λ,µ] | (λ, µ) ∈ Λ0, λ 6= µ} ∪ {V [λ,±] | (λ, λ) ∈ Λ0},
where Λ0 is the set of all (λ, µ) ∈ Λ such that both λ and µ are e-regular. In
combination with Theorem 5.3, we obtain the following classification of the simple
H1,k-modules:

Irr(H1,k) = {V [λ,µ] | (λ, µ) ∈ Λ0, λ 6= µ} ∪ {V [λ,±] | (λ, λ) ∈ Λ0}.
Furthermore, Example 5.7 yields the following dimension formulas:

dimk V
[λ,µ]

= dimk V
[λ,µ]

for λ 6= µ,

dimk V
[λ,±]

=
1
2

dimk V
[λ,λ]

for λ = µ.

Finally, the above formulas imply that James’ Conjecture (as formulated in [13, §3])
holds for Hk if and only if it holds for H1,k. We also remark that, in the case where
both e and n are odd, Pallikaros [33] has shown that the decomposition matrix
of H1,k is completely determined by the decomposition matrices of Iwahori–Hecke
algebras associated with the symmetric groups Sr for 0 ≤ r ≤ (n+ 1)/2 (compare
the similar result for Hk used in the proof of Proposition 6.8).

Acknowledgements. I am indebted to Gunter Malle for carefully reading an ear-
lier version of this paper and spotting a number of misprints.
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tani, Mémoire Soc. Math. France 20, 1985. MR 87h:20071
[6] R. Dipper and G. D. James, Representations of Hecke algebras of the general linear groups,

Proc. London Math. Soc. 52 (1986), 20–52. MR 88b:20065
[7] R. Dipper and G. D. James, Representations of Hecke algebras of type Bn, J. Algebra 146

(1992), 454–481. MR 93c:20019
[8] R. Dipper, G. D. James and G. E. Murphy, Hecke algebras of type Bn at roots of unity,

Proc. London Math. Soc. 70 (1995), 505–528. MR 96b:20004
[9] W. Feit, The representation theory of finite groups, North–Holland, Amsterdam/New

York/Oxford, 1982. MR 83g:20001

http://www.ams.org/mathscinet-getitem?mr=98h:20012
http://www.ams.org/mathscinet-getitem?mr=94k:20020
http://www.ams.org/mathscinet-getitem?mr=82i:20001
http://www.ams.org/mathscinet-getitem?mr=88f:20002
http://www.ams.org/mathscinet-getitem?mr=87h:20071
http://www.ams.org/mathscinet-getitem?mr=88b:20065
http://www.ams.org/mathscinet-getitem?mr=93c:20019
http://www.ams.org/mathscinet-getitem?mr=96b:20004
http://www.ams.org/mathscinet-getitem?mr=83g:20001


REPRESENTATIONS OF EXTENDED IWAHORI–HECKE ALGEBRAS 397

[10] O. Foda, B. Leclerc, M. Okado, J.-Y. Thibon and T. A. Welsh, Branching functions of

A
(1)
n−1 and Jantzen–Seitz problem for Ariki–Koike algebras, Advances in Math. 141 (1999),

322–365. MR 2000f:17036
[11] M. Geck and K. Lux, The decomposition numbers of the Hecke algebra of type F4,

Manuscripta Math. 70 (1991), 285–306. MR 92a:20043
[12] M. Geck, The decomposition numbers of the Hecke algebra of type E∗6 , Math. Comp. 61

(1993), 889–899. MR 94f:20020
[13] M. Geck, Representations of Hecke algebras at roots of unity, Séminaire Bourbaki, 50ème
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