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AN ANALYTIC RIEMANN-HILBERT CORRESPONDENCE
FOR SEMI-SIMPLE LIE GROUPS

LAURA SMITHIES AND JOSEPH L. TAYLOR

Abstract. Geometric Representation Theory for semi-simple Lie groups has
two main sheaf theoretic models. Namely, through Beilinson-Bernstein local-
ization theory, Harish-Chandra modules are related to holonomic sheaves of
D modules on the flag variety. Then the (algebraic) Riemann-Hilbert cor-
respondence relates these sheaves to constructible sheaves of complex vector
spaces. On the other hand, there is a parallel localization theory for global-
ized Harish-Chandra modules—i.e., modules over the full semi-simple group
which are completions of Harish-Chandra modules. In particular, Hecht-Taylor
and Smithies have developed a localization theory relating minimal globaliza-
tions of Harish-Chandra modules to group equivariant sheaves of D modules
on the flag variety. The main purpose of this paper is to develop an ana-
lytic Riemann-Hilbert correspondence relating these sheaves to constructible
sheaves of complex vector spaces and to discuss the relationship between this
“analytic” study of global modules and the preceding “algebraic” study of the
underlying Harish-Chandra modules.
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0. Introduction

Let GR denote a real connected semisimple Lie group with finite center and let
G be its complexification. Fix KR a maximal compact subgroup in GR and let K
be the complexification of KR. Let g be the Lie algebra of G and let X be the flag
variety of g (i.e., the complex manifold of all Borel subalgebras of g). Fix λ a regular
weight and let Dalg

λ (resp. Dλ) be the sheaf of λ-twisted differential operators on X
with algebraic (resp. holomorphic) coefficients. The weight λ (or, more precisely,
its Weyl group orbit) parametrizes a character φλ of the center of the enveloping
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algebra of g. Let Uλ(g) be the quotient of U(g) by the ideal generated by the kernel
of φλ.

In [BB], Beilinson and Bernstein proved that, in the case of regular dominant
λ, there is an equivalence from the category of Harish-Chandra Uλ(g) modules
(finitely generated (g,K) modules with infinitesimal character determined by λ)
to the category of K-equivariant coherent sheaves of Dalg

λ modules on X . This
equivalence is the localization functor. Its inverse functor is the functor of global
sections. This has turned out to be a very powerful tool in representation theory.
Its most spectacular application is in a proof of the Kazhdan-Lusztig conjectures.

The localization of a Harish-Chandra module may be thought of as a realiza-
tion of the module in terms of a more geometric object—a coherent K-equivariant
sheaf of Dλ modules. There is a further reduction to purely geometric information
called the Riemann-Hilbert correspondence (cf. [Bo], [BB2], [BL2], [K2],[M], [M2]).
In our context, the Riemann-Hilbert correspondence assigns to each coherent K-
equivariant sheaf of Dλ modules an object of a certain derived category based on
−λ twisted, K-equivariant sheaves of finite dimensional complex vector spaces (the
so called “constructible sheaves”).

Each Harish-Chandra module arises from taking the K-finite part of an admis-
sible representation of GR. A given Harish-Chandra module M may, in general, be
realized as the K finite part of many admissible representations. These represent
the many ways in which the Harish-Chandra module may be given a topology and
then completed in such a way that the g module structure on M exponentiates to
yield a global GR module structure on the completion. Such a completion is called
a globalization of M . Schmid [S] developed the essential properties of two canoni-
cal ways to globalize a Harish-Chandra module—the minimal globalization and the
maximal globalization. We will be concerned here with the minimal globalization.
The minimal globalization of a Harish-Chandra module M is a module which, as a
topological vector space, is the dual of a nuclear Frechet space and which has the
property that every vector is an analytic vector for the representation. In fact, it
has the surprising property that it is naturally isomorphic to the space of analytic
vectors in any Banach space globalization of M .

Given the results of Beilinson-Bernstein and Schmid it was natural to ask if
there is a localization theory which realizes the minimal globalization of a Harish-
Chandra module in terms of sheaves of Dλ modules on X in a fashion analogous to
the Beilinson-Bernstein localization of the original module. This was accomplished
in [HT] and [Sm]. A different, but related realization of the maximal globalization
was developed in [SW]. Motivated by the results of [SW], Kashiwara, announced
a series of conjectures concerning this situation in [K]. The following diagram
represents an updated version of a diagram that appears in [K]. The Kashiwara
conjectures essentially concern the existence of the equivalences indicated in the
diagram and of their duals.

Db
K,f (Uλ(g))

γ̂−→ Db
GR,f

(U tλ(g))
∆
y y∆

Db
K,f (Dλ)

γ̄−→ Db
GR,f

(Dλ)
RH
y yRH

Db
K,f(X̃)−λ

γ−→ Db
GR,f

(X̃)−λ

(0.1)
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Here each arrow represents an equivalence between appropriate equivariant de-
rived categories (which we will describe more explicitly below) and the diagram is
supposed to be commutative. It is necessary to pass to derived categories in for-
mulating these results because not all of the functors involved are exact as functors
on the underlying categories. This is apparent already for the Beilinson-Bernstein
localization functor which is not exact for all regular λ, though it is exact for λ
dominant.

Each node of (0.1) is a t-category (triangulated category with t-structure) having
as heart the abelian category that is really of interest. The heart of a t-category
is the full subcategory consisting of objects of pure degree 0. For example, on the
left side of the diagram, the hearts of the indicated categories are, from top to
bottom: the category of Harish-Chandra Uλ(g) modules, the category of coherent
K-equivariant Dλ modules and the category of −λ twisted K-equivariant sheaves
of finite dimensional vector spaces. On the right side of the diagram the hearts
are, from top to bottom: the category of minimal globalizations of Harish-Chandra
Uλ(g) modules, the category of finite type GR-equivariant Dλ modules and the
category of −λ twisted GR-equivariant sheaves of finite dimensional vector spaces.
Here, a finite type Dλ module is a Dλ module which has finite dimensional geometric
fibers as an O module.

Each of the equivariant derived categories used here is defined using the method
of Bernstein and Lunts from [BL]. Each of the categories in (0.1) is the full sub-
category of finite type objects in a larger “parent” category. Thus, Db

K,f (Uλ(g))
is the full subcategory of finite type objects in Db

K(Uλ(g)), the equivariant derived
category of Uλ(g) modules. Here, a finite type object is one with finitely generated
cohomologies. Similarly, Db

K,f (Dλ) is the full subcategory of finite type objects in
Db
K(Dλ), the equivariant derived category of Dλ modules, where finite type ob-

jects are those whose cohomologies are coherent as Dλ modules. The category
Db
K,f(X̃)−λ is the full subcategory of finite type objects in Db

K(X̃)−λ, the equi-
variant derived category of −λ monodromic sheaves of complex vector spaces for
X , where finite type objects are those whose cohomologies have finite dimensional
stalks. The categories on the right in (0.1) are defined similarly, except that GR
equivariance replaces K equivariance and the category Db

GR,f
(U tλ(g)) is necessarily

defined using topological Uλ(g) modules (hence the superscript “t”). The right side
of (0.1) can be viewed as the “minimal globalization” of the left side.

The top functor, ∆ on the left side of (0.1) is the equivariant derived category
version of the Beilinson-Bernstein localization functor ([BB2], [BL2]). The bot-
tom left functor RH is the equivariant Riemann-Hilbert correspondence ([Bo], [Bj],
[K2], [M], [M2]). The top functor γ̃ is Schmid’s minimal globalization functor [S]
extended to an equivalence between the equivariant derived categories. These three
functors and their properties were essentially understood at the time of Kashiwara’s
conjectures. In part, these conjectures essentially hypothesize the existence of the
bottom equivalence and a functor from the bottom right category to the top right
category which makes the diagram commutative. There are similar conjectures
concerning a diagram dual to (0.1) in which the top arrow comes from Schmid’s
maximal globalization functor.

A big step toward proving Kashiwara’s conjectures was provided by [MUV] in
which the bottom horizontal equivalence was established. The full conjectures were
established by Kashiwara and Schmid in [KSd]. Their formulation is somewhat



AN ANALYTIC CORRESPONDENCE FOR SEMI-SIMPLE LIE GROUPS 401

different than the one stated here due to the fact that they do not use the equivariant
derived category at the top right node and the functor from the bottom right node
to the top right node is not formulated as an equivalence of categories. Also, the
main focus of [KSd] is on the dual diagram, which involves the maximal rather than
the minimal globalization.

The main purpose of this paper is to place Db
GR,f

(Dλ) in its proper place in
the middle of the right side of (0.1) and to establish the equivalences which con-
nect it to the remainder of the diagram. Part of this is already accomplished in
[Sm] where the equivariant analytic localization equivalence (the ∆ on the right in
(0.1)) is established. In this paper we define the Riemann-Hilbert correspondence
RH : Db

GR,f
(Dλ) → Db

GR,f
(X̃)−λ for the globalized setting and prove that it is

an equivalence. We also establish the middle horizontal equivalence γ̄ of (0.1) and
prove that the diagram is commutative. A secondary purpose of this paper is to
reformulate some of the results of [KSd] so that equivariant derived categories are
used at each node in (0.1) and each functor is an equivalence.

The fact mentioned earlier, that the category Db
GR,f

(U tλ(g)) must be defined us-
ing topological modules, stems from the nature of the minimal globalization functor
(a topological completion) and the analytic localization machinery of Hecht-Taylor
and Smithies (which uses completed topological tensor product in an essential way).
This leads to the main technical difficulty of this paper. The analytic localization
functor of [HT] and [Sm] yields an equivalence between Db

GR,f
(U tλ(g)) and a cat-

egory Db
GR,f

(Dtλ) defined in the same way as Db
GR,f

(Dλ) but using a category of
sheaves of topological Dλ modules. Unfortunately, this category does not have
enough injectives and this fact creates a serious problem in attempting to prove the
GR equivariant Riemann-Hilbert correspondence. The solution to this problem is
provided in Section 5 where we prove that Db

GR,f
(Dtλ) and Db

GR,f
(Dλ) are actually

equivalent.
Because GR orbits on the flag variety have mixed real and complex analytic

structure (CR structure), we will make extensive use of the theory of analytic CR
manifolds. When we to refer a manifold Z as “an analytic CR manifold” we will
mean that Z is an abstract real analytic CR manifold considered as a ringed space
with structure sheaf the sheaf of complex valued real analytic CR functions OZ .
In [Sm], the category of such spaces was called “the category T ”. Morphisms in
this category are analytic CR maps f : Y → Z between analytic CR manifolds Y
and Z . We implicitly use the fact that such a map f is automatically a morphism
of ringed spaces. The reader is advised to consult [Sm] for a development of GR
spaces, free GR spaces, quotient spaces, fiber products and submanifolds in this
category.

Because the top right category of (0.1) is constructed from topological mod-
ules and the middle right category has an equivalent formulation using sheaves of
topological modules which is needed in the development of the analytic localization
equivalence, we will make heavy use of homological algebra in the context of topo-
logical modules over topological algebras in the final 2 sections of this paper. The
topological modules that are involved are all DNF; that is, as topological vector
spaces, they belong to the category of strong duals of Nuclear Frechet spaces. This
is a particularly stable category which has good properties relative to topological
tensor product. These issues are discussed at length in Section 5 of this paper and
in [HT] and [Sm].
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The paper is organized as follows: The first three sections are devoted to estab-
lishing the globalized version of the Riemann-Hilbert correspondence

DR : Db
GR,f

(Dλ)→ Db
GR,f

(X̃)−λ.(0.2)

A Riemann-Hilbert correspondence for sheaves of modules over a twisted sheaf
of differential operators Dλ requires special machinery to deal with the twist. We
use the machinery of monodromic sheaves on the enhanced flag variety. Section 1
is devoted to a discussion of this machinery in our context. In Section 2 we develop
the properties of GR-equivariant sheaves of Dλ modules and prove a preliminary
version of the analytic Riemann-Hilbert correspondence (Theorem 2.6). In Section
3 we complete the development of the analytic Riemann-Hilbert correspondence
by extending Theorem 2.6 to the appropriate equivariant derived categories. The
result is Corollary 3.6 which asserts the existence of the equivalence (0.2). In
Section 4 we briefly discuss the horizontal functors that appear in (0.1) and the
question of commutativity of the diagram. With the exception of fitting the middle
horizontal arrow of (0.1) into the picture, most of the results discussed in Section
4 are reformulations of results that appear in [Sm], [MUV] and [KSd].

Section 5 is devoted to solving a technical problem mentioned earlier. Namely,
the top right arrow in diagram (0.1) is established in [Sm] as an equivalence

∆ : Db
GR,f(U tλ(g))→ Db

GR,f (Dtλ)

between equivariant categories constructed using DNF topological modules and
DNF topological sheaves. On the other hand, the analytic Riemann-Hilbert cor-
respondence that we establish in Section 3 (equation (0.2)) is necessarily formu-
lated as an equivalence between equivariant categories constructed from sheaves
of modules and complex vector spaces with no topological vector space struc-
ture. We resolve this, and several similar issues in Theorem 5.13. In particular,
we establish equivalences Db

GR,f
(Dtλ) ' Db

GR,f
(Dλ), Db

K,f (Dtλ) ' Db
K,f (Dλ) and

Db
K,f(U tλ(g)) ' Db

K,f(Uλ(g)), where the superscript “t” indicates the given derived
category is based on the indicated category of DNF topological modules or sheaves
of modules. Note that there is no similar equivalence Db

GR,f
(U tλ(g)) ' Db

GR,f
(Uλ(g))

and so the need to use topological modules cannot be entirely eliminated from the
theory.

1. Monodromic Sheaves

Let GR be a real connected semisimple Lie group with finite center and let G
denote its complexification. Denote by X the flag variety of G and by X̃ the
enhanced flag variety of G. We make the identifications X = G/B and X̃ = G/N
where B is a Borel subgroup of G and N is the unipotent radical of B. The Cartan
H = B/N acts freely on X̃ from the right and the map π : X̃ → X is the quotient
map. In addition, the spaces X and X̃ are left GR-spaces and π is GR-equivariant.
The Lie algebra h of H acts on X̃ via the exponential map e : h→ H .

We shall have occasion to use a more general version of this setup. Throughout
we will work in the category of analytic CR manifolds and analytic CR maps, as
discussed in [Sm]. Let Ỹ be a free right H space in this category and let Ỹ → Y be
the quotient map modulo the H action. Then we shall call Ỹ → Y a monodromic
system. Suppose also that K is an analytic Lie group and Ỹ and Y are analytic
CR manifolds which are both left K spaces and that the K and H actions on Ỹ
commute. Then the map Ỹ → Y is K equivariant. In this situation, we shall
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then refer to Ỹ → Y as an K equivariant monodromic system. The projection
X̃ → X of the enhanced flag manifold onto the flag manifold is one example of a
GR equivariant monodromic system, but we shall need to consider others as well.
Our discussion of monodromic systems and sheaves follows [BB2] but with some
important differences.

For any analytic CR manifold Y , we denote by OY the sheaf of analytic CR
functions on Y and by DY the sheaf of differential operators on OY . When the
manifold Y is understood, we shall simply denote these sheaves by O and D. If
π : Ỹ → Y is a monodromic system, we shall denote the sheaf theoretic pullback
π−1S of a sheaf S on Y by S̃ (or S̃Ỹ if it is necessary to exhibit the underlying
manifold). Thus, the pullbacks of O and D to Ỹ are denoted Õ and D̃ (or ÕỸ and
D̃Ỹ ), respectively.

A monodromic system π : Ỹ → Y is completely determined by the free H-space
Ỹ . In fact, Y is just the quotient of Ỹ modulo the H action and π is the quotient
map. Thus, we shall denote such a monodromic system simply by Ỹ unless it is
important to explicitly exhibit the quotient map π.

We will regard a monodromic system Ỹ as a ringed space with an H action.
However, the ringed space structure we choose is rather nonstandard. That is,
the structure sheaf for π : Ỹ → Y will be the sheaf Õ = ÕỸ = π−1OY . Note
that this sheaf is constant on each orbit of H and so is nonconstant only in the
base (Y ) direction. A morphism between monodromic systems W̃ and Ỹ is an
H equivariant ringed space morphism f̃ : W̃ → Ỹ . Such a map will necessarily
descend to a morphism of ringed spaces, f : W → Y , such that the diagram

W̃
f̃−→ Ỹy y

W
f−→ Y

commutes.
A morphism f̃ : W̃ → Ỹ of monodromic systems induces an inverse image or

pullback functor f̃∗ from sheaves of ÕỸ modules on Ỹ to sheaves of ÕW̃ modules
on W̃ . This is defined in the usual way using the structure sheaves ÕỸ and ÕW̃ .
That is, for M a sheaf of ÕỸ modules,

f̃∗M = ÕW̃ ⊗f̃−1ÕỸ
M.

It is important to note that this is an exact functor when f̃ : W̃ → Ỹ is a
fibration of monodromic systems, that is when f locally has the form of a projection
Z×U → U with Z a CR manifold and U an H invariant open set in Ỹ . This follows
from the fact that ÕW̃ is, in this case, flat over f−1ÕỸ . Since this is a statement
about the stalks of the sheaves involved, it follows from the analogous fact from
complex analysis; that is, for complex spaces U and V , the projection V × U → U
is always a flat morphism (see [GPR]).

Along with the structure sheaf Õ on a monodromic system Ỹ , we have the
associated differential structure sheaf D̃ = Diff(Õ) = π−1D. If f̃ : W̃ → Ỹ is a
morphism of monodromic systems andM is a sheaf of D̃Ỹ modules on Y , then the
pullback f̃∗M has a natural structure of a D̃W̃ module. This works just as it does
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in the non-monodromic case (see [Sm] or [Bo]). That is, we define a (D̃W̃ , f̃−1D̃Ỹ )-
bimodule,

D̃W̃→Ỹ = Diff(f̃−1ÕỸ , ÕW̃ )

and set

f̃+M = D̃W̃→Ỹ ⊗f̃−1D̃Ỹ
M.

Then f̃+ is the pullback functor for D̃-modules. However, as an (ÕW̃ , f̃−1ÕỸ )-
bimodule, D̃W̃→Ỹ ' ÕW̃ ⊗f̃−1ÕỸ

f̃−1D̃Ỹ , and so it turns out that f̃+M and f̃∗M
are the same ÕW̃ -module.

A sheaf S̃ on Ỹ is the pullback of a sheaf S on Y if and only if S̃ is H-equivariant.
(For a discussion of equivariant sheaves see [BL], [Sm] or the next section of this
paper.) In this case, S = π∗S̃. Through the exponential map h → H , we may
also consider Ỹ to be an h space. The sheaves which are h equivariant are called
monodromic sheaves on Ỹ . For each y ∈ Ỹ the isotropy group of y in h is π1(H) =
ker{exp : h→ H}. Thus, for each h-equivariant sheaf S, there is a homomorphism
φ : π1(H) → Aut(S). Of special interest to us is the case where φ is given by a
character of π1(H). Using the identification Hom(π1(H),C∗) = h∗/h∗Z, each such
character has the form ξ → eµ(ξ) with µ ∈ h∗. We say S has monodromy µ if φ has
this form. Note that whether a sheaf has monodromy µ depends only on µ̄—the
equivalence class of µ in h∗/h∗Z. If the sheaf S has monodromy µ, then it is actually
H-equivariant and, hence, a pullback from Y , if and only if µ̄ = 0.

For each λ ∈ h∗, let Oλ = Oλ,Ỹ denote the subsheaf of OỸ consisting of elements
killed by the operators ξ − λ(ξ) for ξ ∈ h, where ξ acts as a differential operator
on OỸ via the differential of the H action on Ỹ . The sheaf Oλ is h equivariant
and has monodromy λ. Each Oλ is a sheaf of modules over the sheaf Õ = π−1OY .
Furthermore, ifM is any monodromic sheaf of Õ modules with monodromy µ, then
Oλ ⊗ÕM is a monodromic sheaf with monodromy µ+ λ.

For λ ∈ h∗ we define D̃λ = Dλ,Ỹ to be the sheaf of differential operators on Oλ.
There is an obvious identification between this sheaf and the sheafOλ⊗ÕD̃⊗ÕO−λ.
Thus, since D̃ = D̃0 has monodromy 0, the same thing is true of D̃λ for any λ.
Therefore, D̃λ is the pullback to Ỹ of a sheaf of algebras Dλ on Y . This is the sheaf
of twisted differential operators on Y with twist λ.

We may also describe D̃λ in the following way: Let Dh = πH∗ DỸ denote the H
invariant direct image of DỸ and set D̃h = π−1Dh. This is the subsheaf of the sheaf
of differential operators on Ỹ consisting of differential operators with coefficients
constant in the H direction. Differentiation of the right H action on Ỹ yields an
embedding of h as a Lie algebra of central sections of D̃h. Each of the subsheavesOλ
of OỸ is invariant under the action of D̃h and, in fact, is exactly the λ-eigenspace
for the resulting action of h. The sheaf D̃λ is just the quotient of D̃h modulo the
ideal of elements which kill Oλ and this, in turn, is the ideal in D̃h generated by
the maximal ideal of U(h) determined by λ ∈ h∗.

For a monodromic system Ỹ , the structure sheaf Õ and differential structure
sheaves D̃λ are sheaves of topological algebras. In fact, they are sheaves of DNF
(dual nuclear Fréchet) algebras in the sense of [HT] and [Sm]. This will be important
in Sections 4 and 5 where we will need to consider sheaves of DNF topological
modules over these sheaves of topological algebras. However, in this section and in



AN ANALYTIC CORRESPONDENCE FOR SEMI-SIMPLE LIE GROUPS 405

Sections 2 and 3, we will ignore the topological vector space structure on Õ and D̃λ
and we will not require modules over these algebras to have a topological vector
space structure.

If f̃ : W̃ → Ỹ is a morphism of monodromic systems and M is a sheaf of D̃λ,Ỹ
modules on Ỹ , then the O-module pullback f̃∗M has a natural structure of a D̃λ,W̃
module. We noted above that this is true when λ = 0 (so that D̃λ,Ỹ = D̃Ỹ ). The
general case is proved in the same way. That is, we define a (D̃λ,W̃ , f̃−1D̃λ,Ỹ )-
bimodule,

D̃λ
W̃→Ỹ = Diff(f̃−1Õλ,Ỹ , Õλ,W̃ )

and set

f̃+M = D̃λ
W̃→Ỹ ⊗f̃−1D̃Ỹ

M.

This is a D̃λ,W̃ module and f̃+, defined in this way, is the D̃λ,W̃ module pullback
functor. As before, a calculation shows that f̃+M is isomorphic to f̃∗M as an
ÕW̃ -module.

Clearly, D̃λ-module pullback preserves monodromy and, hence, sheaves with
monodromy 0. It follows that it descends to a pullback functor from sheaves of
Dλ,Y -modules on Y to sheaves of Dλ,W modules on W .

We denote by Mµ(D̃λ) the category of h-equivariant sheaves of D̃λ modules
with monodromy µ. The morphisms in this category are h-equivariant module
homomorphisms. If M(Dλ) denotes the category of sheaves of Dλ modules on Y ,
then M(Dλ) is equivalent to M0(D̃λ) under pullback. We shall also need the K
equivariant versions of these categories in the case where Ỹ is a K equivariant
monodromic system. These will be defined and characterized in the next section.

2. Equivariant Sheaves

The term equivariant sheaf will have one of several meanings in this paper,
depending on the category of sheaves to which it is applied. Let K be a CR Lie
group and let Y be an analytic CR K space. Let p : K × Y → Y be the projection
and m : K × Y → Y the action map (k, y) → ky. A sheaf S is K-equivariant if
there is a sheaf isomorphism

θ : p−1S → m−1S
satisfying the associativity and identity conditions (cf. [Sm] or [BL]). Here, the
pullbacks p−1 and m−1 are the ordinary sheaf theoretic pullbacks. However, we
shall also need the notion of K-equivariance in the sense of sheaves of Dλ modules
on Y and D̃λ-modules on Ỹ if Ỹ → Y is a monodromic system. A K-equivariant
sheaf of Dλ-modules is a sheafM of Dλ,Y modules with an isomorphism of Dλ,K×Y
modules

θ : p+M→ m+M
with the usual associativity and identity properties. Here, the pullbacks p+ and m+

are Dλ-module pullbacks. Similarly, if Ỹ is a K-equivariant monodromic system,
then a sheaf M of monodromic D̃λ-modules on Ỹ will be called K-equivariant if
there is an isomorphism of monodromic D̃λ,K×Ỹ -modules

θ̃ : p̃+M→ m̃+M
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again satisfying the associativity and identity conditions, where p̃ : K × Ỹ → Ỹ
is the projection and m̃ : K × Ỹ → Ỹ the action map. Here, the pullbacks m̃+

and p̃+ are those defined in the previous section for monodromic sheaves of D̃λ
modules on monodromic systems. The manifold K × Ỹ is a monodromic system
via the right action of H on the Ỹ factor and the fact that θ̃ is an isomorphism
of monodromic D̃λ,K×Ỹ -modules means, in particular, that it commutes with this
action. We will denote by Mµ

K(D̃λ,Ỹ ) the category of K-equivariant monodromic
sheaves of D̃λ modules on Ỹ with monodromy µ.

The category of K equivariant sheaves of Dλ modules appears in various guises in
the literature (see, for example [BB2], [BL2], [K], [KSd], and [Sm]). The definition
in the form given here is mentioned in [KSd] and, for the DNF Dλ module version,
in [Sm].

There is an important characterization of K-equivariant sheaves of D̃λ-modules
in the case of free K spaces. We shall state the version appropriate for monodromic
systems. Let Ỹ be a free monodromic K space—that is, a K-equivariant mon-
odromic system π : Ỹ → Y for which each point of Y has a K invariant neighbor-
hood U such that π−1(U) is isomorphic as a monodromic K space to K×V for some
monodromic space V . Then the quotient W̃ of Ỹ modulo theK action is also a mon-
odromic space and the quotient map q̃ : Ỹ → W̃ is a map of monodromic systems.
The group K acts trivially on W̃ and every monodromic sheaf of D̃λ,W̃ -modules is
K-equivariant under the trivial K action. The D̃λ-module pullback q̃+ preserves
K-equivariance (see [Sm]) and so it defines a functor q̃+ : Mµ(D̃λ,W̃ )→Mµ

K(D̃λ,Ỹ ).
There is also a functor q̃K∗ : Mµ

K(D̃λ,Ỹ ) → Mµ(D̃λ,W̃ ). This is the functor of K-
invariant direct image and is defined as follows: If M is a K-equivariant module,
and U an open set in W̃ , then q̃∗M(U) =M(q̃−1(U)). The group K acts on this
vector space of sections and the subspace of K-invariant sections is q̃K∗ M(U). It is
easy to see that q̃K∗ (M) = q̃+M is a sheaf of D̃λ,W̃ modules. Furthermore, if M is
monodromic of monodromy µ, then the same thing is true of q̃K∗ M. The following
result is proved in [Sm] based on the proof of an analogous result in [BL]:

Proposition 2.1. If Ỹ is a free monodromic K space and q̃ : Ỹ → W̃ = K\Ỹ the
quotient map, then the pullback q̃+ : Mµ(D̃λ,W̃ )→Mµ

K(D̃λ,Ỹ ) is an equivalence of
categories with inverse the functor q̃K∗ of K-invariant direct image.

In what follows, it will be useful to have a very concrete description of what it
means for a sheafM on Ỹ to be K-equivariant as a D̃λ-module. More specifically,
let p̃, m̃ : K × Ỹ → Ỹ be the projection and multiplication maps. Recall thatM is
K-equivariant as a D̃λ,Ỹ -module if there is a D̃λ,K×Ỹ -module isomorphism

θ̃ : p̃+M→ m̃+M

satisfying the associativity and identity conditions. On the other hand, the module
M is equivariant as an ÕỸ module if there is a θ̃ as above which is an ÕK×Ỹ -
module isomorphism. Here we will show that the additional conditions necessary
for a ÕK×Ỹ -module isomorphism

θ̃ : p̃+M→ m̃+M
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and a D̃λ,K×Ỹ -module isomorphism are exactly the sheaf theoretic versions of the
Harish-Chandra compatibility conditions. This will show that our definition of
equivariance for D̃λ,Ỹ -modules is equivalent to the one used in [BL2] and [BB2].

If we represent p̃+M as

p̃+M = ÕK×Ỹ ⊗p̃−1ÕỸ
p̃−1M,

then the D̃λ,K×Ỹ module structure is the obvious one. That is, functions from
ÕK×Ỹ act through multiplication on the left factor in the tensor product. Dif-
ferential operators in the K and Ỹ directions operate as follows. If η ∈ DK and
ξ ∈ D̃λ,Ỹ , then we denote by η�1 and 1�ξ the corresponding operators in D̃λ,K×Ỹ .
The collection of all such operators, together with ÕK×Ỹ , generate D̃λ,K×Ỹ . An
operator of the form η � 1 acts on ÕK×Ỹ ⊗p̃−1ÕỸ

p̃−1M by its action on the first
factor in the tensor product. A differential operator of the form 1 � η acts on
1�M = p−1M by

(1 � η)(1⊗ µ) = 1⊗ ηµ

at a point (k, y) ∈ K × Ỹ , where µ belongs to the stalk of M at y. Its action
on general elements of p̃+M = ÕK×Ỹ ⊗p̃−1ÕỸ

p̃−1M is then determined by the

commutation rules in D̃λ,K×Ỹ .
The D̃λ,K×Ỹ -module structure of m̃+M is more complicated. We will describe

it in terms of the shear transformation

s : K × Ỹ → K × Ỹ , where s(k, ỹ) = (k, kỹ).

Note that m̃ = p̃ ◦ s and so m̃+ = s+ ◦ p̃+. Thus, we may describe m̃+M as
s+(p+M).

The map s induces an isomorphism s∗ : s−1ÕK×Ỹ → ÕK×Ỹ by s∗(f) = f ◦ s
and, in this way, an s−1ÕK×Ỹ module structure on ÕK×Ỹ . It follows that, as
sheaves of vector spaces,

s+(p+M) = ÕK×Ỹ ⊗s−1ÕK×Ỹ
s−1(p+M) ' s−1(p+M).

Thus, a D̃λ,K×Ỹ module structure on s+(p+M) is defined by an isomorphism

Φ : D̃λ,K×Ỹ → s−1D̃λ,K×Ỹ .

The obvious such isomorphism (and the one that is correct) is the isomorphism
described by

Φ(γ) = s∗−1γs∗.

Thus, θ̃ is a D̃λ,K×Ỹ -module isomorphism if (when it is expressed as a map from
p̃+M to s−1p̃+M) it is a sheaf theoretic isomorphism which satisfies

θ̃ ◦ γ ◦ θ̃−1 = Φ(γ) = s∗−1γs∗

for every local section γ of D̃λ,K×Ỹ . In fact, it suffices to establish this condition for
a set of γ′s which generates D̃λ as a sheaf of algebras. Below we will characterize
Φ(γ) for each of two classes of operators γ which, taken together with Õ, form a
generating set for D̃λ.
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First, note that the condition that θ̃ be an Õ module morphism is

θ̃ ◦ f ◦ θ̃−1 = s∗−1f

for each local section f of OK×Ỹ considered as a section of D̃K×Ỹ . This implies,
in particular, that θ̃ commutes with multiplication by sections of OK .

Now let ξ ∈ k be an element of the Lie algebra of K and consider the correspond-
ing sections ξK of DK and ξỸ of D̃λ,Ỹ , where

ξKf(k) =
d

dt
|t=0f(e−tξk), f ∈ OK

and

ξỸ f(ỹ) =
d

dt
|t=0f(e−tξ ỹ), f ∈ Oλ,Ỹ .(2.1)

Then, ξK � 1 and 1� ξỸ are sections of D̃λ,K×Ỹ and

(ξK � 1) ◦ s∗f(k, ỹ) =
d

dt
|t=0f(e−tξk, e−tξkỹ)

= (ξK � 1)f(k, kỹ) + (1� ξỸ )f(k, kỹ).

Thus,

Φ(ξK � 1) = s∗−1ξKs
∗ = ξK � 1 + 1� ξỸ .

Given ξ ∈ k, the condition

θ̃ ◦ (ξK � 1) ◦ θ̃−1 = Φ(ξK � 1)

will be satisfied on all of p+M if it is satisfied on p−1M since θ̃ is an OK×Ỹ
module isomorphism. However, since ξK �1 vanishes on p−1M, it follows that this
condition is equivalent to the statement

(ξK � 1) ◦ θ̃ + (1� ξỸ ) ◦ θ̃ = 0 on p−1M.

Finally, let η be any local section of D̃λ,Ỹ and consider the local section 1� η of
D̃λ. Then for a local section f of Oλ,K×Ỹ we have

Φ(1� η)f(k, ỹ) = (1�Adk(η))f(k, ỹ).

Now let, ik : Ỹ → K × Ỹ and tk : Ỹ → Ỹ be defined for each k ∈ K by

ik(ỹ) = (k, ỹ), tk(ỹ) = kỹ.

Let i+k denote the D-module inverse image functor induced by ik. A routine
calculation shows that if i+k is applied to the maps θ̃ : p̃+M → s−1p̃+M and
Φ : D̃λ,K×Ỹ → s−1D̃λ,K×Ỹ , then it yields, for each k, an isomorphism

θ̃k = i∗kθ̃ :M→ t∗kM
and an action map

i+k Φ(1 � η) = Adk(η) : t∗kM→ t∗kM.

On the other hand, i+k (1 � η) = η for each k. Thus, applying i+k to the identity
θ̃ ◦ (1 � η) ◦ θ̃−1 = Φ(1� η) implies that

θ̃k ◦ η ◦ θ̃−1
k = Adk(η)
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for each k ∈ K. The converse is also true, since the identity in question is a
statement about the equality of two differential operators with coefficients in ÕK×Ỹ .
Thus, it is true if it is true pointwise. In summary,

Lemma 2.2. If M is a D̃λ module on Ỹ which is K-equivariant as a sheaf of O
modules with action map θ̃, then M is K-equivariant as a sheaf of D̃λ-modules
under this action if and only if the action satisfies

1. θ̃k ◦ η ◦ θ̃−1
k = Adk(η) for each k ∈ K and each η ∈ D̃λ,Ỹ , and

2. (ξK � 1) ◦ θ̃ + (1 � ξỸ ) ◦ θ̃ vanishes on p−1M for each ξ ∈ k.

Conditions (1) and (2) are the sheaf theoretic versions of the Harish-Chandra
compatibility conditions for (g,K)-modules.

The main objective of this section is to show that, in the case where Ỹ is the
augmented flag manifold X̃ for a semi-simple real Lie group GR, the finite type
GR-equivariant sheaves of D̃λ modules on Ỹ have a particularly simple structure.

First we show how to construct monodromic D̃λ modules with monodromy µ
using a µ-twisted version of the standard induction construction. Let Y = GR and
Ỹ = GR × H be considered as monodromic systems through the action of H on
the right factor. This is a trivial monodromic system in the sense that the bundle
GR ×H → GR is trivial. For each λ the sheaf D̃λ,Ỹ is just the subsheaf DGR � 1 =
π−1DGR of DỸ . In the obvious way, each of the sheaves Oµ,Ỹ is a module over this
sheaf of algebras as is each of the sheaves Oµ,Ỹ ⊗E where E is a finite dimensional
vector space. In fact, Oµ,Ỹ ⊗ E is just p+(Eµ), where p : GR × H → H is the
projection on H and Eµ is the locally constant sheaf with stalk E and monodromy
µ considered as a D̃λ,H module (each D̃λ,H is just the constant sheaf with stalk C).
Theorem 2.1 implies that, for each λ and µ, Oµ,Ỹ ⊗E is, in fact, a GR equivariant
sheaf of monodromic D̃λ,Ỹ modules with monodromy µ.

Now suppose S is an orbit of theGR action onX and s ∈ S. Let P be the isotropy
group of s in GR, B the isotropy group of s in G and N the maximal nilpotent
subgroup of B. We may then identify H with B/N and define a homomorphism b→
b̄ : P → H to be the composition of the embedding P → B and the quotient map
B → H . The differential of this homomorphism is a Lie algebra homomorphism
ξ → ξ̄ : p→ h. We set S̃ = π−1(S) and choose s̃ ∈ S̃ such that π(s̃) = s. Note that
S̃ is an orbit of the GR ×H action on X̃ determined by the left action of GR and
the right action of H . We define a map q : GR × H → S̃ by q(g, h) = gs̃h. Note
that the isotropy group of s̃ in GR ×H is the copy of P in GR ×H given by the
embedding b→ (b, b̄−1). Thus, S̃ is the quotient of the free P space GR×H by the
P -action determined by this embedding.

Let (σ,E) be a finite dimensional representation of P . As above, we consider
GR×H to be a monodromic system, under the action of H on the right factor and
Oµ⊗E to be a GR equivariant sheaf of D̃λ-modules with monodromy µ. However,
now we use the representation σ to give Oµ ⊗ E the structure of a P -equivariant
sheaf of D̃λ-modules. Here, the action of P on Oµ ⊗ E is defined by

θ̃f(b, (g, h)) = σ(b)f(b, (gb, b̄−1h)).

It is obvious that θ̃ is an O module isomorphism and that condition (1) of the above
lemma is satisfied (with P playing the role of K and GR ×H playing the role of
Ỹ ). Whether condition (2) of the lemma is also satisfied depends on the properties
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of σ, as we see below. In fact, sections of p−1M are sections of Oµ,P×(GR×H) ⊗ E
which are constant in the P variable. If f is such a section and ξ ∈ p, then

(ξP � 1) ◦ θ̃f(b, (g, h)) =
d

dt
|t=0[σ(e−tξb)f(ge−tξb, b̄−1etξ̄h)]

= σ(ξ)σ(b)f(gb, b̄−1h) +
d

dt
|t=0σ(b)f(ge−tξb, b̄−1h) + µ(ξ̄)σ(b)f(gb, b̄−1h)

while, when the embedding ξ → ξGR×H : p → Dλ,GR×H is combined with formula
(2.1), we find

(1� ξGR×H) ◦ θ̃f(b, (g, h)) =
d

dt
|t=0σ(b)f(ge−tξb, b̄−1h)− λ(ξ̄)σ(b)f(gb, b̄−1h).

Thus, condition (3) is satisfied if and only if σ(ξ) is the scalar operator λ(ξ̄)− µ(ξ̄)
for each ξ ∈ p.

Proposition 2.3. Let (E, σ) be a finite dimensional representation of the isotropy
group, P , in GR of a point in X. The sheaf Oµ ⊗ E on GR ×H is P -equivariant
as a D̃λ-module under the action determined by σ, as above, if and only if the
differential of σ satisfies σ(ξ) = λ(ξ̄)− µ(ξ̄) for all ξ ∈ p.

Suppose σ satisfies the condition of Proposition 2.3, so that Oµ ⊗ E is a P -
equivariant D̃λ-module. Then, since GR × H is a free P -space, Proposition 2.1
implies that Oµ ⊗ E is isomorphic to the pullback to GR ×H of the monodromic
sheaf qP∗ (Oµ ⊗ E) of D̃λ-modules on S̃. We extend this sheaf by zero to all of X̃
(i.e., apply direct image with proper supports for the inclusion S̃ → X̃) and denote
the resulting sheaf by Ĩµλ (σ). This is a monodromic sheaf on X̃ with monodromy
µ. It is also a monodromic sheaf of D̃λ,X̃ -modules, but to see why requires some
comment. The embedding of a GR orbit S into X has the property that at each
point, the tangent space of S generates the tangent space of the complex manifold
X over C (cf. [Sm]). This implies, in particular, that the structure sheaf OS of S is
just the sheaf theoretic restriction to S of the structure sheaf OX . The same thing
is then true of the structure sheaf of the monodromic system S̃ and of each of the
sheaves Oλ,S̃—they are the sheaf theoretic restrictions to S̃ of the corresponding
sheaves on X̃. From this it follows that D̃λ,S̃ is the sheaf theoretic restriction to
S̃ of the sheaf D̃λ,X̃ . Hence, the extension by zero from S̃ to X̃ of a sheaf of D̃λ,S̃
modules on S̃ will automatically have the structure of a sheaf of D̃λ,X̃ modules.

The sheaf Ĩµλ (σ) will be called the induced sheaf for the data σ, λ and µ and the
orbit S̃. In concrete terms, for each open set U ⊂ X̃,

Ĩµλ (σ)(U) = {f ∈ Oµ(q−1(U)) : f(gb, b̄−1h) = σ(b)−1f(g, h) for b ∈ P}.

This is a GR-equivariant sheaf of D̃λ-modules because Oµ ⊗ E is GR-equivariant
and the GR and P -actions commute.

It turns out that every GR-equivariant D̃λ-module which is monodromic with
monodromy µ and which has finite dimensional geometric fibers as an Õ-module
has the above form when restricted to an orbit S̃. Here, by the geometric fiber of a
monodromic Õ-moduleM at s ∈ X , we mean the O-module pullback i+sM, where
is is the inclusion of the monodromic system π−1(s) → s into the monodromic
system X̃ → X . Thus, it is an h-equivariant sheaf on π−1(s) ' H . If this sheaf
has finite dimensional stalks, we sayM has finite dimensional geometric fiber at s.
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Note that the sheaf induced, as above, from a finite dimensional representation of P
has this property at each point. A sheaf of D̃λ modules which has finite dimensional
geometric fiber at each point will be said to be of finite type.

Theorem 2.4. If M is a GR-equivariant D̃λ-module on X̃ which is monodromic
with monodromy µ and of finite type, then, for each GR×H orbit S̃, the restriction
ofM to S̃ is isomorphic to the restriction of Ĩµλ (σ) to S̃ for some finite dimensional
representation σ of the isotropy group P of a point of S̃.

Proof. Since M is GR-equivariant as a D̃λ-module, there is a D̃λ-module isomor-
phism

θ̃ : p̃+M→ m̃+M

satisfying the associativity and identity laws. We choose s̃ ∈ S̃ and consider the
map

j : GR ×H → GR × X̃ where j(g, h) = (g, s̃h).

We have m ◦ j = q : GR × H → X̃ and p ◦ j = is ◦ k : GR × H → X̃, where q
is the map which appears in the above construction of Ĩµλ (σ), k : GR × H → H

is the projection and is : H ' π−1(s) → X̃ is the inclusion. If we pull back the
isomorphism θ̃ using j+ we obtain a Dλ module isomorphism

j+(θ̃) : k+ ◦ i+sM→ q+M.

By hypothesis, i+sM is an h-equivariant sheaf on H with monodromy µ and with
finite dimensional stalks; in other words, a locally constant sheaf on H with stalks
isomorphic to a finite dimensional vector space F and with monodromy µ. We
denote this sheaf by F . Since H → pt and GR ×H → GR are trivial monodromic
systems, D̃λ and D̃ = D̃0 are the same for these systems. Thus, the Dλ-module
pullback k+F of F to GR ×H is Oµ ⊗F with D̃λ-module structure determined by
the first factor in the tensor product.

Therefore, we have a D̃λ-module isomorphism

j+(θ̃) : Oµ ⊗ F → q+M.

Since GR × H is a free P space and q is the quotient map, Proposition 2.1
implies that q+M has the structure of a P -equivariant sheaf of D̃λ-modules. Via
the isomorphism j+(θ̃), this imposes the structure of a P -equivariant sheaf of D̃λ-
modules on Oµ ⊗F . SinceM is isomorphic to the P -invariant direct image of this
sheaf, it remains to show that the P action on Oµ ⊗ F has the form prescribed in
the construction of Ĩµλ (σ). However, it is easy to see that the action necessarily has
the form

θ̃f(b, (g, h)) = σ(b)f(b, (gb, b̄−1h))

for some representation σ of P on F . That σ has differential given by the character
λ− µ then follows from Proposition 2.3. This completes the proof.

The next proposition concerns the induced sheaf in the case where λ = 0. A flat
section of a sheaf of D̃ modules is one which is killed by all vector fields.

Proposition 2.5. The sheaf Ĩµ0 (σ) is isomorphic as a D̃-module to ÕX̃⊗Fµ, where
Fµ is the sheaf of flat sections of Ĩµ0 (σ).
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Proof. This follows immediately from the description of the flat sections of the sheaf
Ĩµ0 (σ) on a neighborhood U as those which, when regarded as functions on q−1(U),
are constant in the GR variable.

We are now in a position to prove the main theorem of this section which is a
special case of our version of the Riemann-Hilbert correspondence. Let Mµ

GR
(D̃X̃ , f)

denote the category of GR equivariant D̃-modules on X̃ with monodromy µ and
with finite type. Similarly, we denote by Mµ

GR
(X̃, f) the category of GR-equivariant

sheaves on X̃ with monodromy µ and of finite type in the sense that they have finite
dimensional stalks. These are the so-called constructible sheaves for the GR orbit
stratification, which are also GR-equivariant and monodromic with monodromy µ
(see [KSd]).

If M is any D̃-module on X̃ , we denote by F (M) its sheaf of flat sections. If
M is GR-equivariant as a D̃ module, then F (M) is GR-equivariant as a sheaf.
In fact, if θ : p̃+M → m̃+M is the action map for M, then the fact that θ
is a D̃-module isomorphism implies that θ and θ−1 preserve flat sections. Since
F (p̃+M) = p̃−1F (M) and F (m̃+M) = m̃−1F (M), it follows that F (θ) defines an
action which makes F (M) a GR-equivariant sheaf. Clearly, F preserves monodromy
and takes sheaves of finite type to sheaves with finite dimensional stalks. Thus, we
have a functor

F : Mµ
GR

(D̃X̃ , f)→Mµ
GR

(X̃, f).

There is also a functor which goes the other way, namely

ÕX̃ ⊗ ( · ) : Mµ
GR

(X̃, f)→Mµ
GR

(D̃X̃ , f)

where, for E an object of Mµ
GR

(X̃, f), ÕX̃ ⊗̂ E is a D̃ module through the action of
D̃X̃ on the first factor.

Theorem 2.6. The functor F : Mµ
GR

(D̃X̃ , f) → Mµ
GR

(X̃, f) is an equivalence of
categories with inverse ÕX̃ ⊗ ( · ).

Proof. Since sections of D̃X̃ act just on the first factor of the tensor product, it is
obvious that F (ÕX̃ ⊗ E) ' E if E is a sheaf in Mµ

GR
(X̃, f).

On the other hand, if M is a sheaf in Mµ
GR

(D̃X̃ , f), then the O-module action
map defines a morphism ÕX̃ ⊗ F (M) → M. This is an isomorphism if it is an
isomorphism on each stalk. That this is so, follows from Proposition 2.5 and the
fact that, on each GR orbit, M is isomorphic to an induced sheaf Ĩµ0 (σ) (Theorem
2.4).

3. The Riemann-Hilbert Correspondence

We are now prepared to prove the main theorem of this paper—the Riemann-
Hilbert correspondence in the context of Dλ-modules and GR-equivariance. This is
just an extension to the appropriate equivariant derived categories of the equiva-
lence of Theorem 2.6. Since the functors of Theorem 2.6 define an equivalence and,
hence, are exact, this extension is relatively straightforward. However, there are
still technical matters that must be handled carefully.

We will use the Bernstein-Lunts version of the equivariant derived category [BL].
For our purposes here, the best description of this category is the one in terms
of fibered categories given in Section 2.4 of [BL]. We give a brief description of
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this in each of the four cases of interest to us here—sheaves of complex vector
spaces, monodromic sheaves of complex vector spaces, sheaves of Dλ modules and
monodromic sheaves of D̃λ modules.

With GR as before, let Y be a GR space in the category of analytic CR manifolds.
A resolution of Y is a fibration P → Y of analytic GR-equivariant CR spaces where
P is a free GR space. If we set P0 = GR\P , then the statement that P is a free GR
space means that P0 is Hausdorff and the quotient map P → P0 is a fibration in the
category of analytic CR manifolds and its fiber is GR. The resolutions of Y form the
objects of a category in which the morphisms are GR-equivariant fibrations P → Q
over Y for which the diagram

P −→ Q

↘ ↙
Y

(3.1)

commutes. Thus, each such morphism P → Q induces a map P0 → Q0.
Note that in [BL] arbitrary maps P → Q over Y are allowed as morphisms of

resolutions. For technical reasons, we need to work only with fibrations in the
category of analytic CR manifolds. This still provides a rich enough category of
resolutions and morphisms of resolutions to define the equivariant derived category
(cf. 2.4.4 of [BL]).

Let Db(Y ) denote the bounded derived category of sheaves of vector spaces on Y .
Then an object S of the bounded equivariant derived category Db

GR
(Y ) is a functor

which assigns to each resolution P → Y an object S(P ) of Db(P0) and, to each
morphism f : P → Q of resolutions of Y , an isomorphism α(f) : f−1S(Q)→ S(P )
in such a way that compositions and identities are preserved (see [BL] for details).
Morphisms in Db

GR
(Y ) are defined in the obvious way as morphisms of functors.

There are natural truncation functors on Db
GR

(Y ). For example, τ≤b(S)(P ) =
τ≤b(S(P )), for each integer b. With these truncation functors, Db

GR
(Y ) is a trian-

gulated category with t-structure or a t-category (see [KSc] p. 411 or [BL] p. 88).
There is a forgetful functor For : Db

GR
(Y ) → Db(Y ) which respects the t-structure

and, thus, takes the heart of Db
GR

(Y ) to the heart of Db(Y ). Namely, let T = GR×Y
have the diagonal action of GR. The projection from T to Y is called the trivial
resolution of Y . For each S ∈ Db

GR
(Y ) let For(S) = S(T ). The heart of Db(Y ) is

the category of sheaves on Y while For determines an equivalence between the heart
of Db

GR
(Y ) and the category of GR equivariant sheaves. The cohomology functors

{Hn} associated with the t-structure on Db
GR

(Y ) take values in the heart—i.e.,
take values which are GR-equivariant sheaves. Other functors usually associated
with derived categories of sheaves, such as inverse image and direct image also have
analogues in the equivariant derived category.

Next, we consider a GR equivariant monodromic system Ỹ → Y . The bounded
derived category of monodromic sheaves of complex vector spaces on Ỹ with mon-
odromy µ will be denoted byDb(Ỹ )µ. To define a corresponding equivariant derived
category Db

GR
(Ỹ )µ we must first define resolutions of monodromic GR spaces. A

resolution of Ỹ is a GR equivariant map P̃ → Ỹ which is a fibration in the category
of monodromic spaces and for which the space P̃ is a free monodromic GR space
as defined in the paragraph preceding Proposition 2.1. With morphisms between
resolutions P̃ → Ỹ and Q̃ → Ỹ defined to be GR equivariant fibrations P̃ → Q̃
of monodromic systems satisfying the analogue of (3.1), the resolutions of Ỹ form
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a category. Note that if Ỹ → Y is a monodromic GR space and P → Y is a
resolution of Y by a free GR space in the category of analytic CR manifolds, then
P̃ = Ỹ ×Y P → Ỹ is a resolution of Ỹ . Thus, for each resolution P → Y , there is as-
sociated a natural monodromic system P̃ → P , which is, in fact, a GR-equivariant
monodromic system. In particular, the sheaves Dλ,P on P and D̃λ,P̃ on P̃ are
defined.

Now we may define an object S of the GR equivariant derived category Db
GR

(Ỹ )µ

to be a functor which assigns to each resolution P → Y an object S(P ) of Db(P̃0)µ

and to each morphism f : P̃ → Q̃ of resolutions an isomorphism α(f) : f−1S(Q)→
S(P ) in a composition and identity preserving fashion. Morphisms in Db

GR
(Ỹ )µ are

morphisms of functors. As before, there is a forgetful functor For : Db
GR

(Ỹ )µ →
Db(Ỹ )µ. The heart of Db

GR
(Ỹ )µ is equivalent under the forgetful functor to the

category Mµ
GR

(Ỹ ) of GR equivariant monodromic sheaves of vector spaces on Ỹ

with monodromy µ (cf. [BB2], [MUV]).
In [Sm] a variant of the Bernstein-Lunts construction is used to construct an

equivariant derived category of DNF Dλ-modules. We briefly describe the definition
of a similar category, but one which does not use DNF modules.

We will denote the bounded derived category of Dλ,Y modules by Db(Dλ,Y ) and
then define a corresponding equivariant derived category Db

GR
(Dλ,Y ). An object

M of this category is a functor which assigns to each GR resolution of Y an object
M(P ) of Db(Dλ,P0) and to each morphism f : P → Q of resolutions an isomorphism
α(f) : f+M(Q) → M(P ) in a composition and identity preserving way. The
category Db

GR
(Dλ,Y ) is a t-category with the truncation functors defined as above.

Note that in this definition we do not require Dλ modules to be DNF or to be
topological modules at all. This is a departure from [Sm] where a similar equivariant
derived category is constructed using DNF sheaves of Dλ modules. In the next
section we shall need to make use of this category. However, in the development of
the Riemann-Hilbert correspondence, the topological vector space structure is not
useful and, in fact, creates serious technical difficulties. Furthermore, in Section 5
we shall show that, in the end, it doesn’t matter which approach is used. Once one
restricts to the subcategory of interest (the subcategory of objects of finite type), the
category constructed using DNF modules is equivalent to the one constructed using
general modules. When we do wish to refer to the equivariant derived category of
DNF Db

GR
(Dλ,Y ) modules, as defined in [Sm], we will denote it by Db

GR
(Dtλ,Y ).

Similarly, we will denote by Db(D̃λ,Ỹ )µ the bounded derived category of mon-
odromic D̃λ,Ỹ modules with monodromy µ. We define, as above, an objectM of the
corresponding equivariant derived category Db

GR
(D̃λ,Ỹ )µ to be a functor which as-

signs to each GR resolution P̃ → Ỹ an objectM(P̃ ) of Db(Dλ,P̃0
)µ and to each mor-

phism f : P̃ → Q̃ of resolutions an isomorphism α(f) : f+M(Q̃)→M(P̃ ) in such
a way that compositions and identities are preserved. Here, f+ : Db(Dλ,Q̃0

)µ →
Db(Dλ,P̃0

)µ is the functor induced on the derived category by the inverse image
functor for D̃λ modules associated to the map f0 : P̃0 → Q̃0 induced by f . As
before, morphisms in the category Db

GR
(D̃λ,Ỹ )µ are defined to be morphisms of

functors. Like Db
GR

(Dλ,Y ), the category Db
GR

(D̃λ,Ỹ )µ is a t-category and the for-
getful functor, For : Db

GR
(D̃λ,Ỹ )µ → Db(D̃λ,Ỹ )µ, sends Db

GR
(D̃λ,Ỹ )µ into objects in
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Db(D̃λ,Ỹ )µ whose cohomologies are in Mµ
GR

(D̃λ,Ỹ ), the category of GR equivariant
D̃λ,Ỹ modules with monodromy µ.

We now specialize to the case of primary interest to us—the case where Y is the
flag manifold X for g. Our goal is to prove a Riemann-Hilbert correspondence for
Db
GR

(Dλ,X). Specifically, we will construct a functor

Db
GR

(Dλ,X)→ Db
GR

(X̃)−λ

which is an equivalence between the corresponding full subcategories consisting of
objects of finite type (these will be defined in due course). The first step in the
construction of this functor is the following:

Proposition 3.1. The map π : X̃ → X induces a natural equivalence of categories

π−1 : Db
GR(Dλ,X)→ Db

GR(D̃λ,X̃)0.

Proof. This equivalence is defined as follows: If P → X is a a resolution of X , let
P̃ → X̃ be the corresponding resolution of X̃ (P̃ = X̃ ×X P ) and π : P̃ → P the
quotient map. Then π−1 : M(Dλ,P ) → M0(D̃λ,P̃ ) is an equivalence for every P

(see Section 1) and this, in turn, defines an equivalence between Db
GR

(Dλ,X) and
Db
GR

(D̃λ,X̃)0.

Recall from Section 1, that on any monodromic system, the functor Oλ ⊗Õ (·)
takes sheaves of D̃ν -modules with monodromy µ to sheaves of D̃ν+λ-modules with
monodromy µ + λ. Clearly this defines an equivalence of categories with inverse
O−λ ⊗Õ (·). If we apply the analogous equivalences between derived categories

Oλ ⊗Õ (·) : Db(D̃ν,P̃0
)µ → Db(D̃ν+λ,P̃0

)µ+λ

for each resolution P → Y of Y , we clearly define an equivalence between Db
GR

(D̃ν)µ

and Db
GR

(D̃ν+λ)µ+λ. Thus,

Proposition 3.2. For each triple (λ, ν, µ) the functor Oλ ⊗Õ (·) defines an equiv-
alence of categories from Db

GR
(D̃ν)µ to Db

GR
(D̃ν+λ)µ+λ.

We define the equivariant DeRham functor

D̃R : Db
GR

(D̃X̃)µ → Db
GR

(X̃)µ

in the following way. To begin with, for an analytic CR manifold Y , we set

D̃RỸ = RHomD̃(ÕỸ , · ) : Db(D̃Ỹ )µ → Db(Ỹ )µ.

We give a more concrete description of this functor following [Bj] and [Bo]. Let ΩpY
denote the space of p-forms with coefficients in OY . If π : Ỹ → Y is a monodromic
system, then Ω̃p

Ỹ
will denote π−1ΩpY . This may be regarded as the sheaf of analytic

CR sections of the bundle of p forms on the vector bundle T π on Ỹ , where T π is
the quotient of the tangent bundle of Ỹ by the subbundle of vectors tangent to
the fibers of π. Clearly, for each open set U ⊂ Ỹ sections of T π over U act as
differential operators on Õ(U) and, hence, determine elements of D̃(U). It follows
that if M is a D̃-module, then the differential

d : Ω̃p
Ỹ
⊗ÕỸ M→ Ω̃p+1

Ỹ
⊗ÕỸ M
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may be defined in the usual way so as to yield a complex

D̃RỸ (M) = {Ω̃•
Ỹ
⊗ÕỸ M, d}.

This is the DeRham complex of a D̃Ỹ module M. Its cohomology in degree zero
yields the sheaf of flat sections F (M) ofM. If M is h-equivariant, then the differ-
entials in this complex are also h-equivariant and so it is a complex of monodromic
modules. If M has monodromy µ, then it is a complex of modules with mon-
odromy µ. When the DeRham functor is applied to a complex M of D̃-modules
with monodromy µ, the total complex of the resulting double complex is the DeR-
ham complex of M and will be denoted D̃RỸ (M).

We now define the DeRham functor for the equivariant derived category. Given
an object M = {M(P̃ )} of Db

GR
(D̃X̃)µ we set

D̃R(M)(P̃ ) = D̃RP̃0
(M(P̃ ))

for each resolution P̃ → X̃. To show that this defines an object of Db
GR

(X̃) we
must show that the isomorphism α(f) : f+M(Q̃) → M(P̃ ), associated to a mor-
phism f : P̃ → Q̃, is taken by D̃RP̃ to an isomorphism from f−1D̃RQ̃(M(Q̃)) to
D̃RP̃ (M(P̃ )). This amounts to showing that

D̃RP̃ ◦ f+ = f−1 ◦ D̃RQ̃.

To see this, note that, since P̃ → Q̃ is a fibration, the complex f−1 ◦ D̃RQ̃(M)
may be viewed as the subcomplex of D̃RP̃ ◦ f+(M) consisting of forms which have
coefficients constant in the fiber direction for f and which kill vector fields in the
fiber direction. Thus, there is a morphism φ : f−1 ◦ D̃RQ̃(M) → D̃RP̃ ◦ f+(M).
This will be a quasi-isomorphism of complexes if it is so locally. But, locally over Q̃,
the map f : P̃ → Q̃ is a projection of the form Ũ ×W → Ũ with Ũ an H-invariant
neighborhood in Q̃ and W a space in the category of analytic CR manifolds. That
φ is a quasi-isomorphism of complexes and, hence an isomorphism in the derived
category, follows from an application of the Poincaré Lemma in the W variable.
This shows that D̃RX̃ defines a functor from Db

GR
(D̃X̃)µ to Db

GR
(X̃)µ.

In view of the above remarks and Proposition 3.2, we define the functor

D̃Rλ : Db
GR

(D̃λ,X̃)µ → Db
GR

(X̃)µ−λ

to be the composition of

O−λ ⊗ÕX̃ (·) : Db
GR(D̃λ,X̃)µ → Db

GR(D̃0,X̃)µ−λ

and

D̃R : Db
GR

(D̃0,X̃)µ−λ → Db
GR

(X̃)µ−λ.

This functor itself is not an equivalence; however, it is an equivalence between the
two subcategories which we now describe.

Let M be a sheaf of D̃λ,X̃ modules. As in Section 2, we say that M is of finite
type if the stalks of M have finite dimensional geometric fiber. We say an object
in Db

GR
(D̃λ,X̃)µ has finite type if its cohomology modules all have finite type (recall

that the heart of Db
GR

(D̃λ,X̃)µ is equivalent to the heart of Db(D̃λ,X̃)µ under the
forgetful functor, so, through this equivalence, the cohomologies of Db

GR
(D̃λ,X̃)µ
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may be regarded as sheaves of D̃λ,X̃ modules). We denote by Db
GR,f

(D̃λ,X̃)µ the
full subcategory of Db

GR
(D̃λ,X̃)µ consisting of objects of finite type.

Similarly, we shall say that a sheaf of vector spaces onX has finite type if it has fi-
nite dimensional stalks. We then let Db

GR,f
(X̃)µ be the full subcategory of Db

GR
(X̃)µ

consisting of objects whose cohomology sheaves have finite type (again, via the for-
getful functor, cohomologies of objects in Db

GR
(X̃)µ are regarded as sheaves on X̃).

The objects in Db
GR

(X̃)µ that belong to Db
GR,f

(X̃)µ will be said to have finite type.
Since the cohomologies of objects in Db

GR
(X̃)µ are GR equivariant sheaves, the ob-

jects of finite type in Db
GR

(X̃)µ are those whose image under the forgetful functor
are constructible with respect to the GR-orbit stratification of X̃.

Proposition 3.3. The functor D̃Rλ takes Db
GR,f

(D̃λ)µ into Db
GR,f

(X̃)µ−λ.

Proof. Clearly, we have that O−λ ⊗ÕX̃ (·) maps Db
GR,f

(D̃λ)µ into Db
GR,f

(D̃0)µ−λ,

since O−λ is locally isomorphic to ÕX̃ . It remains only to show that D̃R takes
objects in Db

GR
(D̃X̃)µ−λ of finite type to objects in Db

GR
(X̃)µ−λ of finite type. We

do this now, after replacing the parameter µ− λ by the equally general parameter
µ. Indeed, ifM is an object of Db

GR
(D̃X̃)µ, then it follows easily from the definition

of the forgetful functor (cf. [BL], 2.4) that

For(D̃R(M)) = D̃RX̃(For(M)).

This is the total complex of the double complex L with Li,j = Ω̃i
X̃
⊗ÕX̃ M

j where

M is a complex of D̃X̃ modules representing For(M). Since each Hq(M) is of
finite type, it has the form ÕX̃ ⊗F (Hq(M)) by Theorem 2.6, where F (Hq(M)) =
H0(D̃RX̃(Hq(M))) is the sheaf of flat sections of Hq(M), which is a sheaf with
finite dimensional stalks. Thus, the second spectral sequence of L converges at
stage two with

Ep,q2 = Hp(D̃RX̃(Hq(M))) =
{

0 if p 6= 0,
F (Hq(M)) if p = 0.

Since each F (Hq(M)) has finite dimensional stalks, this shows that D̃RX̃ maps
Db
GR,f

(D0)µ into Db
GR,f

(X̃)µ.

There is a functor from Db
GR,f

(X̃)µ−λ into Db
GR,f

(D̃λ)µ which turns out to be
the inverse for D̃Rλ. Specifically, for an objectM of Db

GR,f
(X̃)µ−λt , we set

Oλ ⊗ (M)(P̃ ) = Oλ,P̃0
⊗M(P̃ )

and note that this defines an object of Db
GR,f

(D̃λ)µ. In this way, we define a functor
from Db

GR,f
(X̃)µ−λ to Db

GR,f
(D̃λ)µ. We will denote this by Oλ ⊗ (·).

Proposition 3.4. For each µ, functor

D̃R : Db
GR,f

(D̃X̃)µ → Db
GR,f

(X̃)µ

is an equivalence of categories with inverse functor OX̃ ⊗ (·).

Proof. Let Ỹ → Y be a monodromic system andM be an object of Db(D̃Ỹ )µ. We
have D̃RỸ (M) = RHomD̃(ÕỸ ,M). If the object M is represented by a complex
of D̃ modules which are acyclic for HomD̃(ÕỸ , ·) (for example, by a complex of
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injective modules), then RHomD̃(ÕỸ ,M) = HomD̃(ÕỸ ,M). But there is clearly
an evaluation morphism

ÕỸ ⊗HomD̃(ÕỸ ,M)→M.

This yields a well defined morphism

βM : OỸ ⊗ D̃RỸ (M)→M
which is functorial in M.

To show that β defines a morphism of objects in the equivariant derived cate-
gory we must show that it commutes with inverse image for morphisms between
resolutions of X̃ . To this end, let f : Ỹ → Z̃ be a fibration of monodromic systems
andM an object of Db(D̃Z̃). Then it follows from the Poincaré Lemma in the fiber
direction that

RHomD̃(ÕỸ , f+M) = D̃RỸ (f+M) = f−1D̃RZ̃(M) = f−1RHomD̃(ÕZ̃ ,M).

IfM is represented by a complex of injectives, then it follows that f+M is acyclic
for HomD̃(ÕỸ , ·) and

HomD̃(ÕỸ , f+M) = f−1HomD̃(ÕZ̃ ,M).

Since ÕỸ ⊗ f−1HomD̃(ÕZ̃ ,M) = f+(ÕZ̃ ⊗HomD̃(ÕZ̃ ,M)), this implies that

βf+M ◦ f+ = f+ ◦ βM.
The fact that β commutes with inverse image under fibrations ensures that, by
setting βM(P̃ ) = βM(P̃ ) for an objectM of Db

GR
(D̃X̃)µ and a resolution P̃ → X̃ of

X̃, we define a functor M→ βM from Db
GR

(D̃X̃)µ to morphisms

βM : ÕX̃ ⊗ D̃R(M)→M.

We have that β is an isomorphism on the heart of Db
GR

(D̃X̃)µ by Theorem 2.6.
Since the heart generates Db

GR
(D̃X̃)µ as a triangulated category, it follows that β is

an isomorphism in general. This shows that D̃R followed by O ⊗ (·) is isomorphic
to the identity functor. That the same thing is true of the composition in the other
direction is trivial.

Theorem 3.5. The functor

D̃Rλ : Db
GR,f (D̃λ)µ → Db

GR,f (X̃)µ−λ

is an equivalence of categories with inverse Oλ ⊗ (·).

Proof. By Proposition 3.2, O−λ ⊗ÕX̃ (·) defines an equivalence from Db
GR

(D̃λ)µ to

Db
GR

(D̃0)µ−λ with inverse Oλ ⊗ÕX̃ (·). Furthermore, these functors take finite type
objects to finite type objects. This follows from the fact that O−λ and Oλ are
locally isomorphic to ÕX̃ .

Since Oλ ⊗ (·) is the composition of Oλ ⊗ÕX̃ (·) with ÕX̃ ⊗ (·), the theorem
follows from Proposition 3.4.

In view of the above and Proposition 3.1, we have proved our version of the
Riemann-Hilbert correspondence for Dλ,X -modules.

Corollary 3.6. The composition DRλ = D̃Rλ◦π−1 is an equivalence of categories
from Db

GR,f
(Dλ,X) to Db

GR,f
(X̃)−λ.
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4. Globalization

In this section we complete our discussion of diagram (0.1) of the introduction
by describing the horizontal arrows in that diagram and outlining the proof that
the diagram is commutative.

The results of this section strongly overlap with results in [KSd]. The main dif-
ferences being that we work in a setting dual to that of [KSd], we use the equivariant
derived category at each node of our diagram, each arrow represents an equivalence
and the middle horizontal arrow discussed here does not appear in [KSd].

As we shall see, since the top horizontal arrow of (0.1) is essentially the minimal
globalization functor of Schmid [S2], the other two horizontal arrows are sheaf
theoretic versions of the minimal globalization functor. The bottom horizontal
arrow

γ : Db
K,f (X̃)−λ → Db

GR,f
(X̃)−λ

was defined in [MUV] and may be described as follows:
The categories Db

K(X̃)µ and Db
K,f (X̃)µ are defined just as the corresponding

categories Db
GR

(X̃)µ and Db
GR,f

(X̃)µ were defined in Section 3 except that K re-
places GR, where K is the complexification of a maximal compact subgroup KR of
GR. Thus, Db

K(X̃)µ is the K-equivariant derived category of µ-monodromic sheaves
of complex vector spaces on X̃ and Db

K,f (X̃)µ is its full subcategory consisting of
objects of finite type. Here an object of finite type is one which has cohomologies
with finite dimensional stalks. We consider the diagram

X̃
p←− GR × X̃ r−→ KR\(GR × X̃) v−→ X̃(4.1a)

where p is the projection, r is the quotient by the KR action k×(g, x)→ (gk−1, kx)
and v is the map from this quotient to X induced by the action map m : (g, x)→
gx : GR × X̃ → X̃ . This is not exactly the diagram considered in [MUV] but is
equivalent to it under a shear transformation of GR×X . Each of the spaces in this
diagram is a GR ×KR monodromic space and the maps are GR ×KR-equivariant
monodromic maps. Here, the GR×KR actions are as follows: on the left-hand copy
of X̃ the action is (g, k)× x→ kx. On GR × X̃ it is (g, k)× (g′, x)→ (gg′k−1, kx)
and this induces the action on the quotient KR\(GR× X̃). On the right-hand copy
of X̃ the action is (g, k)× x→ gx.

For notational convenience, given any KR space Y in the category of analytic
CR manifolds, we denote by S(Y ) the quotient KR\(GR×Y ) of GR×Y by the KR
action k× (g, x)→ (gk−1, kx) and by r : GR × Y → S(Y ) the quotient map. Then
diagram (4.1a) becomes

X̃
p←− GR × X̃ r−→ S(X̃) v−→ X̃.(4.1b)

The functor γ of (0.1) is the composition of the forgetful functor

FKKR : Db
K(X̃)µ → Db

KR(X̃)µ

and a functor

γGRKR : Db
KR(X̃)µ → Db

GR(X̃)µ

called the integration functor. It will be defined below, but first we need a short
discussion of one of the main ingredients—a form of the inverse image functor in a
situation where the group changes.
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Let A be a closed normal subgroup of a Lie group B and let f : W → Z be a
B map from a B space W to a B space Z on which A acts trivially (so that Z is
actually a B/A space). In this situation, there is an inverse image functor

f−1 : Db
B/A(Z)→ Db

B(W )

with the property that the diagram

Db
B/A(Z)

f−1

−→ Db
B(W )

For
y yFor

Db(Z)
f−1

−→ Db(W )

(4.2)

commutes, where the bottom f−1 is the ordinary inverse image functor. This
functor is defined in terms of the usual inverse image functor in the following way.
As before, we use the definition of the equivariant derived category in terms of
fibered categories as in 2.4 of [BL]. If P → W is a resolution of W (a B map with
P a free B space), then there is an induced map A\P → Z which is a resolution of
Z so that the diagram

P
f̂−→ A\Py y

W
f−→ Z

commutes, where f̂ is the quotient map. There is then an induced map f0 : P0 →
A\P0. We define f−1(M) for an object M of Db

B/A(Z) by

f−1(M)(P ) = f−1
0 M(P )

where the map f−1
0 on the right is f−1

0 : Db(P0)→ Db(A\P 0) and P0 (resp. A\P0)
is B\P (resp. (B/A)\(A\P )) (see [BL] 2.6.2).

Note that in the case where A acts freely on W , Z = A\W and f is the quo-
tient map, the inverse image functor constructed in this this way is actually an
equivalence of categories. In fact, f−1 is the inverse of the quotient equivalence
qf : Db

B(W ) → Db
B/A(W/A) of 2.6.2 [BL] in this case. This is the case in both of

the following uses of this functor. Note also, that the above construction can be
adapted as in Section 3 to cover the situation where we are dealing with equivariant
monodromic systems.

If we apply the inverse image functor defined as above in the case where f = p,
A = GR and B = GR ×KR we obtain an equivalence of categories

p−1 : Db
KR(X̃)µ → Db

GR×KR(GR × X̃)µ.

On the other hand, if we apply it in the case where f = r, A = KR and B = GR×KR
we obtain an equivalence of categories

r−1 : Db
GR

(S(X̃))µ → Db
GR×KR(GR × X̃)µ

with inverse

qr : Db
GR×KR(GR × X̃)µ → Db

GR
(S(X̃))µ.

Next, we consider

v! : Db
GR

(S(X̃))µ → Db
GR

(X̃)µ
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where v! is the derived functor of direct image with proper supports. This functor
also commutes with the forgetful functor—that is, the diagram analogous to (4.2)
with f−1 replaced by v! commutes (3.4.1 of [BL]). Finally, we define

γGRKR = v![n] ◦ qr ◦ p−1

where n is the dimension of the fiber S = GR/KR of v, v! is the functor of direct im-
age with proper supports associated with v and v![n] is v! followed by the indicated
degree shift—that is, v![n]S = (v!S)[n].

The composition γGRKR ◦ F
K
KR

is a functor from Db
K(X̃)µ to Db

GR
(X̃)µ. It is not

obvious that it takes objects of finite type to objects of finite type. However, in
[MUV] it is proved that not only is this true but, in fact:

Theorem 4.1 ([MUV]). The restriction of γGRKR ◦ F
K
KR

to Db
K,f(X̃)µ is an equiva-

lence of categories

γ : Db
K,f (X̃)µ → Db

GR,f
(X̃)µ.

Next we describe the middle horizontal arrow from diagram (0.1):

γ̄ : Db
K,f (Dλ,X)→ Db

GR,f
(Dλ,X).

Here, we define a category Db
K(Dλ,X) in the same way that Db

GR
(Dλ,X) was defined

in Section 3 but with K replacing GR. There is a question as to whether we should
do this in the holomorphic or the algebraic context. That is, in defining Db

K(Dλ,X),
X is considered a complex manifold with the Euclidean topology, Dλ,X is the sheaf
of λ twisted differential operators with holomorphic coefficients and G resolutions
of X are resolutions by complex analytic free G spaces. However, we could also
define an algebraic equivariant derived category, Db

K(Dalgλ,X) by considering X to
be a projective variety, letting Dalgλ,X be the sheaf of λ twisted differential operators
with regular coefficients and using resolutions of X by smooth algebraic free G
spaces. This is essentially the category described in [BL2]. It turns out, as we shall
see below, that it doesn’t matter whether we use Db

K(Dalgλ,X) or Db
K(Dλ,X), because

their subcategories of finite type objects are equivalent.
We define Db

K,f(Dλ,X) to be the full subcategory of Db
K(Dλ,X) consisting of

objects of finite type—which in this case means objects which have cohomologies
which are coherent Dλ-modules. We define Db

K,f (Dalgλ,X) similarly. Note that the
cohomologies of Db

K(Dalgλ,X) are K equivariant and X has finitely many K orbits.
Thus, for such a module, coherence as a Dalgλ,X module is equivalent to regular
holonomicity (cf. [Bo], VII, 12.11).

The category Db
K,f (Dalgλ,X) is closely related to the one used in [BL2]; the differ-

ence is that in [BL2] modules with generalized infinitesimal character determined
by λ replace modules with infinitesimal character. With minor modification, ev-
erything we do here could also be done in this context.

There is a λ twisted DeRham functor

DRλ : Db
K(Dλ,X)→ Db

K(X̃)−λ

defined the same way as in Section 3 but with K replacing GR. When restricted to
objects of finite type, this yields an equivalence of categories

DRλ : Db
K,f (Dλ,X)→ Db

K,f (X̃)−λ
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called the Riemann-Hilbert correspondence. The proof that this is an equivalence
essentially amounts to lifting the problem to X̃ and and tensoring with O−λ, as in
Section 3, and then applying the standard Riemann-Hilbert correspondence (as in
[Bj]) on each P̃0 for P̃ → X̃ a resolution of X̃ . Our proof of the analogous result in
the GR equivariant case in Section 3 was somewhat simpler than the proof of the
usual Riemann-Hilbert correspondence due to the fact that a GR equivariant finite
type Dλ module on X has the simple form described in Proposition 2.5 on each GR
orbit.

There is also an algebraic λ twisted DeRham functor

DRλ : Db
K(Dalgλ,X)→ Db

K(X̃)−λ.

This is defined by first applying the GAGA functor which replaces the Zariski
topology by the Euclidean topology and Oalg modules by O modules and then
applying the analytic λ-twisted DeRham functor described above. When restricted
to objects of finite type, this yields a functor

DRλ : Db
K,f (Dalgλ,X)→ Db

K,f (X̃)−λ.

Using the standard algebraic Riemann-Hilbert correspondence as developed, for
example in [K2, Bo] one can show that this is also an equivalence of categories. A
corollary of this is that the GAGA functor

Db
K,f (Dalgλ,X)→ Db

K,f(Dλ,X)

is an equivalence of categories. Thus, one can use either the algebraic or the holo-
morphic approach. The resulting categories are equivalent. We will use the holo-
morphic approach.

The definition of the functor γ̄ of diagram (0.1) is formally much the same as
that of γ, as discussed above, but uses the inverse image and direct image with
proper supports functors that are appropriate for D-modules. We define γ̄ as the
composition of two functors

γ̄ = γ̄GRKR ◦ F̄
K
KR
.

The first of these is the forgetful functor

F̄KKR : Db
K(Dλ,X)→ Db

KR
(Dλ,X)

and the second is the integration functor

γ̄GRKR : Db
KR(Dλ,X)→ Db

GR(Dλ,X).

The integration functor is the composition γ̄GRKR = v†[n] ◦ q̄r ◦ p+, where

p+ : Db
KR(Dλ,X)→ Db

GR×KR(Dλ,GR×X)

and

r+ : Db
GR

(Dλ,S(X))→ Db
GR×KR(Dλ,GR×X)

are given by D module inverse image, q̄r = (r+)−1, while v† is the D-module version
of the functor v! of direct image with proper supports

v† : Db
GR(Dλ,GR×X)→ Db

GR(Dλ,X)

and v†[n] is v† followed by a shift in degree by n. The functor v† may be expressed
as the composition, v! ◦DRv, of two derived functors: a functor DRv, which is the
DeRham functor along the fibers of v and the derived functor v! of sheaf theoretic
direct image with proper supports.
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Note that the DeRham functor along v has the following description. let Tv be
the sheaf of sections of the subbundle of the tangent space of S(X) consisting of
vectors tangent to the fibers of v and let Ωpv be the sheaf of sections of the bundle of
alternating p-forms on Tv. Note that Tv is, in a natural way, embedded in Dλ,S(X).
In fact, if we make the change of variables (g, x)→ (g, gx) : GR×X → GR×X and
let S = GR/KR, then S(X) becomes S ×X and v becomes the projection of this
space on X . In this picture, Tv is the pullback via the projection S × X → S of
the sheaf of vector fields on S, which is naturally contained in Dλ,S×X . It follows
that ifM is a Dλ,S(X) module, and Ωpv(M) = Ωpv⊗OM, then there is a differential
d : Ωpv(M) → Ωp+1

v (M), defined in the usual way, which makes {Ωpv, d} into a
complex of sheaves. We denote this complex by DRv(M) and call it the relative
DeRham complex of M along v. This is extended in the usual way to a functor
DRv from complexes of Dλ,S(X) modules to complexes of sheaves.

Recall that v+(Dλ,X) is naturally aDλ,S(X)×ν−1Dλ,X bimodule which we denote
by Dλ,S(X)→X . Following [Bo] (VI, 5), we set

Dλ,X←S(X) = Dλ,S(X)→X ⊗OS(X) ωS(X)/X

and note that this is naturally a ν−1Dλ,X ×Dλ,S(X) bimodule and that the relative
DeRham complex shifted by n, DRv(Dλ,S(X))[n], provides a locally Dλ,S(X)-free
bimodule resolution of Dλ,X←S(X). Thus, for any object M of Db(Dλ,S(X)), we
have that DRv(M)[n] = DRv(Dλ,S(X))[n] ⊗Dλ,S(X) M represents the left derived
tensor product Dλ,X←S(X) ⊗LDλ,S(X)

M and

v†[n](M) = v!(Dλ,X←S(X) ⊗LDλ,S(X)
M).(4.3)

Note that, since v is a GR equivariant map, ifM is a GR equivariant complex of
sheaves, then v†[n](M) is a GR equivariant complex of sheaves.

If we replaceX by P0 for anyGR resolution P → X , then we may defineDRv(M)
and v†[n](M) exactly as above for any complex M of sheaves of Dλ,S(P )0 modules
on S(P )0. Thus, we have a functor v†[n] : Db(Dλ,S(P )0)→ Db(Dλ,P0). As P ranges
over the category of resolutions of X , this defines a functor v†[n] : Db

GR
(Dλ,S(X))→

Db
GR

(Dλ,X).
With γ̄GRKR = v†[n] ◦ q̄r ◦ p+, we may define

γ̄ = γ̄GRKR ◦ F̄
K
KR : Db

K,f (Dλ,X)→ Db
GR(Dλ,X).

Recall that Db
GR,f

(Dλ,X) is the full subcategory of Db
GR

(Dλ,X) consisting of ob-
jects of finite type, where, in this context, the objects of finite type are those whose
cohomologies have stalks with finite geometric fiber.

Theorem 4.2. The functor γ̄ : Db
K,f (Dλ,X) → Db

GR
(Dλ,X) has its range in the

subcategory Db
GR,f

(Dλ,X); the diagram

Db
K,f (Dλ,X)

γ̄−→ Db
GR,f

(Dλ,X)
DRλ

y yDRλ
Db
K,f (X̃)−λ

γ−→ Db
GR,f

(X̃)−λ

is commutative; and γ̄ : Db
K,f (Dλ,X) → Db

GR,f
(Dλ,X) is an equivalence of cate-

gories.
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Proof. Since K/KR is contractible, the forgetful functor γ̄KKR is simply an inclusion
of Db

K,f (Dλ,X) (resp. Db
K,f(X̃)−λ) into Db

KR,f
(Dλ,X) (resp. Db

KR,f
(X̃)−λ) as the

full subcategory consisting of objects with K equivariant cohomology ([MUV], 4.5).
Obviously this preserves cohomology and commutes with the DeRham functor.

The fact that the DeRham functor is defined on the equivariant derived category
follows from the fact that the DeRham functor on the ordinary derived category
commutes with inverse image (see [Bo], VIII 14.6 for a proof of this in the algebraic
case—the analytic case is similar). This same fact implies the commutativity of the
diagram

Db
KR

(Dλ,X)
p+

−→ Db
GR×KR(Dλ,GR×X)) r+

←− Db
GR

(Dλ,S(X))
DRλ

y DRλ

y yDRλ
Db
KR

(X̃)−λ
p−1

−→ Db
GR×KR(GR × X̃)−λ r−1

←− Db
GR

(S(X̃))−λ.

(4.4)

Since qr and q̄r are the inverses of r−1 and r+, respectively, this implies that

Db
GR

(Dλ,S(X))
v†−→ Db

GR
(Dλ,X)

DRλ

y yDRλ
Db
GR

(S(X̃))−λ v!−→ Db
GR

(X̃)−λ
(4.5)

is commutative.
It remains to show that γ̄ takes objects of finite type to objects of finite type—

that is, takes objects with regular holonomic cohomology to objects with cohomol-
ogy having finite dimensional geometric fiber.

We first observe that q̄r ◦ p+ ◦ FKKR takes an object in Db
K,f (Dλ,X) with regu-

lar holonomic cohomology to an object in Db
GR,f

(Dλ,S(X)) which has cohomology
modules each of which is the restriction to S(X) = KR\(GR × KR) of a regular
holonomic G equivariant module on the complex space K\(G × K). To see this,
note that each of p+, r+ and FKKR is exact and commutes with the forgetful functor.
Thus, if L is a cohomology module of an object in Db

K,f (Dλ,X) and N is the corre-
sponding cohomology module of the image of this object in Db

GR,f
(Dλ,S(X)), then

p+L ' r+N . However, there is also a G-equivariant regular holonomic module N1

on K\(G × X) which satisfies the relation p+
1 L = r+

1 N , where p1 : G × X → X
and r1 : G ×X → K\(G ×X) are the projections. Evidently, N is N1 restricted
to S(X) = KR\(GR ×X).

Now letM be the image under q̄r◦p+◦FKKR of an object in Db
K,f (Dλ,X). In order

to compute the geometric fiber of v†[n](M) at x ∈ X , we consider the following
commutative diagram

S
u−→ {x}

j
y yi

S(X) v−→ X

with u and i the obvious projection and inclusion and j induced by the map
g → (g−1, gx) : GR → GR × X . Let j+ : Db

GR
(Dλ,S(X)) → Db

GR
(DS) and

i+ : Db
GR

(S(X))→ Db
GR

({x}) denote the respective derived functors. Then

i+ ◦ v†(M) ' v† ◦ j+M.

The above diagram has a complex analytic version with the map j replaced by the
corresponding holomorphic map j1 : K\G→ K\(G×X). If B is the isotropy group
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of x for the G action on X , then j1 is a B equivariant map. We observed in the pre-
ceding paragraph that the objectM extends to an object onK\(G×X) with regular
holonomic G-equivariant cohomology. This implies that each cohomology module
of the object j+M is the restriction to S of a B equivariant regular holonomic mod-
ule on K\G. Thus, DR[n] ◦ j+M has constructible cohomology. Furthermore, it is
constructible relative to a finite algebraic stratification of S—that determined by
the B orbit stratification of K\G. It follows that v!◦DR[n]◦j+M has finite dimen-
sional cohomology and, hence, that i+ ◦ ν†(M) has finite dimensional cohomology.
We cannot yet conclude that each cohomology sheaf of ν†(M) has finite dimensional
geometric fiber. The geometric fiber of Hp(ν†M) is H0(i+(Hp(ν†M))). There is a
spectral sequence with E2 termed Ep,q2 = Hq(i+(Hp(ν†M))) that converges to the
cohomology of i+ν†(M). We use this in an induction argument to finish the proof.

The non-vanishing terms of Ep,q2 lie in a bounded rectangle, that is independent
of x, with the bottom edge being the row H0(i+(Hp(ν†M))). If there is one, let
t be the smallest integer such that for all x and all p > t, H0(i+(Hp(ν†M))) is
finite dimensional and Hq(i+(Hp(ν†M))) = 0 for q > 0. Then the differentials
to and from E2 in the E2 term of this spectral sequence both vanish. It follows
that H0(i+(Ht(ν†M))) is finite dimensional for each x. Then Theorem 2.4 and
Proposition 2.5 imply that the sheaf Ht(ν†M) is locally free as an OX module
on each GR orbit. This, in turn, implies that Hq(i+(Ht(ν†M))) vanishes for all
q > 0 for all x. By induction, we conclude that there is no such t and, thus, that
H0(i+(Hp(γ̄M))) is finite dimensional for all p and all choices of x. Hence, ν†M
is of finite type.

Up to this point in the paper, we have not required a topological vector space
structure on Dλ modules. However, as we now turn our attention to the top row
of diagram (0.1) and its relationship to the middle row, we encounter constructions
which depend heavily on a topological vector space structure. This is true, in
particular, of the minimal globalization functor, which is a topological completion
and the analytic localization functor, as developed in [HT] and [Sm], which requires
the use of a completed topological tensor product.

Let Db
K(Dtλ,Y ) and Db

GR
(Dtλ,Y ) denote the K equivariant and GR equivariant

derived categories of DNF topological Dλ,Y modules. These are defined just as
Db
K(Dλ,Y ) and Db

GR
(Dλ,Y ) were defined, except that sheaves of Dλ modules are

required to be sheaves of DNF topological modules, morphisms are required to
be continuous, and a completed topological tensor product, ⊗̂ , replaces the alge-
braic tensor product, ⊗. This, in turn, effects the definition of the inverse image
functor f+ and, hence, the definition of equivariance. Note that Db

GR
(Dtλ,Y ), is

the equivariant derived category developed in [Sm], where it was denoted simply
Db
GR

(Dλ,Y ). We include a discussion of DNF topological modules and their equi-
variant derived categories in the next section. The full subcategories of finite type
objects Db

K,f (Dtλ,Y ) and Db
GR,f

(Dtλ,Y ) are defined as before. There are functors
which forget the topology

FT : Db
K,f(Dtλ,Y )→ Db

K,f(Dλ,Y )

and

FT : Db
GR,f

(Dtλ,Y )→ Db
GR,f

(Dλ,Y )

and, in the case where Y is the flag manifold X , we prove in Theorem 5.13 that
these functors are equivalences of categories. This and the fact that the forget
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topology functor commutes with the DeRham functor and the inverse image functor
(Lemma 5.1 and Proposition 5.2) implies that the construction of the equivalence
γ̄ of Theorem 4.2 can be carried out using the appropriate equivariant derived
category of DNF Dλ modules at each step with equivalent results. We shall use
this construction in what follows.

Throughout the remainder of this section, we work exclusively with DNF mod-
ules and topological sheaves of modules, with continuous morphisms between such
objects, and with completed topological tensor product. In many cases, a com-
pleted topological tensor product or completed relative tensor product agrees with
its algebraic counterpart as a module or sheaf of modules. In particular, for DNF
Dλ modulesM and N there is a natural map M⊗Dλ N →M⊗̂DλN which is an
isomorphism in the case where M is finitely generated (see Lemma 5.1(a)). How-
ever, even when this holds, it is important to use the notation “M⊗̂DλN”, since
this conveys the fact that a topological vector space structure on the modules of
sections of this sheaf is part of the structure.

The top row of (0.1) involves the equivariant derived categories, Db
K(Uλ(g)) and

Db
GR

(U tλ(g)) and their full subcategories Db
K,f (Uλ(g)) and Db

GR,f
(U tλ(g)) consisting

of objects of finite type. These are defined as in [Sm] and will be described below. As
with Dλ modules, there is a question as to whether one should use arbitrary Uλ(g)
modules in the construction of these categories or DNF topological modules. The
answer is clear for Db

GR,f
(U tλ(g)). If one does not use topological modules and the

completed topological tensor product in the definition of the inverse image functor,
then the class of GR equivariant modules is too small and does not contain the
interesting infinite dimensional examples. Thus, in the case of the GR equivariant
derived category, the only sensible choice is to use a class of topological modules, and
good results are obtained if one uses the class of DNF modules. Thus, Db

GR
(U tλ(g))

andDb
GR,f

(U tλ(g)) will, in what follows, denote the GR equivariant derived categories
of DNF Uλ(g) modules as defined in [Sm]. As before, the fact that DNF topological
modules are used is indicated by the use of the superscript “t”. In the K equivariant
case, both the purely algebraic category Db

K(Uλ(g)) and the DNF module version
Db
K(U tλ(g)) make sense. Their full subcategories of finite type objects, Db

K,f (Uλ(g))
and Db

K,f (U tλ(g)), are, in fact, equivalent, by Theorem 5.13. For technical reasons
that will be explained below, we will use the DNF module version in what follows.

We now give a brief description of Db
K,f (Uλ(g)), Db

K,f (U tλ(g)) and Db
GR,f

(U tλ(g))
following [Sm]. We consider Uλ(g) modules to be sheaves on a point, pt, equipped
with a descended differential structure sheaf Uλ(g) = π∗Dλ,X where π : X → pt is
the projection. More generally, if π : Y → Z is any X fibered map (i.e., a fibration
in the category of analytic CR manifolds which has X as fiber), then we define a
descended differential structure sheaf on Z by D̂λ,Z = π∗Dλ,Y . Since π is a proper
map, the sheaf of algebras D̂λ,Z is, like Dλ,Y , a DNF sheaf of algebras (see Section
5). If the fibration is a map of K spaces, then we define what it means for a DNF
D̂λ,Z module to be K equivariant in formally the same way as before but using the
descended differential structure sheaves in place of the usual ones.

Following Bernstein-Lunts [BL] we consider free K space resolutions P → Z of
Z. For each such resolution, the fiber product Q = Y ×Z P yields a resolution
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Q→ Y which is compatible with P → Z in the sense that the square

Q −→ Yy y
P −→ Z

commutes. The map Q → P is X-fibered, as is the corresponding map Q0 →
P0 between the quotients modulo the group action, and so there are descended
differential structure sheaves D̂λ,P and D̂λ,P0 . As before, Db(D̂tλ,P0

) is defined to
be the bounded derived category of sheaves of DNF D̂λ,P0 modules. We define
Db
K(D̂tλ,Z) (resp. Db

GR
(D̂tλ,Z)) to be the category of functors from the category of

free K (resp. GR) space resolutions P → Z to the fibered category consisting of
pairs (P,Db(D̂tλ,P0

)). Of course, Db
K(D̂λ,Z) is defined in the same way, but using

general modules rather than DNF modules. In the case of greatest interest, Z = pt
we have D̂λ,Z = Γ(Dλ,X) = Uλ(g) and so Db

K(D̂tλ,pt) = Db
K(U tλ(g)), Db

K(D̂λ,pt) =
Db
K(Uλ(g)) and Db

GR
(D̂tλ,pt) = Db

GR
(U tλ(g)).

What are objects of finite type in this context? An object in Db
K(U tλ(g)) will have

cohomology modules which, if Hausdorff, are K equivariant U tλ(g) modules—that
is, they are (g,K) modules. The finite type objects in Db

K(U tλ(g)) are those with
Hausdorff cohomologies which are finitely generated as Uλ(g) modules, that is those
which are actually Harish-Chandra modules. Similarly, the objects of Db

GR
(U tλ(g))

have cohomologies which, if Hausdorff, are GR-equivariant Uλ(g) modules. The fi-
nite type objects are those whose cohomologies are minimal globalizations of Harish-
Chandra modules (cf. [Sm]). The full subcategories of Db

K(U tλ(g)) and Db
GR

(U tλ(g))
consisting of objects of finite type will be denoted Db

K,f (U tλ(g)) and Db
GR,f

(U tλ(g)),
respectively. The full subcategory Db

K,f (Uλ(g)) of finite type objects in Db
K(Uλ(g))

is defined similarly, but without the Hausdorff condition.
In [Sm] the Bernstein-Beilinson localization functor is adapted to yield an equiv-

alence of equivariant derived categories ∆ : Db
GR,f

(U tλ(g)) → Db
GR,f

(Dtλ,X) with
inverse the derived global sections functor. The same approach, applied in the
K-equivariant case yields an equivalence ∆ : Db

K,f (U tλ(g)) → Db
K,f (Dtλ,X). This

is essentially the derived Beilinson-Bernstein localization functor, as discussed in
[BB2] but adapted to the K-equivariant derived category. Its inverse is the de-
rived global sections functor π∗ : Db

K,f (Dtλ,X)→ Db
K,f (U tλ(g)), where π is the map

π : X → pt. Note that the proofs of these results use the DNF structure of modules
and the completed topological tensor product in essential ways. In the GR equivari-
ant case, the localization functor does not yield a reasonable functor unless DNF
modules and the completed topological tensor product are used in its definition.
Furthermore, the base change Lemma 5.7 in [Sm] is used in an essential way in
these results and it is is not true unless the completed topological tensor product
is used in the definition of the inverse image functor.

We define γ̂ : Db
K,f (U tλ(g))→ Db

GR,f
(U tλ(g)), as before, as the composition of the

forgetful functor

F̂KKR : Db
K,f (U tλ(g))→ Db

KR,f (U tλ(g))

with an integration functor

γ̂GRKR : Db
KR(U

t
λ(g))→ Db

GR(U
t
λ(g)).
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The latter is defined by essentially calculating what each of the ingredients in the
definition of γ̄GRKR descends to under π∗.

First, there is a descended inverse image functor

p̂+ : Db
KR

(U tλ(g))→ Db
GR×KR(D̂

t
λ,GR

)

which makes commutative the diagram

Db
KR

(Dtλ,X)
p+

−→ Db
GR×KR(D

t
λ,GR×X)

π∗

y yπ∗
Db
KR

(U tλ(g))
p̂+

−→ Db
GR×KR(D̂

t
λ,GR

).

(4.6)

In fact, p̂+ is defined in formally the same way as p+ for DNF Dλ modules,
the only difference being the structure sheaves defining the relevant categories of
modules. As before, this functor commutes with the forgetful functor in the sense
that it is the top arrow of a diagram in which the vertical arrows are the forgetful
functors and the bottom arrow is the descended inverse image functor. This, in
turn, is just the functor induced on the derived category by the functor which
assigns to a U tλ(g)-module M the sheaf of DGR⊗̂ U tλ(g) modules p̂+M = OGR⊗̂M .

Similarly, if we set S = GR/KR, there is a descended inverse image functor

r̂+ : Db
GR(D̂

t
λ,S)→ Db

GR×KR(D̂
t
λ,GR)

which also commutes with the forgetful functor in the above sense and which makes
commutative the diagram

Db
GR

(Dtλ,S(X))
r+

−→ Db
GR×KR(D

t
λ,GR×X)

π∗

y yπ∗
Db
GR

(D̂tλ,S) r̂+

−→ Db
GR×KR(D̂

t
λ,GR

).

(4.7)

This is an equivalence of categories and we will use its inverse,

q̂r : Db
GR×KR(D̂

t
λ,GR)→ Db

GR(D̂
t
λ,S).

Finally, there is a descended D module direct image with proper supports functor

Db
GR

(Dtλ,S(X))
v†−→ Db

GR
(Dtλ,X)

π∗

y yπ∗
Db
GR

(D̂tλ,S)
v̂†−→ Db

GR
(U tλ(g)).

(4.8)

This is defined as follows: If M is an object of Db(Dtλ,S(X)), then, as in the
discussion preceding (4.3), the shifted relative DeRham complex DRv[n](M) along
v may be defined as the left derived tensor product Dλ,S(X)←X ⊗̂L

Dλ,S(X)
M. That

is,

DRv(Dλ,S(X))→ Dλ,S(X)←X → 0(4.9)

is a locally Dλ,S(X)-free bimodule resolution of Dλ,S(X)←X and

DRv[n](M) = DRv(Dλ,S(X)) ⊗̂Dλ,S(X)M.

We define a descended version of this DeRham complex as follows: Set

D̂Rv(D̂λ,S) = π∗DRv(Dλ,S(X))
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and note that this complex yields a locally D̂λ,S = π∗Dλ,S(X)-free resolution of
D̂λ,S←pt = π∗Dλ,S(X)←X . This follows from the fact that Dλ,X is acyclic and (4.9)
is an exact sequence of sheaves which are free Dλ,S(X) modules.

Having defined our descended version of the relative DeRham complex, we define
v̂†M for an object M of Db(D̂tλ,S) by v!(D̂Rv1(D̂λ,S)⊗̂D̂λ,SM).

To define the GR equivariant version of v̂† is now routine. If P is a free GR
space—that is, a free GR resolution of a point, there are corresponding free GR
resolutions X × P → X , S(X) × P → S(X) and S × P → S of X , S(X), and
S = S(pt), respectively, where the product spaces are given the diagonalGR actions.
Furthermore, we have a commutative diagram

S(X)× P v1−→ X × P
π∗

y yπ∗
S × P v1−→ P

in which the maps v1 = v× id are morphisms of resolutions and the maps π are X
fibered GR maps. On passing to the quotient modulo the GR action, this leads to
the commutative diagram

(S(X)× P )0
v0−→ (X × P )0

π0

y yπ0

(S × P )0
v0−→ P0

in which the vertical arrows are still X fibered maps. We define

v̂† : Db(D̂tλ,(S×P )0
)→ Db(D̂tλ,P0

)

as in the previous paragraph but with v0, P0, (S×P )0, (X×P )0 and (S(X)×P )0

replacing v, pt, S, X and S(X), respectively. As P runs through the free GR
resolutions of pt, this defines a functor

v̂† : Db
GR

(D̂tλ,S)→ Db
GR

(D̂tλ,pt) = Db
GR

(U tλ(g)).

It follows easily from the construction that, with this definition of v̂†, diagram (4.8)
is commutative.

Now with the integration functor γ̂GRKR : Db
KR

(U tλ(g))→ Db
GR

(U tλ(g)) defined by

γ̂GRKR = v̂†[n] ◦ q̂r ◦ p̂+

and γ̂ its composition with the forgetful functor:

γ̂ = γ̂GRKR ◦ F̂
K
KR

the commutativity of diagrams (4.6), (4.7), and (4.8), allows us to conclude:

Theorem 4.3. The functor γ̂ takes objects of finite type to objects of finite type
and the diagram

Db
K,f (Dtλ,X)

γ̄−→ Db
GR,f

(Dtλ,X)
π
y yπ

Db
K,f (U tλ(g))

γ̂−→ Db
GR,f

(U tλ(g))

is commutative. Hence, γ̂ : Db
K,f (U tλ(g)) → Db

GR,f
(U tλ(g)) is an equivalence of

categories.
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Now if we use Theorem 5.13 to replace the categories Db
K,f(Dtλ,X),Db

GR,f
(Dtλ,X)

and Db
K,f (U tλ(g)) by the non-topologized versions Db

K,f (Dλ,X), Db
GR,f

(Dλ,X) and
Db
K,f(Uλ(g)) we obtain the commutative square of equivalences comprising the up-

per square of diagram (0.1).
Note that the algebra Uλ(g) and the functor γ̂ : Db

K,f(Uλ(g)) → Db
GR,f

(U tλ(g))
depend only on the equivalence class of λ under the equivalence relation: λ ∼ λ′

if λ + ρ and λ′ + ρ are in the same Weyl group orbit, where ρ is the half sum of
the positive roots. On the other hand, the sheaf of algebras Dλ,X and the functor
γ̄ : Db

K,f (Dλ,X)→ Db
GR,f

(Dλ,X) definitely depend on λ.
It remains to relate the functor γ̂ to Schmid’s minimal globalization functor.

Specifically, we will show that γ̂ is an exact extension to the equivariant derived
category of the minimal globalization functor. For this we need to be able to
calculate γ̂ applied to an object in the heart of Db

K,f (Uλ(g)).
Recall that the heart of the t-category Db

K,f (Uλ(g)) is the category of finite type
K equivariant Uλ(g) modules (i.e., the category of Harish-Chandra modules). Also,
the heart of the t-categoryDb

GR,f
(Uλ(g)) is the category of finite typeGR equivariant

DNF Uλ(g) modules. We will show that γ̂ takes a Harish-Chandra module M to
the minimal globalization of M . This is the content of the following theorem:

Theorem 4.4. If M is a Harish-Chandra module, then Hj(γ̂M) = 0 for j 6= 0
and

H0(γ̂M) ' C∞c (GR)⊗̂U(g)M.

The later space is the minimal globalization of M .

Proof. Basically, this is just a reformulation of Theorem 6.13 of [KSd]. We will
outline the proof but refer to [KSd] for key details.

Let M be a Harish-Chandra module. Without effecting Uλ(g), we may choose λ
from the dominant Weyl chamber (we adopt the same convention as [KSd] regarding
the order relation on weights λ, so that dominant weights correspond to positive
bundles). With this choice of λ, [BB] implies that M is the module of global sections
of a unique holonomic K equivariant Dλ,X module M.

We then have p+(M) = OGR �̂M, where OGR �̂M denotes the completed topo-
logical tensor product p−1

1 OGR ⊗̂ p−1
2 M and p1 : GR×X → GR and p2 : GR×X → X

are the projections. This sheaf is KR equivariant for the given KR action on GR×X .
When applied to such a sheaf, q̂r = (r+)−1 is just rKR∗ , that is, KR invariant direct
image under r. This is because r : GR ×X → S(X) is the quotient map modulo
the KR action. Thus, q̂r ◦ p+(M) = rKR∗ (OGR �̂M). Since v† is the composition of
the shifted DeRham complex DRv[n] along v with v!, we have

γ̄M = v! ◦DRv[n] ◦ rKR∗ (OGR �̂M).

Let us examine the functor DRv[n]◦rKR∗ . The fibers of the map v◦r are the orbits of
the diagonal GR action g×(g1, x)→ (g1g

−1, gx) on GR×X . The differential of this
action determines an embedding of the Lie algebra g in Dλ,GR×X and, hence, an ac-
tion of g on the sheaf r∗(OGR �̂M) via the Dλ,GR×X module structure of OGR �̂M.
There is also a KR action on r∗(OGR �̂M) which arises from the KR equivariance
of OGR �̂M. It is immediate from the definitions of these two actions that they
satisfy the compatibility conditions for (g,KR)-modules. Thus, r∗(OGR �̂M) is a
sheaf of (g,KR)-modules. We claim that the complex DRv[n] ◦ rKR∗ (OGR �̂M) is
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isomorphic to the (g,KR) relative Koszul complex for r∗(OGR �̂M). Below, we
give a brief description of this complex and a justification for the claim.

Let N be a DNF (g,KR) module and let Kg(N) denote the Koszul complex for
the g action on N :

· · · ∧−p g⊗N d−→ ∧−p−1g⊗N d−→ · · · d−→ g⊗N d−→ N → 0.

Here p ≤ 0 and ∧−pg⊗N is the degree p term of the complex. The relative (g,KR)
Koszul complex is a quotient of this complex and is constructed as follows. We first
replace the exterior algebra over g by its quotient modulo the ideal generated by
Lie(K) = k. That is, we replace each ∧−pg ⊗ N by ∧−p(g/k) ⊗ N . The latter
space enjoys a KR action (the tensor product of the adjoint action on ∧−p(g/k)
with the action on N). By integrating with respect to this KR action, we construct
a projection of ∧−p(g/k)⊗N onto its subspace of KR invariants, (∧−p(g/k)⊗N)KR .
Via the composition of the maps

∧−pg⊗N → ∧−p(g/k)⊗N → (∧−p(g/k)⊗N)KR .

The differential on Kg(N) induces a differential

d : (∧−p(g/k)⊗N)KR → (∧−p−1(g/k)⊗N)KR

so that the resulting complex is a quotient complex of Kg(N). This is the relative
Koszul complex K(g,KR)(N). Its cohomology in degree p is H(g,KR)

−p (N) – the (g,KR)
homology of N in degree −p. Note that this construction is dual to the construction
of (g,KR) cohomology as carried out in Section 6.1 of [V].

As noted above, r∗(OGR �̂M) is a sheaf of (g,KR) modules on S(X). Thus,
we may take the Koszul complex, stalkwise, of this sheaf and obtain a complex
K(g,KR)(r∗(OGR �̂M)) of sheaves on S(X). The fibers of the map v◦r : GR×X → X

are the orbits of the GR action g × (g1, x) → (g1g
−1, gx) and, via this action, the

subbundle of the tangent space of GR × X consisting of vectors tangent to fibers
of v ◦ r is isomorphic to the trivial bundle with fiber g. We consider the cor-
responding quotient bundle with fiber g/k. If s is a point of S(X) and U is a
sufficiently small neighborhood of s, then we may choose a finite set of KR in-
variant sections of this bundle over r−1(U) which form a basis for the bundle over
r−1(U). Using this basis, we may identify (∧−p(g/k)⊗(OGR �̂M))KR(r−1(U)) with
∧−pTv ⊗̂OS(X)r

KR
∗ (OGR �̂M)(U), where Tv is the sheaf of sections of the bundle of

tangents to the fibers of v on S(X). Thus, the term of degree p of the Koszul com-
plex K(g,KR)(r∗(OGR �̂M)) may be identified with ∧−pTv ⊗̂OS(X)r

KR
∗ (OGR �̂M).

After tensoring with the sheaf of highest degree forms along the fibers of v, we
obtain a complex whose terms, at least, are the terms of the DeRham complex
DRv[n] ◦ rKR∗ (OGR �̂M). A calculation shows that the differentials are correct as
well and this establishes the claim that DRv[n] ◦ rKR∗ (OGR �̂M) is isomorphic to
K(g,KR)(r∗(OGR �̂M)). From this, it follows that

γ̄M' v!K(g,KR)(r∗(OGR �̂M)).(4.10)

Then, since

γ̃M = π̃∗M = π∗γ̄M = π!γ̄M
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and π ◦ v is projection of S(X) to a point, we have

γ̃M = π!v!K(g,KR)(r∗(OGR �̂M))

= RΓcK(g,KR)(r∗(OGR �̂M)).
(4.11)

The Koszul complex K(g,KR)(r∗(OGR �̂M)) is a complex of sheaves of sections of
analytic vector bundles and differential operators which act in directions along the
fibers of v : S(X) → X . This complex of differential operators satisfies a certain
ellipticity condition which ensures that analytic solutions and C∞ solutions agree,
that is, that the inclusion of K(g,KR)(r∗(OGR �̂M)) in K(g,KR)(r∗(C∞GR �̂M)) is a
quasi-isomorphism (see [KSd] 4.18 and 6.4). Now the degree p term of the com-
plex K(g,KR)(r∗(OGR �̂M)) is (∧−pg/k ⊗ r∗(C∞GR �̂M))KR and, via the projection
determined by integration with respect to KR, this is a direct summand (as a sheaf
of vector spaces) of ∧−pg/k⊗ r∗(C∞GR �̂M). The latter sheaf is Γc-acyclic on S(X)
due to the fact that the sheaf C∞GR �̂M is both Γc-acyclic and r∗ acyclic on GR×X
(since M is acyclic on X and C∞GR is fine). Since it is a direct summand of a Γc-
acyclic sheaf, it follows that (∧−pg/k⊗ r∗(C∞GR �̂M))KR is also Γc acyclic on S(X),
so that the derived functor RΓc may be replaced by its ordinary counterpart Γc in
(4.11). This, together with the obvious fact that taking KR invariants commutes
with Γc, yields

γ̃M = ΓcK(g,KR)(r∗(OGR �̂M))

= K(g,KR)(C∞c (GR) ⊗̂M)

= C∞c (GR) ⊗̂ L
(g,KR)

M.

With this description of γ̂(M), it is clear that

H0(γ̂M) ' C∞c (GR)⊗̂(g,KR)M = C∞c (GR)⊗̂U(g)M.

The vanishing of the higher cohomologies is proved by direct calculation in the
case where M is in the principal series—that is, when M is given as the space of
sections of an algebraic K equivariant line bundle on the open K orbit of X . The
proof for irreducible M then follows by downward induction on j using the fact that
every irreducible Harish-Chandra module may be embedded in a principal series
module. Once the vanishing is proved for irreducibles the general result follows
from the long exact sequence of cohomology (see 6.13 of [KSd]).

As noted in [KSd], this theorem has as corollaries the following earlier results of
Schmid:

The module C∞c (GR)⊗̂U(g)M is an, a priori, possibly non-Hausdorff quotient
of the topological tensor product C∞c (GR)⊗̂M . In fact, the minimal globalization
functor is initially defined in [S2] as the quotient of C∞c (GR)⊗̂U(g)M by the closure
of its zero subspace. However, due to Theorem 4.4 and the fact that objects in
Db
GR,f

(Uλ(g)) have Hausdorff cohomology, we have

Corollary 4.5. The module C∞c (GR)⊗̂U(g)M is Hausdorff.

Also, from the vanishing of higher cohomologies in Theorem 4.4 we conclude
that

Corollary 4.6. The minimal globalization functor is exact.
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5. Topology

It was essential in the preceding pages that we be able to construct certain equi-
variant derived categories of sheaves of Dλ modules in either of two ways with
equivalent results: the first uses complexes of DNF sheaves of topological Dλ mod-
ules, i.e., Dtλ modules; the second uses general complexes of Dλ modules with no
topological module structure assumed. Both are essential. The first provides the
correct framework for the machinery of globalization and analytic localization. The
minimal globalization functor is a topological completion which yields a DNF topo-
logical module when applied to a Harish-Chandra module. Also, if we failed to
take into account the topological module structure of globalizations of Uλ(g) mod-
ules and make use of the completed topological tensor product we simply wouldn’t
get the right (or even a reasonable) notion of localization. This means that the
target category for the analytic localization equivalence is naturally the one con-
structed using DNF sheaves. Furthermore, this DNF structure on sheaves is needed
when we apply the inverse functor (derived global sections) in order to recreate the
DNF structure on the original modules. On the other hand, the category of DNF
sheaves of Dλ modules does not have enough injectives or projectives. This flaw
creates serious obstacles to proving the analytic Riemann-Hilbert correspondence
which relates the middle and bottom rows of diagram (0.1). For example, the lack
of resolutions implies that the functor RHom, which is crucial to the Riemann-
Hilbert correspondence, is not defined on this category. Thus, we use the second
(topology free) construction of our equivariant derived categories in proving this
correspondence. Fortunately, for the subcategories of interest to us (those consist-
ing of objects of finite type) the two constructions yield equivalent categories. This
section is devoted to proving this and several similar results.

To simplify the exposition, we will drop the λ twist and hence refer to D or
Dt modules rather than Dλ and Dtλ modules. Similarly, we will focus on U0(g) =
Γ(X,D) and U t0(g) = Γ(X,Dtλ) instead of Uλ(g) and U tλ(g). However, all of the
proofs given below were specifically formulated so that they remain true in the
λ-twisted case. We begin with some general remarks concerning DNF sheaves and
then develop the machinery needed to prove the specific equivalences that are used
in the preceding sections. We refer the reader to [Sch] for a general treatment of
topological vector space theory and to [T] and [HT] for background on homological
algebra in the context of topological modules over topological algebras.

A complex vector space V can generally be given a topology which makes it a
locally convex topological vector space in many different ways. However, there
is always one locally convex topological vector space structure on V which is
canonical—the strongest locally convex topology. This is the topology in which
every non-empty convex balanced absorbing set is a neighborhood of zero. It is
also the locally convex inductive limit topology determined by representing V as
the inductive limit of its finite dimensional subspaces. Recall that a DNF space is
the strong dual of a Nuclear Frechet space. Since the inductive limit, if Hausdorff,
of a countable system of DNF spaces is DNF, the strongest locally convex topology
on V is a DNF topology provided V has countable dimension. In particular, the
algebras U(g) and U0(g), being of countable dimension, both have a natural DNF
space structure, as do all of the algebras Uλ(g).



434 LAURA SMITHIES AND JOSEPH L. TAYLOR

It is obvious from the definition that a linear transformation φ : V →W between
two locally convex topological vector spaces is automatically continuous if V has
the strongest locally convex topology.

The category of DNF topological vector spaces has a number of very nice prop-
erties. The open mapping theorem and closed graph theorem hold for linear maps
between DNF spaces. Furthermore, two ordinarily quite different ways of topolo-
gizing the tensor product of two topological vector spaces, the projective topology
and the topology of uniform convergence on bi-equicontinuous sets, turn out to be
equivalent if the spaces are DNF. This has a number of consequences. If V ⊗̂W
denotes the completed topological tensor product of two DNF spaces using one of
these equivalent topologies, then V ⊗̂W is an exact functor of each argument. Fur-
thermore, this tensor product commutes with countable separated inductive limits
in either argument. It follows that if either V or W is a vector space of at most
countable dimension and the other space is a DNF space, then V ⊗W is already
complete under its tensor product topology. In particular, if both V and W are of
at most countable dimension, then V ⊗̂W is just V ⊗W with the strongest locally
convex topology.

A complete topological algebra A is a complete locally convex topological vector
space with an associative algebra structure determined by a continuous linear map
A ⊗̂A→ A. Similarly, a complete topological module over a topological algebra A
is a complete locally convex topological vector space M with an A-module structure
given by a continuous linear map A ⊗̂M →M . Topological algebras and modules
will be complete (and, hence, Hausdorff) throughout this discussion.

It follows from the above considerations that the functor which assigns to a
complex vector space that space with its strongest locally convex topology, takes any
algebra of countable dimension to a DNF topological algebra and is an equivalence
between the category of countably generated modules over such an algebra and the
category of countably generated DNF topological modules over the resulting DNF
topological algebra.

Thus, polynomial algebras, algebras of regular functions on an affine set, envelop-
ing algebras of finite dimensional complex Lie algebras and algebras of algebraic
differential operators on an affine set may all be considered to be DNF topological
algebras. Then countably generated modules over such an algebra may be consid-
ered DNF topological modules. In particular, finitely generated modules may be
so considered.

Less trivial examples include the algebra of holomorphic functions on a compact
subset of a complex manifold (a DNF topological algebra) the module of sections
over a compact set of a coherent analytic sheaf (a DNF module), the algebra of
differential operators with holomorphic coefficients over a compact set (a DNF
topological algebra) and the sections over a compact set of a coherent sheaf of
modules over the sheaf of differential operators with holomorphic coefficients (a
DNF topological module). Since the space of sections over a compact subset of the
structure sheaf O of a CR manifold may also be regarded as the space of sections
of the sheaf of holomorphic functions on a compact subset of a complex manifold
(via a local embedding of the CR manifold into a complex manifold), this algebra
is also a DNF algebra as is the corresponding algebra of differential operators.

A DNF sheaf is a sheaf of complex vector spaces such that the space of sections
over each compact set is equipped with a DNF topology such that the restriction
maps are all continuous. A sheaf morphism between DNF sheaves is continuous
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and, hence, is a morphism of DNF sheaves, if and only if it is continuous on each
stalk ([HT] 3.2). DNF sheaves of algebras and DNF modules over a DNF sheaf
of algebras are defined similarly. Obviously, a sheaf of complex vector spaces with
the property that the space of sections over any compact subset is of countable
dimension will automatically be a DNF sheaf if the space of sections over each
compact set is given the strongest locally convex topology. The corresponding
statements are true of sheaves of complex algebras and modules. Less trivially, the
sheaf of germs of holomorphic (or CR) functions is a DNF sheaf of algebras, as is
the sheaf of germs of holomorphic (or CR) differential operators and its twisted
versions Dλ. Coherent sheaves over either of these sheaves of algebras are DNF
sheaves of modules.

Let Y be an analytic CR manifold and let M(D) denote the category of sheaves
of D modules on Y . Let M(Dt) denote the category of DNF sheaves of D modules
on Y . Let Db(D) and Db(Dt) denote the corresponding bounded derived categories.
All the usual functors associated with sheaves of algebras (tensor product, direct
and inverse image, etc.) are defined for M(D) and Db(D). However, one has to be
very careful working with M(Dt) and Db(Dt) because of the need to preserve the
DNF topology. Some of the standard functors are defined, some are not and some
are defined only in certain circumstances. We briefly discuss these issues below.

The appropriate notion of tensor product for DNF sheaves is completed topolog-
ical tensor product ⊗̂ . There is also a relative topological tensor productM⊗̂DN
for sheaves M and N of right (resp. left) D modules which, when defined, is the
cokernel of the map

m⊗ ξ ⊗ n→ mξ ⊗ n−m⊗ ξn :M⊗̂D ⊗̂N →M⊗̂N .

The problem is that this map does not always have a DNF module as cokernel. It
does so if and only if the stalks of the cokernel are Hausdorff, that is, if the above
map has closed image on each stalk. To know that this is so requires some special
information about M or N . It is so, for example, if N has the form N = D ⊗̂L,
where L is a sheaf of DNF spaces. This is because M⊗̂DD ⊗̂L = M⊗̂L, (cf.
[EP]). This, and the fact that ⊗̂ is exact in each argument on the category of DNF
sheaves, shows that modules of the form D ⊗̂L are flat as DNF D modules. Here,
by a flat DNF D module we mean a module N so that M⊗̂DN exists as a DNF
sheaf for each DNF module M and is an exact functor ofM. Since multiplication
provides a surjection D ⊗̂M → M, it follows that every DNF D module M has
a left resolution by flat DNF D modules. The fact that D has finite homological
dimension implies that there is a finite length with such resolution. This leads to
the conclusion that, although the relative tensor product does not always exist, its
derived versionM⊗̂L

DN does exist for every objectM in Db(Dt) and every object
N in the analogous category based on right modules.

If f : Y → Z is a map of CR manifolds andM a sheaf of DNF topological vector
spaces on Y , then the sheaf theoretic direct image f∗M is not defined in general,
although the direct image with proper supports, f!M, is always defined since the
space of sections of f!M over a compact subset of Z is an inductive limit of spaces
of sections of M supported on compact subsets of Y .

Sheaf theoretic inverse image for DNF sheaves is always defined because con-
tinuous maps take compact sets to compact sets. However, if f is a map of CR
manifolds, then the O module and D module inverse image f+M, since it is defined
in terms of a relative topological tensor product, is only defined in situations where
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one can show that it leads to a Hausdorff topology on the stalks of the resulting
sheaf. Fortunately, this happens in a wide variety of situations—in particular, when
f is a fibration (see [Sm]). The derived inverse image functor, on the other hand,
is always defined, since derived relative tensor product is always defined.

We denote by FT : M(Dt) → M(D) the functor which forgets the topological
vector space structure. This functor commutes with the sheaf theoretic operations
f−1 and f! but not, in general, with D module inverse image f+. The problem
is that the notion of inverse image for D modules involves tensor product and the
notions of tensor product used in M(Dt) and M(D) are different. In particular, if
M is a D module, and f : Y → Z a fibration, then the inverse image of M under
f as an O module is

f+M = OY ⊗f−1OZ f
−1M.

This O module also has a natural D module structure, since it can also be described
as (see section 1):

f+M = DY→Z ⊗f−1DZ f
−1M.

With this structure, it is the D module inverse image of M under f . On the other
hand, if M is a DNF D module, then its inverse image under f , if it exists, is

f+M = OY ⊗̂ f−1OZf
−1M = DY→Z ⊗̂ f−1DZf

−1M
where ⊗̂ denotes completed topological tensor product. For f+M to exist this
must be a DNF sheaf (the issue is whether the stalks are Hausdorff). This holds if
f is a fibration.

The inclusion of the ordinary tensor product in the completed topological tensor
product induces a morphism of D modules

OY ⊗f−1OZ f
−1M→OY ⊗̂ f−1OZf

−1M
and this defines a morphism of functors from M(DtZ) to M(DY ):

ι : f+ ◦ FT → FT ◦ f+.

Since inverse image plays a central role in the definition of equivariant sheaves of
modules and in the definition of the equivariant derived category, it is important to
know that ι is an isomorphism for certain subcategories of modules. Fortunately,
in the situations where we need this, f is a fibration and, hence, f+ always exists
and is exact (cf. [Sm]).

Lemma 5.1. (a) If A is a DNF algebra which is Noetherian as an algebra and if
M (resp. N) is a right (resp. left) DNF A module with N finitely generated, then
the natural map M ⊗A N →M ⊗̂AN is an isomorphism of vector spaces;

(b) If M is a DNF D module on Z with finitely generated stalks and if f : Y →
Z is a fibration of CR manifolds, then ι : f+ ◦ FT (M) → FT ◦ f+(M) is an
isomorphism.

Proof. If N = A ⊗ F is a free finite rank A module, then M ⊗A N → M ⊗̂AN
is clearly an isomorphism since both objects are then naturally equal to M ⊗ F .
Since A is Noetherian, every finitely generated A module has a finite rank free
resolution. Since both M ⊗A (·) and M ⊗̂A(·) are right exact (on DNF modules),
part (a) follows. Note that M ⊗̂AN may not exist as a DNF topological vector
space because it may not be Hausdorff. However, it does exist as a vector space
and the conclusion of the lemma is still valid.
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Clearly ι is an isomorphism forM if and only if it is an isomorphism stalkwise.
Since both tensor product and completed topological tensor product commute with
countable direct limits, the map ι on the stalk at y ∈ Y of M is

(DX→Y )y ⊗DzMz → (DX→Y )y ⊗̂DzMz

where z = f(y). Thus, (b) follows from (a) and the fact that Dz is Noetherian.

Since the definition of equivariant sheaf of D modules uses the inverse image
functor for the two maps p and m from Section 2, this notion differs fundamentally
in M(Dt) and M(D). A module which is K or GR equivariant as an object in
M(Dt) may not be equivariant when considered an object in M(D). The above
lemma shows that the two notions of equivariance do agree for modules in M(Dt)
with finitely generated stalks. That is, FT preserves equivariance for sheaves of
modules with finitely generated stalks.

There are similar considerations for the equivariant derived categories. Recall
that an object ofDb

GR
(DtY ) is a functor which assigns to eachGR resolution P → Y of

Y an object M(P ) of Db(DP0) and to each morphism f : P → Q of resolutions an
isomorphism α(f) : f+M(Q) → M(P ) in a composition and identity preserving
way. This definition is, of course, strongly dependent on the use of the inverse
image functor and so objects will not be preserved, in general, by the functor FT .
However,

Proposition 5.2. Let Db
K,fg(DtY ) (resp. Db

K,fg(DY )) be the full subcategory of
Db
K(DtY ) (resp. Db

K(DY )) of objects whose cohomology sheaves have finitely gener-
ated stalks. Then the forget topology functor defines a functor

FT : Db
K,fg(DtY )→ Db

K,fg(DY ).

The analogous result holds with K replaced by GR.

Proof. LetM be an object of Db
K,fg(DtX). In definingM, we may restrict attention

to K free resolutions p : P → X of X which are fibrations. Then,M assigns to each
such resolution an object M(P ) of Db(DtP0

). Now, the cohomology modules of M
have finitely generated stalks. This condition is preserved by p+ and so p+For(M)
is an object of Db(DtP ) with cohomology sheaves with finitely generated stalks.
However, if q : P → P0 is the projection, then q+M(P ) is isomorphic in Db(DtP )
to p+For(M) (see [BL], 2.4.3) and, hence, it also has cohomology sheaves with
finitely generated stalks. It follows that the same is true of M(P ), since it is the
K equivariant direct image qK∗ q

+M(P ) of q+M(P ) under q. That is, an object
in Db

K,fg(DtY ) may be represented by objects in the categories Db(DtP0
) which

have cohomologies with finitely generated stalks. For such an object M, and a
morphism of resolutions f : P → Q, Lemma 5.1 implies that ι : f+

0 ◦FT (M(Q))→
FT ◦ f+

0 (M(Q)) is a quasi-isomorphism of complexes of sheaves and, hence, an
isomorphism in Db(DP0). It follows that P → FTM(P ) defines an object of
Db
K,fg(DY ). The same argument applies if K is replaced by GR.

Generally, categories of sheaves do not have enough projectives but in most cir-
cumstances the existence of enough injectives makes up for this. However, the
category of DNF sheaves over a DNF topological algebra has neither enough pro-
jectives nor enough injectives. In what follows we will get around this difficulty by
the simultaneous use of two categories of sheaves of modules—one whose objects
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have some of the properties of projectives and another whose objects have some of
the properties of injectives.

In what follows, A will be a DNF sheaf of algebras on a space Y . Sheaves of
modules will be DNF sheaves of A modules. We a use HomA(M,N ) to denote the
sheaf of local homomorphisms from M to N . We make extensive use of the prop-
erties of c-soft sheaves. The reader is referred to [KSc] Section 2.5 for a discussion
of these properties.

Definition 5.3. A sheaf of A modules P is called semi-projective if, whenever

0→ S → B → C → 0

is an exact sequence of sheaves of modules with S c-soft, then HomA(P , ·) preserves
the exactness of the sequence.

Recall that, for a sheaf M on Y and Z a locally closed subset of Y , the sheaf
MZ is the unique sheaf which is M|Z on Z and has stalk 0 at every point of the
complement of Z.

Proposition 5.4. If P is semi-projective and S is c-soft, then HomA(P ,S) is
c-soft.

Proof. Let K be a compact set, set U = Y −K and consider the exact sequence

0→ SU → S → SK → 0.

Since P is semi-projective and SU is also c-soft, the sequence

0→ HomA(P ,SU )→ HomA(P ,S)→ HomA(P ,SK)→ 0

is exact. Since

HomA(P ,S) = Γ(Y,HomA(P ,S)) and HomA(P ,SK) = Γ(Y,HomA(P ,SK)),

each section of HomA(P ,SK), that is each section of HomA(P ,S) on K, extends
to a section of HomA(P ,S) on X . Thus, HomA(P ,S) is c-soft.

Proposition 5.5. If P is a sheaf of A modules which is locally a direct summand
of a free sheaf of A modules, then P is semi-projective.

Proof. Suppose P is locally free and let U be an open set on which P is free. Thus,
P = A⊗ F on U for some vector space F . Then HomA(P|U ,S|U ) = S|U ⊗ F ∗. It
follows that HomA(P , ·) preserves exactness of any short exact sequence of sheaves
of A modules. Obviously we may draw the same conclusion if P is locally a direct
summand of a free sheaf of A modules. This proves that P is semi-projective.

We will shortly show that, in the two situations where we need to prove the
equivalence between equivariant derived categories defined with and without the
DNF structure, objects in the heart of the derived category have semi-projective
resolutions. The relevance of this is shown in the next result.

Recall that, for sheaves of A modulesM and N the nth Ext group is defined in
terms of Hom in the derived category by

ExtnA(M,N ) = HomDb(A)(M,N [n]).

Proposition 5.6. If P is a semi-projective A module and S is a c-soft A module,
then ExtnA(P ,S) = 0 for n 6= 0.



AN ANALYTIC CORRESPONDENCE FOR SEMI-SIMPLE LIE GROUPS 439

Proof. We identify P and S with complexes, non-zero only in degree zero, repre-
senting the corresponding images in Db(A). Then an element of ExtnDb(A)(P ,S) is
a morphism f from P to S[n] in Db(A) and, as such, is represented by a pair

P s←− G f−→ S[n]

of morphisms in Kb(A) with s a quasi-isomorphism. Since G is quasi-isomorphic
to P , it has non-vanishing cohomology only in degree zero and that is isomorphic
to the DNF sheaf P . Thus, both truncation functors are defined for G (in general,
for a complex of DNF sheaves, the left truncation τ ≥ c may not be defined since,
because it involves a quotient which may fail to be Hausdorff, it may fail to yield
a complex of DNF sheaves). Using truncation, we can show that the morphism
f is equivalent to one in which G vanishes except in degrees between 0 and −n
inclusively.

First suppose n is a negative integer. Then the fact that H−n(G) = 0 implies
that

G−n = ker δ−n = im δ−n−1.

But im δ−n−1 ⊂ ker(f) and so f must be zero. Thus, ExtnDb(A)(P ,S) is also zero.
Now suppose n is positive. Then f maps the left most term G−n of the complex G

into S and is zero on the other terms, while δ−n is a topological isomorphism of G−n
onto the closed subspace ker δ−n+1 of G−n+1. We may factor the closed subspace
ker f out of G−n and the closed subspace δ−n ker f out of G−n+1 and obtain an
equivalent representative of f in which f is injective. Thus, we may assume this was
true already of f . Similarly, G−n may be replaced by S, G−n+1 by (G−n+1⊕S)/K
where K = {(−δ−n(g), f(g)) : g ∈ G−n}, δ−n by the natural inclusion of S in
(G−n+1 ⊕S)/K and δ−n+1 by the natural map (G−n+1 ⊕S)/K → G−n+1 followed
by δ−n+1 (note that K is closed because δ−n is a topological isomorphism onto
ker δ−n+1). In this way, we obtain an equivalent representative of f in which f is
an isomorphism of G−n onto S. We conclude that, without loss of generality, we
may assume that G is a finite complex beginning with S and ending with G0, which
is exact except at G0 where the cohomology is P . Thus, the augmented sequence
G → P → 0 is an exact sequence. This is the classical description of an element of
ExtnA(P ,S) in terms of extensions.

With this description of G, we now make a further reduction. We replace each
Gk for k > −n by a c-soft resolution (G−n = S is already c-soft). This can be
done in a functorial way (using the Čech resolution of [HT]) so as to yield a double
complex of c-soft sheaves whose total complex still has S in degree −n as its initial
non-zero term and which still has P in degree zero as its only non-zero cohomology.
By truncating at zero, we obtain a complex H which is c-soft in every degree except
zero, has S as initial term in degree −n, and has final term H0 which has P as
quotient modulo the image of δ−1. This complex H, with the obvious maps to S
and P yields an equivalent description of the morphism f .

Note that the third term in a short exact sequence is c-soft if the other two are.
Thus, because P is semi-projective and all but the last two terms of the augmented
complex H → P → 0 are c-soft, applying HomA(P , ·) to this complex preserves
its exactness. But each of the sheaves HomA(P ,Hk) for k > 0 is also c-soft by
Proposition 5.4. It follows by a standard induction argument on the length n of
the complex H that the sequence remains exact when we pass to global sections.
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Thus, HomA(P ,H0) → HomA(P ,P) is surjective. That is, H0 → P splits and f
is the trivial element of ExtnA(P ,S).

We now return to the situation where A = D. That is, let Y be a quasi-
projective smooth complex algebraic variety considered as a complex manifold and
let D be the algebra of differential operators on Y with holomorphic coefficients.
Let Db

coh(D) (resp. Db
coh(Dt)) denote the full subcategory of Db(D) (resp. Db(Dt))

consisting of objects whose cohomology sheaves are algebraically coherent. Here,
by an algebraically coherent sheaf of D modules we mean the image under GAGA of
a coherent Dalg module. By [Bo], VI 2.5 such a module has a finite left resolution
by modules, all of which are locally free of finite rank except the last one and it is
locally a direct summand of a free finite rank module. By Proposition 5.5, this is a
finite resolution by semi-projective modules.

Proposition 5.7. The forget topology functor

FT : Db
coh(Dt)→ Db

coh(D)

is an equivalence of categories.

Proof. Since each algebraically coherent D-module has a well defined DNF topology
under which it is a Dt module and since a D module morphism between coherent
modules is automatically continuous, the hearts of the two derived categories of the
proposition are the same. For each n ∈ Z, the forgetful functor induces a natural
morphism of bi-δ-functors

φn : ExtnDt(M,N )→ ExtnD(M,N ).(5.1)

We claim each φn is an isomorphism of functors on Mcoh(Dt) × M(Dt). First
suppose that P is a semi-projective module in M(Dt) with finitely generated stalks
and S is a c-soft module in M(Dt). Then ExtnDt(P ,S) = 0 for n 6= 0 by Proposition
5.6. A similar but much simpler argument using the existence of enough injectives in
M(D) (and, hence, the existence ofRHomD) shows that we also haveExtnD(P ,S) =
0 for n 6= 0.

In the case n = 0, HomDt(P ,S) → HomD(P ,S) is an isomorphism because a
D module morphism between from P to S is automatically continuous. The latter
statement follows from the fact that the stalks of P are finitely generated and it
is only necessary to check continuity on each stalk ([HT], Prop. 3.2). This proves
that (5.1) is an isomorphism for each n in the case whereM is semi-projective with
finitely generated stalks and N is c-soft.

Now each algebraically coherent D module M has a finite length left resolution
by modules which are both semi-projective and have finitely generated stalks. Also,
eachDt module has a finite right resolution by c-soft DNF sheaves of modules ([HT],
Prop. 3.5). Thus, an induction on the length of a semi-projective resolution ofM,
using the long exact sequence for Ext, shows that (5.1) is also an isomorphism
for each n if M is any algebraically coherent module and N is c-soft. Another
induction, this time on the length of a c-soft resolution of N , shows that (5.1) is
an isomorphism if M is algebraically coherent and N is any Dt module.

The fact that (5.1) is an isomorphism for all n implies that FT is fully faithful
on the triangulated subcategory of Db(Dt) generated by the algebraically coherent
modules. This subcategory is Db

coh(Dt). Since FT : Db
coh(Dt) → Db

coh(D) is also
essentially onto, the proof is complete.
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The above result will lead to the equivalence we need in the case of the K
equivariant derived category. For the GR equivariant derived category, we need a
similar result but with the algebraically coherent modules replaced by modules of
the type that occur in the heart of the finite type GR equivariant derived category.
These are modules which are locally free of finite rank as O modules on each strata
in the orbit stratification of X . Actually, we need to work with a fibered category
which assigns to each free GR resolution Y → X a category of modules of this type
on Y . This leads to the following definition:

Given an analytic CR manifold Y , we denote by FY the space of DY modules
which are locally free of finite rank as OY modules on each set in some finite
stratification of Y by CR submanifolds.

Proposition 5.8. If Z is a locally closed CR submanifold of a CR manifold Y ,
then a DY module M on Z which is locally free of finite rank as an OY module
on Z is the restriction to Z of a DY module, locally free of finite rank as an OY
module, on a neighborhood of Z in Y .

Proof. We choose a locally finite cover {Vi} of Z by open sets in Z such thatM is
trivial on a neighborhood of the compact closure V̄i of Vi. For each i, we choose a
basis {eiν}ν forM over a neighborhood of V̄i in Z and set ei = (ei1, · · · , eiν). Then,
for each pair (i, j) we have a matrix φij , with entries that are sections of OY defined
over a neighborhood in Z of V̄i ∩ V̄j by the equations

ei = φije
j .

Each φij is a non-singular matrix valued function in a neighborhood of V̄i ∩ V̄j in
Z. Since they are entries which are sections of OY , the φij are actually defined
on a neighborhood Wij of V̄i ∩ V̄j in Y and they may be assumed to form a non-
singular matrix valued function overWij as well. These functions satisfy the cocycle
condition

φik = φij ◦ φjk
as sections of Gln(OY ) on a neighborhood of V̄i ∩ V̄j ∩ V̄k in Z for each triple
(i, j, k). Since, this is an identity between sections of Gln(OY ), it remains true in
a neighborhood Ωijk of V̄i ∩ V̄j ∩ V̄k in Y .

We can now choose a neighborhood Ui of each V̄i in such a way that Ui∩Uj ⊂Wij .
That this can be done for a fixed pair (i, j) follows from the fact that V̄i ∩ V̄j is
compact and the intersection of the sets Ui ∩ Uj over all possible choices of Ui
and Uj is V̄i ∩ V̄j . However, this gives a possibly different choice of Ui for each
j. But, because the cover V̄i is locally finite, we can first choose a collection of
neighborhoods U ′i of V̄i with the property that, for each i there are at most finitely
many j′s for which U ′i ∩ U ′j 6= ∅. We then need only look at the possible choices of
Ui and Uj for finitely many indices j for each i. We then take for Ui the intersection
of the choices that work for each such j. It follows in the same way that we can
modify our choice of Ui for each i in such a way that Ui ∩ Uj ∩ Uk ⊂ Ωijk for each
triple (i, j, k). With this choice of the sets Ui, the cocycle condition is satisfied on
each triple intersection Ui ∩ Uj ∩ Uk. The data ({Ui}, {φij}) defines a CR vector
bundle on the union U of the sets Ui whose sheaf of local sections is an extension
to U of M as a OY module.

If ξ is a section of DY over a neighborhood V in Z on which M is free with
basis {ei}, then each ξei is a section of OY over V and, hence, it extends to a
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neighborhood of V in Y . In this way, we see that the action of ξ on M|V extends
to a neighborhood of V in Y . Furthermore, any two such extensions must agree
in a neighborhood of V in Y . Since, OY and finitely many vector fields generate
D, the entire action of D extends to a neighborhood of V and any two extensions
agree on a neighborhood. Now, arguing as in the preceding paragraphs, using a
locally finite cover by open sets on whichM is free, we conclude that the action of
DY on M extends to a neighborhood of Z in Y .

Note that this proof extends easily to cover the case of sheaves of modules over
the twisted sheaf of differential operators Dλ. The theorem, as stated, has simpler
proofs (for example, use the flat sections functor to reduce to the problem of ex-
tending a locally constant sheaf and then use the fact that Z is a neighborhood
retract to extend this locally constant sheaf), however, it is not clear that they
extend to the twisted case.

Proposition 5.9. A D module on an open set U , which is locally free of finite rank
as an O module, has a finite resolution on U consisting of locally free finite rank D
modules.

Proof. If M is such a module, then Diff(O,M) is a left D module and a right D-
module. Evaluation at the identity gives a surjective map Diff(O,M) →M with
kernel equal to the image of δ : Diff(O,M) ⊗O T → Diff(O,M) where T is the
sheaf of vector fields and δ(η ⊗ ξ) = η ◦ ξ. In fact, this extends in the usual way to
a complex (the Koszul complex for the right action of vector fields on Diff(O,M))
which gives a finite resolution ofM. It is not difficult to see that this is a complex
of locally free finite rank left D modules.

Proposition 5.10. If P is a semi-projective sheaf of A modules, then so is PV for
any open set V .

Proof. Let P be semi-projective and let V be an open set. Suppose

0→ F1 → F2 → F3 → 0

is a short exact sequence with F1 c-soft. Then

0→ HomA(P, F1)→ HomA(P, F2)→ HomA(P, F3)→ 0

is exact. This implies that, for any open set W we have

0→ Γ(W,HomA(P, F1))→ Γ(W,HomA(P, F2))→ Γ(W,HomA(P, F3))→ 0

is exact because HomA(P, F1) is c-soft by Proposition 5.4. We use this in the
case where W = U ∩ V for an open set U and observe that there are natural
identifications Γ(U ∩ V,HomA(P, Fi)) ' Γ(U,HomA(PV , Fi)). Hence,

0→ Γ(U,HomA(PV , F1))→ Γ(U,HomA(PV , F2))→ Γ(U,HomA(PV , F3))→ 0

is exact. This proves that PV is semi-projective.

Proposition 5.11. Let Z be as in Proposition 5.8 and let M be a DY module
which is supported on Z and is locally free of finite rank as an OY module on Z.
Then M has a finite resolution by semi-projective modules with finitely generated
stalks.

Proof. We extend the module M to a similar module N on open set U using
Proposition 5.8 and then choose a finite resolution of N by locally free D modules
on U using Proposition 5.9. We extend this to all of Y by extension by zero (i! for
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i : U → Y the inclusion). The result is still semi-projective (argue as in Proposition
5.10). If P → i!N is the resulting resolution of i!N , then PZ →M is a resolution
of the original module M supported on Z. The complex PZ is not a complex of
semi-projectives, but it has a resolution that is, namely PU−Z → P → PZ . Thus,
the total complex of the double complex PU−Z → P is a finite complex of semi-
projective sheaves with finitely generated stalks which gives the desired resolution
of M.

With this result in hand, the proof of Proposition 5.7 goes through with sheaves
in F replacing algebraically coherent sheaves (one additional step is necessary;
however, one must use the fact that each object in F has a finite filtration with
subquotients each of which is supported on a CR submanifold on which it is locally
free of finite rank). Thus, with Db

F (DtY ) denoting the full subcategory of Db(DtY )
consisting of objects in FY and similarly for Db

F(D), we have

Proposition 5.12. The forget topology functor

FT : Db
F(DtY )→ Db

F(DY )

is an equivalence of categories.

We can now state and prove the equivalences that were used in Section 4.

Theorem 5.13. The forget topology functors

FT : Db
K,f (Dtλ,X)→ Db

K,f (Dλ,X);(1)

FT : Db
K,f (U t0(g))→ Db

K,f (U0(g));(2)

and

FT : Db
GR,f (Dtλ,X)→ Db

GR,f (Dλ,X)(3)

are equivalences of categories.

Proof. To simplify the exposition, we omit the twist λ but the proof of this re-
sult and the preceding results of this section work equally well in the λ twisted
case. The proofs of the three equivalences follow the same model. For (1) we
observe that the hearts of Db

K,f (DtX) and Db
K,f (DX) both consist of the category

of algebraic K equivariant coherent DX modules (equipped with the natural DNF
topology in the case of Db

K,f(DtX)). Each such module is algebraic regular holo-
nomic. LetM be an object of Db

K,f (DtX). In definingM, we may restrict attention
to K free quasi-projective algebraic resolutions P → X of X . Then, M assigns
to each such resolution P → X , an object M(P ) of Db(DtP0

). Now, the cohomol-
ogy modules of M belong to the heart of Db

K,f (DtX). Hence, they are algebraic
regular holonomic. This means that the image of M under the forgetful functor
For : Db

K,f (DtX) → Db(DtX) has algebraic regular holonomic cohomology. Regular
holonomicity is preserved by inverse image and so if p : P → X is a free resolution
of X , then p+ For(M) is an object of Db(DtP ) with algebraic regular holonomic
cohomology sheaves. However, if q : P → P0 is the quotient map, then q+M(P )
is isomorphic in Db(DtP ) to p+ For(M) and, hence, it also has algebraic regular
holonomic cohomology. It follows that the same is true of M(P ), since it is the
K equivariant direct image qK∗ q

+M(P ) of q+M(P ) under q. In particular, these
cohomologies are algebraic coherent. Here we are using the fact that qK∗ = q+

and so qK∗ takes regular holonomic modules to regular holonomic modules (cf. [Bo]
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Chapter 7). That is, each of the objects M(P ), defining M, belong to the full
subcategory Db

coh(DtP0
) of Db(DtP0

). For the same reasons, the same thing is true
of the categories without the superscript “t”. Equivalence (1) of the theorem now
follows from Proposition 5.7.

We next prove (3) analogously, using Proposition 5.12. In this case the hearts
of the two categories are both equal to the GR equivariant sheaves in FX , where
recall that, for an analytic CR manifold Y , FY is the space of Dt modules which
are locally free of finite rank as OY modules on each set in some finite stratification
of Y by locally closed CR submanifolds. To proceed as in the previous paragraph,
we need to observe two things: (a) If p : P → X is a resolution of X by a free
GR space, then the inverse image under p of a GR equivariant sheaf in FX is a
GR equivariant sheaf in FP . (b) The GR equivariant direct image of such a sheaf
under q : P → P0 belongs to FP0 . Then it follows as in the previous paragraph
that an object M in Db

GR,f
(DtX) has the property that each M(P ) belongs to

Db
F(DtP0

). The analogous statement holds for objects of Db
GR,f

(DX) and so the
second statement of the theorem follows from Proposition 5.12.

(2) The heart of the two categories in this case is the category of finitely generated
K equivariant D̃pt = U0(g) modules. Note that U0(g) is Noetherian and of finite
homological dimension and so such modules have finite rank, free resolutions of
finite length. For any resolution P → pt of a point, the sheaves of algebras D̃P
and D̃P0 are locally just tensor products of U0(g) with DP (resp. DP0). These are
naturally DNF sheaves, since as O modules they are free of countable dimension.
For each CR manifold Y let GY denote the category of D̃Y modules which are locally
free of countable dimension as O modules. If p : P → pt is a K free resolution of a
point, and M is a K equivariant D̃pt = U0(g) module, then p+M is just OP ⊗M
and, hence, is a K equivariant object in GP . If q : P → P0 is the quotient map,
then qK∗ maps K equivariant modules in GP to objects in GP0 . It follows that an
object M of Db

K,f(D̃X) has the property that for each resolution P , the object
M(P ) lies in the full subcategory Db

G(D̃P0 ) of Db
K,f (D̃X) consisting of objects with

cohomology in GP0 . As in the proof of Proposition 5.9, objects in G have finite free
D̃λ module resolutions. Hence, the proof of Proposition 5.12 goes through with
D replaced by D̃λ and with F replaced by G. Thus, on each CR manifold Y , the
forget topology functor yields an equivalence

FT : Db
G(Dt)→ Db

G(D).

Equivalence (2) follows from this and the preceding discussion.
Finally, we mention that the same proof given for (2) above establishes that

FT : Db
GR,fg(U

t
0(g))→ Db

GR,fg(U0(g))

is an equivalence but the full subcategory consisting of objects with finitely gener-
ated cohomology modules is not large enough to be of interest here. In particular,
minimal globalizations of Harish-Chandra modules are not generally finitely gener-
ated as U0(g) modules.
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MR 83c:22022

Department of Mathematics and Computer Science, Kent State University, Kent,

Ohio 44242

E-mail address: smithies@mcs.kent.edu

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112

E-mail address: taylor@math.utah.edu

http://www.ams.org/mathscinet-getitem?mr=90j:17023
http://www.ams.org/mathscinet-getitem?mr=95k:55012
http://www.ams.org/mathscinet-getitem?mr=95m:17004
http://www.ams.org/mathscinet-getitem?mr=95f:37014
http://www.ams.org/mathscinet-getitem?mr=89g:32014
http://www.ams.org/mathscinet-getitem?mr=94e:32035
http://www.ams.org/mathscinet-getitem?mr=98h:47002
http://www.ams.org/mathscinet-getitem?mr=96k:32001
http://www.ams.org/mathscinet-getitem?mr=31:4927
http://www.ams.org/mathscinet-getitem?mr=91c:22027
http://www.ams.org/mathscinet-getitem?mr=91h:22029
http://www.ams.org/mathscinet-getitem?mr=90k:17029
http://www.ams.org/mathscinet-getitem?mr=95g:58222
http://www.ams.org/mathscinet-getitem?mr=96e:22031
http://www.ams.org/mathscinet-getitem?mr=85k:58073
http://www.ams.org/mathscinet-getitem?mr=90m:32026
http://www.ams.org/mathscinet-getitem?mr=93k:22011
http://www.ams.org/mathscinet-getitem?mr=90i:22025
http://www.ams.org/mathscinet-getitem?mr=87h:22018
http://www.ams.org/mathscinet-getitem?mr=91j:72012
http://www.ams.org/mathscinet-getitem?mr=48:6966
http://www.ams.org/mathscinet-getitem?mr=83c:22022

	0. Introduction
	1. Monodromic Sheaves
	2. Equivariant Sheaves
	3. The Riemann-Hilbert Correspondence
	4. Globalization
	5. Topology
	References

