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G(Fy)-INVARIANTS IN IRREDUCIBLE G(F;:)-MODULES

G. LUSZTIG

ABSTRACT. We give an explicit formula for the dimension of the space of
G(Fg)-invariant vectors in an irreducible complex representation of G(F2),
where G is a connected reductive algebraic group defined over a finite field Fy
with connected center.

INTRODUCTION

0.1. Let G be a connected reductive group defined over a finite field F, and let
F,2 be a quadratic extension of F,. The finite group G(F,2) contains G(Fy) as
a subgroup. For any irreducible representation p of G(F,2) we denote by the
dimension of the space of G(Fy)-invariant vectors in p. The function p — has
been studied by Gow [GO|, Kawanaka [KA], and Prasad [PR]. Gow assumes G to
be GL,, and shows that in this case, [p] € {0,1}. Prasad shows that [p] € {0,1}
assuming that the character of p is constant on the intersection of G(F2) with
any conjugacy class of G (but he does not need G to be reductive); this includes
Gow’s result as a special case. Kawanaka computes E assuming that either G is a
classical group with connected center or that p is unipotent and the characteristic
is good. He gives separately the formula in each case that he discusses but he does
not give a closed formula for valid in all cases.

The purpose of this paper is to provide such a closed formula (see Theorem 1.4)
valid for any G that has connected center and is simple modulo its center. (The
formula makes sense and is expected to hold without assumptions on the center.)
In §7 we formulate a variant of this formula for character sheaves. In §8 we extend
one of the qualitative features of the formula to general symmetric spaces.

For the benefit of the reader we have included proofs even for results which could
be found in [KAl; these proofs are such that they extend to the more general setting
of this paper.

This work was started during a visit to the Mehta Research Institute in Alla-
habad. I wish to thank Dipendra Prasad for his hospitality and for introducing me
to this problem by explaining his results in [PR].
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X N> o

1. NOTATION AND STATEMENT OF RESULTS

1.1. Let k be an algebraic closure of a finite field F;, with |Fy| = ¢q. Let F2 be the
subfield of k such that |Fz2| = ¢*.

Let G be a connected reductive group over k with a fixed Fj-rational structure.
Let F': G — G be the Frobenius map corresponding to the Fi-structure. Let G be
a connected reductive group defined over F, which is dual to G (as in [DL] 5.21]).
The Frobenius map of G is denoted again by F.

We fix a prime number [ not dividing ¢. If I" is a group, a representation of I" (or
I'-module) is always assumed to be over Q; and to factor through a finite quotient
of I'. Let IrrI" be the set of isomorphism classes of irreducible representations of T,
or a set of representatives for these isomorphism classes.

Following Frobenius and Schur [ES| define ¢ : IrrI' — {—1,0,1} by ¢(E) =1
(resp. ¥(E) = —1) if E admits a non-degenerate I'-invariant symmetric (resp.
symplectic) inner product and ¥(E) = 0 if E is not self dual.

When T is finite we set T' = Hom(T', Q}).

Clearly, GF' is a subgroup of GF*. For any class function ¢ : G = Q; we set

[2]=16"17" 3" ol9) € Qu.

geGF

If ¢ is the character of a GF*-module FE, then is just the dimension of the space

of GF-invariants in E. We will often identify a G¥ *_module (or a formal Q;-linear
combination of irreducible G¥ 2—modules) with its character GF~ — Q.

For any algebraic group H we denote by H° the identity component of H.

If T is a maximal torus of a connected reductive algebraic group H we denote
by Ny (T) the normalizer of T in H and we set Wy (T) = T\Ny(T); this acts on
T by conjugation.

If T is a group, I is a subgroup of IV and ¢’ € T, we set

Zr(g') ={g9 €Tlgg = g'g}
The center of I' is denoted by Zp. If f is a map of a set X into itself, we set
X/ ={z € X|f(z) = x}. The cardinal of a finite set X is denoted by |X| or #X.

1.2. Assume that G has connected center. Let s be a semisimple element in G¥ ?)
The centralizer Z(s) of s in G is connected and F-stable. We can find a pair 7, B
where B is an F2-stable Borel subgroup of Z(s) and 7 is an F2-stable maximal
torus of B. We write W instead of Wy(5)(7). Then W is naturally a (finite)
Coxeter group with a set of simple reflections S determined in the standard way
by B. Now F? acts naturally on W, and F?(S) = S.

Let W, be the semidirect product of W, with the infinite cyclic group with
generator § so that in W, we have the identity dz6~' = F2(z) for all z € W,. Then
W is naturally a subgroup of WS Let Irt” W, be the set of all E € IrrW, such
that there exists a Ws-module E whose restriction to Wi is isomorphic to F. By
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[L1l 3.2], for E € Irr”Ws one can find an E which is defined over Q; moreover,
there are exactly two such E (up to isomorphism); one is obtained from the other
by replacing the action of § by that of —4. In the sequel, E refers to one of these
two extensions of F.

Now IrrW; is naturally partitioned into subsets called the families of Wy (see
[L1] 4.2]). The bijection F2 : W, — W induces a bijection F? of the set of families
of Wy with itself. According to [L1) 6.17(i)] we have a natural partition

IrrGF2 = |_| Il“r&}-C?F2
s,F

where s runs through a set of representatives for the conjugacy classes of semisimple
clements in GF* and F runs through the set of F2-stable families of Wi.

Let s € GF~ be semisimple and let F be an F2-stable family of W,. Let I be the
finite group attached to Wy, F in LI} §4] (where the notation G is used instead
of T'). Since F?(F) = F, we have an induced automorphism F2 : T' — T. Let I’
be the semidirect product of I' with the infinite cyclic group with generator J so
that in I' we have the identity dz6~' = F2(z) for all z € I". Then I is naturally a
subgroup of T".

Consider the set of all pairs (z,&) where z € I'§ C I" and £ € IrrZp(z). On this
set we have an action of I by conjugation; the set of orbits of this action is denoted
by Mr 2. Now [L1], 4.23] provides a bijection

(a) IrrS’}-GF2 — anz.

Let pg ¢ correspond to (x,&) under (a).

1.3. In the special case where F(s) = s~!, we note that Z(s) is F-stable and we
assume that 7, B are chosen so that B is an F-stable Borel subgroup of Z(s) and
T is an F-stable maximal torus of B. In this case F' acts naturally on Wy and
F(S)=S. Let W, be the semidirect product of W, with the infinite cyclic group
with generator v so that in W, we have the identity yoy~! = F(z) for all x € W.
Then W, is naturally a subgroup of W,. (The element 6 € W, corresponds to
= Wg) Let Irr’W; be the set of all E € IrrtW, such that there exists a W-
module E whose restriction to Wi is isomorphic to E. By [L1l 3.2], for E € Irr'W,
one can find an E that is defined over Q; moreover, there are exactly two such E
(up to isomorphism); one is obtained from the other by replacing the action of
by that of —v. In the sequel, E refers to one of these two extensions of E. We have
clearly Irt'W, C Irr”W,. Moreover, if E € Irt’W,, then E can be taken to be the
restriction of E to W,. This F is independent of the choice of F (since (—v)? = ~?)
hence in this case we have a canonical E.

Let F be a family of W such that F(F) = F; let I" be as in 1.2. Since F'(F) = F,
we have an induced automorphism F : ' — I'. Let I" be the semidirect product of
I" with the infinite cyclic group with generator  so that in I" we have the identity
yzy~t = F(z) for all z € I'. We identify I" in 1.2 with a subgroup of I by z — z
for z € T and § — ~2.

Let (z,&) be a pair representing an element of Mp p2. Let

Vz = {2’ eT|z'* = z}.
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Now Zr(z) acts on the set \/x by conjugation in I'. The corresponding permutation
representation of Zr(z) is denoted again by /z. Let [€ : /2| be the multiplicity of
¢ in this permutation representation.

Theorem 1.4. Assume that Z¢ is connected and that G/Z¢q is simple. Let s be a
semisimple element of GF* and let F be an F?-stable family of Ws. Let p= py ¢ €
ImrS’}-GF2 ; see 1.2.

(a) Assume that s is not conjugate under GF* to an element s' such that F(s') =
s'71. Then[p|=0.

(b) Assume that F(s) = s~ but F(F)# F. Then[p]|= 0.

(c) Assume that F(s) = s~ 1, F(F) = F and that |F| # 2. Then : [€: /x].

(d) Assume that F(s) = s, F(F) = F and that |F| = 2. If x = 2, then

:1. If x # 2, then:O,

See the introduction for the relation of this theorem to the earlier work of
Kawanaka. The strategy of the proof is explained in 2.14. The proof is given
in §§2, 3, and 5.

1.5. Let s € GF~ be semisimple and let F be an F2-stable family of W,. Let I' be
attached to s, F as in 1.2. Consider the set of all pairs (y,n) where y € T is such
that Zy(y) meets Iy? and n € IrrZp(y) is such that 1|z () is irreducible. On this

set we have an action of I by conjugation; the set of orbits of this action is denoted

by Mr g2. Let M be the group of all roots of 1 in Q}. For o € M, let €, € (I') be
defined by €4 (7?) = @, €a|r = 1. The restriction of e, to a subgroup of I is denoted
again by €. Then a : (y,n) — (y,1 ® €,) defines a free M-action on Mrp pe.

For any (y,n) as above we set (as in [LI] (4.24.1)])

(a) Ry =0(Z()0(G) Y _{(@,€), (4, m}IA(2,€)ps.g

sum over all (z,£) € Mr pz. (An almost character of GF*.) Here {(z,), (y,n)} €
Q; is as in [LI} (4.21.13)]; A(z, &) is equal to 1 unless F has exactly two elements
in which case it is 1 for # = 42 and is —1 for  # 72; o(H) = (—1)Fa27rank(#H) fop
a connected algebraic group H defined over F.
Up to a root of 1, Ry, depends only on the M-orbit of (y,n) in M g2. Now
(b) If F(s) = s~ 1, then in (a) we have o(Z(s))o(G) = 1.
The proof is given in 1.7.

The following result describes .

Corollary 1.6. Let (y,n) be as above.
(a) Assume that s is not conjugate under GF* to an element s' such that F(s') =

s'~1. Then =0.
(b) Assume that F(s) = s~! but F(F) # F. Then =0.
(c) Assume that F(s) = s=', F(F) = F and Zx(y) does not meet I'y. Then

=0
(d) Assume that F(s) = s~ F(F) = F, that Zp(y) meets I'y and that for any
a € M, n® eq cannot be extended to a self dual representation of Zy(y). Then
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(e) Assume that F(s) = s~ F(F) = F, that |F| # 2, that Z3(y) meets Iy and
that for some o € M, n ® €4 can be extended to a self dual representation 7, of

Zi(y). Then o is unique and =Y(fla)a"t. (@) asin 1.1.)
(f) Assume that F(s) = s~ F(F) = F and that |F| = 2. Then =11if
y=1 and:Oify;zél,

Thus, is either 0 or a root of 1. The proof is given in §6.

1.7. Let T be a torus defined over F, with Frobenius map F. We have
(a) O'(T) — (_1)dimTl
Let £ be the lattice of one parameter groups of T. Let L& = C ® L. There exists
an isomorphism of finite order f : £ = £ (inducing an isomorphism f T S T)
such that F(t) = f(t9) for all t € T. Then F2(t) = f? (tq2) and the Fjz-rank of T
is the rank of Ker(f2 —1: Lo — Lc). (We denote 1 ® f again by f.) This rank
equals a + b where a (resp. b) is the number of eigenvalues of f equal to 1 (resp.
—1.) The eigenvalues other than +1 of f occur in pairs ¢,(~! (since f is given by
an integral matrix of finite order). Hence a +b = dim7T mod 2. Thus, (a) follows.
We prove 1.5(b). Let s be as in 1.5(b). Lt B,7 be as in 1.3. Then o(Z(s)) =
o(T) and, by (a), this equals (—1)3™7; here, replacing s by 1 we find o(G) =
(=1)4mT where T is a maximal torus of G. Thus

o(G)o(Z(s)) = (~1)ImT (—1)dmT 1,
This proves 1.5(b).

2. PROOF OF THEOREM 1.4(a),(b)

2.1. In this section G is as in 1.1.

Let I be the set of all pairs (T, \) where T is an F2-stable maximal torus of
G and X € (TFQ)V. Let (T,)\) € I. Let R} be the virtual representation of GF’
attached to (T, \) in [DL] (relative to G, F?). Let

X = {J) S G|a:F(T)x_1 = T, J,‘F(J)) S T, /\|{tET|xF(t)x*1=t} = 1}.

Then T acts on X by t: x +— tx. Clearly, T\ X is finite.

Lemma 2.2. We have | R} |= |T\X]|.

This is an easy consequence of results in [L5]. (In [L5] the characteristic of the
ground field was assumed to be odd; but in the special case that is used below, that
assumption is unnecessary.)

We consider the Fj-rational structure on the connected reductive algebraic group
G1 = G x G such that the corresponding Frobenius map F; : G1 — G1is Fi(g,9') =
(F(¢"),F(g)). Then g — (g, F(g)) is an isomorphism

(a) GF* 5 g,

Now Ty = T x F(T) is an Fj-stable maximal torus of Gy and t — (¢, F'(t)) is an
isomorphism TF* = TI". Via this isomorphism, A becomes A\; € (TF'). From
the definitions it is clear that the GF”-virtual representation R% corresponds under
(a) to the GI'-virtual representation R% attached in [DL] to (T4, A1) (relative to
Gl, Fl) and

(b) | Ry |= G| S gear t1((9,9), B7Y)-
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The involution 6, : G; — Gy given by 01(g,9’) = (¢, g) clearly commutes with F7.
The fixed point set of §; may be identified with G.

Applying [L5L 3.3] to G, F1,61,T1, A1 we see that the right-hand side of (b)
is equal to the number of T{ — G¥ double cosets in G represented by ele-
ments of the form (f, F(f)) where f € GF”* satisfies F(f~'Tf) = f~'Tf and
Algterp(r—1ep)=f-1¢5y = 1. (In our case the character ¢ which enters in L5} 3.3] is
1 and the signs which enter there are also 1.) By the change of variabley = fF(f~1)
we see that the right-hand side of (b) equals |TF ’ \Y| where

Y={yeGIFy)=y ", yF(T)y ' =T, AMteriyrayy-—1=ty = 1}

and TF acts on Y by t : y — tyF(t1).

The inclusion Y C X induces a map & : TF \Y — T\ X. To complete the proof,
it is enough to show that  is bijective.

We show that x is surjective. It is enough to show that, if x € X, then there
exists t € T such that tx € Y. We have xF(z) = t; € T and we must show that
there exists t € T such that tzF(t)z~' = t;'. By Lang’s theorem we can write
x =z 1F(2) for some z € G. We have F(2T2~!) = 2T2~1. Thus F(T’) = T’ where
T’ = 2T2~'. Our equation for ¢ is 2tz ' F(2)F(t)F(z~1) = zt;'2~!. Thus, if we
set ' = ztz~1 t| = 2t1271, we see that we must solve the equation ¢ F(¢/) =t} 1
with ] € T" and unknown ¢’ € T”. This equation can be solved by Lang’s theorem
for T” with the Frobenius map 7 +— F(771). Thus, s is surjective.

We show that x is injective. It is enough to show that, if y € Y,y € Y t; € T
satisfy ' = t1y, then y' = tyF (¢t !) for some ¢ € TF®. As in the proof of surjectivity
of k we can find t € T such that tyF(t~ 1)y~ = t;. (We write y = 271 F(2) and
we use Lang’s theorem for (27271, F).) We have y = tyF(¢t~!) and it remains to
show that ¢ € TF". Since y =ty € Y, we have F(t1y) = y~'t;'. Applying F
to tyF(t~ 1)yt = t; gives F(t)y 1 F2(t 1)y = F(t1). Substituting here F(t)y~! =
y Ut gives y U MtF2(t~ )y = F(t1). Hence F(t,)y 'tF?(t~')y = F(t;) and
y~1F?2(t7 1)y = 1. It follows that tF2(t~') = 1 hence t € TF*. Thus,  is injective.
The lemma is proved.

2.3. Let (T,\) € I. If | R} | # 0, then, by the proof of 2.2, there exists f € GF”
which conjugates (T, A) to a pair (T”,X') € I where F(T’) =T’ and X|r = 1. On
the other hand, if (T, A) € I is such that F(T) =T and A|pr = 1, then, by 2.2,

R% = lj(w S Wg(T); F(U)) = wil, >\|{tET|w(F‘(t))=t} = 1).

2.4. Let T be a torus defined over k. Let p be the characteristic of k. For any
integer n > 1, let T,, = {t € T|t*"~' = 1}. If n/ > 1 is an integer divisible by n we
have a (surjective) norm map Ny, : Ty — T, given by t — @™ =D/(" 1) Thus
we obtain a projective system of finite groups (T},, Ny ). By passage to transposes
we obtain an inductive system of finite groups (7}, " N, ) whose transition maps
are injective. The union of this inductive system is denoted by T.Now T +— Tis a
contravariant functor from the category of tori defined over &k (and homomorphisms
of algebraic groups between such tori) and the category of torsion abelian groups.
If f: Ty — Ty is a morphism of tori, we denote by f* : Ty — T} the corresponding
homomorphism of torsion abelian groups.
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Assume now that f : T — T is a morphism such that for some integers m,e >
1 we have f™(t) = t™ for all t € T. We define a surjective homomorphism
Ter — T by t v tf(#)f2(t)... f71(t). Taking transposes we obtain an injective
homomorphism (7Y — T,,,. Composing with the canonical imbedding 7., — T
we obtain an injective homomorphism a : (T} — T which is in fact independent
of the choice of m. Consider the diagram

’ ’
a b

0 —— (T T T 0
| |
0 —— (Tfy —*5 7 > 7 0

where @ is above, a’ is the map analogous to a defined in terms of f? instead of f,
b(z) = f*(x)a~t, v/ (x) = (f?)*(x)z~1, c is the transpose of the obvious inclusion
T c T+ and d(z) = f*(a)z.

(a) This diagram is commutative, with exact rows.
(The proof is left to the reader.)

Let (T,A) € I. Let A € T be the image of A € (TF") under a (with f = F2 :
T—-1T).

Lemma 2.5. Let X' = {z € GzF(T)x™' = T,zF(z) € T, f:(A) = A=}, where
fre: T — T is defined by f.(t) = xF(t)z~t. Then X in 2.1 coincides with X'.

If z € G satisfies «F(T)z~! =T, 2F(z) € T, then f, : T — T is well defined
and satisfies f2 = F? : T — T. Hence 2.4(a) is applicable to f = f, and shows that
the condition that A|q;er|zre—1=¢} = 1, that is, the condition that c¢(\) = 1, is
equivalent to the condition that da’(\) = 1, that is, the condition that f(A) = A~1.
Thus X’ = X. The lemma is proved.

2.6. Let Z be the set of all pairs (7, s) where 7 is an F?-stable maximal torus of
G and s € TF". Now GF” acts by conjugation on I and GF* acts by conjugation
on Z. Applying [DL} (5.21.5)] for F? instead of F' we obtain a canonical bijection
(a) GI'\I — GF\T.
Using the definition and 2.5, we see that this bijection has the following property:
(b) a GF*-orbit in I contains a pair (T,\) such that FT = T, Nrr = 1 if and
only if the corresponding GF* -orbit in T contains a pair (T,s) such that F(T) =T
and F(s) = s71; for such (T, \), (7T, s) the number of w € W(T) such that F(w) =
w™t and AMiterjw(F@)=ty = 1 is equal to the number of w € Wg(T) such that
F(w) =w™" and w(F(s)) = s~ (that is w(s) = s).
For any (7, s) € T we define RS to be R} where the G’ -orbit of (T, \) corresponds
to the GF”-orbit of (T,s) under (a). Now R% is well defined since R depends only
on the GF*-orbit of (T, N).

2.7. In the remainder of this section we assume that Zg is connected.
Using 2.6(b) we can reformulate the results in 2.3 as follows. Let (7,s) € 7.

(a) If the GF -orbit of (T, s) does not contain a pair (T',s') such that F(T') = T'

and F(s') =s'71, thenz 0.
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(b) If F(T) =T and F(s) = s~ !, then

= t(w € Wo(T); F(w) = w™",u(s) = 5)
= 8w € Wyo(T); Fw) = ™).

By Lang’s theorem for (Z(s), F'2), for any w € W we can find an element g,, € Z(s)
such that g,'F?(gw) is in Nz(5)(7) and represents w. Then 7, = g, T g," is an
F2-stable maximal torus of Z(s) whose Z(s)" *_conjugacy class is independent of
the choice of g,,. Hence we may set R, = R ; this is well defined by s, w.

Lemma 2.8. Let s € QF2 be semisimple and let w € W.
2
(a) If s is not conjugate under GE~ to an element s’ such that F(s') = s'~1 (or

equivalently, F(s) is not conjugate to s~ in G), then =0.
(b) If F(s) = 571, then | R}, | =ty € W w = yF(y)).
(a) follows immediately from 2.7(a). We prove (b). We first show that
(c) if £ 0, then w = yF(y) for somey € Ws.

Using 2.7(a) we see that there exists g € G such that F(gTwg™ ")

= gTwg ™",
F(gsg™!) = gs7tg=1. Then F(g)sF(g~') = gsg~! so that ¢g~'F(g) € Z(s). By
Lang’s theorem for Z(s) we can find 2z € Z(s) so that g7 'F(g) = 27'F(2). Then

gz~' € GF and z € Z(s)F”. We have F(zT,z"') = 2T,,2~". Since =

# 0, we see from 2.7(b) that there exists
S WZ(s) (ZTwZ_l) = WZ(s) (Znggq;lz_l)

such that F(u) = u~!. We have F(29,7 g, 27 ") = 29,7 g2~ . Since F?(z) =
z, the element zg, has the same properties as g,,. Hence we may replace zg,
by gw. Thus we may assume that F (9,7 g,') = gw7g," and there exists u €
Wz(s)(9wT g5") such that F(u) = u='. Now z — gyxg," induces a bijection
LW =Wy (T) = Wy (Tw). If 2 € Wy (T), then the condition F(i(x)) =
t(z)~ 1 is equivalent to wlF(m)wfl = 27! where w; is the element of W represented
by g ' F(gw). Thus if 2 = = (u), then w; F(z)w;* = z~'. Hence y = z~ w;
satisfies yF'(y) = w. This proves (c).

Next we assume that w = wq F(wq) for some wy € W,. By Lang’s theorem for
(Z(s), F) we can find an element h,, € Z(s) such that hy' F(hy,) is in Nz (7) and
represents wy. Then hy' F2(hy) = hy' F(hy)F(hy' F(hy)) € Nz(s)(T) represents
w1 F(w1) = w. Hence we may assume that 7, = h,, 7 hy,'. By the definition of h,,
we have F(7,) = 7T,. By 2.7(b) we have

= Hu' € Wy ()i F(w) = w/ ™)

Now 2 — hyahy,! induces a bijection Ny(s)(7) — Nz (Tw) and a bijection ¢ :
Ws = Wy (T) = Wz (Tw). If 2 € Wy (T), then the condition F(i(x)) =
1(x)~" is equivalent to wy F(z)w; ' = z~'. Thus

=f(z € W wi F(z)wy " =27 ").

The change of variable z — y where y=! = w; 14 transforms the equation

w F(z)w;' = 2! into the equation wy F(w;)F(y~"') = vy, that is, yF(y) = w.
Hence =fi(y € Ws;w = yF(y)). This together with (c) completes the proof.
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2.9. Let I be a finite group. According to [FS], if € T" and ¢ is as in 1.1, we have
(a) > tr(, E)y(E) = (2’ € j2’? = x).

Eclrrl

2.10. Assume that we are given an automorphism F' of the finite group I'. Let r
be the semidirect product of I with the infinite cyclic group with generator ~ so
that in T' we have the identity yzy~! = F(z) for all € T'. Then T is naturally a
subgroup of I'. Let Irr’T" be the set of all E' € IrrT such that there exists a I'-module
E and such that the restriction of F to I' is isomorphic to E.

For E € Tr'T" we define ¢/(E) € {—1,0,1} as follows. If there exists £ as above
such that E is self dual, we set ¢/(E) = ¢(E) € {—1,1}. (In this case there are
exactly two choices for a self dual E and both have the same -value.) If there is
no E as above such that F is self dual, we set ¢/ (E) = 0.

In this setup we have the following result which is a generalization of 2.9(a).

Lemma 2.11. For any x € I we have

> (@’ EYW(B) = 4(y € T;yF(y) = ).
Eelr'T
¢ (E)==%1

(In the last formula E is assumed to be one of the two self dual extensions of
E; they are obtained from each other by replacing the action of v by that of —~.
Hence tr(z72, E) is independent of the choice of E.)

Let n be an integer > 2 such that F* = 1 on I'. Let I'y be the semidirect
product of T" with the cyclic group of order 2n with generator «; so that in I'; we
have the identity vi2'v; ' = F(z') for all 2/ € T. The solutions ¥’ € T'; of the
equation y'2 = z7? are of two kinds: ¥’ = yy; with y € I' such that yF(y) = = and
y = y'ylH” with y € T" such that yF'(y) = «. Hence

By € TiyF(y) = 2) = (1/2)4(y' € T3/ = a7]).
By 2.9(a) (for I'y), the last expression is equal to

(a) (1/2) Y te(and, EDY(E).

FEq€lrrly

Let F; € IrrT'y. The restriction Fi|r is multiplicity free hence it decomposes
canonically into a direct sum of irreducible I'-modules which are cyclically per-
muted by v1 : E1 — FEj. If the number of summands is 3 or more, then clearly
tr(zy2, E1) = 0. If the number of summands is two, then n is even and the number
of distinct E{ € IrtTy such that Ef|r 2 E1|r is n. These Ef can be arranged into
n/2 pairs so that the two representations in the same pair have the same value of
1 and opposite values of tr(zv?,). Hence the sum (a) may be restricted to those
E; whose restriction to I' is irreducible. From this the lemma follows easily.

2.12. Let s € GF* be semisimple. Following [L1l 3.7], for E € Irr" W, we define

(a) R} = W, ~* Z tr(wd, E) RS,
weWs

(an element of the Grothendieck group of representations of G * tensored with Q).
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Proposition 2.13. (a) If s is not conjugate under GF* to an element s' such that
F(s') =571, then|R% | =0 for any E € Irt" W, (for the two choices of E).
B Y
(b) If F(s) = s~ and E € Iet"W, — Irt'W,, then | R} | =0 (for the two choices
of ).
(c) If F(s) = s and E € Irv'Wy, then =1 (for the canonical E).

(a) follows immediately from 2.8(a). Assume now that F(s) = s~. By 2.11, for
any w € Wy we have

Z tr(w’yQ, E') =iy € We;yF(y) = w),
E’'elrr’ Wy
or equivalently
tr(wé, E,) = ﬂ(y € VVs;yF(y) - w)a
E’'€lrr’' Wy

where E’ is the canonical one. (In the present case we have ¢/(E’) = 1 for any
E’ € Irr'W; see [LI] 3.2].) Combining this with 2.8(b) gives

: Z tr(wd, E)
E'elrr' Wy

for any w € W,. Now let E € Irr”’ W, and consider one of the two choices of E. We
have

Ry|= W™ Y tr(ws, B Ry | = Wl ™ Y tr(ws, B) Y tr(wd, )

weWs weEWs E'clrr’'W

=Wt Z Z tr(wd, E)tr(wd, E').
E'elrr’'Ws weWy
Now [Ws| =137, cw, tr(wd, E)tr(wd, E')is 0if E # E' and is 1 if E = E'. (See [L1]
p. 75].) Hence (b) and (c) follow. The proposition is proved.

2.14. Our strategy to prove Theorem 1.4 is as follows. Let s, F be as in 1.4. In
[LT} 6.17(ii)], certain (not necessarily) irreducible representations +R., 2, of GF * are
described, where = is an element in the two-sided cell of Wy corresponding to F.
(In loc. cit. these representations are denoted by £R,..) These representations
are on the one hand Z-linear combinations of various R% with E € Irr” W, with

coefficients explicitly known from [L4]. Hence are explicitly known from

2.13. On the other hand, these representations are linear combinations of various
pE II‘I‘SJ-‘GFZ whose coefficients (in N) are explicitly known from [L1l 4.23]. This
gives rise to a system of linear equations for the unknowns @, p € Irrg, FGF 2, where
the coeflicients and the constant terms are in N and are rather small. Also by [LI]
(6.18.2)], any p € Irr&}-GF2 appears with > 0 coefficient in at least one of these
equations. Although this system has in general more unknowns than equations,
the fact that the unknowns must be in N provides very strong constraints. In
particular, the unknowns are bounded above. Also, if one of the equations has
constant term 0, then all unknowns which enter into that equation must be 0. In
the case of classical groups this is already sufficient to determine all unknown | p|as

we will see in §3. For the exceptional groups the method above determines the E
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up to a small indeterminacy. To remove that indeterminacy we will need additional
information which comes from the theory of character sheaves.

2.15. Proof of Theorem 1.4(a),(b). We carry out the strategy in 2.14 in the
setup of 1.4(a) or (b). Let s,F,p be as in 1.4(a) or (b). As in 2.14, there exists a
representation p’ of G¥ * such that p is a direct summand of p’ and such that the
character of p' is a Z-linear combination of characters of R}, with E € Inn"W;NF.

Since 0 < < , it is enough to show that = 0. Hence it is enough to show
that =0 for any E € Irt" W, N F.
Under the assumption of 1.4(a), this follows from 2.13(a). Under the assumption

of 1.4(b), this follows from 2.13(b) since in this case any E € Irr” W, N F is outside
Irr'Ws. This completes the proof of 1.4(a),(b).

3. PROOF OF THEOREM 1.4(c) FOR CLASSICAL GROUPS

3.1. In this section we assume that G is as in 1.4, of classical type and that F(s) =
sl and F(F) = F.

3.2. We prove 1.4(c) in the case where I' = {1}. In this case,  consists of a single
representation E (necessarily in Irr'Wy) and Mp g2 consists of a single element
(v*,1). By [LI] and 1.5(b) we have p,2; = R%. Hence by 2.13 we have =

R | = 1. On the other hand, \/7% = {7} is a point, hence [¢ : \/z] = 1. Thus

1.4(c) is proved in the present case.

3.3. In general, we can write canonically Wy = Wy x Wy where W7 is a product of
Weyl groups of type A and W5 is a Weyl group without factors of type A. Both Wy
and W are F-stable. If Wy = W7, then 1.4(c) holds by 3.2. Similarly, the proof of
1.4(c) for general W is exactly the same as the proof in the case where Wy = Wh.
Therefore we may assume that

(a) W5 has no factors of type A.

3.4. Assume that W is as in 3.3(a), that F maps each irreducible factor of W; into
itself and that F? acts trivially on W. In this case we have FNIrr' W, = FNIrr" W.
We shall use arguments from [L1), §6]. As in loc.cit. to F we can associate an Fb-
vector space Y with a basis e1, ea,..., e, and a symplectic form (,) : Y XY — Fy
such that (e;,e;) = 0 if |§ — j| # 1. Let R be the radical of (,). We consider the
family 7 (Y") of subspaces of Y defined as in [L1} p. 270]. Each subspace C € T(Y)
contains R and we have C/R = T.

The union Y of all C' in 7(Y) is therefore a union of R-cosets in Y and there
is a natural bijection between the set F and the set of R-cosets in Y. Let E, € F
correspond to the coset of y € Y.

Let X be the set of linear forms n : Y — Fj such that n|g = 0. There is a
natural bijection between X and IrrS,}-GFz. Let p, € IrrS’}-GF2 correspond to
n € X. Then for any n € X,y € Y we have (p,, : R%y) = (—1)"®). Moreover, for

any C € T7(Y) and any linear form ¢ : C' — F5 such that ¢lr = 0 we have
(2 S )R = Y gy
yeC/R neXinlc=¢

In our case, 1.4(c) can be reformulated as follows:
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(b) [5] = ITY,

() [Pa]=0if 1 #0.
Using 2.13 and (a) we see that for any C € T(Y) and any £ € Hom(C, F3) such
that {|g = 0 we have

Z : Z (1)) RSEU - Z (—=1)W),

neX;nlc=¢ yeC/R yeC/R
Hence
(d) Y. [p]=0ife#0,
neX;inlc=¢

(e) > [m]=Ic/RI =)

neX;n|c=0

Since all terms in the sum (d) are > 0, it follows that = 0 for any n € X such

that n|c # 0 for some C.

Assume that n € X —{0}. Then n(e;) # 0 for some ¢. By the definition of 7(Y)
we can find C € 7(Y') such that e; € C. Since n(e;) # 0, we have n|c # 0. Hence
= 0. Thus (c) is proved. Now let C' € T(Y). We rewrite (e) using (c); (b)

follows. Thus 1.4(c) is proved in our case.

3.5. Assume that Wy is as in 3.3(a) and that F' does not preserve each irreducible
factor of W. Since G/Z is assumed to be simple, W is a product W7 x W7 where W1
is a Weyl group of type By, C,, or D,, and F interchanges the two factors. We shall
use arguments from [I1} §6]. To F we can associate Y, ey, es, ..., en, (,), R, T(Y),Y
as in 3.4 so that the set F is naturally in bijection with the set of ordered pairs of
R-cosets in Y. Let E, . € F correspond to the pair of cosets of y and ¢’ in Y. Let
X be the set of linear forms 1 : Y — Fy such that n|g is 0 if F2 = 1 on W and
is an isomorphism R = F; if F2 # 1 on W. There is a natural bijection between
X x X and Irrs,y:GFz. Let py,, € II‘I‘S,]:GFQ correspond to (n,1') € X x X.

For simplicity we assume that F? = 1 on W. (The case where F? # 1 is similar.)

For any y,y € Y we have E, ., € Irt”W; we have E, ,» € Irt’W if and only if
y =1 mod R. Forany y,y’ € Y let E, , be the extension of E, ,» to W on which
y2 acts trivially. Then for any 7,7 € X and y,y € Y we have (p,, : Ry )=

v,y

/

(=1)1)+n" (W) Moreover, for any C,C" € T(Y) and any ¢ € Hom(C, F3), & €
Hom(C’, F3) such that £|r = £'|g = 0 we have

(a) Z (_1)E(y)+gf(y/)R§E = Z P

v,y
yeC/Ry'€C’'/R nn'€Xinle=En"|or =€

In our case, 1.4(c) can be reformulated as follows:
(b) [Py )= Tifn =1,
(©) [pan]=0ifn#7',
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Using 2.13 and (a) we see that for any C,C’" € T(Y') and any £ € Hom(C, F»), £’ €
Hom(C’, F5) such that ¢|r = §’|R =0, we have

Z m Z w+ (y)R% = Z (_1)§(y)+5’(y).

vy

nn'€X yeC/R ye(CNC)/R
nlc=¢ y'eC’' /R
n'|cr=¢'
Hence

(@ 2 [P | =0

nn €Ximle=E.n |cr =€

(e) > = (Cne)/R|

' €Xmle=¢n"|cr=¢€
if £ =¢’. Since each term in the sum (d) is > 0, we see that = 0 for any
n,m" € X such that n|c # n'|¢ for some C' € T(Y). If n # 7/, then, by an argument
in 3.4, we see that there exists C € 7(Y') such that (n—n')|c # 0. Hence =0

and (c) is proved. We can find C, C” in 7 (V') such that CNC' = R and C+C' =Y
Let ng € X. Let £ = nolc, & = nolcr. Then in the sum (e) for C,C", &, £ as above
we may restrict ourselves to n = 1’ (by (c¢)) such that n|c = &, n|cr = &, that is,
such that 1 = no; we see that = 1. Thus 1.4(c) holds in our case.

3.6. Assume that W is as in 3.3(a), that F' maps each irreducible factor of Wy
into itself and that F? acts non-trivially on W. In this case Wj is of type D4 and
F : Ws — W, has order 3. This case is similar to (but simpler than) that in 3.4.
We omit the proof.

4. SOME RESULTS ON CHARACTER SHEAVES

4.1. In this section G is as in 1.1. We assume that the characteristic of Fj is
restricted as in [L2), (23.0.1)] so that the results of [L2] on character sheaves are
valid.

Let A be a character sheaf on G such that there exist an isomorphism ¢ :
(F2)*(A) = A. Let xa,4: GF’ — Q be the class function defined by

XA,6(9) = Z(—l)itf(éf’gaHé(A))
where H!(A) denotes the i-th cohomology sheaf of A and x,4(A) is its stalk at g.
Let DA be the Verdier dual of A.

Lemma 4.2. Let A, ¢ be as above. Assume that Hi(G, F*(A) @ A) = 0 for all i.
Then =0.
We define an isomorphism ¢ : F*(F*(A) ® A) — F*(A) ® A as the composition
(F2)*(A) @ F*(A) 22 A F*(4) — F*(A) @ A

where the last isomorphism is switching the two factors. If g € G¥, the map induced
by ¢ on the stalk

Hi(A®A)= P Hi(A)eH,) (A)

i i =1
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is @, =i d)g ® 1 composed with the isomorphism that switches the factors. It
follows that tr(cﬁg,H;(A ® A)) is tr(%,H;/z(A)) if ¢ is even and is 0 if 7 is odd.
Hence

XFe(A)oAd = Ztr(%ﬂé’ (A)) = £x4a,0.

The last equality holds since H* (A) # 0 implies i’ = dimsuppA mod 2 (see [L2]
24.11]). Hence

i: GFI Z XF*(A)®A,(;(9)~

geGF

By the trace formula for F': G — G, the last sum is equal to
D (—1)ite(Fy, HI(G, F*(A) @ A))

i

where F7 is induced by F,¢. Since H!(G, F*(A) ® A) = 0, each term in the last
sum is zero. The lemma is proved.

4.3. Let P be a parabolic subgroup of G and let L be a Levi subgroup of P. Assume
that 'L = L. Let K be a cuspidal character sheaf on L. Let K be the perverse
sheaf on G obtained by inducing Ky from P to G (see [L2] 4.1]). Then F*(K) is
the perverse sheaf on G obtained by inducing F*(Kp) from F~1(P) to G. Assume
that for any isomorphism f : L = L induced by conjugation by an element in G
we have F*(Ky) % f*(DKy). (Here D is a Verdier duality on L.)

Lemma 4.4. Let A, ¢ be as in 4.1. Assume that A is a summand of K as in 4.5.
Then =0.

By [L2] 7.8] we have H{(L, F*(Ko) ® f*(Ko)) = 0 for all i and all f as in 4.3.
Hence by [[.2, 7.2] applied to F*(K) and K we have H!(G, F*(A) ® A) = 0 for all
i. Using 4.2 we deduce that =0.

4.5. The hypothesis of 4.4 is verified in the following cases (here we assume that
Z¢ is connected):

(a) G/Zg is of type Eg, E7 or Es, L/Zy is of type Eg, Ky is any cuspidal character
sheaf on L, A is any simple summand of K.

(b) G/Zg is of type E7 or Es, L/Zy, is of type E7, Ky is any cuspidal character
sheaf on L, A is any simple summand of K.

(¢c) G =G/Zg is of type Eg, Fy or Go, L = G and Ky = K = A is a cuspidal
character sheaf on G which is not uniquely determined by its support.
For these cases the restrictions in 4.1 can be competely removed. (See Shoji [9].)

5. PROOF OF THEOREM 1.4(c),(d) FOR EXCEPTIONAL GROUPS

5.1. In this section we assume that G is as in 1.4, of exceptional type and that
F(s)=s"'and F(F)=F.

5.2. The proof of 1.4(c) in the case where I' = {1} is exactly the same as in 3.2.
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5.3. We prove 1.4(c) in the case where I' = Z/2Z. In this case IrrS’}-GF2 con-
sists of four elements p1, p2, p3, p4 and Irr’W N F consists of three representations
E1, Es, E3. By [L1] we have

p1+p2=Ri+ Ra,p1+p3=Ri+R3,p3+ps=R1 —Ro,p2+ps=R1 — R3
where R; = R}, . Let a; = . Using 2.13(c) we obtain

a1+ azx=2,a1+a3 =2,a3+as =0,a2 +aq4 =0.

Since a; > 0, the last two equations imply as = a3 = a4 = 0. It follows that a; = 2.
From this 1.4(c) follows easily in our case.

5.4. Assume that G is adjoint of type Fg and that I' & G3 (symme_tric group in
3 letters). In this case F' acts trivially on I'. The eight elements of Mr g2 can be

represented in the form (1,1), (g2, 1), (g3,1), (1,7), (1,¢€), (92, €), (g3, 0), (g3, 6?) (no-
tation of [L1), 4.3]; we write (g, &) instead of (g72,€)). The corresponding elements

of ImrS’}-GF2 are denoted by p1, p2, ..., ps. The elements of Irr'W, N F are denoted
by El, E27 E3, E4, E5. By [Ll] we have

(a)

p1+p2+p3=Ri+ Re+ R3,p1 + p2+ ps = R1 + Ro + Ry,

p2 + pa+pe+pr+ps =2R1 — R, p2 + p3s + ps + pr + ps = 2Ry — Ry,

p3 + ps +ps = Ry — Ro + R3, pa + p5s + ps = R1 — Ra2 + Ry, p2 + ps = R1 — R,

where R; = R; Let a; = . Using 2.13(c) we obtain

ar+az+a3=3,a1+az+a4 =3,a2 + a4 +as+ar+as =1,
az+az+ag+ar+ag=1,a3+as+as=1,a4 +as5+ag =1,as +ag =0.

Since a; > 0 we deduce that as = ag = 0. Since p7, pg are algebraically conjugate
we see that ar,ag are algebraically conjugate. Since they are integers we have
a7 = ag. The third equation in (b) becomes a4 + 2a7 = 1. Since a; € N, it follows
that ay = 1,a7 = 0. Now (b) yields (a1, aq,...,as) = (2,0,1,1,0,0,0,0). From this
1.4(c) follows easily in our case.

5.5. Assume that G/Z¢ is of type Fg, E7 or Eg and that T' = G3. In this case the
elements of II‘I‘S’]:GFQ and of Irr'W, N F can be labelled as in 5.4. The equations
5.4(a) and their consequence 5.4(b) still hold in our case. But in this case we do

not know a priori that a; = ag. Thus we need an additional equation. As stated
in [L2] and proved in [L3],[L6],[S], the almost characters

p1—ps—pat+ps+207—ps, p1—p3—pstps—pr+2ps

are of the form x 4,4 where A is as in 4.5(a) for a suitable ¢. Using 4.4 we deduce
that

a1 —asz—aqg+as+2ar —ag =0, a; —asz—as+as — a7+ 2ag = 0.

Substracting, we get a; = ag. The argument continues as in 5.4 and the a; are
determined as there. We see that 1.4(c) holds in our case.
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5.6. Assume that G/Zg is of type G2 and that I' & &3. Since in this case G =
Za x (G/Zg), we may assume that Zg = {1}. The elements of IHS’}-GF2 can be
labelled as in 5.4 but Irr'WNJF consists now of E1, Es, E3, E4 so that the equations
5.4(a) (except the last one) hold. As in 5.4 from these equations we deduce
() a1+ az+a3 =3,a1 +as+ag=3,a2+ a4+ ag+ay +ag =1,
a

ax+az+as+ar+ag=1,a3+as+as=1,a1s+as+as=1.
Since there is one less equation than in 5.4(b), we need additional information. As
in 5.5, the almost characters

p1— P3— pa+ps+2p7 — ps,p1 — p3— pa+ ps — p7+ 2ps
are of the form x4 4 where A is as in 4.5(c) for a suitable ¢. Using 4.4 we deduce
(b) a1—az—as+as+2a;—as=0, a3 —az—as+as—ay+ 2ag=0.
It is easy to see that the equations (a) and (b) have a unique solution with a; € N

namely (ai,as,...,as) =(2,0,1,1,0,0,0,0). From this 1.4(c) follows easily in our
case.

5.7. Assume that F consists of two irreducible representations Fy, Fs. They are in
Irr'Ws. In this case, G/Z¢ is of type E7 or Eg and I' 2 Z/2Z. The four elements
of ImrS’}-GF2 are denoted by p1, p2, p3, pa so that

p1+ p2 = Ry + Ra,p3 + ps = R1 — Ry,
where R; = R; Let a; = . Using 2.13(c) we obtain
a1 +az =2,a3+ ag = 0.
Since a; € N, we have a3 = a4 = 0. As in 5.5, the almost character

pP1— P2+ p3— p4a

is of the form x4, where A is as in 4.5(b) for a suitable ¢. Using 4.4 we deduce
that a; —az+ a3 —aq = 0 hence a; = ag. It follows that (a1, as,as,a4) = (1,1,0,0).
Hence 1.4(d) holds.

5.8. Assume that G/Zq is of type Fy and that I' = &,. We may assume that
Zg = {1}. We have s = 1. Here IrrL].-GF2 consists of 21 irreducible representations
p; and F consists of 11 representations F;. We consider the analogues of the
equations 5.4)(a); as explained in 2.14, they are obtained from the elements

Qg = g C.’,C,Eq‘,E’L'
[

(see [L1), (5.10.3)]) by expressing ), Cop; R}, as linear combinations with coeffi-
cients in N of p; (using [LI} 4.23]). Now the various «, are computed in [L4]. As in
5.4 from these equations we get a system of equations with coefficients in N for the
unknown a; = . As in 5.5 we get four additional equations for the a; attached
to four almost characters which are of the form x4 4 with A as in 4.5(c). These
equations determine uniquely the a; subject to a; € N. From this 1.4(c) follows
easily in our case.

The same argument applies in the case where G/Z¢ is of type Eg and I" & &s.
(Here the situation is simpler as the additional equations coming from 4.4 are
not needed. Instead we use, as in 5.4, the equations a; = a; whenever p;, p; are
algebraically conjugate.)

This completes the proof of Theorem 1.4.
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6. PROOF OoF COROLLARY 1.6

6.1. 1.6(a),(b),(f) follow immediately from 1.4(a),(b),(d). In the remainder of the
proof we assume that F(s) = s~1, F(F) = F and that |F| # 2. Since the transition
from pg ¢ to Ry, is given by an invertible matrix [LI, (4.21.10)], it is enough to
show that, if we assume that 1.6(c),(d),(e) hold, then 1.4(c) holds. Using 1.5(b)
and [L1l (4.21.10)], we have

pre=12Z0@)|2Ze) DY Y (g e g m)te(gyg L Ry,

Y,m 51]€F )
Tgyg =gyg

where (y,n) runs over a set of representatives for the M-orbits in Mr 2. Hence,
by our assumption, we have

=017 Zr ()|~ Z Z Yo gtz g m)tr(gyg L E)y(7)

gel
zgyg~ ' =gyg~'w
where y runs over the elements of I' and is subject to the condition that Zn(y)
meets I'y and 7 runs over the irreducible representations of Zj(y) such that 7
extends to a self dual representation 7 of Z(y). By 2.11, for any y, g € T such that

zgyg ' = gyg~ 'z, we have

> te(g T wg, mv (i) = 4z € Zp(y); 2° = g~ 'xg)

hence

= (07 Ze (@) 7Y > tr(gyg ™", (= € Zp(y);2* = g~ 'ag)
Yy geTizgyg~t=gyg~'z
= [0} Zr ()| > tr(gyg ", ).
y,9€T,2€Tv;2y=yz,22=g " tag

Setting 3’ = gyg~ ', 2’ = gzg~! we obtain

[Pee]=1Ze@) ™ Y 6ly,6)

y'er

2/ ely
Z/y/=y/z/

212=:C

=[Ze(@)| " Yy, Ve, ) = [€: Val,

y'€Zr(z)

as required.

7. MORE ON CHARACTER SHEAVES

7.1. Let G be as in 1.1. In this section we assume that

(a) the connection stated in [L2] between the almost characters of G¥ * and the
character sheaves of G holds;

(b) g is sufficiently large.
Under these assumptions and with the notation of 4.1 we have the following result
suggested by Corollary 1.6. (It is likely that the same holds without any assump-
tions.)
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Proposition 7.2. Let A be a character sheaf of G such that there exists an iso-
morphism ¢ : (F2)*(A) = A.

(a) If F*(A) % DA, then =0 for any ¢ as above.

(b) If F*(A) = DA, then there is a canonical choice for ¢. For this ¢ we have

— (_1)dimsupp(A) .

In case (b), ¢ is defined as follows: we choose an isomorphism ¢’ : F*(A4) = DA
and we define ¢ to be the composition

F*(¢") D(¢")~*

(FH*A =5’ F*(DA) = D(F*(A)) — A.
This is clearly independent of the choice of ¢'.

7.3. We sketch a proof of 7.2. It is known that there exists a canonical finite
partition G = |J; e Xj of G into locally closed smooth irreducible subvarieties X;

with dim X; = d; such that X is a union of subvarieties X;» and the following
holds:

(a) If A is any character sheaf of G, then for a unique j € J we have

supp(4) C Xj;

H~%(A)|x, is an irreducible local system;

Hi(A)|x, = 0if i # —dj; if j' # j, then Hi(A)|Xj, #0 = dy +i<0.
Moreover, there exists an integer N > 1 (depending only on G) such that for any
character sheaf A of G we have

(b) > dimHi(A) < N for all g € G.

Assume now that A is a character sheaf of G such that (F?)*(A) = A. It is known
that we can choose ¢ : (F?)*(A) = A such that, if j is as in (a), then for any
n>1and any g € GF*" n Xj, the map ¢ : 'H;dJ (A4) — 'H;d’ (A) it is equal to
(¢%)(*=%)/2 times a linear transformation of finite order. Here a = dim G. For such
¢, the following holds, by Gabber’s purity theorem:

(c) for any i and any g € GF*, any eigenvalues p of ¢g = Hi(A) — HL(A)
satisfies || < (g%)(@T9/2,
Here || is complex absolute value. (This notation diverges from that in 1.1.) We
have

(d) = >

JESF(X,)=X,
where
aj = |GFITE YN (1) tr(gg, Hy(A)).
QEXJF %
If j' # j, then by (a) we have

=IGFITE YT N () (g, HY(A)).

gEX i d r+1<0
g’

By (b),(c) any eigenvalue p of the last ¢, in the sum satisfies |u| < @7 < g2~ 4 1
hence

Jay] < IGF | ) N
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Now |jj(Xf7) —q%'| < Cq%'~1/2 where C is a constant. Hence
|0éjl| < |GF|—1N(qa—1 + C«q(l,—3/2)7
or
(e) |Oéj’| < Nq—1+clqa—3/2
where C” is a constant. Let £ be the irreducible local system H~% (A4)|x,. By (a)
we have a; = |GF'|71(—1)% o’ where
o = Z tr(gg, Lg).
geXf

As in the proof of 4.2, we see that o' is equal to the alternating sum of traces of
Frobenius on H (X, F*(£)® L) with respect to an isomorphism F*(F*(£)® L)) 2,
F*(£) ® L induced by ¢. If F*(A) 2 DA, then F*(£) ® £ contains no summand
Qi, hence H2% (X;, F*(L)® L) = 0. If F*(A) = DA, then F*(£) ® L contains
exactly one summand Q; hence H2 (X;, F*(£) ® L) = Q; with Frobenius acting
as ¢* (by our choice of ¢). In both cases, for i < 2d. we have

|tr(F, HI(X;, F*(£) © £))| < N'q" '/

where N’ is a constant. It follows that in case 7.2(a) we have

(f) la;| < Nyg~1/?
and in case 7.2(b) we have |a; — (—1)%|GF|~1¢%| < N1¢®~'/2, or
(8) oy = (=1)%] < Nag™*/?

where Ny, Ny are constants. From (d),(e),(f),(g) we deduce

(h) || < N{g~'/? in case 7.2(a),
(i) |— (=1)%| < N{g~/% in case 7.2(b).

where N7 is a constant. From (h),(i) we see using 7.1(b) that

() is very close to 0 in case 7.2(a) and very close to (—1)% in case 7.2(b).
From 7.1(a) we see that for some integer n > 1 (depending only on G), nxa, g is
a linear combination of irreducible characters of GE” with coefficients cyclotomic
integers. It follows that n is an integer in a (fixed) cyclotomic field. Using

this and (j) (which holds with respect to any complex absolute value) we deduce
that equals 0 in case 7.2(a) and equals (—1)% in case 7.2(b), as required.

8. A GENERALIZATION TO SYMMETRIC SPACES

8.1. Theorem 1.4 implies that, when p varies through IrrG* 2, E is bounded above
by a bound which depends only on G and not on the F-rational structure. This
fact can be generalized as follows.

Let G be as in 1.1. Assume that ¢ is odd. Let 6§ : G — G be an involutive
automorphism which commutes with F'. Let K be an F-stable closed subgroup of
the fixed point set G which contains (G?)°.

Theorem 8.2. There exists a constant C > 0 depending only on G (and not on
the Fy-rational structure or on K ) such that the following holds: for any p € IrrGF

the dimension of the space pKF of KT -invariant vectors in p has dimension < C.
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For simplicity we assume that G has connected center. We use the same strategy
as in 2.14. Let T be an F-stable maximal torus of G, let A € (T'f') and let R} be
the virtual representation of G attached to (T, \) in [DLJ] (relative to G, F). (This
notation disagrees with that in 2.1.) Now p +— dim p¥ " extends by linearity to a
function f — a(f) from formal Q-linear combinations of irreducible representations
of G to Q. In particular, a(R}) € Z is well defined. From the explicit formula for
a(R}) given in [L5, 3.3] we see that |a(R3)| < Cy where C is an integer > 1 which
depends only on G. Let p € IrrGF. As in 2.14 we see, using [L1} 6.17(ii), (6.18.2)],
that there exists a representation p’ of G¥" such that p is a direct summand of p’
and such that the character of p’ is a Z-linear combination of characters of R (as
in [L1], 6.17(i)]). Moreover, the sum of absolute values of coefficients in this linear
combination is bounded above by a constant Co > 1. By the definition of Rz we
see that Ry is a Q-linear combination of various R} and the sum of absolute values
of coefficients in this linear combination is bounded above by a constant Cs > 1. It
follows that a(Rz) < C1C3 and a(p’) < C1C2Cs. Clearly 0 < a(p) < a(p’). Hence
a(p) < C1C32C5. The theorem is proved.

8.3. It would be very interesting to carry out completely the strategy of 2.14 in
the present case and compute explicitly a(p) for any p.
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