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G(Fq)-INVARIANTS IN IRREDUCIBLE G(Fq2 )-MODULES

G. LUSZTIG

Abstract. We give an explicit formula for the dimension of the space of
G(Fq)-invariant vectors in an irreducible complex representation of G(Fq2),
where G is a connected reductive algebraic group defined over a finite field Fq
with connected center.

Introduction

0.1. Let G be a connected reductive group defined over a finite field Fq and let
Fq2 be a quadratic extension of Fq. The finite group G(Fq2 ) contains G(Fq) as
a subgroup. For any irreducible representation ρ of G(Fq2 ) we denote by ρ the
dimension of the space of G(Fq)-invariant vectors in ρ. The function ρ 7→ ρ has
been studied by Gow [GO], Kawanaka [KA], and Prasad [PR]. Gow assumes G to
be GLn and shows that in this case, ρ ∈ {0, 1}. Prasad shows that ρ ∈ {0, 1}
assuming that the character of ρ is constant on the intersection of G(Fq2 ) with
any conjugacy class of G (but he does not need G to be reductive); this includes
Gow’s result as a special case. Kawanaka computes ρ assuming that either G is a
classical group with connected center or that ρ is unipotent and the characteristic
is good. He gives separately the formula in each case that he discusses but he does
not give a closed formula for ρ valid in all cases.

The purpose of this paper is to provide such a closed formula (see Theorem 1.4)
valid for any G that has connected center and is simple modulo its center. (The
formula makes sense and is expected to hold without assumptions on the center.)
In §7 we formulate a variant of this formula for character sheaves. In §8 we extend
one of the qualitative features of the formula to general symmetric spaces.

For the benefit of the reader we have included proofs even for results which could
be found in [KA]; these proofs are such that they extend to the more general setting
of this paper.

This work was started during a visit to the Mehta Research Institute in Alla-
habad. I wish to thank Dipendra Prasad for his hospitality and for introducing me
to this problem by explaining his results in [PR].
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1. Notation and statement of results

1.1. Let k be an algebraic closure of a finite field Fq with |Fq| = q. Let Fq2 be the
subfield of k such that |Fq2 | = q2.

Let G be a connected reductive group over k with a fixed Fq-rational structure.
Let F : G→ G be the Frobenius map corresponding to the Fq-structure. Let G be
a connected reductive group defined over Fq which is dual to G (as in [DL, 5.21]).
The Frobenius map of G is denoted again by F .

We fix a prime number l not dividing q. If Γ is a group, a representation of Γ (or
Γ-module) is always assumed to be over Q̄l and to factor through a finite quotient
of Γ. Let IrrΓ be the set of isomorphism classes of irreducible representations of Γ,
or a set of representatives for these isomorphism classes.

Following Frobenius and Schur [FS] define ψ : IrrΓ → {−1, 0, 1} by ψ(E) = 1
(resp. ψ(E) = −1) if E admits a non-degenerate Γ-invariant symmetric (resp.
symplectic) inner product and ψ(E) = 0 if E is not self dual.

When Γ is finite we set Γ̌ = Hom(Γ, Q̄∗l ).
Clearly, GF is a subgroup of GF

2
. For any class function φ : GF

2 → Q̄l we set

φ = |GF |−1
∑
g∈GF

φ(g) ∈ Q̄l.

If φ is the character of a GF
2
-module E, then φ is just the dimension of the space

of GF -invariants in E. We will often identify a GF
2
-module (or a formal Q̄l-linear

combination of irreducible GF
2
-modules) with its character GF

2 → Q̄l.
For any algebraic group H we denote by H0 the identity component of H .
If T is a maximal torus of a connected reductive algebraic group H we denote

by NH(T ) the normalizer of T in H and we set WH(T ) = T \NH(T ); this acts on
T by conjugation.

If Γ′ is a group, Γ is a subgroup of Γ′ and g′ ∈ Γ′, we set

ZΓ(g′) = {g ∈ Γ|gg′ = g′g}.
The center of Γ is denoted by ZΓ. If f is a map of a set X into itself, we set
Xf = {x ∈ X |f(x) = x}. The cardinal of a finite set X is denoted by |X | or ]X .

1.2. Assume that G has connected center. Let s be a semisimple element in GF 2
.

The centralizer Z(s) of s in G is connected and F 2-stable. We can find a pair T , B
where B is an F 2-stable Borel subgroup of Z(s) and T is an F 2-stable maximal
torus of B. We write Ws instead of WZ(s)(T ). Then Ws is naturally a (finite)
Coxeter group with a set of simple reflections S determined in the standard way
by B. Now F 2 acts naturally on Ws and F 2(S) = S.

Let Ẅs be the semidirect product of Ws with the infinite cyclic group with
generator δ so that in Ẅs we have the identity δxδ−1 = F 2(x) for all x ∈ Ws. Then
Ws is naturally a subgroup of Ẅs. Let Irr′′Ws be the set of all E ∈ IrrWs such
that there exists a Ẅs-module Ë whose restriction to Ws is isomorphic to E. By
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[L1, 3.2], for E ∈ Irr′′Ws one can find an Ë which is defined over Q; moreover,
there are exactly two such Ë (up to isomorphism); one is obtained from the other
by replacing the action of δ by that of −δ. In the sequel, Ë refers to one of these
two extensions of E.

Now IrrWs is naturally partitioned into subsets called the families of Ws (see
[L1, 4.2]). The bijection F 2 : Ws →Ws induces a bijection F 2 of the set of families
of Ws with itself. According to [L1, 6.17(i)] we have a natural partition

IrrGF
2

=
⊔
s,F

Irrs,FGF
2

where s runs through a set of representatives for the conjugacy classes of semisimple
elements in GF

2
and F runs through the set of F 2-stable families of Ws.

Let s ∈ GF 2
be semisimple and let F be an F 2-stable family of Ws. Let Γ be the

finite group attached to Ws,F in [L1, §4] (where the notation GF is used instead
of Γ). Since F 2(F) = F , we have an induced automorphism F 2 : Γ → Γ. Let Γ̈
be the semidirect product of Γ with the infinite cyclic group with generator δ so
that in Γ̈ we have the identity δxδ−1 = F 2(x) for all x ∈ Γ. Then Γ is naturally a
subgroup of Γ̈.

Consider the set of all pairs (x, ξ) where x ∈ Γδ ⊂ Γ̈ and ξ ∈ IrrZΓ(x). On this
set we have an action of Γ̈ by conjugation; the set of orbits of this action is denoted
by MΓ,F 2 . Now [L1, 4.23] provides a bijection

Irrs,FGF
2
↔MΓ,F 2 .(a)

Let ρx,ξ correspond to (x, ξ) under (a).

1.3. In the special case where F (s) = s−1, we note that Z(s) is F -stable and we
assume that T , B are chosen so that B is an F -stable Borel subgroup of Z(s) and
T is an F -stable maximal torus of B. In this case F acts naturally on Ws and
F (S) = S. Let Ẇs be the semidirect product of Ws with the infinite cyclic group
with generator γ so that in Ẇs we have the identity γxγ−1 = F (x) for all x ∈Ws.
Then Ẅs is naturally a subgroup of Ẇs. (The element δ ∈ Ẅs corresponds to
γ2 ∈ Ẇs.) Let Irr′Ws be the set of all E ∈ IrrWs such that there exists a Ẇs-
module Ė whose restriction to Ws is isomorphic to E. By [L1, 3.2], for E ∈ Irr′Ws

one can find an Ė that is defined over Q; moreover, there are exactly two such Ė
(up to isomorphism); one is obtained from the other by replacing the action of γ
by that of −γ. In the sequel, Ė refers to one of these two extensions of E. We have
clearly Irr′Ws ⊂ Irr′′Ws. Moreover, if E ∈ Irr′Ws, then Ë can be taken to be the
restriction of Ė to Ẅs. This Ë is independent of the choice of Ė (since (−γ)2 = γ2)
hence in this case we have a canonical Ë.

Let F be a family of Ws such that F (F) = F ; let Γ be as in 1.2. Since F (F) = F ,
we have an induced automorphism F : Γ→ Γ. Let Γ̇ be the semidirect product of
Γ with the infinite cyclic group with generator γ so that in Γ̇ we have the identity
γxγ−1 = F (x) for all x ∈ Γ. We identify Γ̈ in 1.2 with a subgroup of Γ̇ by x 7→ x
for x ∈ Γ and δ 7→ γ2.

Let (x, ξ) be a pair representing an element ofMΓ,F 2 . Let
√
x = {x′ ∈ Γ̇|x′2 = x}.
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Now ZΓ(x) acts on the set
√
x by conjugation in Γ̇. The corresponding permutation

representation of ZΓ(x) is denoted again by
√
x. Let [ξ :

√
x] be the multiplicity of

ξ in this permutation representation.

Theorem 1.4. Assume that ZG is connected and that G/ZG is simple. Let s be a
semisimple element of GF 2

and let F be an F 2-stable family of Ws. Let ρ = ρx,ξ ∈
Irrs,FGF

2
; see 1.2.

(a) Assume that s is not conjugate under GF 2
to an element s′ such that F (s′) =

s′−1. Then ρ = 0.
(b) Assume that F (s) = s−1 but F (F) 6= F . Then ρ = 0.
(c) Assume that F (s) = s−1, F (F) = F and that |F| 6= 2. Then ρ = [ξ :

√
x].

(d) Assume that F (s) = s−1, F (F) = F and that |F| = 2. If x = γ2, then
ρ = 1. If x 6= γ2, then ρ = 0.

See the introduction for the relation of this theorem to the earlier work of
Kawanaka. The strategy of the proof is explained in 2.14. The proof is given
in §§2, 3, and 5.

1.5. Let s ∈ GF 2
be semisimple and let F be an F 2-stable family of Ws. Let Γ be

attached to s,F as in 1.2. Consider the set of all pairs (y, η) where y ∈ Γ is such
that ZΓ̈(y) meets Γγ2 and η ∈ IrrZΓ̈(y) is such that η|ZΓ(y) is irreducible. On this
set we have an action of Γ̈ by conjugation; the set of orbits of this action is denoted
byMΓ,F 2 . Let M be the group of all roots of 1 in Q̄∗l . For α ∈M , let εα ∈ (Γ̈)̌ be
defined by εα(γ2) = α, εα|Γ = 1. The restriction of εα to a subgroup of Γ̈ is denoted
again by εα. Then α : (y, η) 7→ (y, η ⊗ εα) defines a free M -action on MΓ,F 2 .

For any (y, η) as above we set (as in [L1, (4.24.1)])

Ry,η = σ(Z(s))σ(G)
∑
{(x, ξ), (y, η)}∆(x, ξ)ρx,ξ(a)

sum over all (x, ξ) ∈ MΓ,F 2 . (An almost character of GF
2
.) Here {(x, ξ), (y, η)} ∈

Q̄l is as in [L1, (4.21.13)]; ∆(x, ξ) is equal to 1 unless F has exactly two elements
in which case it is 1 for x = γ2 and is −1 for x 6= γ2; σ(H) = (−1)Fq2−rank(H) for
a connected algebraic group H defined over Fq2 .

Up to a root of 1, Ry,η depends only on the M -orbit of (y, η) in MΓ,F 2 . Now
(b) If F (s) = s−1, then in (a) we have σ(Z(s))σ(G) = 1.

The proof is given in 1.7.
The following result describes Ry,η .

Corollary 1.6. Let (y, η) be as above.
(a) Assume that s is not conjugate under GF 2

to an element s′ such that F (s′) =
s′−1. Then Ry,η = 0.

(b) Assume that F (s) = s−1 but F (F) 6= F . Then Ry,η = 0.

(c) Assume that F (s) = s−1, F (F) = F and ZΓ̇(y) does not meet Γγ. Then
Ry,η = 0.

(d) Assume that F (s) = s−1, F (F) = F , that ZΓ̇(y) meets Γγ and that for any
α ∈ M , η ⊗ εα cannot be extended to a self dual representation of ZΓ̇(y). Then
Ry,η = 0.
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(e) Assume that F (s) = s−1, F (F) = F , that |F| 6= 2, that ZΓ̇(y) meets Γγ and
that for some α ∈ M , η ⊗ εα can be extended to a self dual representation η̃α of
ZΓ̇(y). Then α is unique and Ry,η = ψ(η̃α)α−1. (ψ as in 1.1.)

(f) Assume that F (s) = s−1, F (F) = F and that |F| = 2. Then Ry,η = 1 if

y = 1 and Ry,η = 0 if y 6= 1.

Thus, Ry,η is either 0 or a root of 1. The proof is given in §6.

1.7. Let T be a torus defined over Fq with Frobenius map F . We have
(a) σ(T ) = (−1)dimT .

Let L be the lattice of one parameter groups of T . Let LC = C⊗ L. There exists
an isomorphism of finite order f : L ∼→ L (inducing an isomorphism f̃ : T ∼→ T )
such that F (t) = f̃(tq) for all t ∈ T . Then F 2(t) = f̃2(tq

2
) and the Fq2 -rank of T

is the rank of Ker(f2 − 1 : LC → LC). (We denote 1 ⊗ f again by f .) This rank
equals a + b where a (resp. b) is the number of eigenvalues of f equal to 1 (resp.
−1.) The eigenvalues other than ±1 of f occur in pairs ζ, ζ−1 (since f is given by
an integral matrix of finite order). Hence a+ b = dimT mod 2. Thus, (a) follows.

We prove 1.5(b). Let s be as in 1.5(b). Lt B, T be as in 1.3. Then σ(Z(s)) =
σ(T ) and, by (a), this equals (−1)dimT ; here, replacing s by 1 we find σ(G) =
(−1)dimT where T is a maximal torus of G. Thus

σ(G)σ(Z(s)) = (−1)dimT (−1)dimT = 1.

This proves 1.5(b).

2. Proof of Theorem 1.4(a),(b)

2.1. In this section G is as in 1.1.
Let I be the set of all pairs (T, λ) where T is an F 2-stable maximal torus of

G and λ ∈ (TF
2
)̌. Let (T, λ) ∈ I. Let RλT be the virtual representation of GF

2

attached to (T, λ) in [DL] (relative to G,F 2). Let

X = {x ∈ G|xF (T )x−1 = T, xF (x) ∈ T, λ|{t∈T |xF (t)x−1=t} = 1}.
Then T acts on X by t : x 7→ tx. Clearly, T \X is finite.

Lemma 2.2. We have RλT = |T \X |.

This is an easy consequence of results in [L5]. (In [L5] the characteristic of the
ground field was assumed to be odd; but in the special case that is used below, that
assumption is unnecessary.)

We consider the Fq-rational structure on the connected reductive algebraic group
G1 = G×G such that the corresponding Frobenius map F1 : G1 → G1 is F1(g, g′) =
(F (g′), F (g)). Then g 7→ (g, F (g)) is an isomorphism

(a) GF
2 ∼→ GF1

1 .
Now T1 = T × F (T ) is an F1-stable maximal torus of G1 and t 7→ (t, F (t)) is an
isomorphism TF

2 ∼→ TF1
1 . Via this isomorphism, λ becomes λ1 ∈ (TF1

1 )̌. From
the definitions it is clear that the GF

2
-virtual representation RλT corresponds under

(a) to the GF1
1 -virtual representation Rλ1

T1
attached in [DL] to (T1, λ1) (relative to

G1, F1) and

(b) RλT = |GF |−1
∑
g∈GF tr((g, g), Rλ1

T1
).
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The involution θ1 : G1 → G1 given by θ1(g, g′) = (g′, g) clearly commutes with F1.
The fixed point set of θ1 may be identified with G.

Applying [L5, 3.3] to G1, F1, θ1, T1, λ1 we see that the right-hand side of (b)
is equal to the number of TF1 − GF double cosets in GF1 represented by ele-
ments of the form (f, F (f)) where f ∈ GF

2
satisfies F (f−1Tf) = f−1Tf and

λ|{t∈T |F (f−1tf)=f−1tf} = 1. (In our case the character ε which enters in [L5, 3.3] is
1 and the signs which enter there are also 1.) By the change of variable y = fF (f−1)
we see that the right-hand side of (b) equals |TF 2\Y | where

Y = {y ∈ G|F (y) = y−1, yF (T )y−1 = T, λ|{t∈T |yF (t)y−1=t} = 1}

and TF
2

acts on Y by t : y 7→ tyF (t−1).
The inclusion Y ⊂ X induces a map κ : TF

2\Y → T \X . To complete the proof,
it is enough to show that κ is bijective.

We show that κ is surjective. It is enough to show that, if x ∈ X , then there
exists t ∈ T such that tx ∈ Y . We have xF (x) = t1 ∈ T and we must show that
there exists t ∈ T such that txF (t)x−1 = t−1

1 . By Lang’s theorem we can write
x = z−1F (z) for some z ∈ G. We have F (zT z−1) = zT z−1. Thus F (T ′) = T ′ where
T ′ = zT z−1. Our equation for t is ztz−1F (z)F (t)F (z−1) = zt−1

1 z−1. Thus, if we
set t′ = ztz−1, t′1 = zt1z

−1, we see that we must solve the equation t′F (t′) = t′1
−1

with t′1 ∈ T ′ and unknown t′ ∈ T ′. This equation can be solved by Lang’s theorem
for T ′ with the Frobenius map τ 7→ F (τ−1). Thus, κ is surjective.

We show that κ is injective. It is enough to show that, if y ∈ Y, y′ ∈ Y, t1 ∈ T
satisfy y′ = t1y, then y′ = tyF (t−1) for some t ∈ TF 2

. As in the proof of surjectivity
of κ we can find t ∈ T such that tyF (t−1)y−1 = t1. (We write y = z−1F (z) and
we use Lang’s theorem for (zT z−1, F ).) We have y′ = tyF (t−1) and it remains to
show that t ∈ TF 2

. Since y′ = t1y ∈ Y , we have F (t1y) = y−1t−1
1 . Applying F

to tyF (t−1)y−1 = t1 gives F (t)y−1F 2(t−1)y = F (t1). Substituting here F (t)y−1 =
y−1t−1

1 t gives y−1t−1
1 tF 2(t−1)y = F (t1). Hence F (t1)y−1tF 2(t−1)y = F (t1) and

y−1tF 2(t−1)y = 1. It follows that tF 2(t−1) = 1 hence t ∈ TF 2
. Thus, κ is injective.

The lemma is proved.

2.3. Let (T, λ) ∈ I. If RλT 6= 0, then, by the proof of 2.2, there exists f ∈ GF 2

which conjugates (T, λ) to a pair (T ′, λ′) ∈ I where F (T ′) = T ′ and λ′|T ′F = 1. On
the other hand, if (T, λ) ∈ I is such that F (T ) = T and λ|TF = 1, then, by 2.2,

RλT = ](w ∈WG(T );F (w) = w−1, λ|{t∈T |w(F (t))=t} = 1).

2.4. Let T be a torus defined over k. Let p be the characteristic of k. For any
integer n ≥ 1, let Tn = {t ∈ T |tpn−1 = 1}. If n′ ≥ 1 is an integer divisible by n we
have a (surjective) norm map Nn′,n : Tn′ → Tn given by t 7→ t(p

n′−1)/(pn−1). Thus
we obtain a projective system of finite groups (Tn, Nn′,n). By passage to transposes
we obtain an inductive system of finite groups (Tň, trNn′,n) whose transition maps
are injective. The union of this inductive system is denoted by T̂ . Now T 7→ T̂ is a
contravariant functor from the category of tori defined over k (and homomorphisms
of algebraic groups between such tori) and the category of torsion abelian groups.
If f : T1 → T2 is a morphism of tori, we denote by f∗ : T̂2 → T̂1 the corresponding
homomorphism of torsion abelian groups.
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Assume now that f : T → T is a morphism such that for some integers m, e ≥
1 we have fm(t) = tem for all t ∈ T . We define a surjective homomorphism
Tem → T f by t 7→ tf(t)f2(t) . . . fm−1(t). Taking transposes we obtain an injective
homomorphism (T f )̌ → Tem̌. Composing with the canonical imbedding Tem̌ → T̂

we obtain an injective homomorphism a : (T f )̌ → T̂ which is in fact independent
of the choice of m. Consider the diagram

0 −−−−→ (T f
2
)̌ a′−−−−→ T̂

b′−−−−→ T̂ −−−−→ 0

c

y d

y 1

y
0 −−−−→ (T f )̌ a−−−−→ T̂

b−−−−→ T̂ −−−−→ 0

where a is above, a′ is the map analogous to a defined in terms of f2 instead of f ,
b(x) = f∗(x)x−1, b′(x) = (f2)∗(x)x−1, c is the transpose of the obvious inclusion
T f ⊂ T f2

and d(x) = f∗(x)x.
(a) This diagram is commutative, with exact rows.

(The proof is left to the reader.)
Let (T, λ) ∈ I. Let Λ ∈ T̂ be the image of λ ∈ (TF

2
)̌ under a (with f = F 2 :

T → T ).

Lemma 2.5. Let X ′ = {x ∈ G|xF (T )x−1 = T, xF (x) ∈ T, f∗x(Λ) = Λ−1}, where
fx : T → T is defined by fx(t) = xF (t)x−1. Then X in 2.1 coincides with X ′.

If x ∈ G satisfies xF (T )x−1 = T , xF (x) ∈ T , then fx : T → T is well defined
and satisfies f2

x = F 2 : T → T . Hence 2.4(a) is applicable to f = fx and shows that
the condition that λ|{t∈T |xF (t)x−1=t} = 1, that is, the condition that c(λ) = 1, is
equivalent to the condition that da′(λ) = 1, that is, the condition that f∗x(Λ) = Λ−1.
Thus X ′ = X . The lemma is proved.

2.6. Let I be the set of all pairs (T , s) where T is an F 2-stable maximal torus of
G and s ∈ T F 2

. Now GF
2

acts by conjugation on I and GF 2
acts by conjugation

on I. Applying [DL, (5.21.5)] for F 2 instead of F we obtain a canonical bijection
(a) GF

2\I ↔ GF 2\I.
Using the definition and 2.5, we see that this bijection has the following property:

(b) a GF
2
-orbit in I contains a pair (T, λ) such that FT = T, λ|TF = 1 if and

only if the corresponding GF 2
-orbit in I contains a pair (T , s) such that F (T ) = T

and F (s) = s−1; for such (T, λ), (T , s) the number of w ∈ W (T ) such that F (w) =
w−1 and λ|{t∈T |w(F (t))=t} = 1 is equal to the number of w ∈ WG(T ) such that
F (w) = w−1 and w(F (s)) = s−1 (that is w(s) = s).
For any (T , s) ∈ I we define RsT to be RλT where the GF

2
-orbit of (T, λ) corresponds

to the GF 2
-orbit of (T , s) under (a). Now RsT is well defined since RλT depends only

on the GF
2
-orbit of (T, λ).

2.7. In the remainder of this section we assume that ZG is connected.
Using 2.6(b) we can reformulate the results in 2.3 as follows. Let (T , s) ∈ I.
(a) If the GF 2

-orbit of (T , s) does not contain a pair (T ′, s′) such that F (T ′) = T ′
and F (s′) = s′−1, then RsT = 0.
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(b) If F (T ) = T and F (s) = s−1, then

RsT = ](w ∈WG(T );F (w) = w−1, w(s) = s)

= ](w ∈WZ(s)(T );F (w) = w−1).

By Lang’s theorem for (Z(s), F 2), for any w ∈Ws we can find an element gw ∈ Z(s)
such that g−1

w F 2(gw) is in NZ(s)(T ) and represents w. Then Tw = gwT g−1
w is an

F 2-stable maximal torus of Z(s) whose Z(s)F
2
-conjugacy class is independent of

the choice of gw. Hence we may set Rsw = RsTw ; this is well defined by s, w.

Lemma 2.8. Let s ∈ GF 2
be semisimple and let w ∈ Ws.

(a) If s is not conjugate under GF 2
to an element s′ such that F (s′) = s′−1 (or

equivalently, F (s) is not conjugate to s−1 in G), then Rsw = 0.

(b) If F (s) = s−1, then Rsw = ](y ∈ Ws;w = yF (y)).

(a) follows immediately from 2.7(a). We prove (b). We first show that
(c) if Rsw 6= 0, then w = yF (y) for some y ∈Ws.

Using 2.7(a) we see that there exists g ∈ GF 2
such that F (gTwg−1) = gTwg−1,

F (gsg−1) = gs−1g−1. Then F (g)sF (g−1) = gsg−1 so that g−1F (g) ∈ Z(s). By
Lang’s theorem for Z(s) we can find z ∈ Z(s) so that g−1F (g) = z−1F (z). Then
gz−1 ∈ GF and z ∈ Z(s)F

2
. We have F (zTwz−1) = zTwz−1. Since RszTwz−1 =

Rsw 6= 0, we see from 2.7(b) that there exists

u ∈ WZ(s)(zTwz−1) = WZ(s)(zgwT g−1
w z−1)

such that F (u) = u−1. We have F (zgwT g−1
w z−1) = zgwT g−1

w z−1. Since F 2(z) =
z, the element zgw has the same properties as gw. Hence we may replace zgw
by gw. Thus we may assume that F (gwT g−1

w ) = gwT g−1
w and there exists u ∈

WZ(s)(gwT g−1
w ) such that F (u) = u−1. Now x 7→ gwxg

−1
w induces a bijection

ι : W = WZ(s)(T ) → WZ(s)(Tw). If x ∈ WZ(s)(T ), then the condition F (ι(x)) =
ι(x)−1 is equivalent to w1F (x)w−1

1 = x−1 where w1 is the element of Ws represented
by g−1

w F (gw). Thus if x = ι−1(u), then w1F (x)w−1
1 = x−1. Hence y = x−1w1

satisfies yF (y) = w. This proves (c).
Next we assume that w = w1F (w1) for some w1 ∈ Ws. By Lang’s theorem for

(Z(s), F ) we can find an element hw ∈ Z(s) such that h−1
w F (hw) is in NZ(s)(T ) and

represents w1. Then h−1
w F 2(hw) = h−1

w F (hw)F (h−1
w F (hw)) ∈ NZ(s)(T ) represents

w1F (w1) = w. Hence we may assume that Tw = hwT h−1
w . By the definition of hw

we have F (Tw) = Tw. By 2.7(b) we have

Rsw = ](w′ ∈WZ(s)(Tw);F (w′) = w′−1).

Now x 7→ hwxh
−1
w induces a bijection NZ(s)(T ) → NZ(s)(Tw) and a bijection ι :

Ws = WZ(s)(T ) → WZ(s)(Tw). If x ∈ WZ(s)(T ), then the condition F (ι(x)) =
ι(x)−1 is equivalent to w1F (x)w−1

1 = x−1. Thus

Rsw = ](x ∈ Ws;w1F (x)w−1
1 = x−1).

The change of variable x 7→ y where y−1 = w−1
1 x transforms the equation

w1F (x)w−1
1 = x−1 into the equation w1F (w1)F (y−1) = y, that is, yF (y) = w.

Hence Rsw = ](y ∈Ws;w = yF (y)). This together with (c) completes the proof.
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2.9. Let Γ be a finite group. According to [FS], if x ∈ Γ and ψ is as in 1.1, we have∑
E∈IrrΓ

tr(x,E)ψ(E) = ](x′ ∈ Γ;x′2 = x).(a)

2.10. Assume that we are given an automorphism F of the finite group Γ. Let Γ̇
be the semidirect product of Γ with the infinite cyclic group with generator γ so
that in Γ̇ we have the identity γxγ−1 = F (x) for all x ∈ Γ. Then Γ is naturally a
subgroup of Γ̇. Let Irr′Γ be the set of all E ∈ IrrΓ such that there exists a Γ̇-module
Ė and such that the restriction of Ė to Γ is isomorphic to E.

For E ∈ Irr′Γ we define ψ′(E) ∈ {−1, 0, 1} as follows. If there exists Ė as above
such that Ė is self dual, we set ψ′(E) = ψ(Ė) ∈ {−1, 1}. (In this case there are
exactly two choices for a self dual Ė and both have the same ψ-value.) If there is
no Ė as above such that Ė is self dual, we set ψ′(E) = 0.

In this setup we have the following result which is a generalization of 2.9(a).

Lemma 2.11. For any x ∈ Γ we have∑
E∈Irr′Γ
ψ′(E)=±1

tr(xγ2, Ė)ψ′(E) = ](y ∈ Γ; yF (y) = x).

(In the last formula Ė is assumed to be one of the two self dual extensions of
E; they are obtained from each other by replacing the action of γ by that of −γ.
Hence tr(xγ2, Ė) is independent of the choice of Ė.)

Let n be an integer ≥ 2 such that Fn = 1 on Γ. Let Γ1 be the semidirect
product of Γ with the cyclic group of order 2n with generator γ1 so that in Γ1 we
have the identity γ1x

′γ−1
1 = F (x′) for all x′ ∈ Γ. The solutions y′ ∈ Γ1 of the

equation y′2 = xγ2
1 are of two kinds: y′ = yγ1 with y ∈ Γ such that yF (y) = x and

y′ = yγ1+n
1 with y ∈ Γ such that yF (y) = x. Hence

](y ∈ Γ; yF (y) = x) = (1/2)](y′ ∈ Γ1; y′2 = xγ2
1).

By 2.9(a) (for Γ1), the last expression is equal to

(1/2)
∑

E1∈IrrΓ1

tr(xγ2
1 , E1)ψ(E1).(a)

Let E1 ∈ IrrΓ1. The restriction E1|Γ is multiplicity free hence it decomposes
canonically into a direct sum of irreducible Γ-modules which are cyclically per-
muted by γ1 : E1 → E1. If the number of summands is 3 or more, then clearly
tr(xγ2

1 , E1) = 0. If the number of summands is two, then n is even and the number
of distinct E′1 ∈ IrrΓ1 such that E′1|Γ ∼= E1|Γ is n. These E′1 can be arranged into
n/2 pairs so that the two representations in the same pair have the same value of
ψ and opposite values of tr(xγ2

1 , ). Hence the sum (a) may be restricted to those
E1 whose restriction to Γ is irreducible. From this the lemma follows easily.

2.12. Let s ∈ GF 2
be semisimple. Following [L1, 3.7], for E ∈ Irr′′Ws we define

Rs
Ë

= |Ws|−1
∑
w∈Ws

tr(wδ, Ë)Rsw(a)

(an element of the Grothendieck group of representations of GF
2

tensored with Q).
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Proposition 2.13. (a) If s is not conjugate under GF 2
to an element s′ such that

F (s′) = s′−1, then Rs
Ë

= 0 for any E ∈ Irr′′Ws (for the two choices of Ë).

(b) If F (s) = s−1 and E ∈ Irr′′Ws − Irr′Ws, then Rs
Ë

= 0 (for the two choices

of Ë).
(c) If F (s) = s−1 and E ∈ Irr′Ws, then Rs

Ë
= 1 (for the canonical Ë).

(a) follows immediately from 2.8(a). Assume now that F (s) = s−1. By 2.11, for
any w ∈ Ws we have∑

E′∈Irr′Ws

tr(wγ2, Ė′) = ](y ∈ Ws; yF (y) = w),

or equivalently ∑
E′∈Irr′Ws

tr(wδ, Ë′) = ](y ∈ Ws; yF (y) = w),

where Ë′ is the canonical one. (In the present case we have ψ′(E′) = 1 for any
E′ ∈ Irr′Ws; see [L1, 3.2].) Combining this with 2.8(b) gives

Rsw =
∑

E′∈Irr′Ws

tr(wδ, Ë′)

for any w ∈ Ws. Now let E ∈ Irr′′Ws and consider one of the two choices of Ë. We
have

Rs
Ë

= |Ws|−1
∑
w∈Ws

tr(wδ, Ë) Rsw = |Ws|−1
∑
w∈Ws

tr(wδ, Ë)
∑

E′∈Irr′W

tr(wδ, Ë′)

= |Ws|−1
∑

E′∈Irr′Ws

∑
w∈Ws

tr(wδ, Ë)tr(wδ, Ë′).

Now |Ws|−1
∑

w∈Ws
tr(wδ, Ë)tr(wδ, Ë′) is 0 if E 6= E′ and is 1 if Ë = Ë′. (See [L1,

p. 75].) Hence (b) and (c) follow. The proposition is proved.

2.14. Our strategy to prove Theorem 1.4 is as follows. Let s,F be as in 1.4. In
[L1, 6.17(ii)], certain (not necessarily) irreducible representations ±Rγ2x of GF

2
are

described, where x is an element in the two-sided cell of Ws corresponding to F .
(In loc. cit. these representations are denoted by ±Rγx.) These representations
are on the one hand Z-linear combinations of various Rs

Ë
with E ∈ Irr′′Ws with

coefficients explicitly known from [L4]. Hence ±Rγ2x are explicitly known from
2.13. On the other hand, these representations are linear combinations of various
ρ ∈ Irrs,FGF

2
whose coefficients (in N) are explicitly known from [L1, 4.23]. This

gives rise to a system of linear equations for the unknowns ρ , ρ ∈ Irrs,FGF
2
, where

the coefficients and the constant terms are in N and are rather small. Also by [L1,
(6.18.2)], any ρ ∈ Irrs,FGF

2
appears with > 0 coefficient in at least one of these

equations. Although this system has in general more unknowns than equations,
the fact that the unknowns must be in N provides very strong constraints. In
particular, the unknowns are bounded above. Also, if one of the equations has
constant term 0, then all unknowns which enter into that equation must be 0. In
the case of classical groups this is already sufficient to determine all unknown ρ as
we will see in §3. For the exceptional groups the method above determines the ρ
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up to a small indeterminacy. To remove that indeterminacy we will need additional
information which comes from the theory of character sheaves.

2.15. Proof of Theorem 1.4(a),(b). We carry out the strategy in 2.14 in the
setup of 1.4(a) or (b). Let s,F , ρ be as in 1.4(a) or (b). As in 2.14, there exists a
representation ρ′ of GF

2
such that ρ is a direct summand of ρ′ and such that the

character of ρ′ is a Z-linear combination of characters of Rs
Ë

with E ∈ Irr′′Ws ∩F .

Since 0 ≤ ρ ≤ ρ′ , it is enough to show that ρ′ = 0. Hence it is enough to show

that Rs
Ë

= 0 for any E ∈ Irr′′Ws ∩ F .

Under the assumption of 1.4(a), this follows from 2.13(a). Under the assumption
of 1.4(b), this follows from 2.13(b) since in this case any E ∈ Irr′′Ws ∩F is outside
Irr′Ws. This completes the proof of 1.4(a),(b).

3. Proof of Theorem 1.4(c) for classical groups

3.1. In this section we assume that G is as in 1.4, of classical type and that F (s) =
s−1 and F (F) = F .

3.2. We prove 1.4(c) in the case where Γ = {1}. In this case, F consists of a single
representation E (necessarily in Irr′Ws) and MΓ,F 2 consists of a single element
(γ2, 1). By [L1] and 1.5(b) we have ργ2,1 = Rs

Ë
. Hence by 2.13 we have ργ2,1 =

Rs
Ë

= 1. On the other hand,
√
γ2 = {γ} is a point, hence [ξ :

√
x] = 1. Thus

1.4(c) is proved in the present case.

3.3. In general, we can write canonically Ws = W1×W2 where W1 is a product of
Weyl groups of type A and W2 is a Weyl group without factors of type A. Both W1

and W2 are F -stable. If Ws = W1, then 1.4(c) holds by 3.2. Similarly, the proof of
1.4(c) for general Ws is exactly the same as the proof in the case where Ws = W2.
Therefore we may assume that

(a) Ws has no factors of type A.

3.4. Assume that Ws is as in 3.3(a), that F maps each irreducible factor of Ws into
itself and that F 2 acts trivially on Ws. In this case we have F∩Irr′Ws = F∩Irr′′Ws.
We shall use arguments from [L1, §6]. As in loc.cit. to F we can associate an F2-
vector space Y with a basis e1, e2, . . . , en and a symplectic form (, ) : Y × Y → F2

such that (ei, ej) = 0 if |i − j| 6= 1. Let R be the radical of (, ). We consider the
family T (Y ) of subspaces of Y defined as in [L1, p. 270]. Each subspace C ∈ T (Y )
contains R and we have C/R ∼= Γ.

The union Ỹ of all C in T (Y ) is therefore a union of R-cosets in Y and there
is a natural bijection between the set F and the set of R-cosets in Ỹ . Let Ey ∈ F
correspond to the coset of y ∈ Ỹ .

Let X be the set of linear forms η : Y → F2 such that η|R = 0. There is a
natural bijection between X and Irrs,FGF

2
. Let ρη ∈ Irrs,FGF

2
correspond to

η ∈ X . Then for any η ∈ X, y ∈ Ỹ we have (ρη : Rs
Ëy

) = (−1)η(y). Moreover, for
any C ∈ T (Y ) and any linear form ξ : C → F2 such that ξ|R = 0 we have∑

y∈C/R
(−1)ξ(y)Rs

Ëy
=

∑
η∈X;η|C=ξ

ρη.(a)

In our case, 1.4(c) can be reformulated as follows:
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(b) ρ0 = |Γ|,
(c) ρη = 0 if η 6= 0.

Using 2.13 and (a) we see that for any C ∈ T (Y ) and any ξ ∈ Hom(C,F2) such
that ξ|R = 0 we have∑

η∈X;η|C=ξ

ρη =
∑

y∈C/R
(−1)ξ(y) Rs

Ëy
=

∑
y∈C/R

(−1)ξ(y).

Hence ∑
η∈X;η|C=ξ

ρη = 0 if ξ 6= 0,(d)

∑
η∈X;η|C=0

ρη = |C/R| = |Γ|.(e)

Since all terms in the sum (d) are ≥ 0, it follows that ρη = 0 for any η ∈ X such
that η|C 6= 0 for some C.

Assume that η ∈ X −{0}. Then η(ei) 6= 0 for some i. By the definition of T (Y )
we can find C ∈ T (Y ) such that ei ∈ C. Since η(ei) 6= 0, we have η|C 6= 0. Hence
ρη = 0. Thus (c) is proved. Now let C ∈ T (Y ). We rewrite (e) using (c); (b)

follows. Thus 1.4(c) is proved in our case.

3.5. Assume that Ws is as in 3.3(a) and that F does not preserve each irreducible
factor ofW . SinceG/ZG is assumed to be simple, W is a productW1×W1 whereW1

is a Weyl group of type Bn, Cn or Dn and F interchanges the two factors. We shall
use arguments from [L1, §6]. To F we can associate Y, e1, e2, . . . , en, (, ),R, T (Y ), Ỹ
as in 3.4 so that the set F is naturally in bijection with the set of ordered pairs of
R-cosets in Ỹ . Let Ey,y′ ∈ F correspond to the pair of cosets of y and y′ in Ỹ . Let
X be the set of linear forms η : Y → F2 such that η|R is 0 if F 2 = 1 on W and
is an isomorphism R ∼→ F2 if F 2 6= 1 on W . There is a natural bijection between
X ×X and Irrs,FGF

2
. Let ρη,η′ ∈ Irrs,FGF

2
correspond to (η, η′) ∈ X ×X .

For simplicity we assume that F 2 = 1 on W . (The case where F 2 6= 1 is similar.)
For any y, y′ ∈ Ỹ we have Ey,y′ ∈ Irr′′W ; we have Ey,y′ ∈ Irr′W if and only if

y = y′ mod R. For any y, y′ ∈ Ỹ let Ëy,y′ be the extension of Ey,y′ to Ẅ on which
γ2 acts trivially. Then for any η, η′ ∈ X and y, y′ ∈ Ỹ we have (ρη : Rs

Ëy,y′
) =

(−1)η(y)+η′(y′). Moreover, for any C,C′ ∈ T (Y ) and any ξ ∈ Hom(C,F2), ξ′ ∈
Hom(C′, F2) such that ξ|R = ξ′|R = 0 we have∑

y∈C/R,y′∈C′/R
(−1)ξ(y)+ξ′(y′)Rs

Ëy,y′
=

∑
η,η′∈X;η|C=ξ,η′|C′=ξ′

ρη,η′ .(a)

In our case, 1.4(c) can be reformulated as follows:
(b) ρη,η′ = 1 if η = η′,
(c) ρη,η′ = 0 if η 6= η′.
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Using 2.13 and (a) we see that for any C,C′ ∈ T (Y ) and any ξ ∈ Hom(C,F2), ξ′ ∈
Hom(C′, F2) such that ξ|R = ξ′|R = 0, we have∑

η,η′∈X
η|C=ξ
η′|C′=ξ′

ρη,η′ =
∑

y∈C/R
y′∈C′/R

(−1)ξ(y)+ξ′(y′) Rs
Ëy,y′

=
∑

y∈(C∩C′)/R
(−1)ξ(y)+ξ′(y).

Hence ∑
η,η′∈X;η|C=ξ,η′|C′=ξ′

ρη,η′ = 0(d)

if ξ 6= ξ′, ∑
η,η′∈X;η|C=ξ,η′|C′=ξ′

ρη,η′ = |(C ∩ C′)/R|(e)

if ξ = ξ′. Since each term in the sum (d) is ≥ 0, we see that ρη,η′ = 0 for any
η, η′ ∈ X such that η|C 6= η′|C for some C ∈ T (Y ). If η 6= η′, then, by an argument
in 3.4, we see that there exists C ∈ T (Y ) such that (η−η′)|C 6= 0. Hence ρη,η′ = 0
and (c) is proved. We can find C,C′ in T (Y ) such that C∩C′ = R and C+C′ = Y .
Let η0 ∈ X . Let ξ = η0|C , ξ′ = η0|C′ . Then in the sum (e) for C,C′, ξ, ξ′ as above
we may restrict ourselves to η = η′ (by (c)) such that η|C = ξ, η|C′ = ξ′, that is,
such that η = η0; we see that ρη0,η0 = 1. Thus 1.4(c) holds in our case.

3.6. Assume that Ws is as in 3.3(a), that F maps each irreducible factor of Ws

into itself and that F 2 acts non-trivially on Ws. In this case Ws is of type D4 and
F : Ws → Ws has order 3. This case is similar to (but simpler than) that in 3.4.
We omit the proof.

4. Some results on character sheaves

4.1. In this section G is as in 1.1. We assume that the characteristic of Fq is
restricted as in [L2, (23.0.1)] so that the results of [L2] on character sheaves are
valid.

Let A be a character sheaf on G such that there exist an isomorphism φ :
(F 2)∗(A) ∼→ A. Let χA,φ : GF

2 → Q̄l be the class function defined by

χA,φ(g) =
∑
i

(−1)itr(φg,Hig(A))

where Hi(A) denotes the i-th cohomology sheaf of A and χg(A) is its stalk at g.
Let DA be the Verdier dual of A.

Lemma 4.2. Let A, φ be as above. Assume that Hi
c(G,F

∗(A) ⊗ A) = 0 for all i.
Then χA,φ = 0.

We define an isomorphism φ̃ : F ∗(F ∗(A)⊗A)→ F ∗(A)⊗A as the composition

(F 2)∗(A)⊗ F ∗(A)
φ⊗1−→ A⊗ F ∗(A)→ F ∗(A)⊗A

where the last isomorphism is switching the two factors. If g ∈ GF , the map induced
by φ̃ on the stalk

Hig(A⊗A) =
⊕

i′+i′′=i

Hi′g (A)⊗Hi′′g (A)
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is
⊕

i′+i′′=i φ
i′

g ⊗ 1 composed with the isomorphism that switches the factors. It

follows that tr(φ̃g ,Hig(A ⊗ A)) is tr(φg ,Hi/2g (A)) if i is even and is 0 if i is odd.
Hence

χF∗(A)⊗A,φ̃ =
∑
i′

tr(φg ,Hi
′

g (A)) = ±χA,φ.

The last equality holds since Hi′(A) 6= 0 implies i′ = dim suppA mod 2 (see [L2,
24.11]). Hence

± χA,φ = |GF |−1
∑
g∈GF

χF∗(A)⊗A,φ̃(g).

By the trace formula for F : G→ G, the last sum is equal to∑
i

(−1)itr(F ∗1 , H
i
c(G,F

∗(A)⊗A))

where F ∗1 is induced by F, φ̃. Since Hi
c(G,F

∗(A) ⊗ A) = 0, each term in the last
sum is zero. The lemma is proved.

4.3. Let P be a parabolic subgroup ofG and let L be a Levi subgroup of P . Assume
that FL = L. Let K0 be a cuspidal character sheaf on L. Let K be the perverse
sheaf on G obtained by inducing K0 from P to G (see [L2, 4.1]). Then F ∗(K) is
the perverse sheaf on G obtained by inducing F ∗(K0) from F−1(P ) to G. Assume
that for any isomorphism f : L ∼→ L induced by conjugation by an element in G
we have F ∗(K0) 6∼= f∗(DK0). (Here D is a Verdier duality on L.)

Lemma 4.4. Let A, φ be as in 4.1. Assume that A is a summand of K as in 4.3.
Then χA,φ = 0.

By [L2, 7.8] we have Hi
c(L,F

∗(K0) ⊗ f∗(K0)) = 0 for all i and all f as in 4.3.
Hence by [L2, 7.2] applied to F ∗(K) and K we have Hi

c(G,F
∗(A) ⊗A) = 0 for all

i. Using 4.2 we deduce that χA,φ = 0.

4.5. The hypothesis of 4.4 is verified in the following cases (here we assume that
ZG is connected):

(a) G/ZG is of type E6, E7 or E8, L/ZL is of type E6, K0 is any cuspidal character
sheaf on L, A is any simple summand of K.

(b) G/ZG is of type E7 or E8, L/ZL is of type E7, K0 is any cuspidal character
sheaf on L, A is any simple summand of K.

(c) G = G/ZG is of type E8, F4 or G2, L = G and K0 = K = A is a cuspidal
character sheaf on G which is not uniquely determined by its support.
For these cases the restrictions in 4.1 can be competely removed. (See Shoji [S].)

5. Proof of Theorem 1.4(c),(d) for exceptional groups

5.1. In this section we assume that G is as in 1.4, of exceptional type and that
F (s) = s−1 and F (F) = F .

5.2. The proof of 1.4(c) in the case where Γ = {1} is exactly the same as in 3.2.
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5.3. We prove 1.4(c) in the case where Γ ∼= Z/2Z. In this case Irrs,FGF
2

con-
sists of four elements ρ1, ρ2, ρ3, ρ4 and Irr′Ws ∩ F consists of three representations
E1, E2, E3. By [L1] we have

ρ1 + ρ2 = R1 +R2, ρ1 + ρ3 = R1 +R3, ρ3 + ρ4 = R1 −R2, ρ2 + ρ4 = R1 −R3

where Ri = Rs
Ëi

. Let ai = ρi . Using 2.13(c) we obtain

a1 + a2 = 2, a1 + a3 = 2, a3 + a4 = 0, a2 + a4 = 0.

Since ai ≥ 0, the last two equations imply a2 = a3 = a4 = 0. It follows that a1 = 2.
From this 1.4(c) follows easily in our case.

5.4. Assume that G is adjoint of type E6 and that Γ ∼= S3 (symmetric group in
3 letters). In this case F acts trivially on Γ. The eight elements of MΓ,F 2 can be
represented in the form (1, 1), (g2, 1), (g3, 1), (1, r), (1, ε), (g2, ε), (g3, θ), (g3, θ

2) (no-
tation of [L1, 4.3]; we write (g, ξ) instead of (gγ2, ξ)). The corresponding elements
of Irrs,FGF

2
are denoted by ρ1, ρ2, . . . , ρ8. The elements of Irr′Ws ∩F are denoted

by E1, E2, E3, E4, E5. By [L1] we have

ρ1 + ρ2 + ρ3 = R1 +R2 +R3, ρ1 + ρ2 + ρ4 = R1 +R2 +R4,

ρ2 + ρ4 + ρ6 + ρ7 + ρ8 = 2R1 −R3, ρ2 + ρ3 + ρ6 + ρ7 + ρ8 = 2R1 −R4,

ρ3 + ρ5 + ρ6 = R1 −R2 +R3, ρ4 + ρ5 + ρ6 = R1 −R2 +R4, ρ2 + ρ6 = R1 −R5,

(a)

where Ri = Rs
Ëi

. Let ai = ρi . Using 2.13(c) we obtain

a1 + a2 + a3 = 3, a1 + a2 + a4 = 3, a2 + a4 + a6 + a7 + a8 = 1,
a2 + a3 + a6 + a7 + a8 = 1, a3 + a5 + a6 = 1, a4 + a5 + a6 = 1, a2 + a6 = 0.

(b)

Since ai ≥ 0 we deduce that a2 = a6 = 0. Since ρ7, ρ8 are algebraically conjugate
we see that a7, a8 are algebraically conjugate. Since they are integers we have
a7 = a8. The third equation in (b) becomes a4 + 2a7 = 1. Since ai ∈ N, it follows
that a4 = 1, a7 = 0. Now (b) yields (a1, a2, . . . , a8) = (2, 0, 1, 1, 0, 0, 0, 0). From this
1.4(c) follows easily in our case.

5.5. Assume that G/ZG is of type E6, E7 or E8 and that Γ ∼= S3. In this case the
elements of Irrs,FGF

2
and of Irr′Ws ∩ F can be labelled as in 5.4. The equations

5.4(a) and their consequence 5.4(b) still hold in our case. But in this case we do
not know a priori that a7 = a8. Thus we need an additional equation. As stated
in [L2] and proved in [L3],[L6],[S], the almost characters

ρ1 − ρ3 − ρ4 + ρ5 + 2ρ7 − ρ8, ρ1 − ρ3 − ρ4 + ρ5 − ρ7 + 2ρ8

are of the form χA,φ where A is as in 4.5(a) for a suitable φ. Using 4.4 we deduce
that

a1 − a3 − a4 + a5 + 2a7 − a8 = 0, a1 − a3 − a4 + a5 − a7 + 2a8 = 0.

Substracting, we get a7 = a8. The argument continues as in 5.4 and the ai are
determined as there. We see that 1.4(c) holds in our case.
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5.6. Assume that G/ZG is of type G2 and that Γ ∼= S3. Since in this case G =
ZG × (G/ZG), we may assume that ZG = {1}. The elements of Irrs,FGF

2
can be

labelled as in 5.4 but Irr′Ws∩F consists now of E1, E2, E3, E4 so that the equations
5.4(a) (except the last one) hold. As in 5.4 from these equations we deduce

a1 + a2 + a3 = 3, a1 + a2 + a4 = 3, a2 + a4 + a6 + a7 + a8 = 1,
a2 + a3 + a6 + a7 + a8 = 1, a3 + a5 + a6 = 1, a4 + a5 + a6 = 1.

(a)

Since there is one less equation than in 5.4(b), we need additional information. As
in 5.5, the almost characters

ρ1 − ρ3 − ρ4 + ρ5 + 2ρ7 − ρ8, ρ1 − ρ3 − ρ4 + ρ5 − ρ7 + 2ρ8

are of the form χA,φ where A is as in 4.5(c) for a suitable φ. Using 4.4 we deduce

a1 − a3 − a4 + a5 + 2a7 − a8 = 0, a1 − a3 − a4 + a5 − a7 + 2a8 = 0.(b)

It is easy to see that the equations (a) and (b) have a unique solution with ai ∈ N
namely (a1, a2, . . . , a8) = (2, 0, 1, 1, 0, 0, 0, 0). From this 1.4(c) follows easily in our
case.

5.7. Assume that F consists of two irreducible representations E1, E2. They are in
Irr′Ws. In this case, G/ZG is of type E7 or E8 and Γ ∼= Z/2Z. The four elements
of Irrs,FGF

2
are denoted by ρ1, ρ2, ρ3, ρ4 so that

ρ1 + ρ2 = R1 +R2, ρ3 + ρ4 = R1 −R2,

where Ri = Rs
Ëi

. Let ai = ρi . Using 2.13(c) we obtain

a1 + a2 = 2, a3 + a4 = 0.

Since ai ∈ N, we have a3 = a4 = 0. As in 5.5, the almost character

ρ1 − ρ2 + ρ3 − ρ4

is of the form χA,φ where A is as in 4.5(b) for a suitable φ. Using 4.4 we deduce
that a1−a2 +a3−a4 = 0 hence a1 = a2. It follows that (a1, a2, a3, a4) = (1, 1, 0, 0).
Hence 1.4(d) holds.

5.8. Assume that G/ZG is of type F4 and that Γ ∼= S4. We may assume that
ZG = {1}. We have s = 1. Here Irr1,FG

F 2
consists of 21 irreducible representations

ρi and F consists of 11 representations Ei. We consider the analogues of the
equations 5.4)(a); as explained in 2.14, they are obtained from the elements

αx =
∑
i

cx,EiEi

(see [L1, (5.10.3)]) by expressing
∑
i cx,EiR

s
Ëi

as linear combinations with coeffi-
cients in N of ρj (using [L1, 4.23]). Now the various αx are computed in [L4]. As in
5.4 from these equations we get a system of equations with coefficients in N for the
unknown ai = ρi . As in 5.5 we get four additional equations for the ai attached
to four almost characters which are of the form χA,φ with A as in 4.5(c). These
equations determine uniquely the ai subject to ai ∈ N. From this 1.4(c) follows
easily in our case.

The same argument applies in the case where G/ZG is of type E8 and Γ ∼= S5.
(Here the situation is simpler as the additional equations coming from 4.4 are
not needed. Instead we use, as in 5.4, the equations ai = aj whenever ρi, ρj are
algebraically conjugate.)

This completes the proof of Theorem 1.4.
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6. Proof of Corollary 1.6

6.1. 1.6(a),(b),(f) follow immediately from 1.4(a),(b),(d). In the remainder of the
proof we assume that F (s) = s−1, F (F) = F and that |F| 6= 2. Since the transition
from ρx,ξ to Ry,η is given by an invertible matrix [L1, (4.21.10)], it is enough to
show that, if we assume that 1.6(c),(d),(e) hold, then 1.4(c) holds. Using 1.5(b)
and [L1, (4.21.10)], we have

ρx,ξ = |ZΓ(x)|−1|ZΓ(y)−1|
∑
y,η

∑
g∈Γ

xgyg−1=gyg−1x

tr(g−1x−1g, η)tr(gyg−1, ξ)Ry,η

where (y, η) runs over a set of representatives for the M -orbits in MΓ,F 2 . Hence,
by our assumption, we have

ρx,ξ = |Γ|−1|ZΓ(x)|−1
∑
y

∑
η

∑
g∈Γ

xgyg−1=gyg−1x

tr(g−1x−1g, η)tr(gyg−1, ξ)ψ(η̃)

where y runs over the elements of Γ and is subject to the condition that ZΓ̇(y)
meets Γγ and η runs over the irreducible representations of ZΓ̈(y) such that η
extends to a self dual representation η̃ of ZΓ̇(y). By 2.11, for any y, g ∈ Γ such that
xgyg−1 = gyg−1x, we have∑

η

tr(g−1xg, η)ψ(η̃) = ](z ∈ ZΓ̇(y); z2 = g−1xg)

hence

ρx,ξ = |Γ|−1|ZΓ(x)|−1
∑
y

∑
g∈Γ;xgyg−1=gyg−1x

tr(gyg−1, ξ)](z ∈ ZΓ̇(y); z2 = g−1xg)

= |Γ|−1|ZΓ(x)|−1
∑

y,g∈Γ,z∈Γγ;zy=yz,z2=g−1xg

tr(gyg−1, ξ).

Setting y′ = gyg−1, z′ = gzg−1 we obtain

ρx,ξ = |ZΓ(x)|−1
∑
y′∈Γ
z′∈Γγ

z′y′=y′z′

z′2=x

tr(y′, ξ)

= |ZΓ(x)|−1
∑

y′∈ZΓ(x)

tr(y′,
√
x)tr(y′, ξ) = [ξ :

√
x],

as required.

7. More on character sheaves

7.1. Let G be as in 1.1. In this section we assume that
(a) the connection stated in [L2] between the almost characters of GF

2
and the

character sheaves of G holds;
(b) q is sufficiently large.

Under these assumptions and with the notation of 4.1 we have the following result
suggested by Corollary 1.6. (It is likely that the same holds without any assump-
tions.)
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Proposition 7.2. Let A be a character sheaf of G such that there exists an iso-
morphism φ : (F 2)∗(A) ∼→ A.

(a) If F ∗(A) 6∼= DA, then χA,φ = 0 for any φ as above.
(b) If F ∗(A) ∼= DA, then there is a canonical choice for φ. For this φ we have

χA,φ = (−1)dim supp(A).

In case (b), φ is defined as follows: we choose an isomorphism φ′ : F ∗(A) ∼→ DA
and we define φ to be the composition

(F 2)∗A
F∗(φ′)−→ F ∗(DA) = D(F ∗(A))

D(φ′)−1

−→ A.

This is clearly independent of the choice of φ′.

7.3. We sketch a proof of 7.2. It is known that there exists a canonical finite
partition G =

⋃
j∈J Xj of G into locally closed smooth irreducible subvarieties Xj

with dimXj = dj such that X̄j is a union of subvarieties Xj′ and the following
holds:

(a) If A is any character sheaf of G, then for a unique j ∈ J we have
supp(A) ⊂ X̄j ;
H−dj (A)|Xj is an irreducible local system;
Hi(A)|Xj = 0 if i 6= −dj; if j′ 6= j, then Hi(A)|Xj′ 6= 0 =⇒ dj′ + i < 0.

Moreover, there exists an integer N ≥ 1 (depending only on G) such that for any
character sheaf A of G we have∑

i

dimHig(A) ≤ N for all g ∈ G.(b)

Assume now that A is a character sheaf of G such that (F 2)∗(A) ∼= A. It is known
that we can choose φ : (F 2)∗(A) ∼→ A such that, if j is as in (a), then for any
n ≥ 1 and any g ∈ GF 2n ∩ Xj , the map φng : H−djg (A) → H−djg (A) it is equal to
(q2)(a−dj)/2 times a linear transformation of finite order. Here a = dimG. For such
φ, the following holds, by Gabber’s purity theorem:

(c) for any i and any g ∈ GF
2
, any eigenvalues µ of φg : Hig(A) → Hig(A)

satisfies |µ| ≤ (q2)(a+i)/2.
Here || is complex absolute value. (This notation diverges from that in 1.1.) We
have

χA,φ =
∑

j′∈J;F (Xj′ )=Xj′

αj′(d)

where

αj′ = |GF |−1
∑
g∈XF

j′

∑
i

(−1)itr(φg ,Hig(A)).

If j′ 6= j, then by (a) we have

αj′ = |GF |−1
∑
g∈XF

j′

∑
i;dj′+i<0

(−1)itr(φg ,Hig(A)).

By (b),(c) any eigenvalue µ of the last φg in the sum satisfies |µ| ≤ qa+i ≤ qa−dj′−1

hence

|αj′ | ≤ |GF |−1](XF
j′ )Nq

a−dj′−1.
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Now |](XF
j′ )− qdj′ | ≤ Cqdj′−1/2 where C is a constant. Hence

|αj′ | ≤ |GF |−1N(qa−1 + Cqa−3/2),

or

|αj′ | ≤ Nq−1 + C′qa−3/2(e)

where C′ is a constant. Let L be the irreducible local system H−dj (A)|Xj . By (a)
we have αj = |GF |−1(−1)djα′ where

α′ =
∑
g∈XFj

tr(φg,Lg).

As in the proof of 4.2, we see that α′ is equal to the alternating sum of traces of

Frobenius on Hi
c(Xj , F

∗(L)⊗L) with respect to an isomorphism F ∗(F ∗(L)⊗L))
φ̃→

F ∗(L) ⊗ L induced by φ. If F ∗(A) 6∼= DA, then F ∗(L) ⊗ L contains no summand
Q̄l, hence H2dj

c (Xj , F
∗(L) ⊗ L) = 0. If F ∗(A) ∼= DA, then F ∗(L) ⊗ L contains

exactly one summand Q̄l hence H2dj
c (Xj , F

∗(L) ⊗ L) = Q̄l with Frobenius acting
as qa (by our choice of φ). In both cases, for i < 2dc we have

|tr(F ∗, Hi
c(Xj , F

∗(L)⊗ L))| ≤ N ′qa−1/2

where N ′ is a constant. It follows that in case 7.2(a) we have

|αj | ≤ N1q
−1/2(f)

and in case 7.2(b) we have |αj − (−1)dj |GF |−1qa| ≤ N1q
a−1/2, or

|αj − (−1)dj | ≤ N2q
−1/2(g)

where N1, N2 are constants. From (d),(e),(f),(g) we deduce
(h) | χA,φ | ≤ N ′1q−1/2 in case 7.2(a),

(i) | χA,φ − (−1)dj | ≤ N ′1q−1/2 in case 7.2(b).
where N ′1 is a constant. From (h),(i) we see using 7.1(b) that

(j) χA,φ is very close to 0 in case 7.2(a) and very close to (−1)dj in case 7.2(b).
From 7.1(a) we see that for some integer n ≥ 1 (depending only on G), nχA,φ is
a linear combination of irreducible characters of GF

2
with coefficients cyclotomic

integers. It follows that n χA,φ is an integer in a (fixed) cyclotomic field. Using
this and (j) (which holds with respect to any complex absolute value) we deduce
that χA,φ equals 0 in case 7.2(a) and equals (−1)dj in case 7.2(b), as required.

8. A generalization to symmetric spaces

8.1. Theorem 1.4 implies that, when ρ varies through IrrGF
2
, ρ is bounded above

by a bound which depends only on G and not on the Fq-rational structure. This
fact can be generalized as follows.

Let G be as in 1.1. Assume that q is odd. Let θ : G → G be an involutive
automorphism which commutes with F . Let K be an F -stable closed subgroup of
the fixed point set Gθ which contains (Gθ)0.

Theorem 8.2. There exists a constant C > 0 depending only on G (and not on
the Fq-rational structure or on K) such that the following holds: for any ρ ∈ IrrGF ,
the dimension of the space ρK

F

of KF -invariant vectors in ρ has dimension ≤ C.
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For simplicity we assume that G has connected center. We use the same strategy
as in 2.14. Let T be an F -stable maximal torus of G, let λ ∈ (TF )̌ and let RλT be
the virtual representation of GF attached to (T, λ) in [DL] (relative to G,F ). (This
notation disagrees with that in 2.1.) Now ρ 7→ dim ρK

F

extends by linearity to a
function f 7→ a(f) from formal Q-linear combinations of irreducible representations
of GF to Q. In particular, a(RλT ) ∈ Z is well defined. From the explicit formula for
a(RλT ) given in [L5, 3.3] we see that |a(RλT )| ≤ C1 where C1 is an integer ≥ 1 which
depends only on G. Let ρ ∈ IrrGF . As in 2.14 we see, using [L1, 6.17(ii), (6.18.2)],
that there exists a representation ρ′ of GF such that ρ is a direct summand of ρ′

and such that the character of ρ′ is a Z-linear combination of characters of RẼ (as
in [L1, 6.17(i)]). Moreover, the sum of absolute values of coefficients in this linear
combination is bounded above by a constant C2 ≥ 1. By the definition of RẼ we
see that RẼ is a Q-linear combination of various RλT and the sum of absolute values
of coefficients in this linear combination is bounded above by a constant C3 ≥ 1. It
follows that a(RẼ) ≤ C1C3 and a(ρ′) ≤ C1C2C3. Clearly 0 ≤ a(ρ) ≤ a(ρ′). Hence
a(ρ) ≤ C1C2C3. The theorem is proved.

8.3. It would be very interesting to carry out completely the strategy of 2.14 in
the present case and compute explicitly a(ρ) for any ρ.
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