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THE DYNKIN DIAGRAM R-GROUP

DANA PASCOVICI

Abstract. We define an abelian group from the Dynkin diagram of a split real
linear Lie group with abelian Cartan subgroups, G, and show that the Rδ,0-
groups defined by Knapp and Stein are subgroups of it. The proof relies on
Vogan’s approach to the R-groups. The R-group of a Dynkin diagram is easily
computed just by looking at the diagram, and so it gives, for instance, quick
proofs of the fact that the principal series with zero infinitesimal character
of the split groups E6, E8, G2 or F4 are irreducible. The Dynkin diagram
subgroup also implicitly describes a small Levi subgroup, which we hope might
play a role in computing regular functions on principal nilpotent orbits. We
present in the end a conjecture and some evidence in this direction.

1. Introduction

The reducibility of principal series representations of real reductive Lie groups
has been studied extensively. In the approach of Knapp and Stein [1], understanding
the reducibility boils down to computing certain small abelian subgroups of the
Weyl group, called R-groups. In the case when the group is linear and split, these
R-groups can be described quite concretely. We will concentrate on a particular
class of principal series for these split groups, those with infinitesimal character
equal to zero. They are obtained by parabolic induction as IndGMAN δ ⊗ 0, for all
representations δ of M , which is a finite abelian group for all the cases which we will
consider. There is an action of the Weyl group on the representations of M , and
representations in the same Weyl group conjugacy class yield isomorphic principal
series. We show that we can reduce the understanding of the decomposition into
irreducible components for all principal series with infinitesimal character zero at
once, to the same problem for a small Levi subgroup, which at the Lie algebra level
consists of several copies of sl(2,R). The idea of reducing the understanding of
the Rδ-groups to SL(2,R) for each δ was used by Knapp and Zuckermann [2] in
their approach to the R-groups. We add to that approach the fact that, with a
proper choice of a representative in each Weyl group conjugacy class, which we call
acceptable, this reduction can be done simultaneously for all principal series with
infinitesimal character zero.

As a by-product of this approach, we describe a finite group which we can con-
struct combinatorially by looking at the Dynkin diagram of a simple split group,
and show that each Rδ,0 group has to be a subgroup of it (Theorem 1). As noted
in the abstract, we believe that these results might also be useful in computing
regular functions on principal nilpotent orbits. Such computations would be then
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interesting from the point of view of the orbit method, which was our original
motivation. In order to make the connection a bit clearer, we mention that the
irreducible pieces of principal series with zero infinitesimal character should be re-
garded as the representations associated to principal nilpotent orbits, in the orbit
method picture.

2. Setting and background

G will be a real, linear and split group with abelian Cartan subgroups. In order
to define the Dynkin diagram subgroup we will assume G to be simple, but we can
of course extend the results to semisimple groups in the standard fashion.

The corresponding Lie algebra will be denoted by g, and θ will be a Cartan
involution yielding a Cartan decomposition of the Lie algebra, g = k + p.

We let K denote the maximal compact subgroup of G; its Lie algebra is k.
a is the split Cartan subalgebra of g, and let A = exp a.
The roots of g with respect to the split Cartan subalgebra will be denoted by

∆(g, a). A choice of positive roots will be denoted by ∆+(g, a).
M = ZK(A) is an abelian group, as G has abelian Cartan subgroups.
M ′ denotes the normalizer of M in K, and so W = M ′/M is the analytic (or

real) Weyl group.
δ will denote a representation of M .
We will also fix an Ad(G)-invariant, θ-invariant, nondegenerate symmetric bilin-

ear form B on g × g so that Bθ(X,Y ) = −B(X, θY ) is positive definite. From B
we construct an inner product 〈·, ·〉 on the dual space of a, in the usual way.

Knapp and Stein [1] defined an R-group for each representation δ of M and ν of
A, denoted by Rδ,ν . The case when ν = 0 was treated first, as the case of general
ν can be reduced to it. Since our interest is in principal series with infinitesimal
character zero, we will only talk from here on about the groups Rδ,0, which we will
denote by Rδ. As proved by Knapp and Stein, these R-groups are finite abelian
groups, with cardinality a power of two, having the property that the dual group
R̂δ acts transitively on the irreducible components of the principal series I(δ ⊗ 0).
Hence I(δ ⊗ 0) splits into |Rδ| irreducible pieces.

For a more concrete realization of these groups we will follow the construction of
Rδ in Vogan’s book [8]; for proofs and more details the reader is referred to section
4.3 in [8]. The main idea is to reduce the understanding of Rδ to a small Levi, for
each δ.

For each root we can choose an injection φα : sl(2,R) −→ g with the following
properties:

Hα := φα

((
1 0
0 −1

))
∈ a,

φα(−Xt) = θφα(X),

φα

((
0 1
0 0

))
∈ α root space .

Using the above, we then define

Zα = φα

((
0 1
−1 0

))
∈ k,

σα = exp(
π

2
Zα) ∈ K,

mα = σ2
α.
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Definition 1. A root β ∈ ∆+(g, a) is called bad if δ(mα) = −1. A good root is a
root which is not bad, so δ(mα) = 1.

Denote the collection of all good roots for δ by ∆δ; it is shown in [8] that they
form a root system. Let the corresponding Weyl group be denoted by W 0

δ . We
need one more ingredient before we can define the R-group, namely, the action of
the analytic Weyl group on representations of M .

Since M ′ normalizes M , we can define the following action of w = [x] ∈W on δ
(x ∈M ′ is any representative for w):

w · δ(y) = δ(x−1yx).

The action is well defined, andWδ will denote the stabilizer of δ inW with respect
to this action. In particular, it turns out that every element in W 0

δ stabilizes δ, so
W 0
δ ⊂Wδ.

Definition 2. The R-group of δ is defined to be Rδ = Wδ/W
0
δ .

We assume fixed an ordering of the positive good roots; then there exists in fact
a semidirect product decomposition

Wδ = RδW
0
δ ,

where Rδ = {w ∈Wδ | w(∆+
δ ) = ∆+

δ }. Note, as an aside, that such a decomposition
is fairly general, holding also outside of the split group setting, as noted in [1]; what
is particularly nice in the split case is the description of good roots, and that of Rδ.

The more concrete description of Rδ follows from the following proposition (see
[8], section 4.3):

Proposition 1. Choose an ordering of ∆(g, a) for which half the sum of the posi-
tive good roots, ρδ, is dominant. Then the collection of roots ∆S = {α | 〈α, ρδ〉 =
0} consists of strongly orthogonal simple roots and their negatives. Furthermore,
Rδ ⊂W (∆S).

Also we recall Corollary 4.3.20 from [8] which will be used repeatedly:

Proposition 2. If α, β and γ are roots so that
∨
α +

∨
β=
∨
γ, then mγ = mαmβ.

We will typically put this proposition to use in the following manner: to show,

for instance, that if α and β are bad and
∨
α +

∨
β=
∨
γ, then γ is good, etc.

3. The Dynkin diagram R-group

To the Dynkin diagram of a simple split group, DD, we attach now a finite
abelian group denoted by RDD, which can be constructed easily by looking at the
diagram. We can of course extend the construction to semisimple groups by taking
the product of the Dynkin diagramR-groups of the simple factors. Since the simply
laced case is a lot clearer, and also since it includes all the main ideas of the proof,
we will first define a preliminary version of the Dynkin diagram R-group in that
setting.

Definition 3. As a set, RDD = {S | S is a subset of strongly orthogonal simple
roots, so that any x /∈ S is connected to an even number of elements of S}. RDD
is made into a group with the operation of symmetric difference of subsets.
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Remark 1. It is not clear that RDD is closed under symmetric difference, hence
well defined; we will show it later, for the general definition.

As a first example, we consider the Dynkin diagram of E7. The only subsets
satisfying the condition in the definition are the empty set and the collection of
simple roots marked in Figure 3.1. Therefore, the Dynkin diagram R-group of E7

is Z2.

Figure 3.1. Nontrivial element in Dynkin diagram R-group of E7.

Similarly, one can check that the Dynkin diagram R-group of E6 or E8 is trivial.
In the general case, we have to keep track of the different root lengths, for which

we will need first a directed, labeled version of the Dynkin diagram.

Definition 4. To each Dynkin diagram DD we associate a labeled directed graph,
ΓDD, whose vertices are the vertices of the Dynkin diagram. Two vertices of the
Dynkin graph, α and β, are connected by an arrow from α to β labeled by the
integer nα,β = 2〈α,β〉

〈α,α〉 whenever α and β are connected by an edge in the Dynkin
diagram.

Naturally, for the simply laced groups this graph will only have edges labeled
one. Next we define the Dynkin diagram R-group, RDD:

Definition 5. Consider the directed Dynkin graph ΓDD associated to the Dynkin
diagram, DD, of a simple split group. As a set, define RDD to be the collection of
all subsets of strongly orthogonal roots, S, having the following property: for each
vertex γ /∈ S the sum of the labels on arrows going out of γ and into elements of S
is even, namely,

∑
α∈S nγ,α even. RDD is made into a group with the operation of

symmetric difference of subsets.

Remark 2. Proposition 4 will show that RDD is closed under symmetric difference,
and hence, well defined.

For example, the directed graph corresponding to the split form of F4 is given
in Figure 3.2, and one can see that there are no subsets S with the property above,
hence the Dynkin diagram R-group of F4 is trivial.

1 1
2

1

Figure 3.2. Directed graph for F4

A full list of these directed graphs is provided in Figure 7.1, Appendix B. As
an easy graph theory diversion, we can state the following propositions, which will
show that RDD is closed under symmetric difference.
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Proposition 3. The union of all the elements of RDD is a strongly orthogonal set.

Proof. We will only give a sketch of the proof. First, all we need to know about
the Dynkin diagrams is that they are acyclic, connected graphs with at most one
vertex of degree three.

Likewise, all we need to know about the corresponding Dynkin graphs defined
above is that:
• all edges are labeled ‘1’, possibly with the exception of one edge, which can be

labeled ‘2’ or ‘3’ (as a matter of fact just the parity matters, so we could simply
take the labels modulo two);
• if the Dynkin diagram has a vertex of degree 3, then all edges are labeled ‘1’.
Now we can assume that the union of elements of RDD is not strongly orthogo-

nal, hence there exists an edge such that the adjacent vertices belong to different
elements of RDD. If more exist, then pick the one closest to an endpoint of the
graph. There are at this point a few cases, all quickly shown to be impossible given
the properties of the Dynkin graphs mentioned above.

It is equally easy to show:

Proposition 4. RDD is closed under symmetric difference of subsets.

Proof. The symmetric difference of two elements S and P of RDD will again be
strongly orthogonal by the previous proposition. Consider any element x adjacent
to elements in S and P—since it cannot be in either set S or P , then it must satisfy
the parity condition with respect to both S and P , and, as we can see after a quick
consideration, also with respect to their symmetric difference.

Together these two propositions show that the Dynkin diagram R-group is in
fact well defined.

4. Acceptable representations of M

We want to prove the following result:

Theorem 1. The R-group Rδ associated to a representation δ of M is a subgroup
of the Dynkin diagram R-group, RDD.

Define first a distinguished (although not unique) member in each W -conjugacy
class of representations of M , which we call acceptable.

Start by fixing, once and for all, an ordering of all the roots, ∆+(g, a). Recall
from before that we denoted half the sum of the positive good roots for a certain
representation δ by ρδ.

Definition 6. A representation of M is called acceptable if ρδ is dominant.

The following proposition shows that we are not in fact losing any representations
by making this choice, but simply choosing one in each Weyl group conjugacy class.
In fact, to be more precise, there may be more than one acceptable representation
in each conjugacy class. Note that representations of M in the same W -conjugacy
class have congruent corresponding R-groups.

Proposition 5. Any representation δ of M is conjugate to an acceptable one.
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Proof. Conjugate by a Weyl group element w = [x] in order to make ρδ dominant.
Then let δ′ = w · δ. Since mw·α = xmαx

−1, it follows that the good roots for
δ′ are obtained by applying w to the good roots for δ. In order to conclude that
ρδ′ = w ·ρδ which is dominant, and that δ′ is acceptable, we still need to prove that
w takes good positive roots to good positive roots. In other words, we want to see
that w∆+

δ = ∆+
δ′ . Assume β is positive, and good for δ. Then

〈wρδ, wβ〉 = 〈ρδ, β〉 > 0.

Since wρδ is dominant, 〈wρδ, wβ〉 > 0 only if wβ is positive, and so we can conclude
that w∆+

δ ⊂ ∆+
δ′ . The other inclusion follows similarly.

The following is the crucial lemma towards proving Theorem 1:

Lemma 1. Let δ be an acceptable representation. Let w = sα1 . . . sαk ∈ Rδ. Then
the collection of simple roots S(δ, w) = {α1, . . . , αk} is an element of RDD.

Proof. Assume the lemma fails—since {α1, . . . , αk} are certainly strongly orthog-
onal by Proposition 1, it follows that there must be a simple root α for which∑
β∈S(δ,w) nα,β is odd. Denote the set of roots in S(δ, w) which are also adjacent

to α by Adj(α). We may rewrite the condition above as
∑

β∈Adj(α) nα,β odd.
First we would like to see that, without loss of generality, we can conjugate δ

while leaving it acceptable so that the simple root α is a good root. Assume α bad,
and also assume, to fix notation, that Adj(α) = {β1, . . . , βt}. Of course, t cannot
be, in fact, greater than 3.

Let δ′ = w ·δ — it is still acceptable, since wρδ = ρδ′ = ρδ is dominant. The good
roots for δ′ are obtained from the good roots of δ by applying w, so ∆δ′ = w∆δ.
In particular, we know:
• wα is good for δ, since by definition the elements of Rδ preserve the good roots.
• w(wα) = α, as w is a product of orthogonal reflections, and therefore w2 = 1.

It follows that α is good for δ′.
We will need a bit more, namely that after conjugating δ we still have w ∈ Rcδ′ .

So show that w preserves the positive good roots for δ′, and also that it stabilizes
δ′.

The positive good roots for δ′ are given by w∆+
δ , so

w∆+
δ′ = ww∆+

δ = ∆+
δ = w∆+

δ = ∆+
δ′ ;

the positive good roots for δ′ are preserved by the action of w. Also,

w · δ′(mγ) = w · δ(mwγ) = δ(mw2γ) = δ(mγ) = δ(mwγ) = δ′(mγ).

Therefore, without loss of generality, we can assume that α is good for the accept-
able representation δ, and we have not changed the fact that w ∈ Rcδ.

Now we can show that we reach a contradiction, by showing that w must send
α to a bad root.

∨
w.α = 2〈α, α〉−1sα1 . . . sαkα

=
2

〈α, α〉

(
α− 2〈α, β1〉

〈β1, β1〉
β1 − . . .−

2〈α, βt〉
〈βt, βt〉

βt

)
=
∨
α −nα,β1

∨
β1 − . . .− nα,βt

∨
βt,

since all roots αi are strongly orthogonal, and the only ones adjacent to α are in
Adj(α). By our assumption the co-root above is a sum of an odd number of bad
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co-roots and a good co-root, hence by Proposition 2 w · α must be bad. We have
thus reached a contradiction, since elements in Rδ are supposed to preserve the
subset of positive good roots, and so the lemma follows.

With the previous lemma we can now prove Theorem 1:

Proof. For any acceptable representation of M , δ, we can construct a map φ :
Rδ −→ RDD by

w = sα1 . . . sαk −→ S = {α1, . . . , αk}.

For further use call S the underlying set of w. Lemma 1 shows that the map is well
defined; it is clearly an injection. It remains to show that the map also respects the
group operations.

For this consider w1, w2 ∈ Rδ. Since the union of the underlying sets of sim-
ple roots is still strongly orthogonal by Proposition 3, all the simple reflections
commute. Now it is immediate that the underlying set of w1w2 is the symmetric
difference of the underlying sets of w1 and w2, which shows the map φ preserves
the group operations.

It is now an easy exercise to show that all Rδ are trivial for the split exceptional
groups E6, E8, F4 and G2 for instance, or for SL(2k+1,R). We collect all nontrivial
Dynkin diagram R-groups in Figure 7.2, Appendix B.

Theorem 1 also provides us with a Levi subgroup: in the usual way a Levi
subgroup can be described by a collection of simple roots, namely, all simple roots
appearing in the Dynkin diagram subgroup. It has the property that all reducible
principal series I(δ ⊗ 0) with δ acceptable already split at the level of this small
Levi. We will describe it more carefully and present a conjecture in a later section.

We would like to give more information about the acceptable representations.
It would be quite easy to give a full list of all the acceptable representations, at
least in the simple classical split groups, but instead we prefer to show how they
behave under a certain reduction to a smaller subgroup. Also, we will define a
particular acceptable representation, the maximally bad one, which defines on its
own the Levi subgroup mentioned above, and whose corresponding R-group will be
shown to equal RDD.

Definition 7. A representation of M is called maximally bad if all simple roots are
bad.

Remark 3. If the group G is connected, then M is generated by the mα for all α
simple [5], and hence there is at most one maximally bad representation. Otherwise,
there can be more such representations, but the corresponding sets of good roots,
and therefore also ρδ, are the same for all of them. Unfortunately, it is not always
clear when a maximally bad representation exists, due to the restrictions (such
as linearity) imposed on the group G. For instance, there is no maximally bad
representation for SO0(n + 1, n), but this group happens to have a linear double
cover for which such a representation exists.

We will denote a maximally bad representation by δ0, and show that it is always
acceptable. We can show this in general for the simply laced split groups; however,
for the remaining simple split groups (SO0(n + 1, n), Sp(2n,R), the split forms
of F4 and G2) we only have a case-by-case proof at this point. Since it is not a
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particularly enlightening computation, we will relegate it to Appendix A and only
do the simply laced case here.

The main tool will be a reduction to a subalgebra containing all roots perpen-
dicular to a certain simple root, so we have to see that acceptable representations
remain acceptable under this reduction, and likewise maximally bad representa-
tions stay maximally bad. This will be done in the next few lemmas, but first we
introduce some notation:

Let α be a simple root, and denote by Gα the centralizer of Hα in G. Its Lie
algebra is gα, the centralizer of Hα in g, and the corresponding root system consists
of all roots γ satisfying 〈γ, α〉 = 0. Recall also that we have fixed an ordering and
hence a set of positive roots ∆+(g, a). Finally, Gα also inherits a notion of good
and bad roots from G.

Proposition 6. Let g′ = gα as above. Let Π′ be the simple roots for g′, with order
inherited from ∆+. Then any α′ in Π′ is a sum of an odd number of simple roots
in g, α′ =

∑
miαi, where

∑
mi = 2k + 1.

Remark 4. Combined with Proposition 2, this proposition shows that the restric-
tion of a maximally bad representation to gα is still maximally bad, since any new
simple root is a sum of an odd number of old simple roots, and hence also bad.
This fact is unfortunately false outside of the simply laced case; as an example take
Sp(4,R) and α equal to the long simple root. Then gα has a single simple root,
which is good for the restriction of the maximally bad representation to gα.

Proof. The proof consists of adapting some parts of Lemma 5.3.6 in [8]. Show by
induction on M ,

∑
mi ≤M .

Case 1: M = 1, clear.
Case 2: M = 2. Assume we have a new simple root α′ = α1 + α2. Then

〈α1 + α2, α〉 = 0, but we can easily see that the only way we could get this would
be if 〈αi, α〉 = 0 for i = 1, 2, contradicting the assumption that α′ was simple.

Induction step: reduce from M to M−2. If
∑
mi > 2, then there exists a simple

root γ so that α′ − γ is a root. If 〈γ, α〉 = 0, then α′ = γ + (α′ − γ), not simple in
g′, contradiction. So we must have 〈γ, α〉 = −1, hence α′ − γ − α is a root. Note it
is also perpendicular to γ:

〈α′ − γ − α, γ〉 = 1− 2 + 1 = 0.

Now show that, in fact, β = α′−γ−α, γ is simple in gβ ; if not, we have β = η1 +η2,
〈ηi, γ〉 = 0. This further gives

α′ = γ + α+ η1 + η2.

Note that 〈η1 +η2, α〉 = 〈α′−γ−α, α〉 = 1−2 = −1, so without loss of generality,
say 〈η1, α〉 = 0 and 〈η2, α〉 = −1. Then

α′ = η1 + (γ + α+ η2)

and we only need to show that γ + α + η2 is a root to get to a contradiction with
the fact that α′ is simple. But this is clear, since 〈η2 + α, γ〉 = −1. So we can
conclude that β must, in fact, be simple. Since β =

∑
miαi with

∑
αi ≤ M − 2,

by induction it is a sum of an odd number of simple roots, and hence so is α′.

In order to see that acceptable roots stay acceptable under a restriction of the
kind mentioned above, we need to understand how the half sum of positive good
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roots ρδ behaves under restriction to gα. It turns out to be easier to understand
how 2ρδ − ρ = ρδ − ρbad behaves, in the same way that it easy to understand how
the difference between the sum of positive compact roots and positive noncompact
roots behaves, as in [6] or [8]. The reason for the similarity is the following: consider
α to be a simple bad root, and write all the other roots as belonging to α-strings.
Since we have limited ourselves to the simply laced case, the strings will have
length 1 or 2. Each string of length two will contain a good and a bad root, by
Proposition 2. Similarly, if α had been a simple noncompact root, then the α-strings
through various roots would have contained alternating compact and noncompact
roots. Then the same proofs as in [6] or [8] can be used here essentially with no
modification, as we will show.

Proposition 7. Let α be a simple root, g′ := gα as before, Lα the corresponding
Levi. We can restrict our representation δ to Lα ∩M , and there we have the same
notions of good, bad roots and so on, with g′ in place of g. Then the following
relation holds:

2ρ′δ − ρ′ = (2ρδ − ρ)
∣∣
g′
.

Proof. The proof is the same as for the equivalent result for compact vs. noncom-
pact roots (Lemma 5.3.5 in [8]); we write all roots as α strings, which will have
length at most two, since we are in the simply laced case. Strings of length two will
contribute nothing in g′ since they will contain a good and a bad root, and therefore
their difference will be a multiple of α, which is perpendicular to all elements of
g′.

Proposition 8. In the setting above, if ρδ is dominant, then ρδ′ is dominant in
g′, hence the restriction of δ is also acceptable.

Keeping in mind the analogy with compact-noncompact roots, this is in fact a
particular case of Lemma 5.3.6 in [8]; we will however recall in this setting the
relevant parts of the proof.

Proof. It suffices to show that, for any simple root of g′, α′, which is not also a
simple root of g, we have 〈2ρδ′ −ρ′, α′〉 ≥ −1. For simple roots of g′ which are also
simple for g this relation is satisfied because of Proposition 7. For α′ =

∑
miαi we

can proceed by induction on
∑
mi.

Base case:
∑
mi = 3 – recall from Proposition 6 that this is the smallest case

we need to consider.
Then α′ = α+β+γ, and α is connected to both β and γ in the Dynkin diagram,

from the proof of Proposition 6. There are two possibilities:
1. β is good. Then 〈2ρδ − ρ, β〉 = 2 − 1 = 1, so 〈2ρδ − ρ, γ + α + β〉 ≥
−1− 1 + 1 = −1, done.

2. β is bad, hence β+α is good. Then 〈2ρδ − ρ, α+ γ + β〉 ≥ −1 + 2− 2 = −1,
done.

Induction step: As in the proof of Proposition 6, we can write α′ = β+ γ+α,
where β is simple, and γ is simple in the subalgebra gβ . It follows by induction that
〈2ρδ − ρ, γ〉 ≥ −1. We have the same two cases as above, depending on whether
γ is good or bad, and the proof works the same way.

Propositions 6 and 7 can now be used to prove:
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Proposition 9. In a simply laced split group, a maximally bad representation is
always acceptable.

Proof. We will do an induction on the rank of the split group; for the induction
step to work properly, we need to assume that rk g > 4. However the cases when
the rank is at most 4 can be checked quickly by hand (there are only 5 such cases,
as we only need to look at connected groups), so we assume rk g > 4. Assume the
conclusion fails; then ρδ0 is not dominant, hence there exists a simple root α for
which 〈ρδ0 , α〉 < 0. Since the rank of the algebra g is at least 5, there exists a simple
root β so that α ∈ gβ. Then gβ is a split simply laced algebra of rank less than
that of g, and denote the restriction of ρ and ρδ0 to gβ by ρ′ and ρ′δ0 respectively.
By Proposition 7 we have 〈2ρδ0 − ρ, α〉 = 〈2ρ′δ0 − ρ

′, α〉. But the restriction of δ0
to gβ is still maximally bad, hence acceptable by the induction hypothesis. Hence
〈2ρδ0 − ρ, α〉 ≥ −1, which contradicts the assumption that 〈ρδ0 , α〉 < 0.

Using the case-by-case computations in Appendix A, we can remove the simply
laced requirement from the statement of this proposition, and so from now on we
will use the fact that all maximally bad representations are acceptable in all split
groups.

Finally, we want to show that the RDD group defined is, in a sense, no larger
than necessary; the principal series induced from a maximally bad representation
splits in as many pieces as the cardinality of the Dynkin diagram R-group.

Proposition 10. Assume G is connected, and assume it has a maximally bad rep-
resentation of M , δ0. Then RDD ∼= Rδ0 .

Proof. To any element on RDD, S = {α1, . . . , αk}, we can associate an element of
the Weyl group W (G,A) = W (g, a) as follows:

S −→ wS = sα1 . . . sαk .

We want to show that wS ∈ Rδ0 , namely that wS(∆+
δ0

) ⊂ ∆+
δ0

, and that wS ∈
W δ0 . First we show that wS sends positive good roots to positive roots. We know
that wS has length k, and sends all the simple roots in S to their negative (recall that
S is a subset of strongly orthogonal roots). Since the length of a Weyl group element
also equals the number of positive roots that it sends to negative roots, it follows
necessarily that wS sends all other positive roots to positive roots. Next, we show
that wS sends all simple roots, which are all bad by the definition of the maximally
bad representation, to bad roots. Say β is some other simple root. Denote the
simple roots in S adjacent to β in the Dynkin diagram by Adj(β) := {αi1 , . . . , αit}.

Then (wSβ)∨ =
∨
β +nβ,αi1

∨
αi1 + · · ·+ nβ,αit

∨
αit , and also

δ0(mwSβ) = δ0(mβ)δ
nβ,αi1
0 (mαi1

) . . . δ
nβ,αit
0 (mαit

)

= δ0(mβ)(−1)
∑
nβ,αij = δ0(mβ),

as
∑
nβ,αij is even. Therefore, all simple roots are sent to bad roots. But good

co-roots are sums of an even number of bad simple co-roots, and hence it follows
from the above that all good roots are sent to good roots under the action of wS .
To complete the proof that wS ∈ Rδ0 we only need to show that wS ∈ W δ0 , or in
other words, that the action of wS stabilizes the maximally bad representation of
M , δ0. This is straightforward: choose a representative in M ′ for wS , [x] = wS .
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Then xmαx
−1 = mwSα, so wS · δ(mα) = δ(mwSα) = δ(mα), since the action of wS

preserves the good and respectively bad roots. However, G is connected and so M
is generated by the collection of mα, for α simple, and hence we can conclude that
wS ∈ W δ0 , and therefore wS ∈ Rδ0 . By Theorem 1 we have, in fact, equality, and
so RDD = Rδ0 .

5. A canonical Levi subgroup

As explained in the introduction, our original motivation was computing regular
functions on principal nilpotent orbits; in order to explain the problem we need to
fix some more notation. We let KC denote the complexification of the maximal
compact subgroup K.

The Cartan decomposition fixed in Section 2 gives by complexification a Cartan
decomposition of the complex Lie algebra gC, namely, gC = pC + kC. KC acts with
finitely many orbits on the nilpotent elements in pC, and these orbits correspond
via the Kostant-Sekiguchi [7] bijection to the nilpotent adjoint orbits in g. We will
denote the nilpotent cone in pC by N θ.

The closure of a nilpotent KC-orbit is an affine subvariety of pC, and as such it
has a ring of regular functions. Such a ring of regular functions carries an action of
KC, and thus is an interesting representation that comes naturally with an orbit.
There are no formulas for computing the regular functions on the closure of a KC

orbit in general.
We hope to be able to reduce computing regular functions on principal (generic)

KC-orbits in pC to the same problem in a smaller subgroup, namely, the Levi
subgroup provided by the Dynkin diagram R-group. We will first describe the Levi
subgroup, then state the more precise conjecture.

As in [8], the R-group computations in the previous section provide implicitly a
Levi at which the reducibility of the principal series can be seen. More precisely,
given any subset of the simple roots, S, we can define M0

S to be the subgroup
generated by all the root spaces Mα, α ∈ S. Further, we consider the subspace of
the split Cartan subalgebra

aS = {X ∈ a | α(X) = 0, ∀α ∈ S}
which by exponentiation yieldsAS . Finally, complete the construction of the desired
Levi by setting

MS = ZK(aS)M0
S ,

L = MSAS .

The Dynkin diagram R-group provides such a Levi, which we may denote by
MDDADD, corresponding to the subset of the simple roots given by the union of all
elements of RDD—they are all the simple roots circled in Figure 7.2 in Appendix
B, for instance. By Proposition 3, this union is a subset of strongly orthogonal
roots. For example if RDD is trivial, then the subset of the set of simple roots S
is the empty set, and aS = a, the maximally split Cartan subalgebra. Thus for the
corresponding Levi we obtain L = MA, the maximally split Cartan subgroup.

The upshot is that the Rδ-groups for MDD are the same as the Rδ groups of G,
for δ acceptable [8]. The Levi subgroup obtained in this fashion has automatically
two nice properties: it is locally a product of SL(2,R)’s, and the principal series
with infinitesimal character zero already split in the maximum number of pieces at
this level. It seems reasonable to believe that it also has the property that orbit
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induction takes single principal orbits to single principal orbits. We list all such
Levi subgroups in Appendix B, Figure 7.2. We should add that, although we only
worked with split groups so far, we could, in fact, consider quasisplit groups; we
append at the end of the list in Appendix A what the corresponding Levi subgroup
should be for SU(n, n).

We will recall the definitions of real orbit induction and explain in what way we
hope that the geometry of this Levi subgroup reflects something about the geometry
of the group G.

The notion of real (coadjoint) orbit induction is similar to the corresponding one
for complex orbits introduced by Lusztig and Spaltenstein [3]. Consider a parabolic
subgroup P with Levi decomposition P = LU , and OL a nilpotent orbit in L. Since
we have a natural inclusion of p into g, and a projection from p onto l, we get the
corresponding maps for the dual algebras

l∗
p−→ p∗

i←− g∗.

Then the G-saturation G · (i−1(p(OL))) is a subset of the nilpotent elements of
g∗ which may be reducible. Any nilpotent orbit OG included in this subset and
additionally having dim(OG) = dim(OL) + dim(G/L) will be said to be induced
from the orbit OL. The collection of all such orbits will be denoted by IndGL (OL).
There are a few important properties of this construction:

1. The orbit induction construction preserves codimension.
2. Real orbit induction may take a single orbit to multiple orbits, as suggested

by the definition; this fact makes it more complicated than the analogous
situation for the complex case.

Briefly, we hope that, for the principal (generic) orbits, regular functions might
commute with induction, in the following sense:

IndK
C

(L∩K)CR(O) = R(IndGLU (O)),

for a principal nilpotent orbit O in l. Note that we move freely between a G-
nilpotent orbit, and the KC-orbit corresponding to it via the Kostant-Sekiguchi
correspondence. When talking about regular functions on an orbit we mean the
KC-orbit. However, when we consider orbit induction from a real parabolic, the
orbit being induced is a real coadjoint orbit.

As mentioned before, when the R-groups are trivial we have automatically L =
MA, the maximally split torus. Also, we necessarily have a single principal orbit,
and its closure is the whole nilpotent cone. In this setting, the formula above
becomes the Kostant-Rallis formula for multiplicities of regular functions on the
nilpotent cone

R(N ) = IndKM 0.

We formulate the hope described above as a conjecture; the evidence so far
consists only of the the families of groups Sp(2n,R) and SU(n, n), for which we
proved this result in [4].

Conjecture. Let G be a simple quasisplit group satisfying the usual conditions in
this paper. Let L be the Levi subgroup defined by the Dynkin diagram R-group as
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above. Then regular functions on the closure of a principal nilpotent KC-orbit OG
in pC can be computed as

R(OG) = IndK
C

(L∩K)CR(OL),

where OL is a principal nilpotent (L ∩K)C-orbit in (l ∩ p)C.

6. Appendix A—Computations

We give here the full computations that show that the maximally bad repre-
sentation is also acceptable in all simple split groups. Since the simply laced case
was done in Section 4, we only need to consider, case-by-case, the following groups:
Sp(2n,R), SO0(n+ 1, n), and the split exceptional groups F4 and G2.

In all of the following cases, the simple roots will be bad (as we are dealing with
the maximally bad representation). Therefore, the good roots are those whose
corresponding co-root can be written as a sum of an even number of simple co-
roots.

The split F4. Consider the realization of the Lie algebra f4 in which the simple
roots are {e2−e3, e3−e4, e4,

1
2 (e1−e2−e3−e4)}. We simply list the good co-roots

(the number in the second column indicates that the corresponding co-roots can be
written as a sum of n simple co-roots).

e2 − e4, e3 + e4, e1 − e2 − e3 + e4 2
e1 − e2 + e3 − e4, e1 − e3, e2 + e3 4
e1 + e2 − e3 − e4, e1 + e4, 2e1 6
e1 + e2 8
e1 + e2 + e3 + e4 10

Hence, the good roots are

e2 − e4, e3 + e4, 1
2 (e1 − e2 − e3 + e4) 2

1
2 (e1 − e2 + e3 − e4), e1 − e3, e2 + e3 4
1
2 (e1 + e2 − e3 − e4), e1 + e4, 2e1 6
e1 + e2 8
1
2 (e1 + e2 + e3 + e4) 10

ρδ0 = 1
2 (6e1 + 3e2 + e3 + e4)

Thus ρδ is dominant, and the maximally bad representation is acceptable.

The split G2. Consider the realization of the algebra g2 which has as good simple
roots {e2 − e3, e1 + e3 − 2e2}. Once again, we list the good co-roots first:

1
2 (e1 + e2 − 2e3) 2
e1 − e2 4
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Hence the sum of the corresponding simple roots is ρδ0 = e1−e3, again dominant.

The symplectic group, Sp(2nR). We consider the simple roots to be
{e1−e2, . . . , 2en}. We list directly the simple roots. Recall that M is isomorphic to
Zn2 , embedded diagonally inside of the maximal torus of the maximal compact sub-
group, U(n). The maximally bad representation can be described, as a weight of the
torus, as

(
0 1 . . . 0 1

)
, if n is even, and as

(
1 0 1 . . . 0 1

)
. Consider

the two cases separately.
1. If n = 2k, then the good roots are ei ± ej, for all i, j of the same par-

ity, together with 2ei, for i odd. A quick computation shows that ρδ0 = ke1 +
(k − 1)e2 + (k − 1)e3 + (k − 2)e4 + · · ·+ en−1, which is dominant.

2. If n = 2k + 1, then similarly the good roots are ei ± ej, for all i, j of
the same parity, together with 2ei, for i even. We obtain ρδ0 = ke1 + ke2 +
(k − 1)e3 + (k − 1)e4 + · · ·+ en−1, again dominant.

The orthogonal groups, SO0(n, n + 1). The groups themselves have no max-
imally bad representation, but their linear double covers do, so we will assume
we are in that setting. Take the usual simple roots, {e1 − e2, . . . , en}—they are
all bad for the maximally bad representation. Since we can write, for instance,
∨

en−1= 2(en−1 − en)∨+
∨
en, we can see that en−1 is also bad. Likewise, all roots of

the form ei will be bad. Similar computations show that ei± ej will be good if and
only if i and j have the same parity. Then the half sum of positive roots will be of
the same form as in the case of Sp(2n,R), hence also dominant.

7. Appendix B—Tables

Split group Directed Dynkin Diagram

Sp(2n,R)

2

1

1 1 1

SO(2n+ 1, 2n)

1 1 1 1

2

G2

3

1

F4

1 1
2

1

Figure 7.1. Directed Dynkin graphs for the nonsimply laced
groups. For the simply laced groups they are simply the Dynkin
diagrams, with all edges labeled one.
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Split group Levi subgroup in the notation of Section 5
Dynkin
Diagram
R-group

SL(2n,R) Z2

SO0(n, n),
n = 2k Z2 × Z2

SO0(n, n),
n = 2k + 1 Z2

SO0(n+ 1, n),
n = 2k Z2

SO0(n+ 1, n),
n = 2k + 1 Z2

Sp(2n,R) Z2

E7 Z2

SU(n, n)
(quasisplit)

2e n Z2

Figure 7.2. Dynkin diagram R-groups and corresponding Levi
subgroups. The simple split groups not included have trivial
Dynkin diagram R-group.
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