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THE CLOSURE DIAGRAMS FOR NILPOTENT ORBITS
OF THE REAL FORMS E VI AND E VII OF E,

DRAGOMIR Z. POKOVIC

ABSTRACT. Let O7 and O3 be adjoint nilpotent orbits in a real semisimple Lie
algebra. Write O1 > O3 if O3 is contained in the closure of Op. This defines
a partial order on the set of such orbits, known as the closure ordering. We
determine this order for the two noncompact nonsplit real forms of the simple
complex Lie algebra E7.

1. INTRODUCTION

The closure diagrams for adjoint nilpotent orbits in noncompact real forms of
F, and G2 were determined in [9] and for Eg in [I0]. In this paper we handle the
two noncompact and nonsplit real forms of E-.

By g we denote a simple complex Lie algebra of type E7, by go a noncompact
and nonsplit real form of g, and by G (respectively Gy) the adjoint group of g
(respectively go). As usual, let go = €y @ po be a Cartan decomposition of gg, g =
t @ p its complexification, and 6 the Cartan involution. Let o be the complex
conjugation of g with respect to gg, and let ) be a o-stable Cartan subalgebra of ¢.
Since gg is of inner type, b is also a Cartan subalgebra of g.

Denote by A the nilpotent variety of g and set

Ne=Nngy, Ni=Nnp.

Let K° be the connected subgroup of G with Lie algebra €. It is known that the
orbit spaces Nr/Go and N1/K°, equipped with the quotient topologies, are home-
omorphic and that the Kostant-Sekiguchi bijection is a homeomorphism Ngr /Gy —
N1 /K (see [6,[1]). We can think of the closure diagram for adjoint nilpotent orbits
in go as describing the topology of Nr /Gy (or, equivalently, N7 /K?).

Our main results are depicted in Figures 2 and 6. In order to obtain these results,
it was necessary to perform extensive and nontrivial computations. In addition to
our own programs, we used heavily Maple [5] and, to a lesser extent, LiE [I7].

2. PRELIMINARIES

The closure diagram for adjoint nilpotent orbits in g was determined by Mizuno
[13] and verified later by Beynon and Spaltenstein [2]. We give this diagram in
Figure 1 where each node represents a G-orbit in A/ and is labelled by the corre-
sponding Bala-Carter symbol (see [6] [4]). This diagram is taken from [16] and is
modified so that the orbits having the same dimension are positioned at the same
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18 DRAGOMIR Z. DPOKOVIC

level. Because of its length, the diagram is split into two pieces. The dimensions
of the orbits are indicated on both sides of the figure. We remark that the closure
diagram given in [] for this case is incorrect: The line joining the nodes Dg(asz)
and Ds(a1) + A; is missing.

126 E7

124 Er(ar) B A B
122 E7(az) Ag+24, Dy(ar) 94
120 Es E7(as) (Az+Ar) 92
118 Dg 2A2+A; 90
116 (Az+Aq)" 86
114 Ag De(a1) Az Az+3A1 84
112 E7(as) Ds As+2A, 82
110  Dg(az) Eos(as) Az+A 76
108 As+Aq Ds(a1)+A; 44, 70
106 Ds(a1) Az 66
104 Dt A, (3Ay1) 64
102 (As5)" Da+A4; (3A1)" 54
100 Ay As+Az+Aq 24, 52
98 Az+A2 A 34
96 - R - - - - - 0 0

Dy(ar)+A1 Dy

FI1GURE 1. The closure diagram for Fr

There are 45 adjoint nilpotent orbits in g (including the trivial orbit). The
nonzero ones are listed in Table 1. The k-th orbit, i.e., the one that appears as
the k-th entry in Table 1, will be denoted by OF. The second column of this table
contains the Bala-Carter symbol of OF, and the third one gives the weighted Dynkin
diagram of OF. The complex dimension of OF is recorded in the last column.



CLOSURE DIAGRAMS FOR E VI AND E VII

TABLE 1. Nonzero nilpotent orbits in Fr

i a; (H) EV EVI EVII |dim
1] A4 1000000 | 1 1 1,2 34
2| 24, 0000010 | 2 2,3 34,5 52
3| (34y)" 0000002 | 3,4 6,7,8,9 54
4| (3Ay) 0010000 | 5 4,5 64
5| Ay 2000000 | 6,7 6,7.8 10 66
6| 44, 0100001 | 8,9 70
7| Ay + Ay 1000010 | 10,11,12 |9 11,12 76
8| Ay +24; 0001000 | 13,14,15 | 10,11 82
9| Ay +34; 0200000 | 16,17,18,19 84
10 | A 2000010 | 20 12,13 | 13,14 84
11| 24, 0000020 | 21 14,15 |15 84
12 | (A3 + Ay)” | 2000002 | 22,23 16,17,18,19 | 86
13| 245 + A4 0010010 | 24 16 90
14 | (A3 + 4, 1001000 | 25 17,18 92
15 | Dy(ay) 0020000 | 26,27 19,20,21 94
16 | Ay + 24, 1000101 | 28,29 94
17 | D4 2020000 | 30 22,23 96
18 | Dy(ay) + Ay | 0110001 | 31,32,33,34 96
19 | As + A, 0001010 | 35,36,37 | 24 98
20 | Ay 2000020 | 38,43 2526 | 20 100
21 | A3+ As + A; | 0000200 | 39,40,41,42 100
22 | (A45)" 2000022 | 44,45 21,22 102
23 | Dy + A 2110001 | 46,47 102
24 | Ay + A 1001010 | 48,49,50 | 27 104
25 | Ds(ay) 2001010 | 51,52,53 | 28 106
26 | Ay + A, 0002000 | 54 29 106
27 | Ds(a1) + Ay | 2000200 | 55,56,57,58 108
28 | (As)’ 1001020 | 59 30 108
29 | As + A 1001012 | 60,61 108
30 | Es(as) 0020020 | 62,63 31,32 110
31 | Dg(az) 0110102 | 64,65 110
32 | Ds 2020020 | 66 33,34 112
33 | Br(as) 0002002 | 67,68,69,70 112
34 | Ag 0002020 | 71 35 114
35 | Dg(ay) 2110102 | 72,73 114
36 | D5 + A; 2110110 | 74,75 114
37 | Br(as) 2002002 | 76,77,78,79 116
38 | Eg(ay) 2002020 | 80,81 36 118
39 | Dg 2110122 | 82,83 118
40 | Eg 2022020 | 84 37 120
41| Er(as) 2002022 | 85,86,87,88 120
42 | Er(as) 2220202 | 89,90 122
43 | Br(ay) 2220222 | 91,92 124
44 | By 2222222 | 93,94 126

19
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The nonzero Gg-orbits in AR, or equivalently the nonzero K %-orbits in Nj, were
classified in [7] (see also [6]). We shall keep the same numbering as in these two
references for these orbits. The i-th nontrivial Gg-orbit in Nr will be denoted by
O}, and we denote by Of the nontrivial K%orbit in N7 that corresponds to Of
under the Kostant-Sekiguchi bijection. In the fourth, fifth, and sixth columns of
Table 1 we list the superscripts i of the orbits Of (or, equivalently, O%) which are
contained in OF. This depends on the type of the real form go of g (for the sake of
completeness we have included also the split real form E V). For instance, if k = 2,
then

EV: 0?Ngo =03, O?np=0%
EVI: O*’ngy= 03U}, O?Np=03U0%
EVILEL O*Ngo=03U0iu0;, O?’np=03U00{U05.

Recall that a triple (E, H,F') in g is called a standard triple if [H, E] = 2E,
[H,F] = —2F, [F,E] = H and E, H, F are nonzero. Such a triple is normal if also
H e tand E,F € p. We denote the root system of (g, h) by R, choose a system of
positive roots R C R and a base B = {a; : 1 <i <7} C RT of R. The simple
roots o; € B are indexed as in [3].

Let us also introduce the subgroup K = {z € G : 6(z) = z}. Its identity
component is the group K defined above. In the case E VI we have K = K°, while
in the case E VII the group K is not connected and K/K° = Z,. (By Z, we denote
a cyclic group of order k.)

We extend the enumeration of simple roots a;, 1 <14 < 7, to the enumeration
a;, 1 <i <63, of RT. It is the same as the one used in [§]. We have reproduced
it in the Appendix. A negative root —c; will be also written as ;. The coroot of
«; is denoted by H; € h. Note that H_; = —H;. For a € R we let g® be the root
space of .. A nonzero element X, € g¢ is called a root vector of a. We assume that
a root vector X is fixed for each root «;, +i € {1,...,63}.

By adjoining the negative of the highest root, ay = —ag3 = a_g3 to B, we
obtain the so-called extended base B, = B U {ap}. Let Ry be the root system of
(¢, h) where we view Ry as a subsystem of R. We set Rj = RoN R* and denote by
By the unique base of Ry contained in R(')|r . It turns out that By C B.. Explicitly
we have

EV: Bo:{ao,al,ag,a4,a5,oz6,a7},
EVIL BO:{ao,al,ag,ag,a4,a5,a7},
EVII: BO = {041, o, (3, 04,5, 046}.

Given a K%-orbit O} C N7, we can choose a normal triple (E, H, F) such that
E € Oi, Hebh,and a(H) > 0 for all @ € By. If gg is of type EV or EVI we
set Bjy = By, while for type E VII we set B = B. The integers a(H) for a € Bj,
determine uniquely H and, consequently, also the orbit Of.

In the case EVI we set, as in [7],

B =ao, fo=o01, B3 =a3, f1=a4, B5=as, Bs=az, Br=ar;
and in the case EVII we set 3; = o5, 1 <i < 7.
The technique developed in [9] to find these closure diagrams is especially conve-
nient for real forms of inner type and will be employed in this paper. There are two
(up to isomorphism) noncompact and nonsplit real forms go of g: EVI = E7(_s)

and E VII = E7(_s5). The closure diagrams for these two cases are given by Figures
2 and 6.



TABLE 2. Nonzero nilpotent orbits in p (go = E VI)

CLOSURE DIAGRAMS FOR E VI AND E VII
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k| i]| B;(HY) Ete O} Type
1] 1/0000101 | X_¢ Aq
2| 210100002 | (X_¢)+ (X_40) 24,
2| 3]0001000 | (X_g)+ (X_10) 24,
4| 4[000010 3 | (Xi5) + (X_12) + (X_s5) (341)
4] 5(010010 1 | (X_12) + (X_13) + (X_35) (34;)
5| 60000004 | X134+ X_¢ Ay
(X13) + (Xu5) + (X_12) + (X_35) (441)
5 7 1 000020 2 (X45) + (X712) + ( 713) + (X735) (4A1)/
51 810200000 | X_g+ X_45 Ay
(X_6) + (X—19) + (X—40) + (X—a1) (4A1)
71 9]110001 1| (X_154+ X_40) + (X_27) Ay + Ay
8 | 10 | 200100 0 (szg + X734) (X 18) + (X 30) Ay + 244
811 (010100 2 (X713 + X740) (X54) + (X 27) Ay + 244
10 | 12 | 010020 4 | X45 + X _40 + X_13 As
10 | 13 | 000120 2 | X454+ X_10 + X_35 As
11 | 14 | 400000 0 | (X _6 + X_56) + (X_10 + X _50) 24,
11 | 15| 000200 0 | (X50 + X_18) + (X290 + X _34) 24,
13| 16 | 010110 1 (X54 + X_ 31) (X o7 + X 30) + (X,35) 245 + Aq
14 | 17 | 010030 1 | (Xas + X_19 + X_35) + (X_a1) (As + Ay
14 | 18 | 010110 3 | (X8 + X_19 + X _38) + (X_40) (A3 + A7)
15| 19 | 000040 0 | X40 + X _12 + X_35 + X_41 Dy(ay)
(X40 + X_ 12+ X741) + (X48) + (X738) (A?, + 2A1)
(X40 + Xflg) + (X48 + X725)+ 3As
(X _36 + X_33)
15|20 | 000200 4 | X41 + X_13 + X 35+ X_40 Dy(aq)
(X1 + X 13 + X40) + (Xus) + (X-38) (Az +24,)
15| 21 | 020020 2 | (Xas + X 10+ X 500 + (X 10) + (X a1) (As +24,)
17 1 22 |1 000040 8 | X19 + X_13+ Xa1 + X _40 Dy
17123020040 4 | X_19 + Xus + X 40+ X_a1 Dy
19 | 24 | 201011 2 | (X6 + X—30 + X—42) + (X_31 + X_43) Az + Ag
20 | 25 | 040000 4 | X_13 + X34 + X_o7 + X_45 Ay
(X34 + X 13+ X _50) + (Xs56 + X_u5 + X _33) | 243
20 | 26 | 020200 0 | X _35 + X50 + X o7 + X _45 Ay
(Xs0+ X_35 + X_34) + (X6 + X_ua5 + X _33) | 243
24 127 (1111101 | (X_g0+ X34 + Xsa + X_a1) + (X _38) Ay + A
252812010314 | X_30+ Xus + X314+ X_40+ X_34 Ds(aq)
26 | 29 | 004000 0 | (X_04 + Xa2 + X 33+ X_41) + (X51 + X_34) | Ay + Ao
28 | 30 | 010310 3 | X4s + X_34 + X _40 + X50 + X_38 (45)
30| 31| 020220 2 | (Xus + X_34 + X_40 + Xs0 + X_38) + (X_a1) | (A5 + 41)
30 | 32 |1 000400 4 | Xu1 + X35+ X50 + X34 + X_25 + X _36 Eg(as)
(Xa1 + X 31+ X 38 + X0+ X_40) + (Xug) | (A5 + A1)
32 | 33| 020240 4 | X_41 + Xus + X_40 + Xs0 + X34 Ds
32134040040 8 | X_41 + X45 + X _19 + X34 + X _50 Ds
34 | 3514004000 | X_43+ X50 + X 35+ X 51 + Xs6 + X_44 Ag
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TABLE 2. (continued)

k|| B;(HY E' e O} Type

38 36| 0404004 | X50 + X538+ Xaa + X g4 + X_a1 + X_u5 Eg(aq)
Xs1+ X34+ Xaa + X_a1 + X_u3 A7
+X50 + X a2

40| 37 | 040440 8 | X50 + Xus + X 43 + X 41 + Xgg + X _34 Es

For any integer ;7 we define the subspaces
gu(1,j) ={X ep:[H X]=jX},

and for integers i > 1 we set

pi(H) = ZQH(LJ)-

Jj=i
By Qy we denote the parabolic subgroup of K° with Lie algebra

ar = > au(0,5)-

j=>0
3. TypE E VI

In this section go is of type EVI. Hence K = (Spini2/Zs x SLg)/Za, where
Spinia/Zs is the so-called semispin group (not isomorphic to SOi2). There are
exactly 37 nontrivial K-orbits in N denoted by O%, 1 < i < 37. We choose
a normal triple (E*, H', F*) with E* € O}, H® € b, and such that 3;(H") > 0,
1<j<T.

These 37 K-orbits are listed in Table 2. For each ¢ € {1,...,37} we record in the
first column the integer k such that O} C O*. The third column lists the integers
B;(HY), 1 <j<T7. Astisof type Dg+ A1, and {8; : 1 <i <6} is a base for this
Dg, we separate the last integer 37(H?) from the first six. The last two columns
give a representative E' € O} and its type (to be defined below). In some cases we
give several representatives of different types.

A subalgebra of g is called regular if it is normalized by a Cartan subalgebra of
g. A regular subalgebra is standard if it is normalized by h. Of course, every regular
subalgebra is G-conjugate to a standard one. Most of the time, two isomorphic
regular semisimple subalgebras are G-conjugate but there are 6 exceptions (see

[11)):
3A1, 441, As+ Ay, As+2A;, As, As + Ay

In each of these cases, say X, there are two G-conjugacy classes: (X)" and (X)".
A representative of (34;)" is the subalgebra with simple roots {as, s, ar}, and
for (34;)” that with simple roots {as, as,ar}. A subalgebra of type (A3 + A1)
respectively (As + Ap)” contains a regular subalgebra of type (3A4;)" respectively
(3A1)”. Similarly, (As)" respectively (As)” contains (3A1)" respectively (3A4;1)".
The regular subalgebras of types (44;1)", (As + 24;)", and (45 + A;)" are Levi
subalgebras of g while those of types (44;)’, (A3 +2A,)’, and (A5 + A;)’ are not.

In most cases, the representative E* € O! is the sum of root vectors for simple
roots of a standard regular semisimple subalgebra and the type of E’ is, by defini-
tion, the type of that subalgebra (up to G-conjugacy). If this is not the case, then
the type of E' is the Bala-Carter symbol of the orbit O containing O%.
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TABLE 3. Root spaces in pa(H?)
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Indices of roots

ST W N

11
12

13

14

15

16

17

18

19

20

21

22

23

24

—6;
—6,—12, —18, —23, —24, —29, —35, —40;

—6,-12,-13, —19;

45,48, 51,54, 56, —12, —18, —23, —24, —27, —29, —33, —35, —38, —42; —6
—12, 13,18, 23, —24, —29, —35; —6

13,19, 25, 30,31, 34, 36, 39, 41, 44, 45, 47, 48, 51, 54, 56, —6, —12, —18, —23,
—24,-27,-29, —33, —35, —38, —40, —42, —43, —46, —50, —53;
45,48,51,54,56, —12, —13, —18, —23, —24, —27, —29, —33, —35, —38, —42;
-6

—6,—12, —13, —18, —19, —23, —24, —25, —29, —30, —31, —35, —36, —40,
—41, —45;

—13,-19, —23, —25, —27, —29, —31, —35, —40; —6, —12, —18, —24
—18,-23,—24, —25, —27, —29, —30, —31, —33, —34, —36, —39; —6, —12,
~13,-19

54,56, —13, —19, —27, —33, —35, —40; —18, —23, —24, —29, —6, —12

45, —13, —40; 48,51,54,56, —27, —33, —38, —42, —12, —18, —23, —24, —29,
—35,-6

45,48,51,—19, —35, —38, —42; 54,56, —18, —23, —24, —27, —29, —33, —12,
~13,-6

—6,—12, —13, —18, —19, —23, —24, —25, —27, —29, —30, —31, —33, —34,
—35,—36, —38, —39, —40, —41, —42, —43, —44, —45, —46, —47, —48, —50,
—51,—53, —54, —56;

50,53, 54, 56, —18, —23, —24, —25, —27, —29, —30, —31, —33, —34, —36,
—39; —6,—-12,-13,-19

54,56, —25, —27, —30, —31, —33, —35, —36; —18, —19, —23, —24, —29,
~12,-13,-6

48,51, 54,56, —19, —25, —27, —30, —31, —33, —36, —38, —41, —42; —12,
—18,-23, 24,29, —35, —13, —6

48,51, 19, —38, —40, —42; 54,56, —13, —27, —33, —35, —18, —23, —24,
~29,-12,-6

40,43, 45,46, 48, 50,51, 53, 54, 56, —12, —18, —19, —23, —24, —25, —27,
—29, 30, —31, —33, —34, —35, —36, —38, —39, —41, —42, —44, —4T; —6,
~13

41,44, 45,47,48,51,—13, —19, —35, —38, —40, —42, —43, —46; 54,56, —18,
—923,-24,-27,-29, —33,—6, —12

48,51, 54,56, —19, —25, —27, —30, —31, —33, —36, —38, —40, —41, —42;
—12,-13,-18, 23, —24, —29, —35, —6

19,25, 30, 31,34, 36,39, 41,44, 47, —13, —40, —43, —46, —50, —53; 45,48,
51,54,56, —12, —18, —23, —24, —27, —29, —33, —35, —38, —42, —6

45,—19, —25, —30, —31, —36, —40, —41; 48, 51,54, 56, —27, —33, —38, —42,
—12,-13,-18, 23, —24, 29, —35, —6

56, —30, —31, —34, —40, —42, —43; —19, —25, —29, —33, —35, —38, —13,
—923,-24,-27, 12, —18,—6




24 DRAGOMIR Z. DPOKOVIC
TABLE 3. (continued)

i Indices of roots

25 | 34,39,44,47,48,51,54,56,—13, —19, —25, —27, —30, —31, —33, —36, —38,
— 41,42, 43, —45, —46, —50, —53; —6, —12, —18, —23, —24, —29, —35,
—40

26 | 50,53, 54,56, —27, —33, —34, —35, —39, —40, —41, —45; —18, —23, —24,
~95,-29, 30, —31, —36, —6, —12, —13, —19

97 | 54,56, —34, —38, —39, —40, —41; —27, —31, —33, —35, —36, —24, —25. 29,
-30,—-18,—19,-23,—-12,—-13,—6

28 | 45,48, —30,—31, —34, —40, —43; 51,54, —19, —25,56, —42, —29, —33, —35,
—38,—13,-23, —24, —27, 12, —18, —6

29 | 42,46,47,50,51,53, 54,56, —24, —27, —29, —31, —33, —34, —35, —36, —38,
—39,—40, —41, —43, —44, —45, —48; —6,—12, —13, —18, —19, —23, —25,
-30

30 | 48,50,51,53, —34, —38, —39, —40, —42; —25, —30, —31, —35, —36, 54, 56,
—27,-33, 18, —19, —23, —24, —29, —13, —12, —6

31 | 48,50, 51,53, —34, —38, —39, —40, —41, —42; 54,56, —25, —27, —30, —31,
~33,-35,-36, —18, —19, —23, —24, —29. —12, —13, —6

32| 41,44,45,47,48,50,51,53, —25, —30, —31, —34, —35, —36, —38, —39, —40,
—42, 43, —46; 54,56, —13, —18, —19, —23, —24, —27, —29, —33, —6, —12

33| 45,50,53, —34,—39, —40, —41; 48,51, —25,—-30,—31, —36, —38, —42, 54,
56, —19, —27, 33, —35, —18, —23, —24, 29, —12, —13, —6

34 | 34,39,44, 45,47, —19, —25, —30, —31, —36, —41, —43, —46, —50, —53; 48,
51,54, 56, —13, —27, —33, —38, —40, —42, —12, —18, —23, —24, —29, —35,
—6

35| 50,53,54,56, —35, —38, —40, —41, —42, —43, —44, —45, —46, —47, —48,
~51; —18,-23, 24, —25,-27,—29, —30, —31, —33, —34, —36, —39, —6,
~12,-13,-19

36 | 44,47,48,50, 51,53, —34, —38, —39, —41, —42, —43, —45, —46; 54,56, —25,
—-27,-30,-31,-33,—35,—36,—40,—13, —18, —19, —23, —24, —29, —6,
—12

37| 44, 45,47,50,53, —34, —39, —41, —43, —46; 48,51, —25, —30, —31, —36,
—38, —40, —42, 54,56, —19, —27, —33, —35, —13, —18, —23, —24, —29, —12,
—6

In Table 3 we list, for each 4, the indices k of the roots a = «y for which

g% C pa(H?). We list first those indices for which g* C gg:(1,2) and separate them
by a semi-colon from the indices for which g* C p3(H?).

Theorem 3.1. Let gg be of type EVI. Then the closure ordering of the nilpotent

K-orbits in p is as given in Figure 2.

The horizontal dotted lines indicate that the K-orbits joined by these lines are

contained in the same G-orbit. The numbers on the right-hand side of the diagram

are the complex dimensions of the orbits on that level.

Proof. Let i, j be a pair of nodes in the diagram of Figure 2, with i above j, which
are joined by a solid line. We prove that Qi > O by showing that O meets po(H?)
(see [9, Theorem 3.1]). In Table 4 we list all such pairs 7,7 and for each of them
provide an element E € pa(H®) N O{. We also indicate the type of E.
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TABLE 4. Elements E € po(H) N O!

i j Type E
37|36 | A; X1+ X_ga+ Xaa + X_a1 + X_uz3 + X0 + X_a2
37|34 | Ds X_ 19+ Xus + X_g1 + Xy + X _43
36 | 35 | Asg Xso+ X _y3+X_41 + Xyg + X_34 + X1
36|33 | Ds Xso+X 38+ Xgg + X 34+ X 41
34132 | (As+Ay) | (Xar + X310+ Xus + X 30 + X_46) + (X_35)
34|22 | Dy Xas + X 19+ X34+ X_50
33 (31| (As+ A1) | (Xag+ X g4+ X 0+ X0+ X_38) + (X_a1)
33 | 32 | Eg(as) X_30 + Xus + X_31 + X_40 + X_39 + X553
33|22 | Dy X o5+ Xus + X0+ X_a1
31,32 | 30 | (A4s5) Xug + X 34+ X_40+ Xs50 + X_33
32| 28 | Ds(a1) X_30+Xus + X 31+ X_40+X_34
31 (29| Ay + Ay (X_38+ X535+ X_a0+ X_39) + (X4 + X_4a1)
29,30 | 27 | Ay + Ay (X_38 4+ X553+ X_40 + X_39) + (X54)
28 | 27 | As+ Ay (X 30 + Xus + X 31 + X _43) + (X _20)
28 | 25| Ay X_ 30+ Xug+ X_u3+ X_a31
28 | 23 | Dy X 30+ Xus+ X531+ X 40
27 | 26 A4 X740 + X739 + X56 + X,41
26 | 24 | A3+ A (Xs56 + X_45 + X_33) + (X50 + X_35)
26 | 19 | D4(ar) Xs6 + X—a1+ X390+ X_33
25 |24 | A3+ Ay (Xs56 + X_30 + X_42) + (X_31 + X_43)
25| 20 | D4(aq) Xyg+ X g3+ X_19+ X_13
23,24 | 21 | (As +2A41) | (X6 + X_30 + X_42) + (X_31) + (X_40)
24 | 14 | 2A, (X_g0+ X_a2) + (X_g1 + X_43)
23 | 20 | D4(ar) Xas + X g0+ X190+ X_13
23 |19 | (A5 +2A1)" | (X—25 + Xas + X_36) + (X—12) + (X-35)
22 |20 | (A3 +2A1)" | (Xa7 + X 13+ X _46) + (Xag) + (X _38)
20,21 | 18 | (As + A1) | (Xus + X 19+ X_38) + (X_40)
19,21 [ 17 | (As+ A1) | (Xas+ X190+ X _38) + (X_a1)
20 | 12| A3 Xus + X 40+ X_13
17,18 13 A3 X48+X_19+X_38
17|16 | 242 + Ay (X5 + X _31) + (X 27 + X_30) + (X_35)
16 | 15 | 24, (Xpa + X_95) + (X_o7 + X _36)
13,16 | 11 | As + 24,4 (X_19+ X_35) + (Xsa) + (X_27)
14,15 | 10 | Ax + 24, (X729 + X734) + (X 18) (X 30)
12 | 11 | Ay + 24, (X133 + X_a0) + (X54) + (X_27)
12| 6| A Xus + X 40
11 9| A+ Ay (X—13+ X_a0) + (X—27)
11 7 (4A1)/ (X56) + (X713) + (X733) + (X,35)
10 9| A2+ 4 (X_25 + X_29) + (X_27)
91 8] A X_13+X_40
78| 5| (3Ay) (X_12) 4+ (X_13) + (X_35)
6,7 4| (341) (X45) + (X-12) + (X35)
4.5 2| 24, (X,12) + ( )
50 3|24, (X _12)+ (X_1a)
23| 1] 4, X




CLOSURE DIAGRAMS FOR E VI AND E VII 27

The fact that E € pa(H') can be verified by using Table 3. In most cases the
verification of the claim that F € O{ is straightforward. By using Table 3, one can
easily determine whether or not F belongs to gz (1,2). Assume that it does and let
k be such that (’){ C OF. The type of E shows that E € O*. As gg;(1,2)NOF C (’){'7
the claim follows. This argument is not applicable when E ¢ gz, (1,2), i.e., when
(4,4) is one of the following pairs:

(36,35), (36,33), (34,22), (33,22), (30,27),
(29,27), (28,27), (26,24), (25,24).

In the case (36,35), E is of type Ag and, consequently, E € 03* (see Table 1).
The same table shows that O3t Np = O3°. As E € p, we conclude that E € O35,
A similar argument can be applied to the pairs (30, 27), (29,27), (28,27), (26,24),
and (25,24). The remaining three pairs (36,33), (34,22), and (33,22) require a
more elaborate argument.

Let us consider in detail the pair (36,33). In this case

E=Xs04+X 38+Xuu+X 34+ X 4
is a standard principal nilpotent element of type Ds. Hence
EcO?np=0300
and we have to show that in fact E € OF3. We do this by finding a normal
triple (E, H, F') inside the standard regular simple subalgebra of type Ds having

{as0, @38, ua, 34,041} as a base for its root system. The element H is given
by

H =8Hs50+ 14H_33 + 18Hy4 + 10H _34 + 10H _4;

=2(H, + Hy + Hy — 4Hg — H7).

We do not need to compute F' but we remark that
F e (X 50, X8, X a4, X34, Xa1)-

Next we compute

am(H)=4,2,-4,2,6,-14,4 (1<m <T7)
and deduce that

Bm(H) = —2,4,-4,2,6,2,4 (1 <m <7).

Finally, by applying a suitable element w of the Weyl group of (¢, §) to H we obtain
the element H' = w(H) such that

Bm(H') =0,2,0,2,4,0,4 (1<m<T).

By looking up Table 2, we conclude that indeed E € O33.
The argument is similar in the other two cases. We only state that for the pair
(34,22) we have

am(H) =0,0,0,4,—4,-6,8 (1<m<7),
and for (33,22)
am(H) =0,4,4,-4,0,—6,8 (1<m<7).
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TABLE 5. The integers d;(j, k) for the module V' (wr)

k dO(jv k) dl(ja k)
11824 26 32

21142224 22 32

31424 22 30 32

411218 24 20 32

51122224 20 28 32

6121224 20 32

711218 24 20 26 32

81122024 20 24 32

919202324 17 24 31 32
10 | 8 20 22 24 16 22 30 32
118182224 16 24 30 32
121 81218 22 24 16 22 26 32
13181418 24 16 20 26 30 32
14 16 2022 22 24 14 16 30 32
151616 22 24 14 20 30 30 32
16 | 6 16 20 24 14 20 28 30 32
1716 14 18 24 14 20 26 28 32
18 |6 14 18 22 24 14 20 26 30 32
196 12 18 24 14 20 26 26 32
20 | 61218 20 24 14 20 26 30 32
211614182224 14 18 26 28 32
22166121218 18 24 14 20 20 26 26 32
2316101216 18 22 24 14 16 20 22 26 28 32
24 1414172223 24 12 16 25 28 31 32
25141014 20222224 12 16 22 24 30 32
26 | 41214 2022 24 12 14 22 24 30 30 32
271312142021 24 11 14 22 24 29 30 32
2813101216 182223 24 11 14 20 22 26 28 31 32
29 121214182024 10 12 22 24 28 28 32
301281016 18222224 10 12 18 20 26 28 30 30 32
311281016 18 22 22 24 10 12 18 20 26 26 30 30 32
321281016 18202224 10 12 18 20 26 28 30 30 32
331268121418 18222224 10 12 16 18 22 22 26 26 30 30 32
341268121416 18 20 22 22 24 10 12 16 18 22 24 26 28 30 32
3508814 1420 20 22 22 24 8 8 16 16 22 22 28 28 30 30 32
36 066121216 16 20 20 22 2224 | 8 8 14 14 20 20 24 24 28 28 30 30 32
3704488121216 16 18 18 2020 | 8 8 12 12 16 16 20 20 24 24 26 26 28

222224 28 30 30 32

By inspection of Figure 2, we see that in order to complete the proof of the
theorem we need to show that O% ¥ O] when (i, j) is one of the following pairs:

(6,3),  (14,4), (15,4), (35,6), (22,10),
(3.1) (16,13), (23,14), (19,18), (25,19), (32,22),
(34,29).
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This assertion is valid for the pair (16,13) because 016 c O3, 013 c 019 and
O3 % O (see Table 1 and Figure 1). (Another proof for this case will be given
below.)

Let V be the 56-dimensional simple g-module with highest weight w7 (one of
the fundamental weights). It can be equipped with the Zs-grading such that V =
Vo ® V1, dim Vy = 24, and dim V; = 32. This means that

ViV, p-Vic Vi
holds for ¢ = 0, 1. We introduce the integers
di(j, k) = dim V; N ker p(E*)?

where i = 0,1; j > 1; 1 <k < 37, and p is the representation of g on V. They are
easy to compute and are displayed in Table 5. _

By applying [J, Theorem 4.1] and using Table 5, we see that OF % Of when
(4,7) is one of the following pairs:

(6,3), (14,4), (24,6), (9,7), (14,11),
(3.2) (16,13), (21,14), (22,14), (24,19), (24,20),
(22,21), (32,22), (29,25).

In particular, this means that the pairs (6,3), (14,4), (16,13), and (32,22) from
(3.1) have been taken care of.

The remaining seven pairs in (3.1) are handled by using the theory of prehomo-
geneous vector spaces [14, [T5].

In order to determine the closure of an orbit OF we shall employ the following re-
cursive procedure. The centralizer Z = Zx (H¥) is a connected reductive subgroup
of K which can be easily determined from the integers 3;(H") given in Table 2.
Furthermore, Z is a Levi factor of the parabolic subgroup Qg+ of K. The central-
izer of E¥ in Z is reductive, and consequently, the PV (Z, gy« (1,2)) is regular [T4].
Hence the singular set S of this PV is a union of irreducible conical hypersurfaces
S; defined by equations f; = 0, where the f;’s are the basic relative invariants of
this PV. One knows that the number of the basic relative invariants is < m, where
m is the length of gz« (1,2) as a Z-module [I5]. In all cases below, m is actually
equal to the number of the basic relative invariants. The pair (Qgx, p2(HF)) is
also a PV and its singular set is the union of the hypersurfaces S; + p3(H*). In
most cases each of these hypersurfaces contains a dense open @ gx-orbit and we are
able to identify to which K-orbits they belong. Then the closure of O} is the union
of OF and the closures of K-orbits (of smaller dimension) which meet one of the
hypersurfaces S; + p3(H¥) in a dense open subset.

We start with the pair (15,4). The centralizer Z = Zx (H') = SLy4 - (SL2)? - Th
has a 1-dimensional central torus T;. The simple roots of this SLy are {a_g3, a1, a3}
and those of the three SLy factors are {a2}, {as}, and {a7}. The space ggi5(1,2)
is a simple 16-dimensional Z-module on which the second factor SLy acts trivially.
More precisely,

gus(1,2) =V(4) o V(2)e V(1) V(2)

where V(d) denotes the simple d-dimensional module for the corresponding simple
factor of Z. For illustrative purposes we exhibit the weight diagram for this module
in Figure 3 (all weights are simple). A vertex labelled ¢ stands for the 1-dimensional
weight space spanned by the root vector X;. The action of the simple root vectors
of the Lie algebra of Z is indicated by the arrows.
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56 97 24 18
Qo
54 -33 —29 ~23

a7

53 —34 —31 —25

50 @-63  _39 A _36 s _30

FIGURE 3. The weight diagram of gg1s(1,2)

The singular set S of (Z,gg15(1,2)) is an irreducible hypersurface, while the
singular set of (Q s, p2(H)) is S + p3(H'®). The representative

EY = (Xs50 + X_18) + (X_20 + X_34)

from Table 2 is depicted in Figure 3 by the 4 enlarged nodes. This E'° is a generic
element of both gz1s(1,2) and po(H'). Now consider the element

X =(X_99+ X_34) + (X_18) + (X_30)-
A simple computation shows that the orbit Qg5 - X has dimension 19. Since
p2(H'®) has dimension 20, it follows that this orbit is a dense open subset of the
singular set S + p3(H'%). As X € 01°, we conclude that
OF — 0° UOP.
As O > 019 and Ot # OF (see (3.2)), we infer that O1° % Of, and consequently,
015 % 0.
We proceed to the pair (22,10). Now
7 = Zxg(H**) =SLs - Ty

where T is the 2-dimensional central torus and the simple roots of SLg are {a_g3,
aq, g, g, a2 b The space gy22(1,2) is a direct sum of two simple SLg-modules: V4
of dimension 15 with basis

{X19, Xo5, X30, X31, X34, X36, X39, Xa1, Xaa, Xa7, X_40, X_43, X _46, X 50, X_53}

and the trivial module V4 with basis {X_135}. The weight diagram of gg22(1,2) is
exhibited in Figure 4. The enlarged nodes depict the representative

E?* = X194+ X_13+ Xq1 + X_4 € OF

from Table 2. The singular set S of (Z, gg22(1,2)) is the union of two irreducible
hypersurfaces S; and So. The singular set of (Q g2z, pa(H??2)) is the union of the
hypersurfaces Sy + p3(H??) and Sy + p3(H??). If

X = (X19) + (Xa1) + (X—10) + (X6),

Y = (Xa7 + X_13 + X_46) + (Xus) + (X _38),
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then both orbits Qg2 - X and Qp22 - Y have dimension 31 while po(H??) has
dimension 32. As X € Of and Y € OF°, we conclude that the closures of these
two orbits are the two irreducible hypersurfaces in po(H??) mentioned above. As
032 > OF, we conclude that

22
02 = 02 0P,

Hence the proof of 0?2 # 010 is reduced to that of O30 % 010,

-13 @

19

FIGURE 4. The weight diagram of gg22(1,2)

We now repeat the above argument. The centralizer

Z = Z(H?) = SLy - (SLo)* - Ty

where T3 is the 2-dimensional central torus and the simple roots of SL4 are
{a_¢3, a1, a3} and those of the two factors SLg are {as} and {as}. The first factor
SLo acts trivially on ggz0(1,2). This space is a direct sum of two simple Z-modules

V1 and V5 with bases

Vie X1, Xua, Xas, Xaz, Xug, X35, X 38, X_40, X 42, X 43, X_46},

Voo {X_13, X 19}
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The singular set .S of (Z, gg=0(1,2)) is again a union of two irreducible hypersurfaces
S1 and Sy. The singular set of (Q 20, p2(H??)) is the union of the hypersurfaces
S1+ p3(H?°) and Sz + p3(H??). The dense open orbits in these two hypersurfaces
are Q20 - X and @ pg20 - Y where now

X =X+ X 40+ X_13 € 0%
Y = (Xag + X 10+ X _38) + (X_49) € O,
It follows that
0% — 02 U O U OF,

Hence the proof of 0?2 # O1° is now reduced to that for 012 ¥ O1° and O % 0]°.
One can proceed in the same way to show that

S [P —
012 = 077U 0§ U0,
18
0%8 = Ol U O%?)a
13
oP =0 uof.

These imply that 032 # 010 and O % 01°. Hence we can conclude that 0?2 %
010,

Next consider the pair (23,14). Then Z = Zx (H??) = SL4 - SLy - T3, where Ty is
the 3-dimensional central torus, SL4 has simple roots {as, a4, ao}, and the simple
root of the SLo-factor is av_g3. In this case m = 3. Let

X = (X o5+ Xy + X _36) + (X_12) + (X _35),
X' =Xus+ X_40+ X_190 + X_13,
X" = (X56 + X_30 + X_42) + (X_31) + (X_40).

The Q p23-orbits through these elements have each dimension 23 while po(H?3) has
dimension 24. Since X € 0}, X' € 0?2°, and X" € 0%, it follows that

OF = 0¥ UOP UOP U OF.

By (3.2) we know that 01 % O* and 03! ¥ O}*. We have already shown that
0320 % 019 and so O30 # 0. We conclude that O # Of*.

The argument for the pair (19,18) is similar. Now Z = Zx(H'?) = SLj -
SLy - T7 where T7 is a central 1-dimensional torus, the simple roots of SLs are
{a_¢3, a1, a3, a4, a2}, and SLs has the simple root «7. The space ggi9(1,2) has
dimension 30 and as a Z-module it is isomorphic to V(15) ® V(2) where V(15) is
the second fundamental module of SLs and V' (2) the standard module of SLy. The
singular set S of (Z, gg19(1,2)) is an irreducible hypersurface. The singular set of
(Qpro,p2(H'Y)) is S + p3(H'?). If E7 € Of7 is the representative from Table 2,
a computation shows that the orbit Q1o - E'7 has dimension 31. Since pa(H'?)
has dimension 32, it follows that this orbit is a dense open subset of S + pa(H').
Hence

oF = o LTT
and consequently, 019 # O18.

Next we consider the pair (34,29). We have Z = Zy (H3*) = SLy4-SLy - T3, where
T3 is the 3-dimensional central torus, SLy has simple roots {as, a4, a2}, and SLy
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the simple root a_gs. In this case m = 3. The three @) gsa-orbits through
X = Xy5 + X 19 + X34 + X 50,

X' =X+ X 31+ Xys+ X 30+ X_g6,

X" = (Xss+ X 104+ X _50) + (X56 + X_a41 + X _33)
have each dimension 31. As po(H3%) has dimension 32 and

X e, X' €0 X" e 07,

we conclude that the closures of these three orbits are the three irreducible hyper-
surfaces in po(H3*) which form its singular set. Hence

o
0¥ = 0¥ UOZ U OF

and so the proof of O3* % 0?9 is reduced to that of OF2 % 0%,

We now investigate the pair (32,29). Let Z = Zx (H??) = SL4- (SL2)?- T, where
T5 is the central 2-dimensional torus, SLs has simple roots {a_gs3, a1, a3} and the
SLs factors have simple roots as and as, respectively. In this case m = 2. Let

X =Xy + X 34+ X_40 + X50 + X_35,
Y =X_30+Xus+ X 31+ X 40+ X_34.
Then the Q gs2-orbits through X and Y have each dimension 31 while ps(H?>?) has
dimension 32. Since X € O03° and Y € 0%, we have
OF — 02 UTE LT,
Hence the proof of OF2 % 0?9 reduces to that of O3° % 0%,
We now turn to the pair (30,29). Then Z = Zx(H?3®) = (SLg)? - Ty, where
Ty is the 4-dimensional central torus, and the simple roots of the SLo-factors are

ag, ag, and a_gz. As Z-module, ggso(1,2) is a direct sum of three simple modules,
Vi, Vs, V3 with bases

Vi {Xs0, X53, X34, X 39},
Voo {Xus, X51, X 38, X a2},
Vo {X_40}.
Let
X = (X 34+ X 40+ X50 + X_38) + (Xs6),
X' = (X_31 +X_38 + X50 + X_a0) + (Xus),
Y =X 51+ Xug + X350 + X35 + X0 + X-24.

A computation shows that the three ) gso-orbits through X, X’, and Y have each
dimension 25. Although X, X’ € 0?7, the corresponding @ yso-orbits are different,
as can be seen from the above expressions for X and X’ and the module structure
of ggso(1,2). Since the G-orbit through Y has dimension 94, we infer that

Y e 0P u0o?yo?.
We conclude that
0N c O yOH

and so 039 % 0%,
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Next we consider the pair (25,19). Now Z = Zx (H?®) = Sping - SLy - T, where
T5 is the central 2-dimensional torus, the simple roots of Sping are {1, ay, a2, a5},
and the simple root of SLs is a_g3. In this case m = 2. Let

X = (Xs6 + X—a5 + X_33) + (X34 + X_13),
Y=Xis+ X 43+ X 19+ X 13.

The Qpe2s-orbits through X and Y have each dimension 31, while po(H??) has
dimension 32. Since X € 0 and Y € OF°, we obtain that

S —
03 = 07° U0 U O,

By (3.2), O?* # O1° and so we can conclude that O?° % O1°.

The proof for the only remaining pair (35,6) is quite different.

As a K-module p is irreducible of the form p = V5 ® V5 where V; is the half-spin
module for Spinjs/Zs of dimension 32, and V4 is the standard 2-dimensional simple
module for SLs with basis {e1, ea}. We can identify V; as a Spinjs-module with the
subspace of p spanned by the root vectors X; with

i€ {13,19,25,30,31,34,36,39,41,44, 45,47, 48,51, 54,56, —6, —12, —18,
—23,-24,-27,—29, —33, —35, —38, —40, —42, —43, —46, —50, —53}.

Then an explicit isomorphism of K-modules ¢ : V; ® Vo — p is given by
PY(X®e1+Y®e) =X +[X_7Y]

If V/ = [X_7,V1], then the map ¢ : Vi — V{ given by ¢(X) = [X_7,X] is an
isomorphism of Spinjs-modules. Finally, let 7 : p — V; be the projection with
kernel V.

The pair (Spinje - T1, V1) is a regular prehomogeneous vector space, where T} is
the maximal torus of the SLo-factor which leaves Vi and V{ invariant. Its singular
set S is an irreducible quartic conical hypersurface [T4]. The representative E¢ € Of
(see Table 2) lies in V; but not in S (thus it is a generic element of V). This can
be checked by using the explicit equation of S given in [I4], 12]. On the other hand,
the representative E3% € O35 (see Table 2) can be written as E?® = X + ¢(Y) with
X=X_p3+X 35+ Xs56and Y € <X54, X _3s, X_46>. If g € SLo, then

g-E* =aX +bY + p(cX +dY)
for some a, b, c,d € C with ad — bc = 1. Hence (g - E3%) = aX + bY € V3 where
Va = (X_43, X_35, X56, X54, X_38, X_46).

The weight diagram of the Spinjs-module V; is shown in Figure 5. A node with
label i represents the one-dimensional weight space spanned by the root vector
X;. The arrows indicate the action of the simple root vectors of the Lie algebra
of Spinja. Recall that we have introduced in Section 2 the basis {f1,...,0s} for
the root system of Spinjs. The six enlarged nodes depict the basis vectors of the
subspace V3. Note that E® is the sum of the highest weight vector X_g and the
lowest weight vector Xis.
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13%

F1GURE 5. The weight diagram of the half-spin module V3

By using the equation of .S, one can easily verify that V3 C S. Since
7(SLy - E**) Cc Vs C S
and 7 is Spinjs-equivariant, it follows that
7(0P) = (K - E*) = 7(Spin12SLy - £%9)
= Spingg - 7(SLo - E35)
C Spinjp - S = 8.
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TABLE 6. Nonzero nilpotent orbits in p (go = E VII)

k| i a;(HY) E Type of E°
1| 1100000 0| Xg3 Ay
1 2(000001 —-2|X_+~ Ay
2| 3000001 0| (X58) + (X590) 24,
21 4[100000 —2| (X_30)+ (X_31) 24,
2| 5100001 —2 | (Xe3)+ (X_7) 24,
3 6 | 000000 2 (X7) + (X49) + (Xﬁg) (3A1)"
3 7 | 000000 —2 (X77) + (X749) + (Xfﬁg) (3A1)"
3| 81000002 —2| (X49)+ (X63)+ (X_7) (3A1)"
31 91200000 —2| (Xe3)+ (X_7)+ (X_49) (3A1)"
5110 | 020000 -2 | X564+ X_7 Ay
7111]010010 —2 | (Xs6+ X_7)+ (Xs50) Ay + Ay
7112 | 011000 -3 (X62 + X731) + (ngo) Ay + Ay
10 | 13 | 300001 —2 | X34+ X_7+ X56 Az
10 | 14 | 100003 —6 | X_34 + Xg3 + X_56 Az
11| 15 [ 200002  —4 | (Xs52 + X_13) + (Xe2 + X_45) 24,
12 | 16 | 200002 —2 (X34 + X 7+ X56) + (X49) (Ag + Al)"
12 | 17 | 400000 —2 (X34 + X 7+ X56) + (X,49) (Ag + Al)"
12 | 18 | 000004 —6 (X734 + X3 + X756) + (X49) (Ag + Al)//
12 | 19 | 200002 —6 | (X_54 + X63 + X _56) + (X_49) (As + Ay)”
20 | 20 | 220002 =6 | Xs6 + X 30 + X520 + X_34 Ay
22 | 21 | 400004 —6 | X34+ X 13+ Xyo + X 45 + X56 | (A5)”
22 |22 | 400004 —10 | X_34 + Xpo + X_49 + Xe2 + X_56 | (As5)”

Hence O35 C S + V/, and consequently,
OB S+ V.
As ES € V1 \ S, we conclude that ES ¢ O3 ie., OF % Of. O
We end this section with the following interesting observation.

Consider the G-orbits 0?8 and 0?6 with Bala-Carter labels A5 and A4 + Ao,
respectively. By Table 1 we have

pNO® =0 pn 0% =02,
Our observation is that
oY ¢ 0P,
although,
0% c 0%,
4. Type EVII

In this section gg is the real form of type E VII of g, and so K has two connected
components and K° = (Eg x GL1)/Z3. There are exactly 22 nonzero nilpotent K°-
orbits in p denoted by 0%, 1 <i < 22. We let (E?, H?, ") be a normal triple with
E' € O%, H' € b such that oj(H®) > 0 for 1 < j < 6. (Since the semisimple rank
of KU is six, we cannot insist that ay(H*) be nonnegative.) These orbits are listed
in Table 6. Its description is the same as for Table 2.
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TABLE 7. Root spaces in pa(H?)

Indices of roots

.

63;
—T:
49,52, 55,57,58,59,60, 61,62, 63;
—-7,—13,-19,-25,-30,—31,—-36, —41, —45, —49;
63, —T;
7,13,19,25,30,31,34,36,39,41,44,45,47,48,49, 51,52, 54, 55, 56,57, 58,
59,60,61,62,63;
7| —-7,—-13,-19,—-25,-30,—31, —34, —36, —39, —41, —44, —45, —47, —48,
—49, —51,—-52,—-54, —55, —56, —57, —58, —59, —60, —61, —62, —63;
8 | 49,52, 55,57,58,59,60,61,62,63,—7;
9|63,—7,—13,—-19,—-25,-30,—-31, —36, —41, —45, —49;
10 | 56,58,60,61,62,63, —7,—13,—19, —25, —31, —34;
11 | 56,58,59,—7,—13; 60,61,62,63
12 | 62,63, —30,—31,—-34; —7,—13,—-19,—-25
13 | 34,39,44,47,48,51,54,56, —7; 52,55,57,58,59,60,61,62,63
14 | 63,—34,—39, —44, —47, —48, —51,—54, —56; —13,—19, —25, —30, —31,
—36, —41, —45, -7
15 | 52,55,57,58,59,60,61,62, —13, —19, —25, —30, —31, —36, —41, —45; 63,
-7
16 | 34,39,44,47,48,49,51,54,56, —7; 52,55,57,58,59,60,61, 62,63
17 | 34,39,44,47,48,51,52, 54,55, 56,57, 58, 59,60,61,62, —7, —13, —19, —25,
—30,—-31,—-36,—41, —45, —49; 63
18 | 49,52, 55,57,58,59, 60,61, 62,63, —13,—19, —25, —30, —31, —34, —36, —39,
—41,—44,—45, —47, —48, —51,—54, —56; 7
19 | 63,—34,—39, —44, —47, —48, —49, —51, —54, —56; —13,—-19, —25, —30,
—31,-36,—41,—-45, -7
20 | 52,55,56,57,59, —30, —34, —36, —41, —45; 58,60,61,62, —13, —19, —25,
—-31,63,—7
21| 34,39,44,47,48,49,51, 54,56, —13, —19, —25, —30, —31, —36, —41, —45; 52,
55,57,58,59,60,61,62,—7,63
22 | 52,55,57,58,59,60,61,62, —34, —39, —44, —47, —48, —49, —51, —54, —56;
63,—13,—19,—-25,-30,—-31, —36, —41, —45, -7

ST W N

In Table 7, which is analogous to Table 3, we list the indices k of the roots
a = ay, for which g* C p2(H?).

Theorem 4.1. Let gy be of type EVIL. Then the closure ordering of the nilpotent
K°-orbits in p is as given in Figure 6. The group K/K° = Zy acts on the diagram
as the reflection in the vertical axis of symmetry.

The dotted lines join the K°-orbits that are contained in the same G-orbit.

Proof. For each pair of nodes (i, j_) in Figure 6 that are joined by a solid line, with
i above j, we prove that O% > Of by exhibiting an element E € O that belongs
to the subspace p2(H?). These elements are given in Table 8.
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FIGURE 6. The closure diagram for E VII
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By inspection of the diagram in Figure 6, we see that in order to complete the
proof of the correctness of the diagram it suffices to prove that O # Of for the
following pairs (4, j):

(4.1) (1,7), (2,6), (19,3), (16,4), (22,6), (21,7), (18,13), (17,14).

Let V be the simple g-module with highest weight w7 (of dimension 56). It
admits a Zs-grading V = V) @& V4 with both spaces Vy and V; of dimension 28.
This means that ¢-V; C V; and p-V; C Vi_; for i = 0,1. We compute the integers
di(4,k); i =0,1; j > 1; for each k, 1 < k < 22. They are given in Table 9. Since
do(1,7) > do(1,1), we conclude that O7 % O}. The argument is similar for the
other pairs in (4.1).

The second assertion follows from the fact that an element of K \ K° induces an
outer automorphism of the subalgebra Fg of €. O

TABLE 8. Elements E € po(H) N O?

i J Type E
20 | 18 | (A3 + A1)" | (X_30 + Xs52 + X_34) + (X62)
20 | 17 | (A3 + A1)" | (Xs5 + X_36 + X56) + (X—25)
2116 | (As+ A1)" | (X34 + X7+ X56) + (Xao)
22 | 19 | (As+ A1)" | (X_34 + Xe3 + X _s56) + (X_49)
16,17 | 13 | A3 X34+ X 7+ Xs6
18,19 | 14 | A3 X34+ X3 + X 56
17,18 | 15 | 245 (Xs2 + X-13) + (Xo2 + X-45)
13|11 | Ay + Ay (Xs6 + X—7) + (X59)
14|12 | Ay + Ay (Xo3 + X—34) + (X_30)
15| 11 | Ao + Aq (X58 + X_13) + (X50)
15|12 | Ay + A3 (Xe2 + X_31) + (X_30)
11| 81 (34" (Xs8) + (X59) + (X_7)
12| 91 (34" (Xe63) + (X_30) + (X_31)
16| 6| (3A41)" (X34) + (Xa9) + (X56)
19| 71 (34" (X_34) + (X_49) + (X _56)
10| 5|24, (Xe3) + (X—7)
6,8 | 3|24, (Xs8) + (X59)
79| 4124, (X_30) + (X_31)
89| 524, (X63) + (X-7)
35| 1| A4; Xe3
45| 2| A X7
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TABLE 9. The integers d;(j, k) for the module V' (wr)

k do(J, k) di (4, k)
1]1828 26 28
212628 18 28
310 27 28 26 27 28
4126 27 28 10 27 28
5118 27 28 18 27 28
612728 26 27 27 28
7|26 272728 12728
8| 10 27 27 28 17 27 28
9|17 27 28 10 27 27 28
10 | 16 22 28 16 22 28
11 | 10 22 26 28 16 22 28
12 | 16 22 28 10 22 26 28
13 | 8 17 18 27 28 16 17 26 27 28
14 | 16 17 26 27 28 817 18 27 28
15| 10 18 26 27 28 10 18 26 27 28
16 | 1 17 18 27 27 28 16 17 26 27 28
17 | 8 17 18 27 28 9 17 26 27 27 28
18 | 9 17 26 27 27 28 817 18 27 28
19 | 16 17 26 27 28 11718 27 27 28
20 | 8 13 18 22 26 27 28 8 13 18 22 26 27 28
21 1191018 18 26 26 27 27 28 | 8 9 17 18 26 26 27 27 28
22 189 17 18 26 26 27 27 28 1910 18 18 26 26 27 27 28

5. APPENDIX

In Table 10 we give our enumeration of the positive roots of E7. We recall that
the simple roots are chosen as in [3]. This enumeration is the same as in [8].

TABLE 10. Positive roots of Er

(67 ) (6% ) Q5
1000000 | 22 0111100 | 43 1112210
0100000 | 23 0101110 | 44 1112111
0010000 | 24 0011110 | 45 0112211
0001000 | 25 0001111 [ 46 1122210
0000100 | 26 1111100 | 47 1122111
0000010 | 27 1011110 | 48 1112211
0000001 | 28 0112100 | 49 0112221
1010000 | 29 0111110 | 50 1123210
0101000 | 30 0101111 | 51 1122211
0011000 | 31 0011111 | 52 1112221
0001100 | 32 1112100 | 53 1223210
0000110 | 33 1111110 | 54 1123211
0000011 | 34 1011111 |55 1122221

.
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TABLE 10. (continued)

) Q4 ) (6% ) Q5

14 1011000 | 35 0112110 | 56 1223211
15 0111000 | 36 0111111 |57 1123221
16 0101100 | 37 1122100 | 58 1223221
17 0011100 | 38 1112110 | 59 1123321
18 0001110 |39 1111111 |60 1223321
19 0000111 | 40 0112210 | 61 1224321
20 1111000 |41 0112111 |62 1234321
21 1011100 | 42 1122110 | 63 2234321

41

We use this occasion to correct two misprints in that paper. First, on page 10 the

representative E for the orbits 60,61 should be:
E = +[3X7 + Xog + 2V2(X1g + Xag) + V5(X14 + Xo9)].

Second, the Weyl group mentioned at the bottom of page 7 should be W (&, §©).
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