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SPHERICAL FUNCTIONS ON MIXED SYMMETRIC SPACES

BERNHARD KRÖTZ, KARL-HERMANN NEEB, AND GESTUR ÓLAFSSON

Abstract. In this article we compute the spherical functions which are as-
sociated to hyperbolically ordered symmetric spaces H\G. These spaces are
usually not semisimple; one prominent example is given by H\G = (Rn o
Gl(n,R))\(HnoSp(n,R)) with Hn the (2n+1)-dimensional Heisenberg group.

Introduction

In this article we investigate spherical functions on simply connected symmetric
spaces M := H\G. Let (g, τ) be the symmetric Lie algebra associated to M and
g = h + q the corresponding τ -eigenspace decomposition. Write x0 ∈ M for the
canonical base point. Our assumptions onM are purely geometric: We assume that
M is hyperbolically ordered which means that there exists an open convex cone C
in q ∼= Tx0(M) which is Ad(H)-invariant and hyperbolic, i.e., all operators adX ,
X ∈ C, are diagonalizable over the real numbers. This includes the non-compact
Riemannian symmetric spaces K\G with g = k + p and C = p, and the non-
Riemannian non-compactly causal symmetric spaces, for example SO(1, 1)\ Sl(2,R),
or, more generally, SO(p, q)\ Sl(n,R), Gl(n,R)+\ Sp(n,R) etc. (cf. [HiÓl96, Th.
3.2.8] for the complete list and Ex. I.13(a) below). Further, there are interesting
non-nilpotent solvable examples (cf. Ex. I.13(b)). In general, however, G should
be neither reductive nor solvable in order to make H\G a hyperbolically ordered
space. We refer to those spaces as mixed symmetric spaces.

The guiding mixed example is attached to the Jacobi group G = HSp(n,R) :=
HnoSp(n,R) with Hn the (2n+1)-dimensional Heisenberg group (cf. the beginning
of Sect. II for a detailed discussion). The symmetric subgroup H is given by Rn o
Gl(n,R)+ and we would like to point out that H is not unimodular. The general
interest in the Jacobi group stems from the fact that the Schrödinger representation
of Hn extends to a unitary highest weight representation of HSp(n,R); a fact which
is going to be very useful for us later on since every hyperbolically symmetric space
H\G almost injectively embeds into (Rn oGl(n,R)+)\HSp(n,R) (cf. [KrNe96]).

There are several reasons that make closer study of this class of spaces interesting.
One of them is the relation to quantum field theory, in particular, the Osterwalder-
Schrader axioms and reflection positivity; see [FOS83], [Jo87], [JoÓl98], [JoÓl00],
[Sc86] and the reference therein. In [JoÓl98, JoÓl00] the semisimple case was
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studied, but the general case has yet to be considered. If the group G is semisimple,
one can construct a dual simply connected symmetric space Hc\Gc by defining the
Lie algebra of Gc to be gc = h + iq. The H-invariant cone C ⊆ q then extends to a
G-invariant cone W ⊂ igc, which in turn defines a closed semigroup Γc = Gc expW .
If π is a suitable generalized complementary series representation of Gc, then there
exists a unitary involution J : H(π) → H(π), where H(π) is the Hilbert space of
π, such that Jπ = π ◦ τJ . Furthermore, there exists a subspace K ⊆ H(π) such
that the bilinear form (u, v)J := (u, Jv) is non-negative on K. Let N = {u ∈
K : (u, u)J = 0} and let KJ be the completion of K/N . Then the representation
induced by π on KJ extends to a holomorphic ∗-representation πΓc of Γc. Finally,
the restriction πΓc to Gc is an irreducible unitary highest weight representation
of Gc. This allows one to “move” unitary representations from one real form to
another by analytic continuation. The spherical functions, that we study in this
paper, are—up to a normalizing factor—H-spherical distribution vectors of both
of those representations [Kr01, Ól00]. This fact relates the analysis of this duality
to the understanding of the positive definite spherical functions on hyperbolically
ordered symmetric spaces.

Another interesting fact is, that most of the classical Riemannian symmetric
spaces H/KH can be realized as a real form of a bounded symmetric domain
Gc/Kc. The fact that Gc/Kc is a bounded symmetric domain implies that gc, the
Lie algebra of Gc, contains a Gc-invariant pointed generating cone. Hence H\G
is hyperbolically ordered. This relation between real forms of bounded symmetric
domains, highest weight modules, and generalized complementary series represen-
tations has been used to construct canonical representations of the group H . It is
also closely related to the generalized equivariant Berezin transform on symmetric
spaces. We refer to [No01, Ól00] and the references therein for further discussion
of this topic.

That (g, τ) admits an Ad(H)-invariant hyperbolic convex cone has far reaching
consequences for the structure theory of (g, τ) (cf. [HiÓl96], [KrNe96]) and the
differential geometry of M (cf. [La94]). For example the subset Γ := H exp(C) ⊆
G is a semigroup, a so-called real Ol’shanskĭı semigroup. Further, there exists a
hyperbolic subspace a ⊆ q which is maximal abelian in q. The cone C can be
reconstructed from its trace in a, i.e., C = Ad(H).(C ∩a), and we have Γ = HΓAH
with ΓA := exp(C ∩ a).

The set of positive elements M+ := x0.Γ is the natural domain for spherical
functions. If the group H is unimodular and H0 := ZH(a) is compact, then it is
natural to define spherical functions as continuous functions ϕ onM+ which satisfy
the integral equation

(∀s, t ∈ Γ) ϕ(x0.s)ϕ(x0.t) =
∫
H

ϕ(x0.sht) dµH(h)

(cf. [FHÓ94]). Note that this implies, in particular, that ϕ is H-invariant. But
in general H is not unimodular, M carries no invariant measure, and there is
no chance to define spherical functions by an integral equation. Write X(H/H0)
for the group of continuous characters χ : H → C× of H with H0 ⊆ kerχ. For
each χ ∈ X(H/H0) define χ∗ ∈ X(H/H0) by χ∗(h) = χ(h)

−1
. Then for each

χ ∈ X(H/H0) we have a line bundle Cχ ×H G → M and we write D(χ) for the
corresponding algebra of G-invariant differential operators. A continuous section
ϕ of Cχ ×H Γ →M+ is called (H,χ)-spherical if ϕ is right χ∗-semi-invariant and
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a common eigenfunction of D(χ) in the sense of distributions. The reason why
there is a character χ involved is that one wants that spherical functions model
appropriately the harmonic analysis on L2(M+). Here we need a quasi-invariant
measure µρ on M+ which is constructed by a ρ-function on M+ which in turn is
a C∞-extension of the character H → C×, h 7→ det AdG(h)−1.

We write n =
⊕

α∈∆+(g,a) gα for the sum of the positive root spaces with respect
to a positive system which in some sense is adapted to the cone C. Denote by
A and N the analytic subgroups of G corresponding to a and n. Then the map
H × A×N → G, (h, a, n) 7→ han is a diffeomorphism onto the open image HAN
and we have Γ ⊆ HAN . Accordingly, every element s ∈ Γ can be written as
s = hH(s)aH(s)nH(s) with hH(s) ∈ H , aH(s) ∈ A and nH(s) ∈ n, everything
depending analytically on s. Next we will identify (H,χ)-spherical functions with
functions on Γ in the obvious sense. For λ ∈ a∗C and χ ∈ X(H/H0) we define the
(H,χ)-spherical function with parameter λ by

ϕχλ(s) =
∫
H/H0

aH(sh)λ−ρχ(sh)χ(h) dµH/H0(hH0) for s ∈ Γ

provided the integrals exist. We write Eχ for the set of all λ ∈ a∗C for which all
integrals ϕχλ(s), s ∈ Γ, converge. The main result of this paper is the Factorization
Theorem for ϕχλ which asserts that

ϕχλ(a) = ϕχzλz (a) · ϕχl∆
1
2
H

λl
(a)

for all a ∈ ΓA (cf. Theorem III.10). Here the first factor corresponds to the nilradical

U of G while ϕχl∆
1
2
H

λl
corresponds to a reductive complement L ∼= G/U . Note that

there is a shift in the character by the square root of the modular function ∆H of
H which is related to the fact that H is not unimodular. An explicit formula for
the function ϕχzλz (a) is given as

ϕχzλz (a) =
2
n
2 πnaλz

detAλz

·
exp

(
− 〈 1

a2−1 .w+, w+〉λz − 〈 a2

a2−1 .w+, w+〉λz + 〈 a
a2−1 .w+, w+〉λz

)
(∏

α∈∆+
r

(sinhα(log a))mα
) 1

2
.

We note that the Factorization Theorem gives a concrete formula for ϕχλ on solvable
symmetric spaces. Our product formula generalizes the one in [HiNe96] for spherical
functions on Ol’shanskĭı spaces G\GC. Spherical functions on reductive symmetric
spaces and their asymptotic expansions have been studied extensively by the third
author in [Ól97]. See also [ÓlPa00] and [AÓS00].

Spherical functions are closely related to representation theory. In fact, one can
think of positive definite spherical functions ϕ as certain matrix coefficients of a
representation (π,H) of Γ. More precisely, ϕ(s) = 〈π(s).ν, ν〉 where ν ∈ H−ω
is an (H,χ)-spherical vector. Via the Lüscher-Mack correspondence, representa-
tions of Γ are related to unitary representations of the simply connected c-dual
group Gc (cf. [HiNe97]). It is exactly this correspondence we use to prove our Fac-
torization Theorem. We use the generalized extended metaplectic representation
(µλ,Hλ) of Gc which is a highest weight representation (cf. [Ne99]). Let (µ,Hµ) de-
note the extended metaplectic representation of the simply connected Jacobi group
HSp(n,R) = HnoSp(n,R) (cf. [Fo89], [Ne99]). We equip the Jacobi group with an
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involution τ such that HSp(n,R)τ = RnoGL(n,R)+. Now (µλ,Hλ) is obtained by
a composition of an appropriate homomorphism (Gc, τ) → (HSp(n,R), τ) and the
extended metaplectic representation (µ,Hµ) (cf. Section II). The highest weight λ
depends on the homomorphism (Gc, τ) → (HSp(n,R), τ). In Section II we give
a classification of the (H,χ)-spherical distribution and hyper-function vectors of
(µλ,Hλ) (cf. Theorem II.14). Then we compute an integral over a certain ma-
trix coefficient of (µλ,Hλ) (cf. Lemma II.16) which turns out to be crucial for the
factorization of ϕχλ.

One important point is the asymptotic behaviour of spherical functions at infin-
ity, since this models the growth of certain matrix coefficients (cf. [Wa88, Ch. 4]).
The “constant term” of ϕχλ at infinity is given by the c-function

cχM(λ) =
∫
N∩(HAN)

aH(n)−λ−ρχ(n) dµN (n).

Using the product formula for the spherical functions and some arguments using
analytic continuation, we obtain a product formula for the c-function

cχM(λ) =
2
n
2 πne−〈w+,w+〉λz

detAλz
c
χl∆

1
2
H

ML
(λl)

(cf. Theorem IV.11). We also determine explicitly the domain of convergence Eχ
for the spherical function ϕχλ and the c-function. We conclude this paper with a
list of further comments and problems concerning the interplay between spheri-
cal functions, representation theory, and harmonic analysis on symmetric spaces.
In particular we explain the relation between spherical functions and H-spherical
distribution characters of spherical highest weight modules, in particular, holomor-
phic discrete series representations, and the role of the Factorization Theorem in
the theory of Hardy spaces on the c-dual symmetric space H\Gc.

I. Hyperbolically causal symmetric spaces

In this section we collect the results on the global and algebraic structure of
mixed symmetric spaces that we will need in later sections of this paper.

Symmetric Lie algebras.

Definition I.1. (a) A symmetric Lie algebra is a pair (g, τ) consisting of a finite
dimensional real Lie algebra g and an involutive automorphism τ of g. We put
h := {X ∈ g : τ.X = X} and q := {X ∈ g : τ.X = −X}, and note that g = h⊕ q.

(b) An element X ∈ g is called hyperbolic if adX is diagonalizable over R.
An abelian subspace a ⊆ q is called abelian maximal hyperbolic if a consists of
hyperbolic elements and is maximal w.r.t. this property.

(c) A subspace l ⊆ q is called a Lie triple system if [l, [l, l]] ⊆ l. This means that
the space lL := l⊕ [l, l] is a subalgebra of g. Recall that all abelian maximal hyper-
bolic subspaces and all maximal hyperbolic Lie triples systems in q are conjugate
under Inng(h) (cf. [KrNe96, Cor. II.9, Th. III.3]).

The abelian maximal hyperbolic subspaces generalize the Cartan subspaces
occurring in the restricted root decompositions of real semisimple Lie algebras.
The maximal hyperbolic Lie triple systems are the infinitesimal version of “maximal
non-compact Riemannian subspaces” on the level of the corresponding symmetric
spaces.
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Definition I.2 (The structure of g). Let r denote the radical of g and r = rh + rq

its τ -eigenspace decomposition. In the following, subscripts indicate intersections,
for example, rh := r ∩ h, etc. According to [KrNe96, Prop. III.5], there exists a
τ -invariant Levi complement s ⊆ g with the following properties: There exists a
maximal hyperbolic Lie triple system p ⊆ q such that p = pr ⊕ ps, where ps ⊆ sq is
a maximal hyperbolic Lie triple system in sq and [pr, s] = {0}. Then each maximal
abelian subspace a ⊆ p is of the form a = pr⊕as, and [pL, s] ⊆ s. Furthermore, there
exists a Cartan involution θ on s commuting with ad[p, p] and τ |s (cf. [KrNe96,
Prop. I.5]). The corresponding Cartan decomposition is denoted by s = sk ⊕ sp.
The largest ideal of s contained in sh, i.e., the kernel of the isotropy representation
of corresponding symmetric spaces, is denoted siso. So the semisimple symmetric
Lie algebra (s, τ |s) decomposes as

(s, τ |s) = (siso, τ |siso)⊕
n⊕
i=1

(si, τ |si)

with (si, τ |si) irreducible and effective.

Definition I.3 (Root decomposition). (a) Let a ⊆ q be an abelian maximal hy-
perbolic subspace. For every ad a-invariant subspace b in g and for every α ∈ a∗

we define

b
α := {X ∈ b : (∀Y ∈ a)[Y,X ] = α(Y )X}.

In particular, we have b0 := zb(a). We write ∆ := {α ∈ a∗\{0} : gα 6= {0}} for the
set of roots. Then we get the root space decomposition g = g0 ⊕

⊕
α∈∆ gα. For

each α ∈ ∆ we put mα := dim gα.
We call a root α ∈ ∆ semisimple, resp. solvable, if sα 6= {0}, resp. gα ⊆ r. The

set of all semisimple, resp. solvable, roots is denoted by ∆s, resp. ∆r. Note that
∆ = ∆r∪̇∆s (cf. [KrNe96, Lemma IV.5(i)]).

A root α ∈ ∆ is called compact if pαL 6= {0} and non-compact otherwise. We
write ∆k, ∆n resp. ∆p for the set of all compact, non-compact, resp. non-compact
semisimple roots. Note that ∆k is independent of the choice of p ⊇ a (cf. [KrNe96,
Def. V.1]) and that ∆ = ∆k∪̇∆n holds by definition.

(b) We call an element X0 ∈ a regular if α(X0) 6= 0 for all α ∈ ∆ and a
subset ∆+ ⊆ ∆ a positive system if there exists a regular element X0 ∈ a with
∆+ = {α ∈ ∆ : α(X0) > 0}. To each positive system ∆+ we associate several
subalgebras of g:

n =
⊕
α∈∆+

gα and n =
⊕
α∈∆−

gα.

Further, we set

n
±
n =

⊕
α∈∆±n

g
α, n

±
r =

⊕
α∈∆±r

r
α, n

±
p =

⊕
α∈∆±p

g
α and n

±
k =

⊕
α∈∆±k

g
α.

We write ρ, ρr, ρs, ρn and ρk, respectively, for 1
2 tr adn, 1

2 tr adnr ,
1
2 tr adns

, 1
2 tr adnn ,

and 1
2 tr adnk

.
(c) The Weyl group W of (g, τ) w.r.t. a is defined by

W := NInng(h)(a)/ZInng(h)(a).

A positive system is called p-adapted if the set ∆+
n of positive non-compact roots is

invariant under the Weyl group.
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Definition I.4. The symmetric Lie algebra (g, τ) is called quasihermitian if
zq(z(p)) = p. In this case a is maximal abelian in q and there exists a p-adapted
positive system ∆+ (cf. [KrNe96, Prop. V.10]). An irreducible effective quasiher-
mitian symmetric Lie algebra (g, τ) is called non-compactly Riemannian (NCR),
resp. non-compactly causal (NCC), if z(p) = {0}, resp. z(p) 6= {0}. The property of
being quasihermitian is inherited by s. This means that the irreducible constituents
(si, τ |si) of s are either (NCR) or (NCC) (cf. [KrNe96, Prop. V.9(v)]).

From now on we will assume that (g, τ) is quasihermitian and that ∆+ is p-
adapted.

Definition I.5. (a) Let V be a finite dimensional real vector space and V ∗ its dual.
For a subset E ⊆ V the dual cone is defined byE? := {ω ∈ V ∗ : (∀x ∈ E)ω(x) ≥ 0}
and cone(E) denotes the smallest closed convex cone containing E. A cone C ⊆ V
is called generating if V = C − C and pointed if C ∩ −C = {0}.

For a convex subset C ⊆ V we set

limC := {v ∈ V : v + C ⊆ C} and B(C) := {α ∈ V ∗ : inf α |C > −∞}.

Note that both limC and B(C) are convex cones in V , resp. V ∗.
(b) We associate to a positive system of non-compact roots ∆+

n the convex cones

Cmin := cone
(
{[Xα, τ(Xα)] : Xα ∈ g

α, α ∈ ∆+
n }
)
,

Cmin,r := cone
(
{[Xα, τ(Xα)] : Xα ∈ g

α, α ∈ ∆+
r }
)
,

Cmin,p := cone
(
{[Xα, τ(Xα)] : Xα ∈ g

α, α ∈ ∆+
p }
)
,

Cmax := (∆+
n )? = {X ∈ a : (∀α ∈ ∆+

n )α(X) ≥ 0} and Cmax,p := (∆+
p )? ∩ as.

Definition I.6. In the following, G denotes a simply connected Lie group asso-
ciated to g. Then τ integrates to an involution on G also denoted by τ and the
fixed point set H := Gτ is a connected subgroup of G (cf. [Lo69, Th. 3.4]) with Lie
algebra h. Further, we define A, H , N , N , R and S as the analytic subgroups of G
corresponding to a, h, n, n, r and s (cf. Definition I.3). By subscripts we indicate
intersections, for instance HR = H ∩R, etc.

Proposition I.7 (The HAN -decomposition). For a simply connected symmetric
Lie group (G, τ) associated to (g, τ) the following assertions hold:

(i) The groups A, resp. N , are closed, simply connected and diffeomorphic to a,
resp. n, under the exponential mapping. Moreover, A ∩N = {1}.

(ii) The map

ϕ : H ×A×N → G, (h, a, n) 7→ han

is a diffeomorphism onto its open image.
(iii) The multiplication mapping ϕR : HR ×AR ×NR → R is a diffeomorphism.
(iv) The set HAN is R-saturated, i.e., left and right R-invariant.

Proof. This is Proposition II.4 in [KNÓ97].

This proposition tells us, in particular, that there exist analytic maps

hH : HAN → H, han 7→ h, aH : HAN → A, han 7→ a,
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and

nH : HAN → N, han 7→ n.

Let u denote the nilradical of g. We find a τ -invariant reductive subalgebra
l ⊆ g such that [l, l] = s and g = u o l. Accordingly, we have the decomposition
G = U oL. On A this decomposition induces a factorization A = AU ×AL, where
AU is a central subgroup of G. Let N±R , N±S and N±k the analytic subgroups of G
corresponding to n±r , n±p and n

±
k . In view of Proposition I.7, we have

U = HUAUNR and L ⊇ HLALNL

with N ∼= N+
R o NL and NL ∼= N+

S o N+
k . Furthermore, HLALNL is open in L.

Writing each element a ∈ A as a = aual with au ∈ AU and al ∈ AL, we get two
analytic maps

aH,u : HAN → AU , and aH,l : HAN → AL.

Lemma I.8. Let u ∈ U and s = susl ∈ HAN . Then

aH(sl) = aH,l(sl) = aH,l(s) = aH,l(su).

Proof. Since the homomorphism G → L preserves the HAN -decomposition, we
may write sl ∈ HLALNL as sl = h1a1n1. Note that aH,l(u) = 1 for all u ∈ U
follows from U = HUAUNR. Thus

aH,l(s) = aH,l(suh1a1n1) = aH,l(suh1)a1 = aH,l(h−1
1 suh1)a1 = a1.

This shows that aH,l(s) = aH,l(sl), proving the second equality. Now the last
equality follows from (su)l = sl concluding the proof of the lemma.

We conclude this subsection with an integral formula which will be useful later
on. Since A is simply connected, the exponential mapping exp: a → A is a dif-
feomorphism and so has an inverse log : A → a. In particular, for all λ ∈ a∗C the
prescription

A→ C, a 7→ aλ := eλ(log a)

defines an analytic function on A.
Whenever G is a locally compact group, we write µG for a left-invariant Haar

measure on G.

Lemma I.9. Let f ∈ Cc(HAN). Then the Haar measures on G, H, A and N
may be normalized in such a way that∫

G

f(g) dµG(g) =
∫
H

∫
A

∫
N

f(han)a2ρ dµN (n) dµA(a) dµH(h).(1.1)

Proof. The open domain HAN ⊆ G is an orbit of the action of H × AN given by
(h, b).x := hxb−1. Since, according to [He184, Prop. I.5.1, p. 181], the formula∫

A

∫
N

f(an)a2ρ dµN (n) dµA(a)

defines a right-invariant Haar measure on the group AN , the right-hand side of
(1.1) defines a measure on HAN which is invariant under the action of the group
H ×AN . On the other hand, the restriction of µG to HAN is also invariant under
this action because det AdG(b) = 1 holds for each b ∈ AN . Now the uniqueness of
invariant measures on homogeneous spaces implies the assertion.
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Symmetric Lie algebras admitting hyperbolic cones.

Definition I.10. We call (g, τ) admissible if q contains an open convex hyperbolic
Inng(h)-invariant subset not containing non-trivial affine subspaces. Then every
maximal hyperbolic subspace a ⊆ q is maximal abelian in q, (g, τ) is quasihermitian
and has cone potential (cf. [KrNe96, Th. VI.6, Prop. V.9]).

From now on we make the assumption that (g, τ) is admissible. Further, we
assume that (g, τ) is effective, i.e., h does not contain any non-zero ideal of g. In
the following, ∆+ denotes a p-adapted positive system.

Lemma I.11. Let (g, τ) be an effective admissible symmetric Lie algebra and let
∆+ be a p-adapted positive system. Then:

(i) [u, u] ⊆ z(g).
(ii) [n+

n , n
+
n ] = [n−n , n

−
n ] = {0}.

(iii) [n±p , n∓r ] ⊆ n±r .

Proof. (i) In view of [KrNe96, Th. VI.6(iii)], this follows from [KrNe96, Prop.
VII.2(iii)(a)].

(ii), (iii) [KrNe96, Th. VII.18(ii)].

Remark I.12. Let V := n+
r ⊕ n−r . Then u = V + z(g), L acts on V and V carries an

L-invariant skew-symmetric bilinear map ϕ : V × V → z(g), (v, w) 7→ [v, w]. Note
that z(g) ⊆ q since (g, τ) was assumed to be effective. The bracket on g = V +z(g)+l

is given by

[(v, z,X), (v′, z′, X ′)] =
(
X.v′ −X ′.v, ϕ(v, v′), [X,X ′]

)
.

Then G ∼= V × z(g)× L with group multiplication

(v, z, l) · (v′, z′, l′) = (v + l.v′, z + z′ + 1
2ϕ(v, l.v′), ll′).

Example I.13. We now give some examples of admissible symmetric Lie algebras.
(a) (Semisimple examples) Recall from Definition I.4 and Definition I.10 that a sim-
ple admissible symmetric Lie algebra (g, τ) is called non-compactly causal. (NCC)
symmetric Lie algebras are classified and we refer to [HiÓl96, Th. 3.2.8] for the
table. However, we think it might be useful to explain some typical cases.

As a basis of sl(2,R) we choose

H :=
(

1 0
0 −1

)
, T :=

(
0 1
1 0

)
, and U :=

(
0 1
−1 0

)
.

Then a symmetric structure is introduced by the choice q := RH⊕RU and h := RT .
An abelian maximal hyperbolic subspace of q is given by a := RH . Further, we have
∆ = ∆p = {±α} with α ∈ a∗ defined by α(H) = 2. For the choice of ∆+ := {α}
there is only one ead h-invariant hyperbolic convex cone in q which is given by

W = {hH + uU : h ≥ 0, |u| ≤ h}.

This example can be generalized to (g, h) := (sl(n,R), so(p, q)) with n = p + q,
p, q > 0. Here a consists of all diagonal matrices in g and in the standard notation
a p-adapted positive system is given by ∆+ = {εi − εj : 1 ≤ i < j ≤ n} with
∆+
p = {εi − εj : 1 ≤ i ≤ p, p+ 1 ≤ j ≤ n}. There is no easy global description of
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the maximal cone Wmax (which is characterized by Wmax ∩ a = Cmax). However,
the intersection of Wmax with p is particularly nice:

Wmax ∩ p =
{(

A 0
0 B

)
: A = AT , B = BT , inf Spec(A) ≥ sup Spec(B)

}
.

(b) (Solvable example) A very important solvable admissible Lie algebra is the
four-dimensional oscillator algebra. This algebra is low-dimensional enough to per-
form explicit computations and on the other hand, rich enough to feature the solv-
able situation well. The construction goes as follows. Let h1 := RX ⊕RY ⊕RZ be
the three-dimensional Heisenberg algebra with bracket relation [X,Y ] = Z. Then
the oscillator algebra is the semidirect product g := h1 o RA with [A,X ] = Y ,
[A, Y ] = X and [A,Z] = 0. A symmetric structure is imposed on g by the choice
h := RY and q := RA ⊕ RX ⊕ RZ. A possible choice for a is a := RA + RZ and
we have ∆ = ∆r = {±α} with α(aA + zZ) = a. The maximal cone for ∆+ = {α}
is Wmax := {aA + xX + zZ : a ≥ 0} but there also are pointed Inng(h)-invariant
convex cones, for example,

W := {aA+ xX + zZ : a ≥ 0, z ≥ 0, x2 ≤ 2az}.

(c) (Mixed examples) The most important example which is neither solvable
nor semisimple is the Jacobi algebra which will be discussed in great detail in the
beginning of Section II.

Recall the definition of h0 = zh(a) and set H0 = ZH(a). To proceed we first need
some structural information about the group H0. Recall that a subalgebra b ⊆ g

is called compactly embedded if Inng(b) is relatively compact in Aut(g).

Lemma I.14. For an effective admissible symmetric Lie algebra (g, τ) the follow-
ing assertions hold:

(i) The subgroup H0 is compactly embedded, i.e., Ad(H0) is compact.
(ii) The group H0 is contained in L, i.e., H0 = H0

L. Moreover, H0 = H0
R ×H0

S

with H0
SZ(G)/Z(G) compact and H0

R simply connected abelian.

Proof. (i) This follows by replacing the Lie algebra h0 in the proof of Proposition
VII.12(ii) in [KrNe96] by the group H0.

(ii) First we prove that H0 ⊆ L. Since H = HU oHL, every element h ∈ H0 can
be written in a unique fashion as h = huhl with hu ∈ HU and hl ∈ HL. We claim
that hu, hl ∈ H0. Let X ∈ a and write X = Xu+Xl according to the decomposition
a = au⊕ al. Then Ad(h).X = X implies, in particular, that Ad(hl).Xl = Xl for all
X ∈ a. From au = z(g) it follows that hl ∈ H0, proving the claim.

Now the fact that HU is simply connected nilpotent implies that H0
U =

exp(h0 ∩ u) ∼= h0 ∩ u. According to (i), h0 is compactly embedded and there-
fore h0 ∩ u is central. Thus h0 ∩ u = {0} by the effectivity of (g, τ). This proves
H0 ⊆ L.

Next we show that H0 = H0
R × H0

S . Since L is simply connected, we have
L ∼= Z(L)0 × S. Now a = z(g) ⊕ al and H0 ⊆ L yield H0 = ZH(A) = ZH(AL) =
ZHL(AL). Therefore H ∩ Z(L) ⊆ H0 and H0

S = ZHS (AS) = ZHS (AL) = (H0)S ,
so that HL = HZ(L)0 ×HS entails that H0 = HZ(L)0 ×H0

S . Now (ii) follows from
the observation that HZ(L)0 = H0

R and the group Z(L)0 containing H0
R is a vector

group, so that H0
R is simply connected and abelian.
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Finally, it follows from [FHÓ94, Lemma 5.1] that H0
SZ(G)/Z(G) ∼= Ad(H0

S) is
compact, completing the proof of (ii). In view of (i), this follows also from the
closedness of Ad(H0

S) in S/(S ∩ Z(G)).

From now on we fix a maximal hyperbolic Lie triple system p ⊆ q containing a.
We define

g(0) := zg(z(p)).

Note that g(0) is stable under τ so that (g(0), τ0) is a symmetric Lie algebra with
τ0 := τ |g(0). We define

G(0) := ZG(z(p))

and note that G(0) is a τ -stable subgroup of G. We denote the restriction of τ to
G(0) also by τ0.

Lemma I.15. The following assertions hold:
(i) The symmetric Lie algebra (g(0), τ0) is non-compactly Riemannian (NCR)

and we have

g(0) := h0 + a +
⊕
α∈∆k

gα = h0 + [p, p] + p.

(ii) Z(G)H0 ⊆ G(0).
(iii) The symmetric Lie algebra (g, τ) admits a triangular decomposition g = n+

n ⊕
g(0)⊕ n−n , i.e., one has

[n+
n , n

−
n ] ⊆ g(0), and [g(0), n±n ] ⊆ n±n .

Proof. (i) The second assertion follows from [KrNe96, Prop. V.9(iii), Th. VIII.1(ii),
Cor. III.8]. That (g(0), τ0) is (NCR) follows from Lemma I.14(i) together with
[KrNe96, Prop. II.1].

(ii) This is obvious by construction.
(iii) This follows from (∆k + ∆±n ) ∩∆ ⊆ ∆±n (cf. [KrNe96, Prop. V.4]).

For the proof of the next proposition the following concept turns out to be crucial.

Definition I.16. Let (g, τ) be a symmetric Lie algebra and gC the complexification
of g. We extend τ to a complex linear involution τ of gC. The c-dual (gc, τc) of
(g, τ) is defined by gc := h + iq and τc := τ |gc . The complex conjugation in gC
w.r.t. the real form gc is denoted by τ̂ . Thus the inclusion map (g, τ) ↪→ (gC, τ̂) is
an embedding of symmetric Lie algebras. We call (gC, τ̂) the canonical extension
of (g, τ) and write ĥ := gc and q̂ := igc for the eigenspaces of τ̂ .

Example I.17. (a) The c-dual of (g, h) := (sl(2,R), so(1, 1)) is (su(1, 1), so(1, 1)).
More generally, the c-dual of (g, h) : = (sl(n,R), so(p, q)) is (su(p, q), so(p, q)). That
gc is hermitian in these examples is no coincidence; it is always the case for (NCC)
symmetric Lie algebras (cf. [HiÓl96, Ch. 1]).

(b) If (g, h) is as in Example I.13(b), then the c-dual is the Lie algebra gc =
span{Y, iX, iZ, iA}which is well known as the Lie algebra of the harmonic oscillator,
where A corresponds to the Hamiltonian. For the symmetric subalgebra (h1,RY )
the mapping

h1 → h
c
1, xX + yY + zZ 7→ ixX + yY + izZ
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is an isomorphism of Lie algebras. We call (h1,RY ) self-dual. The Lie algebra g is
not self-dual, as follows directly from the fact that the eigenvalues of adA are real,
so that the eigenvalues of ad iA are imaginary.

Remark I.18. It follows from our assumptions on (g, τ) that its canonical extension
(gC, τ̂) is also admissible. This implies, in particular, that (gC, τ̂ ) is quasihermitian
so that a extends to a maximal abelian hyperbolic subspace â ⊆ q which is also
maximal abelian in q̂, i.e., tc = iâ is a compactly embedded Cartan subalgebra of
gc. Further, every p-adapted positive system ∆+ extends to a p̂-adapted positive
system ∆̂+ = ∆̂+(gC, â). In some sense one can say that every structural property
of (g, τ) is inherited by its canonical extension (gC, τ̂) (cf. [KrNe96, Th. VIII.1]).

Let GC denote a simply connected Lie group associated to gC. Then σ := τ̂ τ is
an involution on gC fixing g and integrating to an involution on GC denoted by the
same letter. Let p± and kC denote the complexifications of n±n and g(0), respectively
and write P± and KC for the corresponding subgroups of GC.

Proposition I.19 (The N−n G(0)N+
n -decomposition). The following assertions

hold:
(i) The groups G(0) and N±n are closed subgroups of G and N±n is diffeomorphic

to n±n via the exponential mapping.
(ii) The multiplication mapping

N−n ×G(0)×N+
n → G, (n−, k, n+) 7→ n−kn+

is an analytic diffeomorphism onto its open image.
(iii) The multiplication mapping N−R ×G(0)R×N+

R → R is an analytic diffeomor-
phism.

(iv) The set N−n G(0)N+
n is R-saturated.

Proof. Assume first that G = GσC. In view of the P−KCP+-decomposition in GC
(cf. [KNÓ97, Prop. II.5]), all statements in this proposition are true with N±, G(0),
G and R replaced by P±, KC, GC and RC. Note that N± = (P±)σ and G1(0) ⊆ KC
so that taking fixed points in the P−KCP+-decomposition proves (i)–(iv) provided
G = GσC.

The general case is easily deduced from this observation by standard lifting
arguments, because Z(G) ⊆ G(0).

We define mappings

ζ : N−n G(0)N+
n → n−n , n−kn+ 7→ log(n−)

and

ζ : N−n G(0)N+
n → n+

n , n−kn+ 7→ log(n+) .

By a hyperbolic cone W ⊆ q we understand a cone for which every element in
the non-empty interior is hyperbolic (cf. Definition I.1(b)).

Lemma I.20. The following assertions hold:
(i) We have HAN = HG(0)0N

+
n ⊆ N−n G(0)0N

+
n ⊆ N−n G(0)N+

n .
(ii) The map ζ : N−n G(0)N+

n → n−n induces a homeomorphism

HG(0)N+
n /G(0)N+

n → Ω,

where Ω = n−r + ΩS is an open domain in n−n with ΩS ⊆ n−p .
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(iii) The compression semigroup of Γcomp := {g ∈ G : g.Ω ⊆ Ω} of Ω is given by

Γcomp = HR exp(Wmax,s),

where Wmax,s is the unique maximal Inng(hs)-invariant hyperbolic cone in sq

with Wmax,s ∩ a = Cmax,s.
(iv) N ∩HAN = ΩN−k .

Proof. (i) Since (g(0), τ0) is (NCR) (cf. Lemma I.15(i)), the group G(0)0 admits
an Iwasawa decomposition G(0)0 = K(0)0AN

+
k . So the first assertion follows from

N = N+
n oN

+
k and K(0)0 ⊆ H .

To prove the second inclusion, it remains to show that H ⊆ N−n G(0)N+
n . First

we assume that G = GσC. Let Gc := Gτ̂C and note that H = G ∩ Gc. Then we
have Gc ⊆ P−KCP

+ (cf. [KNÓ97, Prop. II.5(v)]) and taking σ-fixed points we
get H ⊆ N−n G(0)N+

n . Using standard covering theory, the general case is easily
obtained from this because Z(G) ⊆ G(0) ∩H .

(ii) It follows from (i), Proposition I.19(ii) and the fact that HAN is open in
G (cf. Proposition I.7(i)) that HG(0)N+

n /G(0)N+
n → Ω is a homeomorphism onto

an open connected subset Ω ⊆ n+
n . The R-saturatedness of HG(0)N+

n , which
follows from (i) and Proposition I.7(iv), implies that Ω + n−r = Ω or equivalently
Ω = n−r + ΩS with ΩS ⊆ n−p and ΩS ∼= HSG(0)N+

S /G(0)N+
S .

(iii) Again by the R-bi-invariance of HG(0)N−n we obtain Γcomp = Ro Γcomp,s,
where Γcomp,s = {g ∈ S : g.ΩS ⊆ ΩS}. Now Γcomp,s = HS exp(Wmax,s) by [HiÓl96,
Th. 5.4.20], proving (iii).

(iv) In view of (i) and Proposition I.19(ii), we have

HAN = HG(0)0N
+
n = ΩG(0)0N

+
n
∼= Ω×G(0)0N

+
n .

Since N = N−n o N−k is adapted to the decomposition of Proposition I.19(ii), we
thus obtain

HAN ∩N = (Ω×G(0)0N
+
n ) ∩ (N−n ×N−k ) = ΩN−k .

Let Wmax denote the unique maximal Inng(h)-invariant hyperbolic cone in q with
Wmax ∩ a = Cmax,

Γ := H exp(intWmax) ⊆ Γcomp, and ΓA := exp(intCmax).

According to Lawson’s Theorem (cf. [La94]) the Polar Decomposition

H × intWmax → Γ, (h,X) 7→ h exp(X)

is a homeomorphism and Γ is a Lie subsemigroup of G, a so-called real Ol’shanskĭı
semigroup. The semigroup Γ defines an ordering on the symmetric space M :=
H\G by

Hx < Hy : ⇐⇒ y ∈ Γx.

We call M a hyperbolically causal symmetric space. Let x0 := H.e be the base
point of M and set M+ := {x ∈M : x > x0}. Note that M+ = x0.Γ.

Recall from Lemma I.14 that H0 is compactly embedded, so that the quotient
space H/H0 carries a unique H-invariant measure µH/H0 .

Proposition I.21. The following assertions hold:
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(i) The set NH0AN is open in G and for f ∈ L1(G) with supp(f) ⊆ NH0AN
we have∫

G

f(g) dµG(g) =
∫
N

∫
H0

∫
A

∫
N

f(nhan)a2ρ dµN (n) dµA(a) dµH0 (h) dµN (n).

(ii) For all f ∈ L1(H/H0) we have∫
H/H0

f(hH0) dµH/H0 (hH0) =
∫
N∩HAN

f(hH(n))aH(n)−2ρ dµN (n).

Proof (cf. [Ól87]). In view of Proposition I.19(iv), we have that NH0AN =
RNSH

0
SASNS. Further as is also maximal abelian in ps, therefore Bruhat’s Theo-

rem shows that NSZKS(AS)ASNS is open in S with a complement of Haar measure
zero. Note that HS ⊆ ZKS (AS) is an open subgroup which in general is proper.
So the first assertion follows from m∗(µR ⊗ µS) = µG, where m : R× S → G is the
multiplication mapping. The integration formula now follows by a similar argument
as in the proof of Lemma I.9, here applied to the action of the group (NH0)×AN
on G (see also [Ól87, Th. 7.1]).

(ii) (cf. [Ól87, Lemma 1.3]) Choose a function ψ ∈ Cc(AN) such that∫
A

∫
N

ψ(an)a2ρ dµN (n) dµA(a) = 1

and set

f1(xH0) =

{
f(hH(x)H0)ψ(aH(x)nH(x)) for x ∈ HAN,
0 otherwise.

Then f1 ∈ L1(G/H0), and, according to Lemma I.9, we have∫
G/H0

f1(x) dµG/H0(x) =
∫
H/H0

f(hH0) dµH/H0 (hH0).

Thus it follows from the integration formula in (i) that∫
H/H0

f(hH0) dµH/H0 (hH0)

=
∫
HAN

f1(nan)a2ρ dµN (n) dµA(a) dµN (n)

=
∫
NAN

f1(hH(n)an)aH(n)−2ρa2ρ dµN (n) dµA(a) dµN (n)

=
∫
N∩HAN

f(hH(n))aH(n)−2ρ dµN (n),

as was to be shown.

II. The extended metaplectic representation

In this section we discuss in detail the generalized extended metaplectic repre-
sentation (µλ,Hλ) of G. This representation is obtained by a composition of an
appropriate homomorphism of Gc into the Jacobi group HSp(n,R) := HnoSp(n,R)
and the extended metaplectic representation (µ,Hµ) of HSp(n,R). We classify the
(H,χ)-spherical distribution and hyper-function vectors of (µλ,Hλ) (cf. Theorem
II.14). We further compute an integral over a certain matrix coefficient of (µλ,Hλ)
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(cf. Lemma II.16) that will be a key ingredient in the factorization of spherical
functions in Section III.

The symmetric Jacobi group. We recall from [KrNe96, Ex. VII.17(b)] the con-
struction of the symmetric Jacobi algebra. Denote by hn = R2n ⊕ R the 2n + 1-
dimensional Heisenberg algebra with the Lie bracket

[(v, t), (v′, t′)] = (0,Ω(v, v′)) for v, v′ ∈ R2n, t, t′ ∈ R,

where Ω is the skew symmetric bilinear form represented by

Ω =
(

0 −In
In 0

)
.

The Jacobi algebra is defined by hsp(n,R) := hnosp(n,R). Set In,n := diag(In,−In)
∈ gl(2n,R). The prescription

τ(v, t,X) := (In,n.v,−t, In,nXIn,n)

defines a symmetric structure on hsp(n,R) (cf. [Kn96, Ex. VII.17(b)]). We call
(hsp(n,R), τ) the symmetric Jacobi algebra.

Denote by Hn the simply connected Heisenberg group corresponding to hn. Then

(HSp(n,R), τ) := (Hn o S̃p(n,R), τ)

is a simply connected Lie group with L(HSp(n,R)) = hsp(n,R), called the sym-
metric Jacobi group. We put (Gc, τc) := (HSp(n,R), τ) and accordingly (gc, τc) :=
(hsp(n,R), τ) (the terminology will be justified later on). Then we have

h = {0} ⊕ (Rn ⊕ {0})o
{(X 0

0 −Xt

)
: X ∈ gl(n,R)

}
.

Thus we can identify h with Rnogl(n,R), where gl(n,R) acts on Rn by the identical
representation.

Lemma II.1. The following assertions hold:
(i) The fixed point group H is isomorphic to Rn oGL(n,R)+.
(ii) The group H is not unimodular and the modular function is given by

∆H(p, g) = (det g)−1 for (p, g) ∈ H.

Proof. (i) We only have to show that S̃p(n,R)τ ∼= GL(n,R)+. Denote by Kc the
maximal compactly embedded subgroup of S̃p(n,R). As S̃p(n,R)τ admits a polar
decomposition, we only have to show that S̃p(n,R)τ ∩ Kc ∼= SO(n,R). But this
follows from Kc ∼= SU(n)× R.

(ii) Since AdH(p) is unipotent, this follows from

∆H(p, g) = | det AdH(p, g)−1| = det AdH(g−1) = (det g)−1

for (p, g) ∈ H .

If T = diag(t1, . . . , tn) is the diagonal matrix with entries t1, . . . , tn, then we set

X(t1, . . . , tn) :=
(

0 T
−T 0

)
.
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The symplectic Lie algebra sp(n,R) admits a τ -stable Cartan subalgebra tc
l

given
by

tcl := {X(t1, . . . , tn) : t1, . . . , tn ∈ R}.
Note that tc = z(gc) ⊕ tc

l
is a compactly embedded Cartan subalgebra of gc and

write T c = Z(Gc)× T cL for the corresponding subgroup of Gc.

Remark II.2. (a) The symmetric Jacobi algebra is self-dual, since both (hn, τ |hn)
and (sp(n,R), τ |sp(n,R)) are.

(b) The c-dual (g, τ) of (gc, τ) is an admissible effective symmetric Lie algebra
which, according to (i), is isomorphic to (gc, τ).

The subspace a := itc is a maximal abelian hyperbolic subspace of (g, τ) and so
∆̂(gC, tcC) = ∆(g, a). For 1 ≤ j ≤ n we define εj ∈ a∗ by εj(iX(t1, . . . , tn)) = tj .
Then an easy calculation shows that

∆r = {±εj : 1 ≤ j ≤ n}, ∆p = {±(εj + εk) : 1 ≤ j, k ≤ n},
and

∆k = {±(εj − εk) : 1 ≤ j < k ≤ n}
(cf. [Ne99, Ex. VII.2.30]). Moreover, a positive p-adapted system of roots is given
by

∆+ = {εj : 1 ≤ j ≤ n} ∪ {εj + εk : 1 ≤ j, k ≤ n} ∪ {εj − εk : 1 ≤ j < k ≤ n}
and related to ∆+ we have

Cmax,s = {iX(t1, . . . , tn) : (∀1 ≤ j ≤ n) tj ≥ 0}.

The extended metaplectic representation. Recall the definition of the
Schrödinger representation (σ,Hσ) of the Heisenberg group Hn modelled on Hσ =
L2(Rn). The explicit formula for σ is given by(

σ
(
(p, q), t

)
.f
)
(x) = e2πit+2πi〈q,x〉+πi〈p,q〉f(x+ p)

for all f ∈ Hσ (cf. [Fo89, Ch. 1]). It is well known that (σ,H) extends to a unitary
representation of the Jacobi group Gc, called the extended metaplectic representa-
tion and which we denote by (µ,Hµ) (cf. [Fo89, Ch. 4]).

In the following µn denotes Lebesgue measure on Rn.

Lemma II.3. The following assertions hold:
(i) For all h = (p, g) ∈ H = Rn oGL(n,R)+, f ∈ L2(Rn) and x ∈ Rn we have

(µ(h).f)(x) := ∆H(h)
1
2 f
(
g−1.(x+ p)

)
= det(g)−

1
2 f
(
g−1.(x+ p)

)
.

(ii) For X = X(t1, . . . , tn) ∈ −iC0
max,s with det(cosT ) 6= 0 we have

(µ(expX).f)(x) = det(cosT )−
1
2

·
∫
Rn
eπi〈tan(T ).x,x〉+πi〈tan(T ).y,y〉+2πi〈cos(T )−1.x,y〉f̂(y) dµn(y)

for f ∈ Hµ and x ∈ Rn, where for f ∈ Hµ ∩L1(Rn) the Fourier transform is
given by f̂(y) =

∫
Rn f(x)e−2πi〈x,y〉dµn(x).

Proof. (i) This is a special case of [Fo89, Th. 4.51]. (ii) [Fo89, Cor. 4.55].



58 B. KRÖTZ, K.-H. NEEB, AND G. ÓLAFSSON

For any topological group G we denote by X(G) the group of all continuous
characters χ : G→ C×.

Definition II.4. Let G be a Lie group and H a Hilbert space.
(a) For a unitary representation (π,H) of G we denote by H∞ and Hω the space

of all smooth, resp. analytic vectors of (π,H). The corresponding strong antiduals
are denoted by H−∞ and H−ω and their elements are called distribution, resp.
hyperfunction vectors (see [KNÓ97, Appendix] for the definition of the topology of
Hω). Note that there is a natural chain of continuous inclusions

Hω ↪→ H∞ ↪→ H ↪→ H−∞ ↪→ H−ω.

The natural extension of (π,H) to a representation on the space of hyperfunction
vectors is denoted by (π−ω ,H−ω) and given explicitly by

〈π−ω(g).ν, v〉 := 〈ν, πω(g−1).v〉.

(b) Let H ⊆ G be a closed subgroup and χ ∈ X(H) a continuous character
of H . For a unitary representation (π,H) of G we write (H−ω)(H,χ) for the set
of all those elements ν ∈ H−ω satisfying π−ω(h).ν = χ(h).ν for all h ∈ H . The
unitary representation (π,H) is called (H,χ)-spherical if there exists a cyclic vector
ν ∈ (H−ω)(H,χ).

Remark II.5. (a) Even though in general the topology on the space of analytic vec-
tors is hard to deal with, one has quite an explicit picture for unitary highest weight
representations. If G is a connected Lie group and (π,H) a unitary highest weight
representation of G with discrete kernel, then (π,H) naturally extends to a holo-
morphic representation of a bigger complex Ol’shanskĭı semigroup Γ = GExp(W ),
where W denotes a closed convex Ad(G)-invariant cone in ig with non-empty inte-
rior W 0. For each X ∈ W 0 we then have

Hω =
⋃
t>0

π(Exp(tX)).H,

and the topology on Hω is the finest locally convex topology on Hω making for all
t > 0 the maps H → Hω, v 7→ π(Exp(tX)).v continuous (cf. [KNÓ97, Appendix]).
The action of Γ on H−ω is given by

〈π−ω(s).ν, v〉 := 〈ν, πω(s∗).v〉.

(b) Let G ∼= Gc be the Jacobi group, and ∆+ as in Remark II.2(b). Let
ε0 ∈ z(g)∗ ∼= a⊥

l
be defined by ε0(i) = −1. Then one knows that the extended

metaplectic representation (µ,Hµ) is a unitary highest weight representation of the
Jacobi group Gc w.r.t. ∆̂+ and highest weight λ = 2πε0 − ρr. Moreover, (µ,Hµ)
extends to a highest weight representation of the complex Ol’shanskĭı semigroup
Γc = Gc Exp(Ŵmax,s) (cf. [Ne99, Ch. X]).

Lemma II.6. Let S(Rn) denote the Schwartz space of Rn. Then the smooth vec-
tors of the Schrödinger representation (σ,Hσ) and the extended metaplectic repre-
sentation (µ,Hµ) coincide and we have

H∞σ = H∞µ = S(Rn).
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Proof. First we claim that H∞σ = S(Rn). From the explicit formula for the derived
representation of the Schrödinger representation (cf. [Fo89, Ch. 1]) we deduce that

H∞σ =
{
f ∈ L2(Rn) : (∀P,Q ∈ C[X1, . . . , Xn])

P (x1, . . . , xn)Q
( ∂

∂x1
, . . . ,

∂

∂xn

)
.f ∈ L2(Rn)

}
.

Thus H∞σ = S(Rn) follows from the Sobolev Lemma.
In view of H∞µ ⊆ H∞σ , it only remains to show that S(Rn) ⊆ H∞µ . But this

follows from the fact that all operators in dµ(g) are contained in the associative
algebra generated by dσ(hn) (cf. [Fo89, Th. 4.40]).

Remark II.7 (cf. [Fo89, Ch. 1.6]). We denote by 〈·, ·〉 the standard hermitian inner
product on Cn and define the Fock space

F(Cn) := {f ∈ Hol(Cn) : ‖f‖2 :=
∫
Cn
|f(z)|2e−π‖z‖2 dµCn(z) <∞}.

This is a Hilbert space with the reproducing kernel K(z, w) = eπ〈z,w〉, i.e., the holo-
morphic functions Kw : z 7→ K(z, w) are contained in F(Cn) and satisfy 〈f,Kz〉 =
f(z) for all f ∈ F(Cn). The Fock space is related to L2(Rn) by the Bargmann
transform

B : L2(Rn)→ F(Cn), (Bf)(z) = 2
n
4 e−

π
2 〈z,z〉

∫
Rn
f(x)e2π〈z,x〉e−π‖x‖

2
dµn(x)

which is an isometric isomorphism. Writing w = p+iq for p, q ∈ Rn, the Schrödinger
representation in the Fock model is given by(

σ
(
w, t).f

)
(z) = e−

π
2 〈w,w〉−π〈z,w〉+2πitf(z + w).(2.1)

Note that µ and σ naturally extend to representations on all holomorphic functions
on Cn.

The advantage of the Fock model of the Schrödinger representation is that one
also gets a good picture of the hyperfunction vectors. If we realize the representation
(µ1,Hµ1) in F(Cn), then the mapping

H−ωµ1
→ Hol(Cn), ν 7→

(
z 7→ ν(Kz)

)
is a Gc1-equivariant realization of H−ωµ1

(cf. [KNÓ97, Sect. VI]). Thus we obtain a
realization of the hyperfunction vectors of (µ1,Hµ1) by holomorphic functions on
Cn with Hn-action given by (2.1).

According to [Fo89, (1.80)], the inverse of the Bargmann transform is given for
f ∈ F(Cn) by

(B−1.f)(x) = 2
n
4 e−πx

2
∫
Cn
e2π〈x,z〉e−

π
2 〈z,z〉f(z)e−π‖z‖

2
dµCn(z),

where the right-hand side has to be interpreted as the limit of the correspond-
ing expressions for fn, where fn → f holds in F(Cn), and the functions fn are
polynomials. For f = 1 we obtain, in particular,

(B−1.1)(x) = 2
n
4 e−π‖x‖

2

(cf. [Fo89, App. A]).
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For later reference we record the following formula for Gaussian integrals (cf.
[Fo89, p. 256]):∫

Rn
e2πi〈x,w〉e2π〈z,x〉e−π‖x‖

2
dµn(x) = e−π〈iz−w,−iz−w〉.

For w = 0 we obtain, in particular,∫
Rn
e2π〈z,x〉e−π‖x‖

2
dµn(x) = eπ〈z,z〉.(2.2)

Since the actions of some groups are more transparent in the realization of Hµ1

as L2(Rn), it is instructive to see how the hyperfunction vectors can be Bargmann
transformed. We consider the function fw ∈ Hol(Cn) given by

fw(z) = e2πi〈z,w〉e
π
2 〈z,z〉.

We will see below in Theorem II.9 that fw ∈ H−ωµ1
. For h ∈ Hωµ1

⊆ L2(Rn) we
obtain with

ĥ(z) := e
π
2 〈z,z〉(Bh)(z) = 2

n
4

∫
Rn
h(x)e2π〈z,x〉e−π‖x‖

2
dµn(x)

the relation

〈fw, Bh〉 =
∫
Cn
e2πi〈z,w〉e

π
2 〈z,z〉e−

π
2 〈z,z〉ĥ(z)e−π‖z‖

2
dµCn(z)

=
∫
Cn
e2πi〈z,w〉eπi Im(〈z,z〉)ĥ(z)e−π‖z‖

2
dµCn(z).

Since the function z 7→ eπi Im(〈z,z〉) is bounded, Fubini’s Theorem leads to

〈fw, Bh〉 = 2
n
4

∫
Rn
h(x)e−π‖x‖

2

·
∫
Cn
e2π(〈x,z〉+i〈z,w〉)eπi Im〈z,z〉e−π‖z‖

2
dµCn(z) dµn(x)

which means that B∗(fw) = B−1(fw) is represented by the function

B∗(fw)(x) = 2
n
4 e−π‖x‖

2
∫
Cn
e2π(〈x,z〉+i〈z,w〉)eπi Im〈z,z〉e−π‖z‖

2
dµCn(z).

In view of Lebesgue’s Dominated Convergence Theorem, we have

B∗(fw)(x) = 2
n
4 e−π‖x‖

2
lim
s→π
s<π

∫
Cn
e2π(〈x,z〉+i〈z,w〉)e

s
2 〈z,z〉e−

s
2 〈z,z〉e−π‖z‖

2
dµCn(z).

To evaluate the integrals on the right-hand side we use the general formula [Fo89,
p. 258] with v = 2x, u = 2iw, A = s

π1 and D = −A. This leads to

B∗(fw)(x) = 2
n
4 e−π‖x‖

2
2−

n
2 eπ(‖x‖2+2i〈w,x〉+〈iw,−iw〉)

= 2−
n
4 e−π〈w,w〉e2πi〈x,w〉.

(2.3)

Lemma II.8. Let H1 = HU oH1,L be a semidirect product group, where HU is a
real vector space which is a semisimple H1,L-module. If HU,fix is the subspace of
H1,L-fixed vectors, then the mapping

X(H1)→ X(H1,L)× X(HU,fix), χ 7→ (χ |H1,L , χ |HU,fix)

is an isomorphism of groups.
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Proof. Since HU is assumed to be semisimple as an H1,L-module, we have HU =
HU,fix ⊕Hu,eff , where HU,eff = span{h.w − w : w ∈ HU , h ∈ H1,L}. If χ ∈ X(H1)
is a character, then χ |HU vanishes on HU,eff which is contained in the commutator
group of H1. Now the assertion of the lemma follows easily.

Theorem II.9. Let (gc1, τ
c
1 ) be a symmetric subalgebra of (gc, τc) such that (g1, τ1)

is effective and admissible, Ŵ 0
max ∩ igc1 6= ∅, gc1 = hn o lc1 with lc1 reductive, and

that tc1 := gc1 ∩ tc is a compactly embedded Cartan subalgebra of gc1. Denote by
Gc1 the corresponding analytic subgroup of Gc and by (µ1,Hµ1) the restriction of
the extended metaplectic representation to Gc1. Then H1 = HU o H1,L and for
χ ∈ X(H1) the following assertions hold:

(i) The representation (µ1,Hµ1) is (H1, χ)-spherical if and only if χl = ∆
1
2
H1
|H1,L

where χl = χ |H1,L and in this case we have

(H−ωµ1
)(H1,χ) = Cχu,

where χu := χ |HU is viewed as an antilinear functional on Hωµ1
by

〈χu, ϕ〉 =
∫
Rn
χu(x)ϕ(x) dµn(x).

(ii) We have (H−ωµ1
)(H1,χ) = (H−∞µ1

)(H1,χ) if and only if χu is unitary. In partic-
ular,

(H−∞µ1
)(H1,χ) = {0}

whenever χu is not unitary.

Proof. (i) We recall the notation from Remark II.7. Let f ∈ (H−ωµ1
)(H1,χ) and

w ∈ Cn such that χu(x) = e2πi〈x,w〉. Note that the condition that χu extends to
a character of H1 = HU oH1,L means that w ∈ Cn is fixed under the group H1,L

(cf. Lemma II.8). In view of (2.1) in Remark II.7, we have for all p ∈ Rn ⊆ H1 and
z ∈ Cn

e2πi〈p,w〉f(z) = (π−ωµ1
(p).f)(z) = e−

π
2 〈p,p〉−π〈z,p〉f(z + p).

Putting z = 0 we derive

f(x) = e2πi〈x,w〉+π
2 〈x,x〉f(0)

for all x ∈ Rn. Since f is holomorphic, it is uniquely determined by its restriction
to Rn. Therefore (H−ωµ1

)(H1,χ) ⊆ Cfχ with fχ(z) = e2πi〈z,w〉+π
2 〈z,z〉.

We claim that fχ ∈ H−ωµ1
. Let Γc1 = Gc1 Exp(Ŵ1) be the complex Ol’shanskĭı

semigroup with Ŵ1 = Ŵmax ∩ igc1 (this cone is non-trivial by assumption). It
follows from Remark II.5 that (µ1,Hµ1) extends to a holomorphic representation of
Γc1. By our assumptions on (gc1, τ

c
1 ), we find an element X = iX(t1, . . . , tn) ∈ Ŵ 0

1 .
Note that tj > 0 for all 1 ≤ j ≤ n. In view of Remark II.4(a), it suffices to show
that

(∀s > 0) µ−ω1 (Exp(sX)).fχ ∈ F(Cn).(2.4)

According to [Fo89, Prop. 4.39], we have(
µ−ω1 (Exp(sX)).fχ

)
(z) = (

n∏
j=1

e−
stj
2 )fχ(e−st1z1 , . . . , e−stnzn),
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so that the explicit formula for fχ shows that (2.4) is satisfied, proving our claim.
Hence

(H−ωµ1
)(H1,χ) ⊆ Cfχ ⊆ H−ωµ1

.(2.5)

Now we turn to the L2(Rn)-model of the extended metaplectic representation,
where the H-action is much simpler than in the Fock model. Using the Bargmann
transform, we obtain

(H−ωµ1
)(H1,χ) ⊆ Cχu

because we have seen in (2.3) in Remark II.7 that B∗(fw) = cχu holds for some
c ∈ R.

For g ∈ H we have (
µ(g).f

)
(x) = (det g)−

1
2 f(g−1.x)

and, in particular, (
µ(g).χu

)
(x) = (det g)−

1
2 e2πi〈g−1.x,w〉.

The right-hand side equals χ(g)χu for all g ∈ H1 if and only if χl = ∆
1
2
H1

because
w is fixed by the group H1,L (see Lemma II.8). According to Lemma II.3(i), this
condition is equivalent to (H−ωµ1

)(H1,χ) 6= {0}. In view of (2.5), this proves (i).
(ii) Note that the function χu is a tempered distribution if and only if χu is

unitary. Hence the assertion follows from S(Rn) = H∞µ1
(cf. Lemma II.6).

Corollary II.10. The extended metaplectic representation is (H,χ)-spherical if

and only if χ = ∆
1
2
H .

In the following we write f∗(x) := f(x−1) for a function f on a group G.

Lemma II.11. Let χ = χu∆
1
2
H ∈ X(H1) and w ∈ Cn with χu(x) = e2πi〈x,w〉.

Further, let vλ(x) = 2
n
4 e−π‖x‖

2
be the normalized highest weight vector of (µ1,Hµ1).

Then we have for all a = Exp(is, iX(t1, . . . , tn)) ∈ ΓcA and h ∈ H1,L the formula∫
HU

〈χu, µ1(ahp).vλ〉χ∗u(p) dµHU (p)

= 2
n
4

∆H(h)
1
2 e−2πs

det(sinhT )
1
2

exp
(
− π(〈(coth T ).w, w〉

+ 〈eT (sinh T )−1.w, w〉 − 2〈(sinhT )−1.w, w〉)
)
.

Proof. According to Remark II.5 and a∗ = a, we have

〈χu, µ1(ahp).vλ〉 = 〈µ−ω1 (a).χu, µ1(hp).vλ〉.
In view of Lemma II.3(i), we have for all x ∈ Rn

(µ1(hp).vλ)(x) = ∆H(h)
1
2 e−π〈h

−1.x+p,h−1.x+p〉.

If w is real, then χu is a tempered distribution with χ̂u = δw (the evaluation in
w ∈ Rn) and δ̂w = χ−u, so that Lemma II.3(ii) yields

(µ−ω1 (a).χu)(x)

= e−2πs det(coshT )−
1
2 e−π(〈tanhT.x,x〉+〈tanhT.w,w〉)e2πi〈(coshT )−1.x,w〉.(2.6)
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If w denotes an element of Cn and not only of Rn, then the right-hand side is
a Schwartz function depending antiholomorphically on w. We claim that (2.6)
remains true for every w ∈ Cn which is not a priori clear since χu need not be
bounded, i.e., a distribution vector for the representation on L2(Rn) (cf. Lemma
II.6).

In view of Lebesgue’s Dominated Convergence Theorem, the antiholomorphic
dependence of the right-hand side of w implies that for each f ∈ L2(Rn)ω the
mapping w 7→ 〈χu, f〉 is antiholomorphic. Let s ∈ int(Γc). Then the mapping

µ−ω1 (s) : L2(Rn)−ω → L2(Rn)∞ ∼= S(Rn)

is continuous, and therefore the mapping Cn → S(Rn), w 7→ µ−ω1 (a).χu is weakly
antiholomorphic. Since point evaluations are continuous linear functionals on
S(Rn), it follows that for each x ∈ Rn the function

Cn → R, w 7→
(
µ−ω1 (a).χu

)
(x)

is antiholomorphic, and therefore that (2.6) also holds for all w ∈ Cn.
We recall that HU

∼= Rn and that in this sense µHU corresponds to µn. Using
h.w = w for all h ∈ H1,L (Lemma II.8), we calculate

∫
HU

〈χu, µ1(ahp).vλ〉χ∗u(p) dµHU (p)

= 2
n
4 e−2πs∆H(h)

1
2
e−π〈tanhT.w,w〉

det(coshT )
1
2

·
∫
Rn

∫
Rn
e−π〈h

−1.x+p,h−1.x+p〉

e−π〈tanhT.x,x〉+2πi〈(coshT )−1.x,w〉 · e2πi〈p,w〉 dµn(x) dµn(p)

= 2
n
4 e−2πs∆H(h)

1
2
e−π〈tanhT.w,w〉

det(coshT )
1
2
·
∫
Rn

∫
Rn
e−π〈h

−1.x+p,h−1.x+p〉e2πi〈p,w〉

e−π〈tanhT.x,x〉+2πi〈(coshT )−1.x,w〉 dµn(p) dµn(x) (Fubini)

= 2
n
4 e−2πs∆H(h)

1
2
e−π〈tanhT.w,w〉

det(coshT )
1
2
·
∫
Rn

∫
Rn
e−π〈p,p〉e2πi〈p−h−1.x,w〉

e−π〈tanhT.x,x〉+2πi〈(coshT )−1.x,w〉 dµn(p) dµn(x) (translation inv.)

= 2
n
4 e−2πs∆H(h)

1
2
e−π〈tanhT.w,w〉

det(coshT )
1
2
·
∫
Rn

(∫
Rn
e−π〈p,p〉e2πi〈p,w〉 dµn(p)

)
e−π〈tanhT.x,x〉+2πi〈(coshT )−1.x,w〉e−2πi〈x,w〉 dµn(x) (H1,L-inv. of w)

= 2
n
4 e−2πs∆H(h)

1
2 e−π〈w,w〉

e−π〈tanhT.w,w〉

det(coshT )
1
2

·
∫
Rn
e−π〈tanhT.x,x〉+2πi〈(coshT )−1.x,w〉e−2πi〈x,w〉 dµn(x)
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= 2
n
4 e−2πs∆H(h)

1
2 e−π〈w,w〉

e−π〈tanhT.w,w〉

det(sinhT )
1
2

·
∫
Rn
e2πi〈(sinhT coshT )−

1
2 .x,w〉e−2πi〈(cothT )

1
2 .x,w〉e−π‖x‖

2
dµn(x)

= 2
n
4 e−2πs∆H(h)

1
2 e−π〈w,w〉

e−π〈tanhT.w,w〉

det(sinhT )
1
2

e−π〈(sinhT coshT )−
1
2 .w−(cothT )

1
2 .w,(sinhT coshT )−

1
2 .w−(cothT )

1
2 .w〉

= 2
n
4
e−2πs∆H(h)

1
2

det(sinh T )
1
2
e−π〈(tanhT+(sinhT coshT )−1).w,w〉

e−π〈(1+cothT ).w,w〉e2π〈(sinhT )−1.w,w〉

= 2
n
4
e−2πs∆H(h)

1
2

det(sinh T )
1
2
e−π〈(cothT ).w,w〉e−π〈e

T (sinhT )−1.w,w〉e2π〈(sinhT )−1.w,w〉.

Embedding into the symmetric Jacobi algebra. In this subsection we con-
struct a homomorphism of an effective admissible symmetric Lie algebra into the
symmetric Jacobi algebra. With the aid of this homomorphism we can also use
the explicit computations of the preceding subsection in an appropriately general
framework.

Let (g, τ) be an effective admissible symmetric Lie algebra and g′′ := zl(u) be
the largest ideal of g contained in l. We write l = l′ ⊕ g′′, where l′ is an ideal of l

complementing g′′. Then g ∼= g′ ⊕ g′′ with g′ = u o l′. Since all subspaces in this
decomposition are τ -invariant, we obtain the decomposition

(g, τ) = (g′, τ ′)⊕ (g′′, τ ′′).

By our assumptions on (g, τ), the canonical extension (gC, τ̂) has strong cone
potential, i.e., for all ω ∈ − intC?min,r the hermitian form

〈·, ·〉ω : p+
r × p+

r → C, (X,Y ) 7→ −ω([X, τ̂(Y )])

on p+
r is positive definite (cf. [KrNe96, Th. VIII.1(vii)]). Note that for all α 6= β ∈

∆+
r the corresponding root spaces are orthogonal with respect to 〈·, ·〉ω .
Since the form Ω(v, w) := −iω([v, w]) is a non-degenerate skew-symmetric bilin-

ear form on VC := p+
r ⊕ p−r , we obtain for n := dimC p+

r a homomorphism

ϕω := adVC : l→ sp(VC,Ω) ∼= sp(n,C)

with kerϕω = g′′C. According to the vector space decomposition gC = VC⊕z(g)C⊕lC,
we write the elements of gC as triples (v, z,X). Our considerations lead to the
following result.

Proposition II.12. Let (g, τ) be an effective admissible symmetric Lie algebra and
n := dimC p+

r . Then for each ω ∈ − intC?min,r the mapping

jω : (gC, τ̂ )→ (hsp(n,C), τ), (v, z,X) 7→
(
v,−iω(z), ϕω(X)

)
is a morphism of symmetric Lie algebras with jω(gc) ⊆ hsp(n,R) and ker jω ⊆
z(g)C ⊕ g′′C. Moreover, it maps the sum n+

n of the positive non-compact root spaces
into the corresponding subspace of hsp(n,R).
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Definition II.13 (cf. [Ne96]). Let Gc be a simply connected Lie group with Lie
algebra gc, ω ∈ − intC?min,r and jω : Gc → HSp(n,R) the homomorphism induced
from gc → hsp(n,R). If (µ,Hµ) is the extended metaplectic representation of
HSp(n,R), then the prescription g 7→ µ(jω(g)) gives rise to a unitary representation
of Gc which we call the extended metaplectic representation with parameter λ =
2πω − ρr and which we denote by (µλ,Hλ). We note that (µλ,Hλ) is a unitary
highest weight representation of Gc w.r.t. ∆̂+ and highest weight λ.

Now we can adapt Theorem II.9 and Lemma II.11 to the more general setting.
Let H denote the τ -fixed point group of Gc. Then H = HU oHL, where HU

∼= Rn
is a vector group and it is HL reductive. In this sense we may identify L2(Rn) with
L2(HU ).

Theorem II.14. Let ω ∈ − intC?min,r and λ = 2πω − ρr.
(i) The extended metaplectic representation

(
µλ, L

2(Rn)
)

is (H,χ)-spherical if

and only if χl = ∆
1
2
H and in this case we have

(L2(Rn)−ω)(H,χ) = Cχu.

(ii) We have

(L2(Rn)−ω)(H,χ) =
(
L2(Rn)−∞

)(H,χ)

if and only if χu is unitary, and
(
L2(Rn)−∞

)(H,χ) = {0} otherwise.

Proof. These are immediate consequences of Theorem II.9 and Proposition II.12.

Pick ω0 ∈ − intC?min,r and consider the corresponding positive definite real sym-
metric form 〈·, ·〉 := 〈·, ·〉ω0 on n+

r = p+
r ∩g. Since for each ω ∈ − intC?min,r the form

〈·, ·〉ω is positive definite on p+
r , there exists a unique operator Aω ∈ End(n+

r ) ⊆
End(p+

r ), positive definite w.r.t. 〈·, ·〉, such that

〈v, w〉ω = 〈Aω .v, Aω.w〉(2.7)

holds for all v, w ∈ p+
r .

We note that the mapping

hu → n+
r , v 7→ v+

which is uniquely determined by v = v+ + τ.v+ is an isomorphism of vector spaces
and extends to a complex linear isomorphism

(hu)C → p
+
r , v 7→ v+.

Therefore we obtain a hermitian scalar product on (hu)C by 〈v, w〉ω := 〈v+, w+〉ω
for v, w ∈ (hu)C. We normalize the left Haar measure µHU on HU

∼= hu by the
requirement that ∫

HU

ϕ(h) dµHU (h) =
∫

hu

ϕ(expX) dµω0
hu

(X),

where µω0
hu

is the Lebesgue measure corresponding to the scalar product 〈·, ·〉ω.
Likewise, we normalize a Haar measure µ

n
+
r

on n+
r .

Lemma II.15. For each ω ∈ − intC?min,r we have µω0
hu

= (detAω)−1µωhu
.
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Proof. Since the mapping hu → n+
r , v 7→ v+ is an isometry, it suffices to prove the

corresponding assertion for the measures µω
n

+
r

.
In view of (2.7), Aω maps an orthonormal basis with respect to 〈·, ·〉ω into an or-

thonormal basis with respect to 〈·, ·〉ω0 . Comparing the volume of the corresponding
cube W , we see that

1 = µω0

n
+
r

(Aω.W ) and µω
n

+
r

(Aω .W ) = (detAω)µω
n

+
r

(W ) = detAω.

Lemma II.16. For w ∈ (hu)C we define χu : Rn → C× by χu(x) = e2πi〈x,w〉. Let
χ = χu∆

1
2
H ∈ X(H), ω ∈ − intC?min,r and λ = 2πω − ρr. Further, let vχ := χu ∈

(H−ωλ )(H,χ).
(i) For a ∈ ΓcA and h ∈ HL we have∫
HU

〈vχ, µλ(ahp).vλ〉χ∗u(p) dµHU (p) =
∆(h)

1
2 a2πω

detAω

·
exp

(
− 2π

(
〈 a2+1

2(a2−1) .w+, w+〉ω + 〈 a2

a2−1 .w+, w+〉ω − 〈 a
a2−1 .w+, w+〉ω

))
(∏

α∈∆+
r

sinhα(log(a))mα
) 1

2
.

(ii) For all s ∈ Γ we have

〈vχ, µλ(s).vλ〉 = 2
n
4 χ
(
hH(s)

)−1
aH(s)λe−π〈w,w〉ω .

Proof. (i) To make the formula from Lemma II.11 available, we have to write for
an element iX ∈ a the operator adVC(X) in the appropriate block form. We have
adX(hu) ⊆ iqu and adX(iqu) ⊆ hu.

Let v1, . . . , vn be a basis of root vectors in n+
r and α1, . . . , αn the corresponding

roots. Then (vj + τ.vj)j=1,... ,n is a basis of hu and (ivj − iτ.vj)j=1,... ,n is a basis of
[a, iqu] = ihu. Moreover,

[X, vj + τ.vj ] = −αj(iX)i(vj − τ.vj) and [X, i(vj − τ.vj)] = αj(iX)(vj + τ.vj).

Therefore adVC X is represented by a block matrix
(

0 T
−T 0

)
with

T = diag
(
α1(iX), . . . , αn(iX)

)
,

considered as an operator on (hu)C. The calculation above shows that

(T.v)+ = ad(iX).v+

because

ad(iX).vj = αj(iX).vj = αj(iX).(vj + τ.vj)+ =
(
T.(vj + τ.vj)

)
+

for all j. Hence we have in the terminology of Lemma II.11 for a = Exp(iX):(
(cothT ).w

)
+

=
a+ a−1

a− a−1
.w+ =

a2 + 1
a2 − 1

.w+,

(
eT (sinhT )−1.w

)
+

=
2a

a− a−1
.w+ =

2a2

a2 − 1
.w+,
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and therefore

〈(coth(ad iX)).w, w〉ω + 〈ead iX(sinh ad iX)−1.w, w〉ω − 2〈(sinh ad iX)−1.w, w〉ω

= 〈a
2 + 1
a2 − 1

.w+, w+〉ω + 〈 2a2

a2 − 1
.w+, w+〉ω − 〈

2a
a2 − 1

.w+, w+〉ω.

In view of Lemma II.11, Proposition II.12, and Lemma II.15, this proves (i).
(ii) According to the HAN -decomposition, we have s = hH(s)aH(s)nH(s). Then

the same calculation as in the proof of [Ne94, Prop. III.9] yields

〈vχ, µλ(s).vλ〉 = χ
(
hH(s)

)−1
aH(s)λ〈vχ, vλ〉

and formula (2.2) in Remark II.7 yields

〈vχ, vλ〉 = 2
n
4

∫
hu

e2πi〈x,w〉ωe−π‖x‖
2
ω dµωhu

(x) = 2
n
4 e−π〈w,w〉ω ,

proving (ii).

III. Spherical functions

In this section we define the (H,χ)-spherical functions ϕχλ with parameter λ and
study their domain of convergence Eχ and analytic dependence on λ. Using the
results developed in Section II, we prove the Factorization Theorem for ϕχλ into
a unipotent and a reductive part (cf. Theorem III.10). We conclude this section
with a discussion of the structure of the algebra D(χ) of G-invariant differential
operators on the line bundle Cχ ×H G→ H\G.

Definitions and basic properties. For each χ ∈ X(H) we write (χ,Cχ) for the
corresponding one-dimensional representation of H . We let H act on Cχ × G by
h.(z, g) = (χ(h).z, hg) and write Cχ×HG for the corresponding quotient space and
Cχ ×H E for a subset E ⊆ G with HE = E. Then Cχ ×H Γ is a smooth vector
bundle overM+ := H\Γ. We identify the smooth sections of this bundle with the
space

C∞(H\Γ, χ) := {f ∈ C∞(Γ) : (∀s ∈ Γ)(∀h ∈ H) f(hs) = χ(h)f(s)}.
We collect some facts from [Hel78, Ch. II] and [Sh90] on invariant differential

operators. We write D(χ) for the algebra of all G-right invariant differential op-
erators on C∞(H\G,χ) and D(G) for the algebra of G-right invariant differential
operators on G. The derivation of the left regular representation of G on C∞(G)
yields a homomorphism

g→ D(G), X 7→ LX ; (LX .f)(g) =
d

dt

∣∣∣
t=0

f(exp(−tX).g)

extending to an isomorphism U(gC)→ D(G). The operator LU , u ∈ U(gC), defines
an operator in D(χ) if and only if u ∈ U(gC)H := {v ∈ U(gC) : (∀h ∈ H) Ad(h).v =
v}. Let Iχ be the left ideal in U(gC) generated by X + dχ(X).1, X ∈ h. Then the
isomorphism from above induces an isomorphism

D(χ) ∼= U(gC)H/
(
U(gC)H ∩ Iχ

)
.(3.1)

Let 〈·, ·〉 denote an inner product of L2(G) with respect to a left Haar measure
on G. For each D ∈ D(G) we define its transpose D> by 〈D>.f, g〉 : = 〈f,D.g〉 for
all f ∈ C∞(G) and g ∈ C∞c (G). In the sequel we consider elements ϕ ∈ L∞(G)
also as distributions via C∞c (G) 3 f 7→ 〈f, ϕ〉.
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Definition III.1. A continuous section ϕ of the bundle Cχ ×H Γ→M+ is called
(H,χ)-spherical if the following conditions are satisfied:

(S1) The section ϕ is right χ∗-semi-invariant, i.e., ϕ(sh) = χ∗(h)ϕ(s) holds for
all s ∈ Γ and h ∈ H .

(S2) For everyD ∈ D(χ) there exists a complex number λD such thatD.ϕ = λDϕ
holds in the sense of distributions on Γ.

Remark III.2. (a) If χ is trivial and G is semisimple, then Definition II.1 coincides
with the definition of spherical functions on a non-compactly causal symmetric
space (cf. [Ól97]).

(b) In the case, where (g, τ) is a non-compactly Riemannian symmetric Lie alge-
bra of hermitian type, the (H,χ)-spherical functions have been studied by Heckman
and Opdam (cf. [HS94, Part I]).

We write X(H/H0) for all those elements of X(H) which are trivial on H0. For a
fixed χ ∈ X(H/H0) there exists an interesting family of spherical functions (ϕχλ)λ,
where λ runs over a certain subset of a∗C, whose construction we describe below.
The construction is motivated by the special cases considered in [FHÓ94], [HiNe96]
and [Ól97].

Using the HAN -decomposition, we extend each χ ∈ X(H/H0) to an analytic
function on HAN by χ(s) := χ(hH(s)) for all s ∈ HAN .

Definition III.3. For λ ∈ a∗C and χ ∈ X(H/H0) define

ϕχλ(s) =
∫
H/H0

aH(sh)λ−ρχ(sh)χ(h) dµH/H0 (hH0)

for s ∈ Γ provided the integral exists. If χ = 1 is trivial, then we write ϕλ instead
of ϕχλ. We write Eχ for the set of all λ ∈ a∗C for which all integrals ϕχλ(s), s ∈ Γ,
converge. We will see below (Proposition III.17) that ϕχλ is spherical. We call ϕχλ
the (H,χ)-spherical function with parameter λ.

Remark III.4. If the group H is unimodular, Z(H) is compact, and χ is trivial, then
there exists another definition of spherical functions in the literature, namely by
integral equations: an H-bi-invariant continuous function on Γ is called spherical if

ϕ(x)ϕ(y) =
∫
H

ϕ(xhy) dµH(h)

holds for all x, y ∈ Γ, cf. [FHÓ94]. It is not clear which of the functions ϕλ
obtained by analytic continuation in the parameter λ satisfy this integral equation
because the integral does not have to exist in general. This motivates the definition
of spherical functions as certain eigenfunctions of invariant differential operators,
which in some respects is easier to deal with.

Lemma III.5. For χ ∈ X(H/H0) and λ ∈ Eχ the function ϕχλ is left χ- and right
χ∗-semi-invariant.
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Proof. For h1, h2 ∈ H and s ∈ Γ we have

ϕχλ(h1sh2) =
∫
H/H0

aH(h1sh2h)λ−ρχ(h1sh2h)χ(h) dµH/H0 (hH0)

= χ(h1)
∫
H/H0

aH(sh2h)λ−ρχ(sh2h)χ(h) dµH/H0 (hH0)

= χ(h1)
∫
H/H0

aH(sh)λ−ρχ(sh)χ(h−1
2 h) dµH/H0 (hH0)

= χ(h1)χ∗(h2)ϕχλ(s),

proving the lemma.

Definition III.6. Let µ be a positive measure on the σ-algebra of all Borel subsets
of the finite dimensional real vector space V . The Laplace transform of µ is defined
by

L(µ) : Dµ → R, α 7→
∫
V

e−α(x) dµ(x),

where Dµ = {α ∈ V ∗ : L(µ)(α) <∞}.

We recall from Definition I.5 the notation used in the following lemma.

Lemma III.7. For a positive measure µ on the finite dimensional vector space V
the following assertions hold:

(i) The domain Dµ is convex and L(µ) is a convex function on Dµ.
(ii) If Cµ = conv(suppµ), then Dµ +B(Cµ) ⊆ Dµ, i.e., B(Cµ) ⊆ limDµ.
(iii) The Laplace transform of µ extends uniquely to a holomorphic function, also

denoted L(µ), on intDµ + iV ∗ ⊆ V ∗C which is given by the integral formula

L(µ) : intDµ + iV ∗ → C, α 7→
∫
V

e−α(x) dµ(x).

(iv) The function L(µ) admits no analytic continuation to an open domain strictly
larger than intDµ + iV ∗.

Proof. (i),(ii) [Ne99, Prop. V.4.3].
(iii) [Ne99, Prop. V.4.6].
(iv) This is a special case of [Ne98b, Th. III.4].

Lemma III.8. Let χ ∈ X(H/H0).

(i) The domain of definition Eχ for the (H,χ)-spherical function ϕχλ is of the
shape

Eχ = ia∗ + EχR ,

where EχR is a convex set with −C?min ⊆ lim EχR .
(ii) For each fixed s ∈ Γ, the function

int Eχ → C, λ→ ϕχλ(s)

is holomorphic. If, in addition, χ is positive, then it is a convex function on
the domain where it is defined.
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Proof. We may w.l.o.g. assume that χ is positive. For every a ∈ ΓA = exp(intCmax)
(cf. Lemma I.20) we consider the mapping

ψa : H/H0 → a, hH0 7→ log aH(ah).

Let νa be the measure on a defined by the push forward of χ(ah)χ(h)dµH/H0 (hH0)
under the map ψa. Then we have

L(νa)(λ) =
∫

a

e−λ(x) dνa(x) =
∫
H/H0

aH(ah)−λχ(ah)χ(h) dµH/H0 (hH0),

and so

L(νa)(ρ− λ) = ϕχλ(a).(3.2)

As ϕχλ is left χ- and right χ∗-semi-invariant (cf. Lemma III.5), the function ϕχλ
is uniquely determined by its restriction to ΓA. Thus (3.2) implies that

EχR =
⋂
a∈ΓA

(ρ−Dνa),(3.3)

and so it follows from Lemma III.7(i), (iii) that Eχ is convex and ia∗ ⊆ lim Eχ.
Further,

imψa ⊆ conv(W . log a) + Cmin

by [Ne97a, Th. II.8], so that Cνa ⊆ conv(W . log a) + Cmin. We conclude that

B(ρ− Cνa) = B(−Cνa) ⊇ B(− conv(W . log a)− Cmin) = −C?min.

In view of (3.2) and (3.3), this proves (i). Finally, (3.2) and Lemma III.7(i),(iii)
imply (ii).

Factorization of spherical functions. In this subsection we take a closer look
at the (H,χ)-spherical functions ϕχλ with parameter λ. Using the results of Section
II, we prove the Factorization Theorem for ϕχλ in unipotent and reductive part (cf.
Theorem III.10).

Lemma III.9. The following assertions hold:
(i) The multiplication mapping

m : HU × (HL/H
0)→ H/H0, (u, l) 7→ ulH0

is a diffeomorphism of homogeneous spaces.
(ii) Denote by ∆H the modular function of H. Then HU , H

0 ⊆ ker ∆H .
(iii) Consider ∆H as a function on HL/H

0. Then the pull back of µH/H0 under
m is given by µHU ⊗∆HµHL/H0 , i.e., for f ∈ L1(H/H0) we have∫

H/H0
f(hH0) dµH/H0 (hH0)

=
∫
HU

∫
HL/H0

f(huhlH0)∆H(hl) dµHL/H0 (hlH0) dµHU (hu).

Moreover, we have∫
H/H0

f(hH0) dµH/H0 (hH0)

=
∫
HL/H0

∫
HU

f(hlhuH0) dµHL/H0 (hlH0) dµHU (hu).
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Proof. (i) This follows from H = HU oHL and H0 ⊆ HL (cf. Lemma I.14(ii)).
(ii) Note that ∆H(h) = | det Ad(h)−1|. Since h is a nilpotent hu-module, the

subgroup HU is contained in the kernel of the modular function ∆H . As H0 is
compactly embedded (cf. Lemma I.14(i)), we also have H0 ⊆ ker ∆H .

(iii) First we note that the measure ν := µHU ⊗ (∆HµHL) is an HU -left invariant
measure on H = HU o HL which we consider as the product of the two locally
compact spaces HU and HL. For g ∈ G we define Ig : G → G by Ig(x) = gxg−1.
For h ∈ HL we then have

(λh)∗
(
µHU ⊗ (∆HµHL)

)
=
(
I∗hµHU ⊗ λ∗h(∆HµHL)

)
=
(
∆H(h)µHU ⊗ (∆H ◦ λ−1

h )µHL
)

= µHU ⊗∆HµHL .

Hence ν is a left Haar measure on H . From this, it directly follows that ν induces
on the quotient space H/H0 the left invariant measure

µHU ⊗∆HµHL/H0 .

Here we use (ii) to see that ∆H factors to a function on H/H0.
To obtain the formula for integration in the reversed order, we first observe that∫

H

f(h) dν(h) =
∫
HU

∫
HL

f(huhl)∆H(hl) dµHL(hl) dµHU (hu)

=
∫
HL

∫
HU

f(huhl)∆H(hl) dµHU (hu)dµHL(hl)

=
∫
HL

∫
HU

f(hlh−1
l huhl)∆H(hl) dµHU (hu)dµHL(hl)

=
∫
HL

∫
HU

f(hlhu) dµHU (hu)dµHL(hl).

For h0 ∈ H0 we now obtain from ∆H(h0) = 1:∫
H

f(huhlh0) dν(h) =
∫
HL

∫
HU

f(hlhuh0) dµHU (hu)dµHL(hl)

=
∫
HL

∫
HU

f(hlh0h
−1
0 huh0) dµHU (hu)dµHL(hl)

=
∫
HL

∆H(h0)−1

∫
HU

f(hlh0hu) dµHU (hu)dµHL(hl)

=
∫
HL

∫
HU

f(hlh0hu) dµHU (hu)dµHL(hl).

Thus the invariant measure on H/H0 can be written as in the second formula
above.

According to the decomposition a = au ⊕ al, we write each element λ ∈ a∗C as
λ = λz + λl with λz ∈ (au)∗C and λl ∈ (al)∗C.

Theorem III.10 (The Factorization Theorem). Let χ ∈ X(H/H0) with χu(expx)
= e2πi〈x,w〉 for x ∈ hu and n := dim n+

r .
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(i) If λ ∈ Eχ, then Reλz ∈ − intC?min,r and we have that for all a ∈ ΓA =
exp(intCmax) the product formula

ϕχλ(a) =
2
n
2 πnaλz

detAλz

·
exp

(
−
(
〈 1
a2−1 .w+, w+〉λz + 〈 a2

a2−1 .w+, w+〉λz − 〈 a
a2−1 .w+, w+〉λz

))
(∏

α∈∆+
r

(sinhα(log a))mα
) 1

2

· ϕχl∆
1
2
H

λl
(a),

where

ϕ
χl∆

1
2
H

λl
(a) =

∫
HL/H0

aH,l(ah)λl−ρs(χl∆
1
2
H)(ah)(χl∆

1
2
H)(h) dµHL/H0(hH0).

(ii) If Eχl∆
1
2
H

L ⊆ (al)∗C ⊆ a∗C denotes the domain of convergence of ϕχl∆
1
2
H

λl
, then

Eχ = (ia∗ − intC?min,r) ∩ E
χl∆

1
2
H

L .

In particular, Eχ is independent of χu.

Proof. (i), (ii) Suppose first that Reλz ∈ − intC?min,r ∩ Eχ. Since both sides of the
formula asserted in (i) depend holomorphically on λ (cf. Lemma III.8(ii)), it suffices
to assume that λz ∈ − intC?min,r. In view of Lemma III.9, we have

ϕχλ(a) =
∫
H/H0

aH(ah)λ−ρχ(ah)χ(h) dµH/H0 (hH0)

=
∫
HL/H0

∫
HU

aH(ahlhu)λ−ρχ(ahlhu)χ(hlhu) dµHU (hu) dµHL/H0 (hlH0)

=
∫
HL/H0

aH,l(ahl)λl−ρχl(ahl)χl(hl)

·
(∫

HU

aH,u(ahlhu)λzχu(ahlhu)χu(hu) dµHU (hu)
)
dµHL/H0(hlH0),

(3.4)

where we have used Lemma I.8 and its analogue for the H-projection.
To obtain the product formula, we first have to evaluate the integral

I(a, hl) =
∫
HU

aH,u(ahlhu)λzχu(ahlhu)χu(hu) dµHU (hu).

Let σ := λz−ρr ∈ a∗ and (µσ,Hσ) denote the extended metaplectic representation

of Gc with parameter σ. Put ψ = χ−1
u ∆

1
2
H . In view of Lemma II.16(ii), we have for

hl ∈ HL, hu ∈ HU and n = dim n+
r :

〈νψ, µσ(ahlhu).vσ〉 = 2
n
4 ψ−1(ahlhu)aH(ahlhu)σe−

1
2 〈w,w〉λz

= 2
n
4 ∆H(ahl)−

1
2χu(ahlhu)e−

1
2 〈w,w〉λz aH,u(ahlhu)λzaH,l(ahl)−ρr ,

so that we obtain

aH,u(ahlhu)λzχu(ahlhu)χu(hu)

= 2−
n
4 ∆H(ahl)

1
2 e

1
2 〈w,w〉λz aH,l(ahl)ρr 〈νψ , µσ(ahlhu).vσ〉χu(hu)
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(note the different signs of w in ψ and the character χ used in Lemma II.16).
Integrating over HU and using Lemma II.16(i) now gives

I(a, hl) = aH,l(ahl)ρr2−
n
2

∆H(ahl)
1
2 ∆H(hl)

1
2

detAλz
2π

· e
−
(
〈 1
a2−1

.w+,w+〉λz+〈 a2

a2−1
.w+,w+〉λz−〈 a

a2−1
.w+,w+〉λz

)
(∏

α∈∆+
r

(sinhα(log a))mα
) 1

2
.

Putting this expression in (3.4), we finally obtain

ϕχλ(a) =
2
n
2 πnaλz

detAλz
· e
−
(
〈 1
a2−1

.w+,w+〉λz+〈 a2

a2−1
.w+,w+〉λz−〈 a

a2−1
.w+,w+〉λz

)
(∏

α∈∆+
r

(sinhα(log a))mα
) 1

2

·
∫
HL/H0

aH,l(ah)λl−ρsχl(ahl)∆H(ahl)
1
2χl(hl)∆H(hl)

1
2 dµHL/H0 (hlH0)

=
2
n
2 πnaλz

detAλz
· e
−
(
〈 1
a2−1

.w+,w+〉λz+〈 a2

a2−1
.w+,w+〉λz−〈 a

a2−1
.w+,w+〉λz

)
(∏

α∈∆+
r

(sinhα(log a))mα
) 1

2
· ϕχl∆

1
2
H

λl
(a).

To complete the proof of the theorem, we have to show that Reλz ∈ − intC?min,r,
whenever ϕχλ is defined. If not, then the convexity of EχR and −C?min ⊆ lim EχR
(Lemma III.8) implies the existence of λ ∈ int EχR with λz ∈ −∂C?min. Choose a
sequence (λn)n∈N in int EχR converging to λ. Then

lim
n→∞

detAλnz = detAλz = 0,

so that

lim
n→∞

ϕ
|χ|
λn(a) =∞

for all a ∈ ΓA. In view of the convexity of λ 7→ ϕ
|χ|
λ (a) (cf. Lemma III.8(ii)), this

shows that Reλz ∈ − int C?min,r whenever λ ∈ int Eχ.

Remark III.11. (a) Our product formula generalizes the product formula for spher-
ical functions on Ol’shanskĭı spaces GC/GR which has been derived by J. Hilgert
and the second author in [HiNe96, Prop. II.5].

(b) There exists a close connection between spherical functions and distribu-
tion characters of spherical highest weight representations of the group Gc. These
distribution characters occur naturally in the Plancherel formula of Gc-invariant
Hilbert spaces of holomorphic functions on certain Gc-invariant complex domains
in GC/HC or coverings thereof. But in this application of spherical functions to

representation theory only the character χ = ∆−
1
2

H occurs. In this case our product

formula for ϕ∆
− 1

2
H

λ boils down to

ϕ
∆
− 1

2
H

λ (a) =
2
n
2 πnaλz

detAλz
· 1(∏

α∈∆+
r

(sinhα(log a))mα
) 1

2
ϕλl(a).
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The algebra D(χ). We now discuss the algebra D(χ) in detail. We prove a version
of the Harish-Chandra homomorphism which relates D(χ) with the Weyl group
invariants in the symmetric algebra S(aC) of aC (cf. Theorem III.13). After that we
give the still missing proof of the fact that the functions ϕχλ are (H,χ)-spherical.

Define the big Weyl group of a by W̃ := NInn g(a)/ZInn g(a) and note that W ⊆
W̃.

Lemma III.12. We have

W̃ ∼= NInng(l)(a)/ZInng(l)(a) ∼= NInng(s)(a)/ZInng(s)(a)

and W̃ is generated by the reflections sα : a → a, X 7→ X − α(X)α̌ corresponding
to the semisimple roots α ∈ ∆s.

Proof (cf. [KrNe96, Lemma III.6]). First we show that

NInn g(a) = NInng(l)(a)ZInng(u)(a).(3.5)

The inclusion “⊇” is obvious. For the converse let g ∈ NInn g(a) and write g = lu
with l ∈ Inng(l) and u ∈ Inng(u). As a = z(g) ⊕ al and u is an ideal in g with
l ∼= g/u, it follows that l ∈ NInng(l)(a). Thus u ∈ NInng(u)(a) and it remains to
show that

NInng(u)(a) = ZInng(u)(a).(3.6)

Let u ∈ NInng(u)(a). As g is a nilpotent u-module, we find X ∈ u such that
u = eadX . For the same reason we have adX = log eadX and so X normalizes
a, i.e., X ∈ nu(a). Now a being a maximal hyperbolic subspace, the ideal u is a
semisimple a-module. Hence u = zu(a) ⊕ [u, a] and so zu(a) = nu(a). This proves
(3.6) and hence (3.5).

It follows from (3.5) that

ZInn g(a) = ZInng(l)(a)ZInng(u)(a).

This proves the first assertion. The second assertion is immediate by the standard
structure theory of semisimple symmetric Lie algebras (cf. [Kn96, Ch. VII, Lemma
7.22, Prop. 7.32]).

Theorem III.13. The following assertions hold:
(i) With Iχ =

∑
H∈h
U(gC)(H + dχ(H).1) we have

U(gC) = U(aC)⊕ (Iχ + nU(gC)).

Further, if χu is trivial, then we also have

U(gC) = U(aC)⊕ (Iχ + (n + [a, u])U(gC)).

(ii) For u ∈ U(gC) let u0 denote the first component of u in the decomposition of
(i). If g is solvable or χu is trivial, then the mapping

γχ : U(gC)H → S(aC)W̃ , u 7→ u0 − ρ(u0)

is an algebra homomorphism, inducing a homomorphism γχ : D(χ)→S(aC)W̃ .

Proof. (i) (cf. [Sh90, Prop. 2.1].) From g = h⊕a⊕n and the Poincaré-Birkhoff-Witt
Theorem we deduce that U(gC) = U(hC)⊗U(aC)⊗U(nC). For each χ ∈ X(H), the
mapping

iχ : hC → U(hC), H 7→ H − dχ(H)1
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is a homomorphism of Lie algebras, hence extends to an algebra homomorphism
iχ : U(hC)→ U(hC). Since iχ ◦ iχ−1 = iχ−1 ◦ iχ = id, the map iχ is an isomorphism.
Hence U(gC) = U(iχ(hC))⊗ U(aC)⊗ U(nC). This proves the first assertion.

If χu = 1, then Iχ = U(gC)hu ⊕
∑
H∈hl

U(gC)(H + dχ(H).1). Further, we have
g = hl ⊕ a ⊕ ([a, u] + n). Thus if U((n + [a, u])C) denotes the subspace of U(gC)
spanned by all ordered products of elements of an ordered basis of (n + [a, u])C,
then U(gC) = U

(
iχ((hl)C)

)
⊗U(aC)⊗U((n + [a, u])C), proving the second assertion.

(ii) First we show that γχ is a homomorphism. For that it suffices to prove
that u 7→ u0 is homomorphic. Let u, v ∈ U(gC)H . Write u = u0 + u1 + u2 with
u0 ∈ U(aC), u1 =

∑
X∈h

uX(X + dχ(X).1) ∈ Iχ and u2 ∈ nU(gC). Similarly, for v.
Then

uv = (u0 + u1 + u2)v

≡ u0v +
∑
X∈h

uX(X + dχ(X).1)v mod Iχ + nU(gC)

≡ u0v +
∑
X∈h

uXv(X + dχ(X).1) mod Iχ + nU(gC)

≡ u0v mod Iχ + nU(gC)

≡ u0v0 + u0v2 mod Iχ + nU(gC)

≡ u0v0 mod Iχ + nU(gC),

where the last equality follows from the fact that a normalizes n.
Now we show that im γχ ⊆ S(aC)W̃ which is the hard part in the proof of this

theorem.
If g is solvable, then W̃ is trivial by Lemma III.12 and the assertion is clear.

Thus we may assume that χu is trivial. According to Lemma III.12, the big Weyl
group W̃ is generated by the reflections sα corresponding to base roots α of ∆+

s .
Thus we only have to show that im γχ ⊆ S(aC){1,sα} holds for all base roots α of
∆+
s .
We adapt the method in the proof of [Wa88, Th. 3.2.3] to our situation. For a

base root α ∈ ∆+
s let mα be the Lie algebra generated by a and

⊕
β∈Zα gβ , i.e.,

mα = 〈a⊕
⊕
β∈Zα

gβ〉 ⊆ a⊕ h0 ⊕
⊕
β∈Zα

gβ.

Since (g, τ) is assumed to be admissible (cf. Definition I.10), hence has cone po-
tential (cf. [KrNe96, Th. VI.6]), it follows that gγ ⊆ s for all γ ∈ ∆s (cf. [KrNe96,
Prop. VII.8]). In particular, mα is a τ -invariant reductive subalgebra of l + a and
its commutator algebra m′α is semisimple of rank one. Set hα = mα ∩ h. Further,
we define

n(α) :=
⊕

β∈∆+
s \Nα

gβ =
⊕

β∈∆+
s \Nα

sβ and h(α) = {X + τ(X) : X ∈ n(α) + u}.

We claim that
(3.7) [mα, n(α)] ⊆ n(α).
(3.8) [hα, h(α)] ⊆ h(α).
The first statement follows from the fact that α is a base root. For (3.8) we

observe that h(α) = hu⊕h(α)l and so we only have to show that [hα, h(α)l] ⊆ h(α).
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Let X ∈ hα and Y ∈ h(α)l. Then Y = Z + τ(Z) for some Z ∈ n(α) and we have

[X,Y ] = [X,Z] + [X, τ(Z)] = [X,Z] + τ([X,Z]).

Since [X,Z] ∈ n(α) by (3.7), it follows that [X,Y ] ∈ h(α), proving (3.8).
Let Iαχ :=

∑
H∈h(α) U(gC)(H + dχ(H).1) and note that

Iχ = U(gC)hu ⊕
∑

H∈h(α)l

U(gC)(H + dχ(H).1),

since χu is trivial. As g = mα ⊕ h(α)l ⊕ n(α) ⊕ [a, u], a similar argument as in (i)
shows that

U(gC) = U((mα)C)⊕
(
Iαχ + (n(α) + [a, u])U(gC)

)
.(3.9)

It follows from [l, [a, u]] ⊆ [a, u] together with (3.7) and (3.8) that both summands
are ad hα-invariant. Thus we get a projection q : U(gC)H → U((mα)C)Hα , where
Hα := Innmα(hα). Finally, let σ ∈ Aut

(
U((mα)C)

)
be given by

σ(X) = X − 1
2

(tr adX |
n(α)+n

+
r

), X ∈ mα,

and set qα = σ ◦ q. Let γαχ denote the Harish-Chandra homomorphism associated
to mα. We claim that γχ = γαχ ◦ qα holds.

In view of the Poincaré-Birkhoff-Witt Theorem, we have

U((mα)C) = U(aC)⊕
( ∑
H∈hα

U((mα)C)(H + dχ(H).1) + nαU((mα)C)
)
,(3.10)

and
Iχ + (n + [a, u])U(gC) ⊇

(
Iαχ + (n(α) + [a, u])U(gC)

)
⊕
( ∑
H∈hα

U((mα)C)(H + dχ(H).1) + nαU((mα)C)
)
.(3.11)

Thus it follows from (3.9), (3.10) and (i) that in (3.11) equality holds. Now our
claim is immediate from (3.9) and (i).

It remains to show that im γαχ ⊆ S(aC){1,sα}. We may assume that mα is
semisimple. We distinguish two cases:

Case 1: The root α is compact. In this case all roots of mα are compact and
mα is (NCR). If hα is semisimple, then dχ |hα = 0 and the assertion follows from
[He184, Ch. II, Th. 5.18]. If hα is not semisimple, then mα is hermitian, and the
assertion follows from [HS94, Part I, Th. 5.1.10].

Case 2: The root α is non-compact. In this case mα is (NCC). If hα is semisimple,
then dχ |hα = 0 and the assertion follows from [HS94, Part II, Th. 4.3]. If hα is not
semisimple, then mα is (CT) and therefore its Riemannian dual mr

α is hermitian
(cf. [HiÓl96, Th. 1.3.11]). Since the complexifications of mα and mr

α coincide, we
may assume that mα = mr

α (cf. the method in the proof of [HS94, Part II, Th. 4.3]).
Now the assertion follows from [HS94, Part I, Th. 5.1.10].

Remark III.14. In general, it is not true that γχ is injective, since this becomes
false for non-abelian solvable admissible symmetric Lie algebras (h is abelian in
this case). But still an open problem is whether γχ is onto or not.

Lemma III.15. Let (g, τ) be a non-compactly causal symmetric Lie algebra, G
a simply connected Lie group with Lie algebra g and K ⊆ G a τ-stable maximal
compactly embedded subgroup of G. Then the following assertions hold:
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(i) The subgroup H0 = ZH(a) is compact.
(ii) For each compact subset Q ⊆ ΓA, the set Q.(K ∩HAN) is a compact subset

of HAN .

Proof. (i) Let GC denote a simply connected Lie group with Lie algebra gC and set
H1 := 〈expGC(h)〉. Since G is simply connected, the covering qG : G → G1 ⊆ GC
restricts to a covering q : H → H1. By [FHÓ94, Lemma 5.1] the group H0

1 is
compact. Thus we only have to show that the fibers of q are compact, i.e., q−1(1)
is compact. Let K denote a τ -stable maximal compactly embedded subgroup of G
and k the corresponding Lie algebra. Note that Z(G) ⊆ Z(K). Since G and hence
K is simply connected, we have

Z(K) ∼= exp(z(k)) × F ∼= z(k) × F,
where F , the set of elements of finite order, is a finite group. Now

q−1(1) ⊆ H ∩ Z(G) ⊆ H ∩ Z(K).

Since exp(z(k)) ∼= z(k) and F is a finite group, it follows that τ(F ) ⊆ F . Using
the table [HiÓl96, Th. 3.2.8], we deduce that z(k) ⊆ q. Thus H ∩ Z(K) = H ∩
(exp(z(k))×F ) = exp(z(k))τ ×F τ . Now exp(z(k))τ is a 2-subgroup of exp(z(k)) ∼= R,
hence is trivial. Thus H ∩ Z(K) = F τ is finite, proving (i).

(ii) As Ω is bounded (cf. [HiÓl96, Th. 5.1.8]) and Q is compact, it follows that
ΩQ := Q.Ω ⊆ Ω is compact (cf. Lemma I.20(iii)). In view of Lemma I.20(i), we
have

QHAN = Q.ΩH0AN ⊆ ΩQH0AN ⊆ HAN.

Since both ΩQ and H0 are compact, ΩQH0 is compact and so ΩQH0AN = CKAN
for some compact subset CK ⊆ K by the Iwasawa decomposition of G. On the
other hand, the compactness of K/Z implies that QK/Z is compact in G/Z. Thus
by the Iwasawa-decomposition of G/Z we obtain QK ⊆ KCACN with compact
subsets CA ⊆ A and CN ⊆ N . Therefore we have

Q(K ∩ (HAN)) ⊆ KCACN ∩ CAN = CKCACN .

Since CKCACN is compact and the set HAN is H0-right invariant (Lemma I.20(i)),
the set CK and therefore CKCACN is contained in HAN , proving (ii).

Lemma III.16. The mapping

H × ΓA ×H → Γ, (h1, a, h2) 7→ h1ah2

is an identification map.

Proof. Recall from Section I that the polar decomposition

H ×W → Γ, (h,W ) 7→ h exp(X)

is a homeomorphism. In view of

W ∼= exp(W ) and h1ah2 = h1h2 exp(Ad(h2)−1. log(a)),

we only have to show that the mapping

H × (W ∩ a)→W, (h,X) 7→ Ad(h).X

is an identification mapping. But this follows from [Ne98a, Lemma I.3], proving
the lemma.
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Proposition III.17. Let χ ∈ X(H/H0) and λ ∈ Eχ. Then the function ϕχλ is
(H,χ)-spherical and we have for all D ∈ D(χ)

D.ϕχλ = γχ(D)ϕχλ .

Proof. It follows from Lemma III.5 that ϕχλ is left χ- and right χ∗-semiinvariant.
Thus it remains to show that ϕχλ is a continuous common eigendistribution for D(χ)
to the character γχ.

Step 1: The function ϕχλ is continuous.
In view of Lemma III.16 and the H-semi-invariance properties of ϕχλ, it suffices

to check that ϕχλ |ΓA is continuous. Now our product formula for ϕχλ (cf. Theo-
rem III.10) shows that we may w.l.o.g. assume that (g, τ) is reductive. Note that
ϕχλ(aa0) = aλz0 ϕχλ(a) holds for all a ∈ ΓA and a0 ∈ Z(G)∩A. Therefore we may as-
sume that (g, τ) is semisimple. Splitting (g, τ) in irreducibles, we even may assume
that (g, τ) is irreducible. We have to distinguish two cases (cf. Definition I.4).

Case 1: (g, τ) is non-compactly Riemannian (NCR).
In this case H/H0 is compact and G = HAN is the Iwasawa decomposition,

and therefore ϕχλ is continuous for all λ ∈ a∗C and χ ∈ X(H/H0).
Case 2: (g, τ) is non-compactly causal (NCC) (cf. [FHÓ94, Prop. 5.3]).
Since H0 is compact (cf. Lemma III.15), we can apply [Ól87, Lemma 1.3] and

get

∫
H/H0

f(hH0) dµH/H0)(hH0) =
∫
K∩(HAN)

f(h(k))aH(k)−2ρ dµK(k)

for all f ∈ L1(H/H0). In particular, we obtain

ϕχλ(a) =
∫
K∩(HAN)

aH(ah(k))λ−ρχ(ah(k))χ(h(k))aH(k)−2ρ dµK(k)

=
∫
K∩(HAN)

aH(ak)λ−ρχ(ak)aH(k)−λ−ρχ(k) dµK(k).
(3.12)

LetQ ⊆ ΓA be a compact subset. Then Lemma III.15(ii) implies Q(K ∩ (HAN))
is a compact subset of HAN . We conclude, in particular, that

Q× (K ∩ (HAN))→ C, (a, k) 7→ |χ(ak)aH(ak)λ−ρ|

is a continuous function, bounded from above and below by positive constants.
Thus it follows from (3.12) that ϕχλ is continuous, concluding the proof of Step 1.

Step 2: The function ϕχλ is a common eigendistribution for D(χ) w.r.t. the char-
acter γχ.

We know already that ϕχλ is continuous and therefore defines a distribution on
Γ. We define a function

kχλ : Γ→ C, s 7→ aH(s)λ−ρχ(s).
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Now we have for all f ∈ C∞c (Γ) and D ∈ D(G),

(D.ϕχλ)(f) =
∫

Γ

(D>.f)(g)ϕχλ(g) dµG(g)

=
∫

Γ

∫
H/H0

(D>.f)(g)kχλ(gh)χ(h) dµH/H0 (hH0) dµG(g)

=
∫
H/H0

∫
Γ

(D>.f)(g)kχλ(gh)χ(h) dµG(g) dµH/H0 (hH0)

=
∫
H/H0

∫
Γ

f(g)(D.kχλ)(gh)χ(h) dµG(g) dµH/H0 (hH0).

To prove Step 2, it therefore suffices to check that

(∀D ∈ D(χ)) (D.kχλ) = γχ(D)kχλ .(3.13)

This is now seen as follows. Recall from (3.1) that D(χ) is a certain quotient of
U(gC)H . Let u ∈ U(gC)H . Then the H-invariance of u implies

(u.kχλ)(s) = χ(s)(u.kχλ)(aH(s))

for all s ∈ Γ. Now write u = u0 + u1 + u2 with u0 ∈ U(aC), u1 ∈
∑

H∈h
U(gC)(H +

dχ(H).1) and u2 ∈ nU(gC). Then (u2.k
χ
λ)(aH(s)) = 0, because A normalizes n and

χ is constant on right N -cosets. Similarly, we get (u1.k
χ
λ)(aH(s)) = 0. Thus

(u.kχλ)(s) = χ(s)(u0.k
χ
λ)(aH(s)) = χ(s)(λ(u0)− ρ(u0))aH(s)λ−ρ = γχ(u)kχλ(s),

proving (3.13) and thus Step 2.

Problems III.18. (a) Is there any defining integral equation for (H,χ)-spherical
functions? In view of the product formula for the ϕχλ (cf. Theorem III.10), this

should be the case at least for the character χ = ∆−
1
2

H (cf. Remark III.11).
(b) Spherical functions can be defined for all χ ∈ X(H). How natural is the

assumption χ ∈ X(H/H0)?

IV. c-functions and asymptotic behaviour of spherical functions

In this last section we study the asymptotic behaviour of the (H,χ)-spherical
functions ϕχλ. We discuss the “constant term cχM(λ) at infinity,” the so-called c-
function. Using our product formula from Theorem III.10 for the spherical functions
and an analytic continuation technique, we obtain a product formula the cχM(λ) in
unipotent and reductive part (cf. Theorem IV.11). We conclude the section with a
list of problems relating the theory of spherical functions to harmonic analysis on
complexified symmetric spaces.

Lemma IV.1. Let χ ∈ X(H/H0) and λ ∈ Eχ. Then we have for all s ∈ Γ

ϕχλ(s) =
∫
N∩(HAN)

aH(sn)λ−ρaH(n)−λ−ρχ(sn)χ(n) dµN (n).

In particular, if s = a ∈ ΓA, then

ϕχλ(a) = aλ−ρ
∫
N∩(HAN)

aH(ana−1)λ−ρaH(n)−λ−ρχ(ana−1)χ(n) dµN (n).
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Proof. In view of Proposition I.21(ii), we have for all s ∈ Γ

ϕχλ(s) =
∫
H/H0

aH(sh)λ−ρχ(sh)χ(h) dµH/H0 (hH0)

=
∫
N∩(HAN)

aH(shH(n))λ−ρχ(shH(n))χ(hH(n))aH(n)−2ρ dµN (n).

Writing n = hH(n)aH(n)nH(n) we obtain hH(n) = naH(n)−1n for some n ∈ N ,
and so

ϕχλ(s) =
∫
N∩(HAN)

aH(sn)λ−ρaH(n)−λ+ρχ(sn)χ(n)aH(n)−2ρ dµN (n)

=
∫
N∩(HAN)

aH(sn)λ−ρaH(n)−λ−ρχ(sn)χ(n) dµN (n).

This proves the first assertion.
For s = a ∈ ΓA we further get

ϕχλ(a) =
∫
N∩(HAN)

aH(an)λ−ρaH(n)−λ−ρχ(an)χ(n) dµN (n)

= aλ−ρ
∫
N∩(HAN)

aH(ana−1)λ−ρaH(n)−λ−ρχ(ana−1)χ(n) dµN (n),

concluding the proof of the lemma.

Definition IV.2. Fix χ ∈ X(H). For λ ∈ a∗C we set

cχM(λ) =
∫
N∩(HAN)

aH(n)−λ−ρχ(n) dµN (n),

cχΩ(λ) =
∫

Ω

aH(n)−λ−ρχ(n) dµN−n (n),

and

cχ0 (λ) =
∫
N−k

aH(nk)−λ−ρkχ(nk) dµN−k (nk)

provided the integrals exist. We write EχM for the set of all λ for which cχM is
defined. Accordingly, we define EχΩ and Eχ0 .

Before we turn to the properties of the c-functions, we need some additional geo-
metric information on the image of N−n under the projection L := log aH : HAN →
a, han 7→ log a.

Proposition IV.3. Let X ∈ ∆⊥k ∩ int(∆+
n )?, a = expX, and n ∈ N−n ∩ HAN .

Then ana−1 ∈ HAN and

aH(ana−1)− aH(n) ∈ Cmin.

Proof. First we note that L(xy) = L
(
xhH(y)

)
+ L(y), showing that

L(ana−1) = L
(
ahH(n)

)
+ L(n)− log a.

Now the Non-Linear Convexity Theorem ([Ne97a, Th. II.8]) shows that

L
(
ahH(n)

)
∈ L(aH) ⊆ conv(W . log a) + Cmin = log a+ Cmin,

and the assertion follows.

Corollary IV.4. L(N−n ∩HAN) = L(Ω) ⊆ −Cmin.
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Proof. Let X be as in Proposition IV.3 and n ∈ N−n ∩HAN = Ω. Then

lim
t→∞

exp(tX)n exp(−tX) = 1

and therefore Proposition IV.3 implies that

lim
t→∞

L
(

exp(tX)n exp(−tX)
)
− L(n) = −L(n) ∈ Cmin.

Lemma IV.5. For the domains of convergence EχΩ resp. EχM, of cχΩ, resp. cχM, the
following assertions hold:

(i) We have EχΩ = ia∗ + EχΩ,R, where EχΩ,R ⊆ a∗ is a convex subset with −C?min ⊆
lim EχΩ,R. The restriction of the function cχΩ to int EχΩ is holomorphic.

(ii) We have EχM = ia∗ + EχM,R with EχM,R ⊆ a∗ a convex subset. The restriction
of cχM to int EχM is holomorphic.

Proof. (i) We may assume that χ = |χ|. We define a measure µχ on Ω by µχ =
(χµN−n ) |Ω Consider the mapping

ψ : Ω→ a, n 7→ log aH(n)

and let νχ be the push forward of µχ under this map. Then we have

L(νχ)(λ) =
∫

a

e−λ(X) dνχ(X) =
∫

Ω

aH(n)−λχ(n) dµN−n (n)

=
∫

Ω

aH(n)−λχ(n) dµN−n (n),

and so

L(νχ)(ρ+ λ) = cχΩ(λ).(4.1)

Thus Lemma III.7(i) implies that EχΩ is convex and ia∗ ⊆ EχΩ. Further, Lemma
III.7(iii) implies that cχΩ is holomorphic on int EχΩ.

In view of Corollary IV.4, imψ ⊆ Cmin, hence Cνχ ⊆ −Cmin and therefore
B(Cνχ) ⊇ C?min. In view of (4.1) and Lemma III.7(ii), this shows that −C?min ⊆
lim EχΩ, concluding the proof of (i).

(ii) This is analogous to the first part of the proof of (i).

Lemma IV.6. The following assertions hold:
(i) If s ∈ HAN let bH(s) := aH(s)nH(s). Then we have for all s ∈ HAN and

u ∈ U

hH(su) = hH(s)hHU (bH(s)ubH(s)−1).

In particular, we have for all χ ∈ X(H) that χ(su) = χ(s)χu(bH(s)ubH(s)−1).
(ii) For all u ∈ U we have

hH(u−1) = hH(u)−1.

In particular, we have χ(u−1) = χ(u)−1 for all χ ∈ X(HU ).
(iii) For all np ∈ N−p ∩HAN and nr ∈ N−r we have

aH(npnr) = aH(np(nr)−1).



82 B. KRÖTZ, K.-H. NEEB, AND G. ÓLAFSSON

Proof. (i) This follows from

hH(su) = hH(hH(s)bH(s)u) = hH(s)hH(bH(s)u) = hH(s)hHU (bH(s)ubH(s)−1).

(ii) In view of Proposition I.7(iii), we have u = hH(u)aH(u)nH(u). As [u, u] ⊆
z(g) = au, we therefore get

u−1 = nH(u)−1aH(u)−1hH(u)−1 ∈ hH(u)−1AUNR,

as was to be shown.
(iii) This follows from [HiNe96, Lemma I.2.8] by embedding into the canonical

extension (cf. Definition I.16, Remark I.18).

Lemma IV.7. For all λ ∈ EχM we have

cχM(λ) = cχ0 (λ)cχΩ(λ).

In particular, we have

EχM = EχΩ ∩ E
χ
0 .

If, in addition, χ ∈ X(H/H0), then E0 := Eχ0 = {λ ∈ a∗C : (∀α ∈ ∆+
k ) Reλ(α̌) > 0}

is independent of χ.

Proof (cf. [FHÓ94, Prop. 6.5], [HiNe96, Prop. II.14]). According toN = N−n oN
−
k ,

every n ∈ N can be written as n = nnnk with nn ∈ N−n and nk ∈ N−k . We have
for n ∈ N ∩HAN :

aH(nnnk) = aH(nnhH(nk))aH(nk)

with hH(nk) ∈ K(0)0 ⊆ G(0)0 (cf. Lemma I.15). Note that µN−n is K(0)0-invariant.
Thus, in view of Lemma I.20(iv), we get

cχM(λ) =
∫
N−k

∫
Ω

aH(nnnk)−λ−ρχ(nnnk) dµN−n (nn) dµN−k (nk)

=
∫
N−k

aH(nk)−λ−ρ

·
∫

Ω

aH(hH(nk)−1nnhH(nk))−λ−ρχ(nnnk) dµN−n (nn) dµN−k (nk)

=
∫
N−k

aH(nk)−λ−ρ

·
∫

Ω

aH(nn)−λ−ρχ(hH(nk)nnhH(nk−1)nk) dµN−n (nn) dµN−k (nk)

=
∫
N−k

aH(nk)−λ−ρ
∫

Ω

aH(nn)−λ−ρχ(hH(nk)nn) dµN−n (nn) dµN−k (nk)

=
∫
N−k

aH(nk)−λ−ρχ(nk) dµN−k (nk)
∫

Ω

aH(nn)−λ−ρχ(nn) dµN−n (nn)

= cχ0 (λ)cχΩ(λ),

where the last equality follows from aH(nk)ρn = 1 (since ρn is W-fixed).
It follows, in particular, that EχM = Eχ0 ∩E

χ
Ω. If, in addition, χ ∈ X(H/H0), then

χ |K(0)0 is unitary. Thus E0 := Eχ0 is independent of χ. Finally, [He184, Ch. IV, Th.
6.13] implies that

E0 = {λ ∈ a∗C : (∀α ∈ ∆+
k ) Reλ(α̌) > 0},

concluding the proof of the lemma.
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Next we consider the analytic behaviour of the c-functions and its dependence of
χu, resp. w. Recall that there is an isomorphism X(H/H0) ∼= X(HL/H

0)×X(HU,fix)
(cf. Lemma I.14, Lemma II.8). Thus we find a complex subspace W ⊆ Cn ∼= (hu)∗C
such that

W → X(HU,fix), w 7→ χw; χw(exp(x)) := e2πi〈x,w〉

is a surjective homomorphism. For fixed χ ∈ X(H) and λ ∈ EχM we set

Eχ,λΩ := {w ∈W : cχsχwΩ (λ) is finite}.

Note that Eχ,λΩ 6= ∅, because cχΩ(λ) is finite. Similarly, we define Eχ,λM . Finally, we
set WR = W ∩ Rn and note that W = WR ⊕ iWR.

Lemma IV.8. Let χ ∈ X(H) and λ ∈ Eχ. Then the following assertions hold:

(i) The domain Eχ,λΩ has the form

Eχ,λΩ = WR + Eχ,λΩ,R,

where Eχ,λΩ,R ⊆ iWR is a non-empty convex subset with Eχ,λΩ,R = −Eχ,λΩ,R; in par-
ticular, 0 ∈ Eχ,λΩ,R. Further, the mapping

int Eχ,λΩ → C, w 7→ cχsχwΩ (λ)

is holomorphic.
(ii) If χ ∈ X(H/H0), then an analogous statement holds for cχM and Eχ,λM .

Proof. (i) In the following we write the elements of n of N−n = N−p ×NR as products
n = npnr with np ∈ N−p and nr ∈ NR.

Consider the mapping

ψ : Ω→ ihu, n 7→ 2πi loghH(bH(np)nubH(np)−1)

and let ν be the push forward of the measure aH(n)−λ−ρχs(np)dµN−n (n) under
ψ. Then Lemma IV.6(i) entails that L(ν)(w) = cχsχwΩ for all w ∈ W , and all the
assertions except for Eχ,λΩ,R = −Eχ,λΩ,R follow from Lemma III.7. Let w ∈W . Then we
compute with Lemma IV.6(ii),(iii)

L(ν)(w) =
∫
ihu

e−〈w,x〉 dν(x)

=
∫

Ω

aH(n)−λ−ρχs(np)χw(bH(np)nrbH(np)−1) dµN−n (n)

=
∫

ΩS

∫
NR

aH(npnr)−λ−ρχs(np)χw(bH(np)nrbH(np)−1) dµN−p (np) dµNR(nr)

=
∫

ΩS

∫
NR

aH(npnr−1)−λ−ρχs(np)χw(bH(np)nr−1bH(np)−1) dµN−p (np) dµNR(nr)

=
∫

ΩS

∫
NR

aH(npnr)−λ−ρχs(np)χw(bH(np)nrbH(np)−1)−1 dµN−p (np) dµNR(nr)

= L(ν)(−w),

concluding the proof of (i).
(ii) Our technique of using Laplace transforms shows that the domain of conver-

gence is a tube domain as well as holomorphic dependence in the interior (Lemma
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III.7). If, in addition, χ ∈ X(H/H0), then the symmetry of EχM,R follows from (i)
and Lemma IV.5 since Eχ0 = E0 does not depend on χ.

Lemma IV.9. If G is reductive and χ ∈ X(H/H0), then the following assertions
hold:

(i) The function ϕχλ is defined if and only if cχΩ(λ) is finite, i.e., Eχ = EχΩ. More-
over, Eχ is open.

(ii) If λ ∈ EχM and X ∈ int(∆+)?, then

lim
t→∞

e(ρ−λ)(tX)ϕχλ(exp(tX)) = cχM(λ).

Proof. (i) If χ = 1, then, in view of Definition I.4, the first assertion follows from
[FHÓ94, Th. 6.3]. The general case is obtained by a slight modification of their
arguments (cf. the proof of Case 2 in the proof of Proposition III.17). The openness
of Eχ follows from the same type of arguments as in [Ól97, Th. 3.10].

(ii) This follows from [FHÓ94, Th. 6.8] for χ being trivial. The general case is
obtained exactly along the same lines.

Remark IV.10. Recall the content of Lemma IV.7(iv). In view of our characteriza-
tion of the various c-functions as Laplace transforms (cf. Lemma IV.5), we conclude,
in particular, that the c-functions do not admit a holomorphic continuation to an
open domain bigger than the interior of the domain of convergence of the Laplace
transform. In the following we will use this fact frequently without mentioning it
explicitly.

Now we have all the technical tools to prove the two main results of this section.

Theorem IV.11 (Asymptotic behaviour of spherical functions). If χ∈X(H/H0),
then we have for all λ ∈ EχM and X ∈ int(∆+)?

lim
t→∞

e(ρ−λ)(tX)ϕχλ(exp(tX)) = cχM(λ).

Further, if χu(exp(x)) = e2πi〈x,w〉 for x ∈ hu and n := dim n+
r , then the following

product formula

cχM(λ) =
2
n
2 πne−〈w+,w+〉λz

detAλz
· cχl∆

1
2
H

ML
(λl)

holds. The domain EχM of convergence is independent of χu and given by

EχM = (ia∗ − intC?min,r) ∩ E
χl∆

1
2
H

ML
.

Proof. Fix χl ∈ X(HL/H
0) ⊆ X(H/H0) and X ∈ int(∆+)?.

We define

f(λ,w) := lim
t→∞

e(ρ−λ)(tX)ϕχlχwλ (exp(tX)),

whenever the right-hand side exists and set

D(χl) := {(λ,w) ∈ Eχlχw ×W : f(λ,w) exists}.
Then Theorem III.10(i) implies for all (λ,w) ∈ D(χl) that

f(λ,w) =
2
n
2 πne−〈w+,w+〉λz

detAλz
· lim
t→∞

e(ρl−λl)(tX)ϕ
χl∆

1
2
H

λl
(exp(tX)),(4.2)
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where n = dim n+
r and ρl := ρ − ρr denotes the half sum of positive roots corre-

sponding to l counted with their multiplicities. In view of Lemma IV.9, it thus
follows from (4.2) that

(∀(λ,w) ∈ D(χl)) f(λ,w) =
2
n
2 πne−〈w+,w+〉λz

detAλz
· cχl∆

1
2
H

ML
(λl).(4.3)

We conclude from (4.3) and Theorem III.10(ii) that

D(χl) =
(

(ia∗ − intC?min,r) ∩ E
χl
ML

)
×W.

In particular, D(χl) is open by Lemma IV.9 and Lemma IV.7. Further, (4.3)
together with Lemma IV.5(ii) imply that f is holomorphic on D(χl).

Now we compute the limit in a second way. Let χ ∈ X(H/H0) such that χ |HL =
χl. As lim EχR ⊇ −C?min (cf. Lemma III.8), we deduce that

Eχρ := {λ ∈ Eχ : Re(λ− ρ) ∈ −C?min ∩ (∆̌+
k )?}

is a convex subset of Eχ with non-empty interior. Let λ ∈ Eχρ and assume first that
χu is unitary, i.e., χu = χw for some w ∈ WR. In view of Lemma IV.1, we have

e(ρ−λ)(tX)ϕχλ(exp(tX)) =
∫
N∩HAN

aH(exp(tX)n exp(−tX))λ−ρaH(n)−λ−ρ

· χ(exp(tX)n exp(−tX))χ(n) dµN (n).

Thus we only have to justify taking the limit under the integral sign. For that
we may assume that χ = |χ| and since χu was supposed to be unitary, we even
may assume that χ = |χl|. Recall that N ∩ HAN = NU · ΩL and that ΩL is
bounded. As exp(tX).ΩL ⊆ exp(sX).ΩL ⊆ ΩL for 0 < s ≤ t, we deduce that
expX.ΩL =

⋃
t≥1 exp(tX).ΩL is a compact subset of ΩL. In particular, the function

(N ∩HAN)× [1,∞[→ R+, t 7→ |χ(exp(tX)n exp(−tX))|
is uniformly bounded from above and below by positive constants. Moreover, λ ∈
Eχρ implies that t 7→ aH(exp(tX)n exp(−tX))λ−ρ is monotonically decreasing for
all n ∈ N ∩ HAN (cf. [Ne97a, Prop. II.10]). Hence pushing through the limit is
justified, cχM(λ) is finite and we have

(∀w ∈ WR)(∀λ ∈ Eχlχwρ ) f(λ,w) = cχlχwM (λ).(4.4)

On the other hand, cχlχwM (λ) depends holomorphically on w and λ (cf. Lemma
IV.7(ii), Lemma IV.8(ii)). Further, Lemma IV.8(ii) shows that Eχlχw ,λM 6= ∅ implies
that Eχl,λM 6= 0 for all w ∈ W . Thus analytic continuation in (4.4) in both variables
w and λ gives

(∀(λ,w) ∈ D(χl)) cχlχwM (λ) =
2
n
2 πne−〈w+,w+〉λz

detAλz
· cχl∆

1
2
H

ML
(λl) = f(λ,w).(4.5)

In view of Remark IV.10, the proof of the theorem is now complete.

Corollary IV.12 (Product decomposition for the cΩ-functions). If χ ∈ X(H/H0)
and λ ∈ EχΩ, then we have

cχΩ(λ) =
2
n
2 πne−〈w+,w+〉λz

detAλz
· cχl∆

1
2
H

ΩL
(λl).
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The domain of convergence EχΩ of cχΩ coincides with the domain of convergence Eχ
of ϕχλ and we have

Eχ = EχΩ = (ia∗ − intC?min,r) ∩ E
χl∆

1
2
H

ΩL
.

Proof. We deduce from Theorem IV.11 and Lemma IV.7 that

(∀λ ∈ EχM) cχΩ(λ) =
2
n
2 πne−〈w+,w+〉λz

detAλz
· cχl∆

1
2
H

ΩL
(λl).

As both sides are holomorphic functions on the interior of their domain of definition
(cf. Lemma IV.5(i)), we see that equality holds for all λ ∈ int EχΩ. Then Theorem
III.10(ii) together with Lemma IV.9(ii) imply

Eχ = (ia∗ − intC?min,r) ∩ E
χl∆

1
2
H

ΩL
.

In view of Remark IV.10, the proof of the corollary is now complete.

Remark IV.13. If G is reductive and χ = 1, then cM is known. In fact, it is
a product of c-functions corresponding to (NCR) and (NCC) spaces. For (NCR)
spaces the c-function was computed by Gindikin and Karpelevic (cf. [He184, Ch. IV,
Th. 6.13]) while for (NCC) spaces the exact formula for cM was recently obtained
in [KrÓl99]. Hence for general G and the canonical character χ = ∆−

1
2

H , Theorem
IV.11 gives us a precise expression for the c-function cχM.

V. Further remarks and problems

We conclude our paper with some remarks related to earlier work and we give
a list of problems concerning the interplay of the theory of spherical functions and
harmonic analysis. See also [Ól98] and [Ól00].

Spherical functions on reductive symmetric spaces. In view of our decompo-
sition results (Theorem III.10, Theorem IV.11), the study of spherical functions on
hyperbolically ordered symmetric spaces is reduced to reductive symmetric spaces
consisting of (NCR) and (NCC) components. For the theory of spherical functions
on non-compactly Riemannian symmetric spaces we refer to [He184] and [GaVa88]
for the case χ = 1 and to [HS94, Part I] for the theory on hermitian symmetric
spaces with χ arbitrary. For χ = 1 and (g, τ) non-compactly causal, spherical
functions, their asymptotic expansions, meromorphic continuations and domains of
convergence have been discussed by the third author in [Ól97]. More detailed results
on the analytic continuation and the singularities of the spherical functions have
been obtained by the third author and A. Pasquale in [ÓlPa00] by using the Bern-
stein polynomial to obtain the analytic continuation of the spherical function. The
analytic continuation of the spherical functions and estimates that can be derived
from the integral formula defining the spherical function and its analytic continu-
ation (cf. [Ól97] and [ÓlPa00]) are the fundamental tools in harmonic analysis on
H\ int Γ. Those results are used to prove analytic continuation of the spherical
Laplace transform on H\G in case G is simple and to characterize the space of the
image of the space of function on H\ int Γ with compact support modulo H . It
has been shown in [AÓS00] that the image is contained in a Paley-Wiener space
of holomorphic function with exponential growth similar to the Riemannian case.
But the surjectivity of the Laplace transform is still an open problem.
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Analytic continuation, estimates and Paley-Wiener Theorems. Fix χ ∈
X(H/H0) and a ∈ ΓA. Prove that the map

Eχ 7→ C, λ 7→ 1
cχM(λ)

ϕχλ(a)

admits a meromorphic continuation on aC. If (g, τ) is solvable, then this follows
from Theorem III.10 and Theorem IV.11. If χ = 1 and (g, τ) is (NCR), then this
is a consequence of the fact that the cχM = c0 is meromorphic (cf. [He184, Ch.
IV, Th. 6.13]), and for χ = 1 and (g, τ) being (NCC) this has been proved by the
third author in [Ól97]. More detailed information of the location of the poles was
obtained in [ÓlPa00]. Thus in view of our product formulas in Theorem III.10 and
Theorem IV.11, the situation is reduced to the (NCC)-case for characters χ 6= 1. It
also remains an open problem to prove that the meromorphic continuations of the
normalized spherical functions 1

cχM(λ)
ϕχλ exhaust, up to scalar multiples, all (H,χ)-

spherical functions (cf. Definition III.1). It is also natural to try to generalize
the Laplace transform and prove Paley-Wiener type theorems in the general case
considered in this article.

Spherical functions and character theory. Let (πλ,Hλ) be an (H,χ)-spherical
unitary highest weight representation ofGc which we also consider as a holomorphic
representation of Γc (cf. Remark II.5). Set int Γc := Gc Exp(Ŵ 0

max). If 0 6= ν ∈
(H−ωλ )(H,χ) and vλ is a highest weight vector, then we define the spherical character
Θχ
λ of (πλ,Hλ) by

Θχ
λ : int Γc → C, s 7→ 〈vλ, vλ〉

|〈ν, vλ〉|2
〈πλ(s).ν, ν〉.(5.1)

Note that Θχ
λ is a holomorphic function on int Γc (cf. [KNÓ97, Lemma V.6]). Prove

for all parameters λ ∈ a∗ which correspond to non-singular unitary spherical highest
weight representations the relation

(∀s ∈ int Γc ∩HAN) Θχ
λ(s) =

1
cχM(λ+ ρ)

ϕχλ+ρ(s).

If (g, τ) is (NCC) and χ = 1, then this has been proved in [Kr01, Th. V.3] and
[HiKr99a, Th. 4.1.2]. This relation has far reaching consequences for the harmonic
analysis on Gc-invariant subdomains D of the Stein manifold Ξ0

max := Gc×HW 0
max

(cf. [KNÓ97], [Ne98a]). For instance, it implies the Plancherel Theorem for Gc-
invariant Hilbert spaces of holomorphic functions on the domains D (cf. [HiKr99a],
[Kr98, Kr99, Kr01]). This is also used to decompose the Cauchy-Szegö kernel of
the Hardy space on Ξ0 into H-spherical distribution characters of holomorphic
discrete series representation and derive a formula for those characters using the
Harish-Chandra type expansion in [Ól97] for the spherical function, [Ól98], This
gives a Harish-Chandra type formula for the H-spherical distribution character
of holomorphic discrete series representations generalizing the results of Harish-
Chandra for the holomorphic discrete series representation of Gc.

It was proved in [FHÓ94] in case χ is trivial and G is semisimple that the
spherical functions correspond to H-spherical characters of a prinicpal series rep-
resentation of the group G. This shows that on the level of characters, principal
series representations of G correspond to H-spherical representations of the group
G. It is still an open problem to generalize those results to our setting.
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Basic inequality and boundary behaviour. Let a+ := int(∆+)? and A :=
exp(a+). We define a function ∆ on A+ by

∆(a) =
∏
α∈∆+

n

(1 − e2α(log a))mα

and let ‖·‖ denote an arbitrary norm on a. Then for the generic character χ = ∆−
1
2

H ,
it follows from Theorem III.10 and [HiKr99b, Th. 4.2.1] that there exist constants
κ > 0 and d ∈ N such that for all integral parameters λ ∈ Eχ one has

(∀a ∈ A+) ϕχλ(a)∆(a) ≤ κ c
χ
M(λ)

detAλz
aλ−ρ(1 + ‖ log a‖)d.

Further, using [HiKr99b, Th. 4.3.2] one can deduce that the inequality holds for
all parameters lying in an affine cone in Eχ. One should consider this estimate
as a generalization of Harish-Chandra’s estimates for spherical functions on non-
compact Riemannian symmetric spaces (cf. [Wa88, Prop. 4.6.3]). It implies, in
particular, that the function a 7→ ∆(a)ϕχλ(a) admits a continuous continuation in
the origin. This in turn has far reaching consequences for the determination of
the spectrum of various Gc-invariant Hilbert spaces of holomorphic functions, for
instance, for Bergman spaces on the domains D (cf. [HiKr99c], [Kr98]).

Reflection positivity. The spherical functions relate generalized principal series
representations of G to highest weight modules for Gc. This idea was further devel-
oped in [JoÓl98, JoÓl00], where it was shown, using the Lüscher-Mack Theorem,
that this correspondence can be explained using the representations themselves.
The main idea is to take the part of the principal series representation supported
on an open H-orbit in a flag manifold and invariant under the semigroup Γ ∩ G.
Using a new inner product related to the construction of the complementary series
representation this gives rise to a ∗-representation of Γ, which by the Lüscher-
Mack correspondence corresponds to an irreducible highest weight representation
of Gc. It is an open problem how much of this construction can be generalized
to the more general framework considered in this paper or even infinitely dimen-
sional Lie groups. We refer to [JoÓl00] for a discussion on how this relates to the
Osterwalder-Schrader duality in quantum field theory.

Hardy spaces. We now explain how the results of this paper can be used for the
L2-harmonic analysis on the c-dual symmetric space H\Gc, in particular, for the
theory of Hardy spaces. However, we will omit the proofs which are more or less
straightforward generalizations of arguments existing in the literature, in particular,
[HÓØ91].

Let G, Gc be connected Lie groups with Lie algebras g and gc. To facilitate the
exposition, we will assume in the following that both G and Gc are contained in a
complex Lie group GC associated to gC (one can overcome this difficulty by using
the theory developed in [KNÓ97, Sect. IV]). We also assume that τ integrates to
an involution of GC and we set H := (Gτ )0 and HC := (GτC)0.

Let W ⊆Wmax be a closed H-invariant convex cone which is pointed (i.e., con-
tains no affine lines) and has non-empty interior. Then W extends to a {Gc,−τ}-
invariant convex cone Ŵ ⊆ igc with Ŵ ∩ q = W (cf. [KrNe96, Th. X.7]). In partic-
ular, Γ = H exp(W ) extends to a complex Ol’shanskĭı semigroup Γ̂ = Gc exp(Ŵ ).
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Now we collect some facts from [KNÓ97, Sect. IV] about the domains Ξ :=
W ×H Gc. By the embedding

Ξ→ HC\GC, [X, g] 7→ HC exp(X)g

a complex structure is induced on Ξ0 := (intW ) ×H Gc. Further, Γ̂ acts from
the right on Ξ and we have Ξ = [0,1].Γ̂ as well as Ξ0 = [0,1]. int Γ̂. Set Kc :=
exp(g(0)c), P+ :=(N+

n )C and recall from [KNÓ97, Lemma III.7] that Γ̂ ⊆ HCKc
CP

+.
Further, we have HCKc

CP
+ ∼= HC ×Kc

C∩HC K
c
CP

+ (cf. [KNÓ97, Prop. II.6]).
Write ∆H : H → R+ for the modular function of H . Then ∆H extends to a

holomorphic character ∆HC : HC → C×. Finally, a simple argument using covering
semigroups leads to a continuous map

∆0 : Γ̂→ C×, ∆0(hkp+) := ∆HC(h) (h ∈ HC, k ∈ Kc
C, p

+ ∈ P+)

which is holomorphic on int Γ̂. That ∆0 is well defined can be deduced from
∆ |H∩Kc ≡ 1 (cf. Lemma III.9) together with some covering arguments.

Recall that Gc has to be unimodular by the existence of the open elliptic cone
i intW ⊆ gc. Set ρ := |∆0| and note that ρ satisfies

(∀h ∈ H)(∀s ∈ Γ̂) ρ(hs) =
∆H(h)
∆Gc(h)

ρ(s).(5.2)

Hence ρ is a rho-function in the sense of [War72, App. 1]. In particular, ρ |Gc
induces a quasi-invariant measure µρ on H\Gc.

In the sequel we identify Ξ with the corresponding subset of HC\GC. Using again
an argument involving covering manifolds, we obtain a continuous cocycle

J : Ξ× Γ̂→ C×; J(HCx, γ) :=
(∆0(xγ)

∆0(x)

) 1
2

with J(HC,1) = 1. We note that J is holomorphic when restricted to the interior
of its domain of definition.

By definition of the measure µρ we have for all f ∈ L1(H\Gc, µρ) and g ∈ Gc
that ∫

H\Gc
f(Hxg)|J(Hx, g)|2 dµρ(Hg) =

∫
H\Gc

f(Hx) dµρ(Hx).(5.3)

A holomorphic representation of Γ̂ on Hol(Ξ0) given by

(π(γ).f)(m) := J(m, γ)f(mγ) (f ∈ Hol(Ξ0), γ ∈ Γ̂,m ∈ Ξ0).

Now we can define the Hardy space associated to Ξ0 by

H2(Ξ0) :=
{
f ∈ Hol(Ξ0) : sup

γ∈Γ̂

∫
H\Gc

|(π(γ).f)(m)|2 dµρ(m) <∞
}
.

Using standard techniques, for example, as presented in [Ne99, Ch. XIV], one can
show that H2(Ξ0) is a Hilbert space on which Gc acts unitarily (by (5.3)) and Γ̂ by
contractions. Further, we have an isometric boundary value map

b : H2(Ξ0)→ L2(H\Gc, µρ), f 7→ b(f) := lim
γ→1

γ∈int Γ̂

(π(γ).f) |H\Gc .

The Hardy space admits a reproducing kernel K : Ξ0 × Ξ0 → C, called the
Cauchy-Szegö kernel. The function Ξ0 × Ξ0 3 (z, w) 7→ K(z, w) extends in the
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second variable to a smooth function on Ξ and hence Θ(m) := K(m,x0) is a well
defined positive definite function on Ξ0

The case where Gc is semisimple and χ is trivial was discussed in detail in [Ól98].
In particular, it was shown that if f ∈ H2(Ξ0)∞, then b(f) is a pointwise limit along
the center of k. By [HÓØ91] it is known that H2(Ξ0) =

⊕
Hλ, where Hλ is the

holomorphic discrete series representation constructed in [ÓØ91] and λ stands for
the highest weight of the minimal K-type. Define the H-spherical distribution Θλ

on H\G by

C∞c (H\G) 3 f 7→ pλ(f)(x0) ∈ C
where pλ stands for the orthogonal projection onto Hλ. Note that Θλ is the bound-
ary value of the spherical character defined in (5.1) for χ = 1. It is proved in [Ól98]
using the results in [Kr01] that this function is just d(λ)ϕλ+ρ. Here d(λ) is the
analytic continuation of the formal dimension of Hλ when realized in L2(Gc). The
Harish-Chandra type expansion of ϕλ in [Ól98]

ϕλ(a) =
∑
w∈W

c(w.λ)ϕw.λ(a),(5.4)

therefore gives a formula for the H-spherical distribution character of Hλ gener-
alizing the corresponding results of Harish-Chandra for the group case. It follows
also that Θ decomposes as Θ =

∑
d(λ)ϕλ+ρ. It is therefore natural to conjecture

that in the general case Θ has a similar decomposition:

Θ(m) =
∑

λ unitary highest weight
λ+ρ∈− intC?min,
λ∈−(W∩a)?

d(λ)ϕ∆
− 1

2
H

λ+ρ (m),(5.5)

where again d(λ) is the formal dimension of (πλ,Hλ) when realized as a subrep-
resentation of L2(Gc) (cf. [Ne97b] for the formula for d(λ)). Note that for small
parameters the right-hand side in (5.5) is actually an analytic continuation as ex-
plained in [Kr99] (the poles of ϕλ+ρ get canceled by the zeros of d(λ)). In particular,
we can now see how our Factorization Theorem III.10 (see also Remark III.11) yields
important information on the Cauchy-Szegö function of the Hardy space. It is also
an open problem to show that the character formula (5.4) holds for other discrete
series representations of H\Gc.
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