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U(g)-FINITE LOCALLY ANALYTIC REPRESENTATIONS

P. SCHNEIDER, J. TEITELBAUM, AND
WITH AN APPENDIX BY DIPENDRA PRASAD

Abstract. In this paper we continue our algebraic approach to the study of
locally analytic representations of a p-adic Lie group G in vector spaces over
a non-Archimedean complete field K. We characterize the smooth representa-
tions of Langlands theory which are contained in the new category. More gen-
erally, we completely determine the structure of the representations on which
the universal enveloping algebra U(g) of the Lie algebra g of G acts through a
finite dimensional quotient. They are direct sums of tensor products of smooth
and rational G-representations. Finally we analyze the reducible members of
the principal series of the group G = SL2(Qp) in terms of such tensor products.

In this paper we continue the study of locally analytic representations of a p-adic
Lie group G in vector spaces over a spherically complete non-Archimedean field K.
In [ST], we began with an algebraic approach to this type of representation theory
based on a duality functor that replaces locally analytic representations by certain
topological modules over the algebra D(G,K) of locally analytic distributions. As
an application, we established the topological irreducibility of generic locally ana-
lytic principal series representations of GL2(Qp) by proving the algebraic simplicity
of the corresponding D(GL2(Qp),K)-modules.

In this paper we further exploit this algebraic point of view. We introduce
a particular category of “analytic” D(G,K)-modules that lie in the image of the
duality functor and therefore correspond to certain locally analytic representations.
For compact groups G, these are finitely generated D(G,K)-modules that allow a
(necessarily uniquely determined) Fréchet topology for which the D(G,K)-action
is continuous. For more general groups, one tests analyticity by considering the
action of D(H,K) for a compact open subgroup H in G. The category of analytic
modules has the nice property that any algebraic map between such modules is
automatically continuous. The concept of analytic module is dual to the concept of
strongly admissible G-representation introduced in [ST]. The actual definition can
and will be given in a way that avoids any mention of a topology on the module.

Next, we study the modules dual to the traditional smooth representations of
Langlands theory. We show that a smooth representation gives rise, under duality,
to an analytic module precisely when it is “strongly admissible”; this is a condition
on the multiplicities with which the irreducible representations of a compact open
subgroup of G appear in the representation. In particular, if L is a finite extension
of Qp and G is the group of L-points of a connected reductive algebraic group over
L, then any smooth representation of finite length is strongly admissible. This is
basically a theorem of Harish-Chandra ([HC]), although we must use, in addition,
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results of Vigneras ([Vig]) to deal with some complications arising from the fact
that we do not assume that our coefficient field K is algebraically closed.

Given these foundational results, suppose that G is the group of L-points of a
split, semisimple, and simply connected group over L. We completely determine the
structure of analytic modules M that are U(g)-finite, i.e., that are annihilated by
a 2-sided ideal of finite codimension in the universal enveloping algebra U(g) of the
Lie algebra g of G. Such a module can be decomposed into a finite sum of modules
of the form E⊗Hom(V,K) where E is irreducible, finite dimensional, and algebraic,
and V is smooth and strongly admissible. The dual representations E∗ ⊗ V are
irreducible—in fact, simple as K[G] modules—if and only if V is irreducible. Some
of the technical hypotheses on the group G in this section are consequences of the
fact that our coefficient field is not algebraically closed.

We conclude the paper by studying the reducible members of the locally analytic
principal series of SL2(Qp). The corresponding modules contain a simple submod-
ule such that the quotient is U(g)-finite, and we use our methods to determine the
structure of this quotient. In particular, we obtain the result that the topological
length of the locally analytic principal series is at most three—a fact that is due to
Morita ([Mor]) by a different method.

In the appendix by Dipendra Prasad, a global variant of the U(g)-finite repre-
sentations, called locally algebraic representations, is introduced and studied. This
point of view allows us to simplify and generalize the argument for the irreducibility
of tensor products.

1. Analytic modules

We fix fields Qp ⊆ L ⊆ K such that L/Qp is finite and K is spherically complete
with respect to a non-Archimedean absolute value | | extending the one on L. We let
G be a d-dimensional locally L-analytic group and D(G,K) be the corresponding
K-algebra of K-valued distributions on G. Recall ([ST], 2.3) that D(G,K) is
an associative unital K-algebra with a natural locally convex topology in which
the multiplication ∗ is separately continuous. Unless this topology is explicitly
mentioned D(G,K) is treated as an abstract algebra. In the following we want to
single out a certain class of (unital left) D(G,K)-modules which seems to provide
a convenient framework for the representation theory of G over K. Let M be a
D(G,K)-module.

Definition. A K-linear form ` on M is called locally analytic if, for any m ∈ M ,
the linear form λ 7−→ `(λm) on D(G,K) is continuous.

Clearly the locally analytic linear forms on M form a vector subspace M ′ of the
full K-linear dual M∗ of M . We first consider the case of a compact group G. Then
recall that D(G,K) is a K-Fréchet algebra and as a locally convex K-vector space
is reflexive ([ST], 1.1, 2.1, and 2.3).

Definition. Suppose G is compact; a D(G,K)-module M is called analytic if it is
finitely generated and if, for any 0 6= m ∈M , there is a locally analytic linear form
` on M such that `(m) 6= 0.

Proposition 1.1. Suppose G is compact; for a finitely generated D(G,K)-module
M the following assertions are equivalent:

(i) M is analytic;
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(ii) M carries a Fréchet topology with respect to which it is a continuous D(G,K)-
module.

Proof. We first assume that (ii) holds true. Evidently, any continuous linear form
on M then is locally analytic. Hence it follows from the Hahn-Banach theorem that
M is analytic. Assume now vice versa that M is analytic. Choose an epimorphism
α : D(G,K)r � M of D(G,K)-modules for some r ≥ 1. Then the linear forms
` ◦ α for any ` ∈ M ′ are continuous and their simultaneous kernel coincides with
the kernel of α. In particular, the kernel of α is closed in D(G,K)r so that the
quotient topology via α on M has the required properties.

By the argument in the proof of [ST], 3.5, the above Fréchet topology on an
analytic D(G,K)-module M is unique and therefore will be called the canonical
topology of M . The continuous dual of M is M ′ and given the strong topology it is
a vector space of compact type carrying a locally analytic G-representation ([ST],
§§1 and 3); in particular, the canonical topology on M is reflexive. Again by [ST],
3.5 any D(G,K)-linear map between two analytic D(G,K)-modules is continuous
in the canonical topologies.

Question. Is any D(G,K)-module of finite presentation analytic?

Example. As a consequence of [ST], 4.4, the answer is yes for the group G = Zp.
The above definition of an analytic D(G,K)-module for a compact group is

extended to a general group G in the following way. Note first that for any compact
open subgroup H ⊆ G the algebra D(H,K) is a subalgebra of D(G,K) and that

D(G,K) =
⊕

g∈G/H
δg ∗D(H,K)

where δg denotes the Dirac distribution in g ∈ G.

Definition. A D(G,K)-module M is called analytic if it is analytic as a D(H,K)-
module for any compact open subgroup H ⊆ G.

Lemma 1.2. Fix a compact open subgroup H ⊆ G; a D(G,K)-module M is ana-
lytic if it is analytic as a D(H,K)-module.

Proof. This follows easily from the fact that for any two compact open subgroups
H and H ′ in G the intersection H ∩H ′ is of finite index in H and in H ′.

Suppose that M is an analytic D(G,K)-module. One easily checks that the
canonical topology of M as a D(H,K)-module is independent of the choice of the
compact open subgroup H ⊆ G, that the D(G,K)-action on M is separately con-
tinuous, and that M ′ is the continuous dual of M and equipped with the strong
topology carries a locally analytic G-representation. Of course, any D(G,K)-linear
map between two analytic D(G,K)-modules is continuous in the canonical topolo-
gies.

Definition. An analyticD(G,K)-module is called quasi-simple if it has no nonzero
proper D(G,K)-submodules which are closed in the canonical topology.

An analytic D(G,K)-module M is trivially quasi-simple if it is (algebraically)
simple. But, as a consequence of polarity, it is also quasi-simple (and usually
not simple) if M ′ is a simple D(G,K)-module. For a noncompact G we will see
examples of this later on. We don’t know whether such examples also exist for
compact groups.
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2. Smooth G-representations

In this section we want to see how the smooth representation theory of G fits
into our new framework. We recall that a smooth G-representation V (over K) is
a K-vector space V with a linear G-action such that the stabilizer of each vector in
V is open in G. (Traditionally one considers smooth G-representations in C-vector
spaces; but since the topology of the coefficient field plays absolutely no role in
the definition, this makes a difference only in-so-far as we do not require K to be
algebraically closed.) Moreover, a smooth G-representation V is called admissible
if, for any compact open subgroup H ⊆ G, the vector subspace V H of H-invariant
vectors in V is finite dimensional. Finally, irreducibility of a smooth representation
is always meant in the algebraic sense.

The unit element in G has a countable fundamental system of open compact
neighborhoods. This implies that the finest locally convex topology on an admissible
G-representation V is of compact type (being the countable locally convex inductive
limit of the finite dimensional spaces V H). Since the orbit maps ρv(g) := gv, for
v ∈ V , are locally constant on G we see that any admissible G-representation V
becomes a locally analytic G-representation on a vector space of compact type once
we equip V with the finest locally convex topology; as such we denote it by V c.

Let g denote the Lie algebra of G and let U(g) be the universal enveloping algebra
of g. The latter is naturally included in D(G,K) ([ST], §2). The action of an x ∈ g

on a locally analytic G-representation W is given by

w → xw :=
d

dt
exp(tx)w|t=0(1)

where exp: g 99KG denotes the exponential map defined locally around 0 ([ST], 3.2).
In addition, Taylor’s formula says that, for each fixed w ∈W , there is a sufficiently
small neighborhood U of 0 in g such that, for x ∈ U , we have a convergent expansion

exp(x)w =
∞∑
n=0

1
n!

xnw .(2)

The formulas (1) and (2) together imply that the orbit maps ρw, for w ∈ W , are
locally constant if and only if the g-action on W is trivial or equivalently if and
only if the closed 2-sided ideal I(g) in D(G,K) generated by g annihilates W .

What can we say about the quotient algebra D∞(G,K) := D(G,K)/I(g)?
D(G,K) is the strong dual of the space Can(G,K) of K-valued locally analytic

functions on G. Since the Dirac distributions generate a dense subspace in D(G,K)
([ST], 3.1) the ideal I(g) is the orthogonal of the closed subspace inCan(G,K) which
is the simultaneous kernel of all linear forms δg ∗ x∗δh with x ∈ g and g, h ∈ G. This
is precisely the subspace of those functions in Can(G,K) which are annihilated by
the action of g. And this in turn, by Taylor’s formula, is the subspace C∞(G,K) of
all K-valued locally constant functions on G with the subspace topology. On the
other hand, as a direct product of spaces of compact type the space Can(G,K) is
reflexive. In this situation the strong dual of a closed subspace is the quotient of
the strong dual by the orthogonal subspace ([B-TVS], IV.16, Cor.). In other words,
we have

D∞(G,K) = C∞(G,K)′b .
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Moreover, if H ⊆ G is a fixed compact open subgroup, then

C∞(G,K) =
∏

g∈G/H
C∞(gH,K)

is the direct product of the spaces C∞(gH,K) each of which is a locally convex in-
ductive limit of finite dimensional spaces and hence carries the finest locally convex
topology (compare [ST], 1.2.i). In particular, C∞(H,K) is the inductive limit

C∞(H,K) = lim
−→
N

K[H/N ]

of the algebraic group rings K[H/N ] with N running through the open normal
subgroups of H .

All of this applies to V c for any admissible G-representation V . In particular,
V c as well as its strong dual (V c)′b are D∞(G,K)-modules. Clearly, M := (V c)′b is
an analytic D(G,K)-module if and only if M is finitely generated as a D∞(H,K)-
module for some fixed but arbitrary choice of a compact open subgroup H ⊆ G.
This condition can be expressed purely in terms of multiplicities as follows. Let Ĥ
denote the set of isomorphism classes of all irreducible smooth H-representations.
Recall that any π ∈ Ĥ is finite dimensional. We let

µ(π) := multiplicity of π in C∞(H,K)

so that we have

C∞(H,K) ∼=
⊕
π∈Ĥ

µ(π) · π

and

D∞(H,K) ∼=
∏
π∈Ĥ

(π∗)×µ(π)(3)

where π∗ denotes the contragredient of π. Any smooth G-representation V is
semisimple as an H-representation. Moreover, V is admissible if and only if the
multiplicities

µ(π, V ) := multiplicity of π in V

for any π ∈ Ĥ are finite. We then have

V ∼=
⊕
π∈Ĥ

µ(π, V ) · π

and

(V c)′b ∼=
∏
π∈Ĥ

(π∗)×µ(π,V )(4)

as D∞(H,K)-modules.

Definition. A smooth G-representation is called strongly admissible if there is a
natural number m such that

µ(π, V ) ≤ m · µ(π)

for any π ∈ Ĥ .



116 P. SCHNEIDER, J. TEITELBAUM, AND DIPENDRA PRASAD

That the above definition does not depend on the particular choice of H can be
seen as follows. Let H0 ⊆ H be a pair of compact open subgroups in G. For any
π ∈ Ĥ and σ ∈ Ĥ0 let µ(π : σ) denote the multiplicity of σ in π|H0. One easily
checks that

[H : H0] · µ(σ) =
∑
π∈Ĥ

µ(π : σ) · µ(π) and µ(π) =
∑
σ∈Ĥ0

µ(π : σ) · µ(σ) .

Assuming that µ(π, V ) ≤ m · µ(π), resp. µ(σ, V ) ≤ n · µ(σ), we compute

µ(σ, V ) =
∑
π∈Ĥ

µ(π : σ) · µ(π, V )

≤ m ·
∑
π∈Ĥ

µ(π : σ) · µ(π)

= m · [H : H0] · µ(σ) ,

respectively,

µ(π, V ) ≤
∑
σ∈Ĥ0

µ(π : σ) · µ(σ, V )

≤ n ·
∑
σ∈Ĥ0

µ(π : σ) · µ(σ)

= n · µ(π) .

Proposition 2.1. The functor V 7−→ (V c)′b is an (anti)equivalence of categories
between the category of all strongly admissible G-representations and the category
of all analytic D(G,K)-modules which are annihilated by I(g).

Proof. Comparing (3) and (4) it is obvious that (V c)′b is finitely generated as a
D∞(H,K)-module if and only if V is strongly admissible. Hence the functor in
question is well defined and fully faithful. Moreover, if M is an analytic D(G,K)-
module annihilated by I(g), then we have a topological surjectionD∞(H,K)r �M
for some r ≥ 1. The dual embedding M ′ ↪→ C∞(H,K)r shows that V := M ′b
carries the finest locally convex topology and therefore is a strongly admissible G-
representation. By reflexivity we have M = (V c)′b so that M lies in the image of
our functor.

Proposition 2.2. If G is the group of L-rational points of a connected reductive
L-group G, then any smooth G-representation of finite length is strongly admissible.

Proof. Let C be a fixed algebraically closed field which contains K. We first want
to reduce the assertion to the case where the coefficient field of the smooth rep-
resentation is C. Denoting by (.)C the base extension functor from K to C we
have

VC ∼=
⊕
π∈Ĥ

µ(π, V ) · πC .

Let IrrC(H) denote the set of isomorphism classes of all irreducible smooth H-
representations over C. For each σ ∈ IrrC(H) there is a unique π(σ) ∈ Ĥ such
that σ occurs in π(σ)C . The theory of the Schur index tells us the following ([CR],
(70:15)):
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1) The Schur index mK(σ) of σ ∈ IrrC(H) with respect to K only depends on
π(σ); we therefore put mK(π) := mK(σ) if π = π(σ).

2) For any π ∈ Ĥ we have the decomposition

πC ∼= mK(π) ·
⊕

π(σ)=π

σ .

3) If π = π(σ), then µ(π) ·mK(π) = dimC σ.
By using 2) our above decomposition of VC becomes

VC ∼=
⊕

σ∈IrrC(H)

µ(π(σ), V ) ·mK(π(σ)) · σ .

If we therefore show that there is an m ∈ N such that µ(σ, VC) = µ(π(σ), V ) ·
mK(π(σ)) ≤ m ·dimC σ for any σ ∈ IrrC(H), then it follows from 3) that µ(π, V ) ≤
m·µ(π) for any π ∈ Ĥ . According to [Vig], II.4.3.c with V also VC is of finite length.
This reduces us to proving our assertion for smooth G-representation over some al-
gebraically closed field C containing the field of complex numbers C. We first look
at the case when V is irreducible supercuspidal. By a character twist we may as-
sume that the central character of V is of finite order. According to [Vig], II.4.9, the
representation V is then the base extension to C of an irreducible supercuspidal G-
representation over C. For the latter our assertion is a theorem of Harish-Chandra
([HC], Cor. of Thm. 2), and it is obvious that the base extension between two
algebraically closed fields respects our assertion. Since a general irreducible V is
contained in a representation parabolically induced from a supercuspidal represen-
tation, it remains to show that parabolic induction respects strong admissibility.
Let P = PLPu be a parabolic subgroup of G with unipotent radical Pu and Levi
factor PL and let W be a strongly admissible smooth representation of PL. We
have to check that V := IndGP (W ) is again strongly admissible. Since V is known
to be admissible ([Vig], II.2.1), we can do this by proving that the full linear dual
V ∗ of V is finitely generated as an D∞(H,K)-module. Moreover, being completely
free in the choice of the compact open subgroup H of G we may choose it in such
a way that the Iwasawa decomposition G = HP holds. Put HP := H ∩ P and let
HL denote the image of HP in PL. As an H-representation we then have

IndGP (W ) = IndHHP (W |HL) .

By assumption (W |HL)∗ is a finitely generated D∞(HL,K)-module. Therefore, it
suffices to see that

IndHHP (W |HL)∗ = D∞(H,K) ⊗
D∞(HP ,K)

(W |HL)∗

holds true. By semisimplicity this is an easy consequence of the analogous identity
with W |HL replaced by C∞(HP ,K).

As a consequence of these results we obtain that the functor V 7−→ (V c)′b in-
duces a bijective correspondence between irreducible smooth G-representations and
quasi-simple analytic D(G,K)-modules which are annihilated by I(g). It should be
pointed out that (V c)′b as a vector space is the full linear dual of V . The smooth
linear forms, in general, form a proper D∞(G,K)-submodule of (V c)′b so that the
latter cannot be simple.
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3. U(g)-finite modules

In this section we let G be the group of L-rational points of a connected reductive
split L-group G. We want to understand more generally those analytic D(G,K)-
modules M on which U(g) acts through a finite dimensional quotient. They will
be called U(g)-finite.

Let E be the underlying L-vector space of an irreducible L-rational algebraic
representation of G. For any U(g)-finite analytic D(G,K)-module M we set

ME := HomU(g)(E,M) .

HomL(E,M) and hence ME as a closed vector subspace both inherit a natural
Fréchet topology from M . The group G acts on ME via the continuous K-linear
endomorphisms

f 7−→ gf(x) := g(f(g−1x)) for g ∈ G and f ∈ME.

Moreover,

E × ME −→ M
(x, f) 7−→ f(x)

is a continuous G-equivariant bilinear map.
Let V := M ′b denote the strong dual of M as a locally analytic G-representation.

In order to determine the topology on V we need the following result.

Proposition 3.1. Let J ⊆ U(g) be a 2-sided ideal of finite codimension and let
H ⊆ G be a compact open subgroup; then the subspace topology on the subspace
Can(H,K)J=0 of all vectors in Can(H,K) annihilated by J is the finest locally
convex topology.

Proof. Fix an ordered vector space basis for g, and an exponential map for G. This
data, together with a choice of disk of sufficiently small radius s around the origin
in Ldimg, determines a “canonical chart of the second kind” on H . Let Hr be the
family of standard compact open subgroups of H obtained from this canonical chart
(see [Fea], 4.3.3). The Banach space of analytic functions on Hr is the standard
Banach space F0,r(K) of convergent series with coefficients in K on the disk of
radius r for 0 < r ≤ s. Let

Fr :=
∏

h∈Hr\H
F0,r(K) .

Following the proof of [Fea], 3.3.4, we see that this Banach space is an analytic
Hs-representation and

lim
→
Fr ∼−→ Can(H,K) .

By [Fea], 4.7.3, there is a nondegenerate pairing between U(g) and the factor F0,r

of the product defining Fr corresponding to the trivial coset Hr. This pairing is
given by evaluation at the identity element

U(g)×F0,r → K
(z, f) 7→ (zf)(1) .

The ideal J is of finite codimension in U(g), and given the nondegeneracy of the
pairing it follows that the space FJ=0

0,r is finite dimensional. Furthermore, because
the U(g)-action from the left commutes with the right translation action of H it
follows immediately that FJ=0

r is finite dimensional. Then Can(H,K)J=0, being
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the direct limit of these finite dimensional spaces ([ST], 1.2.i), has the finest locally
convex topology.

Since M is analytic we have a surjection D(H,K)m � M of D(H,K)-modules
for some m ∈ N and some (or any) compact open subgroup H ⊆ G. After dualizing,
we obtain an injection V ↪→ Can(H,K)m which certainly is U(g)-linear ([ST], 3.2).
Moreover, by assumption there is a 2-sided ideal J ⊆ U(g) of finite codimension
which annihilates M and hence V . Hence we actually have an injection V ↪→
(Can(H,K)J=0)m. Applying Proposition 3.1 we now see that the topology on V
necessarily is the finest locally convex one.

For general reasons E ⊗L V with G acting diagonally also is a locally analytic
G-representation on a K-vector space of compact type ([Fea], 2.4.3 and [ST], 1.2.ii).
For our particular V the topology on E⊗L V is, according to the above discussion,
the finest locally convex one. We let E ⊗U(g) V denote the G-equivariant quotient
of E⊗LV by the (automatically closed) K-vector subspace generated by all vectors
of the form xx⊗ v+ x⊗ xv for x ∈ g, x ∈ E, and v ∈ V . By [ST], 1.2.i this quotient
is a locally analytic G-representation on a K-vector space of compact type whose
topology is the finest locally convex one and whose strong dual evidently is ME . In
particular, both E ⊗U(g) V and ME are separately continuous D(G,K)-modules.

By continuity and [ST], 3.1, the above bilinear map E ×ME −→ M induces a
continuous D(G,K)-module homomorphism

E ⊗LME −→M .

By construction the g-action on E ⊗U(g) V derived from the G-action is trivial.
Hence I(g) annihilates E ⊗U(g) V and by duality also ME. Provided that ME is
finitely generated as a D(H,K)-module for some compact open subgroup H ⊆ G,
it follows from Proposition 2.1 that ME is the dual of the strongly admissible
G-representation E ⊗U(g) V .

Let Ĝ denote the set of isomorphism classes of all irreducible L-rational algebraic
representations of G. We have the continuous D(G,K)-module homomorphism⊕

E∈Ĝ

E ⊗LME −→M .

The direct sum on the left-hand side in fact is finite since the number of E ∈ Ĝ
which are annihilated by a given 2-sided ideal of finite codimension in U(g) is finite.

Proposition 3.2. Assume that G is split semisimple and simply connected; for
any U(g)-finite analytic D(G,K)-module M the natural map⊕

E∈Ĝ

E ⊗LME ∼=−→M

is an isomorphism of D(G,K)-modules, each ME is the linear dual of a strongly
admissible G-representation over K, and ME = 0 for all but finitely many E ∈ Ĝ.

Proof. We have already noted that the map in question is a homomorphism of
D(G,K)-modules and that the direct sum on the left-hand side is finite. To estab-
lish the bijectivity we set gK := g⊗L K and we let ĝ, resp. ĝK , denote the set of
isomorphism classes of all finite dimensional simple g-modules, resp. gK-modules.
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By assumption M is a U(gK)/J-module for some 2-sided ideal J ⊆ U(gK) of fi-
nite codimension. Since g is semisimple, the algebra U(gK)/J is semisimple ([Dix],
1.6.4). Hence M is a semisimple gK-module and we have its isotypic decomposition

M =
⊕
E∈ĝK

ME

(compare [Dix], 1.2.8). Moreover, since EndU(gK)(E)=K ([Dix], 2.6.5 and 7.2.2(i)),
we have the natural isomorphism

E ⊗K HomU(gK)(E,M)
∼=−→ME

for any E ⊆ ĝK . Since the functor E 7−→ E⊗LK induces a bijection ĝ
∼−→ ĝK (both

sides are classified by the dominant weights) the above isotypic decomposition can
be rewritten as a bijection⊕

E∈ĝ

E ⊗L HomU(g)(E,M) '−→M .

But since G is assumed to be simply connected, we have, by derivation, the natural
bijection Ĝ ∼−→ ĝ so that the last bijection coincides with the isomorphism in the
assertion.

With M also its direct summand, E ⊗LME is finitely generated as a D(H,K)-
module for any compact open subgroup H ⊆ G. It follows that ME is a finitely
generated D(H,K)-module as well: Take finitely many tensors which generate
E ⊗L ME ; their ME-components form a generating set for ME . As explained
above, ME then is the linear dual of a strongly admissible G-representation.

Example. The assumptions on the group G in the above proposition cannot be
weakened as the following example shows. Let L = K := Q2, G := PGL3, and
Go := SL3. Then Go := SL3(Q2) is an open normal subgroup of index three
in G = PGL3(Q2). Let Eo denote the three-dimensional standard representation
of Go and let M := IndGGo

(Eo) be the induced G-representation (in the sense of
abstract groups). It is clear that M is a U(g)-finite analytic D(G,K)-module. One
checks that as a Go-representation, M is isomorphic to Eo ⊕ Eo ⊕ Eo. Since Ĝ is
a subset of Ĝo = ĝ to which Eo does not belong, we see that HomU(g)(E,M) = 0
for any E ∈ Ĝ.

For the sake of completeness we remark that vice versa any finite direct sum
E1⊗L HomK(V1,K)⊕ . . .⊕Er ⊗L HomK(Vr,K) with Ei ∈ Ĝ and strongly admis-
sible smooth G-representations Vi over K is a U(g)-finite analytic D(G,K)-module.
Apart from the finite generation which is contained in the subsequent lemma, this
is clear.

Lemma 3.3. Let H ⊆ G be a compact open subgroup; for any finitely generated
D∞(H,K)-module N and any E ∈ Ĝ the D(H,K)-module E ⊗L N is finitely
generated.

Proof. We begin with a general observation. Let O(G) denote the space of L-
rational functions on G. Then the map

O(G) ⊗
L
C∞(H,K) −→ Can(H,K)

(ψ, f) 7−→ ψ|H · f
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is injective. This can be seen as follows. Let
∑m

j=1 ψj ⊗ fj be an element in the
left-hand side such that

∑
j ψj |H · fj = 0. We may assume that ψ1, . . . , ψm are

linearly independent. Choose a disjoint covering H =
⋃̇n
i=1 Ui by nonempty open

subsets Ui ⊆ H such that the restrictions fj |Ui, for any 1 ≤ j ≤ m and 1 ≤ i ≤ n,
are constant. Since each Ui is Zariski dense in G (this can be deduced, e.g., from
[DG], II.5.4.3 and II.6.2.1) it follows that ψ1|Ui, . . . , ψm|Ui viewed in Can(Ui,K)
still are linearly independent. Hence fj |Ui = 0 for any i and j and therefore fj = 0
for any j.

Coming back to our assertion it suffices, of course, to consider the case N =
D∞(H,K). On the other hand, if J ⊆ U(g) denotes the annihilator ideal of E∗,
then we find some G-equivariant embedding E∗ ↪→ O(G)J=0. Combining this
with the above map leads, using the Leibniz rule, to an H-equivariant embedding
E∗⊗LC∞(H,K) ↪→ Can(H,K)J=0 ⊆ Can(H,K). As a consequence of Proposition
3.1 the topology induced by Can(H,K) on the left-hand side is the finest locally
convex topology. By dualizing we therefore obtain a surjection D(H,K) � E ⊗L
D∞(H,K) of D(H,K)-modules.

We finally study the question when a U(g)-finite analytic D(G,K)-module is
quasi-simple.

Proposition 3.4. If E ∈ Ĝ and V is an irreducible smooth G-representation over
K, then E⊗

L
V with the diagonal G-action is a simple module over the group ring

K[G].

Proof. We show that each nonzero element x ∈ E ⊗L V generates E ⊗L V as a
K[G]-module. But first we recall a few facts from rational representation theory
(compare [Jan], II §§1 and 2). Fix a Borel subgroup P ⊆ G and a maximal split
torus T ⊆ P , and let N denote the unipotent radical of P .

1. The subspace EN of N -invariants in E is one-dimensional and coincides with
the weight space Eλ where λ is the highest weight of E (w.r.t. T and B).

2. If e ∈ Eµ has weight µ, then Ne ⊆ e+
∑

µ<ν Eν .
Fact 1 above holds true similarly on the level of Lie algebras. This shows that

whenever Uo ⊆ N is an open subgroup then
1′. EUo = EN = Eλ is one-dimensional.
Since E is also an irreducible module for the induced action of the Lie algebra

of G, it follows that whenever U ⊆ G is an open subgroup we have
3. L[U ] · e = E for any nonzero e ∈ E.
Consider now a fixed nonzero element

x = e1 ⊗ v1 + . . .+ er ⊗ vr
with 0 6= ei ∈ E and 0 6= vi ∈ V . We may assume that each ei is a weight vector.
In order to show that K[G] ·x = E⊗L V we may replace x when convenient by any
other nonzero element in K[G] · x. In a first step we will show that for this reason
we may assume in fact that r = 1.

By the smoothness of V we find an open subgroup U ⊆ G which fixes each of the
vectors v1, . . . , vr. Put Uo := U∩N . If Uo fixes x, we are immediately reduced to the
case r = 1 since, by 1′, we then have x ∈ (E⊗L V U )Uo = EUo ⊗L V U = Eλ⊗L V U .
Otherwise, there is a g ∈ Uo such that gx− x 6= 0 and we replace x by

gx− x = (ge1 − e1)⊗ v1 + . . .+ (ger − er)⊗ vr .
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The point to note is that, by 2, each gei − ei lies in a sum of weight spaces where
the occurring weights are strictly bigger than the weight of ei. This means that one
way or another after finitely many steps we have replaced x by a nonzero element
in Eλ ⊗L V U for which r can be assumed to be one.

Therefore, for the second step of the proof, let x ∈ E ⊗L V be an element of the
form x = e⊗ v with 0 6= e ∈ E and 0 6= v ∈ V . Denote by U ⊆ G the stabilizer of
v. Using 3 and the irreducibility of V we obtain

K[G] · x = K[G] · ((L[U ] · e)⊗ v) = K[G] · (E ⊗ v) = E ⊗K[G] · v = E ⊗ V .

Corollary 3.5. Assume that G is split semisimple and simply connected and let
M be any U(g)-finite analytic D(G,K)-module; then M is quasi-simple if and only
if it is of the form M ∼= E ⊗L HomK(V,K) for some E ∈ Ĝ and some irreducible
smooth G-representation V over K.

Proof. If E ∈ Ĝ and V is irreducible smooth, then E∗ ⊗L V is a simple D(G,K)-
module by Proposition 3.4. Hence E⊗LHomK(V,K) = (E∗⊗LV )′ is quasi-simple.

If, on the other hand, M is quasi-simple, then there is, by Proposition 3.2, an E ∈
Ĝ and a strongly admissible G-representation V such that M = E⊗LHomK(V,K).
With M also HomK(V,K) is quasi-simple. Hence V is irreducible.

The results of this section have more or less obvious counterparts for G being a
compact open subgroup in G(L). We leave precise formulations to the reader.

4. An example

In this last section we will analyze the reducible members of the locally analytic
principal series of the group SL2(Qp) and we will show that they contain tensor
product representations of the kind considered in the last section.

Throughout this section let G := SL2(Qp). Furthermore, let P denote the Borel
subgroup of lower triangular matrices in G and T the subgroup of diagonal matrices.
We actually will view T as a quotient of P . Assuming that K is contained in the
completion of an algebraic closure of Qp we fix a K-valued locally analytic character

χ : T → K× .

The corresponding principal series representation is

IndGP (χ) := {f ∈ Can(G,K) : f(gp) = χ(p−1)f(g) for any g ∈ G, p ∈ P}
with G acting by left translation. This is a locally analytic G-representation on a
vector space of compact type and its strong dual

Mχ := IndGP (χ)′b

is a D(G,K)-module which is finitely generated, e.g., as a D(B,K)-module where
B is the Iwahori subgroup of G ([ST], §§5 and 6). By Proposition 1.1 the D(G,K)-
module Mχ therefore is analytic.

The basic numerical invariant of the character χ which governs the irreducibility
properties of IndGP (χ) is the number c(χ) ∈ K defined by the expansion

χ

((
t−1 0
0 t

))
= exp(c(χ) log(t))
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for t sufficiently close to 1 in Zp. It is shown in [ST], 6.1 that Mχ is a simple
D(G,K)-module if c(χ) 6∈ −N0 (N0 is the non-negative integers). We therefore
assume for the rest of this section that m := −c(χ) ∈ N0. According to [ST], 6.2,
we then have a nonzero homomorphism of D(G,K)-modules Mχ′ −→ Mχ where

χ′ := εm+1χ and ε

((
t−1 0
0 t

))
:= t2 is the positive root of G with respect to P .

Since c(χ′) = m+ 2, the module Mχ′ is simple and the above map consequently is
injective. It therefore remains to discuss the quotient module

M loc
χ := Mχ/Mχ′

which, of course, is finitely generated. On the other hand, the above map is ex-
hibited in the proof of [ST], 6.2 as the dual I ′ of a G-equivariant continuous linear
map

I : IndGP (χ) −→ IndGP (χ′)

whose actual construction we will recall further below. By the argument in [ST],
3.5, the kernel of I again is a locally analytic G-representation on a vector space of
compact type. We will see that I is a quotient map or equivalently that the image
I ′(Mχ′) is closed in Mχ. The module M loc

χ therefore is the continuous dual of the
kernel of I and, in particular, is analytic.

Write χ = χalg · χlc where χalg

((
t−1 0
0 t

))
:= t−m is a Qp-rational charac-

ter and χlc is a K-valued locally constant character of T . The character χalg is
dominant for the Borel subgroup P− opposite to P ; hence the algebraic induc-
tion indGP (χalg) is the irreducible Qp-rational representation of highest weight χalg
(w.r.t. P−) of G (compare [Jan], II.2 and II.8.23). On the other hand, since the
character χlc is locally constant, we may form the smooth induced G-representation

IndGP,∞(χlc) := {f ∈ C∞(G,K) : f(gp) = χlc(p−1)f(g) for any g ∈ G, p ∈ P}

over K with G acting by left translation. It is known ([Vig], II.5.13) to be a
smooth G-representation of finite length which, by Proposition 2.2, implies that it
is strongly admissible. There is the obvious G-equivariant linear map

τ : indGP (χalg) ⊗
Qp

IndGP,∞(χlc) −→ IndGP (χ)

(ψ, f) 7−→ ψ · f .

We claim that

0 −→ indGP (χalg) ⊗
Qp

IndGP,∞(χlc)
τ−→ IndGP (χ) I−→ IndGP (χ′) −→ 0(∗)

is an exact sequence of locally convex K-vector spaces (where the left-hand term
carries the finest locally convex topology). This means that it is exact as a sequence
of vector spaces and that the maps involved are strict. By dualizing and observing
that the rational representations of G are selfdual this leads to the following result.

Proposition 4.1. If c(χ) ∈ −N0, then the D(G,K)-module M loc
χ is analytic and

U(g)-finite and is isomorphic to the tensor product of the Qp-rational G-representa-
tion indGP (χalg) and the full K-linear dual of the smooth representation IndGP,∞(χlc)
of finite length.
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We begin by recalling the construction of I from [ST], 6.2. The group G acts
on Can(G,K) by left and right translations. Both actions derive into an action of
the Lie algebra g = sl2(Qp). Whereas the actions coming from left translation are
denoted, as usual, by f 7→ gf for g ∈ G and f 7→ xf for x ∈ g we write f 7→ xrf for
the g-action derived from right translation. Then

I(f) = (u−)1+m
r f

where u− :=
(

0 1
0 0

)
∈ g.

Corresponding to the decomposition G = BP ∪̇ BwP where B ⊆ G is the

Iwahori subgroup and w :=
(

0 −1
1 0

)
, the sequence (∗) is the direct sum of the

sequences

0 −→ indGP (χalg) ⊗
Qp

IndBPP,∞(χlc)
τ−→ IndBPP (χ) I−→ IndBPP (χ′) −→ 0

and

0 −→ indGP (χalg) ⊗
Qp

IndBwPP,∞ (χlc)
τ−→ IndBwPP (χ) I−→ IndBwPP (χ′) −→ 0 .

The superscripts BP and BwP indicate the subspaces of those functions in the
induced representation which are supported in BP and BwP , respectively. Both
these sequences can be computed explicitly as follows. Let U , resp. U−, be the
unipotent radical of P , resp. P−, and define Uo := U ∩ B and U−o := U− ∩ B.
Denoting by u, resp. u−, the function on Uo, resp. U−o , which sends a matrix
to its left lower, resp. right upper, entry we introduce the finite dimensional Qp-
vector spaces Polm(Uo) and Polm(U−o ) of polynomials of degree ≤ m in u and u−,
respectively, with coefficients in Qp. By restricting, resp. translating by w and
restricting, functions the above two sequences become isomorphic to

0 −→ Polm(U−o ) ⊗
Qp
C∞(U−o ,K) τ−→Can(U−o ,K)

( d
du− )1+m

−→ Can(U−o ,K) −→ 0

and

0 −→ Polm(Uo) ⊗
Qp
C∞(Uo,K) τ−→Can(Uo,K)

(− d
du )1+m

−→ Can(Uo,K) −→ 0 .

In these sequences the injectivity of the first map as well as the exactness in the
middle are obvious. By Proposition 3.1 the subspace topology on the kernel of the
second map is the finest locally convex topology. The surjectivity and strictness of
the second map can either be checked directly or can be seen as a special case of
the more general statement in [Fea], 2.5.4. This finishes the proof of the exactness
of (∗).

The smooth G-representation IndGP,∞(χlc) is of length at most 2. More precisely,
one has ([GGP], p. 173) that IndGP,∞(χlc) is irreducible except in the following cases:

A) χlc = 1 is the trivial character. Then IndGP,∞(1) contains the one-dimensional
trivial representation on the subspace of constant functions. The corresponding
quotient is the so-called Steinberg representation which is irreducible.



U(g)-FINITE LOCALLY ANALYTIC REPRESENTATIONS 125

B) χlc is the character χlc

((
t−1 0
0 t

))
= |t|2 where | | denotes the normalized

absolute value of Qp. Then IndGP,∞(χlc) contains the Steinberg representation and
the corresponding quotient is the one dimensional trivial representation.

C) χlc is of the form χlc

((
t−1 0
0 t

))
= |t| · δ(t) for some non-trivial quadratic

character δ : Qp× −→ K×. Then IndGP,∞(χlc) either is irreducible (but not abso-
lutely irreducible) or is the direct sum of two infinite dimensional non-equivalent
irreducible G-representations.

If we combine this information with Proposition 4.1 and Corollary 3.5, we obtain
a complete list of the quasi-simple constituents of M loc

χ up to isomorphism. In
particular, each of them is isomorphic to the tensor product of indGP (χalg) and the
full K-linear dual of one of the irreducible smooth representations in the above list.
At this point it should be mentioned that the length of a Jordan-Hölder series for
the kernel of I on IndGP (χ) was already determined in [Mor].

Appendix: Locally algebraic representations of p-adic groups

Let k be a non-Archimedean local field, and let G = G(k) be the k-rational points
of a reductive algebraic group over k. It has been traditional as in the pioneering
work of Jacquet and Langlands to study smooth representations of G over complex
numbers. It seems likely that representations of G over vector spaces over k (or,
extensions of k, such as k, the algebraic closure of k, or kc, the completion of k)
may be of interest too for number theoretic applications such as congruences of
modular forms. Initial attempts were made by Morita (cf. [Mor]) who studied
a certain class of representations of SL2(Qp). Recently Schneider and Teitelbaum
have started a detailed program (cf. [ST] and this paper) of defining a good category
of such representations which are essentially locally analytic. This involves rather
delicate care with the topologies involved. In this note we study a much more
restrictive class of representations which we call locally algebraic, defined as follows.
In this note we will not differentiate between algebraic representations of G and of
G = G(k) which we are allowed by the Zariski density of G(k) in G(k). We also
note that an irreducible algebraic representation of G = G(k) remains irreducible
when restricted to any open subgroup, and that the restriction map from irreducible
algebraic representations of G to representations of an open subgroup is an injective
map.

Definition. Let G be an algebraic group over a non-Archimedean local field k.
Let V be a vector space over k′, which is an extension of k. A representation π of
G = G(k) on V is called locally algebraic if:

1. The restriction of π to any compact open subgroup K of G is a sum of finite
dimensional irreducible representations of K.

2. For any vector v in V , there exists a compact open subgroup Kv in G, and a
finite dimensional subspace U of V containing the vector v such that Kv leaves U
invariant and operates on U via restriction to Kv of a finite dimensional algebraic
representation of G.

Examples. 1. Algebraic representations of G.
2. The usual complex smooth representations of G.
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Remark 1. It follows from the standard methods in the p-adic groups, using Lie
algebras, that a finite dimensional analytic representation of a compact open sub-
group of a semisimple simply connected group in characteristic 0 is indeed algebraic
when restricted to an open subgroup of finite index. Therefore it is condition (1)
in the definition of locally algebraic representations that is restrictive, and not con-
dition (2) which may appear to be the main part of the condition. One may call
representations which satisfy condition (i) of the definition above to be locally finite
dimensional. From what we have just remarked, locally finite dimensional represen-
tation of a semisimple group in characteristic 0 is automatically locally algebraic.
On the other hand, it is clear that tori, for instance, as Qp∗ = Z×Zp∗, have many
nonalgebraic representations. (A character on Zp∗ is, locally around the origin, of
the form x→ exp(a log x) where a belongs to a field extension of Qp, and hence is
the restriction of a locally algebaric character of Qp∗ if and only if a belongs to Z.)

Here is the main result of this note which classifies all the locally algebraic
representations of G.

Theorem 1. 1. Every irreducible locally algebraic representation π of G is the
tensor product π = π1 ⊗ π2 of an irreducible algebraic representation π1 of G and
of a smooth irreducible representation π2 of G.

2. Conversely, the tensor product π = π1⊗π2 of an irreducible algebraic represen-
tation π1 of G and of a smooth irreducible representation π2 of G is an irreducible
locally algebraic representation of G.

Proof. By the definition of locally algebraic representation, there exists an algebraic
representation π1 of G, a compact open subgroup K1 of G and a finite dimensional
subspace U of π invariant under K1 such that the action ofK1 on U is the restriction
to K1 of the representation π1 of G. Clearly, we can assume that π1 is an irreducible
representation of G.

Define

π2 = lim
K

HomK [π1, π],

where the direct limit is taken over all the compact open subgroups K of G which
have their common intersection as only {e}.

There is an action of G on π2 defined in a natural way as follows. For φ ∈
HomK [π1, π], and v1 ∈ π1,

(g · φ)(v1) = gφ(g−1v1).

It is clear that if φ ∈ HomK [π1, π], then g · φ ∈ HomgKg−1 [π1, π].
We now claim that the natural map,

Φ : π1 ⊗ lim
K

HomK [π1, π]→ π,

defined by mapping (v, φ) to φ(v) is a G-equivariant isomorphism. For this we note
the following:

1. G-equivariance:

(gv, g · φ)→ (g · φ)(gv) = gφ(g−1gv) = gφ(v).

2. Injection: Since the map

π1 ⊗HomK [π1, π]→ π

is an injection for all K, so is the map Φ after taking the direct limit.
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3. Surjection: The image of Φ being G-invariant must be all of π as π is irre-
ducible.

This proves part (1) of the theorem. Now we prove that π1 ⊗ π2 as in part (2)
of the theorem is always irreducible.

Suppose that W is a G-invariant subspace of π1 ⊗ π2. As in part (1) of the
theorem, we can define limK HomK [π1,W ] which will be a G-invariant subspace of

lim
K

HomK [π1, π1 ⊗ π2] ∼= π2.

Since π2 is irreducible, it follows that

lim
K

HomK [π1,W ] = π2.

Hence from the natural injections,

π1 ⊗ lim
K

HomK [π1,W ] ↪→W ↪→ π1 ⊗ π2,

we find,

π1 ⊗ π2 ↪→ W ↪→ π1 ⊗ π2,

proving that W = π1 ⊗ π2.

Remark 2. It follows from the theorem that there are no really interesting locally
algebraic representations of p-adic groups. It could still happen that all locally
analytic representations whose strong duals are quasi-simple analytic modules over
D(G,K) (as defined in the main part of this paper) are subquotients of the princi-
pal series representations obtained from locally finite dimensional representations
of Levi subgroups (introduced in Remark 1), giving an analogue for analytic repre-
sentations of p-adic groups of the famous subquotient theorem of Harish-Chandra
for real groups.
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