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GENERIC CENTRAL EXTENSIONS AND PROJECTIVE
REPRESENTATIONS OF FINITE GROUPS

RACHEL QUINLAN

Abstract. Any free presentation for the finite group G determines a central
extension (R, F ) for G having the projective lifting property for G over any
field k. The irreducible representations of F which arise as lifts of irreducible
projective representations of G are investigated by considering the structure
of the group algebra kF , which is greatly influenced by the fact that the set
of torsion elements of F is equal to its commutator subgroup and, in par-
ticular, is finite. A correspondence between projective equivalence classes of
absolutely irreducible projective representations of G and F -orbits of abso-
lutely irreducible characters of F ′ is established and employed in a discussion
of realizability of projective representations over small fields.

1. Preliminaries

The complex irreducible projective representations of a finite group G may be
described in terms of the complex irreducible ordinary representations of a cov-
ering group Ĝ for G, which takes the form of a central extension of the Schur
Multiplier M(G) of G by G. If we wish to discuss projective representations over
non-algebraically closed fields however, no finite central extension for G can in gen-
eral play the role of Ĝ. However, given a free presentation for G we may construct
a central extension F of a certain infinite abelian group R by G, which behaves as
a covering group for G with respect to all fields. We will refer to groups such as F
as generic central extensions for G. Their representation theory yields information
on the irreducible projective representations of G over various fields.

Throughout this paper G will denote a finite group and k a field of characteristic
zero. We begin with the requisite definitions.

Definition 1.1. A projective representation T of G over k (of degree n) is a map

T : G −→ GL(n, k)

satisfying the conditions

T (1G) = 1GL(n,k),

T (g)T (h) = f(g, h)T (gh), ∀g, h ∈ G, where f(g, h) ∈ k×.
The function f : G × G −→ k× is the cocycle associated to T . The projec-

tive representation T of G extends by k-linearity to a ring homomorphism of the
twisted group ring kfG into Mn(k), which is completely reducible by Maschke’s
theorem (since char k = 0) and which we also denote by T . We say that T is an
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irreducible projective representation of G if its k-linear extension is an irreducible
representation of kfG.

If T1 and T2 are projective k-representations of G of degree n, we say that T1

and T2 are projectively equivalent over k if there exist a matrix A ∈ GL(n, k) and
a function µ : G −→ k× for which

T2(g) = µ(g)A−1T1(g)A, ∀g ∈ G.

From Definition 1.1 above it follows that the cocycle f associated to a projective
k-representation of G satisfies the following properties:

(1) f(x, 1) = f(1, x) = 1, ∀x ∈ G,
(2) f(x, y)f(xy, z) = f(x, yz)f(y, z), ∀x, y, z ∈ G.

Indeed the cocycles of G are precisely the functions from G×G into k× satisfying
(1) and (2) above, and they form a group, denoted by Z2(G, k×), under pointwise
multiplication.

The projective representation T is projectively equivalent to an ordinary k-
representation of G if and only if its cocycle f has the property

f(x, y) = µ(x)µ(y)µ(xy)−1, ∀x, y ∈ G,

for some function µ : G −→ k×. In this case f is called a coboundary. Within
the group of cocycles the coboundaries form a subgroup, denoted by B2(G, k×). If
T1 and T2 are projectively equivalent k-representations of G, then their cocycles
represent the same class in the quotient Z2(G, k×)/B2(G, k×) which is denoted
H2(G, k×). This abelian group may in general be infinite but it is finite when k is
sufficiently large, for example, if k is algebraically closed.

We remark that unlike the usual definition of equivalence of ordinary representa-
tions to which it is (somewhat) analogous, this definition of projective equivalence
depends on the field under consideration. It is possible that a pair of representa-
tions which are projectively inequivalent over a given field may become projectively
equivalent over some of its extensions. For example, we may define rational pro-
jective representations of degree 2 of the cyclic group of order 2 by sending the

generator either to
(

1 0
0 −1

)
or to

(
0 2
1 0

)
. These representations are pro-

jectively inequivalent over Q but not over Q
(√

2
)
. Thus in order to discuss the

projective equivalence of representations, we need to specify a field over which to
work.

Now let T : G −→ GL(n, k) be a projective k-representation of G. The subgroup
of GL(n, k) generated by {T (g), g ∈ G} need not be a homomorphic image of G
but it is an extension of some subgroup of k× (which we identify with the centre of
GL(n, k)) by such an image. This relates T to an ordinary representation of some
(possibly infinite) group having a homomorphic image of G as quotient modulo
a central subgroup. Suppose now that H is a group having G as image under
a homomorphism θ with A = ker θ ⊆ Z(H). In this situation we will refer to
(A,H, θ) (or sometimes (A,H) or just H) as a central extension for G. The central
extension (A,H, θ) is said to have the projective lifting property for G with respect
to the field k if whenever T : G −→ GL(n, k) is a projective representation of G
over k, there exists an ordinary representation T̃ : H −→ GL(n, k) for which the
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following diagram commutes:

H
T̃ //

θ

��

GL(n, k)

π

��

G
T

// GL(n, k) π
// PGL(n, k)

Here π denotes the usual projection of GL(n, k) on PGL(n, k).

2. Generic central extensions and their group algebras

If 〈F̃ |R̃〉 is a free presentation for G, we may define the groups

F := F̃ /[F̃ , R̃] and R := R̃/[F̃ , R̃].

Then R ⊆ Z(F ) and if φ̃ denotes the surjection of F̃ on G with kernel R̃, then
φ̃ induces a surjection φ : F −→ G with kernel R. Thus (R,F, φ) is a central
extension for G. Extensions of this type were introduced by Schur in his description
of finite covering groups, and as outlined in the next lemma, which follows easily
from the freeness of F̃ , they have a particular universal property amongst all central
extensions for G. For this reason we shall refer to them as generic central extensions
for G.

Lemma 2.1. Let (A,H, θ) be a central extension for G, and let (R,F, φ) be as
above. Then there exists a homomorphism α : F −→ H for which the following
diagram commutes:

1 // R //

α|R
��

F
φ

//

α

��

G //

id

��

1

1 // A // H
θ // G // 1

It is well known (see, for example, [10]) that if T is a projective k-representation
of G, then T lifts to an ordinary representation of a central extension of k× by G, in
which the group operation is defined in terms of the cocycle in Z2(G, k×) associated
to T . The following theorem is then an immediate consequence of Lemma 2.1.

Theorem 2.2. Let (R,F, φ) be a generic central extension for G, and let T : G −→
GL(n, k) be a projective representation of G over the field k. Then there exists an
ordinary k-representation T̃ of F for which the following diagram commutes:

F
T̃ //

φ

��

GL(n, k)

π

��

G
T

// GL(n, k) π
// PGL(n, k)

In the context of Theorem 2.2, it is apparent that T̃ is an irreducible represen-
tation of F if and only if T is irreducible as a projective representation of G. Thus
we obtain a connection between irreducible projective k-representations of G and
simple images of the group ring kF under k-algebra homomorphisms sending R
into k×. Our next aim is to establish some properties of generic central extensions
and their group algebras which will facilitate the study of such representations.
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Throughout the remainder of this paper we assume that (R,F, φ) is a generic
central extension for the finite group G. The following properties of F were estab-
lished by Schur (see [1], for example).

Theorem 2.3. The set of torsion elements of F is precisely equal to its commuta-
tor subgroup F ′, and is determined up to isomorphism by G. The group F ′ is finite
and is a central extension of F ′ ∩ R, which is isomorphic to the Schur multiplier
M(G) of G, by G′.

Theorem 2.3 has important implications for the investigation of the irreducible
k-representations of F in view of the following lemma, for which a proof can be
found in [5].

Lemma 2.4. Let G be a group and let F be a field. The support of every central
idempotent of the group algebra FG generates a finite normal subgroup of G.

It is now immediate that every central idempotent of kF belongs to kF ′, which by
Maschke’s theorem is a completely reducible ring. Of course F acts by conjugation
on the set I of primitive central idempotents of kF ′. If for each f ∈ I we choose a
transversal Tf for CF (f) in F , then the full set I of primitive central idempotents
of kF is given by

I =

∑
x∈Tf

fx


f∈I

.(2.1)

The group algebra kF decomposes as the direct sum

kF =
⊕
e∈I

kFe.

3. Projective equivalence

If T is an irreducible projective representation of G of degree n, let T̃ be a lift
of T to F . Then T̃ extends by k-linearity to an irreducible representation of kF ,
also denoted by T̃ , which sends some eT ∈ I to the identity matrix in Mn(k) and
annihilates all other elements of I. We will say that T belongs to the component
〈eT 〉 of kF , or simply to the idempotent eT . This notation is justified, as it is easily
checked that eT does not depend on the choice of lift T̃ ; since I ⊂ kF ′, this follows
from the observation that different lifts of T to F have the same restriction to F ′.

The following lemma is a consequence of a related fact: if T̃1 and T̃2 are lifts to
F of projectively equivalent projective k-representations of G, then the restrictions
T̃1|F ′ and T̃2|F ′ are (linearly) equivalent.

Lemma 3.1. Let T1 and T2 be projectively equivalent projective representations of
G over k. Then T1 and T2 belong to the same component of kF .

There is certainly no hope of the converse of Lemma 3.1 being true in general,
since for an arbitrary field k the group H2(G, k×) may be in infinite, in which case
G has infinitely many equivalence classes of irreducible projective k-representations.
Thus, in general, the connection between irreducible projective k-representations
belonging to the same component of kF is weaker than projective equivalence. In
the case where the field under consideration is algebraically closed, however, this
connection is as strong as we could hope for.
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Theorem 3.2. Let k̄ be an algebraically closed field of characteristic zero, and let
T1 and T2 be irreducible projective k̄-representations of G. Then T1 and T2 belong
to the same component of k̄F if and only if they are projectively equivalent over k̄.

The proof of Theorem 3.2 will require a number of steps. First we describe how
for a given irreducible projective k-representation T of G, the cocycle associated to
T may be recovered (up to cohomology) from any lift of T to F . This involves the
transgression map tra : Hom(R, k×) −→ H2(G, k×), which is defined as follows.
Let η ∈ Hom(R, k×), and let µ be a section for G in F . Then define tra η to be the
class in H2(G, k×) of the cocycle η′ defined for x, y ∈ G by

η′(x, y) = η(µ(x), µ(y), µ(xy)−1).

Lemma 3.3. Let T be an irreducible projective representation of G over the field
k, with cocycle f ∈ Z2(G, k×), belonging to the class f̄ ∈ H2(G, k×). Let T̃ be a
lift of T to F and let η = T̃ |R, regarded as a homomorphism of R into k×. Then
f̄ = tra η.

Proof. Let µ be a section for G in F and use it to define the cocycle η′ ∈ Z2(G, k×)
as above. For g, h ∈ G we have

η′(g, h) = η(µ(g)µ(h)µ(gh)−1)

= T̃ (µ(g)µ(h)µ(gh)−1)

= T̃ (µ(g)) T̃ (µ(h)) T̃
(
µ(gh)−1

)
f(g, h) = T (g)T (h)T (gh)−1.

Define a map ψ : G −→ k× by

ψ(g) = T (g)−1T̃ (µ(g)) (= T̃ (µ(g))T (g)−1).

Then

f−1(g, h)η′(g, h) = T (gh)T (h)−1T (g)−1T̃ (µ(g)) T̃ (µ(h)) T̃
(
µ(gh)−1

)
= ψ(g)ψ(h)ψ(gh)−1.

Thus f−1η′ is a coboundary in Z2(G, k×) and f and η′ belong to the same class in
H2(G, k); f̄ = tra η.

Let η ∈ Hom(R, k̄×), where as before the field k̄ is algebraically closed. Then
η ∈ ker (tra) if and only if the restriction of η to F ′∩R is trivial, and in general tra η
depends only on this restriction. These facts follow directly from the divisibility of
k̄× and the exactness of the Hochschild-Serre sequence (see [10], for example):

. . . // Hom(F, k×) res // Hom(R, k×) tra // H2(G, k×) // . . .

Now suppose T is an irreducible projective representation of G over k, whose cocycle
belongs to the class α of H2(G, k̄×) ∼= M(G). Then if T̃ is a lift to F of T , T̃ |F ′∩R
(as a homomorphism into k̄×) depends only on α; we denote this homomorphism by
θα. Furthermore, since θα uniquely determines α by the transgression mapping, we
obtain a bijective correspondence between H2(G, k̄×) and Hom(F ′ ∩R, k̄×), given
by α←→ θα.

Finally, for each α ∈ H2(G, k̄×) we let Iα denote the kernel of θα, a subgroup of
F ′ ∩R.

We next state a theorem of Tappe (see [9]) which will be invoked in the proof of
Theorem 3.2. An element x of G is said to be f -regular for a cocycle f ∈ H2(G, k̄×)
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if f(x, y) = f(y, x) whenever y ∈ CG(x). It is easily checked that if x ∈ G is f -
regular, then so is each of its conjugates in G, and that each is also f ′-regular
whenever f and f ′ represent the same element of H2(G, k̄×). Thus we may define
for α ∈ H2(G, k̄×) the notion of an α-regular conjugacy class of G.

Theorem 3.4. Let α ∈ H2(G, k̄×), and let f ∈ Z2(G, k̄×) be a representative of
the class α. Then the number nα of projective equivalence classes of irreducible pro-
jective f -representations of G over k̄ is equal to the number of α-regular conjugacy
classes of G contained in G′.

We now denote by SF the set of conjugacy classes of F contained in F ′, and by
SG the set of conjugacy classes of G contained in G′. We will say that C ∈ SF lies
over C ∈ SG if C is the image of C under φ. For each C ∈ SG, we define a subset
ZC of F ′∩R by choosing C ∈ SF lying over C, then choosing x ∈ C and a preimage
X for x in C, and setting

ZC = {Z ∈ F ′ ∩R : ZX ∈ C}.
It is routine to check that ZC is a group and that it does not depend on the choice
of C or on the choices of x or X . Suppose Z ∈ ZC . Then, since ZX is conjugate
to X in F , Z = Y −1XYX−1, for some Y ∈ F . Since Z ∈ R, Y ∈ φ−1(CG(x)). On
the other hand, it is clear that Y −1XYX−1 ∈ ZC for any Y ∈ φ−1(CG(x)), hence

ZC = {Y −1XYX−1 : Y ∈ φ−1(CG(x))}.

Lemma 3.5. Let C ∈ SG, and let α ∈ H2(G, k̄×). Then C is α-regular if and only
if ZC ⊆ Iα.

Proof. Let f ∈ Z2(G, k̄×) be a cocycle representing α, and let x ∈ C. Then x (and
hence C) is α-regular if and only if T (x)T (y) = T (y)T (x) whenever y ∈ CG(x) and
T is an irreducible projective f -representation of G over k̄. Let T̃ be a lift to F
of such a representation T , and choose X ∈ φ−1(x). Then if Y ∈ φ−1(y) for some
y ∈ CG(x), we have T̃ (X) ∈ k̄×T (x) and T̃ (Y ) ∈ k̄×T (y), whence

T̃ (Y XY −1X−1) = T (x)T (y)T (x)−1T (y)−1.

Thus x is α-regular if and only if T̃ (Y XY −1X−1) = 1 for all X ∈ φ−1(x) and Y ∈
φ−1 (CG(x)), whenever T̃ is a lift to F of an irreducible projective α-representation
of G. This completes the proof since such a T̃ restricts on F ′ ∩ R to θα, and
ZC = {Y −1XYX−1 : Y ∈ φ−1(CG(x))}.

The proof of Theorem 3.2 is now a matter of counting.

Proof of Theorem 3.2. In view of Lemma 3.1 it is sufficient to show that the num-
ber of components of k̄F is equal to the number

∑
α∈H2(G,k̄×) nα of mutually

(projectively) inequivalent irreducible projective k̄-representations of G. For α ∈
H2(G, k̄×), nα here denotes the number of such representations having cocycle
representing α. From Theorem 3.4 we have

nα = |{C ∈ SG : C is α−regular}| .
Of course C ∈ SG is α-regular if and only if ZC ⊆ Iα, i.e., if and only if θα factors
through ZC . Since

{θα}α∈H2(G,k̄×) = Hom(F ′ ∩R, k̄×),
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the number of elements of H2(G, k̄×) with respect to which C ∈ SG is regular
is |Hom(F ′ ∩R/ZC , k×)| = [F ′ ∩ R : ZC ], since k̄ is algebraically closed. Then
counting the ordered pairs of the form (C,α) where α ∈ H2(G, k̄×) and C ∈ SG is
α-regular leads to the equality∑

α∈H2(G,k̄×)

nα =
∑
C∈SG

[F ′ ∩R : ZC ].(3.1)

If C ∈ SF , let Ĉ denote the element
∑

x∈C x of k̄F . Then {Ĉ}C∈SF has the
same cardinality as the set I of primitive central idempotents of k̄F , since each is
a basis for the same vector space over k̄, namely Z(k̄F ) ∩ k̄F ′. Thus the number
of components of k̄F is |SF |. Now let C ∈ SF lie over C ∈ SG. Then it is easily
observed that the elements of SF lying over C are precisely those of the form rC,
where r ∈ F ′ ∩ R. Furthermore, if r ∈ F ′ ∩ R, then rC = C if and only if r ∈ ZC .
Thus the number of elements of SF lying over C ∈ SG is [F ′ ∩R : ZC ] and

|SF | =
∑
C∈SG

[F ′ ∩R : ZC ] =
∑

α∈H2(G,k̄×)

nα.

This completes the proof of Theorem 3.2.

4. Realizability and projective splitting fields

We now employ the results established in Section 3 in a discussion of realizability
of complex irreducible projective representations over subfields of C. We begin
with some standard definitions, each of which is a straightforward extension of a
corresponding definition from the theory of ordinary representations.

Definition 4.1. Let T : G −→ GL(n,C) be a complex projective representation
of G, and let E be a subfield of C. Then T is projectively realizable over E if there
exists a matrix A ∈ GL(n,C) and a function µ : G −→ C× for which

µ(g)A−1T (g)A ∈ GL(n,E), ∀g ∈ G.

In this situation the projective representation T ′ of G defined on g ∈ G by
T ′(g) = µ(g)A−1T (g)A is projectively equivalent (over C) to T and is called a
projective realization of T over E.
T is said to be linearly realizable over E if the above can be accomplished with

µ(g) = 1, ∀g ∈ G.

Definition 4.2. Let T : G −→ GL(n, k) be an irreducible projective representa-
tion of G over a field k. Then T is absolutely irreducible if it remains irreducible
when regarded as a representation over any field extension of k.

This is the case if and only if the k-linear span in Mn(k) of {T (g)}g∈G is Mn(k).
Thus T is absolutely irreducible if and only if every lift of T to a generic central
extension F for G is an absolutely irreducible representation of F .

Definition 4.3. If k is a field with algebraic closure k̄, then k is called a projective
splitting field for G if every projective k̄-representation ofG is projectively realizable
over k. If every ordinary k̄-representation of G is realizable over k, k is a splitting
field (or ordinary splitting field) for G.

It is known that every finite group has a cyclotomic projective splitting field;
Reynolds [8] shows that if |G| = n, then Q(ξn) is a projective splitting field for G
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(ξi will in general denote a root of unity of order i in C). H. Opolka [4] provides
an example which shows that if l = exp(G), then Q(ξl) need not be a projective
splitting field for G, although it is of course an ordinary splitting field for G. In the
same paper it is shown that if m = exp(G′)exp(M(G)), then Q(ξm) is a projective
splitting field for G. We will establish this result as a consequence of a more general
one: if F is a generic central extension for G, then any ordinary splitting field for
the finite group F ′ is a projective splitting field for G.

The general idea is as follows: if k is a subfield of C containing all F -invariant
character values of F ′, then it follows from the relation (2.1) that the group algebras
kF and CF have the same set I of primitive central idempotents. If for every
e ∈ I, F (or kF ) has an absolutely irreducible k-representation T̃k belonging to e
and arising as a lift of a projective representation Tk of G, then by Theorem 3.2
Tk is projectively equivalent to any complex (absolutely) irreducible representation
of G belonging to the component 〈e〉 of CF . In this case, since every irreducible
projective C-representation of G belongs to some e ∈ I, we can conclude that k is
a projective splitting field for G.

We will establish, after an investigation of the general structure of simple images
of kF under maps sending R into k×, that the condition that k be an ordinary
splitting field for F ′ is sufficient to guarantee the existence of absolutely irreducible
projective k-representations of G belonging to every component of kF .

4.1. Extending the Centre. Throughout the following we assume that k ⊆ C is
an ordinary splitting field for F ′. This assumption on k is not required throughout
the entire following discussion, and in many places relaxing it would lead to only
minor complications.

Any irreducible k-representation of F which sends R into k× is a lift to F of
an irreducible projective k-representation of G. Such a representation extends by
k-linearity to a mapping of the group algebra kF onto a simple subring of Mn(k)
for some n; in particular, onto a finite-dimensional simple k-algebra. The group
algebra kF is of course not finite-dimensional over k, nor is it completely reducible.
However, F is a centre-by-finite group and kF certainly has finite rank as a module
over its central subring kR. In this section we show that kF embeds in a completely
reducible algebra having finite dimension over a central subfield which is a purely
transcendental extension of k. The simple components of this completely reducible
ring are closely related to the images of kF under lifts of irreducible projective
k-representations of G.

Let S be a torsion-free complement for F ′ ∩ R in R. Then S ∼= R/F ′ ∩ R ∼=
RF ′/F ′. Since RF ′/F ′ has finite index in the free abelian group F/F ′, S is itself
free abelian of rank equal to the free rank r of F̃ . Then the central subring kS
of kF is a ring of Laurent polynomials in r commuting variables. Thus kS is an
integral domain and, furthermore, no element of kS can be a zerodivisor in kF ;
this follows from the fact that any transversal for S in F forms a basis for kF as a
right module over kS. Then we can form from kF a ring of quotients (kS)−1kF , in
which every element of kS is invertible. We will denote this ring by KF , where K
denotes the field of fractions of kS, which is a purely transcendental field extension
of k of transcendence degree r.

Theorem 4.4. KF is a completely reducible K-algebra.
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Proof. Let Ĝ = F/S and for g ∈ Ĝ choose µ(g) ∈ F for which g = µ(g)S. Then
the correspondence g ←→ µ(g) leads to a K-algebra isomorphism of KF with the
twisted group ring KαĜ, where the cocycle α : Ĝ×Ĝ −→ K× is defined for g, h ∈ Ĝ
by

α(g, h) = µ(g)µ(h)µ(gh)−1.

That KF is completely reducible now follows from Maschke’s theorem as it applies
to twisted group rings (see [6]).

Now KF is a direct sum of simple K-algebras:

KF =
m⊕
i=1

Mni(Di),

where for i = 1, . . . ,m, Di is a finite dimensional K-division algebra.
The next theorem is of fundamental importance since it establishes (with The-

orem 3.2) a bijective correspondence between the set of simple components of KF
and the set of projective equivalence classes of irreducible complex projective rep-
resentations of G.

Theorem 4.5. KF and kF have the same set of primitive central idempotents.

Proof. Let e be a primitive central idempotent of kF . Then e is central in KF ,
and we need to show that the two-sided ideal of KF generated by e is a simple
ring. Certainly KFe is completely reducible since KF is, and thus Z(KFe) is a
direct sum of fields. To show that Z(KFe) is in fact a field it suffices to show
that Z(kFe) is a domain, since for every nonzero α ∈ KF we can find a nonzero
A ∈ kS ⊆ Z(kF ) for which 0 6= Aα ∈ kF .

Let f be a primitive central idempotent of kF ′ for which ef = f ; e ∈ kF ′ by
Lemma 2.4. Then e =

∑
x∈T f

x where T is a transversal in F for F1 = CF (f). Let
s = [F : F1]; this index is of course finite since Z(F ) has finite index in F . Then
kFe ∼= Ms(kF1f) (see [5]) and we now need to show that Z(kF1f) contains no
zerodivisors. The idempotent f is central in kF1 by definition of F1, and primitive
in kF1 since it is primitive in kF ′. Let B1 = kF ′f , so B1

∼= Mn(k) for some n, since
k is a splitting field for F ′. Let E be a set of n2 matrix units in B1, and let Λ denote
the centralizer of E in kF1f . Then kF1f ∼= Mn(Λ). Since F ′EF1 and f ∈ kF ′, the
ring kF1f is a crossed product over kF ′f by F1/F

′ which is free abelian of rank r
since it has finite index in F/F ′. We will use this crossed product structure to show
that Λ is also a crossed product over B1, again by a free abelian group of rank r.
Since B1 is invariant under conjugation by elements of F1, for each t ∈ T the set

Et = {t−1εijt : εij ∈ E}

is a system of matrix units in B1. Then E and Et are conjugate in B1 since B1 is a
simple ring (see [2], Theorem 2.13). Thus for each t ∈ T we may choose an element
b(t) of U(B1), determined by t up to multiplication by elements of k×, for which
c(t) = b(t)t centralizes E .

Let S = {c(t), t ∈ T}. Then S is certainly right independent over k since
b(t) ∈ kF ′ for each t, and T is a transversal for F ′ in F . We now show that
S generates Λ as a vector space over k—certainly k[S] ⊆ Λ; on the other hand,
suppose λ ∈ Λ. Then λ can be uniquely written in the form λ =

∑
t∈T btt, where
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bt ∈ B1 for each t, and bt = 0 for all but finitely many t. Since λ ∈ Λ = CkF1f (E),
we have for each ε ∈ E

ελ = λε =⇒
∑
t∈T

εbtt =
∑
t∈T

bttε =
∑
t∈T

btε
t−1
t.

Then εbt = btε
t−1

= bttεt
−1, so btt ∈ Λ, ∀t ∈ T and ∀ε ∈ E . Thus for each t ∈ T

either bt = 0 or btt differs from c(t) = b(t)t only by a scalar in k×. Thus btt ∈ k×c(t)
whenever bt 6= 0, and λ ∈ k[S]; hence Λ = k[S] and S is a basis for Λ as a vector
space over k.

Now suppose t1, t2 ∈ T and let t ∈ T represent the coset t1t2F ′. Then

c(t1)c(t2) = b(t1)t1b(t2)t2 = b(t1)b(t2)t
−1
1 t1t2

= b(t1)b(t2)t
−1
1 ct, for some c ∈ F ′.

Then c(t1)c(t2) ∈ k×c(t). Since b′(t) := b(t1)b(t2)t
−1
1 c ∈ U(B1) and c(t1)c(t2) =

b′(t)t centralizes E , it follows that c(t1)c(t2)c(t)−1 ∈ CB1(E) = k. The correspon-
dence t ←→ c(t) leads to an isomorphism between Λ = k[S] and a twisted group
ring kα(F1/F

′) where the cocycle α is defined by α(t1F ′, t2F ′) = c(t1)c(t2)c(t)−1

where t1, t2, t ∈ T , and tF ′ = t1t2F
′. Thus Λ is a twisted group ring of a free

abelian group over k, and it is immediate that Λ is a domain, whence Z(kFe) is a
domain and KFe is a simple ring. This completes the proof of Theorem 4.5.

We remark that Theorem 4.5 remains true without restriction on the field k.
We note also that it is evident from the proof of Theorem 4.5 not only that KFe
is simple whenever e is a primitive central idempotent of kF , but also that kF1f
is simple whenever f is a primitive central idempotent of kF ′ and F1 = CF (f).
Indeed if F0 is any subgroup of F which contains 〈R,F ′〉 and centralizes f , then
KF0f is a simple component of the ring KF0 which is completely reducible by
virtue of being a twisted group ring of F0/S over K. Furthermore, in this case if
kF ′f ∼= Mn(k), then kF0f is a ring of n× n matrices over a domain, and KF0f is
a ring of n × n matrices over a K-division algebra. In particular, the simple rings
KF0f and kF ′f have the same matrix degree.

4.2. Structure of the Simple Components of KF . As in the proof of Theorem
4.5, let e be a primitive central idempotent of kF and let f be a primitive central
idempotent of the completely reducible ring kF ′e. If F1 = CF (f) and [F : F1] = s,
we then have KFe ∼= Ms(KF1f). From now on we denote the simple ring KF1f by
A1, and we denote the centre of A1 by Z. If kF ′f ∼= Mn(k), the following series of
results will show that A1 is a ring of n×n matrices over a central Z-division algebra
which can be described as a twisted group ring over Z of an abelian quotient of G.
Let B denote the subalgebra of A1 generated over Z by F ′f . We begin by showing
that B is central simple over Z. This makes use of the following lemma, of which
a proof can be found in [7].

Lemma 4.6. Let A be a finite dimensional algebra over a field F . Let B and C be
F-subalgebras of A for which

(i) B is central simple over F .
(ii) C centralizes B.
(iii) A = BC.

Then A ∼= B ⊗F C.
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Lemma 4.7. B ∼= Mn(Z).

Proof. Let S be a free abelian complement for F ′ ∩R in R, such that K is the field
of quotients of k[S]. Since f ∈ kF ′ and the subgroup of F generated by S and F ′ is
the direct product S×F ′, any k-basis for kF ′f remains independent over k[S] and
hence over K. Thus the subring of B generated over K by F ′f is isomorphic to the
tensor product K ⊗k kF ′f . Then K[F ′f ] ∼= Mn(K), since kF ′f ∼= Mn(k). We can
now regard B as a K-algebra generated by the K-subalgebras Z and the central
simple K-subalgebra K[F ′f ] to apply Lemma 4.6 and conclude B = Z ⊗K K[F ′f ].
Then B ∼= Mn(Z ⊗K K) ∼= Mn(Z).

Since B is a simple Z-subalgebra of the central simple Z-algebra A1, we have
A1 = B ⊗Z C, where C := CA1(B) = CA1(F ′) is again a central simple Z-algebra.
In fact C is a division algebra, since the matrix degree of A1 is the same as that of
kF ′f and hence of B, by the remarks following the proof of Theorem 4.5.

Let x ∈ F1. Then the map φx : kF ′f −→ kF ′f defined for α ∈ kF ′f by
φx(α) = x−1αx is a central automorphism of the central simple k-algebra kF ′f .
This automorphism is inner by the Noether-Skolem theorem, so for each x ∈ F1

there exists a unit βx of kF ′f for which γx := βxx belongs to CA1(B) = C.
Furthermore, since Z(kF ′f) = k, γx is determined by x up to multiplication by
elements of k×. From now on we fix γx for each x ∈ F1.

Next we show that {γx}x∈F1 generates the division algebra C as a vector space
over K. Let α ∈ C. After multiplying α by an element of k[S], if necessary, we can
assume α ∈ kF1. Let T be a transversal for F ′ in F1. Then T is right independent
over kF ′f , so that α can be uniquely written in the form α =

∑
t∈T αtt, where

αt ∈ kF ′f and αt = 0 for all but finitely many t ∈ T. Let c ∈ F ′. Then since α
centralizes F ′ we have

cα =
∑
t∈T

cαtt = αc =
∑
t∈T

αtc
t−1
t

=⇒ cαt = αttct
−1 =⇒ cαtt = αttc, ∀t ∈ T, ∀c ∈ F ′.

Thus for each t ∈ T, αtt centralizes F ′, so either αt = 0 or αtt ∈ k×γt. Thus every
element of C is a K-linear combination of elements of the set {γt}t∈T.

We now introduce some notation. We define

F ′
+ = {x ∈ F1 : xf ∈ B}.

It is apparent that F ′+ is a normal subgroup of F1 containing F ′ and Z(F ), and
hence having finite index in F1. Let S be a transversal for F ′+ in F , and define
B = {γs}s∈S .

Lemma 4.8. Let x ∈ F1. Then γx ∈ Z if and only if x ∈ F ′+.

Proof. (⇐=): Suppose xf ∈ B. Then γx = βxx where βx ∈ B. Thus γx ∈
CB(F ′) = Z(B) = Z.

(=⇒): On the other hand, suppose γx = βxx ∈ Z where βx is a unit of B. Then
xf = β−1

x γx ∈ B.

Lemma 4.9. Suppose x, y ∈ F1. Then
(i) γxγy ∈ k×γxy,
(ii) If x ∈ F ′+y, then γx ∈ Z×γy.
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Proof. (i) γxγy = xβxyβy = xyβyxβy, and γxy = xyβxy. Thus

γ−1
xy γxγy = β−1

xy β
y
xβy ∈ C× ∩ kF ′ = k×

=⇒ γxγy ∈ k×γxy.
(ii) This second statement is an immediate consequence of (i) above and Lemma

4.8.

Lemma 4.10. B is a basis for C over Z.

Proof. Since S is right independent over kF ′+, any α ∈ C∩kF1 can be written in a
unique way in the form α =

∑
s∈S αss, where αs ∈ kF ′+ for each s ∈ S. Then as in

the proof of Lemma 4.8 the requirement that α centralize C leads to the conclusion
αss ∈ C for each s ∈ S. Since s = β−1

s γs, where βs is a unit in kF ′, it follows that
αsβ

−1
s γs ∈ C, whence θs = αsβ

−1
s ∈ C ∩ kF ′+ = Z, as γs is a unit in C. Thus

every α ∈ C ∩ kF1 has the form α =
∑

s∈S θsγs where θs ∈ Z, ∀s ∈ S. Thus B is a
spanning set for C as a vector space over C, since every element of C is the product
of an element of C ∩kF1 and an element of K. That B is linearly independent over
Z follows easily from the independence of S (and hence B) over kF ′+.

Thus C is a central simple Z-algebra of dimension [F1 : F ′+], and the order of
the abelian group F̄1 := F1/F

′+ is a square. In fact we can say more than this.

Theorem 4.11. C is isomorphic to a twisted group ring of F̄1 over Z.

Proof. If s ∈ S, let s̄ denote the element of F1/F
′+ represented by s. Then the

assignment s̄ ←→ γs establishes a bijective correspondence between the group
F1/F

′+ and the Z-basisB of C. Suppose for some s1, s2 ∈ S that s̄1s̄2 is represented
by s ∈ S. Then it is immediate from part (ii) of Lemma 4.9 that γs1γs2 ∈ Z×γs,
and C ∼= Zf(F̄1); here the cocycle f ∈ Z2(F̄1, Z

×) is defined for s1, s2 ∈ S by
f(s̄1, s̄2) = γsγ

−1
s1 γ

−1
s2 where s ∈ S represents s̄1s̄2 ∈ F̄1.

From the fact that the finite abelian group F̄1 possesses central simple twisted
group algebras over Z it follows that F̄1 is of symmetric type (i.e. the direct product
of two isomorphic abelian groups) and that Z contains a root of unity of order equal
to the exponent of F̄1 (see [10] for the details). The following result shows that
such a root of unity must in fact belong not only to Z but to k.

Theorem 4.12. Let {x̄1, . . . , x̄r} be a basis for the free abelian group F ′+/F ′ and
for i = 1 . . . r let xi be a representative for x̄i in F ′

+. Let Γ = {γx1 , . . . , γxr}. Then
Γ generates Z as a field over k, and Γ is algebraically independent over k.

Proof. First we show k(Γ) contains K. For this it is sufficient to show that k(Γ)
contains Rf . Let a ∈ R, and a = xi11 . . . xirr c for some integers i1, . . . , ir and
c ∈ F ′. It follows that γa ∈ k×(γx1)i1 . . . (γxr)ir by Lemma 4.9, so γa ∈ k(Γ). Then
af ∈ k(Γ) since γa = aβa where βa ∈ Z(U(kF ′f)) = k×f . Thus K ⊆ k(Γ).

Now let α ∈ Z. After multiplying α (if necessary) by a suitable element of kR
we may assume α ∈ Z ∩ kF . Let T = T ∩ F ′+, where T as before is a transversal
for F ′ in F1. We now show that {γt}t∈T is a k-basis for Z ∩ kF . Certainly T is
right independent over kF ′ and so α can be written in the form α =

∑
t∈T att,

where at ∈ kF ′, at = 0 for all but finitely many t. Let x ∈ F1. Then

α = αx =
∑

x−1attx

=⇒
∑

att =
∑

x−1attxt
−1t.
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Since x−1attxt
−1 = x−1atxx

−1txt−1 ∈ kF ′ for each t ∈ T, it follows that xatt =
attx, ∀x ∈ F1, ∀t ∈ T. Thus for each t ∈ T, att centralizes F1 and thus belongs
to Z. Then, in particular, att centralizes F ′ for each t ∈ T, so att ∈ k×γt, ∀t ∈ T.
Since by Lemma 4.8 γt ∈ Z if and only if t ∈ F ′+, this forces at = 0 whenever t 6∈ T .
Thus α =

∑
t∈T att is a k-linear combination of elements of {γt}t∈T . That {γt}t∈T

is linearly independent over k is clear, since γt ∈ U(kF ′f)t for each t ∈ T , and
T is independent over kF ′. Finally, if t ∈ T then tF ′ = xi1i x

i2
2 . . . xirr F

′ for some
i1, . . . , ir and γt ∈ k×(γx1)i1 . . . (γxr)ir by Lemma 4.9. It follows that α ∈ k(Γ),
and that Z = k(Γ) since K ⊆ k(Γ) also.

That Γ is algebraically independent over k is clear since k(Γ) contains K as a
subfield, and K has transcendence degree r over k.

Theorem 4.12 shows, in particular, that Z is purely transcendental over k.
Our next aim is to describe the central Z-division algebra C as a tensor product

of cyclic division algebras. If A and B are nonzero elements of a field F containing a
root of unity ξ of order d, then the symbol algebra A =

(
a,b
ξ,F

)
is a central simple F -

algebra of degree d, generated over F by elements a and b for which ad = A, bd = B,
and ab = ξba. The symbol algebra A is isomorphic to the matrix ring Md(F) if and
only if B is a norm for the cyclic field extension F(a)/F . The proof of Theorem
4.14 involves the following technicality.

Lemma 4.13. Let a1, . . . , am, b be positive integers for which gcd(a1, . . . , am) is
relatively prime to b. Then there exist integers t2, . . . , tm for which a1 +

∑m
i=2 tiai

is relatively prime to b.

Proof. Let pl+1, . . . , pt denote the prime divisors of gcd(a1, b) and suppose b =
pi11 . . . pill p

il+1
l+1 . . . p

it
t for distinct primes p1, . . . , pt and positive integers i1, . . . , it.

Let b′ = pi11 . . . pill . Then b′|b and b′ is relatively prime to a1. Define

a = a1 + b′ gcd(a2, . . . , am).

Then a is relatively prime to b: for suppose p is a prime dividing b. Then p is
one of p1, . . . , pt and either p divides a1 or p divides b′ (not both). If p|a1, then
p 6 | gcd(a2, . . . , am) since gcd(a2, . . . , am) is relatively prime to b. On the other
hand ,if p divides b′ it cannot divide a1. Thus no prime divisor of b divides a,
so gcd(a, b) = 1. The result follows since gcd(a2, . . . , am) =

∑m
i=2 tiai for some

integers t2, . . . , tm.

We now return to the context and notation of Theorem 4.12 to state:

Theorem 4.14. There exist elements r1, s1, r2, s2, . . . , rq, sq, cp+1, . . . , cr of F1

(where p = 2q) for which
1. F1 = 〈r1, s1, . . . , rq, sq, cp+1, . . . , cr, F

′〉;
2. F ′

+ = 〈rd1
1 , sd1

1 , . . . , r
dq
q , s

dq
q , cp+1, . . . , cr, F

′〉, where 1 < dq|dq−1| . . . |d1 and
F̄1 = F1/F

′+ ∼= (Cd1 × Cd1)× · · · × (Cdq × Cdq);
3. C =

(
R1,S1
ξ1,Z

)
⊗Z

(
R2,S2
ξ2,Z

)
⊗Z · · · ⊗Z

(
Rq,Sq
ξq,Z

)
, where for i = 1, . . . , q,

(i) Ri = (γri)di , Si = (γsi)di ,
(ii) ξi is a root of unity of order di in k,
(iii) Γ = {R1, S1, . . . , Rq, Sq, γcp+1, . . . , γcr} is a transcendence basis for Z

over k with Z = k(Γ).
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Proof. The finite abelian group F̄1 has symmetric type by the remarks following
Theorem 4.11; thus

F̄1
∼= (Cd1 × Cd1)× · · · × (Cdq × Cdq),

where 1 < dq|dq−1| . . . |d1 = exp F̄1. Setting p = 2q, we may choose elements
a1, . . . , ap, cp+1, . . . , cr of F1 for which {a′1, . . . , c′r} is a basis for the free abelian
group F1/F

′ (a′i and c′j respectively denoting the cosets aiF ′ and cjF
′ for i =

1, . . . , p and j = p+ 1, . . . , r), and for which the set{
(a′2i−1)di , (a′2i)

di , c′j
}
i=1,...,q; j=p+1,...,r

is a basis for F ′+/F ′.
By Lemma 4.10, the set B = {γi1a1

, . . . , γ
ip
ap}1≤ij≤ddj/2e is a Z-basis for C, and

the correspondence

āi11 . . . āipp ←→ (γa1)i1 . . . (γap)ip

(where āi = aiF
′+) establishes as in Theorem 4.11 an isomorphism of C with ZαF̄1,

where the cocycle α : F̄1 × F̄1 :−→ Z× is defined as in Theorem 4.11 We define an
antisymmetric bilinear pairing φ on F̄1 by

φ(ā, b̄) =
α(ā, b̄)
α(b̄, ā)

, for ā, b̄ ∈ F̄1.

That φ is bilinear follows easily from the cocycle law and the fact that F̄1 is abelian,
and that φ is antisymmetric is clear. Furthermore, φ is nondegenerate; this follows
from the fact that C is central simple over Z. Suppose for some ā ∈ F̄1 that
φ(ā, b̄) = 1, ∀ b̄ ∈ F̄1. If ā = āj11 . . . ā

jp
p , then the element γj1a1

. . . γ
jp
ap of B commutes

with all other elements of B and is therefore central in C. Then γj1a1
. . . γ

jp
ap ∈ Z and

it follows from Lemmas 4.9 and 4.8 that aj11 . . . a
jp
p ∈ F ′+, so ā = 1 in F̄1.

Since d1 = exp F̄1, the values assumed by φ are the d1th roots of unity in
Z, and hence in k, since Z is purely transcendental over k. The element ā1 of
F̄1 has order d1; for i = 2, . . . , p let ζi = φ(ā1, āi) in k. Then each ζi satisfies
ζd1
i = 1 certainly; furthermore, the subgroup of k× generated by ζ2, . . . , ζp has

order d1, since if its order were a strict divisor d′ of d1, then the homomorphism
φ(ād

′

1 , ) : F̄1 −→ k× would be trivial, and γd
′

a1
would be central in C. Then there

exists some b̄ ∈ F̄1 for which the order in k× of φ(ā, b̄) is d1, and in particular there
exists a primitive d1th root of unity ζ in k. For i = 2, . . . , p let ξi = φ(ā1, āi) = ζji .
Then gcd(j2, . . . , jp) is relatively prime to d1, and hence by Lemma 4.13 there
exist integers t3, . . . , tp for which j2 +

∑p
i=3 tiji is relatively prime to d1. Then

if b = a2a
t3
3 . . . a

tp
p we find that φ(ā1, b̄) = ζj2+

∑p
i=3 riji =: ζi, is a root of unity

of order d1 in k×. Now define r1 = a1, s1 = b, and ξ1 = φ(r̄1, s̄1). Since b =
a2a

r3
3 . . . a

rp
p , an expression in which a2 appears with exponent 1, it is apparent

that F1 = 〈r1, s1, a3, . . . , ap, cp+1, . . . , cr, F
′〉.

Now for i = 3, . . . , p we can define an element ai1 of F1 by ai1 = air
α1
1 sα2

1 , where
the exponents α1 and α2 are chosen to ensure that φ(r̄1, āi1) = φ(s̄1, āi1) = 1;
there is no difficulty here since φ(r̄1, āi) is some power of ξ1 = φ(r̄1, s̄1). It is
clear that for i = 3, . . . , p, ai1 has the same order as ai modulo F ′+, and also that
F1 = 〈r1, s1, a31, . . . , ap1, cp+1, . . . , cr, F

′〉. Now we may set r2 = a31 and repeat the
application of Lemma 4.13 to define s2 = a41

∏p
i=5(ai1)li for suitable l5, . . . , lp ∈ Z,

so that ξ2 := φ(r̄2, s̄2) is a root of unity of order d2 in k.
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For i = 5, . . . , p we may now replace ai1 by an element ai2 = ai1r
β1
2 sβ2

2 so that
φ(āi2, r̄j) = φ(āi2, s̄j) = 1 for j = 1, 2, and

F1 = 〈r1, s1, r2, s2, a52, . . . , ap2, cp+1, . . . , cr, F
′〉.

Continuing in this manner we ultimately produce a basis

{r′1, s′1, . . . , r′q, s′q, c′p+1, . . . , c
′
r}

for F1/F
′ for which

{r′1
d1 , s′1

d1 , . . . , r′q
dq , s′q

dq , c′p+1, . . . , c
′
r}

is a basis for F ′+/F ′. For i = 1, . . . , q, ξi = φ(r̄i, s̄i) is a root of unity of order di
in k; also φ(r̄i, r̄j) = 1, ∀i, j, φ(s̄i, s̄j) = 1, ∀i, j, and φ(r̄i, s̄j) = 1 for j 6= i.

By Lemmas 4.10 and 4.9, the set{
q∏
i=1

γjiriγ
ki
si

}
1≤ji,ki≤di

is a Z-basis for C, and in particular C is generated by {γr1 , γs1 , . . . , γrq , γsq} as a
Z-algebra. The subalgebra C1 of C generated over Z by γr1 and γs1 has dimension
d2

1 and since γr1γs1 = ξ1γs1γr1 where ξ1 is a root of unity of order d1 in Z, C1 is a
symbol algebra:

C1 = Z(γr1 , γs1) ∼=
(
R1, S1

ξ1, Z

)
; R1 = (γr1)d1 , S1 = (γs1)d1 .

If C′1 is defined as the Z-subalgebra of C generated by γr2 , γs2 , . . . , γrq , γsq , then
C ′1 centralizes C1 and since C1 is central simple over Z, we can apply Lemma 4.6
to conclude that C = C1⊗Z C′1. Continuing in this manner we obtain the required
tensor product decomposition of the division algebra C:

C =
(
R1, S1

ξ1, Z

)
⊗Z

(
R2, S2

ξ2, Z

)
⊗Z · · · ⊗Z

(
Rq, Sq
ξq, Z

)
,

where for i = 1, . . . , q, Ri = (γri)di and Si = (γsi)di .
The final statement of Theorem 4.14, that Γ is a transcendence basis for Z over

k for which Z = k(Γ), is an immediate consequence of Theorem 4.12.

4.3. Projective Realizability. In this final section we show how the structure,
as described above, of the simple components of the completely reducible ring KF
is reproduced in the simple components of twisted group rings of G over k; i.e., in
those simple k-algebras which arise as images of kF under (extensions of ) lifts to
F of irreducible projective k-representations of G.

We begin with some observations relating the rings kF1f and A1 = KF1f (where
we retain all the notation of Section 4.2). We have shown that the set {γt}t∈T is
a k-basis for C ∩ kF1, and also of course generates kF1f as a ring over kF ′f .
Moreover, {γt}t∈T is a k-basis for Z ∩ kF1, as was shown in the proof of Theorem
4.12. It then follows from Lemma 4.9 that if Θ = {γr1 , γs1 , . . . , γrq , γsq} and Γ =
{R1, S1, . . . , Rq, Sq, γcp+1, . . . , γcr} as in Theorem 4.14, then Γ generates Z1 :=
Z(kF1f) = Z ∩ kF1f as a k-algebra, and Θ generates C ∩ kF1 as a ring over
Z1 = k(Γ). In particular, kF1f is generated by Θ as a ring over the subring Z1〈F ′〉
of kF1f .

Now suppose that we wish to construct an irreducible complex representation
T̃ of F which arises as a lift of an irreducible complex projective representation
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of G belonging to e. By Clifford’s theorem such a T̃ will be induced from an
irreducible complex representation T̃1 of F1 belonging to f . Since T̃1 is absolutely
irreducible, its linear extension to CF1 must map CF1 onto a simple ring AT1 , which
is isomorphic to a full ring of matrices over C. If BT ⊆ AT1 denotes the image of CF ′
under T̃1, then BT ∼= Mn(C), where n is the degree of the absolutely irreducible
representation of F ′ corresponding to f . Also, T̃1 must map Z1 into C, and since
Z1 is generated over C by Γ, the restriction of T̃1 to Z1 is determined by choosing
images RTi , S

T
j , γ

T
cl in C× for Ri, Sj , γcl respectively, 1 ≤ i, j ≤ q, p + 1 ≤ l ≤ r.

Since Γ is algebraically independent over C, these choices may be made completely
arbitrarily.

Now AT1 is generated over BT by ΘT := {γTr1 , γTs1 , . . . , γTrq , γTsq} (where γTri and
γTri denote respectively the images under T̃1 of γri and γsi) as CF1f is generated
over Z1〈F ′〉 by Θ. Furthermore, the subalgebra CT of AT1 generated over Z1 by
ΘT centralizes BT , and so AT1 ∼= BT ⊗C CT , by Lemma 4.6. Since T̃1 restricts to
an isomorphism of C with ZT := Z(AT1 ), we have in CT ,

γTriγ
T
si = ξiγ

T
siγ

T
ri , i = 1, . . . , q,

ξi being a root of unity of order di in ZT ∼= C. If for i = 1, . . . , q, CTi denotes the
subalgebra of CT generated over ZT by γTri and γTsi , then

CTi =
(
RTi , S

T
i

ξi, ZT

)
, where RTi = T̃1(Ri) ∈ C×, STi = T̃1(Si) ∈ C×.

In particular, CTi ∼= Mdi(C) for i = 1, . . . , q, and

AT1
∼= Mn(C)⊗CMd1(C)⊗C · · · ⊗CMdq(C) ∼= Mnd′(C),

where d′ = d1d2 . . . dq =
√

[F1 : F ′+].

Thus T̃1 is determined, at least up to the choice of a system of matrix units for
AT1
∼= Mnd′(C) by the designation of images in C× for the elements of Γ. A complex

irreducible projective representation T of G belonging to e may now be obtained
by composing T̃ := IndFF1

T̃1 with a section for G in F . All such irreducible complex
representations of G are projectively equivalent by Theorem 3.2, and have degree

d := n
√

[F1 : F ′+][F : F1]. In particular, the projective equivalence class of T does
not depend on the choices of RT1 , S

T
1 , . . . , R

T
q , S

T
q in C×; this is of course due to the

fact that all symbol algebras over C are split as the multiplicative group of C is
divisible.

If the ground field under consideration is not algebraically closed, the choice of
elements in T̃ (Γ) may be more influential. We now return to the case where k ⊆ C
is an ordinary splitting field for the finite group F ′. Then it is easily seen that kFe
and CFe determine the same subgroups F1 and F ′

+ of F , since this requires only
that f ∈ kF ′. Irreducible projective k-representations of G belonging to e of course
again lift to irreducible ordinary k-representations of F , which are induced from
irreducible k-representations of F1 belonging to f .

If such a representation T̃k1 of F1 is to be absolutely irreducible, its linear ex-
tension to kF1 must map kF1 onto a full ring of matrices over k, and must, in
particular, map Z(kF1f), which is generated over k by Γ, into k. The image ATk1 of
kF1 under T̃k1 (extended to kF1) may be described, as above, as a tensor product
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of symbol algebras over k, as kF ′f ∼= Mn(k) since k is a splitting field for F ′:

ATk1
∼= Mn(k)⊗k

(
RTk1 , STk1

ξ1, k

)
⊗k · · · ⊗k

(
RTkq , STkq
ξq, k

)
,

where RTk1 , STk1 , . . . , RTkq , STkq ∈ k× ∼= Z(ATk1 ) denote respectively the images under
T̃k1 of R1, S1, . . . , Rq, Sq, and ξi is a root of unity of order di in k. For i = 1, . . . , q
the subalgebra Cki of ATk1 generated over k by the images γTkri and γTksi of γri and
γsi respectively under T̃k1 is again a symbol algebra:

Cki
∼=
(
RTki , STki
ξi, k

)
.

In this case, however, the Schur index of Cki may depend on the choices of RTki and
STki in k×. Since Γ is algebraically independent over k, these choices may be made
independently and completely arbitrarily; for example, to guarantee that Ci ∼=
Mdi(k) for i = 1, . . . , q we may choose STki ∈ (k×)di . In this case ATk1

∼= Mnd′(k),
and by choosing a system of matrix units in ATk1 we may produce an absolutely
irreducible k-representation T̃k1 : F1 −→ Mnd′(k) mapping kF1f onto Mnd′(k).
Finally, if Tk : G −→ GL(d, k) is defined as the composition of T̃k := IndFF1

T̃k1

with some section for G in F , then Tk is an absolutely irreducible projective k-
representation of G belonging to e. If T : G −→ GL(d,C) is any (complex) ir-
reducible projective representation of G belonging to e, then by T is projectively
equivalent (over C) to Tk by Theorem 3.2, and so T is projectively realizable over
k. We have proved the following result.

Theorem 4.15. Let G be a finite group with generic central extension F , and let
k ⊆ C be an ordinary splitting field for F ′. Then k is a projective splitting field for
G.

We remark here that F ′ is isomorphic to Ĝ′ where Ĝ is any Schur representation
group for G; i.e., any finite central extension for G having the projective lifting
property for G over C and having kernel isomorphic to M(G).

Since exp(F ′) divides exp(G′) exp(M(G)), the following is an immediate conse-
quence of Theorem 4.15 and Brauer’s theorem on splitting fields.

Corollary 4.16 ([4], Opolka, 1981). Let G be a finite group and let ξ be a root of
unity of order exp(G′) exp(M(G)) in C. Then Q(ξ) is a projective splitting field
for G.

The following example of a group G with generic central extension F for which
exp(F ′) < exp(G′) exp(M(G)) indicates that Theorem 4.15 is genuinely stronger
than Corollary 4.16.

Example. Let G = G1×G2, where G1 and G2 are metacyclic groups of orders 81
and 18 respectively, having the following presentations:

G1 = 〈x, y |x9 = 1, y9 = 1, y−1xy = x4〉,
G2 = 〈a, b | a9 = 1, b2 = 1, b−1ab = a8〉.

Then G′1
∼= C3, G′2 ∼= C9, and G′ ∼= C3 × C9. Also M(G1) ∼= C3 and M(G2)

is trivial, whence M(G) ∼= C3 since gcd (|G1/G
′
1|, |G2/G

′
2|) = 1. For descriptions
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of Schur multipliers of metacyclic groups and of direct products; see [3] and [1],
respectively.

Let (R,F, φ) be a generic central extension for G. We will show that

exp(F ′) = 9 < exp(G′) exp(M(G)) = 27.

Choose preimages X,Y,A,B in F for the elements x, y, a, b respectively of G under
φ, and let c1 = Y −1XYX−1 and c2 = B−1ABA−1 in F . Then F ′/F ′ ∩ R ∼= G′ is
generated by the elements c̄1 = c1(F ′ ∩R) and c̄2 = c2(F ′∩R) having orders 3 and
9 respectively; F ′ ∩R ∼= M(G) has order 3 and is central in F ′.

Let c ∈ F ′. Then c = ci1c
j
2α where 0 ≤ i < 3, 0 ≤ j < 9, and α ∈ F ′ ∩ R. Since

G′ is abelian and c31 ∈ F ′∩R we have c3 = c3j2 β for some β ∈ F ′∩R. Thus c9 = c9j2
since β3 = 1. We now show that c92 = 1.

Certainly c2 commutes with A since c2 = B−1ABA−1 ∈ RA7 and R ⊆ Z(F ).
Then c2 = A−1B−1AB and

c22 = (A−1B−1AB)(B−1ABA−1) = A−2B−1A2B.

Similarly, cn2 = A−nB−1AnB for any positive integer n, and c92 = 1 since A9 ∈ R ⊆
Z(F ). Thus c9 = 1 for all c ∈ F ′ and exp(F ′) = 9. Then Q(ξ9) is a projective
splitting field for G by Theorem 4.15, although 9 < exp(G′) exp(M(G)).
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