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TENSOR PRODUCTS OF MINIMAL
HOLOMORPHIC REPRESENTATIONS

GENKAI ZHANG

Abstract. Let D = G/K be an irreducible bounded symmetric domain with
genus p and Hν(D) the weighted Bergman spaces of holomorphic functions
for ν > p − 1. The spaces Hν(D) form unitary (projective) representations
of the group G and have analytic continuation in ν; they give also unitary
representations when ν in the Wallach set, which consists of a continuous part
and a discrete part of r points. The first non-trivial discrete point ν = a

2
gives the minimal highest weight representation of G. We give the irreducible

decomposition of tensor product H
a
2 ⊗ H

a
2 . As a consequence we discover

some new spherical unitary representations of G and find the expansion of the
corresponding spherical functions in terms of the K-invariant (Jack symmetric)
polynomials, the coefficients being continuous dual Hahn polynomials.

Introduction

Let D = G/K be an irreducible bounded symmetric domain of rank r in a
complex vector space V with Lebesgue measure dm(z). The Bergman reproducing
kernel ofD is of the form h(z, w)−p, where p is the genus ofD. Let ν > p−1 and con-
sider the weighted Bergman space Hν with the weighted measure h(z, z)ν−pdm(z).
They give naturally unitary representations of the group G and have analytic con-
tinuation in the parameter ν. The set of those ν for which Hν still form unitary
representations is called the Wallach set and has been determined by various meth-
ods ([25], [30] and [5]). It is a union of an open interval and a discrete set, the
last point in the discrete set is ν = 0 and corresponds to the trivial representation.
Suppose that the rank r of D is bigger than 1. The other points in the discrete
Wallach set correspond to some singular representations of G; the K-types appear-
ing in the representations form some lower dimensional lattices. The first discrete
point ν = a

2 above the trivial point ν = 0 gives the minimal representation and
the lattice of K-types is one-dimensional. Minimal and singular representations
are of considerable interest since they normally cannot be constructed by standard
methods. One may well expect that the representations appearing in the tensor
product decomposition are also some minimal (singular) representations, thus it is
worthwhile to study. Indeed we discover some new irreducible unitary (minimal)
representations that appear in the decomposition. We also find the annihilating
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invariant differential operators of the tensor product; we find the expansion of a
family of spherical functions in terms of the K-invariant polynomials, which are
the Jack symmetric polynomials, the coefficient being the continuous dual Hahn
polynomials.

To give a brief background we consider first the case of the unit disk D =
G/K = SU(1, 1)/SO(2) in the complex plane. The Hilbert spaces Hν in question
are the ones with reproducing kernels (1 − zw̄)−ν , ν ≥ 0, with ν = 0 giving the
trivial (and minimal) representation; so the problem of the tensor product of the
minimal representations in this case is trivial; however, the consideration for other
parameters of ν will give us ideas for treating higher rank cases. In earlier papers [33]
and [22] we studied the explicit spectral decomposition of the tensor products. The
main idea there is to study the restriction operator R, RF (z) = (1 − |z|2)νF (z, z)
from the tensor product Hν⊗Hν to the space C∞(D), which was considered earlier
also by Repka [23] and [24] (an idea due to Howe, see loc. cit.); the operator R
intertwines the tensor product action with the regular action of G. We consider
further its polar decomposition, R = |R|U . The operator R is bounded and has
dense range in the space L2(D) with the G-invariant measure, for ν > 1. Thus for
those ν the operator U is a unitary intertwining operator onto the space L2(D),
whose decomposition is given by the known spherical transform ([7], Introduction).
However, for smaller values of ν, the above polar decomposition does not make
sense. Let φλ(z) be the spherical function on the unit disk. Our idea is simply to
consider the power series expansion of the function (1− |z|2)−νφλ(z),

(1− zz̄)−νφλ(z) =
∞∑
m=0

pν,m(λ)(zz̄)m.

Conceptually the l.h.s. is the restriction to diagonal (z, z) of the eigenfunction
R−1φλ of the Casimir element on the tensor product, and the formula is its expan-
sion in terms of the K = SO(2)-invariant elements (zw̄)m in the tensor product.
The action of the Casimir element is equivalent to a multiplication by (λ2 + 1

4 ) on
the coefficients pν,m(λ). It turns out that pν,m(λ) are the continuous dual Hahn
polynomials, whose orthogonality relation has been proved by Wilson (see [31], [1]
and [14]). So by using the orthogonality relation, we found in [20] the irreducible
decomposition of the tensor product Hν ⊗Hν for all ν > 0.

Consider a general irreducible bounded symmetric domain D = G/K of rank
r ≥ 2. By a general consideration we know that the representations appearing in
the decomposition of the tensor product Hν ⊗ Hν are spherical, for all ν in the
Wallach set. Our interests will be the tensor product when ν is in the discrete
Wallach set. So let ν = a

2 (j− 1) be such a point. We consider the expansion of the
functions R−1φλ in terms of the K-invariant polynomials; more precisely

h−ν(z, z)φλ(z) =
∑
m

pm(λ)Km(z, z),(0.1)

in a neighborhood of z = 0. (See Section 1 for the definition of Km.) This formula
makes sense for all ν. For any invariant differential operator M ∈ DG(D) with
eigenvalue M(λ) on the spherical function φλ, the invariant differential operator
R−1MR on the basis vectors {Km(z, w)} is then unitarily equivalent to the multi-
plication operator by M(λ) on the coefficients {pm(λ)}, see Proposition 2.5. Our
problem will be partly to identify those polynomials.
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The algebraDG(D) is commutative with r generators. In [27] Shimura constructs
an r-tuple of generators (L1,L2, . . . ,Lr). Later the author [36] finds the eigenvalues
of the generators on the spherical functions. When ν = a

2 we prove that the
image R(H

a
2 ⊗H a

2 ) of the tensor product under R is annihilated by the operators
L2, . . . ,Lr; see Proposition 4.1. By our early results [36] on the eigenvalues of the
Shimura operators we know that a spherical function φλ is annihilated by those
Shimura operators if and only λ is in a certain one-dimensional hyperplane. For
those φλ we find the above expansion, where only those m = (m, 0, . . . , 0) appear.
The coefficients turn out also to be the continuous dual Hahn polynomials, their
orthogonality relation then gives the spectrum of the multiplication operator by
L1(λ) and thus the operator of R−1L1R; see Theorem 6.1. For type I domain
SU(2, 2)/(S(U(2)×U(2)), this has been done in [21] by using the explicit (Berezin’s)
formula for spherical functions [9].

It turns out that when (and only when) D is a non-tube domain of type one
SU(r, r + b)/S(U(r) × U(r + b)) with b ≥ 2 there are discrete parts, to be called
complementary series, appearing; and they naturally deserve further study. View-
ing the tensor product as the space of Hilbert-Schmidt operators we thus get a
quantization of the complementary series; see Theorem 7.1. In fact, we find that a
larger family of spherical representations can be quantized as operators on H

a
2 of

the Schatten-von Neumann class Sq, so that we get some invariant Banach spaces
(instead of Hilbert spaces) generated by the spherical functions. See also [4] for the
rank one case.

We mention that the tensor product decomposition has been an important
method in producing new representations, and has been studied extensively in
the literature, in particular, in its relation to dual pairs; see [11]. In [3] Sahi and
Dvorsky study the tensor products H1 ⊗ · · · ⊗Hl of several more general singular
representations and construct dual pairs. See also [8], [17], [18] and the references
therein. Also, there is some renewed interest in complementary series in connection
with some other analytical problems; see e.g. [12].

The paper is organized as follows. In Section 1 we recall some well-known results
on holomorphic spaces on bounded symmetric domains, and we prove a decompo-
sition result on the point-wise product of two irreducible polynomial spaces. In
Section 2 we incorporate the known results on the tensor product of Hν ⊗Hν for
regular parameter ν. Sections 3 and 4 are devoted to Shimura invariant differential
operators and their annihilating property. In Sections 5 and 6 we find the irre-
ducible decomposition of the tensor product. In Section 7 we study, in particular,
the complementary series appearing in the decomposition. Section 8 is devoted to
the proof of positive definiteness of the spherical functions, which, with the help
of our explicit formula for the Clebsch-Gordan coefficients and their orthogonality
relation, is straightforward and of an abstract nature. For the convenience of the
reader we list some known properties of the continuous dual Hahn polynomials in
the last section.

Acknowledgement. I would like to thank Miroslav Englǐs for his careful reading
of an earlier version of the manuscript and for some helpful remarks, and Bent
Ørsted for his encouragement. It is also my pleasure to thank the anonymous
referee for his or her clarifying remarks, in particular, for bringing the reference
[16] to my attention.
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1. Bounded symmetric domains and the polynomial spaces

In this section we fix notations and recall some necessary results on bounded
symmetric domains. The notation and setup will be the same as in [36] and [35],
so that we will be very brief and the unexplained notation can be found there.

Let G/K be an irreducible Hermitian symmetric space. It can be realized as a
bounded convex domain D in a complex n-dimensional space V with G realized as
the identity component of the group of biholomorphic mappings andK the isotropic
subgroup of 0 ∈ D. Let g be the Lie algebra of G, and let g = p⊕ k be its Cartan
decomposition. The Lie algebra k has one-dimensional center. Let gC = p+⊕kC⊕p−

be the corresponding eigenspace decomposition of gC, the complexification of g. The
vector space V = p+ can be identified with the holomorphic tangent space.

The vector space V has a structure of a Jordan triple system so that p = {ξv(z) =
v −Q(z)v̄; v ∈ V } where Q(z) ∈ Aut(V̄ , V ) is a quadratic operator. We normalize
the K-invariant inner product 〈z, w〉 on V as in [35], so that a minimal tripotent
has norm 1.

We fix {e1, . . . , er} as a frame of V and a = Rξe1 +· · ·+Rξer . Then a is a maximal
abelian subspace of p with basis vectors ξe1 , ξe2 , · · · , ξer . Let {βj}rj=1 ⊂ a∗ be the
basis of a∗ determined by

βj(ξek) = 2δj,k, 1 ≤ j, k ≤ r,

and define an ordering on a∗ via

βr > βr−1 > · · · > β1 > 0.

We will write an element λ ∈ (a∗)C as

λ =
r∑
j=1

λjβj ,

and identify λ with (λ1, λ2, · · · , λr). The half sum of the positive roots is given by

ρ =
r∑
j=1

ρjβj =
r∑
j=1

b+ 1 + a(j − 1)
2

βj,(1.1)

where a is the root multiplicity of βj±βk
2 and 2b the root multiplicity of βj

2 .
Let P(V ) be the space of all holomorphic polynomials on V . The group K acts

naturally on P(V ) induced from its regular action on V . Its irreducible decompo-
sition is now well known; see [10], [26] and [5]. To state the result we let hC be a
Cartan subalgebra of kC that contains the elements D(ej , ej), j = 1, 2, . . . , r. Let
γ1 > γ2 · · · > γr be the corresponding Harish-Chandra strongly orthogonal roots.
Thus γk(D(ej , ej)) = 2δjk. The space V = p+ is now of highest weight γ1 with
highest weight vector e1; and dual space V ′ = p− is of lowest weight −γ1. The sub-
space Pm of homogeneous polynomial of degree m is decomposed into irreducible
subspaces with multiplicity one as

Pm =
∑
m

Pm

where each Pm is of lowest weight −m = −(m1γ1 + · · ·+ mrγr) with m1 ≥ m2 ≥
· · · ≥ mr ≥ 0 being integers, and the summation is over all m with |m| = m1 +
m2 + · · ·+mr = m.
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We define a K-invariant function h(z) on D so that

h(c1e1 + c2e2 + · · ·+ crer) = (1− |c1|2)(1− |c2|2) . . . (1− |cr|2)

and let h(z, w) be its polarization, holomorphic in z and antiholomorphic in w so
that h(z, z) = h(z). Consider the weighted probability measure

dµν(z) = cνh(z)ν−pdm(z)(1.2)

with ν > p− 1 and cν a normalization constant. We denote Hν the corresponding
weighted Bergman space; it has reproducing kernel h(z, w)−ν .

The group G acts unitarily on Hν via

π(ν)(g)f(z) = (Jg−1(z))
ν
p f(g−1z), g ∈ G,(1.3)

and it gives irreducible unitary (projective) representation of G. One may also
consider more generally the actions of G on vector-valued C∞-functions on D; see
(3.1) below.

We recall now the Faraut-Koranyi expansion of the reproducing kernel h(z, w)−ν .
Let Km be as in [5] the reproducing kernel of the subspace Pm with the Fock norm.

Theorem 1.1 (Faraut and Koranyi [5], Theorem 3.8). The function h(z, w)−ν

has the expansion

h−ν(z, w) =
∑
m

(ν)mKm(z, w)(1.4)

for all ν ∈ C, and the convergence is uniform on compact subsets of D ×D. Here

(ν)m =
r∏
j=1

(ν − a

2
(j − 1))mj =

r∏
j=1

mj∏
k=1

(ν − a

2
(j − 1) + k − 1).

It follows from this expansion that the kernel h−ν(z, w) is positive definite and
defines a Hilbert space if and only if ν is in

W (D) = {0, a
2
, . . . ,

a

2
(r − 1)} ∪ (

a

2
(r − 1),∞),(1.5)

also called the Wallach set.
If ν = a

2 (j− 1) in the discrete Wallach set, only certain subspaces Pm are in the
Hilbert space Hν = H

a
2 (j−1); more precisely,

H
a
2 (j−1) =

∑
m:mj=0

Pm.(1.6)

Moreover, it forms an irreducible representation of G with the action π(ν). In par-
ticular, the algebraic sum of all Pm with mj = 0 forms an irreducible representation
of the Lie algebra gC.

The next lemma will be used in the proof of Theorem 5.2.

Lemma 1.2. Let 1 ≤ j ≤ r − 1. Consider the product Pm · Pm′ (consisting of the
sum of point-wise products of two polynomials in the respective spaces) of a subspace
Pm with signature m = (m1, 0, . . . , 0) and Pm′ with m′ = (m′1, . . . ,m

′
j−1, 0, . . . , 0).

Let

Pm · Pm′ =
∑
n

Pn
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be its irreducible decomposition under K (which is multiplicity free by Theorem
1.1). Then the signatures n = (n1, . . . , nr) that appear in the decomposition satisfy
nj+1 = 0.

To prove the lemma we give a more general result on tensor products of Hilbert
spaces with reproducing kernels; it might have been proved previously, but we
include here a simple proof. (Similar arguments have also been used in studying
the tensor product of a holomorphic Hilbert space with its conjugate; see e.g. [4].)

Let temporarily H(K1) and H(K2) be two Hilbert spaces of holomorphic func-
tions on a bounded (not necessarily symmetric) domain D in Cn with reproducing
kernels K1(z, ξ) and K2(z, ξ), so that the point evaluation is a continuous lin-
ear functional. Thus the reproducing kernels K1(z, ξ) and K2(z, ξ) are positive
definite. The point-wise (Schur) product K1K2(z, ξ) = K1(z, ξ)K2(z, ξ) is again
semi-positive definite. Let H(K1K2) denote the corresponding Hilbert space deter-
mined by the reproducing kernel and H(D) the space of all holomorphic functions
on D. The tensor productH(K1)⊗H(K2) can be realized as a space of holomorphic
functions F (z, w) in two variables.

Lemma 1.3. Consider the operator R : H(K1)⊗H(K2)→ H(D) by the restriction
to the diagonal Rf(z) = f(z, z). Then R extends to an isometry from (KerR)⊥

onto H(K1K2).

Proof. Clearly KerR is a closed subspace of H(K1) ⊗ H(K2) by the continuity of
the point evaluation. Thus R defines a one-to-one map from (KerR)⊥ into H(D).
Consider the elements in H(K1)⊗H(K2) of the form g =

∑
cjK1(z, ξj)K2(w, ξj).

First, these elements are in (KerR)⊥; indeed for any f ∈ KerR, by the reproducing
property,

〈f, g〉 =
∑

c̄jf(ξj , ξj) = 0.

Second, they are dense in (KerR)⊥, since if g0 ∈ (KerR)⊥ is orthogonal to all g, it
is, in particular, orthogonal to g = K1(z, ξ)K2(w, ξ) for any fixed ξ, and

Rg0(ξ) = g0(ξ, ξ) = 〈g0, g〉 = 0,

namely g0 ∈ KerR ∩ (KerR)⊥ = {0}.
The images of g are

Rg(z) =
∑

cjK1(z, ξj)K2(z, ξj),

and they form a dense subspace of H(K1K2). Moreover, R is an isometry, again
by the reproducing property. Thus R extends to an isometry from the closure of
those g, which is (KerR)⊥, onto H(K1K2).

Specializing the above result with H(K1) and H(K2) replaced by H−
a
2 respec-

tively H−
a
2 (j−1) we see that the products Pm · Pm′ of two irreducible subspaces in

H−
a
2 and H−

a
2 (j−1) is a subspace in H−

a
2 j , whose decomposition under K is given

by the Faraut-Koranyi expansion in Theorem 1.1.

2. Tensor product π(ν) ⊗ π(ν) and the Berezin transform:

Some general results

The tensor product of π(ν) ⊗ π(ν) for the large parameter ν > p − 1 has been
studied in several contexts; see [19], [37] and the reference therein. We recall some
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of the results in the literature. Consider the tensor product Hν⊗Hν , realized as the
space of Hilbert-Schmidt operators F on Hν with kernel F (z, w) holomorphic in z
and anti-holomorphic in w. The group G acts on the tensor product via π(ν)⊗π(ν),
and it gives a (genuine) representation. To study the irreducible decomposition we
consider the map R : Hν ⊗Hν → C∞(D), defined by

RF (z) = F (z, z)h(z, z)ν.(2.1)

Then R intertwines the action π(ν)⊗π(ν) with the regular action π(0) on C∞(D).
Clearly R is one-to-one. Note that the inverse operator R−1 is defined on the space
of all real analytic functions on D and is essentially the so-called polarization.
(However, generally, R−1f(z, w) for a real analytic function f is defined only on
a small set near the diagonal, so it is not a function on D × D; we thank Bo
Berndtsson and Miroslav Englǐs for some kind correspondence. In our case we shall
only consider the operator R−1 as defined on R(Hν ⊗ Hν).) When considering
functions F (z, w) holomorphic in z and anti-holomorphic in w we will frequently
identify F with its restriction F (z, z) to the diagonal and simply write F (z).

Let L2(D) be the L2-space on D with respect to the G-invariant measure dm(z)
h(z,z)p .

When ν > p − 1 the operator R is an injective bounded operator into the space
L2(D) with dense image; the decomposition of the later space is well known by
the theory of spherical transform. Moreover, the operator RR∗ is actually the
Berezin transform on L2(D). However, for smaller ν the operator R is no longer
bounded and the above method does not work. Our approach is to find directly
the decomposition of the tensor product without referring to the bounded property
of R. For that purpose we first establish some general results about the nature of
the eventual irreducible decomposition.

Lemma 2.1. Let ν be in the Wallach set (1.5). Suppose

π(ν) ⊗ π(ν) ≡
∫

Σ

π(τ)dµ(τ)

is the irreducible decomposition of π(ν)⊗ π(ν). Then for almost all τ the represen-
tations π(τ) are spherical.

Proof. Take a subset ∆ ⊂ Σ, with µ(∆) 6= 0 and let P∆ be the orthogonal projection
onto

∫
∆ π(τ)dµ(τ). The space Hν ⊗ Hν has 1 ⊗ 1 as a cyclic vector under the

action π(ν) ⊗ π(ν) as easily seen by using the reproducing property (see e.g. [4],
see also [21] in terms of the universal enveloping algebra). Thus P∆(1 ⊗ 1) is a
K-invariant element of

∫
∆ π(τ)dµ(τ) and is cyclic; moreover, P∆(1 ⊗ 1) 6= 0 since∫

∆
π(τ)dµ(τ) 6= 0. This proves our claim.

Denote (Hν⊗Hν)0 the subspace of K-invariant elements. In that subspace there
is an orthogonal basis given by Km(z, w), the spherical transforms of their images
R(Km) under R provide then the Clebsch-Gordan coefficients; moreover, they give
also the coefficients in the expansion of the spherical function in terms of Km; see
below.

We let

Em(z, z) = Em,ν(z, z) = (ν)mKm(z, z),(2.2)

em(z) = em,ν(z, z) =
Em,ν

d
1
2
m

=
(ν)mKm(z, z)

d
1
2
m

,(2.3)
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where dm = dimPm. The following result is then a direct consequence of (and in
fact is equivalent to) the expansion (1.4).

Lemma 2.2. If ν > a
2 (r − 1), then the functions em,ν form an orthonormal basis

of (Hν ⊗Hν)0; if ν = a
2 (j − 1) for some j = 1, . . . , r, then the functions em,ν for

m = (m1, . . . ,mj−1, 0, . . . , 0) form an orthonormal basis of (Hν ⊗Hν)0.

The next result is proved in [35] (see (5.5) there). Let φλ(z) be the spherical
function D. We denote f̂(λ) the spherical transform of a K-invariant function f
on D,

f̂(λ) =
∫
D

f(z)φλ(z)
dm(z)
h(z, z)p

.

The constant cν below is that in (1.2). Note first that the function h−ν(z)φλ(z) is
formally the restriction to the diagonal of the polarization R−1φλ of φλ.

Lemma 2.3. Consider the power series expansion of h−ν(z)φλ(z)

(R−1φλ)(z) = h−ν(z)φλ(z) =
∑
m

Em,ν(λ)Em(z, z)(2.4)

in terms of the K-invariant polynomials Em(z, z). Let

εm(λ) = εm,ν(λ) = d
1
2
mEm,ν(λ).(2.5)

Suppose ν > p− 1. Then the coefficients Em,ν(λ) can be obtained by the spherical
transform,

bν(λ)dmEm,ν(λ) = ̂(cνhνKm)(λ)(2.6)

and

bν(λ)εm,ν(λ) = ̂(cνhνem)(λ).(2.7)

Remark 2.4. The above expansion (2.4) is valid a priori only in a neighborhood of
z = 0. There arises naturally an interesting question as whether it holds for all
z ∈ D.

Proposition 2.5. Suppose ν is in the Wallach set (1.5). Let M be an invariant
differential operator on C∞(D) with eigenvalueM(λ) on the spherical function φλ.
Then the invariant differential operator R−1MR on the orthonormal basis {em(z)}
of (Hν ⊗Hν)0 and the multiplication operator M(λ) on the system of polynomials
εm(λ) have the same matrix form. Namely, if

(R−1MR)em(z) =
∑
m′

am(m′)em′(z),(2.8)

then

M(λ)εm,ν(λ) =
∑
m′

am(m′)εm′,ν(λ).(2.9)

Proof. Suppose ν > p − 1. The matrix form (2.8) can also be written as, after
multiplying by the constant cν ,

M(cνhνem)(z) =
∑
m′

am(m′)cνhν(z)em′(z).
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We perform the spherical transform on the equation and use (2.6). The l.h.s. then
becomes M(λ)bν(λ)εm,ν(λ) and the r.h.s. is∑

m′

am(m′)bν(λ)εm′,ν(λ);

dividing both sides by bν(λ) proves the claim for ν > p− 1. It is easily seen that
the matrix forms (2.8) and (2.9) depend polynomially on the parameter ν. Thus it
holds for all ν and m whenever em,ν is well-defined.

Remark 2.6. The above Proposition is a justification of a simple formal calculation.
Let L be a self-adjoint operator on a Hilbert space, and {em} an orthogonal basis
so that each vector is in the domain of L. Suppose

Lem = amem−1 + bmem + cmem+1

and that ψ =
∑∞

m=0 fmem is an eigenvector of L with eigenvalue λ (in some proper
sense). Then the coefficients fn satisfy the following recurrence relation

λfm = am+1fm+1 + bmfm + cm−1fm−1

which we may refer to as the dual relation to the former. On the other hand, if the
two relations hold, then the series ψ =

∑∞
m=0 fmem is an eigenvector of L whenever

it makes sense. If, moreover, {em} is an orthonormal basis, then am+1 = cm since
L is self-adjoint, and the two relations are exactly the same. (See Lemma 6.1
and Remark 6.2 concerning the self-adjointness of the conjugates of the Shimura
operators by R.)

3. Invariant differential operators

We introduce the Shimura system of generators of all invariant differential opera-
tors on D. Let (X, τ) be a holomorphic representation of KC on a finite dimensional
vector space X . This then induces a homogeneous bundle W on D. A smooth sec-
tion of the bundle will be identified with an element in C∞(D,X), the space of
X-valued C∞-functions on D = G/K. The induced action of G on C∞(D,X) is

πX(g)f(z) = τ(dg−1(z))−1f(g−1z).(3.1)

In particular, if X = C is one-dimensional with τ on KC being (det(k))−
ν
p , we get

the action (1.3) on C∞(D).
We let D = DX be as in [36] the holomorphic covariant differentiation operator

on C∞(D,X). It maps C∞(D,X) into C∞(D,V ′⊗X), where V ′ is the dual space
of V , viewed as the holomorphic cotangent space. More importantly, it intertwines
the corresponding actions of G,

DX(πX(g)f) = πV ′⊗X(g)(DXf).

Let DmX = D⊗m−1 V ′⊗X . . .DV ′⊗XDX be the iterate of D. It has been proved in
[36] that Dm actually maps C∞(D,X) into C∞(D,Sm(V ′) ⊗ X), where Sm(V ′)
stands for the subspace of symmetric tensors of

⊗m
V ′. The space Sm(V ′), as a

K-module, is equivalent to the space of all homogeneous polynomials of degree m,
thus can be decomposed under K as irreducible subspaces Sm(V ′), of signatures
m = (m1, . . . ,mr); we let Pm be the orthogonal projection onto the corresponding
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subspace. The operator PmDm thus maps into the sub-bundle Sm(V ′) ⊗X . The
Shimura invariant differential operators on C∞(D,X) are then defined by

Lm = (DmX )∗PmDmX ,

where (DmX )∗ is the Hilbert space adjoint. In the present paper we will only consider
the operator Lm on the trivial line bundle on D.

The operator D has been previously studied by Shimura for classical domains.
In particular, Shimura [28] has given an easier formula for the operators PmDm in
terms of the Cayley-Capelli type operators, when m are the fundamental represen-
tations m = 1j = (1, . . . , 1, 0, . . . , 0). We specify his results (see Theorem 4.7 loc.
cit.) to the special case of scalar-valued functions; it is proved there for classical
domains and is generalized in [36] for all bounded symmetric domains.

Theorem 3.1. Let 1 ≤ j ≤ r and ε = a
2 (j − 1). The operator P1j∂

j has the
following intertwining property

P1j∂
j(Jεg (z)f(gz)) = Jg(z)

ε
p (⊗jdg′(z))(P1j∂

jf)(gz);(3.2)

the operator P1jDj on the space C∞(D) with the regular action of G can be ex-
pressed in terms of P1j∂

j as

P1jDjf = h
a
2 (j−1)P1j∂

j(h−
a
2 (j−1)f).(3.3)

Consider the trivial line bundle on D. It has been proved by Shimura [27] that
the operators

Lj = L1j , j = 1, . . . , r(3.4)

form a system of generators of the algebra of all invariant differential operators on
C∞(D).

Recall the intertwining operator R. Via conjugation by R we get r invariant
differential operators

Lj,ν = R−1L1jR, j = 1, . . . , r(3.5)

on the tensor product Hν ⊗Hν .

4. The invariant annihilating differential operators of the spaces

Hν
and of the tensor products Hν ⊗Hν

at discrete points

We shall prove in this section that the Shimura operators on C∞(D) are annihi-
lating differential operators of the image under R of the Hν ⊗Hν at the reducible
points ν = a

2 (j − 1), j = 1, . . . , r. We mention that holomorphic differential opera-
tors that annihilate Hν have been studied in [2] and [32].

Proposition 4.1. Let 1 ≤ j0 ≤ r. Consider the intertwining operator R =
R a

2 (j0−1) from the tensor product H
a
2 (j0−1) ⊗ H

a
2 (j0−1) into C∞(D). Its image

R(H
a
2 (j0−1) ⊗H a

2 (j0−1)) is annihilated by the Shimura invariant differential oper-
ators Lj for j0 ≤ j ≤ r.

To prove the proposition we need the following

Lemma 4.2. Let 1 ≤ j ≤ r. The operator P1j∂
j annihilates all polynomial spaces

Pm with m = (m1, . . . ,mr) and mj = 0.
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Proof. The space H
a
2 (j−1) is an irreducible representation of G with the action

π(a2 (j − 1)). Consider its subspace of the algebraic sum of all polynomials. By
(1.6) it is a direct sum of those Pm so that mj = 0. It forms an irreducible
representation of of gC. By the intertwining property of P1j∂

j stated in Theorem
3.1 we know that the kernel KerP1j∂

j is an gC-invariant subspace. Clearly the
constant function f0 = 1 is in the kernel. By irreducibility we know that KerP1j∂

j

is the whole algebraic sum.

Proof of Proposition 4.1. The function 1⊗1 is a cyclic vector of the Hν⊗Hν under
the action of G, thus the function R(1⊗ 1) = hν is a cyclic vector of R(Hν ⊗Hν).
Let ν = a

2 (j0 − 1). We prove LjR(1⊗ 1) = Ljh
a
2 (j0−1) = 0, the result then follows

by the cyclic property of R(1⊗ 1). Now Lj = (Dj)∗P1jDj and by Theorem 3.1 we
have

P1jDjh
a
2 (j0−1) = h

a
2 (j−1)P1j∂

jh−
a
2 (j−j0).

We claim that P1j∂
jh−

a
2 (j−j0) = 0. Indeed consider the Faraut-Koranyi expansion

of h−
a
2 (j−j0):

h−
a
2 (j−j0)(z, z) =

∑
m:mj−j0+1=0

(
a

2
(j − j0))mKm(z, z).

Being the power series expansion of h−
a
2 (j−j0)(z, z) it is absolutely convergent in

a neighborhood of z = 0. Each term Km(z, z) is a sum of holomorphic polynomi-
als in Pm with mj−j0+1 = 0, consequently mj = 0, with coefficients being anti-
holomorphic polynomials. Thus P1j∂

jKm(z, z) = 0 by Lemma 4.2. Consequently,
P1j∂

jh−
a
2 (j−j0) = 0, by the commutativity of the differentiation and summation in

a power series expansion.

Proposition 4.3. The spherical function φλ is annihilated by all Lj , j = j0, . . . , r,
if and only if λ is in the Weyl group orbit of

(iρ1, . . . , iρr−j0 , iρr−j0+1, sr−j0+2, . . . , sr) for some (sr−j0+2, . . . , sr) ∈ Cj0−1.

To prove the result we recall the formula for the eigenvalues of Lj obtained in
[36], Theorem 5.3.

Lemma 4.4. Consider the Shimura operators Lj on the trivial line bundle on D.
Their eigenvalues on the spherical functions φλ are given by

Lj(λ) = Cj

j∑
k=0

hj−k
(
ρ2

2 − ρ2
1, · · · , ρ2

r−j+1 − ρ2
1

)
×mk

(
λ2

1 + ρ2
1, · · · , λ2

r + ρ2
1

)
.

(4.1)

Here Cj is a positive constant, hk and mk are the complete symmetric and elemen-
tary symmetric functions of degree k, respectively.

Proof of Proposition 4.3. The result will follow somewhat easier if we follow the
proof of Theorem 5.3 in [36]. Suppose that λ is as in the proposition. Since
r− j+ 1 ≤ r− j0 + 1 the set {ρ1, ρ2, . . . , ρr−j+1} is a subset of {ρ1, ρ2, . . . , ρr−j0+1}
so that r − j + 1 components of λ are sign permutations of iρ1, iρ2, . . . , iρr−j+1.
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We may assume that λj+1 = iρ2, . . . , λr = iρr−j+1. It is proved in [36] (see formula
(5.20) and (5.25) there) that in this case the eigenvalue of Lj is of the form

Lj(λ) = Cj

j∏
s=1

(λ2
s + (

1 + b

2
)2) = Cj

j∏
s=1

(λ2
s + ρ2

1).

Thus, if in addition, one of the remaining components, say λj = iρ1, then Lj(λ) = 0.
Conversely, suppose now that λ is such that Lj(λ) = 0 for all j0 ≤ j ≤ r.

We start with the condition Lj(λ) = 0 for j = r and prove that after a signed
permutation we have λ1 = iρ1, and prove successively by using Lemma 4.4 and the
condition Lj(λ) = 0 for j = r − 1, r − 2, . . . , j0.

Indeed, the eigenvalue Lr(λ) is

Lr(λ) = Cr

r∏
j=1

(λ2
j + ρ2

1).

Thus Lr(λ) = 0 implies that one of the λk is ±iρ1. We may assume λ1 = iρ1. Fix
this value of λ1. We study the condition Lj(λ) = 0 for j = r − 1. The eigenvalue
of Lj(λ) for j = r − 1 is then, by Lemma 4.4,

Lj(λ) = Cr−1

r−1∑
k=0

hr−1−k(ρ2
2 − ρ2

1)mk(0, λ2
2 + ρ2

1, · · · , λ2
r + ρ2

1)

= Cr−1

r−1∑
k=0

(ρ2
2 − ρ2

1)r−1−kmk(λ2
2 + ρ2

1, · · · , λ2
r + ρ2

1)

= Cr−1(ρ2
2 − ρ2

1)r−1
r−1∑
k=0

(ρ2
2 − ρ2

1)−kmk(λ2
2 + ρ2

1, · · · , λ2
r + ρ2

1)

= Cr−1(ρ2
2 − ρ2

1)r−1
r∏

k=2

(1 + (ρ2
2 − ρ2

1)−1(λ2
k + ρ2

1))

(4.2)

where in the last equality we have used the formula
l∑

k=0

mk(x1, . . . , xl)tk =
l∏

k=1

(1 + xkt)

for the generating function of mk. The product is then, disregarding a positive
factor,

r∏
k=2

(λ2
k + ρ2

2).

Thus if Lj(λ) = 0 for j = r−1, then one of λk, k = 2, . . . , r, is iρ2; we may assume
λ2 = iρ2.

We claim that generally if λs = iρs, for all 1 ≤ s ≤ j, for a fixed 1 ≤ j ≤ r, then
the eigenvalue of Lr−j(λ) is

C

r∏
k=j+1

(λ2
k + ρ2

j+1).(4.3)

Accepting temporarily the claim, the eigenvalue of Lj(λ) = 0 for j = r − 2 implies
that λ3 = iρ3, and the result is then proved by repeating the argument.
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The eigenvalue Lr−j(λ) is, disregarding the nonzero constant,
r−j∑
k=0

hr−j−k
(
ρ2

2 − ρ2
1, . . ., ρ

2
j+1 − ρ2

1

)
mk

(
−ρ2

2 + ρ2
1, . . .,−ρ2

j + ρ2
1, λ

2
j+1 + ρ2

1, λ
2
r + ρ2

1

)
.

To simplify the notation we write ck = ρ2
k − ρ2

1 for k = 2, . . . , j + 1. The above
formula is

r−j∑
k=0

hr−j−k(c2, . . . , cj+1)mk

(
−c2, . . . ,−cj, λ2

j+1 + ρ2
1, . . . , λ

2
r + ρ2

1

)
.

As a polynomial of λ2
j+1, the point λ2

j+1 = −ρ2
j+1 is its zero. Indeed, denoting

temporarily d = (λ2
j+2 + ρ2

1, . . . , λ
2
r + ρ2

1) ∈ Cr−j−1, at the point λ2
j+1 = −ρ2

j+1 the
polynomial is

r−j∑
k=0

hr−j−k(c2, . . . , cj+1)mk(−c2, . . . ,−cj ,−cj+1,d)

=
r−j∑
k=0

hr−j−k(c2, . . . , cj+1)
k∑
l=0

mk−l(−c2, . . . ,−cj,−cj+1)ml(d)

=
r−j∑
l=0

ml(d)
r−j∑
k=l

hr−j−k(c2, . . . , cj+1)mk−l(−c2, . . . ,−cj ,−cj+1)

=
r−j∑
l=0

ml(d)
r−j−l∑
k=0

hk(c2, . . . , cj+1)mr−j−l−k(−c2, . . . ,−cj,−cj+1)

=
r−j∑
l=0

ml(d)δr−j−l,0 = mr−j(d)

(4.4)

where δr−j−l,0 is the Kronecker symbol; here we use the formula
k∑
l=0

(−1)smshk−s = δk,0;(4.5)

see [15], Section I.2. But the dimensionality of d is r − j − 1 which is less than
r − j, thus mr−j(d) = 0.

Consequently, Lr−j(λ) as a polynomial of λ2
j+1 has a factor λ2

j+1 + ρ2
j+1. Being

a symmetric polynomial of λ2
j+1, . . . , λ

2
r , it has a factor λ2

k + ρ2
j+1 for all k =

j + 1, . . . , r; thus it is a nonzero constant multiple of their product, thereby the
claim (4.3).

Remark 4.5. The above proof has in effect solved a system of polynomial equations
Lj(λ) = 0, j0 ≤ j ≤ r.

5. Matrix form of the operator R−1
a
2
L1R a

2
and explicit formulas

for the spherical functions

We consider now that ν = a
2 . As proved in the previous section the invari-

ant differential operators Lj for j ≥ 2 act as zero operators on the image of the
tensor product Hν ⊗ Hν under R. We thus consider the spectral decomposition
of the operator L1, a2

= R−1L1R. Moreover, the representations appearing in the
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decomposition are spherical; any spherical representation is uniquely determined
by the spherical function, which in turn is determined by the corresponding eigen-
values of the Shimura operators L1, . . . ,Lr. The operators L2, . . . ,Lr annihilate
the spherical functions appearing in the representation. We need only determine
the eigenvalues of L1 on the spherical functions that appear in the decomposition,
which in turn is given by the spectrum of L1, a2

.
We will find the matrix form of the Lj, a2 acting on the basis Km of H

a
2 ⊗

H
a
2 . As remarked earlier, the functions Km are polynomials in (z, w), holomor-

phic in z and anti-holomorphic in w, and so are their actions under Lj, a2 , thus
they are uniquely determined by their restriction on the diagonal; the restrictions
are then K-invariant, and are determined by their restriction on exp(a+) · 0 =
{(s1, . . . , sr); 0 ≤ s1 ≤ · · · ≤ sr < 1}.

Write sj = exp(tjξj) · 0 = tanh tj , j = 1, . . . , r. In terms of the coordinates
(t1, . . . , tr), the radial part of the Laplace Beltrami operator is

L1 =
1
4

(
r∑
j=1

∂2
j + a

∑
r≥i>j≥1

coth(ti ± tj)(∂i ± ∂j)

+ 2
r∑
j=1

coth 2tj∂j + 2b
r∑
j=1

coth tj∂j);

see [7], Chapter II, Proposition 3.9. However, it is more convenient to use the
coordinates xj = s2

j , it is

L1 =
r∑
j=1

xj(1− xj)2∂2
j +

r∑
j=1

(1 − xj)2∂j + b

r∑
j=1

(1 − xj)2∂j

+ a
∑
j 6=k

(1− xj)(1 − xk)
xj − xk

xj∂j .

(5.1)

We can then find a formula for the operator L1,ν = R−1
ν L1Rν . When acting on K-

invariant functions in (z, w) and restricting to the diagonal (z, z), z = (s1, . . . , sr),
with coordinates (x1, . . . , xr) = (s2

1, . . . , s
2
r),

L1,ν = R−1
ν L1Rν

=
r∑
j=1

xj
(
(1− xj)2∂2

j − 2ν(1 − xj)∂j + ν(ν − 1)
)

+
r∑
j=1

(
(1 − xj)2∂j − ν(1 − xj)

)
+ b

r∑
j=1

((1 − xj)∂j − ν)

+ a
∑
j 6=k

(1− xk)
xj − xk

xj ((1 − xj)∂j − ν) .

(5.2)

As proved in the previous section the spherical functions that appear in the
decomposition of the tensor product satisfy, up to the Weyl group action,

λ = (iρ1, . . . , iρr−1, λ),(5.3)

for some (with some abuse of notation) λ = λr ∈ C. We will find the recurrence
relations (2.8) and (2.9) with λ as above.
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Notice first that when ν = a
2 the expansion (1.4) becomes

h−
a
2 (z) =

∞∑
m=0

(
a

2
)mKm(z, z)

with m = (m, 0, . . . , 0), and for z = s1e1 + · · ·+ srer

Km(z, z) =
1

(a2 )m

∑
k1+···+kr=m

(a2 )k1 · · · (a2 )kr
k1! · · · kr!

s2k1
1 · · · s2kr

r ,

Em(z, z) =
∑

k1+···+kr=m

(a2 )k1 · · · (a2 )kr
k1! · · ·kr!

s2k1
1 · · · s2kr

r .

(5.4)

For simplicity we write hereafter m = m.

Lemma 5.1. With the above notation,

L1, a2
Em = AmEm−1 +BmEm + CmEm+1(5.5)

where

Am = (m+
a

2
r)(m+ 1 + b+

a

2
(r − 1)),

Bm = −
(
m(2m+ ar + b) +

a

2
r(1 + b+

a

2
(r − 1))

)
and

Cm = (m+ 1)(m+
a

2
).

Before performing the calculation we note that by invariance the operator L1, a2
maps each vector Em into a unique linear combination of themselves. By the
formula (5.2) we see easily that L1, a2

Em is actually a linear combination of Em−1,
Em and Em+1. To find the coefficients we rewrite L1,ν (for general ν) as a sum of
three operators that are rising, lowering and respectively keeping the degree of a
homogeneous symmetric polynomial. First consider the last term in (5.2),∑

j 6=k

(1− xk)
xj − xk

xj =
∑
j<k

(
(1 − xk)
xj − xk

xj +
(1 − xj)
xk − xj

xk) =
∑
j<k

xj − xk
xj − xk

=
(
r

2

)
,

and ∑
j 6=k

(1− xk)
xj − xk

(1− xj)xj∂j =
∑
j<k

(1− xk)(1 − xj)
xj − xk

(xj∂j − xk∂k).

Thus

L1,ν = L+ + L0 + L−,

where

L+ =
r∑
j=1

xj(ν(ν − 1) + 2νxj∂j + x2
j∂

2
j ) +

r∑
j=1

(νxj + x2
j∂j)

+ a
∑
j<k

xjxk
xj∂j − xk∂k
xj − xk

,

(5.6)
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L0 = −2(ν + 1 + b)
r∑
j=1

xj∂j − 2
r∑
j=1

x2
j∂

2
j − a

∑
j<k

(xj + xk)
xj∂j − xk∂k
xj − xk

− νr(1 + b)− νa
(
r

2

)(5.7)

and

L− =
r∑
j=1

xj∂
2
j + (1 + b)

r∑
j=1

∂j + a
∑
j<k

xj∂j − xk∂k
xj − xk

.(5.8)

To treat the last term in L− we observe further that the operator x∂x−y∂y
x−y acting

on a symmetric polynomial f(x, y) = xcyd + ycxd (c ≥ d ≥ 0) is

x∂x − y∂y
x− y f(x, y) = (c− d)(xy)d

xc−d − yc−d
x− y

= (c− d)(xy)d(xc−d−1 + · · ·+ yc−d−1);
(5.9)

if we evaluate the result at y = 0, it is possibly nonzero only if c > d = 0, in which
case it is cxc−1; if it is further evaluated at x = y = 0, it is zero unless c = 1.

Proof. Recall that ν = a
2 . We calculate L+Em and evaluate it at (x1, x2, . . . ) =

(x1, 0, . . . , 0), which we write as (x1, 0). We find

L+Em(x1, 0) = (
a

2
)m

1
m!

(a
2

(
a

2
− 1) + am+m(m− 1) +

a

2
+m

)
xm+1

1

= (
a

2
)m

1
(m)!

(
a

2
+m)2xm+1

1

= (m+ 1)(
a

2
+m)(

a

2
)m+1

1
(m+ 1)!

xm+1
1

= (m+ 1)(
a

2
+m)Em+1(x1, 0).

So that

L+Em(x1, . . . , xr) = (m+ 1)(
a

2
+m)Em+1(x1, . . . , xr)

by the uniqueness of the recurrence (5.5).
Next we calculate L−Em(x1, 0). Clearly

(
r∑
j=1

xj∂
2
j )Em(x1, 0) = xm−1

1 m(m− 1)
(a2 )m
m!

= (m− 1)(
a

2
+m− 1)Em−1(x1, 0).

To deal with the differentiation
∑r

j=1 ∂j = ∂1 +
∑r
j=2 ∂j we write

Em(x) =
(a2 )m
m!

xm1 +
∑

k1+···+kr=m,k1<m

(a2 )k1 . . . (
a
2 )kr

k1! . . . kr!
xk1

1 · · ·xkrr ,

the differentiation ∂1 on the second term in Em, when evaluated at (x1, 0), is clearly
zero. Therefore

∂1Em(x1, 0) = ∂1

(a2 )m
m!

xm1 =
(a2 )m

(m− 1)!
xm−1

1 .
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Using the observation (5.9) we see that

(
r∑
j=2

∂j)Em(x1, 0) = (
r∑
j=2

∂j)

 r∑
j=2

(a2 )m−1(a2 )1

(m− 1)!
xm−1

1 xj

 (x1, 0)

= (r − 1)
a
2 (a2 )m−1

(m− 1)!
xm−1

1 .

So that

L−Em(x1, 0) = C
(a2 )m−1

(m− 1)!
xm−1

1 = CEm−1(x1, 0)

with the constant C given by

C = (m− 1)(
a

2
+m− 1)) + (1 + b)(

a

2
+m− 1 + (r − 1)

a

2
) + a(r − 1)(

a

2
+m− 1)

+ a
a

2
(r − 1)(r − 2)

2
= (m− 1 +

a

2
r)(m+ b+

a

2
(r − 1)),

which is the Am claimed in the lemma. Finally L0Em(x1, 0) can be calculated by
a similar method.

We consider the dual relation of (5.7):

−(λ2 + ρ2
r)Em(λ) = Am+1Em+1(λ) +BmEm(λ) + Cm−1Em−1(λ)(5.10)

with E0(λ) = 1. This relation (5.10) is exactly (9.3) in the appendix, (with α there
being ρr, β = 1+b

2 and γ = − 1+b
2 + a

2 ) which along with the given E0(λ) uniquely
determines the polynomials; therefore

Em(λ) = 3F2(−m, ρr + iλr, ρr − iλr; 1 + b+
a

2
(r − 1),

a

2
r; 1).(5.11)

Consequently, by the argument in Remark 2.5, the series

ψ(z) =
∑
m

Em(λ)Em(z)(5.12)

is an eigenfunction of L1, a2
with eigenvalue −(λ2 + ρ2

r), whenever the power series
is uniformly convergent.

Theorem 5.2. The function h−
a
2 (z)φλ(z) for λ as in (5.3) has the following ex-

pansion

h(z)−
a
2 φλ(z) = ψ(z) =

∑
m

Em(λ)Em(z),(5.13)

and the series converges uniformly on the compact subset of D.

To prove the theorem we need a technical estimate.

Lemma 5.3. Suppose α, β ∈ C and γ > 0, δ > 0. Let M ≥ 0 be such that
|α|+M ≥ γ, |β|+M ≥ δ. Then

|3F2(−m,α, β; δ, γ; 1)| ≤ (m+ 1)!
(|α|+M)m(|β|+M)m

(δ)m(γ)m
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Proof. By its definition

3F2 (−m, αβ; γ, δ; 1) =
m∑
j=0

(−1)j
(
m

j

)
(α)j(β)j
(γ)j(δ)j

.

We observe that (
m

j

)
≤ m!,

and for any two positive numbers a ≥ b > 0

1 ≤ a

b
≤ a(a+ 1)
b(b+ 1)

≤ · · · ≤ (a)j
(b)j

for any j ≥ 0. Using these two inequalities we have

|3F2(−m,α, β; γ, δ; 1)|

≤ m!
m∑
j=0

(|α|)j(|β|)j
(γ)j(δ)j

≤ m!
m∑
j=0

(|α| +M)j(|β|+M)j
(γ)j(δ)j

≤ m!
m∑
j=0

(|α| +M)m(|β|+M)m
(γ)m(δ)m

= (m+ 1)!
(|α|+M)m(|β|+M)m

(γ)m(δ)m
.

(5.14)

Proof of Theorem 5.2. We prove that the function ψ(z) defined in (5.12) is conver-
gent and that φλ(z) = h

a
2 (z)ψ(z). Notice that Em(s1e1 + · · ·+ srer) ≤ ( a2 r)m

m! s2m,
where s = max{s1, . . . , sr}. Using the previous lemma, with α, β, γ and δ replaced
by the corresponding numbers in (5.11), and a fixed large M , we get

|Em(λ)|Em(s1e1 + · · ·+ srer) ≤ (m+ 1)!
(|α|+M)m(|β|+M)m

(γ)m(δ)m

(a2 r)m
m!

s2m.

By the ratio test the series ψ(z) is convergent if s < 1, we thus get the uniform
convergence on compact sets of D. The function ψ(z) is an eigenfunction of L1, a2

with eigenvalue−(λ2+ρ2
r), that is, the function h

a
2 (z)ψ(z) is an eigenfunction of the

Laplace-Beltrami operator L1. We prove that h
a
2 (z)ψ(z) is also an eigenfunction of

the higher order Shimura operators Lj for j = 2, . . . , r with eigenvalue 0, namely
they are K-invariant eigenfunctions of a system of generators. The result follows
then by the uniqueness of the spherical function. By its definition and Theorem 3.1,
L1j = (Dj)∗P1jDj and P1jDj = h

a
2 (j−1)P1j∂

j(h−
a
2 (j−1)), so that P1jDj acting on

the function h
a
2 (z)ψ(z) is

P1jDj(h
a
2 (z)ψ(z)) = h

a
2 (j−1)(z)P1j∂

j
(
h−

a
2 (j−1)h

a
2 (z)ψ(z)

)
= P1j∂

j
(
h−

a
2 (j−2)(z)ψ(z)

)
.

The function ψ(z) is a sum of Km with m2 = 0, namely the expansion (5.11),
and the convergence is uniform on the compact subset of D, as just proved; the
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function h−
a
2 (j−2)(z) a sum of Km′ with mj−1 = 0, also with the same uniform

convergence (see Theorem 1.1). The product of two such Km and Km′ is a finite
sum of Kn with nj = 0, by Lemma 1.2. That is, h−

a
2 (j−2)(z)ψ(z) is a sum of

Km with mj = 0, all of which are annihilated by P1j∂
j, by Lemma 4.2. Thus

P1jDj(h
a
2ψ) = 0, consequently L1j (h

a
2 ψ) = 0.

Proposition 4.3 and Theorem 5.2 can be then summarized in the following corol-
lary; that (a) implies (c) is in Theorem 5.2, and that (c) implies (a) can be proved
using the same method as in the above proof (which will not be used in the present
paper).

Corollary 5.4. The following assertions are equivalent for λ ∈ (a∗)C:
(a) φλ is annihilated by all Lj , 2 ≤ j ≤ r.
(b) λ is in the Weyl group orbit of (iρ1, iρ2, . . . , iρr−1, λ) for some λ ∈ C.
(c) In the expansion of h−

a
2 (z)φλ(z) in terms of Km(z, z) all the coefficients of

Km are 0 if m2 > 0.

Remark 5.5. By the formula (1.3.16) in [14] we see that for z = s1e1, the function
ψ(z) is

ψ(z) = (1− s2
1)−

a
2 3F2

(
a

2
, ρr + iλ, ρr − iλ;

a

2
r, 1 + b+

a

2
(r − 1);

s2
1

s2
1 − 1

)
,

and consequently

φλ(z) = 3F2

(
a

2
, ρr + iλ, ρr − iλ;

a

2
r, 1 + b+

a

2
(r − 1);

s2
1

s2
1 − 1

)
.

If we formally put r = 1 and a = 0, namely when D is the unit ball in C1+b, then
the above formula reduces to

φλ(z) = 2F1

(
ρ+ iλ, ρ− iλ; 1 + b;

|z|2
|z|2 − 1

)
;

this is the known formula for the spherical function on rank one domains (see e.g.
[7], p. 484 or more explicitly [34]).

6. Irreducible decomposition of the tensor product H
a
2 ⊗H a

2

In terms of the orthonormal basis em of (H
a
2 ⊗H a

2 )0, the matrix form of L1, a2
is

L1, a2
em = Am

(
dm−1

dm

) 1
2

em−1 +Bmem + Cm

(
dm+1

dm

) 1
2

em+1.(6.1)

On the other hand, recalling Proposition 2.5 with εm(λ) defined in (2.5), we have

−(λ2 + ρ2
r)εm(λ) = Am

(
dm−1

dm

) 1
2

εm−1(λ) +Bmεm(λ) + Cm

(
dm+1

dm

) 1
2

εm+1(λ).

(6.2)

(This can also be proved by direct calculation using (5.10), noticing that Am+1
Cm

=
dm+1
dm

.) Namely the operator L1, a2
on em and the multiplication operator −(λ2 +ρ2

r)
on εm has the same matrix form. However, in view of the formula (5.11) and
Theorem 9.1 in Section 9, εm are of orthonormal basis for a L2-space with respect
to certain measure, and consequently it gives the spectrum of the multiplication
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operator by −(λ2 + ρ2
r) and further the spectrum of L1, a2

. To justify this heuristic
argument we need the following result.

Lemma 6.1. The operator L1, a2
on {Km,m2 = 0} ⊂ (H

a
2 ⊗ H

a
2 )0 has a self-

adjoint extension and has a cyclic vector e0. Thus its spectral decomposition is
multiplicity free.

Proof. The cyclicity follows from Lemma 5.1. We will follow the proof of Theorem
2.2 in [16]. We claim first that L1, a2

on (H
a
2 ⊗H a

2 )0 is indeed the Casimir operator.

Take V the G̊arding subspace of H
a
2 ⊗ H

a
2 , and V0 its subspace of K-invariant

elements; V is stable under the action of G and g, whereas V0 is stable under L1, a2

and the Casimir operator. The operator R is defined on the whose space H
a
2 ⊗H a

2

and injective, its image is stable under the regular action π(0) of G on C∞(D) by
the intertwining property of R. Let (say) C = X2

1 + · · ·+X2
n−Y 2

1 −· · ·−Y 2
q be the

Casimir operator where {Xj, j = 1, . . . , n} and {Yj , j = 1, . . . , q} are orthogonal
bases of p and k with the Killing form on g. Thus the regular action π(0)(C) of C on
C∞(D) is the Laplace-Beltrami operator L. For each X ∈ g, we have, for F ∈ V ,

π(0)(exp(tX))RF = Rπ(
a

2
)⊗ π(

a

2
)(exp(tX))F

by the intertwining property of R. Consequently,

π(0)(X)RF = Rπ(
a

2
)⊗ π(

a

2
)(X)F

and

π(0)(X2)RF = Rπ(
a

2
)⊗ π(

a

2
)(X2)F.

Therefore, summing over the basis vectors,

L(RF ) = π(0)(C)(RF ) = Rπ(
a

2
)⊗ π(

a

2
)(C)F

and

L1, a2
F = (R−1LR)F = π(

a

2
)⊗ π(

a

2
)(C)F,

so that L1, a2
and π(a2 ) ⊗ π(a2 )(C) coincide on the G̊arding subspace V ; taking

F ∈ V0 we see that they coincide on V0. The proof of Theorem 2.2, loc. cit.,
relies on two observations, the nonnegativity of −L1, a2

on (H
a
2 ⊗ H a

2 )0 and that
−L1,a2

+1 has dense image. Indeed, the inner product (−L1, a2
x, x) for x ∈ V0 is the

same as considered in V since V0 is invariant under L1, a2
, and is nonnegative (by

the Segal theorem that iX for X ∈ g is essentially self-adjoint). The second fact
can be proved by using exactly the same lines as in [16] except the space C∞0 (G)
is replaced by C∞0 (D)K of K-invariant functions on D. (The density can also be
proved by using the above matrix form of L1, a2

.)

This implies that the spherical representations appear with multiplicity free in
the decomposition of H

a
2 ⊗H a

2 .

Remark 6.2. The above lemma on the self-adjointness and multiplicity can be
proved for the systems of the conjugates R−1LjR of the Shimura operators Lj on
the tensor product (Hν ⊗Hν)0 for ν ∈W (D). However, for the sake of conciseness
we confine ourself with the above case.
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We summarize our results in the following theorem. Observe that discrete parts
appear if a < 1 + b; this happens precisely when D is the Type I non-tube domain
SU(r, s) (r ≤ s) with b = s − r ≥ 2. Thus for other irreducible domains there are
only continuous spectra. We let Σ = R+ for other domains and

Σ = R+ ∪ {i(a
2
− 1 + b

2
+ k); k = 0, . . . , k0}

if D is the type I domain SU(r, r + b)/S(U(r) × U(r + b)), and where k0 is the
largest nonnegative integer such that a

2 −
1+b

2 + k < 0. Let µ be the measure given
in Section 9 with

α = ρr =
1
2

(1 + b+ a(r − 1)), β =
1
2

(1 + b), γ =
a

2
− 1

2
(1 + b).(6.3)

Theorem 6.3. With the above notation the map em to εm extends to a unitary
operator from (H

a
2 ⊗H a

2 )0 onto L2(Σ, dµ), and the r-tuple (L1, a2
,L2, a2

, . . . ,Lr, a2 ) is
unitarily equivalent to the the r-tuple of multiplication operators (L1(λ), 0, . . . , 0);
the vector e0 = 1 ⊗ 1 and the function ε0(λ) = 1 are cyclic vectors in the corre-
sponding spaces. The spectrum of the r-tuple (L1, a2

,L2, a2
, . . . ,Lr, a2 ) of generators

of invariant differential operators on H
a
2 ⊗H a

2 is

{(−(λ2 + ρ2
r), 0, . . . , 0);λ ∈ Σ}.

7. Quantization of the minimal complementary series representations

Let C a
2−

1+b
2 +k be the discrete part appearing in the decomposition in Theo-

rem 6.1 and we refer to it as a complementary series representation. In this sec-
tion we construct directly an intertwining operator from the complementary series
C a

2−
1+b

2 +k into the space S2(H
a
2 ) of Hilbert-Schmidt operators on H

a
2 using the

expansion (5.13). Here k are nonnegative integers and a
2 −

1+b
2 + k < 0. The in-

tertwining operator can formally be defined on all spherical functions φλ for all k.
However, we prove that it maps φλ into a Hilbert-Schmidt operator if k satisfies the
above condition. This gives an alternative proof that those spherical representations
appear discretely in the decomposition of the tensor product H

a
2 ⊗H a

2 = S2(H
a
2 ),

and a quantization of the spherical representations as operators on the minimal
representation H

a
2 .

Theorem 7.1. Let λ be as (5.3) with λ = −i(a−1−b
2 + k), and 0 ≤ k < a

2 (r− 2) +
1 + b being integers. If

q >
1 + b+ a(r − 1)

(1 + b+ a
2 (r − 2)− k)

,

then the map

φλ(z) 7→ h−
a
2 (z, w)φλ(z, w)

=
∑
m

d
− 1

2
m

1
(1)m(a2 )m

Sm(λ2
1, ρr,

1
2

(1 + b),
a− (1 + b)

2
)em(z, w)

extends to a linear operator from the linear span of {φλ(gz); g ∈ G} (of all transla-
tions of φλ under G) into the Schatten-von Neumann class Sq of bounded operators
on H

a
2 . Define the norm of an element in the linear span to be the Schatten-von

Neumann norm of the corresponding operator. The closure of the linear span of
{φλ(gz); g ∈ G} is then a G-invariant Banach space.
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The rest of this section is devoted to the proof.
Recall the expansion (5.13). From which we get immediately an expansion for

its polarization,

h−
a
2 (z, w)φλ(z, w) =

∑
m

d
− 1

2
m

1
(1)m(a2 )m

Sm(λ2
1, ρr,

1
2

(1 + b),
a− (1 + b)

2
)em(z, w).

Here we use the Sm to denote the continuous dual Hahn polynomials; see Section
9.

The operators (a2 )mKm are pairwise orthogonal projections, their Sq norms
satisfy

‖(a
2

)mKm‖qq = dim(Pm) = dm,

and

‖em‖qq = d
1− q2
m ;

thus

‖h− a2 φλ‖qq =
∑
m

(
d
− 1

2
m

1
(1)m(a2 )m

)q (
Sm(λ2, ρr,

1
2

(1 + b),
a− (1 + b)

2
)
)q

d
1− q2
m .

(7.1)

Let us take λ = −i(a2 −
1
2 (1 + b) + k). Then

Sm(λ2
1, ρr,

1
2

(1 + b),
a− (1 + b)

2
)

= (
a

2
r)m(1 + b+

a

2
(r − 1))m

× 3F2

(
−m, a

2
r + k, 1 + b+

a

2
(r − 2)− k;

a

2
r, 1 + b+

a

2
(r − 1); 1

)
.

(7.2)

To estimate it for large m we use Thomae’s transformation formula (see [6], p.
59),

3F2

(
−m, a

2
r + k, 1 + b+

a

2
(r − 2)− k;

a

2
r, 1 + b+

a

2
(r − 1); 1

)
=

(a2 + k)m
(1 + b+ a

2 (r − 1))m
3F2

(
−m,−k, 1 + b+

a

2
(r − 2)− k;

a

2
r, 1−m− a

2
− k; 1

)
.

The term 3F2 in r.h.s. is now bounded for all m, due to the appearance of the
parameter −k so that it is a finite sum of k-terms, each of which is bounded. Thus
we find

|Sm(λ2
1, ρr,

1
2

(1 + b),
a− (1 + b)

2
)|

≈ (
a

2
r)m(1 + b+

a

2
(r − 1))m

(a2 + k)m
(1 + b+ a

2 (r − 1))m

= (
a

2
r)m(

a

2
+ k)m.

Also, the dimension dm = dm of the space Pm has been calculated by Upmeier [29]:

dm =
(a2 r)m(1 + b+ a

2 (r − 1))m
(1)m(a2 )m

.
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We can find the estimate of each term in (7.1):(
d
− 1

2
m

1
(1)m(a2 )m

)q
((
a

2
r)m(

a

2
+ k)m)qd1− q2

m

=
(

(a2 r)m(a2 + k)m
(1)m(a2 )m

)q
dm

1−q

≈ mq( a2 r+
a
2 +k−1− a2 )m(1−q)( a2 r+1+b+ a

2 (r−1)−a2−1)

≈ ma(r−1)+b+q(k−1−b− a2 (r−2)).

(7.3)

Thus (7.1) is convergent if and only if

a(r − 1) + b+ q(k − 1− b− a

2
(r − 2)) < −1

or

q(1 + b+
a

2
(r − 2)− k) > 1 + b+ a(r − 1).

Since q > 0, k = 0, 1, . . . , and r ≥ 2, the above condition is equivalent to

0 ≤ k < a

2
(r − 2) + 1 + b

and

q >
1 + b+ a(r − 1)

1 + b + a
2 (r − 2)− k .(7.4)

This proves the first part of the theorem, and the remaining part then follows by
abstract arguments.

Remark 7.2. Observe that since k ≥ 0, the cut-off (7.4) is

1 + b+ a(r − 1)
1 + b+ a

2 (r − 2)− k > 1.

Namely those operators are never trace class. When q = 2, the condition (7.4)
amounts to

0 ≤ k < 1 + b

2
− a

2

which is our previous condition in Section 6. Notice further that when

1 + b

2
− a

2
≤ k < a

2
(r − 2) + 1 + b

the operator h−
a
2 (z, w)φλ(z, w) is in Sq for q > 2, since q − 2 > 0 in this case.

Remark 7.3. The unitary complementary series C a
2−

1+b
2 +k for the group SU(N, 2)

have also been discovered previously; see [13], Theorem 2.1 (a)(iii). (There, Knapp
and Speh classified the unitary principal series representations IndMAN (τ × λ)
induced from a minimal parabolic subgroup MAN with τ being a one-dimensional
representation of M . In our case τ is the trivial representation; our series C a

2−
1+b

2 +k

are exactly the all those classified in Theorem 2.1(a)(iii) there. However, our result
also gives the K-type structures of the representations.)
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8. Positive definiteness of spherical functions

Proposition 8.1. The spherical function φλ(z) is positive definite for all λ in
(5.3) and λ ∈ Σ.

Proof. Fix λ0 ∈ R+. For any 0 < δ < λ0 take nonnegative C∞-function f on (0,∞)
with compact support (λ0 − δ, λ0 + δ) so that∫ λ0+δ

λ0−δ
|f(λ)|2dµ(λ) = 1.

Consider the element

Fδ =
∫ λ0+δ

λ0−δ
f(λ)h−

a
2 (z, w)φλ(z, w)dµ(λ).

By Theorem 6.2 Fδ is a unit vector in (H
a
2 ⊗H a

2 )0. But

(π(
a

2
)⊗ π(

a

2
)(g)Fδ, Fδ) =

∫ λ0−δ

λ0−δ
f(λ)φλ(g · 0)dµ(λ)

is positive definite function of g ∈ G, being the matrix coefficients of a unitary
representation. Let δ → 0. We claim that

(π(
a

2
)⊗ π(

a

2
)(g)Fδ, Fδ)→ φλ(g · 0),

therefore φλ(g · 0) is a point-wise limit of positive definite functions, and conse-
quently is positive definite. The proof of the above claim is a routine method.
Indeed for any ε > 0 let δ be chosen so that |φλ(g · 0) − φλ0 (g · 0)| < ε when
|λ− λ0| ≤ δ. Then

(π(
a

2
)⊗ π(

a

2
)(g)Fδ, Fδ)− φλ(g · 0) =

∫ λ0+δ

λ0−δ
f(λ)(φλ(g · 0)− φλ0(g · 0))dµ(λ)

and its absolute value is dominated, using Cauchy-Schwarz inequality, by

ε

∫ λ0+δ

λ0−δ
|f(λ)|dµ(λ) ≤ ε

(∫ λ0+δ

λ0−δ
|f(λ)|2dµ(λ)

) 1
2

µ(λ0 − δ, λ0 − δ)
1
2 ≤ ε,

since µ is a probability measure, µ(λ0 − δ, λ0 − δ) ≤ 1.

9. Appendix: Orthogonality relation of

continuous dual Hahn polynomials

We summarize here some formulas that we used in this paper; see [31] and [14].
The continuous dual Hahn polynomials are defined by

Sm(x2, α, β, γ) = (α + β)m(α+ γ)mS̃m(x2, α, β, γ)(9.1)

where

S̃m(x2) = S̃m(x2, α, β, γ) = 3F2 (−m,α+ ix, α− ix;α+ β, α+ γ; 1) .(9.2)

Then the functions S̃m(x2, α, β, γ) satisfy the recurrence relation (see [14])

−(α2 + x2)S̃m(x2) = Am+1S̃m+1(x2)− (Am+1 + Cm−1)S̃m(x2) + Cm−1S̃m−1(x2),
(9.3)
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where

Am = (m+ α+ β)(m + α+ γ), Cm = (m+ 1)(m+ β + γ).

Their orthogonality relation is given in the following

Theorem 9.1. Let

sm(x2, α, β, γ) =
(

(α+ β)m(α+ γ)m
(1)m(β + γ)m

) 1
2

S̃m(x2, α, β, γ).(9.4)

If α, β, γ are positive, then∫ ∞
0

sm(x2, α, β, γ)sl(x2, α, β, γ)dµ(x) = δml

where dµ(x) on (0,∞) is the measure

dµ(x) = dµα,β,γ(x)

=
1

2π
1

Γ(α+ β)Γ(α + γ)Γ(β + γ)

∣∣∣∣Γ(α+ ix)Γ(β − ix)Γ(γ + ix)
Γ(2ix)

∣∣∣∣2 .
If γ < 0, α and β are positive, then∫

(0,∞)∪{i(γ+k);k=0,1,...,γ+k<0}
sm(x2, α, β, γ)sl(x2, α, β, γ)dµ(x) = δml,(9.5)

where dµ(x) is the sum of the above measure on (0,∞) and the discrete measure
on {i(γ + k); 0 ≤ k < −γ}:∑

0≤k<γ

Γ(γ + β)Γ(γ + α)Γ(β − γ)Γ(α− γ)
Γ(−2γ)

× (2γ)k(γ + 1)k(γ + β)k(γ + α)k
(γ)k(γ − β + 1)k(γ − α+ 1)kk!

(−1)kδi(γ+k).

Here δi(γ+k) stands for the Dirac measure at the given point.
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