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THE HOM-SPACES BETWEEN PROJECTIVE FUNCTORS

ERIK BACKELIN

Abstract. The category of projective functors on a block of the category O(g)
of Bernstein, Gelfand and Gelfand, over a complex semisimple Lie algebra g,
embeds to a corresponding block of the category O(g × g). In this paper we
give a nice description of the object V in O(g×g) corresponding to the identity
functor; we show that V is isomorphic to the module of invariants, under the
diagonal action of the center Z of the universal enveloping algebra of g, in the
so-called anti-dominant projective.

As an application we use Soergel’s theory about modules over the coinvari-
ant algebra C, of the Weyl group, to describe the space of homomorphisms

of two projective functors T and T ′. We show that there exists a natural
C-bimodule structure on Hom{Functors}(T, T

′) such that this space becomes

free as a left (and right) C-module and that evaluation induces a canonical
isomorphism k ⊗C Hom{Functors}(T, T

′) ∼= HomO(g)(T (Me), T ′(Me)), where
Me denotes the dominant Verma module in the block and k is the complex
numbers.

1. Introduction

1.1. Beginning around 1970, a number of mathematicians made great progress
in understanding the structure of infinite-dimensional representations of a complex
semisimple (or reductive) Lie algebra g by using the operation of tensor product
(over the complex numbers) with a finite-dimensional representation. This opera-
tion is an exact functor on the category of representations, preserving many impor-
tant subcategories such as the category O (see section 2.2). Bernstein and Gelfand
in 1981 (see [BG]) began a systematic abstract study of these functors. They define
a projective functor on any category of representations of g (which is stable under
tensoring with finite dimensional representations) to be a direct summand of a ten-
sor product functor restricted to this category. The term projective functor comes
from the fact that such a functor on O maps projectives to projectives. They were
able to to establish many general properties of projective functors, and to apply
them to obtain new results about Harish-Chandra modules for complex reductive
groups.

A crucial point in the investigation of Bernstein and Gelfand is the determination
of the space of homomorphisms between projective functors on the category of
representations where the center Z of the enveloping algebra U of g acts diagonally.

In the present paper we are able to do the same thing for projective functors on
the category O (on which the action of Z is merely locally finite). Specializing to
a true central character then recovers Bernstein and Gelfand’s result. In order to
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simplify things we have only considered functors from a block Oλ (λ ∈ h?, h ⊂ g is
the Cartan subalgebra) of O to itself but it shouldn’t be very difficult to generalize
the results here to functors between different blocks.

By general nonsense we construct a full embedding of categories

{Projective functors on Oλ} Oλ,λ(g× g).

Denote by V the object in Oλ,λ(g × g) that corresponds in this way to the
identity functor, IdOλ , on Oλ. This is in my opinion an interesting object. It turns

out (Theorem 3.1) that V is isomorphic to P∆
w0,w0

def
= {v ∈ Pw0,w0 ; ∆v = 0}. Here

∆ is the ideal in Z ⊗ Z generated by z ⊗ 1 − 1 ⊗ z, z ∈ Z, and Pw0,w0 denotes a
projective cover of the simple Verma module in Oλ,λ(g× g).

Let C be the subalgebra of λ-invariants of the coinvariant algebra of the Weyl
group W (see section 2.4). Using Theorem 3.1 and Soergel’s theory of C-modules
([S], [S2]) we describe in Theorem 4.9 the Hom-space between two projective func-
tors T and T ′ on Oλ. We show that Hom{Functors}(T, T ′) is a C-bimodule which is
free as a left (and right) C-module and that evaluation induces a canonical right C-
module isomorphism k⊗C Hom{Functors}(T, T ′) ∼= HomO(g)(T (Me), T ′(Me)), where
Me denotes the dominant Verma module. For the sake of completeness we include
a section 4.3 where it is explained how the Kazhdan-Lusztig conjectures can be
used to calculate homomorphisms between the type of C-modules that occur here.

We have adopted the philosophy that projective functors are worth studying
for their own sake. The most interesting case, however, which was the starting
point for these investigations, is to consider projective functors on a parabolic
subcategory of O. Because here very little is known and one might also hope for
some important applications to representation theory, for instance to describe the
homomorphisms between parabolic Verma modules. Two fundamental questions
concerning projective functors on parabolic category O are open:
• Are projective functors determined up to isomorphism by their action on the

Grothendieck group?
• Which are the indecomposable projective functors?

This paper contains unfortunately no results in this direction. One problem is that
Soergel’s Structure Theorem 2.11 is no longer true for parabolic O. I know that
the object V in O(g× g) corresponding to the identity functor on a parabolic sub-
category of O(g) cannot be given such a simple description as in the non-parabolic
case (in fact, already the statements in Lemma 3.3 fail to hold in general, so V does
not embed to any single indecomposable injective). But, on the other hand, V can
probably be obtained by glueing nice modules of Z-invariants in some way. I think
that giving this sort of description of V would be useful.

Another result of this paper (which is unexpected since it is not compatible with
the grading on O) is this. On each projective object in Oλ we consider the maximal
increasing filtration whose degree i term is annihilated by the i-th power of the cen-
tral character. We prove in Proposition 2.12 that the (i+ 1)-th subquotient in this
filtration is isomorphic to a direct sum of Vermas with multiplicities corresponding
to Weyl group elements of length i. We apply this in Proposition 3.2 to prove that
V admits a Verma flag.

Acknowledgements. I wish to thank Catharina Stroppel for many useful discus-
sions of the manuscript and for working out sections 4.2 and 4.3 with me. My
thanks are also to Wolfgang Soergel for many helpful comments and to Barbara
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Müller for explaining some facts about parabolic category O and for showing me
her Diplomarbeit [BM]; attempts to understand that paper were the starting point
for these investigations. This work was financed by a STINT-postdoc at the Albert-
Ludwigs-Universität in Freiburg, Germany.

2. The category of highest weight modules over g× g

2.1. Preliminaries. Let g be a semisimple Lie algebra over k, where k denotes
the field of complex numbers. Fix a triangular decomposition g = n−⊕ h⊕ n+ and
let U be the universal enveloping algebra of g, Z the center of U . Denote by R+

the set of positive roots, ρ the half-sum of positive roots, W the Weyl group and
S the set of simple reflections. For x ∈ W , let l(x) denote its length relative to S.
Denote by w0 the longest element of W and by e its unit. The dot-action ( · ) of W
on h? is given by x · χ = x(χ+ ρ)− ρ.

We fix once and for all a dominant weight λ, which we assume is integral to
simplify the exposition. So λ(Hα) is an integer ≥ −1 for each positive coroot Hα.
(However, all results in this paper remain true for non-integral weights.) Let Wλ

denote the stabilizer with respect to the dot-action of λ in W . We let Wλ denote
a set of representatives of the cosets W/Wλ and to simplify notations we assume
that e, w0 ∈ Wλ. For x ∈ Wλ, we simply write x for x · λ. Let Mx denote the
Verma module with highest weight x and let Lx be its simple quotient.

For any ring A we shall use the notation A-mod, (resp. mod-A) for the category
of finitely generated left, (resp. right) A-modules. Analogously we define A-mod-A.
If I ⊂ A is a subset and M an (e.g. left) A-module, we define the invariants
M I = {m ∈ M ; Im = 0}. If M is a U-module and I an ideal in Z, then M I is a
U-submodule of M .

Tensor products. The symbol ⊗ denotes ⊗k unless otherwise specified. If M and
N are representations of a Lie-algebra a, then M ⊗N denotes their tensor product
representation, so a · (m⊗ n) = am⊗ n+m⊗ an, for a ∈ a,m ∈M and n ∈ N .

Let A1 and A2 be k-algebras; we define their external tensor product A1 � A2

to be the k-algebra whose underlying set is A1 ⊗ A2 and multiplication given by
(a1 ⊗ a2) · (a′1 ⊗ a′2) = a1a

′
1 ⊗ a2a

′
2.

Assume Mi ∈ Ai-mod, i = 1, 2. The external tensor product M1 �M2 is the
A1 � A2-module whose underlying set is M1 ⊗M2 and (a1 ⊗ a2) · (m1 ⊗ m2) =
a1m1 ⊗ a2m2.

Denote by Z(Ai) the center of Ai; then Z(A1 �A2) = Z(A1)� Z(A2).

Lemma 2.1. Assume that A1 and A2 are noetherian. Let Mi, Ni ∈ Ai-mod, i =
1, 2. Then there is a Z(A1 �A2)-module isomorphism

Λ : HomA1(M1, N1)�HomA2(M2, N2)→ HomA1�A2(M1 �M2, N1 �N2)

given by Λ(φ1 ⊗ φ2)(m1 ⊗ m2) = φ1(m1) ⊗ φ2(m2). If Mi = Ni, this is a ring
isomorphism.

Proof. It is clear that Λ is a Z(A1�A2)-linear map which is a ring homomorphism
when Mi = Ni. It is easy to verify that Λ is bijective when the Mi’s are free of
finite rank; the general case follows from the Five Lemma by taking 2-step finite
rank free resolutions.
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2.2. Category O. (See [BGG] for details.) Denote by O = O(g) the category
of finitely generated left U-modules which are semisimple over h and locally finite
over U(n+). Associated to the maximal ideal mλ = AnnZ(Le) in Z there is the full
subcategory of O (so-called block)

Oλ = {M ∈ O; M =
⋃
k≥0

Mm
k
λ}.

Thus the objects of Oλ have composition factors in {Lx; x ∈ Wλ}. From now on
we consider only the block Oλ. The functor HomO( , ) will often simply be denoted
by Hom( , ).

For M ∈ Oλ we denote by [M ] the image of M in the Grothendieck group
K(Oλ). The simple modules form a basis of K(Oλ). Thus we define the multiplicity
[M : Lx] to be the coefficient of [Lx] in the representation of [M ] in this basis. Also,
the Verma modules form a basis of K(Oλ) and we define the multiplicity [M : Mx]
similarly.

For each x ∈Wλ, let us fix a projective cover Px of Lx in Oλ. Each Px admits a
filtration whose subquotients are Verma modules with parameters in Wλ. Denote
by (Px : My) the number of such subquotients isomorphic to My. Then (Px :
My) = [Px : My] and the Bernstein-Gelfand-Gelfand (BGG) reciprocity formula
(Px : My) = [My : Lx] holds.

We define the dual module M? of M ∈ Oλ to be the direct sum of the duals of
the weight spaces of M with the g-action on M? given by the Chevalley involution
of g. Then M = M?? and L ∼= L?, when L is simple.

Denote by Ix = P ?x . This is an injective hull of Lx.

Remark 2.2. We have Lw0 = Mw0 , Pe = Me, P ?w0
∼= Pw0 and Pw0 is an injective

hull of Lw0 .

2.3. The product category. The Lie algebra g× g has the triangular decompo-
sition

g× g = (n− × n−)⊕ (h× h)⊕ (n+ × n+).

We denote by U2 the universal enveloping algebra of g × g and by Z2 its center.
We identify U2 = U � U and Z2 = Z � Z. We write Oλ,λ = Oλ,λ(g × g), where
(λ, λ) ∈ h? × h? = (h× h)?, and let prλ,λ : O(g× g)→ Oλ,λ be the projection.

Lemma 2.3. i) The external tensor product defines a map from Oλ ×Oλ to Oλ,λ
and ( � )? = ( )? � ( )?.

ii) We have canonical isomorphisms Mx,y
∼= Mx � My, Lx,y ∼= Lx � Ly and

Px,y ∼= Px � Py.

Proof. i) is obvious.
The first assertion in ii) is clear. The second assertion holds, since (Lx � Ly)

is self-dual by i) and a self-dual highest weight module is simple. From BGG
reciprocity we now get [Px,y] = [Px � Py]. Since Px � Py has the unique simple
quotient Lx,y, it follows that Px,y surjects to Px � Py; this is then necessarily an
isomorphism.

Let P =
⊕

x∈Wλ Px be a minimal projective generator of Oλ and denote by
πx : P → Px the natural projection. Put P 2 = P � P . Lemma 2.3 ii) implies that
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P 2 ∼=
⊕

x,y∈Wλ Px,y is a minimal projective generator of Oλ,λ. Define the basic
Artin algebra R = EndO(P ). By abstract reasoning, e.g., [Bass], the functor

HomO(P, ) : Oλ  mod-R(2.1)

is an equivalence of categories. The inverse functor is given by ( )⊗R P .
The ring R has been investigated before; in [BGS] it is proved that R is a Koszul

ring and an explicit construction of its Koszul dual is given, so-called parabolic-
singular duality. (See [Bac] for the Koszul duality theorem in the case of a singular
and parabolic block.) Put R2 = EndOλ,λ(P � P ) and denote by Rop the opposite
ring of R.

Lemma 2.4. There exists an involution op of R (i.e., an anti-isomorphism of order
two); it satisfies HomO(Px, Py)op = HomO(Py , Px) and πopx = πx.

Proof. The duality ? on Oλ defines an equivalence between Oλ and the opposite
category Oopλ . Thus mod-R is equivalent to (mod-R)op. Vector space duality de-
fines an equivalence (mod-R)op ∼= R-mod. Now R-mod = mod-Rop, so mod-R is
equivalent to mod-Rop and, since R and Rop are basic algebras, we conclude that
R ∼= Rop. This gives the requested involution op : R → R. The other assertions
hold for general reasons.

As in 2.1, the functor HomOλ,λ(P 2, ) defines an equivalence Oλ,λ  mod-R2

and Lemma 2.1 gives an isomorphism R � R ∼= R2. (This can be interpreted as
Oλ,λ is the tensor product category in the sense of P. Deligne [D] of the category
Oλ with itself.) From now on we fix an involution op of R. Clearly op defines
an isomorphism R ∼= Rop, which induces the isomorphism R � Rop ∼= R � R; we
conclude

Proposition 2.5. The categories mod-R � Rop, mod-R � R, mod-R2 and Oλ,λ
are all naturally equivalent.

2.4. Projective functors on Oλ. Let E be a finite dimensional g-module and
recall that prλ denotes the projection from O onto the block Oλ. We consider
TE = prλ ◦ E ⊗ ( ) as a functor from Oλ to Oλ.

Definition 2.6. A direct summand T of TE is called a projective functor. Let
PF (Oλ) denote the category of projective functors (morphisms being all natural
transformations of functors).

It is immediate that:
• T is exact and commutes with duality on Oλ.
• T maps projectives (resp. injectives) to projectives (resp. injectives).

J. Bernstein and S. Gelfand classified projective functors

Theorem 2.7 ([BG], Theorem 3.3 and Theorem 3.5). If T and T ′ are projective
functors, then T ∼= T ′ iff T (Me) ∼= T ′(Me). The isomorphism classes of indecom-
posable projective functors are parametrized by Wλ: for each x ∈ Wλ there is a
unique projective functor whose value on Me is Px.

We now explain how PF (Oλ) embeds to Oλ,λ (see [Bass] for details). Let
REF (A) denote the category of right exact functors on an abelian category A.
When A = mod-A for an Artin algebra A, we have an equivalence

REF (mod-A)→̃mod-A�Aop given by the assignment F  F (A)(2.2)
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where the right A-action on F (A) is the natural one (i.e., given by F (A) ∈ mod-A)
and the left A-action is given by the composition

A→ Hommod-A(A, A)→ Hommod-A(F (A), F (A))

where the first map is left multiplication and the second map is defined by F . The
inverse map to (2.2) sends B ∈ mod-A ⊗ Aop to the functor ( ) ⊗A B. Thus, by
Proposition 2.5

PF (Oλ) ↪→ REF (Oλ) ∼= REF (mod-R) ∼= mod-R�Rop ∼= Oλ,λ.(2.3)

Definition 2.8. We denote by P (Oλ,λ) the (full) subcategory of Oλ,λ equivalent
to PF (Oλ) given by (2.3). Denote by VT the object in P (Oλ,λ) corresponding to
T ∈ PF (Oλ). When T = TE we simply write VE for VTE . Let Rbi denote the ring R
considered as a bimodule over itself. Denote by V the object in Oλ,λ corresponding
to Rbi in (2.3); thus V = VIdOλ

, where IdOλ is the identity functor on Oλ.

2.5. Modules over the coinvariant algebra. Let S(h) denote the symmetric
algebra of h and denote by S(h)+ its positive part with respect to the N-grading in
which h has degree 1. The Weyl group W acts naturally on S(h). Let C denote the
algebra (S(h)/S(h)W+ )Wλ of Wλ-invariants in the coinvariant algebra S(h)/S(h)W+ .

We get an induced grading on C. Denote by C+ the positive part of C and
by k = C/C+ the (unique) simple C-module. (Sometimes k will be considered
as a subring or quotient ring of C.) In [B], e.g., an isomorphism of C and the
cohomology ring of a partial flag manifold of g is constructed. Since the partial
flag manifold is a compact manifold, it follows that its highest cohomology group
is 1-dimensional. This highest cohomology group corresponds to the socle

socC
def
= {c ∈ C;C+c = 0}

of C under this isomorphism. Thus socC is 1-dimensional and we conclude that C
is a Gorenstein ring.

On mod-C we have the two functors HomC( , C) and Homk( , k). The latter
functor is obviously a duality, i.e., its square is equivalent to the identity functor.

Choose any k-linear map f : C → k which is non-zero on socC. Then

f? : HomC(M,C)→ Homk(M,k)

is a functorial isomorphism in M ∈ mod-C as is easily deduced from the Goren-
stein property. Thus HomC( , C) and Homk( , k) are (non-canonically) equivalent
functors. We denote HomC( , C) by ?.

Multiplication gives an isomorphism C ∼= C? in mod-C; since C is projective as
a module over itself and we just have shown that ? is a duality, it follows that C is
injective in mod-C.

We shall need the following theorems of W. Soergel.

Theorem 2.9 ([S], Endomorphism Theorem 7). Multiplication gives a surjection
nat : Z � End(Pw0). Moreover, C is naturally isomorphic to Z/Kernat ∼=
End(Pw0 ).

(See also [B] for a simpler proof and [BeilGin] for the D-module approach.) It
now follows from BGG reciprocity that dimC = cardWλ.

Definition 2.10. Define the functor V = Hom(Pw0 , ) : Oλ → mod-C, where we
have identified C with End(Pw0).
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Clearly V is exact. It is shown in [S] that we have V ◦ ? ∼= ? ◦ V and that
V(Px)? ∼= V(Px) for each x ∈Wλ.

Theorem 2.11 ([S], Theorem 9). Let M,N ∈ Oλ. The natural map

HomOλ(M,N)→ HomC(VM,VN)

is bijective when N is a projective or M is injective.

2.6. Filtrations on projectives. For each x ∈ Wλ we associate the multiset Λx
such that y is an element of Λx with multiplicity ny,x iff y ∈ Wλ and ny,x = (Px :
My).

Let x1, . . . , xt be any ordering of Λx such that xi < xj =⇒ i > j; it is then
well-known (see, e.g., [BGG]) that Px admits a filtration 0 ⊂ P1,x ⊂ . . . ⊂ Pt,x = Px
such that Pi,x/Pi−1,x

∼= Mxi.
We now choose an ordering x1, . . . , xt of Λx in which, in addition, all occurring

elements of a given length are adjacent and consider the corresponding filtration as
above. We define Gi,x =

⋃
l(xj)≤i Pj,x for each i. Thus

0 ⊂ G0,x ⊂ . . . ⊂ Gl(x),x = Px(2.4)

and Gi,x/Gi−1,x
∼=
⊕

y∈Wλ,l(y)=iM
ny,x
y , because Ext1

O(My,Mz) = 0 whenever
l(y) = l(z). We consider also on Px the filtration

Fi,x = Pm
i+1

x .(2.5)

Here we simply write m for mλ.
Since any Verma module in Oλ is annihilated by m it follows that Gi,x ⊂ Fi,x.

We shall prove

Proposition 2.12. For all i = 0, . . . , l(x) we have Gi,x = Fi,x.

Lemma 2.13. Proposition 2.12 holds when x = w0.

Proof of Lemma 2.13. a) Since Pw0 is the projective cover of Lw0 , we have [Fi,w0 :
Lw0 ] = dim HomO(Pw0 , Fi,w0). On the other hand,

HomO(Pw0 , Fi,w0 ) ∼= HomO(Pw0 , Pw0)m
i+1

= Cm
i+1
.

Thus [Fi,w0 : Lw0 ] = dimCm
i+1

.
b) We calculate dimCm

i+1
. We have a graded isomorphism Z/J ∼= C from

Theorem 2.9. Denote by Ci the degree i component of C with respect to this
grading; thus C =

⊕l(w0)
j=0 Cj where 1 ∈ C0. It follows that the ideal C≥k =⊕l(w0)

j≥k Cj equals mk·C for any k ∈ N. Put ni = card{x ∈Wλ; l(x) ≤ i}. It is known
that dimCj = card{x ∈ Wλ; l(x) = j} and it follows that dimC/mi+1C = ni. We
have

Cm
i+1 ∼= HomC(C, Cm

i+1
) ∼= HomC(C/mi+1C,C)

and the dimension of the last space equals the dimension of C/mi+1C, since the
functor ? = HomC( , C) is a duality and therefore preserves vector space dimension.
Thus dimCm

i+1
= ni.

c) Assume by induction on i (starting with i = −1) that Fi,w0 = Gi,w0 . We
prove Fi+1,w0 = Gi+1,w0 . We know that Fi+1,w0 ⊃ Gi+1,w0 and that Pw0/Gi+1,w0
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has a Verma flag. Thus, if Fi+1,w0 6= Gi+1,w0 , then necessarily Fi+1,w0/Gi+1,w0

contains a submodule isomorphic to the simple Verma module Lw0 and hence

[Fi+1,w0 : Lw0 ] > [Gi+1,w0 : Lw0 ].

But then [Fi+1,w0/Fi,w0 : Lw0 ] > [Gi+1,w0/Fi,w0 : Lw0 ] and the latter number
equals ni+1 − ni since Gi+1,w0/Fi,w0

∼= Gi+1,w0/Gi,w0
∼=
⊕

l(x)=i+1,x∈WλMx. This
is a contradiciton since we have shown that [Fi+1,w0/Fi,w0 : Lw0 ] = ni+1−ni. Thus
Fi+1,w0 = Gi+1,w0 .

Now let x ∈Wλ be arbitrary.

Lemma 2.14. We have [Fi,x : Lw0 ] =
∑

l(y)≤i ny,x.

Proof of Lemma 2.14. We have [Fi,x : Lw0 ] = dim HomO(Pw0 , Fi,x), since Pw0 is
the projective cover of Lw0 . Now

HomO(Pw0 , Fi,x) ∼= HomO(Pw0 , Px)m
i+1 ∼= HomO(Ix, Pw0)m

i+1

= HomC(VIx,VPw0)m
i+1 ∼= HomC(VPx,VPw0)m

i+1

∼= HomO(Px, Pw0)m
i+1 ∼= HomO(Px, Pm

i+1

w0
).

Here the third and the fifth isomorphisms are given by Theorem 2.11 since Ix is
injective and Pw0 is projective, respectively. The fourth isomorphism holds since
VPx ∼= VIx. We have dim HomO(Px, Pm

i+1

w0
) = [Pm

i+1

w0
: Lx], since Px is projective.

But then [Pm
i+1

w0
: Lx] =

∑
l(y)≤i,y∈Wλ [My : Lx] from Lemma 2.13.

Proof of Proposition 2.12. With Lemma 2.14 in hand this is practically identical
to the proof of c) in Lemma 2.13 and is left to the reader.

3. The bimodule Rbi as an object in O(g× g)

3.1. The object V and statement of the main theorem. Recall from Def-
inition 2.8 the object V in Oλ,λ corresponding to the identity functor IdOλ on
Oλ, as well as to Rbi ∈ mod-R2 = mod-R � R. We see that V is determined by
HomOλ,λ(P 2, V ) ∼= Rbi. The map

Θ : R2 � Rbi, Θ(φ⊗ ψ) = φop ◦ ψ(3.1)

is a surjection in mod-R2. Since P 2 is a projective generator of Oλ,λ, it follows
that V is the (unique) quotient of P 2, such that Θ induces an isomorphism Θ :
Hom(P 2, V )→ Rbi. In fact, V is isomorphic to P 2 modulo the submodule generated
by {Im(φop ⊗ 1 − 1⊗ φ); φ ∈ R}. Let ∆ be the ideal in Z2 generated by {z ⊗ 1−
1⊗ z; z ∈ Z}. At the end of this section we shall prove

Theorem 3.1. There is an isomorphism V ∼= P∆
w0,w0

.

3.2. Filtration and the socle of V . We prove that V admits a Verma flag.

Proposition 3.2. We have V m
i+1
λ,λ/V m

i
λ,λ ∼=

∑
x∈Wλ,l(x)=iMx,x for each i ∈ N.

Proof. a) Fix i ∈ N. In this proof direct sums are taken over the set {x ∈Wλ, l(x) =
i} unless otherwise specified. We must show that

R
m
i+1
λ,λ

bi /R
m
i
λ,λ

bi
∼= Hom(P 2,

⊕
Mx,x).(3.2)
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Write for simplicity m = mλ. Since the left and right action of Z on Rbi coincide,

we have R
m
i
λ,λ

bi = Hom(P, Pm
i

). From Proposition 2.12 we have Pm
i+1
/Pm

i ∼=⊕
M

(P :Mx)
x and therefore

R
m
i+1
λ,λ

bi /R
m
i
λ,λ

bi
∼= Hom(P,⊕M (P :Mx)

x ).(3.3)

We consider from now on the induced right R2-module structure on the latter
module. Write P̃ = P/Pm

i

and P̃y = Py/P
m
i

y , for y ∈Wλ. Since Hom(My,Mz) =

0 if l(y) < l(z), we see that Hom(Pm
i

,
⊕
M

(P :Mx)
x ) = 0. Thus 3.3 implies

R
m
i+1
λ,λ

bi /R
m
i
λ,λ

bi
∼= Hom(P̃ ,

⊕
M (P :Mx)
x ).(3.4)

We get from Proposition 2.12 that P̃x ∼= Mx whenever l(x) = i. Hence

Hom(P 2,
⊕

Mx,x) ∼= Hom(P 2,
⊕

P̃x � P̃x) ∼=
⊕

(Hom(P, P̃x)�Hom(P, P̃x))

∼=
⊕

(Hom(P̃ , P̃x)�Hom(P̃ , P̃x)) ∼= Hom(P̃ � P̃ ,
⊕

(P̃x � P̃x)).

(3.5)

b) In order to prove 3.2 it remains to construct an isomorphism

π : Hom(P̃ � P̃ ,
⊕

(P̃x � P̃x))→ Hom(P̃ ,
⊕

M (P :Mx)
x )(3.6)

in mod-R2. We define π(φ⊗ ψ) = φop ◦ ψ, for φ, ψ ∈ Hom(P̃ , P̃x).
It is clear that π is a right R2-linear map, and it follows from BGG-reciprocity

that both objects in 3.6 have the same dimension.
c) We prove that π is injective. First, note that it suffices to prove that for each

x0 ∈ Wλ with l(x0) = i the restriction of π to Hom(P̃ � P̃ , P̃x0 � P̃x0). Indeed, if
φ ∈ Hom(P̃ , P̃x0) then, since P̃m

x0
= P̃x0 = Mx0 , we have Imφ ⊂ P̃m ∼=

⊕
M

(P :Mx)
x .

But, since Hom(Mx0 ,Mx) = 0 if l(x) = l(x0) and x 6= x0, we then must have
Imφ ⊂M (P :Mx0)

x0 and the statement follows.
Now, fix x = x0 as above and let v =

∑
j φj ⊗ ψj (the sum being taken over

some finite index set) be any element of Hom(P̃ � P̃ , P̃x� P̃x) and assume, without
loss of generality, that the ψj ’s are linearly independent. We know that P̃ has the
submodule (isomorphic to) Mn

x , where n = (P : Mx), and that every morphism
from P̃x = Mx to P̃ has its image in Mn

x . Thus φopi ∈ Hom(Mx, M
n
x ) so that φopj =∑

j λjkεk, where ε1, . . . , εn is the standard basis of Hom(Mx, M
n
x ) and λjk ∈ k.

Then, if π(v) = 0, we get∑
jk

λjkεk ◦ ψk = 0 =⇒ ∀ k :
∑
j

λjkεk ◦ ψk = 0 ⇐⇒ ∀ k :
∑
j

λjkψk = 0,

so that λjk = 0 for all j, k, since the ψj ’s were linearly independent. Thus v = 0.

Recall that the socle of an object X in an abelian category, denoted socX , is
defined to be its maximal semisimple subobject.

Lemma 3.3. The socle of V is isomorphic to Lw0,w0 .

Proof of Lemma 3.3. i) We have to show that socRbi ∼= Hom(P 2, Lw0,w0). Note
that socRbi = {f ∈ R; f ◦ φ = φ ◦ f = 0, ∀φ ∈ radR}. Here radR can be



276 ERIK BACKELIN

characterized as the set of those φ ∈ R such that there is no x ∈ Wλ for which
Imφ ⊃ Px. It is clear that

f ◦ φ = 0, ∀φ ∈ radR ⇐⇒ Im f ⊂ socP.(3.7)

Using that Pw0 is injective and the above characterisation of radR it also follows
that

φ ◦ f = 0, ∀φ ∈ radR =⇒ Im f ⊂ Pw0 .(3.8)

Thus, socRbi ⊂ Hom(P, socPw0). But this inclusion must be an isomorphism,
since socPw0

∼= Lw0 and hence dim Hom(P, socPw0) = 1. We see that socRbi is
annihilated by radR2 and by πx ⊗ πy for all (x, y) 6= (w0, w0) and it follows that
socRbi ∼= Hom(P 2, Lw0,w0).

3.3. Category O∆
λ,λ and the object P∆

w0,w0
. Recall the notations and results of

section 2.4 and put C2 = C�C. Theorem 2.9 and Lemma 2.1 give an isomorphism
C2 ∼= End(Pw0,w0) and a surjection Z2 � C2. We denoted by ∆ the ideal in Z2

generated by z ⊗ 1 − 1 ⊗ z for z ∈ Z. Abusing notation we also denote by ∆ the
image of ∆ in C2.

Definition 3.4. Denote by O∆
λ,λ the subcategory of Oλ,λ whose objects are anni-

hilated by ∆.

Since the left and right Z-action on Rbi coincide, we see that V belongs to O∆
λ,λ.

Clearly all Verma modules are in O∆
λ,λ. The functor Oλ,λ 3 M → M∆ ∈ O∆

λ,λis
right adjoint to the inclusion O∆

λ,λ ↪→ Oλ,λ. The latter functor is exact, hence
M∆ is injective in O∆

λ,λ whenever M is injective in Oλ,λ. In particular, P∆
w0,w0

is
injective in O∆

λ,λ. Since its socle is Lw0,w0 , we conclude that P∆
w0,w0

is the injective
hull of Lw0,w0 in this category; in particular, P∆

w0,w0
is indecomposable. We have

Lemma 3.5. There exists an embedding V ↪→ P∆
w0,w0

.

Proof. By Lemma 3.3, we have socV = Lw0,w0 , so there is an imbedding socV ↪→
P∆
w0,w0

. Since P∆
w0,w0

is injective in O∆
λ,λ, it follows that this embedding extends to

a morphism V → P∆
w0,w0

, which has to be injective, since its restriction to socV
is.

Lemma 3.6. The multiplicity [P∆
w0,w0

: Lw0,w0 ] equals cardWλ.

Proof. Since P∆
w0,w0

is the injective hull of Lw0,w0 in O∆
λ,λ, we have [P∆

w0,w0
: Lw0,w0 ]

= dim End(P∆
w0,w0

). On the other hand, we know that dimC = cardWλ, and we
have the vector space (and also ring) isomorphism

C 3 x→ x⊗ 1 ∈ C2/∆,(3.9)

so that also dimC2/∆ = cardWλ. The proof of Lemma 3.6 is completed by

Claim 3.7. End(P∆
w0,w0

) is isomorphic to C2/∆ in C2-mod.

Proof of Claim. Clearly End(P∆
w0,w0

) = Hom(P∆
w0,w0

, Pw0,w0). Let i : P∆
w0,w0

↪→
Pw0,w0 be the inclusion. Since Pw0,w0 is injective (in Oλ,λ), the map

i? : C2 ∼= End(Pw0,w0)→ Hom(P∆
w0,w0

, Pw0,w0)

is a surjection. The kernel of i? clearly contains ∆ and we get a surjection C2/∆�
End(P∆

w0,w0
).
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To see this is an isomorphism it suffices to show that dim End(P∆
w0,w0

) ≥ cardWλ.
We know by Lemma 3.5 that V ↪→ P∆

w0,w0
. Thus, by Proposition 3.2,

dim End(P∆
w0,w0

) = [P∆
w0,w0

: Lw0,w0 ] ≥ [V : Lw0,w0 ] = cardWλ.

3.4. Proof of the main theorem.

Proof of Theorem 3.1. We know from Lemma 3.5 that V embeds to P∆
w0,w0

. To see
that this embedding is an isomorphism we just need to show that V is injective in
O∆
λ,λ, because P∆

w0,w0
is indecomposable and any non-trivial extension of an injective

object must split.
By Lemma 3.3 and Proposition 3.2, we see that Lemma 3.8 below—with Oλ

replaced by Oλ,λ and A = O∆
λ,λ—applies to V . So it suffices to show that any

extension τE : V ↪→ E �Mxy in O∆
w0,w0

splits.
Assume to get a contradiction that τE doesn’t split. From Lemma 3.9 below,

we then get socE = socV = socPw0,w0 , and this extends by injectivity to an
embedding E ↪→ P∆

w0,w0
. It follows that [E : Lw0,w0 ] ≤ [P∆

w0,w0
: Lw0,w0 ] = cardWλ

by Lemma 3.6. But [E : Lw0,w0 ] = [V : Lw0,w0 ] + [Mx,y : Lw0,w0 ] = cardWλ + 1 by
Proposition 3.2. Thus τE splits and V is injective.

Lemma 3.8. Let A be a full abelian subcategory of Oλ containing all Verma mod-
ules. Let M ∈ A and assume that M contains a submodule isomorphic to Me and
that socM ∼= Lw0 . Then M is injective iff Ext1

A(Mx, M) = 0 for all x ∈Wλ.

Proof. The only if part is obvious. Assume now Ext1
A(Mx, M) = 0 for all x ∈ Wλ.

We must show that Ext1
A(Lx, M) = 0. If x = w0, there is nothing to prove so

assume x 6= w0. Then there is a short exact sequence

K ↪→Mx � Lx(3.10)

with K 6= 0. The assumptions on M imply that HomA(Lx, M) = 0 and
HomA(Mx,M) = HomA(K, M) = k. The long exact sequence obtained by ap-
plying HomA( , M) to (3.10) now shows that Ext1

A(Lx, M) = 0.

Lemma 3.9. Let τE : M ↪→ E � Mx be a non-split exact sequence in Oλ for
some x ∈ Wλ. Then socE = socM .

Proof. We must show that HomO(Ly,M) = HomO(Ly, E) for all y ∈ Wλ. If
y 6= w0, this is clear since then HomO(Ly, Mx) = 0. Assume y = w0. Applying
HomO(Lw0 , ) and HomO(Mx, ) to τE , we get the commutative diagram with exact
rows (where the vertical maps are induced by the inclusion Lw0 ↪→Mx)

0 // HomO(Lw0 ,M) // HomO(Lw0 , E) π // HomO(Lw0 ,Mx)

0 // HomO(Mx,M) //
��

HomO(Mx, E) π̃ //
��

HomO(Mx,Mx).

The image of π̃ cannot contain IdMx , since that would give a split of τE . Since
dim HomO(Mx,Mx) = 1, we conclude that π̃ = 0. Hence π = 0.
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4. The structure of homomorphisms between projective functors

4.1. Projective functors as objects in Oλ,λ. In this section we give a descrip-
tion of the space of all homomorphisms between projective functors. Using the
theory developed in [S], this turns out to be a straightforward matter with the neat
description of V from the previous section in hand. Recall the terminology from
section 2.3. To each finite dimensional g-module E we assigned a projective functor
TE and we have the corresponding object VE in Oλ,λ given by Definition 2.8; it
follows from the definition that

Hom(P 2, VE) ∼= Hom(P,E ⊗ P )bi

where Hom(P,E ⊗ P )bi is the object of mod-R2 which equals Hom(P,E ⊗ P ) as a
space and f · φ⊗ψ = (idE ⊗φop) ◦ f ◦ψ, for φ⊗ψ ∈ R2 and f ∈ Hom(P,E ⊗P )bi.

Proposition 4.1. VE is isomorphic to prλ,λ((k � E)⊗ V ).

Proof. The map defining this isomorphism corresponds to

Hom(P,E ⊗ P )bi → Hom(P 2, (k � E)⊗ V ); f → {p� q → p� f(q)}.

Here p � f(q) ∈ P � (E ⊗ P ) = (k � E) ⊗ P 2 and p� f(q) denotes the image of
p � f(q) in (k � E) ⊗ V (given by P � P � V ). The reader may verify that this
assignment indeed defines an isomorphism in mod-R�R.

4.2. Projective functors as bimodules over the Coinvariant Algebra. Re-
call that C2 = C � C ∼= End(Pw0,w0). We identify

mod-C2 = C-mod-C(4.1)

by means of c1mc2 = c1 ⊗ c2 ·m for m ∈M ∈ mod-C2.
We like to think of C2-modules as C-bimodules, so we denote this category by

C-mod-C. We have the bifunctors HomC2( , ) and
⊗

C and the duality func-
tor Homk( , k) on C-mod-C. (Of course C2 is Gorenstein so Homk( , k) is non-
canonically equivalent to HomC2( , C2).) Let Cbi denote C considered as a bimodule
over itself.

Lemma 4.2. Cbi is isomorphic to C2∆ in C-mod-C. Moreover, Cbi is self dual in
this category.

Proof. Clearly the map Cbi 3 c → c̄ ∈ C2/∆ is an isomorphism in C-mod-C. On
the other hand,

(C2/∆)? = HomC2(C2/∆, C2) ∼= HomC2(C2, C2∆
) ∼= C2∆

.

Hence it suffices to show that Cbi is self dual in C-mod-C. To see this we choose
an isomorphism C ∼= Homk(C, k) in mod-C. Since the left and right C-module
structures on Cbi (and hence also on Homk(Cbi, k)) coincide, this gives actually an
isomorphism Cbi ∼= Homk(Cbi, k) in C-mod-C.

Similarly to the functor V from Definition 2.10 we define

Definition 4.3. Let V2 denote the functor Hom(Pw0,w0 , ) : Oλ,λ → C-mod-C.

Then

V2(V ) ∼= Hom(Pw0,w0 , P
∆
w0,w0

) ∼= End(Pw0,w0)∆ ∼= C2∆ ∼= Cbi.(4.2)
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Let T and T ′ be projective functors. We find finite dimensional g-modules E and
F such that T and T ′ are direct summands in TE and TF , respectively. Thus VT
(resp. VT ′) is a direct summand in VE (resp. VF ). We now prove

Proposition 4.4. The functor V2 restricted to P (Oλ,λ) is fully faithful.

Remark 4.5. The analogy with the Structure Theorem 2.11 can be made even
closer: Let Λw0 denote the projective functor with Λw0(Me) ∼= Pw0 . It can be
shown that EndPF (Oλ)(Λw0) is isomorphic to C2. This way Proposition 4.4 reads
that the functor HomPF (Oλ)(Λw0 , ) from PF (Oλ) to mod- EndPF (Oλ)(Λw0) is fully
faithful.

Proof. i) We have to show that the map

V2 : Hom(VE , VF )→ HomC2(V2(VE), V2(VF ))(4.3)

is bijective (because this map will then restrict to a bijection between direct sum-
mands of VE and VF ).

Injectivity. It is clear that the socle of (k� F )⊗ Pw0,w0 consists of a direct sum of
copies of Lw0,w0 . Since VF = (k�F )⊗P∆

w0,w0
is a submodule of (k� F )⊗Pw0,w0 ,

the socle of VF has this property also. Thus, if 0 6= φ ∈ Hom(VE , VF ), then Imφ
contains Lw0,w0 . Since Pw0,w0 is the projective cover of Lw0,w0 , this assures that
V2(Imφ) 6= 0. But V2(Imφ) = ImV2(φ), by exactness of V2. Hence V2(φ) 6= 0 so
the map (4.3) is injective.

Both sides have the same dimension. In analogy with the argument in [S] (step 4
in the proof of the Theorem 9) we see that it suffices to consider the case VF = V .
Then V2(VF ) ∼= C2∆. Thus

HomC2(V2(VE), V2(VF )) ∼= HomC2(V2(VE), C2∆
) ∼= HomC2(V2(VE), C2)∆

∼= HomC2(C2?, V2(VE)?)∆ ∼= HomC2(C2, V2(V ?E))∆ ∼= V2(V ?E)∆

∼= Hom(VE , P ?w0,w0
)∆ ∼= Hom(VE , Pw0,w0)∆ ∼= Hom(VE , P∆

w0,w0
) ∼= Hom(VE , VF ).

Let s ∈ S be a simple reflection and let Cs denote the subring of s-invariant elements
in C.

Definition 4.6. Denote by Θs the wall-crossing (through the s-wall) functor (see
[Jan]). Θs is a projective functor on Oλ. Put also Θ̃s = idOλ �Θs : Oλ,λ  Oλ,λ.

Define a functor Γs : mod-C  mod-C, by Γs(M) = M ⊗Cs C and also Γ̃s :
C-mod-C  C-mod-C, by Γ̃s(M) = M ⊗Cs C.

Wall-crossing functors are projective functors which behave particularly well
together with the functor V.

Lemma 4.7 ([S], Corollary 1). For each s ∈ S there is a natural equivalence V ◦
Θs
∼= Γs ◦ V of functors from Oλ → C-mod.

Let s̄ = (s1, . . . , sn) be any sequence in S and put Θs̄ = Θsn · · ·Θs1 and Γs̄ =
Γsn · · ·Γs1 . Similarly we define Θ̃s̄ and Γ̃s̄. We get from Lemma 4.7

V(Θs̄(Me)) = Γs̄(V(Me)) = Γs̄(k).(4.4)
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From Proposition 4.1 and Lemma 4.7 we similarly get

V2(VΘs̄) = V2(Θ̃s̄(V )) = Γ̃s̄(Cbi).(4.5)

Let s′ = (s′1, . . . , s
′
m) be another sequence in S. In [S2], Proposition 7 and Propo-

sition 8, the following result is proved when C is replaced by S(h) in the definition
of each involved object. It is straightforward, however, to verify that the case of
S(h) implies the case of C.

Proposition 4.8. HomC2(Γ̃s̄(Cbi), Γ̃s̄′(Cbi)) is a graded C-bimodule which is free
as a left (and as a right) C-module. The specialization map

k ⊗C HomC2(Γ̃s̄(Cbi), Γ̃s̄′(Cbi))→ HomC(k ⊗C Γ̃s̄(Cbi), k ⊗C Γ̃s̄′(Cbi))

is an isomorphism of right C-modules.

Since, clearly, k ⊗C Γ̃s̄(Cbi) ∼= Γs̄(k) and k ⊗C Γ̃s̄′(Cbi) ∼= Γs̄′(k) in mod-C, we
get a canonical isomorphism

k ⊗C HomC2(Γ̃s̄(Cbi), Γ̃s̄′ (Cbi))→ HomC(Γs̄(k),Γs̄′(k))(4.6)

of right graded C-modules. By Theorems 2.11 and 4.4 we have

HomOλ(Θs̄(Me),Θs̄′(Me)) ∼= HomC(Γs̄(k),Γs̄′(k))(4.7)

and by the full embedding PF (Oλ) ↪→ Oλ,λ, respectively, by (4.5) and Proposition
4.4, we have the two isomorphisms

HomPF (Oλ)(Θs̄,Θs̄′) ∼= HomOλ,λ(VΘs̄ , VΘs̄′ ) ∼= HomC2(Γ̃s̄(Cbi), Γ̃s̄′(Cbi)).(4.8)

We have the evaluation map

ev : HomPF (Oλ)(Θs̄,Θs̄′)→ HomOλ(Θs̄(Me),Θs̄′(Me)).

Note that the map (4.6) via (4.7) and (4.8) then corresponds to the canonical
morphism

ev : k ⊗C HomPF (Oλ)(Θs̄,Θs̄′)→ HomOλ(Θs̄(Me),Θs̄′(Me)).(4.9)

Thus ev is an isomorphism.
Denote by Λx the (unique up to isomorphism) projective functor of Theorem

2.7 such that Λx(Me) ∼= Px. In the beginning of section 4.3 we show that if s̄ is
a reduced S-sequence for x, then Λx is a direct summand in Θs̄. Moreover, all
other indecomposable direct summands in Θs̄ are isomorphic to Λy for some y with
l(y) < l(x). The fact that (4.9) is an isomorphism for all s̄ now readily implies that
ev must be an isomorphism when Θs̄, Θs̄′ are replaced by any Λx, Λy and hence
when replaced by arbitrary projective functors.

Summing up, we have proved

Theorem 4.9. For any projective functors T and T ′ there is a natural graded C-
bimodule structure on HomPF (Oλ)(T, T ′) making it a free left (and right) C-module.
The canonical map

ev : k ⊗C HomPF (Oλ)(T, T ′)→ HomOλ(T (Me), T ′(Me))

is an isomorphism of right C-modules.
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Let T and T ′ be projective functors and choose a basis {εi} for the free left
C-module HomPF (Oλ)(T, T ′). We get an isomorphism of vector spaces

HomPF (Oλ)(T, T ′) 3 x→
∑

xi ⊗ 1⊗ εi ∈ C ⊗k k ⊗C HomPF (Oλ)(T, T ′)(4.10)

where x =
∑
xiεi, xi ∈ C. Then Theorem 4.9 gives

HomPF (Oλ)(T, T ′) ∼= C ⊗k HomOλ(T (Me), T ′(Me))(4.11)

as vector spaces.

Conjecture 4.10. For any projective functor T there exists a non-canonical ring
isomorphism EndPF (Oλ)(T ) ∼= C ⊗k EndOλ(T (Me)).

4.3. Kazhdan-Lusztig theory. One can give an inductive description of the in-
decomposable projectives as follows. Fix x ∈Wλ and let x = s1 · · · sn be a reduced
decomposition of x, si ∈ S. Then Px is the uniquely determined indecomposable
direct summand in Θs̄(Me), where s̄ = (s1, . . . , sn), which is not isomorphic to Py
for l(y) < l(x). Analogously, we find V(Px) as a direct summand in Γs̄(k).

Moreover, the Kazhdan-Lusztig conjectures, (conjectured in [KL], proved in
[BB]) enable us to calculate the multiplicities ny such that

Θs̄(Me) =
⊕
y∈Wλ

Pnyy .(4.12)

In more detail this goes as follows: Let H be the Hecke algebra over L = Z[v, v−1]
associated to the Coxeter group (W,S). Let {Ty; y ∈ W} denote the standard basis
of H; thus H =

⊕
y∈W LTy and

TyTz = Tyz, if l(yz) = l(y) + l(z),

(Ts + 1)(Ts − v) = 0, if s ∈ S.

Define the involution h → h of H by v = v−1 and Ty = T−1
y−1 . Put Hy = vl(y)Ty

and let {Hy; y ∈ W} be the Kazhdan-Lusztig self dual basis of H inductively
determined by Hy = Hy and Hy ∈ Hy+

∑
z<y vZ[v]Hz . Let h̃y,z ∈ L be the inverse

Kazhdan-Lusztig-polynomials, which are inductively defined by Hy =
∑

z h̃y,zHz.
Put Cs = Hs + v, for s ∈ S.

Expand HeCs1 · · ·Csn as a sum
∑
y<x pyHy for some py ∈ L. Then ny =∑

z pz(1)h̃y,z(1).
With these multiplicities determined, we conclude from Theorem 2.11 that Hom’s

between indecomposable projectives in Oλ are completely described by the Hom’s
between the various Γs̄(k)’s in C-mod. This is indeed the best description one
might hope for.

We would like to do the same thing for projective functors on O. Recall that
Λy denotes the projective functor of Theorem 2.7 such that Λy(Me) ∼= Py. By
Theorem 2.7 we have

Θs̄ =
⊕
y∈Wλ

Λnyy(4.13)

where the ny’s are defined by (4.12).
Summing up we get from Theorem 4.9
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Proposition 4.11. The Kazhdan-Lusztig conjectures give us an algorithm that
describes the space HomPF (Oλ)(Λx, Λy) in terms of homomorphisms between
C2-modules of the type Γs̄(k).

Example 4.12. Let g = sl2, W = {e, s}. Then C ∼= k[x]/(x2) and Cs = k.
The two indecomposable projective functors on the trivial block O0 are IdO0 and
Λs = Θs. Denote by Vy the corresponding object of Oλ,λ corresponding to Λy.
Then V2(Ve) = C2∆ and V2(Vs) = C2 ⊗C⊗k C2∆ ∼= C2 (in C2-mod). Thus

EndPF (O0)(IdO0) ∼= EndC2(C2∆
) ∼= EndC(C) = C,

EndPF (O0)(Θs) ∼= EndC2(C2) = C2,

HomPF (O0)(Θs, IdO0) ∼= HomC2(C2, C2∆
) ∼= C2∆ ∼= C.

5. Open questions

Here are some open questions connected to the material in this paper.

Action of the Hecke Algebra. The Hecke algebra H associated to the Weyl group
W of g acts on (a graded version of) the Grothendieck group K(O) via (graded)
projective functors. In fact, Lusztig’s self dual element Hs acts from the right on
K(O) by the wall-crossing functor Θs for any simple reflection s ∈W . (See section
4 for the definitions of Hs and Θs.) One would like to lift this to an action of H on
O. To do this, it must be verified that the composition of certain homomorphisms
of projective functors are compatible with the defining relations of H.

Hochschild cohomology. Another possible application of Theorem 3.1 would concern
the Hochschild cohomology, HH•(Oλ), of Oλ. Here we define the Hochschild coho-
mology HH•(Oλ) to be the algebra ExtR⊗Rop(R, R) where R is the endomorphism
ring of a projective generator of Oλ. It follows that this algebra is isomorphic to
ExtOλ,λ(g×g)(P∆

w0,w0
, P∆

w0,w0
). The good thing here is that Pw0,w0 is a projective and

injective object of Oλ,λ(g× g); the bad thing is that Pw0,w0 has a very complicated
structure as a module over Z.
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