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BRANCHING THEOREMS FOR
COMPACT SYMMETRIC SPACES

A. W. KNAPP

Abstract. A compact symmetric space, for purposes of this article, is a quo-
tient G/K, where G is a compact connected Lie group and K is the identity
component of the subgroup of fixed points of an involution. A branching the-
orem describes how an irreducible representation decomposes upon restriction
to a subgroup. The article deals with branching theorems for the passage
from G to K2 ×K1, where G/(K2 ×K1) is any of U(n+m)/(U(n) ×U(m)),
SO(n+m)/(SO(n) × SO(m)), or Sp(n+m)/(Sp(n) × Sp(m)), with n ≤ m.
For each of these compact symmetric spaces, one associates another compact
symmetric space G′/K2 with the following property: To each irreducible rep-
resentation (σ, V ) of G whose space V K1 of K1-fixed vectors is nonzero, there
corresponds a canonical irreducible representation (σ′, V ′) of G′ such that
the representations (σ|K2 , V

K1) and (σ′, V ′) are equivalent. For the situa-
tions under study, G′/K2 is equal respectively to (U(n) × U(n))/diag(U(n)),
U(n)/SO(n), and U(2n)/Sp(n), independently of m. Hints of the kind of
“duality” that is suggested by this result date back to a 1974 paper by S.
Gelbart.

1. Branching Theorems

Branching theorems tell how an irreducible representation of a group decomposes
when restricted to a subgroup. The first such theorem historically for a compact
connected Lie group is due to Hermann Weyl. It already appeared in the 1931 book
[W] and described how a representation of the unitary group U(n) decomposes when
restricted to the subgroup U(n− 1) embedded in the upper left n− 1 entries. With
respect to standard choices, the highest weight of the given representation may be
written in the modern form a1e1 + · · ·+ anen, where a1 ≥ · · · ≥ an are integers, or
in the more traditional form (a1, . . . , an). Weyl’s theorem is that the representation
of U(n) with highest weight (a1, . . . , an) decomposes with multiplicity one under
U(n− 1), and the representations of U(n − 1) that appear are exactly those with
highest weights (c1, . . . , cn−1) such that

a1 ≥ c1 ≥ a2 ≥ · · · ≥ an−1 ≥ cn−1 ≥ an.(1.1)

Similar results for rotation groups are due to Murnaghan and appeared in his
1938 book [Mu]; they deal with the passage from SO(2n+ 1) to SO(2n) and with
the passage from SO(2n) to SO(2n − 1), and their precise statements appear in
§3 below. A corresponding result for the quaternion unitary groups Sp(n) came in
1962, is due to Zhelobenko [Z], and was subsequently rediscovered by Hegerfeldt
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[Heg]; it deals with the passage from Sp(n) to Sp(n− 1), and its precise statement
is in §4 below.

The present paper deals with branching theorems for passing in certain other
cases from a compact connected Lie group G to a closed connected subgroup K.
The original interest in such theorems seems to have been in analyzing the effect of
the breaking of symmetry in quantum mechanics, and such theorems subsequently
found other applications in mathematical physics. In mathematics nowadays the
theorems tend to be studied as tools for decomposing induced representations via
Frobenius reciprocity.

An unpublished theorem of B. Kostant from the 1960s, recited in a special case
by J. Lepowsky [Lep] and in the general case by D. A. Vogan [V], provides one
description of branching in this setting. Following Lepowsky’s formulation, suppose
that a regular element of K is regular in G; equivalently suppose that the centralizer
in G of a maximal torus S of K is abelian and is therefore a maximal torus T of
G. Let us denote complexified Lie algebras of G, K, T , . . . by gC, kC, tC, . . . . Let
∆G be the set of roots of (gC, tC), let ∆K be the set of roots of (kC, sC), and let WG

be the Weyl group of ∆G. Introduce compatible positive systems ∆+
G and ∆+

K by
defining positivity relative to a K-regular element of sC, let bar denote restriction
from the dual (tC)∗ to the dual (sC)∗, and let δG be half the sum of the members
of ∆+

G. The restrictions to sC of the members of ∆+
G, repeated according to their

multiplicities, are the nonzero positive weights of sC in gC; deleting the members
of ∆+

K , each with multiplicity one, from this set, we obtain the set Σ of positive
weights of sC in gC/kC, repeated according to multiplicities. The associated Kostant
partition function is defined as follows: P(ν) is the number of ways that a member
of (sC)∗ can be written as a sum of members of Σ, with the multiple versions of a
member of Σ being regarded as distinct.

Kostant’s Branching Theorem. Let G be a compact connected Lie group, let K
be a closed connected subgroup, let λ ∈ (tC)∗ be the highest weight of an irreducible
representation σ of G, and let µ ∈ (sC)∗ be the highest weight of an irreducible
representation τ of K. Then the multiplicity of τ in the restriction of σ to K is
given by

mλ(µ) =
∑
w∈WG

(sgnw)P(w(λ + δG)− (µ+ δG)).

Kostant obtained this theorem as a generalization of his formula for the multi-
plicity of a weight [Ko]; this is the case that K is the maximal torus T and that
S = T . A simple proof of the main result of [Ko] was found by P. Cartier [C] and is
reproduced in [Kn] in an appropriate framework that first appeared in [BGG]. It is
a straightforward matter to adapt this proof to prove the above branching theorem.
More discussion of Kostant’s theorem may be found in the book [GoW].

The hypothesis on regular elements in the Kostant branching theorem is satisfied
when rankG = rankK and also when K is the identity component of the group of
fixed points of an involution (cf. Proposition 6.60 of [Kn]). The latter situation is
the one that will concern us in this paper, and we shall refer to it as the situation
of a compact symmetric space. Unfortunately the alternating sum in the Kostant
theorem involves a great deal of cancellation that, in practice, is usually too hard
to sort out.

A variant of Kostant’s theorem, without the hypothesis on regular elements, was
published by van Daele [Da] in 1970. It uses the multiplicity formula of [Ko] for
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both G and K and puts together the results. The formula is different from the one
above but still involves an alternating sum over the Weyl group. Other authors,
particularly with applications to physics in mind, have looked for algorithms that
compute the branching recursively in any desired case, preferably with minimal
effort. The paper of Patera and Sharp [PaS] is notable in this direction. Branching
theorems that supply information for use via Frobenius reciprocity tend not to
benefit from this kind of effort, however, and we shall not pursue them here.

In fact, practical formulas for complete branching from G to K that are helpful
in applying Frobenius reciprocity in the setting of a compact symmetric space are
available in only limited circumstances. We have already mentioned the classical
branching theorems for unitary groups, rotation groups, and quaternion unitary
groups. The results for rotation groups extend readily to spin groups [Mu]. One
relatively easy branching formula is the case of passing from G ×G to diagG; the
restriction of (σ, σ′) to diagG is nothing more than the tensor product σ ⊗ σ′,
for which a well-known decomposition formula of Steinberg [St] is more useful than
Kostant’s Branching Theorem if the weights of σ or σ′ are known. For some specific
groups, there are combinatorial formulas for decomposing tensor products σ ⊗ σ′.
The best known of these is the Littlewood-Richardson rule [LiR] for U(n). Some
other such formulas may be found in D. E. Littlewood’s book [Liw]. A cancellation-
free formula for decomposing tensor products for any compact semisimple Lie group
has been given more recently by P. Littlemann [Lim].

Another complete branching formula, which is much more complicated, is for the
passage from Sp(n+ 1) to Sp(n)× Sp(1) ([Lep], [Lee]). Littlewood [Liw], working
under the assumption that tensor products for unitary groups are understood, built
on ideas in [Mu] and obtained branching formulas for the passage from U(n) to O(n)
(p. 240) and from U(2n) to Sp(n) (p. 295) under a condition on the highest weight,
namely that it end in 0’s and have only a limited number of nonzero entries—at
most [n/2] in the case of O(n) and at most n in the case of Sp(n). Newell [N] showed
how Littlewood’s result could be modified to remove the limitation on the number
of nonzero entries. Statements of Littlewood’s results for O(n) and Sp(n) with all
the hypotheses in place appear in [DQ] and [Ma], respectively, and references to
modern proofs may be found in [Ma]. Deenen and Quesne ([DQ] and [Q]) worked
with Sp(n)/U(n) and the theory of dual reductive pairs in doing a deeper study of
U(n)/O(n).

Instead of a complete analysis of branching from some groups G to their sub-
groups K, the main objective of the present paper is to produce some partial
branching formulas for G that help decompose those induced representations aris-
ing most often in practice. One class of such induced representations consists of
left regular representations of the form L2(G/K), which is nothing more than the
result of inducing to G the trivial representation of K. By Frobenius reciprocity
the multiplicity of an irreducible representation σ of G in this L2 space equals the
multiplicity of 1 in the restriction of σ to K. When G/K is a compact symmetric
space, this multiplicity is given by a theorem of S. Helgason in §I.3 of [Hel] (see
Theorem 8.49 of [Kn]). Our main interest is in the case that G/K is a fibration of
one compact symmetric space by another, i.e., that there exists a closed connected
subgroup K ′ such that G ⊇ K ′ ⊇ K and such that G/K ′ and K ′/K are compact
symmetric spaces.

One way in which this kind of double fibration arises was pointed out by
M. W. Baldoni Silva [Ba] and is in the analysis of a maximal parabolic subgroup
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of a noncompact real semisimple Lie group G with Lie algebra g. Let g = k⊕ p be
a Cartan decomposition, and let θ be the corresponding Cartan involution of g. In
this situation one is led to a decomposition

g = (a⊕m)⊕
N∑

n=−N
gnα,(1.2)

where a is a 1-dimensional subspace of p, α is a nonzero linear functional on a, and
gnα is the simultaneous eigenspace for eigenvalue nα under the adjoint action of a

on g. The 0 eigenspace is the direct sum of a and a θ-stable subalgebra m. Let K
and M be the analytic subgroups of G with Lie algebras k and m. The interest is
in L2(K/(K ∩M)). When the integer N in (1.2) is 1, K/(K ∩M) is a compact
symmetric space, and Helgason’s theorem answers our question. Situations with
N = 1 arise infrequently, however, and we are more interested in the cases N = 2
and N = 3, which are the normal thing. (In classical groups, N is at most 2, but
N can be as large as 6 in exceptional groups.) In this case let

g′ = (a⊕m)⊕ g−2α ⊕ g2α,

let k′ = g′ ∩ k, and let K ′ be the analytic subgroup of G with Lie algebra k′. Then
K/K ′ and K ′/(K∩M) are compact symmetric spaces, and K/(K∩M) is exhibited
as a fibration of one compact symmetric space by another.

Related fibrations of one compact symmetric space by another occur in the work
of W. Schmid [Sc] and S. Greenleaf [Gr].

The case that was of most interest to Baldoni Silva in [Ba] had M ⊂ K with

K = Sp(n)× Sp(1), K ′ = Sp(n− 1)× Sp(1)× Sp(1),

K ∩M = Sp(n− 1)× diagSp(1).

Induction from K ∩M to K of the trivial representation of K ∩M can be done in
stages, and the result at the stage of K ′ is the sum of all representations (1, τc, τ),
where τ is an irreducible representation of Sp(1) and ( · )c denotes contragredient.
The important thing is that all the intermediate representations (1, τc, τ) are trivial
on the complicated factor Sp(n − 1) of K ′. Consequently, the only branching
theorem from K to K ′ that is needed to study L2(K/(K ∩ M)) is a branching
theorem that looks for constituents that are trivial on the factor Sp(n− 1) of K ′.
Not every double fibration arising from (1.2) involves a product decomposition as
in this Baldoni Silva example, but enough of them do to make their systematic
study to be of interest.

We undertake such a study in this paper. Thus we are interested in branching
for compact symmetric spaces G/(K2 × K1). We regard K1 as the larger of K1

and K2. For an irreducible representation (σ, V ) of G, let V K1 be the subspace of
vectors fixed by K1. We seek the decomposition of this space under K2.

Main Theorem. For the three types of symmetric space G/K given in Table 1
and having K of the form K = K2 ×K1 with K1 larger than K2, there is another
compact symmetric space G′/K2 with the following property: To each irreducible
representation (σ, V ) of G whose space V K1 of K1-fixed vectors is nonzero, there
corresponds a canonical irreducible representation (σ′, V ′) of G′ such that the rep-
resentations (σ|K2 , V

K1) and (σ′|K2 , V
′) are equivalent.
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Table 1. Situations to which the Main Theorem applies

G K2 ×K1 G′/K2 Theorem

U(n+m), n ≤ m U(n)× U(m) (U(n)× U(n))/diagU(n) 2.1
SO(n+m), n ≤ m SO(n)× SO(m) U(n)/SO(n) 3.1
Sp(n+m), n ≤ m Sp(n)× Sp(m) U(2n)/Sp(n) 4.1

Remarks. 1. In the case of U(n+m), an irreducible representation σ′ of U(n)×U(n)
is of the form (k′, k′′) 7→ σ′(k′) ⊗ σ′(k′′), and the restriction to the diagonal is of
the form k 7→ σ′(k)⊗ σ′(k). In other words, the theorem is that (σ|K2 , V

K1) is the
tensor product of two irreducible representations of K2

∼= U(n).
2. The theorem does not describe the decomposition of (σ′|K2 , V

′) into irre-
ducible representations, but the information that the theorem gives is in some ways
better. For example, in the case of U(n+m), the tensor product of two irreducible
representations can always be decomposed into irreducibles by the Littlewood-
Richardson rule [LiR], but there seems to be no easy prescription for saying when
a sum of certain irreducible representations is actually a tensor product. Simi-
larly Littlewood’s theorems mentioned above allow for the decomposition of the
representation (σ′|K2 , V

′) in the SO and Sp cases, but the information that the
restriction is coming from an irreducible representation of G′ does not seem to be
encoded in the restriction in an easy way.

3. In notation that will be explained at the beginnings of §§2–4, the condition
on the highest weight of σ for V K1 to be nonzero turns out to be that the highest
weight is of the form

(a1, . . . , an, 0, . . . , 0, a′1, . . . , a
′
n) in the case of U(m+ n),

(a1, . . . , an, 0, . . . , 0) in the case of SO(m+ n),
(a1, . . . , a2n, 0, . . . , 0) in the case of Sp(m+ n),

and the highest weight of σ′ in the respective cases is taken to be

(a1, . . . , an)(a′1, . . . , a
′
n) in the case of U(n)× U(n),

(a1, . . . , an−1, |an|) in the case of U(n),
(a1, . . . , a2n) in the case of U(2n).

4. From Remark 3 it is apparent, in each case of the Main Theorem other than
for SO(n + m) with n = m, that the function σ 7→ σ′ is one-one on the set of
irreducible representations of G with nonzero K1-fixed vectors, and in every case
σ 7→ σ′|K2 is onto the set of all restrictions of irreducible representations of G′.

5. Because of the absolute value signs in |an| in Remark 3 and the exception to
the one-oneness of σ 7→ σ′ in Remark 4, it is tempting to rephrase the rotation-
group case of the Main Theorem in terms of orthogonal groups. This rephrasing
solves some expository problems while creating others, and we shall not pursue it.

6. One way of viewing the Main Theorem is as a generalization of Helgason’s
theorem in §I.3 of [Hel] that gives, in the case of a compact symmetric space G/K,
the multiplicity of the trivial representation 1 in the restriction to K of an irre-
ducible representation of G. The above Main Theorem gives, for any of the listed
compact symmetric spaces, the multiplicity of a representation σ in the restriction
to K of an irreducible representation of G under the assumption that σ is of the
form τ ⊗ 1.
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7. In each of the cases of the Main Theorem the positions of the blocks K1 and
K2 can be reversed because K2 ×K1 is conjugate to K1 ×K2 within G.

8. For all three cases the rank of the symmetric space G/(K2 ×K1) equals the
rank of G′/K2. This fact seems to play only a minor role in the proof, however.

The proof of the Main Theorem will occupy most of the remainder of the paper.
Most of the ideas for the proof are present for the unitary case, and that case will be
handled in §2. The statements of the results in the rotation and quaternion unitary
cases, together with the necessary modifications in the proofs, are in §3 and §4.

A clue to the situation established by the Main Theorem appears in the paper
[Ge] of S. S. Gelbart. For the case of SO(n + m) with n ≤ m, Gelbart observed
for any representation (σ, V ) of SO(n + m) that the dimension of V SO(m) equals
the dimension of a certain representation of U(n) that he associated to the highest
weight of σ. He demonstrated this equality of dimensions by a direct argument
that did not involve calculating the dimensions in the respective cases, and he
wondered whether his equality was an indication of some undiscovered duality. In
fact, Gelbart’s representation of U(n) is the representation σ′ in the SO case of the
Main Theorem. His argument generalizes to all three cases of the Main Theorem,
and it can be regarded as the main step of the proof.

The proof that we give constructs a certain equivariant linear mapping and shows
that this mapping is one-one onto. At least for the unitary case, a combinatorial
proof is possible that ignores the linear mapping and instead shows the equality of
two versions of Kostant’s branching theorem. However, the combinatorial proof is
longer, taking approximately 30 pages to handle just the unitary case. So far, it
has not been possible to push the combinatorial proof through in the rotation case
except when n is small.

I am indebted to Roe Goodman and to David Vogan—to Goodman for making
me aware of the extensive history in the subject of branching theorems, especially
of the work of D. E. Littlewood, and to Vogan for suggesting ways to streamline
the exposition.

2. Main Theorem for Unitary Groups

In this section we shall state and prove the Main Theorem corresponding to
U(n + m) in the left column of Table 1. Concerning the representation theory of
unitary groups, we use the following notation: The roots for U(N) are all nonzero
linear functionals er−es in the dual h∗ of the diagonal subalgebra with 1 ≤ r, s ≤ N .
We take the positive ones to be those with r < s. Dominant integral forms for U(N)
are expressions a1e1 + · · · + aNeN with all ar in Z and with a1 ≥ · · · ≥ aN . We
write such an expression as an N -tuple (a1, . . . , aN ). We shall make use of Weyl’s
branching theorem (1.1) for restriction from U(N) to U(N − 1).

Theorem 2.1. Let 1 ≤ n ≤ m, and regard U(n) and U(m) as embedded as block
diagonal subgroups of U(n + m) in the standard way with U(n) in the upper left
diagonal block and with U(m) in the lower right diagonal block.

(a) If (a1, . . . , an+m) is the highest weight of an irreducible representation (σ, V )
of U(n+m), then a necessary and sufficient condition for the subspace V U(m)

of U(m) invariants to be nonzero is that an+1 = · · · = am = 0 and that (in
case m = n) also an ≥ 0 and am+1 ≤ 0.
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(b) Let (a1, . . . , an, 0, . . . , 0, a′1, . . . , a
′
n) be the highest weight of an irreducible rep-

resentation (σ, V ) of U(n+ m) with a nonzero subspace of U(m) invariants,
and let τ1 and τ2 be irreducible representations of U(n) with highest weights
(a1, . . . , an) and (a′1, . . . , a

′
n). Then the representations (σ|U(n), V

U(m)) and
τ1 ⊗ τ2 of U(n) are equivalent, i.e., (σ|U(n), V

U(m)) is equivalent with the
restriction to diagU(n) of the representation σ′ = (τ1, τ2) of U(n)× U(n).

Proof of (a). To restrict σ from U(n+m) to U(m), we shall iterate Weyl’s branching
theorem (1.1) for unitary groups. Write (a(0)

1 , . . . , a
(0)
n+m) for (a1, . . . , an+m), and

let (a(l)
1 , . . . , a

(l)
n+m−l) be specified inductively so that

a
(l−1)
1 ≥ a(l)

1 ≥ a
(l−1)
2 ≥ · · · ≥ a(l−1)

n+m−l ≥ a
(l)
n+m−l ≥ a

(l−1)
n+m−l+1.

According to the branching formula, the restriction of σ contains all irreducible
representations of U(m) with highest weights (a(n)

1 , . . . , a
(n)
m ) and no others. Thus

we seek a necessary and sufficient condition for the m-tuple 0 = (0, . . . , 0) to arise.
Examining the formulas, we see that a(l)

r ≥ a
(l−s)
r+s whenever the indices are in

bounds; taking l = s = n and r = 1, we see that the condition 0 ≥ an+1 is necessary
for the m-tuple 0 to arise. Also a(l)

r ≥ a
(l+s)
r whenever the indices are in bounds;

taking l = 0 and r = m and s = n, we see that am ≥ 0 is necessary for the m-tuple 0
to arise. The necessity of the condition in (a) follows from the assumed dominance
of the given highest weight.

For the sufficiency, suppose that an ≥ 0, an+1 = · · · = am = 0, and am+1 ≤ 0.
Define

a(l)
r =


al+r for 1 ≤ r ≤ n− l
0 for n− l < r ≤ m
ar for m < r ≤ n+m− l.

Then the a(l)
r have the right interleaving property, and a

(n)
r = 0. Thus σ has a

nonzero subspace of U(m) invariants.

We turn to the proof of Theorem 2.1b. Actually we shall cast most of the
argument in a form in which it will apply with G equal to SO(n+m) or Sp(n+m),
as well as U(n+m). We begin with an outline of that general argument, and then
we fill in the details that apply to all three classes of groups. In supplying the
details, we shall sometimes prove facts that are not strictly needed for the proof
but that give insight into the overall structure. After giving the details that apply
to all three classes of groups, we shall finish the details for U(n+m), returning to
SO(n+ m) and Sp(n+m) in §§3 and 4.

First we give the outline of the general argument. We introduce a “dual” group
Gd, which will be U(n,m), SO(n,m)0, and Sp(n,m) in the respective cases; these
are the identity components of isometry groups with respect to a standard indefinite
Hermitian form over C, R, and the quaternions H. We pass by Weyl’s unitary trick
from σ as a representation of G on V to σ as a representation of Gd on V . The
highest weight of σ relative to Gd is expressed in terms of a maximally compact
Cartan subgroup of Gd; this group is compact except in the case of SO(n,m)0 with
n and m both odd. We introduce a maximally noncompact Cartan subgroup of Gd

and an appropriate ordering relative to it. Examining the restricted-root spaces, we
pick out a general linear group L sitting as a subgroup of Gd; this will be GL(n,C),
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GL(n,R)0, and GL(n,H) in the respective cases. Let KL be the standard maximal
compact subgroup of this general linear group L; the subgroup K2, which is one
of U(n), SO(n), and Sp(n), is canonically isomorphic to KL by a map ι. We take
v0 to be a highest weight vector of σ in this new ordering. The cyclic span of
v0 under L is denoted V ′, and the restriction of σ|L to V ′ is denoted σ′. The
representation (σ′, V ′) of L is irreducible. Let E be the projection of V onto V K1

given by integrating v 7→ σ(k)v over K1. If we take the isomorphism KL
∼= K2 into

account, the map E is equivariant with respect to K2. An argument that uses the
formula K = K1KL and the Iwasawa decomposition in Gd shows that E carries
the subspace V ′ onto V K1 .

The group L and the representation (σ′, V ′) are transferred from Gd back to G,
and the result is a strangely embedded subgroup G′ of G isomorphic to U(n)×U(n),
U(n), or U(2n) in the respective cases, together with an irreducible representation
of G′ that we still write as (σ′, V ′). The group KL, which is also a subgroup of
G, does not move in this process and hence may be regarded as a subgroup of
G′, embedded in the standard way that U(n), SO(n), and Sp(n) are embedded
in U(n) × U(n), U(n), and U(2n), respectively. However, some care is needed in
working with this inclusion: the identification of G′ as isomorphic to U(n)×U(n),
U(n), or U(2n) has to allow for outer automorphisms of U(n) × U(n), U(n), or
U(2n). For example, in embedding U(n) diagonally in U(n) × U(n), we must
distinguish between U(n) and U(n) in the second factor in order to distinguish a
tensor product σ′1 ⊗ σ′2 from σ′1 ⊗ σ′2c, which has a contragredient in the second
factor.

Unwinding the highest weights in question and using the indicated amount of
care, we see that the highest weights match those in the statement of the theorem.
Finally we use Gelbart’s observation, adapted from the SO case to all of our original
groups G, to show that dimV ′ = dimV K1 ; hence E is an equivalence on the level of
representations of KL

∼= K2. This completes the outline of the general argument.
Now we come to the details. In relating G and Gd, we shall be using Riemannian

duality. Usually this duality refers to two semisimple (or perhaps reductive) groups
G and Gd with G compact and Gd noncompact such that the Lie algebra gd of Gd

has a Cartan decomposition gd = k⊕p and the Lie algebra of G is given by g = k+ip.
However, we shall impose in addition a global condition on the pair (G,Gd) so that
we do not err by a covering map in the construction of the subgroups L and G′.
The global condition will be that G and Gd are realized as matrix groups with
isomorphic complexifications, and we insist that an isomorphism be fixed between
their complexifications.

The groups G and their respective subgroups K = K2 ×K1 are as in Table 1,
and we write k for the Lie algebra of K. The respective noncompact groups Gd

corresponding to G are, as we said above, the indefinite isometry groups U(m,n),
SO(n,m)0, and Sp(n,m); here we regard Sp(n,m) as a group of square matrices
of size n+m over the quaternions H. The quaternions are taken to have the usual
R basis {1, i, j, k}.

The respective groups K are subgroups of Gd as well as of G. We write g = k⊕ip
and gd = k ⊕ pd with ip and pd given by the sets of matrices ( 0 ∗

∗ 0 ) in g and gd.
The involutions of g and gd fixing k and acting by −1 on p and pd, respectively, are
denoted θ and θd. We select and fix realizations of gC and (gd)C as complex Lie
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algebras of complex matrices, together with a C isomorphism ϕ of gC onto (gd)C,
such that

(i) ϕ lifts to an isomorphism, also called ϕ, of the corresponding analytic groups
GC and (Gd)C of complex matrices,

(ii) G and Gd map one-one into their complexifications GC and (Gd)C,
(iii) the pull-back to k ⊂ g of the Lie-algebra isomorphism ϕ is the identity map-

ping from k ⊂ g into k ⊂ gd, i.e., the diagram

gC
ϕ−−−−→ (gd)C

inc

x inc

x
k

1−−−−→ k

,(2.1)

in which the maps “inc” are the natural inclusions, commutes, and
(iv) the pull-back to ip ⊂ g of the Lie-algebra isomorphism ϕ carries p to pd, i.e.,

the diagram

gC
ϕ−−−−→ (gd)C

inc

x inc

x
p −−−−→ pd

(2.2)

commutes.

For G = U(n+m) and SO(n+m), we can let gC and (gd)C be the natural matrix
complexifications of g and gd, and we can let ϕ be conjugation by the block-diagonal
matrix ( i 0

0 1 ), the respective diagonal blocks being of sizes n-by-n and m-by-m.
(Another possible choice with G = U(n + m) is to let ϕ be the identity map, but
we do not use this choice.) For Sp(n+m), the mapping ϕ is more complicated to
set up; first, one has to embed the quaternion matrices into complex matrices of
twice the size. We omit the details in this case.

The given representation (σ, V ), initially defined on G, extends holomorphically
to GC. Using ϕ to pass to (Gd)C and then restricting to Gd, we obtain an interpre-
tation for (σ, V ) as a representation of Gd.

Any θ stable Lie subalgebra s of g has a counterpart in gd, and vice versa. This
correspondence is achieved on a theoretical level by using the same k part of s in
both g and gd and by dropping the i in the ip part and mapping the p part to the
pd part via the bottom row of (2.2). Moreover, this correspondence extends to a
correspondence for the associated analytic subgroups of G and Gd. On a practical
level the correspondence in the case of our particular groups is easy to write down
in one realization. If the matrices in question are broken into blocks of sizes m and
n and if

s =
{(

X1 0
0 X2

)}
+
{(

0 Y
−Y ∗ 0

)}
(2.3a)

is given, then

sd =
{(

X1 0
0 X2

)}
+
{(

0 Y
Y ∗ 0

)}
;(2.3b)

here ( · )∗ denotes the ordinary adjoint. In the reverse direction if sd is given by
(2.3b), then the corresponding s is given by (2.3a).
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The given highest weight is defined on a Cartan subalgebra h of g consisting, in
the cases of U(n+m) and Sp(n+m), of diagonal matrices whose diagonal entries
are real multiples of i (with i complex or quaternion in the two cases). In the case of
SO(n+m), h consists of certain 2-by-2 blocks that will be described more precisely
in §3. The subalgebra h of g lies in k in the cases of U(n+m) and Sp(n+m), and
we shall arrange that it is θ stable in the case of SO(n+m). Therefore gd in every
case contains a corresponding Cartan subalgebra, which we denote hd. Among all
Cartan subalgebras of gd, hd is maximally compact; it is actually compact except
for SO(n,m)0 with n and m both odd.

Let us introduce a maximally noncompact θd stable Cartan subalgebra a⊕ t of
gd. The ingredients a and t are given in blocks of sizes n,m− n, n by

a =





0 0

0 · · · 0 x1

0 · · · x2 0
...

...
xn · · · 0 0

0 0 0

0 0 · · · xn
...

...
0 x2 · · · 0
x1 0 · · · 0

0 0





(2.4)

and

t =





iy1 0 · · · 0
0 iy2 · · · 0
...

...
0 0 · · · iyn

0 0

0
compact
Cartan 0

0 0

iyn · · · 0 0
...

...
0 · · · iy2 0
0 · · · 0 iy1





.(2.5)

Here the entries of a are real, and the entries iyr of t are purely imaginary in the
case of U(n + m), are 0 in the case of SO(n + m), and are real multiples of the
quaternion i in the case of Sp(n + m). Define fr of the matrix in (2.4) to be xr.
In the cases of U(n+m) and Sp(n+m), define f ′r of the matrix in (2.5) to be iyr,
this i being the one in C.

The Cartan subalgebras h and a⊕ t of gd are conjugate via Ad((Gd)C), and we
shall need to fix a particular member of Ad((Gd)C) achieving this conjugation in
order to carry weights from h to a ⊕ t. This transport of weights requires a little
care as we do not want to err by an outer automorphism. Cayley transforms are
handy for achieving the conjugation, and we return to this point when we consider
our three cases separately.
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We shall make use also of the Lie subalgebra

b =





q1 0 · · · 0
0 q2 · · · 0
...

...
0 0 · · · qn

0 0

0 0 0

0 0

qn · · · 0 0
...

...
0 · · · q2 0
0 · · · 0 q1





.(2.6)

Here the entries qr of b are 1-by-1 skew Hermitian, i.e., they are imaginary numbers
in the case of U(n + m), 0 in the case of SO(n + m), and linear combinations of
i, j, k in the case of Sp(n+m).

We introduce a lexicographic ordering on a∗, the dual of a, so that

f1 > f2 > · · · > fn.

The restricted roots in the cases of U(m+ n) and Sp(n+m) are

Cn : {±fr ± fs, r < s} ∪ {±2fr} if n = m,
(BC)n : {±fr ± fs, r < s} ∪ {±2fr} ∪ {±fr} if n < m;

in the case of SO(n+m) they are

Dn : {±fr ± fs, r < s} if n = m,
Bn : {±fr ± fs, r < s} ∪ {±fr} if n < m.

In each case the positive restricted roots are the fr ± fs with r < s, together with
any f2r and fr that exist. Put A = exp a, and let N be the exponential of the
sum of the restricted root spaces for the positive restricted roots. Then we have an
Iwasawa decomposition

Gd = KAN.(2.7)

We shall be interested in the details of the restricted-root spaces only for the
restricted roots ±(fr − fs), r < s. These are of multiplicity

2 in the case of U(n+m),
1 in the case of SO(n+m),
4 in the case of Sp(n+m).

For r < s, the corresponding restricted-root spaces gfr−fs and g−fr+fs within
gd have nonzero entries only in rows and columns numbered r, s, n + m + 1 − s,
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n+m+ 1− r. In those rows and columns the entries are given by

gfr−fs =




0 z z 0
−z̄ 0 0 z̄
z̄ 0 0 −z̄
0 z z 0


 ,(2.8a)

g−fr+fs =




0 z −z 0
−z̄ 0 0 −z̄
−z̄ 0 0 −z̄

0 −z z 0


 .(2.8b)

Here the bar denotes conjugation in C or H, and the bar is to be ignored in R.
Define l to be the Lie subalgebra of gd given by

l = a⊕ b⊕
∑
r 6=s

gfr−fs .(2.9)

This is isomorphic with gl(n,C), gl(n,R), and gl(n,H) in our three cases. Let L
be the analytic subgroup of Gd with Lie algebra l. Although it is not logically
necessary to do so, we shall show that L is globally isomorphic with GL(n,C),
GL(n,R)0, and GL(n,H) in our three cases.

First let us observe that l is stable under θd. In fact, we have a ⊆ pd and
b ⊆ k. Also if we take sums and differences of (2.8a) and (2.8b), we see that the
complementary part of l consists of all real linear combinations of matrices of the
two forms 

0 z 0 0
−z̄ 0 0 0

0 0 0 −z̄
0 0 z 0

 and


0 0 z 0
0 0 0 z̄
z̄ 0 0 0
0 z 0 0

 .(2.10)

These two matrices are in k and pd, respectively. Hence l is stable under θd.
In fact, we see that k ∩ l is spanned by b and all the matrices of the first kind in

(2.10). To describe k ∩ l more explicitly, it is helpful to introduce a tool from the
theory of automorphic forms—the notion of transpose about the opposite diagonal
from usual. It is a kind of backwards transpose. For a square matrix C of size N ,
the backwards transpose tC of C is defined by

(tC)rs = CN+1−s,N+1−r.(2.11a)

The mapping C 7→ tC respects addition and scalar multiplication, reverses or-
der under multiplication, and maps the identity matrix to itself. It follows that
it commutes with complex or quaternion conjugation, powers, inversion, and the
exponential map. We define a backwards adjoint by

∗C = t(C).(2.11b)

The upper left block of the first matrix in (2.10), when combined with the cor-
responding entries from b, yields a copy of u(2), so(2), and sp(2) in our three cases,
and the lower right block is obtained as minus the backwards adjoint. Thus

k ∩ l =


Z 0 0

0 0 0
0 0 −∗Z

 ∣∣∣∣∣∣ Z ∈ k2

 .
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The corresponding analytic subgroup KL of L is thus given by

KL =


k 0 0

0 1 0
0 0 ∗k−1

 ∣∣∣∣∣∣ k ∈ K2

 .(2.12)

We let ι : K2 → KL be the isomorphism indicated by (2.12). From general theory
it follows that

L ∼= KL exp(l ∩ pd),(2.13)

and therefore L is globally isomorphic to the identity component of the appropriate
general linear group.

There is also a direct way to see the isomorphism (2.13), and this direct approach
gives further insight into the structure. Let F be C, R, or H, and regard the space
Fn+m of (n + m)-component column vectors with entries in F as a right vector
space over F. Write G(n,m) for U(n,m), O(n,m), or Sp(n,m) in the respective
cases; we may identify G(n,m) with the group of F-linear transformations of Fn+m

preserving the standard indefinite Hermitian form 〈 · , · 〉n,m of signature (n,m).
Let {ui} be the standard basis of Fn+m. Fix p ≤ n, and define

vi =
1√
2

(ui + un+m+1−i) and wi =
1√
2

(ui − un+m+1−i) for 1 ≤ i ≤ p.

Let Vp be the span of the vi, and let Wp be the span of the wi. The form 〈 · , · 〉n,m
is 0 on Vp and Wp, and it exhibits Wp as the Hermitian dual of Vp. If we write
Fn+m−2p for the span of up+1, . . . , un+m−p, then we have

Fn+m = Vp ⊕ Fn+m−2p ⊕Wp.(2.14)

Regard g in GL(p,F) as acting on Vp and denote the Hermitian dual action on
Wp by g̃. If h is in G(n − p,m − p), then (g, h) acts on Fn+m by (g, h)(v, u, w) =
(gv, hu, g̃w), preserving the decomposition (2.14) and respecting the form 〈 · , · 〉n,m.
Consequently we see that

GL(p,F)×G(n− p,m− p) embeds in G(n,m).(2.15a)

For p = n, the result is that GL(n,F) × G(0,m − n) embeds in G(n,m). The
subgroupL is the identity component of the factorGL(n,F), and in matrices written
in terms of the basis {v1, . . . , vp, up+1, . . . , un+m−p, wp, . . . , w1}, the set of matrices
in L is given by 

g 0 0
0 1 0
0 0 ∗g−1

 ∣∣∣∣∣∣ g ∈ GL(n,F)0

 .(2.15b)

We order the roots of gd with respect to the Cartan subalgebra a⊕ t in a fashion
that takes a first, takes i(b ∩ t) next, and ends with the part of it that goes with
matrix indices n + 1 through m; we require also that the ordering be compatible
with the ordering on the restricted roots. We obtain an ordering for the roots of l

with respect to its Cartan subalgebra a⊕ (b ∩ t) by restriction.
Let v0 be a nonzero highest weight vector for Gd in the representation space V .

Then v0 is also a highest weight vector for L, and hence the vector subspace

V ′ = U(lC)v0

is irreducible under the action of L; here U(lC) is the universal enveloping algebra
of the complexification of l. We denote the representation of L on V ′ by σ′.



BRANCHING THEOREMS FOR COMPACT SYMMETRIC SPACES 417

It may be helpful to see this irreducibility in a wider context. In (2.15a) we saw
that the groupGL(n,F)×G(0,m−n), which we call L̃ for the moment, is a subgroup
of G(n,m). In fact, L̃ ∩ G(n,m)0 is the Levi subgroup of the maximal parabolic
subgroup of G(n,m)0 built from the simple restricted roots f1− f2, . . . , fn−1− fn.
The unipotent radical Ñ of this parabolic subgroup is generated by the positive
restricted roots other than the fi − fj with i < j. The subspace of Ñ invariants in
(σ, V ) is stable under L̃0, and L̃0 = L×G(0,m−n)0 acts irreducibly on it, with v0

as highest weight vector, as a consequence of the general theory. The representation
of L̃0 is therefore an outer tensor product of an irreducible representation of L and
an irreducible representation of G(0,m − n)0. It will turn out for our σ that the
latter representation is 1-dimensional. Consequently V ′ is the entire space of Ñ
invariants in V , and L acts irreducibly in it.

Returning to the main line of the proof, let E be the projection of V to V K1

given by

E(v) =
∫
U(m)

σ

(
1 0
0 k

)
v dk.(2.16)

A change of variables shows that

E(σ(k1)v) = E(v) for all k1 ∈ K1.(2.17)

Lemma 2.2. E carries V ′ onto V K1 , and it is equivariant with respect to K2 in
the sense that σ(k2)E(v) = E(σ(ι(k2))(v)) for k2 ∈ K2, where ι : K2 → KL is the
canonical isomorphism indicated in (2.12).

Proof. Since σ is irreducible for Gd, there is a finite set of elements gi ∈ Gd such
that {σ(gi)v0} spans V . Then the vectors E(σ(gi)v0) span V K1 . Write gi =
kiaini according to the Iwasawa decomposition (2.7). Since σ(ni) fixes v0 and
σ(ai) multiplies v0 by a positive scalar, the vectors E(σ(ki)v0) span V K1 . We can
decompose ki as ki = k

(1)
i kLi with k

(1)
i ∈ K1 and kLi ∈ KL by writing(

k2 0
0 k1

)
=
(

1 0
0 k1

∗k2

)(
k2 0
0 ∗k−1

2

)
,

and then it follows from (2.17) that the vectors E(σ(kLi )v0) span V K1 . Since
σ(kLi )v0 is in V ′, we see that E(V ′) = V K1 .

For the equivariance we write k2 =
(
k′ 0 0
0 1 0
0 0 1

)
. Then we have

E(σ(ι(k2))(v)) =
∫
U(m)

σ

1 0 0
0
0 k

 σ

k′ 0 0
0 1 0
0 0 ∗k′−1

 (v) dk

= σ

k′ 0 0
0 1 0
0 0 1

∫
U(m)

σ

1 0

0 k

(
1 0
0 ∗k′−1

) (v) dk

= σ(k2)
∫
U(m)

σ

(
1 0
0 k

)
(v) dk

= σ(k2)E(v).

This proves the lemma.
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The next step is to transfer the group L and the representation (σ′, V ′) from
Gd back to G, obtaining a group G′ and regarding (σ′, V ′) as a representation of
G′. The procedure for obtaining the Lie algebra g′ of G′ is given in (2.3). The Lie
algebra l consists of all real linear combinations of matrices as in (2.4), matrices as
in (2.6), and matrices indicated by (2.10). Therefore g′ consists of all real linear
combinations of

q1 0 · · · 0
0 q2 · · · 0
...

...
0 0 · · · qn

0

0 · · · 0 x1

0 · · · x2 0
...

...
xn · · · 0 0

0 0 0

0 0 · · · −xn
...

...
0 −x2 · · · 0
−x1 0 · · · 0

0

qn · · · 0 0
...

...
0 · · · q2 0
0 · · · 0 q1


,(2.18)


0 z 0 0
−z̄ 0 0 0

0 0 0 −z̄
0 0 z 0

 , and


0 0 z 0
0 0 0 z̄
−z̄ 0 0 0

0 −z 0 0

 .(2.19)

As usual, the last two of these are to be interpreted as indicating only rows and
columns numbered r, s, n+m+1−s, n+m+1−r. Let G′ be the analytic subgroup
of G with Lie algebra g′.

The Lie algebra g′ is θ stable, and the +1 eigenspace under θ is kL. Since a
compact form of a complex semisimple Lie algebra is unique up to isomorphism, it
follows that g′ is isomorphic to u(n)⊕ u(n), u(n), and u(2n) in our three cases and
that kL is embedded in the standard way in each case. As we noted above, we shall
need in each case to take into account any possible effects of outer automorphisms
on the highest weights that occur. In doing so, we shall have to consider each of
our three cases separately and we shall make use of the following lemma.

Lemma 2.3. For U(N) with N ≥ 1, there are exactly two outer automorphisms
modulo inner automorphisms, namely complex conjugation and the identity map.

Proof. The group U(N) is the commuting product of SU(N) and the subgroup Z
of scalar matrices in U(N), and any automorphism of U(N) must preserve SU(N)
and Z and must agree on their intersection. In the case of Z, there are two auto-
morphisms, namely complex conjugation and the identity.

For the Lie algebra su(N) of the special unitary group and then also for the
simply connected group SU(N) itself, the outer automorphisms modulo inner au-
tomorphisms are given by automorphisms of the Dynkin diagram. For N ≥ 3 the
group in question has order 2, and for N equal to 1 or 2 it has order 1. In each case
the inner automorphisms fix each member of SU(N) ∩ Z. Complex conjugation
of SU(N) is a representative of the nontrivial class of automorphisms for N ≥ 3
because it does not fix the members of SU(N) ∩ Z when N ≥ 3.
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Thus for all N , we see from the effect on Z that there are at least two classes
of outer automorphisms modulo inner automorphisms for U(N). For N ≥ 3 it
appears at first that there may be four classes for U(N). However, the need for
the restrictions to SU(N) and Z to coincide on SU(N) ∩ Z eliminates two of the
classes. Thus the number of classes is exactly two for all N ≥ 1.

Partly because the statement of the Main Theorem requires it and partly because
we shall want to limit the number of outer automorphisms by means of Lemma 2.3,
we shall want to see that G′ is globally isomorphic to U(n) × U(n), U(n), and
U(2n) in the three cases, not merely locally isomorphic. This step will be carried
out for each of our three cases separately. The argument above that L is globally
isomorphic to a general linear group gives a clue how to prove this result, but we
still need to consider the cases separately to handle G′.

Then we shall unwind the highest weights to see that they are as asserted, taking
into account any information about outer automorphisms that is relevant. This step
too will be carried out for each of our three cases separately. This concludes the
discussion of the details of the proof of Theorem 2.1b that apply to all three cases
of the Main Theorem.

For the remainder of this section, we specialize to G = U(n + m) and Gd =
U(n,m). The first unproved detail that needs to be addressed is the construction
of a particular member of Ad((Gd)C) that transforms hC into (a ⊕ t)C. We shall
identify this element by using Cayley transforms. However, since we need only to
know the mapping of weights to weights, we shall not need to write down the effect
of any Cayley transform on a particular matrix, and there will be no need to refer
directly to the complexifications (gd)C and (Gd)C.

We do, however, need to use enough care to take into account the outer au-
tomorphisms of G′ ∼= U(n) × U(n). Lemma 2.3 shows that the group of outer
automorphisms modulo inner automorphisms has order at least 8. This is too large
to dismiss immediately. Instead of accounting for the effect of each class of au-
tomorphisms, we shall ultimately verify directly that the restriction of σ′ is the
correct tensor product, not involving any contragredients for example. In that way
we will have seen that the outer automorphisms did not cause a problem.

We have taken the diagonal subalgebra h of k as a compact Cartan subalgebra of
gd, and we have written e1, . . . , en+m for the evaluation functionals on the diagonal
entries. We introduce the usual ordering that makes e1 ≥ · · · ≥ en+m. Relative to
U(n,m), the roots

e1 − en+m, e2 − en+m−1, . . . , en − em+1(2.20)

form as large as possible a strongly orthogonal sequence of noncompact positive
roots, and we form the product of the Cayley transforms relative to these roots, as
in §§VI.7 and VI.11 of [Kn]. Each Cayley transform factor involves some limited
choices, and it is assumed that these choices are made in the same way for each of
the roots (2.20).

The resulting product of Cayley transforms matches the complexifications of h

and a⊕ t. The Cayley transformed roots (2.20) are denoted 2f1, . . . , 2fn, so that fr
agrees with the linear functional on (a ⊕ t)C whose value on the matrix in (2.4) is
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xr and whose value on t is 0. Let f ′r be the linear functional on (a⊕ t)C whose value
on the matrix in (2.5) is iyr and whose value on a is 0; this definition is consistent
with our earlier definition of f ′r for all cases of the Main Theorem. Up to Cayley
transforms, we therefore have

fr = 1
2 (er − en+m+1−r) and f ′r = 1

2 (er + en+m+1−r).

In the passage from the complexification of h to the complexification of a ⊕ t,
the highest weight

a1e1 + · · ·+ anen + a′1em+1 + · · ·+ a′nen+m

= 1
2 (a1 − a′n)(e1 − en+m) + 1

2 (a2 − a′n−1)(e2 − en+m−1)

+ · · ·+ 1
2 (an − a′1)(en − em+1)

+ 1
2 (a1 + a′n)(e1 + en+m) + 1

2 (a2 + a′n−1)(e2 + en+m−1)

+ · · ·+ 1
2 (an + a′1)(en + em+1)

of (σ, V ) gets transformed into

(a1 − a′n)f1 + (a2 − a′n−1)f2 + · · ·+ (an − a′1)fn
+ (a1 + a′n)f ′1 + (a2 + a′n−1)f ′2 + · · ·+ (an + a′1)f ′n

= a1(f ′1 + f1) + a2(f ′2 + f2) + · · ·+ an(f ′n + fn)

+ a′1(f ′n − fn) + · · ·+ a′n−1(f ′2 − f2) + a′n(f ′1 − f1).(2.21)

Since the ordering has changed, this expression is not a priori the highest weight
of σ, but it is at least an extreme weight, still characterizing σ up to equivalence.

But in fact it is highest. The reason lies in the structure of the roots of gd. The
roots relative to h are all of the form er− es, and it follows that an expression for a
root relative to a⊕ t involves fr if and only if it involves f ′r. If we let ψ stand for a
nonzero expression carried on the part of t involving indices n+ 1 through m, then
it follows that the positive roots are all necessarily of the form

2fr,

(fr − fs) + (±f ′r ± f ′s)
(fr) + (±f ′r) + ψ

ψ

with r < s,

if n < m,

if n+ 1 < m.

(2.22)

Each of these has inner product ≥ 0 with the right side of (2.21), and it follows
from the fact that (2.21) is extreme that (2.21) is then highest. Therefore (2.21) is
the highest weight of (σ′, V ′).

The next step is to identify G′ globally. We know that g′ is isomorphic to
u(n)⊕ u(n), and we want to see that G′ is isomorphic to U(n)× U(n).

The Lie algebra g′ consists of all real linear combinations of the appropriate
matrices (2.18) and of embedded versions of the matrices in (2.19). We introduce
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the matrix

M ′ =



1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1

0

0 · · · 0 1
0 · · · 1 0
...

...
1 · · · 0 0

0 identity 0

0 0 · · · i
...

...
0 i · · · 0
i 0 · · · 0

0

−i · · · 0 0
...

...
0 · · · −i 0
0 · · · 0 −i


.(2.23)

Then we have

M ′−1G′M ′ =


u 0 0

0 1 0
0 0 ∗v−1

 ∣∣∣∣∣∣ u ∈ U(n), v ∈ U(n)

 ,(2.24)

and furthermore conjugation by M ′−1 leaves the members of KL elementwise fixed.
Thus KL is embedded as the subgroup of (2.24) in which u = v. In more detail the
relevant square submatrix of M ′−1 conjugates rows and columns r and n+m+1−r
of the matrix in (2.18), in which we set qr = iyr, and the real linear combinations

0 z −iz 0
−z̄ 0 0 iz̄
−iz̄ 0 0 −z̄

0 iz z 0

 and


0 z iz 0
−z̄ 0 0 −iz̄
iz̄ 0 0 −z̄
0 −iz z 0


of cases of the two matrices in (2.19) respectively into

(
i(yr + xr) 0

0 i(yr − xr)

)
,


0 2z 0 0
−2z̄ 0 0 0

0 0 0 0
0 0 0 0

 , and


0 0 0 0
0 0 0 0
0 0 0 −2z̄
0 0 2z 0

 ;

(2.25)

then (2.24) and the nature of the embedding of KL follow.
Let us unwind the roots and weights, passing from L to G′. For this G′ it is

easier to analyze the weights fully than it is to make use of Lemma 2.3 to handle
outer automorphisms.

The roots of L are given by (2.22), and the highest weight of (σ′, V ′) is given by
(2.21). In passing from L to G′, we have changed the part of the Cartan subalgebra
down the backwards diagonal of (2.18). On the matrix (2.18), we can still think of
f ′r as taking the value iyr. For fr, we have a choice of ixr or −ixr as value, and we
need to make a consistent choice. Let us take ixr as value for definiteness.

The expression f ′r + fr came via Cayley transform from er while f ′r − fr came
via Cayley transform from en+m+1−r. It is apparent that f ′r + fr vanishes on the
matrices (2.18) with all iys = −ixs while f ′r − fr vanishes on the matrices (2.18)
with all iys = ixs. From (2.25) and (2.24) we see that f ′r + fr is carried on one of
the factors u(n) and f ′r − fr is carried on the other one. Thus

a1(f ′1 + f1) + a2(f ′2 + f2) + · · ·+ an(f ′n + fn)(2.26a)
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is carried on the Cartan subalgebra of one of the ideals u(n) while

a′1(f ′n − fn) + · · ·+ a′n−1(f ′2 − f2) + a′n(f ′1 − f1)(2.26b)

is carried on the Cartan subalgebra of the other. If τ1 and τ2 are irreducible rep-
resentations of the two ideals with respective extreme weights (2.26a) and (2.26b),
then we see that σ′, as a representation of g′, is equivalent with (τ1, τ2).

The last thing to check is that the restriction of σ′ to the subgroup KL is the
tensor product τ1 ⊗ τ2. It is enough to check that the weights are in agreement.
Let

c1(f ′1 + f1) + c2(f ′2 + f2) + · · ·+ cn(f ′n + fn) + c′1(f ′n − fn) + . . .

+ c′n−1(f ′2 − f2) + c′n(f ′1 − f1)

be a weight of σ′; we can rewrite it as

(c1, c2, . . . , cn)(c′1, . . . , c
′
n−1, c

′
n).

The restriction of this weight to b is obtained by setting all the fj equal to 0 and
is therefore equal to (c1 + c′n)f ′1 + (c2 + c′n−1)f ′2 + · · ·+ (cn + c′1)f ′n, which we can
rewrite as

(c1 + c′n, c2 + c′n−1, . . . , cn + c′1).

This is the sum of the two expressions (c1, c2, . . . , cn) and (c′n, c
′
n−1, . . . , c

′
1). The

first of these is a weight by inspection, and the second of these is a weight because it
is a permutation of (c′1, . . . , c

′
n−1, c

′
n). Thus the restriction of σ′ to KL is exhibited

as having for its weights all sums of a weight of τ1 and a weight of τ2, and it follows
that the restriction of σ′ to KL is equivalent with τ1 ⊗ τ2.

To complete the proof of Theorem 2.1, it suffices to show that the mapping
E : V ′ → V K1 is one-one. Since Lemma 2.2 shows E to be onto, it is enough
to prove that dimV ′ = dim V K1 . This equality of dimensions will be proved in
Lemma 2.6 below. The circle of ideas that form the basis of the proof is due to
Gelbart [Ge]. The tools, in one form or another, date back to Gelfand and Cetlin
[GeC]. For more discussion of the tools, see [Pr].

We regard the sequence U(1) ⊂ U(2) ⊂ · · · ⊂ U(N) of unitary groups to be
nested in a standard way, such as with each one embedded as the lower right block
of the next one. A system for U(N) of level r coming from a dominant integral
N -tuple (c1, . . . , cN) is a collection {(c(k)

1 , . . . , c
(k)
N−k) | 0 ≤ k ≤ r} consisting of one

(N − k)-tuple for each k with 0 ≤ k ≤ r such that

(c(0)
1 , . . . , c

(0)
N ) = (c1, . . . , cN );

the successive tuples are dominant integral for U(N), U(N − 1), . . . , U(N − r);
and

c
(k−1)
1 ≥ c(k)

1 ≥ c(k−1)
2 ≥ · · · ≥ c(k−1)

N−k ≥ c
(k)
N−k ≥ c

(k−1)
N−k+1 for 1 ≤ k ≤ r.

The end of the system is the (N − r)-tuple (c(r)1 , . . . , c
(r)
N−r).

Lemma 2.4 (Gelfand-Cetlin). Let τ be an irreducible representation of U(N) with
highest weight (c1, . . . , cN ), let 1 ≤ r < N , and let τ ′ be an irreducible representation
of U(N − r) with highest weight (d1, . . . , dN−r). Then the number of systems for
U(N) of level r coming from (c1, . . . , cN ) and having end (d1, . . . , dN−r) equals the
multiplicity of τ ′ in τ |U(N−r).
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Proof. For r = 1, the number of such systems is 1 or 0, and the Weyl branching
theorem (1.1) says that this number matches the asserted multiplicity. Induc-
tively assume the lemma to be true for r − 1. If τ ′′ is an irreducible represen-
tation of U(N − r + 1) with highest weight (x1, . . . , xN−r+1), then the inductive
hypothesis implies that the number of systems for U(N) of level N − r+ 1 coming
from (c1, . . . , cN ) and having end (x1, . . . , xN−r+1) equals the multiplicity of τ ′′ in
τ |U(N−r+1). By Weyl’s branching theorem the multiplicity of τ ′ in τ ′′|U(N−r) is
1 or 0 according as the system of level r − 1 ending with the highest weight τ ′′

continues to a system of level r ending with the highest weight of τ ′ or does not so
continue. Summing over all τ ′′, we obtain the result for r.

Corollary 2.5 (Gelfand-Cetlin). Let (τ, V ) be an irreducible representation of
U(N) with highest weight (c1, . . . , cN). Then the number of systems for U(N) of
level N − 1 coming from (c1, . . . , cN ) equals the dimension of V .

Remark. In essence the corollary says that Lemma 2.4 remains valid for r = N .

Proof. Since irreducible representations of U(1) are one-dimensional, the dimension
of V equals the sum of the multiplicities of all the irreducible representations of
U(1) in τ |U(1). Then the corollary follows from the case r = N−1 of Lemma 2.4.

Now we return to the notation of Theorem 2.1b. The given irreducible represen-
tation (σ, V ) of U(n+m) has highest weight

(a1, . . . , an, 0, . . . , 0, a′1, . . . , a
′
n),(2.27)

and it is understood that an ≥ 0 ≥ a′1 even if n = m. The constructed irreducible
representation (σ′, V ′) of U(n)× U(n) has highest weight

(a1, . . . , an)(a′1, . . . , a
′
n).

Let (τ1, V ′1) and (τ2, V ′2) be irreducible representations of U(n) with respective high-
est weights (a1, . . . , an) and (a′1, . . . , a

′
n).

Lemma 2.6. dimV ′ = dimV K1 .

Proof. The right side is the multiplicity of the trivial representation of K1 = U(m)
in σ|U(m), and Lemma 2.4 shows that this multiplicity equals the number of systems
for U(n+m) of level n coming from (2.27) and having end the m-tuple (0, . . . , 0).

We shall compute this number of systems in a second way and obtain the answer
dimV ′. Suppose that

{(c(k)
1 , . . . , c

(k)
n+m−k) | 0 ≤ k ≤ m}(2.28)

is a system for U(n+m) of level n coming from (2.27). As in the proof of Theorem
2.1a, we have

c
(k−r)
l+r ≤ c(k)

l(2.29a)

whenever the indices are in bounds. If the system (2.28) has end (0, . . . , 0), then
c
(n)
1 = · · · = c

(n)
m = 0. Taking k = n, r = n− s, and l = 1 in (2.29a), we obtain

c
(s)
n+1−s ≤ c

(n)
1 = 0 for 0 ≤ s ≤ n.(2.29b)

Similarly (2.28) satisfies

c
(k)
l ≥ c(k+r)

l(2.30a)
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whenever the indices are in bounds. If (2.28) has end (0, . . . , 0), then we take k = s,
r = n− s, and l = m in (2.30a) to see that

c(s)m ≥ c(n)
m = 0 for 0 ≤ s ≤ n.(2.30b)

Combining (2.29b) and (2.30b) and using dominance, we see that

c
(s)
l = 0 for n+ 1− s ≤ l ≤ m.(2.31)

In view of (2.31), the initial segment

{(c(s)1 , . . . , c
(s)
n−s) | 0 ≤ s ≤ n}

of (2.28), as (2.28) ranges over all possibilities, is a completely general system for
U(n) of level n coming from (a1, . . . , an). Corollary 2.5 shows that there are dimV ′1
possibilities for this initial segment as (2.28) varies. Similarly the final segment

{(c(k)
m+1, . . . , c

(k)
n+m−k) | 0 ≤ k ≤ n}

of (2.28), as (2.28) ranges over all possibilities, is a completely general system
for U(n) of level n coming from (a′1, . . . , a

′
n). Corollary 2.5 shows that there are

dimV ′2 possibilities for this final segment as (2.28) varies. Since, according to
(2.31), the entries in between the initial segment and the final segment are all 0,
the arbitrariness of the initial segment is independent of the arbitrariness of the final
segment (in the sense that the pair of segments is arbitrary) because the entries of
these segments never overlap: the largest l for c(s)l in the initial segment is n−s, and
the smallest l for c(s)l in the final segment is m+ 1 ≥ n+ 1. We conclude that the
number of systems (2.28) ending in (0, . . . , 0) is equal to (dim V ′1)(dim V ′2) = dimV ′.
This completes the proof of Lemma 2.6 and also Theorem 2.1b.

3. Main Theorem for Rotation Groups

In this section we shall state and prove the Main Theorem corresponding to
SO(n + m) in the left column of Table 1. The details will depend slightly on the
parity of n and m as we shall see.

A Cartan subalgebra of SO(N) can be taken to consist of two-by-two diagonal
blocks

(
0 θ
−θ 0

)
starting, say, from the upper left. If the jth such block is

(
0 it
−it 0

)
, the

associated evaluation functional ej on the complexification of the Cartan subalgebra
takes the value t. There are [N/2] such blocks, [ · ] denoting the greatest-integer
function. When N is even, say N = 2d, the roots are the functionals ±ei± ej with
1 ≤ i < j ≤ d. When N is odd, say N = 2d + 1, the roots are the functionals
±ei± ej with 1 ≤ i < j ≤ d and also the ±ej with 1 ≤ j ≤ d. We take the positive
roots to be the ei ± ej with i < j and, when N is odd, the ej.

The dominant integral forms for SO(N) are given by expressions

a1e1 + · · ·+ aded ←→ (a1, . . . , ad)

with

{
a1 ≥ · · · ≥ ad−1 ≥ |ad| when N = 2d,
a1 ≥ · · · ≥ ad ≥ 0 when N = 2d+ 1,

with all the aj ’s understood to be integers.
The theorem for branching from SO(2d+1) to SO(2d) is that the representation

of SO(2d + 1) with highest weight (a1, . . . , ad) decomposes with multiplicity one
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under SO(2d), and the representations of SO(2d) that appear are exactly those
with highest weights (c1, . . . , cd) such that

a1 ≥ c1 ≥ a2 ≥ c2 ≥ · · · ≥ ad−1 ≥ cd−1 ≥ ad ≥ |cd|.(3.1a)

The theorem for branching from SO(2d) to SO(2d − 1) is that the representation
of SO(2d) with highest weight (a1, . . . , ad) decomposes with multiplicity one under
SO(2d − 1), and the representations of SO(2d − 1) that appear are exactly those
with highest weights (c1, . . . , cd−1) such that

a1 ≥ c1 ≥ a2 ≥ c2 ≥ · · · ≥ ad−1 ≥ cd−1 ≥ |ad|.(3.1b)

Theorem 3.1. Let 1 ≤ n ≤ m, and regard SO(n) and SO(m) as embedded as block
diagonal subgroups of SO(n+m) in the standard way with SO(n) in the upper left
diagonal block and with SO(m) in the lower right diagonal block.

(a) If (a1, . . . , a[ 1
2 (n+m)]) is the highest weight of an irreducible representation

(σ, V ) of SO(n+m), then a necessary and sufficient condition for the subspace
V SO(m) of SO(m) invariants to be nonzero is that an+1 = · · · = a[ 1

2 (n+m)] =
0.

(b) Let (a1, . . . , an, 0, . . . , 0) be the highest weight of an irreducible representa-
tion (σ, V ) of SO(n + m) with a nonzero subspace of SO(m) invariants,
and let (σ′, V ′) be an irreducible representation of U(n) with highest weight
(a1, . . . , an−1, |an|). Then the representation (σ|SO(n), V

SO(m)) is equivalent
with the restriction to SO(n) of the representation (σ′, V ′) of U(n).

Remarks. The need for the absolute value signs around an in the highest weight of
σ′ in (b) arises only when n = m. Otherwise an is automatically ≥ 0. When n = m
and an 6= 0, it follows from (b) that the two inequivalent σ’s with highest weights
(a1, . . . , an−1, an) and (a1, . . . , an−1,−an) lead to equivalent σ′’s. The example of
σ for SO(4) with highest weight (1,−1) shows that σ′ cannot necessarily be taken
to have highest weight(a1, . . . , an) if an < 0.

The proof of Theorem 3.1a is similar to the proof of Theorem 2.1a and is given
in [Ge]. Let us therefore move to Theorem 3.1b.

Most of the proof of Theorem 3.1b has been given in §2, but some details have
been left for this section.

The first detail concerns constructing the maximally compact Cartan subalgebra
h of gd. This subalgebra needs to be set up so as to allow the complexification of
h to be transformed into the complexification of a ⊕ t by Cayley transforms. The
point of using Cayley transforms is to keep accurate track of how weights move
from one Cartan subalgebra to another. In particular, we do not want to err by
confusing two weights that differ by an outer automorphism.

However, we can relax somewhat about this matter because of Lemma 2.3: The
inclusion of KL

∼= SO(n) into G′ ∼= U(n) is a version of the inclusion of SO(n) ⊂
U(n), and Lemma 2.3 says that the only automorphism of U(n) that is of concern is
complex conjugation, i.e., θ. This automorphism fixes SO(n). So a representation
σ′ of U(n) and its composition σ′ ◦ θ have the same restriction to SO(n), and it
does not matter if we confuse σ′ with σ′ ◦ θ.

There are two other matters concerning automorphisms to dispose of. One is
that in the case n = m, a highest weight (a1, . . . , an−1, an) for σ on SO(2n) with
an < 0 leads not to the highest weight (a1, . . . , an−1, an) for σ′ on U(n) but to
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(a1, . . . , an−1, |an|). This fact cries out for a simple explanation, and Lemma 3.2a
below gives such an explanation.

The other matter is a symmetry relative to SO(n) when n is even. For even n,
SO(n) has a nontrivial outer automorphism, and this extends to an automorphism
of U(n) that is inner. How is this fact reflected in the context of Theorem 3.1?
Lemma 3.2b will give an answer.

Lemma 3.2. (a) Let n = m, let the given representation (σ, V ) of G = SO(2n)
have highest weight (a1, . . . , an−1, an), and let (σ̂, V ) be the representation of
SO(2n) given by conjugating by the diagonal matrix D = diag(1, . . . , 1,−1) : σ̂(k) =
σ(D−1kD). Then the subspaces of K1 invariants are the same, and the two actions
of K2 on this space of K1 invariants are identical.

(b) If n is even and a representation τ of K2
∼= SO(n) with highest weight

(c1, . . . , cn/2−1, cn/2) occurs in V K1 , then the representation τ̂ with highest weight
(c1, . . . , cn/2−1,−cn/2) occurs, and it has the same multiplicity.

Remarks. Lemma 3.2a will allow us to assume in all cases, without loss of generality,
that the integers in the highest weight are ≥ 0.

Proof. If σ(K1) fixes v, then σ̂(K1) fixes v because conjugation by D carries K1 to
itself. On all of V , we have σ(k2) = σ̂(k2) for k2 ∈ K2 because conjugation by D
fixes K2. This proves (a).

Let d be the diagonal matrix of size n+ m that is −1 in diagonal entries n and
n+ 1 and is 1 in the other diagonal entries, and put (dσ)(k) = σ(d−1kd). Since d
is in SO(n + m), d is equivalent with dσ. The space V K1 of vectors fixed by K1

is the same for σ as for dσ because conjugation by d carries K1 to itself. On V K1

the restrictions of σ and dσ are related by a nontrivial outer automorphism of K2.
The lemma follows.

Now let us specify the maximally compact Cartan subalgebra h of gd. We dis-
tinguish cases according to the parities of n and m:

Case 1: n = 2n′ and m = 2m′ even. We use n′ two-by-two diagonal blocks
within so(n) and m′ two-by-two diagonal blocks within so(m). These blocks and
their corresponding es’s are numbered consecutively from 1 to n′+m′. The strongly
orthogonal sequence of noncompact roots to use for Cayley transforms is

e1 ± en′+m′ , e2 ± en′+m′−1, . . . , en′ ± em′+1.(3.2)

With suitable consistently made choices for the Cayley transforms, these roots
transform into f1 ± f2, f3 ± f4, . . . , fn−1 ± fn, so that we can think of f1 as cor-
responding to e1, f2 as corresponding to en′+m′ , f3 as corresponding to e2, and so
on.

Case 2: n = 2n′ even and m = 2m′ + 1 odd. We use n′ two-by-two diagonal
blocks within so(n) and m′ two-by-two diagonal blocks within so(m). The latter
are to start with entries (n+ 2, n+ 3), skipping entry n+ 1. The strongly orthog-
onal sequence of noncompact roots to use for Cayley transforms, as well as the
identification of fr’s with es’s, is the same as in Case 1.

Case 3: n = 2n′ + 1 odd and m = 2m′ even. We use n′ two-by-two diagonal
blocks within so(n) and m′ two-by-two diagonal blocks within so(m). The blocks
within so(n) omit entry n. The strongly orthogonal sequence of noncompact roots
to use for Cayley transforms consists of (3.2) and em′ ; the choices for the Cayley
transform relative to em′ need to be made so that R(En,m+1 + Em+1,n) becomes
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part of a. The identification of fr’s with es’s begins as in Case 1 and concludes
with the correspondence of fn with em′ .

Case 4: n = 2n′+1 andm = 2m′+1 odd. In this case gd does not have a compact
Cartan subalgebra. We choose the compact part of the maximally compact Cartan
subalgebra h to consist of m′ + n′ two-by-two diagonal blocks that omit entries n
and m+1. If Ei,j denotes the matrix that is 1 in the (i, j)th place and 0 elsewhere,
then the noncompact part of the Cartan subalgebra consists of R(En,m+1+Em+1,n).
The strongly orthogonal sequence of noncompact roots to use for Cayley transforms
consists of (3.2) alone, and the identification of fr’s with es’s accounts for all the
fr’s except fn, which acts on R(En,m+1 +Em+1,n) and is not affected by the Cayley
transforms.

If we let ψ stand for a nonzero expression carried on t, then the positive roots
relative to a⊕ t are all necessarily of the form

fr ± fs with r < s,
fr if n+m is odd,
fr + ψ if n+ 1 < m,
ψ if n+ 2 < m.

The given highest weight a1e1 + · · · + anen of (σ, V ) relative to h transforms to
an integer combination of fr’s, together possibly with a term carried on t. The
transformed expression is an extreme weight. To make it dominant, we permute
coefficients, including those corresponding to the t part, and we obtain a1f1 + · · ·+
anfn. In the case that n = m, an may in principle be < 0. But Lemma 3.2a says
that we may, without loss of generality, replace an by |an|. Thus we may work with
the highest weight of (σ, V ) relative to a⊕ t as if it is

a1f1 + · · ·+ an−1fn−1 + |an|fn.(3.3)

The expression (3.3) may then be taken as the highest weight of (σ′, V ′) relative to
a.

The next step is to identify G′ globally. We know that g′ is isomorphic to u(n),
and we want to see that G′ is isomorphic to U(n). The Lie algebra g′ consists of
all real linear combinations of the matrices (2.18) with y1 = · · · = yn = 0 and of
embedded versions of the real matrices in (2.19), i.e., of all real linear combinations
of 

0 0

0 · · · 0 x1

0 · · · x2 0
...

...
xn · · · 0 0

0 0 0

0 0 · · · −xn
...

...
0 −x2 · · · 0
−x1 0 · · · 0

0 0


(3.4)
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and of embedded versions of the real matrices
0 x 0 0
−x 0 0 0

0 0 0 −x
0 0 x 0

 and


0 0 x 0
0 0 0 x
−x 0 0 0

0 −x 0 0

 .(3.5)

Define M ′ as in (2.23). Then we have

M ′−1G′M ′ =


u 0 0

0 1 0
0 0 tu−1

 ∣∣∣∣∣∣ u ∈ U(n)

 ,(3.6)

and furthermore conjugation by M ′−1 leaves the members of KL elementwise fixed.
The group KL is embedded as the subgroup of (3.6) in which u is real, i.e., KL

∼=
SO(n) is embedded in the standard way in U(n). In more detail the relevant square
submatrix of M ′−1 conjugates rows and columns r and n+m+ 1− r of the matrix
in (3.4) and the two matrices in (3.5) respectively into

(
ixr 0
0 −ixr

)
,


0 x 0 0
−x 0 0 0

0 0 0 −x
0 0 x 0

 , and


0 ix 0 0
ix 0 0 0
0 0 0 −ix
0 0 −ix 0

 ;(3.7)

then (3.6) and the nature of the embedding of KL follow.
To complete the proof of Theorem 3.1b, it suffices to show that the mapping

E : V ′ → V K1 is one-one. Since Lemma 2.2 shows E to be onto, it is enough to
prove that dimV ′ = dimV K1 . A proof of this equality is essentially in Gelbart
[Ge]. We give a proof anyway so that the result can be cast in our notation.

We regard the sequence SO(1) ⊂ SO(2) ⊂ · · · ⊂ SO(N) of rotation groups
to be nested in a standard way, such as with each one embedded as the lower
right block of the next one. A system for SO(N) of level r coming from a dominant
integral [N/2]-tuple (c1, . . . , c[N/2]) is a collection {(c(k)

1 , . . . , c
(k)
[(N−k)/2]) | 0 ≤ k ≤ r}

consisting of one (N − k)-tuple for each k such that

(c(0)
1 , . . . , c

(0)
[N/2]) = (c1, . . . , c[N/2]);

the successive tuples are dominant integral for SO(N), SO(N − 1), . . . , SO(N − r);
and the kth tuple, for k ≥ 1, is obtained from the (k−1)st tuple by (3.1a) or (3.1b).
The end of the system is the [(N − r)/2]-tuple (c(r)1 , . . . , c

(r)
[(N−r)/2]).

Lemma 3.3. Let τ be an irreducible representation of SO(N) with highest weight
(c1, . . . , c[N/2]), let 1 ≤ r < N , and let τ ′ be an irreducible representation of
SO(N − r) with highest weight (d1, . . . , d[(N−r)/2]). Then the number of systems for
SO(N) of level r coming from (c1, . . . , c[N/2]) and having end (d1, . . . , d[(N−r)/2])
equals the multiplicity of τ ′ in τ |SO(N−r).

Proof. The argument is the same as for Lemma 2.4 except that the branching
theorems (3.1a) and (3.1b) are used in place of the branching theorem (1.1).

Now we return to the notation of Theorem 3.1b. The given irreducible represen-
tation (σ, V ) of SO(n+m) has highest weight the [(n+m)/2]-tuple

(a1, . . . , an, 0, . . . , 0),(3.8)
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and it is understood that we can take an ≥ 0 even if n = m. The constructed
irreducible representation (σ′, V ′) of U(n) has highest weight

(a1, . . . , an).

Lemma 3.4. dimV ′ = dimV K1 .

Proof. The right side is the multiplicity of the trivial representation of K1 = SO(m)
in σ|SO(m), and Lemma 3.3 shows that this multiplicity equals the number of sys-
tems for SO(n+m) of level n coming from the [(n+m)/2]-tuple (3.8) and having
end the [m/2]-tuple (0, . . . , 0).

We shall compute this number of systems in a second way and obtain the answer
dimV ′. More specifically, we shall show that the SO(n + m) systems of level n
coming from the [(n+m)/2]-tuple (3.8) and having end the [m/2]-tuple (0, . . . , 0)
are in one-one correspondence with the U(n + m) systems of level n coming from
the (n+m)-tuple (3.8) and having end the m-tuple (0, . . . , 0). The correspondence
is as follows: to pass from an SO(n+m) system to a U(n+m) system, we pad the
right ends of the tuples with 0’s; to pass from a U(n+m) system to an SO(n+m)
system, we drop the appropriate number of entries from the right ends of the tuples.
To see that this is a one-one correspondence, we need to check that

(i) the U(n+m) tuples are always at least as long as the SO(n+m) tuples,
(ii) any entry that gets dropped from a U(n + m) tuple in carrying out the cor-

respondence has a 0 in it, and
(iii) no negative entries can arise in the SO system.

Each kind of system consists of n+1 tuples numbered from 0 to n, the kth tuple
being of length

[(n+m− k)/2]
n+m− k

in the SO(n+m) case,

in the U(n+m) case.
(3.9)

Fact (i) above follows from the inequalities

[(n+ m− k)/2] ≤ (n+m− k)/2 ≤ n+m− k.

To prove (ii), suppose that n+m− s > [(n+m− s)/2] and that

{(c(k)
1 , . . . , c

(k)
n+m−k) | 0 ≤ k ≤ n}

is a U(n + m) system of level n coming from the (n + m)-tuple (3.8) and having
end the m-tuple (0, . . . , 0). We are to show that

c
(s)
[(n+m−s)/2]+1 = 0.(3.10)

Since all entries of (3.8) are ≥ 0 and the branching rule (1.1) is in force, we have

c
(s)
l ≥ 0 for 1 ≤ l ≤ n+m− s.(3.11)

On the other hand, (2.29b) shows that c(s)n+1−s ≤ 0. Thus (3.11) shows that

c
(s)
n+1−s = 0.(3.12)

Now

n+ 1− s ≤ [(n+ n− s)/2] + 1 ≤ [(n+m− s)/2] + 1,(3.13)

and thus (3.10) follows from (3.12), (3.13), dominance, and (3.11).
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To prove (iii), let {(c(k)
1 , . . . , c

(k)
[(n+m−k)/2]) | 0 ≤ k ≤ n} be a system for SO(n+m)

of level n coming from (3.8) and having end the [m/2]-tuple (0, . . . , 0). Here the
kth tuple for the system is dominant integral for SO(n+m− k). We are to prove
that its last entry is ≥ 0:

c
(k)
[(n+m−k)/2] ≥ 0 for 0 ≤ k ≤ n.(3.14)

We are given that c(n)
1 = 0, and thus (3.1) implies that

0 = c
(n)
1 ≥ c(n−1)

2 ≥ · · · ≥ |c(k)
n+1−k|

as long as n+ 1− k ≤ [(n+m− k)/2]. Since n+ 1− k ≤ [(n+m− k)/2] for k ≥ 2,
dominance gives c(k)

[(n+m−k)/2] ≥ 0 for k ≥ 2. That is, (3.14) holds for k ≥ 2. By
construction (3.14) holds for k = 0. Thus we have only to check k = 1. If (3.14) fails
for k = 1, then n+m−1 must be even, say equal to 2d. So [(n+m−2)/2] = d−1,
and (3.1b) and (3.14) for k = 2 give

0 = c
(2)
[(n+m−2)/2] = c

(2)
[(n+m−1)/2]−1 ≥ |c

(1)
[(n+m−1)/2]| > 0,

contradiction. We conclude that (3.14) holds for k = 1, and this proves (iii).
Thus the number of systems for SO(n+m) of level n coming from the [(n+m)/2]-

tuple (3.8) and having end the [m/2]-tuple (0, . . . , 0) equals the number of systems
for U(n+m) of level n coming from the (n+m)-tuple (3.8) and having end the m-
tuple (0, . . . , 0). This latter number, by Corollary 2.5 and the argument in the proof
of Lemma 2.6, equals the dimension of V ′. This completes the proof of Lemma 3.4
and also Theorem 3.1b.

4. Main Theorem for Quaternion Unitary Groups

In this section we shall state and prove the Main Theorem corresponding to
Sp(n+m) in the left column of Table 1. We regard Sp(n+m) as the group of unitary
matrices over the quaternions, and we write quaternions using the customary basis
1, i, j, k. The group Sp(N) has a standard realization as a subgroup of U(2N)
obtained by writing each quaternion as a 2-by-2 complex matrix (cf. [Kn], §I.8).

A Cartan subalgebra of Sp(N) can be taken to consist of the diagonal matrices
whose entries are real multiples of i. Let er denote evaluation of the rth diagonal
entry. The roots for Sp(N) are all ±er ± es with r < s and all ±2er. We take the
postive roots to be the er±es with r < s, as well as the 2er. The dominant integral
forms for Sp(N) are the expressions a1e1 + · · · + aNeN with all ai in Z and with
a1 ≥ · · · ≥ aN ≥ 0. We write such an expression as an N -tuple (a1, . . . , aN ).

Zhelobenko’s branching theorem [Z] for passing from Sp(N) to Sp(N − 1) says
that the number of times the representation of Sp(N − 1) with highest weight
(c1, . . ., cN−1) occurs in the representation of Sp(N) with highest weight (a1, . . ., aN )
equals the number of integer N -tuples (b1, . . . , bN ) such that

a1 ≥ b1 ≥ a2 ≥ · · · ≥ aN−1 ≥ bN−1 ≥ aN ≥ bN ≥ 0,
b1 ≥ c1 ≥ b2 ≥ · · · ≥ bN−1 ≥ cN−1 ≥ bN .

(4.1)

If there are no such N -tuples (b1, . . . , bN), then it is understood that the multiplicity
is 0.

Theorem 4.1. Let 1 ≤ n ≤ m, and regard Sp(n) and Sp(m) as embedded as block
diagonal subgroups of Sp(n+ m) in the standard way with Sp(n) in the upper left
diagonal block and with Sp(m) in the lower right diagonal block.
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(a) If (a1, . . . , an+m) is the highest weight of an irreducible representation (σ, V )
of Sp(n+m), then a necessary and sufficient condition for the subspace V Sp(m)

of Sp(m) invariants to be nonzero is that a2n+1 = · · · = an+m = 0.
(b) Let (a1, . . . , a2n, 0, . . . , 0) be the highest weight of an irreducible represen-

tation (σ, V ) of Sp(n + m) with a nonzero subspace of Sp(m) invariants,
and let (σ′, V ′) be an irreducible representation of U(2n) with highest weight
(a1, . . . , a2n). Then the representation (σ|Sp(n), V

Sp(m)) is equivalent with the
restriction to Sp(n) of the representation (σ′, V ′) of U(2n).

The proof of Theorem 4.1a is similar to the proof of Theorem 2.1a. Let us
therefore move to Theorem 4.1b.

Most of the proof of Theorem 4.1b has been given in §2, but some details have
been left for this section. The first detail left for now is the construction of a
particular member of Ad((Gd)C) that transforms hC into (a⊕ t)C. This member is
constructed as a product of Cayley transforms, and we need to indicate what roots
are used in constructing the Cayley transforms.

There will be no difficulty with outer automorphisms in connection with Theorem
4.1. In fact, the inclusion KL ⊂ G′ is a version of the inclusion Sp(n) ⊂ U(2n), and
Lemma 2.3 says that only one outer automorphism of G′ ∼= U(2n) is of concern.
We may take this to be θ, which fixes Sp(n). A representation σ′ of U(2n) and its
composition σ′ ◦ θ have the same restriction to Sp(n), and so it does not matter if
we confuse σ′ with σ′ ◦ θ.

In addition, the group KL
∼= Sp(n) admits no nontrivial outer automorphisms,

and hence no special symmetries require explanation.
Let us return to the passage from h to a ⊕ t. We begin by observing that the

roots er ± es are compact if r and s are both ≤ n or both ≥ n + 1, and they are
noncompact if r ≤ n and s ≥ n+1. The roots ±2er are compact. The roots er±es
are not strongly orthogonal, and hence the two cannot both be used in a strongly
orthogonal sequence. Instead we use the strongly orthogonal sequence

e1 − en+m, e2 − en+m−1, . . . , en − em+1

to form Cayley transforms. The Cayley transforms are denoted

2f1, 2f2, . . . , 2fn,

where fr is the linear functional on a⊕ t whose value on the matrix (2.4) is xr and
whose value on t is 0; this definition consistently extends the definition in §2. Let
f ′r be the linear functional on a⊕ t that is 0 on a and whose value on the quaternion
matrix in (2.5) is iyr, where i denotes the i in C rather than the i in H. Up to
Cayley transforms, we therefore have

fr = 1
2 (er − en+m+1−r) and f ′r = 1

2 (er + en+m+1−r).

We may then make the following identifications, via Cayley transforms:

2(f ′r + fr) ←→ 2er if r ≤ n,
2(f ′r − fr) ←→ 2en+m+1−r if r ≤ n,

(f ′r + fr)± (f ′s + fs) ←→ er ± es if r, s ≤ n.
The conditions on the ordering of the roots relative to a ⊕ t will be satisfied if

we insist that

f1 > · · · > fn > f ′1 > · · · > f ′n > ψ
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for all nonzero expressions ψ carried on the part of t involving indices n+1 through
m. Then the positive roots are all necessarily of the form

2fr,

(fr − fs) + (±f ′r ± f ′s)
(fr) + (±f ′r) + ψ

2f ′r,
ψ

with r < s,

if n < m,

if n < m.

(4.2)

The given highest weight a1e1 + · · · + anen of (σ, V ) relative to h transforms to
an integer combination of fr’s and f ′s’s, together possibly with a term carried on
t. The transformed expression is an extreme weight. To make it dominant, we
permute coefficients of the er’s, including those corresponding to the t part, and
use sign changes. Then the result, as in (2.21), is that the highest weight of (σ, V )
relative to a⊕ t is

(a1 − a′n)f1 + (a2 − a′n−1)f2 + · · ·+ (an − a′1)fn
+ (a1 + a′n)f ′1 + (a2 + a′n−1)f ′2 + · · ·+ (an + a′1)f ′n

(4.3)

with no ψ term. The expression (4.3) consequently is the highest weight of (σ′, V ′)
relative to a.

The next step is to identify G′ globally. We know that g′ is isomorphic to u(2n),
and we want to see that G′ is isomorphic to U(2n). The Lie algebra g′ consists
of all real linear combinations of the matrices (2.18) with y1 = · · · = yn = 0
and of embedded versions of the quaternion matrices in (2.19). The argument
for this step involves conjugating by a matrix as in the previous two cases, but
an additional complication arises in that we first have to change the quaternion
matrices to complex matrices. Since all indices 1, . . . , n used in the quaternion
case behave in the same fashion, it will be enough to handle two such indices,
i.e., to do the identification for n = 2. Thus we will be working with 4-by-4
quaternion matrices and 8-by-8 complex matrices. Following §I.8 of [Kn], let Q
be a 4-by-4 quaternion matrix, and write Q in terms of 4-by-4 real matrices as
Q = A + Bi + Cj + Dk. Put Q1 = A + Bi and Q2 = C − Di. Then the 8-by-8
complex matrix corresponding to Q is

Z(Q) =
(
Q1 −Q2

Q2 Q1

)
.(4.4)

We apply this transformation to the part of (2.18) corresponding to indices 1 and
2, as well as to the two matrices in (2.19). Let W be the 4-by-4 complex matrix

W =


1 0 1 0
i 0 −i 0
0 1 0 1
0 i 0 −i

 ,

and let M ′′ be the 8-by-8 matrix that is constructed by using W in row and col-
umn indices 1, 4, 5, 8 and by using W again in row and column indices 2, 3, 6,
7. For each of the three matrices Z(Q) obtained by the transformation (4.4), we
form M ′′−1Z(Q)M ′′. Then we check by inspection that the resulting three 8-by-8
matrices are block diagonal with two 4-by-4 diagonal blocks, that real linear com-
binations of these block diagonal matrices yield arbitary skew-Hermitian matrices
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for the upper left 4-by-4 block, and that the lower right 4-by-4 block is a function
of the upper left 4-by-4 block. Then it follows that the group in question is U(4)
for the case n = 2 that is under study and hence is U(2n) in general. We omit the
details.

To complete the proof of Theorem 4.1b, it suffices to show that the mapping
E : V ′ → V K1 is one-one. Since Lemma 2.2 shows E to be onto, it is enough to
prove that dim V ′ = dim V K1 .

We regard the sequence Sp(1) ⊂ Sp(2) ⊂ · · · ⊂ Sp(N) of unitary quaternion
groups to be nested in a standard way, such as with each one embedded as the lower
right block of the next one. A system for Sp(N) of level 2r coming from a dominant
integral N -tuple (c1, . . . , cN ) is a collection {(c(k)

1 , . . . , c
(k)
N−[k/2]) | 0 ≤ k ≤ 2r}

consisting of one (N − [k/2])-tuple for each k such that

(c(0)
1 , . . . , c

(0)
N ) = (c1, . . . , cN );

the kth tuple is dominant integral for Sp(N − [k/2]); and,

for k even and ≥ 2, the (k − 1)st and kth tuples are
obtained from the (k − 2)nd tuple by (4.1).

The end of the system is the (N − r)-tuple (c(2r)1 , . . . , c
(2r)
N−r).

Lemma 4.2. Let τ be an irreducible representation of Sp(N) with highest weight
(c1, . . . , cN), let 1 ≤ r < N , and let τ ′ be an irreducible representation of Sp(N − r)
with highest weight (d1, . . . , dN−r). Then the number of systems for Sp(N) of level
2r coming from (c1, . . . , cN ) and having end (d1, . . . , dN−r) equals the multiplicity
of τ ′ in τ |Sp(N−r).

Proof. The argument is the same as for Lemma 2.4 except that the branching
theorem (4.1) is used in place of the branching theorem (1.1).

Now we return to the notation of Theorem 4.1b. The given irreducible represen-
tation (σ, V ) of Sp(n+m) has highest weight the (n+m)-tuple

(a1, . . . , a2n, 0, . . . , 0).(4.5)

The constructed irreducible representation (σ′, V ′) of U(n) has highest weight

(a1, . . . , a2n).

Lemma 4.3. dimV ′ = dimV K1 .

Proof. The right side is the multiplicity of the trivial representation of K1 = Sp(m)
in σ|Sp(m), and Lemma 4.2 shows that this multiplicity equals the number of systems
for Sp(n+m) of level 2n coming from the (n+m)-tuple (4.5) and having end the
m-tuple (0, . . . , 0).

We shall compute this number of systems in a second way and obtain the answer
dimV ′. More specifically we shall show that the Sp(n + m) systems of level 2n
coming from the (n + m)-tuple (4.5) and having end the m-tuple (0, . . . , 0) are in
one-one correspondence with the U(n + m) systems of level 2n coming from the
(n+m)-tuple (4.5) and having end the (m−n)-tuple (0, . . . , 0). (When n = m, the
end tuple is to be a 0-tuple, i.e., is to be empty.) The correspondence is as follows:
to pass from a U(n+m) system to an Sp(n+m) system, we pad the right ends of
the tuples with 0’s; to pass from an Sp(n + m) system to a U(n + m) system, we
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drop the appropriate number of entries from the right ends of the tuples. To see
that this is a one-one correspondence, we need to check that

(i) the Sp(n+m) tuples are always at least as long as the U(n+m) tuples,
(ii) any entry that gets dropped from an Sp(n + m) tuple in carrying out the

correspondence has a 0 in it.

Each kind of system consists of 2n + 1 tuples numbered from 0 to 2n, the kth
tuple being of length

n+m− [k/2]
n+m− k

in the Sp(n+m) case,

in the U(n+m) case.
(4.6)

Fact (i) above follows from the inequality

n+m− k ≤ n+m− [k/2].

To prove (ii), suppose that n+m− [s/2] > n+m− s and that

{(c(k)
1 , . . . , c

(k)
n+m−[k/2]) | 0 ≤ k ≤ 2n}

is an Sp(n+m) system of level 2n coming from the (n+m)-tuple (4.5) and having
end the m-tuple (0, . . . , 0). We are to show that

c
(s)
n+m−s+1 = 0.(4.7)

Since all entries of (4.5) are ≥ 0 and the branching rule (4.1) is in force, we have

c
(s)
l ≥ 0 for 1 ≤ l ≤ n+m− [s/2].(4.8)

On the other hand, (2.29a) shows that c(k−r)l+r ≤ c
(k)
l whenever the indices are in

bounds. Taking k = 2n, r = 2n− s, and l = 1, we obtain

c
(s)
2n+1−s ≤ c

(2n)
1 = 0.(4.9)

Thus (4.8) shows that

c
(s)
2n+1−s = 0.(4.10)

Since

2n+ 1− s ≤ n+m− s+ 1,

(4.7) follows from (4.10), dominance, and (4.8).
Thus the number of systems for Sp(n+m) of level 2n coming from the (n+m)-

tuple (4.5) and having end the m-tuple (0, . . . , 0) equals the number of systems
for U(n+ m) of level 2n coming from the (n+ m)-tuple (4.5) and having end the
(m−n)-tuple (0, . . . , 0). This latter number, by Corollary 2.5 and the argument in
the proof of Lemma 2.6, equals the dimension of V ′. This completes the proof of
Lemma 4.4 and also Theorem 4.1b.
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