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NONVANISHING OF A CERTAIN SESQUILINEAR FORM
IN THE THETA CORRESPONDENCE

HONGYU HE

Abstract. Suppose 2n + 1 ≥ p + q. In an earlier paper in 2000 we study
a certain sesquilinear form (, )π introduced by Jian-Shu Li in 1989. For π in
the semistable range of θ(MO(p, q) → MSp2n(R)), if (, )π does not vanish,
then it induces a sesquilinear form on θ(π). In another work in 2000 we
proved that (, )π is positive semidefinite under a mild growth condition on the
matrix coefficients of π. In this paper, we show that either (, )π or (, )π⊗det

is nonvanishing. These results combined with one result of Przebinda suggest
the existence of certain unipotent representations of Mp2n(R) beyond unitary
representations of low rank.

1. Introduction

Let (G1, G2) = (O(p, q), Sp(n,R)) be a dual pair in G = Sp(n(p + q),R), and
let ω be the metaplectic representation of MG, the metaplectic covering group
of G. For a subgroup H of G, we will use MH to denote the preimage of H
under the metaplectic covering. Let P be the Harish-Chandra module of ω. Let
R(MGi, ω) be the equivalent classes of irreducible Harish-Chandra modules of MGi
which occur as quotients of P . Theta correspondence defined by Howe (see [11])
is a one-to-one correspondence between R(MG1, ω) and R(MG2, ω). We denote
this correspondence by θ(MG1 → MG2). The sets R(MGi, ω) are not known in
general.

Let ε be the nontrival element in the preimage of the identity. Then ω(ε) = −1.
If π ∈ R(MGi, ω), it is easy to see that π(ε) = −1. Throughout this paper, we
consider only the representations π such that π(ε) = −1. Consider the dual pair
(O(p, q), Sp(n,R)) with p + q ≤ 2n + 1. Fix a maximal compact subgroup K ⊂
MSp(n(p+ q),R). Let Λ be the matrix coefficient of the oscillator representation
corresponding to the lowest K-type of the oscillator representation ω. The absolute
value of Λ was denoted by Ω in [19]. Let Λ(p, q) be the restriction of Λ to MO(p, q).
The main result could be stated as follows.

Theorem 1.1 (Main Theorem). Suppose p+q ≤ 2n+1. Suppose f is a continuous
complex valued function on MSO(p, q) such that

f(εg̃) = −f(g̃) (g̃ ∈MSO(p, q))

and

fΛ(p, q) ∈ L1(MSO(p, q)).
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Assume that for all u, v in P,∫
MSO(p,q)

f(g̃)(u, ω(g̃)v)dg̃ = 0.(1)

Then f ≡ 0.

We say that a function on MH is an odd function if

f(εx) = −f(x) (∀ x ∈MH).

We may now state an equivalent form of the main theorem.

Theorem 1.2 (Density Theorem). Suppose p+ q ≤ 2n+ 1. The linear span of the
matrix coefficients of ω restricted to MSO(p, q) is dense in L2

odd(MSO(p, q)). Here
matrix coefficients are functions of the form

(ω(g̃)φ, ψ) (g̃ ∈MSO(p, q), ψ, φ ∈ P).

Let M(p, q) be the set of matrix coefficients of ω restricted to MO(p, q). Fol-
lowing [6], we define an analytic compactification

H : O(p, q)→ O(p+ q).

Our compactification has the following interesting property.

Theorem 1.3. Let f ∈ M(p, q). Then f
Λ(p,q) is a function on O(p, q). Further-

more, there exists a function in f0 in M(0, p+ q) such that

f0

Λ(0, p+ q)
(H(g)) =

f

Λ(p, q)
(g) (g ∈ O(p, q)).

We write
M(0, p+ q)
Λ(0, p+ q)

∼=
M(p, q)
Λ(p, q)

.

In fact, as long as the group action is concerned,
M(0, p+ q)
Λ(0, p+ q)

=
M(p+ q, 0)
Λ(p+ q, 0)

.

However, Λ(0, p+ q) may differ from Λ(p+ q, 0) by a conjugate. That is the reason
we keep the notation O(0, p+ q) and M(0, p+ q). This theorem is motivated by a
suggestion from the referee.

In [8], the author followed some earlier idea of Jian-Shu Li (see [17]) and con-
structed the theta correspondence in semistable range. Let π be an irreducible
representation in the semistable range of θ(MG1 →MG2) (see [8]). Then one can
define a (real) bilinear form on ω ⊗ π:

(φ⊗ u, ψ ⊗ v)π =
∫
MG1

(ω(g)φ, ψ)(v, π(g)u)dg.

If (, )π is nonvanishing, ω⊗πc modulo the radical of (, )π is irreducible. Furthermore,
it produces the theta correspondence. The remaining question is whether (, )π
vanishes.

Corollary 1.1. Let G1 = O(p, q) and G2 = Sp(n,R). Let det be the central char-
acter of MO(p, q) defined to be the lift of the determinant on O(p, q). Suppose
p+ q ≤ 2n+ 1. If π is an irreducible representation in the semistable range of

θ(MG1 →MG2),
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then at least one of

(, )π , (, )π⊗det

is nonvanishing.

Thus up to a central character, π ∈ R(MG1, ω). This gives a partial description
of R(MG1, ω).

This paper is structured as follows. In Section 2, we introduce the Segal-
Bargmann Model. In Section 3, we review some basic theory of symmetric spaces
and orthogonal groups. In Section 4, we study the dual pair (O(p, q), Sp(n,R)) in
the oscillator representation of Sp(n(p + q),R). We obtain an analytic compacti-
fication H of O(p, q). In Section 5, we utilize the compactification H to prove the
main theorem and the nonvanishing of (, )π. The proofs given here are substantially
shorter than the proofs given in the author’s thesis ([10]).

Acknowledgments. The author wishes to thank the referee for his suggestions
and for pointing out the Kashiwara-Vergne paper which shortens the proof of the
main theorem. Most of this paper comes out of the author’s thesis. The author
wishes to thank his advisor David Vogan for guidance.

1.1. Convention. Let G be a reductive group. We use R(G) to denote the set
of equivalence classes of irreducible admissible representations of G. An irreducible
admissible representation is an irreducible Harish-Chandra module equipped with a
pre-Hilbert structure which is invariant under the action of a fixed maximal compact
subgroup K. When we speak of the group O(p, q) or SO(p, q), we assume p ≤ q
unless stated otherwise.

Let x = (x1, x2, . . . , xn) ∈ Cn. For α = (α1, α2, . . . , αn) ∈ Nn, let

xα =
n∏
1

xαii .

We use the “overline” to denote complex conjugation. Throughout this paper, N
will be the set of natural numbers including zero.

2. Segal-Bargmann Model

The oscillator representation is a projective representation of the symplectic
group. It was discovered by Segal, Shale and Weil in the early sixties. The most
well-known model was the Schrödinger model. In this model, the underlying Hilbert
space is the L2-space on real Euclidean space Rn. The infinitesimal generators of
the symplectic group act as skew-adjoint differential operators. However, the group
action is hard to describe due to the fact that the Fourier integration operator is
involved. On the other hand, there is the Bargmann-Segal model. The underlying
Hilbert space Fn is the space of square integrable analytic functions on Cn with
respect to the Gaussian measure. Bargmann computed the isometry between Fn
and L2(Rn) (see [1]). This model was later studied by many people. One advan-
tage of the Segal-Bargmann model is that the group action can be represented by
integral operators consistently.

The Segal-Bargmann model enables us to study some real analysis problem using
complex analytic tools. In this paper, we will first review the Segal-Bargmann
model. Then we convert problems on noncompact Lie groups into problems on
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compact Lie groups in the spirit of the compactification of classical groups from [6]
and [7].

2.1. Vector Space V . In this paper, V is regarded as
1. an n-dimensional complex Hilbert space (V, (, )) with a fixed orthonormal

basis

{e1, e2, . . . , en}
(sometimes vectors in V are indicated by C);

2. a 2n-dimensional real vector space (V,<(, )) with fixed orthonormal basis

{ie1, ie2, . . . , ien, e1, e2, . . . , en};
3. a 2n-dimensional real symplectic vector space (V,=(, )) with fixed standard

basis

{ie1, ie2, . . . , ien, e1, e2, . . . , en}.
We refer to {e1, e2, . . . , en} as the complex basis, and {ie1, . . . , ien, e1, . . . , en} as
the real basis.

We write Ω(, ) = =(, ). We have

Ω(iei, ej) = δji Ω(ei, ej) = 0 Ω(iei, iej) = 0.

Furthermore, under the real basis, the complex multiplication in V is given by the
left multiplication by

J =
(

0n In
−In 0n

)
.

The complex conjugation, always denoted by an overline, is given by the left mul-
tiplication by

S−n,n =
(
−In 0

0 In

)
.

In this paper, we will use both languages of real vector space and complex vector
space when V is involved.

2.2. Endomorphisms in V . Let EndR(V ) be the space of real endomorphisms
on V , and EndC(V ) the space of complex endomorphisms on V . Let g ∈ EndC(V ).
Suppose g = A + iB, A and B are n× n real matrices. Then the real form of g is
given by (

A B
−B A

)
We denote this matrix by gR. The map g → gR produces an injection from EndC(V )
to EndR(V ).

On the other hand, suppose g ∈ EndR(V ). Then we may decompose g into a sum
of a complex-linear endomorphism and a complex conjugate-linear endomorphism
as follows:

Cg =
1
2

(g − JgJ) Ag =
1
2

(g + JgJ).

Then g = Cg +Ag. We define CCg and ACg by

CCg v = Cgv ACg v = Agv (∀ v ∈ V ).

The maps g → CCg and g → ACg are surjections from EndR(V ) to EndC(V ).
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Finally, if Cg is invertible, we write

Zg = C−1
g Ag.

Then Zg is a conjuagate-linear endomorphism. We write

ZCg v = Zgv.

2.3. Groups attached to V . There are five interesting groups attached to the
vector space V :

1. K = U(n), the group fixing the complex inner product of V ;
2. O = O(2n), the group fixing the real inner product of V ;
3. G = Sp2n(R), the group fixing the symplectic form Ω;
4. H , the subgroup of G fixing

span(e1, e2, . . . , en) and span(ie1, ie2, . . . , ien);

5. H0, the identity component of H .
It is obvious that

K = O ∩G
and K is a maximal subgroup of G.

Now observe that the fundamental group of K is Z. It follows that

π1(G) = Z.

Therefore, there exists a unique double covering of G. This double covering is often
called the metaplectic covering. We denote the covering group by MG and the
covering by M . For any subgroup P of G, we denote the preimage of P under the
metaplectic covering by MP . Let {1, ε} be the preimage of the identity in G. The
reader should be warned that MG is NOT an algebraic group. Nevertheless, it has
a nice analytic presentation (see [20])

MG = {(ξ, g) | g ∈ G, ξ ∈ C, ξ2 det(CCg ) = 1}.
Finally, let us look at MK and MH . Since K is already complex linear,

MK = {(ξ, g) | g ∈ K, ξ ∈ C, ξ2 det gC = 1}.
MK is the unique double covering of K. For g ∈ H , we assume that g is of the
form (

A 0
0 (A−1)t

)
(A ∈ GL(n,R)).

Then

CCg =
A+ (A−1)t

2
=

1
2
A(I + (AtA)−1).

We see that detA and detCCg must both be real and have the same sign. It follows
that

MH0
∼= {(ξ, g) | g ∈ H0, ξ = ±(detA)−

1
2 } ∼= H0 × Z/2.

The isomorphisms are group isomorphisms. Similarly, as topological spaces, we
have

MH ∼= H × Z/2.
In summary, the metaplectic covering on H (H0) splits.
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2.4. Segal-Bargmann Model. Let dx be the Euclidean measure on V and

dµ(x) = exp(−1
2

(x, x))dx

the Gaussian measure. Let Pn be the polynomial ring on V C. We define an inner
product (, ) on Pn by

(f, g) =
∫
V

f(x)g(x)dµ(x) (f, g ∈ Pn).

This makes Pn a pre-Hilbert space. Let Fn be the completion of Pn. Then Fn is
exactly the space of square-Gaussian-integrable analytic functions on V C (see [1]).

Theorem 2.1 (Segal-Bargmann Model). Let G = Sp(n,R). For (ξ, g) ∈ MG, we
define a unitary operator

ω(ξ, g)f(z) =
∫
V

ξ exp
1
4

(2(C−1
g z, w)− (z, Zg−1z)− (Zgw,w))f(w)dµ(w).

Then ω yields a faithful unitary representation of MG. Furthermore, Pn is the
Harish-Chandra module of ω.

We write

H(g, z, w) = 2(C−1
g z, w)− (z, Zg−1z)− (Zgw,w).

We call it the Bargmann-Segal kernel. Under the Cartan decomposition of Sp2n(R),
this kernel can be written as

H(g, z, w) = 2(sech(H)k−1
1 z, k2w) + (k−1

1 z, tanh(H)k−1
1 z)− (tanh(H)k2w, k2w)

for g = k1 exp(H(g))k2. On the Harish-Chandra module Pn, the infinitesimal
generators of G act as differential operators of degree less or equal to 2 (see [11]).

In Segal-Bargmann model, the lowest K-type is the space of constant functions.
Let φ0(z) ≡ 1. Fix (ξ, g) ∈Mp(n,R). From (3) of [6],

H(g, z, w) = (izt, wt)H(g)
(
iz
w

)
with H(g) a 2n×2n symmetric unitary matrix. Write H(g) = UU t with U ∈ U(n).
Then

(ω(ξ, g)φ0, φ0)

= ξ

∫
V×V

exp
1
4

(izt, wt)UU t
(
iz
w

)
dµ(z, w)

= ξ

∫
V×V

exp
1
4

(izt, wt)
(
iz
w

)
dµ(z, w)

= ξ.

(2)

We denote the function

(ξ, g)→ ξ

by Λ. Λ is the diagonal matrix coeffient of ω corresponding to the lowest K-type.
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3. Groups—Structure Theory

Our understanding of representation theory relies on our understanding of the
structure of the group. In this section, we will introduce some standard material
which we will use in subsequent sections. Our aim is to do analysis on O(p, q) and
O(p + q). Only in this section, will we abandon the notations from the previous
section.

3.1. Symmetric Pairs. We recall some definition and basic facts about symmetric
spaces from [3, Ch. 4.3]

Definition 3.1 (symmetric pair). Let G be a connected reductive Lie group and
H a closed subgroup. Let σ be an involution of G such that

(Gσ)0 ⊆ H ⊆ Gσ

where Gσ is the fix point set of σ and (Gσ)0 the identity component of Gσ. The
pair (G,H) is called a reductive symmetric pair. If AdG(H) is compact, (G,H) is
said to be a Riemannian reductive symmetric pair.

We will only be interested in Riemannian symmetric pairs and Riemannian sym-
metric spaces. According to [3, Ch. 4.3], a Riemannian reductive symmetric pair
yields a Riemannian globally reductive symmetric space G/K, and every Riemann-
ian globally symmetric space can be obtained from a Riemannian reductive sym-
metric pair.

Definition 3.2 (Weyl group). Let (G,K) be a Riemannian reductive symmetric
pair. Let 〈 , 〉 be an invariant real symmetric bilinear form on g such that (, )k is
negative definite. Let p = k⊥. Let hp be a maximal Abelian subspace of p. Let
H = exp hp be the corresponding Abelian subgroup. Let M,M ′ be the centralizer
and normalizer of hp in K respectively. In other words,

M = {k ∈ K | Ad(k)h = h ∀h ∈ hp},

M ′ = {k ∈ K | Ad(k)hp ⊆ hp}.
The quotient group W (G,K) = M ′/M is called the Weyl group of (G,K).

Theorem 3.1 (Symmetric decomposition). Every Riemannian reductive symmet-
ric pair (G,K) induces a decomposition of G into KHK. For an arbitrary x ∈ G,
H(x) is unique up to a conjugation of W (G,K) and a multiplication of K ∩H.

Theorem 3.2. For every reductive symmetric pair (G,K), there exists a G-invar-
iant measure

dGg = ∆(H(g))dk1dHdk2 (k1 exp(H(g))k2 = g).

If ∆(H(g)) 6= 0, we say that g is regular; if ∆(H(g)) = 0, we say that g is singular.
The singular set is of codimension at least 2.

Most of the proof can be found in [4, Ch. 1.5, section 2], [3, Ch. 7.3], and
[5, Ch. 7.8]. Notice for G noncompact, this decomposition is nothing more than
Cartan decomposition, and the results are well-known. In all cases, we will use dGg
to denote the Haar measure of G, and dXx to denote the G-invariant measure of
X . When different groups are involved, we may use ∆G(H) to specify the group
invariance.
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The orthogonal groups are not connected. We can still define symmetric pairs,
Weyl groups and symmetric decomposition for reductive groups with a finite num-
ber of components. But Theorem 3.2 will not be valid due to the change of orien-
tation. Nevertheless, Theorem 3.2 remains valid for the special orthogonal groups.

3.2. Noncompact Orthogonal Groups. Let G = O(p, q) be the group fixing
the quadratic form

Q(x1, . . . , xp, y1, . . . , yq) =
p∑
i=1

x2
i −

q∑
j=1

y2
j .

Let K = O(p) ×O(q) be the subgroup of G fixing both

Q1(x1, . . . , xp) =
p∑
i=1

x2
i ; Q2(y1, . . . , yq) =

q∑
j=1

y2
j .

Then K is a maximal compact subgroup of G and (G,K) is a symmetric pair. We
fix a maximal split Abelian subgroup A consisting of the following elements:

expH(λ) =

 coshλ sinhλ 0
sinhλ coshλ 0

0 0 Iq−p

 .

The corresponding Lie algebra a consists ofH(λ) =

 0p λ 0p,q−p
λ 0p 0p,q−p

0q−p,p 0q−p,p 0q−p

 | λ = diag(λ1, . . . , λp)

 .

The open positive Weyl chamber a+ is given by those λ such that

λ1 > λ2 > · · · > λp > 0.

I should remark that for O(p, p), we do need the disconnectedness of O(p, q) in
order to produce such a Weyl Chamber. In this formulation, the group G has a
KA+K decomposition, namely Every g ∈ G can be written as

k1 expH(g)k2 (k1, k2 ∈ K,H(g) ∈ a+).

3.3. Compact Orthogonal Groups. Let us consider G = O(p + q). Then
(O(p + q), O(p) × O(q)) is a Riemannian symmetric pair. Let Tp be a compact
torus consisting of elements of the form

T (θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 Iq−p

 (θ ∈ (−π, π]p).

For each θi, we may define an element(
cos θi sin θi
− sin θi cos θi

)
∈ T1.

Then Tp can be identified with the direct product of p copies of T1. If we choose
H = Tp, then the symmetric decomposition holds for (Op+q , Op ×Oq).

Observe that
• H ∩K ∼= (Z/2Z)p. More explicitly, we have

H ∩K = {diag(A,A, Iq−p) | A = diag(±1,±1, . . . ,±1) ∈ Op}.
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• W (Op+q , Op × Oq) acts on Tp ∼= T1 × T1 × . . . × T1 by permutations and
transposes on the copies of T1. Transpose on(

cos θi sin θi
− sin θi cos θi

)
can be identified with θi → −θi.

Theorem 3.3 (KTpK decomposition). Every g ∈ Op+q can be decomposed into
k1T (θ(g))k2, such that

π/2 ≥ θ1(g) ≥ θ2(g) ≥ . . . θp(g) ≥ 0.

Proof. First of all g can be decomposed into k1T (θ)k2. We know that T (θ) is
unique modulo the action of W (O(p+q), O(p)×O(q)) and multiplication by H∩K.
Applying a multiplication of H ∩K on T (θ), we may choose cos(θi) ≥ 0, i.e.,

π/2 ≥ θi ≥ −π/2 (i = 1 . . . , p).

Again, applying a conjugation by W (Op+q, Op × Oq), we may choose

π/2 ≥ θ1 ≥ θ2 ≥ . . . ≥ θp ≥ 0.

Therefore, g ∈ Op+q can be decomposed into k1T (θ(g))k2, such that

π/2 ≥ θ1(g) ≥ θ2(g) ≥ . . . θp(g) ≥ 0.

4. Dual Pair (O(p, q), Sp2n(R))

The dual pair we are interested is (O(p, q), Sp2n(R)) in Sp2n(p+q)(R). Under a
proper setting which we will discuss now, O(p, q) will be the left multiplication on
some matrix space, and Sp2n(R) will be the right multiplication. From now on, we
return to the notation set in Section 1.

4.1. Vector space V.
1. Let V = Mat(p, n,C)⊕Mat(q, n,C). Now V is regarded as a complex linear

space. For v ∈ V , we may either write v = (v1, v2) or v = v1 + v2 where
v1 ∈Mat(p, n,C) and v2 ∈Mat(q, n,C). Let vi = <(vi) + i=(vi). We define

(u, v) = Tr(u1vt1) + Tr(u2vt2).

An easy computation shows that

<(u, v) = Tr(<(u1)<(vt1) + =(u1)=(vt1) + <(u2)<(vt2) + =(u2)=(vt2)),

=(u, v) = Tr(=(u1)<(vt1)−<(u1)=(vt1) + =(u2)<(vt2)−<(u2)=(vt2)).

2. We identify V with Mat(p+ q, 2n,R) as follows:

C : (u1, u2)→
(
<(u1) =(u1)
=(u2) <(u2)

)
.

We let

=(u1) = X12 <(v1) = Y11 =(v1) = Y12 <(u1) = X11,

=(u2) = X21 <(v2) = Y22 =(v2) = Y21 <(u2) = X22.
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Then the inverse of C is given by

C−1 :
(
X11 X12

X21 X22

)
→ (X11 + iX12, X22 + iX21).

We call Xij the real coordinates, and ui the complex coordinates.
3. Under the real basis, the imaginary part of (X,Y ) is given by

Ω(X,Y ) = Tr(X12Y
t
11 −X11Y

t
12 +X21Y

t
22 −X22Y

t
21).

Let

Sp,q =
(
Ip 0
0 −Iq

)
W =

(
0n In
−In 0n

)
.

Then Ω can be written as

Ω(X,Y ) = Tr(−WY tSp,qX).

4.2. Endomorphisms.
1. The group O(p, q) acts on V = Mat(p + q, 2n,R) by left multiplication and

the group Sp2n(R) acts on V by right multiplication. It is clear that the two
group actions preserve Ω(, ) and commute. Therefore

(O(p, q), Sp2n(R))→ Sp(V,Ω)

is a dual pair. We denote the left multiplication by L and right multiplication
by R. L and R are interpreted as the embedding of O(p, q) and Sp2n(R) into
Sp2n(p+q)(R) to produce the dual pair.

2. The complex scalar multiplication of i as a linear transform in Mat(p +
q, 2n,R) can be written as(

<(u1) =(u1)
=(u2) <(u2)

)
→
(
−=(u1) <(u1)
<(u2) −=(u2)

)
= Sp,q

(
<(u1) =(u1)
=(u2) <(u2)

)
W.

We denote iX (under the complex basis) by J(X) (under the real basis):

J(X) = Sp,qXW.

Here J is regarded as a real linear endomorphism on V . It follows that

J(L(g)J(X)) = Sp,q(gSp,qXW )W = −Sp,qgSp,qX (X ∈ V ).

3. Based on the above equation, we compute

J(L(expH(λ)))J = L

 − coshλ sinhλ 0
sinhλ − coshλ 0

0 0 −Iq−p

 ,

CL(expH(λ)) = L

 coshλ 0 0
0 coshλ 0
0 0 Iq−p

 ,

AL(expH(λ)) = L

 0 sinhλ 0
sinhλ 0 0

0 0 0

 .

We denote CL(expH(λ)) by L(coshλ), and AL(expH(λ)) by L(sinhλ).
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4. Immediately, we obtain

ZL(expH(λ)) = L

 0 tanh(λ) 0
tanh(λ) 0 0

0 0 0

 ,

ZL(exp(−λ)) = −ZL(expH(λ)).

We denote ZL(expH(λ)) by L(tanhλ).
5. The standard maximal compact subgroup of O(p, q) is O(p) × O(q). For

(U1, V1) ∈ O(p)×O(q), and (u1, v1) ∈ V , we have

L(U1, V1)(u1, v1) = (U1u1, V1v1).

4.3. Segal-Bargmann model. Let us consider the oscillator representation of
Mp2n(p+q)(R). The group L(O(p, q)) is a subgroup of Sp2n(p+q)(R). We wish to
compute the Segal-Bargmann kernelH(g, z, w) for L(O(p, q)). Let g=k1 expH(λ)k2

be the Cartan decomposition of Op,q. Let ki = (Ui, Vi) ∈ Op ×Oq. Then Ui, Vi are
real and

U−1
i = U ti V −1

i = V ti .

We will rely on the real coordinates to navigate. But our final goal is to obtain
H(g, z, w) in complex coordinates.

Let z = (z1, z2), w = (w1, w2) be the complex coordinates of z and w. Recall
that under the Cartan decomposition, the Bargmann-Segal kernel is, in general,
defined as

H(g, z, w) = 2(sech(H)k−1
1 z, k2w) + (k−1

1 z, tanh(H)k−1
1 z)− (tanh(H)k2w, k2w).

1. In our setting, we compute the first term

(L(coshλ)−1k−1
1 z, k2w)

= (sech(λ)U−1
1 z1, U2w1) + (

(
sechλ 0

0 Iq−p

)
V −1

1 z2, V2w2)

= Tr(w1
tU t2sechλU t1z1) + Tr(wt2V

t
2

(
sechλ 0

0 Iq−p

)
V t1 z2).

(3)

2. To compute L(tanh(λ)), we first consider u = (u1, u2). Under the real coor-
dinates, we have

L(tanh(λ))
(
<(u1) =(u1)
=(u2) <(u2)

)

=

 0 tanh(λ) 0
tanh(λ) 0 0

0 0 0

( <(u1) =(u1)
=(u2) <(u2)

)

=

 (tanhλ, 0)=(u2) (tanhλ, 0)<(u2)(
tanhλ

0

)
<(u1)

(
tanhλ

0

)
=(u1)

 .

(4)

Thus in terms of the complex coordinates, we have

L(tanhλ)(u) = (i(tanhλ, 0)u2, i

(
tanhλ

0

)
u1).
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3. We compute the second term of the Segal-Bargmann kernel

(k−1
1 z, L(tanhλ)k−1

1 z)

= (U−1
1 z1, i(tanhλ, 0)V −1

1 z2) + (V −1
1 z2, i

(
tanhλ

0

)
U−1

1 z1)

= −2iT r(zt2V1

(
tanhλ

0

)
U t1z1).

(5)

4. Similarly, the third term of the Segal-Bargmann kernel can be computed as
follows:

(L(tanhλ)k2w, k2w)

= (k2w,L(tanhλ)k2w)

= −2iT r(W t
2V

t
2

(
tanhλ

0

)
U2w1)

= 2iT r(wt2V
t

2

(
tanhλ

0

)
U2w1)

= 2iT r(wt1U
t
2(tanhλ, 0)V2w2).

(6)

Summarizing our computations, we obtain

H(g, z, w)

= 2Tr

(wt1U t2,−izt2V1

) sechλ − tanhλ 0
tanhλ sechλ 0

0 0 Iq−p

( U t1z1

iV2w2

)
= 2Tr

(zt1U1, iwt2V
t

2

) sechλ tanhλ 0
− tanhλ sechλ 0

0 0 Iq−p

( U2w1

−iV t1 z2

)
= 2Tr

(zt1, iwt2)( U1 0
0 V t2

) sechλ tanhλ 0
− tanhλ sechλ 0

0 0 Iq−p


×
(
U2 0
0 V t1

)(
w1

−iz2

) .

(7)

4.4. Compactification of O(p, q). We observe that(
U2 0
0 V t1

)
,

(
U2 0
0 V t1

)
,

 sechλ tanhλ 0
− tanhλ sechλ 0

0 0 Iq−p

 ∈ Op+q.
In the spirit of [6] and [7], we give the following definition.

Definition 4.1. We define H : Op,q → Op+q by

H(g) =
(
U1 0
0 V t2

) sechλ tanhλ 0
− tanhλ sechλ 0

0 0 Iq−p

( U2 0
0 V t1

)
where g = k1 expH(λ)k2, and ki = (Ui, Vi) ∈ Op ×Oq.
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Thus for g ∈ Op,q, the Segal-Bargmann kernel can be written conveniently as

H(L(g), z, w) = 2Tr
((

zt1, iw
t
2

)
H(g)

(
w1

−iz2

))
.(8)

Since w1, w2, z1, z2 can all be chosen arbitrarily, H(L(g), z, w) determines H(g)
uniquely, and vice versa. In addition, since H(g, z, w) does not depend on the Car-
tan decomposition of O(p, q), H(g) does not depend on the Cartan decomposition.
Therefore H(g) is is well-defined. The group action of (ξ, g) ∈ MO(p, q) on F is
given by

ω(ξ, g)f(z) =
∫
V

ξ exp
(

1
2

(
zt1, iw

t
2

)
H(g)

(
w1

−iz2

))
f(w)dµ(w).

Since sechλ > 0, the image of H consists of

{k1T (θ)k2 | k1, k2 ∈ O(p) ×O(q), θ ∈
p∏
1

(−π
2
,
π

2
)}.

Since the set {T (θ) | θi ∈ [0, π2 )} is already dense in

{T (θ) | π/2 ≥ θ1(g) ≥ θ2(g) ≥ . . . θp(g) ≥ 0}

according to the KTpK decomposition, H(O(p, q)) is dense in O(p+ q).
We recite the following theorem from [6].

Theorem 4.1. The Bargmann-Segal kernel defines a one-to-one analytic embed-
ding H from Sp(n,R) to the space of quadratic forms on (z, w). The closure of
H(Sp(n,R)) can be identified with U(2n)/O(2n). Let G be an arbitrary Lie group
with a faithful representation into Sp2n(R). Suppose the closure of H(G), denoted
by G, is a compact smooth submanifold of S. Then (H|G, G) is an analytic com-
pactification of G.

As a consequence, we obtain the following result.

Theorem 4.2. H is an analytic compactification from O(p, q) to O(p + q). Its
restriction on SO(p, q) is an analytic compactification of SO(p, q) to SO(p + q).
Let dg be the Haar measure of SO(p, q). It follows that

dSO(p+q)H(g)
dg

6= 0

for all g ∈ SO(p, q).

As indicated in [7], this compactification has a geometric interpretation. That
is, H can be recognized as some natural embedding of O(p, q) into the Lagrangian
Grassmannian of R2(p+q) equipped with a symmetric form of signature (p+q, p+q).
Theorem 4.2 enables us to study the integration theory over SO(p, q) through the
integration theory over SO(p + q). One should keep in mind that for any s ∈
H(SO(p, q)), we always have

dSO(p,q)H−1(s)
dSO(p+q)s

6= 0.(9)
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5. Proof of the Main Theorem

LetM(p, q) be the set of K-finite matrix coefficients of ω restricted to MO(p, q).
For every function f in M(p, q), f

Λ(p,q) descends into a function on O(p, q). Let us
restate the main theorem.

Theorem 5.1. Suppose p + q ≤ 2n + 1. Let f be a function of MSO(p, q) such
that

f(εg̃) = −(g̃), fΛ(p, q) ∈ L1(SO(p, q)).

If for every h ∈M(p, q), ∫
MSO(p,q)

f(g̃)h(g̃)dg̃ = 0,

then f ≡ 0 almost everywhere.

Observe that∫
MSO(p,q)

f(g̃)h(g̃)dg̃ = 2
∫
SO(p,q)

(fΛ(p, q))(g)
h

Λ(p, q)
(g)dg.

5.1. Proof of Theorem 1.3. Let φ, ψ be two polynomial functions on Cn(p+q).
Let g̃ be an element of MO(p, q). We can write g̃ = (ξ, g) with detCCL(g) = ξ−2

and g ∈ Op,q. Then

Λ(p, q)(g̃) = ξ.

Thus
(ω(g̃)φ, ψ)

= Λ(p, q)(g̃)
∫
z,w∈Cn(p+q)

exp
(

1
2
Tr(zt1, iw2

t)H(g)
(

w1

−iz2

))
× φ(w)ψ(z)dµ(w)dµ(z)

= Λ(p, q)(g̃)
∫
z,w∈Cn(p+q)

exp
(

1
2
Tr(zt1, w2

t)H(g)
(
w1

z2

))
× φ(w1, iw2)ψ(z1, iz2)dµ(w)dµ(z)

(10)

The last equation is obtained by the coordinate change

w1 → w1, w2 → iw2, z1 → z1, z2 → iz2.

This coordinate change preserves the Gaussian measure.
Now take M0 to be the set of functions of the form

g ∈ O(p+ q)→
∫
z,w∈Cn(p+q)

exp
(

1
2
Tr(zt1, w2

t)g
(
w1

z2

))
× φ(w1, w2)ψ(z1, z2)dµ(w)dµ(z).

Apparently, M(p,q)
Λ(p,q) is just the pull back of M0 under H : O(p, q)→ O(p+ q).

We must use some caution here concerning the group O(0, p+ q). The compact-
ification of O(0, p+ q) is itself. However, from Definition 4.1, our compactification
is not the identity map. In fact,

H(g) = gt.
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Nevertheless, we observe that

∫
z,w∈Cn(p+q)

exp
(

1
2
Tr(zt1, w2

t)g
(
w1

z2

))
φ(w1, w2)ψ(z1, z2)dµ(w)dµ(z)

=
∫
z,w∈Cn(p+q)

exp
(

1
2
Tr(wt1, z2

t)gt
(

z1

w2

))
φ(w1, w2)ψ(z1, z2)dµ(w)dµ(z)

=
∫
z,w∈Cn(p+q)

exp
(

1
2
Tr(zt1, w2

t)gt
(
w1

z2

))
φ(z1, z2)ψ(w1, w2)dµ(w)dµ(z).

(11)

The spaceM0 remains unchanged under the convolution H : O(p+ q)→ O(p+ q).
We obtain

M0 =
M(0, p+ q)
Λ(0, p+ q)

.

Thus, Theorem 1.3 is proved.

5.2. Proof of the Main Theorem for MSO(p+ q). Now MSO(0, p+ q) is the
direct product of Z/2Z and SO(0, p+ q). In fact,

Λ(0, p+ q) : MSO(0, p+ q)→ ±1 ∼= Z/2Z;

ker(Λ(0, p+ q)) = SO(p, q).

Thus, Λ(0, p+q)⊗ω|MSO(0,p+q) descends into a unitary representation of SO(p+q).
According to Corollaries II.6.7 and II.6.12 of [15], every irreducible unitary rep-

resentation of SO(p + q) occurs as direct summands in ω. The Stone-Weierstrass-
Peter-Weyl theorem implies that Λ(0, p + q)M(0, p + q) = M0 as functions on
SO(p+ q) are dense in C(SO(p+ q)) under the sup norm topology (see remarks of
Theorem 1.12 in [13]).

Lemma 5.1. The linear span of M0 is dense in C(SO(p+q)) under the sup norm
topology.

The Density Theorem and the Main Theorem forMSO(p+q) follow immediately.

5.3. Proof of the Main Theorem for MSO(p, q). Suppose that fΛ(p, q) ∈
L1(SO(p, q)). Define an L1-function on SO(p+ q),

f0(g) = (fΛ(p, q))(H−1(g))
dSO(p,q)H−1(g)
dSO(p+q)g

(g ∈ H(SO(p, q))).

Since H(SO(p, q)) is open and dense in SO(p + q), f0 is well-defined as an L1-
function. Recall M0 is the push forward of M(p,q)

Λ(p,q) . Equation (1) implies that for
any h(g) ∈ M0, ∫

SO(p+q)

f0(g)h(g)dSO(p+q)g = 0.

Since M0 is dense in C(SO(p + q)) under the sup norm, f0(g) ≡ 0 almost every-
where. Since

dSO(p,q)H−1(g)
dSO(p+q)g

6= 0 (∀ g ∈ H(SO(p, q))),
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fΛ(p, q) ≡ 0 almost everywhere. But Λ(p, q)(g) cannot be zero because

Λ(p, q)(g)2 = (detCCL(g))
−1.

Hence f ≡ 0 almost everywhere. The Main Theorem follows immediately from the
continuity of f .

5.4. Density theorem on L2
odd(MSO(p, q)). We say a function f on MSO(p, q)

is an odd function if f(εg̃) = −f(g̃). We denote the space of odd L2-functions by
L2
odd(MSO(p, q)).

Theorem 5.2. For p+ q ≤ 2n+1, the linear span of M(p, q) is dense in the space
of odd functions in L2(MSO(p, q)).

Proof. Theorem 3.2 in [17], implies that if p+ q ≤ 2n+ 1, the matrix coefficient

(ω(g̃)φ, ψ) (φ, ψ ∈ P)

is in L2(MSO(p, q)). In particular, the function Λ(p, q) is in L2(MSO(p, q)). Sup-
pose the linear span ofM(p, q) is not dense in L2

odd(MSO(p, q)). Then there must
be an odd nonzero L2-function, say f(g̃), such that (f,M(p, q)) = 0. Notice that
fΛ(p, q) ∈ L1(SO(p, q)). From Theorem 5.1, f ≡ 0 almost everywhere.

5.5. Nonvanishing Theorems. Theta correspondence is a one-to-one correspon-
dence between a certain set of projective representations of O(p, q) and certain set
of projective representations of Sp2n(R). Studies in the past decade or two find
that theta correspondence behaves reasonably well in various perspectives. One
unsolved problem is the unitarity conjecture ([18], Conjecture C). In [9], we had
some limited success towards this conjecture. However, our approach requires (, )π
to be nonvanishing. In this section, we will show that (, )π is indeed nonvanishing
up to the central character det.

Let G be the symplectic group Sp2n(p+q)(R). Let (O(p, q), Sp(n,R)) be an irre-
ducible dual pair in G. Let (ω,P) be the oscillator representation of MG. Let π be
an irreducible admissible representation of MO(p, q). Now we may formally define
a pairing

(P ⊗ π,P ⊗ π)→ C
as follows: for φ ∈ P , ψ ∈ P , v ∈ π, u ∈ π.

(φ⊗ v, ψ ⊗ u)π =
∫
MO(p,q)

(φ, ω(g)ψ)(π(g)u, v)dg.

In [8], we proved

Theorem 5.3. Suppose π is in the semistable range of θ(O(p, q) → Sp(n,R)).
Then (, )π is well-defined. If (, )π is nonvanishing, then π ∈ R(MO(p, q), ω).

The semistable condition is a condition on the growth of the matrix coefficients
of π at infinity. It may be read off from the Langlands parameter of π. For
the sake of this paper, the reader may take the absolute convergence of (, )π as
the semistable condition, even though the semistable condition is slightly stronger
than the convergence of (, )π. Now we may speak of an irreducible representation
of MSO(p, q) being in the semistable range if it is a subrepresentation of π in the
semistable range of θ(MO(p, q)→MSp2n(R)). Again, it is just a growth condition.
For a representation π of MSO(p, q) in the semistable range, we can define (, )π in
the same fashion.
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Notice that the semistable condition implies that

Λ(p, q)(π(g)u, v) ∈ L1(SO(p, q)).

From the main theorem, we obtain

Corollary 5.1. Suppose 2n + 1 ≥ p + q. Let (π, Vπ) be an irreducible admissible
representation of MSO(p, q) in the semistable range such that π(ε) = −1. Then
(, )π is nonvanishing.

Now, regarding MO(p, q), we define a group homomorphism

det : MO(p, q)→ Z/2

such that ker(det) = MSO(p, q).

Corollary 5.2. Suppose 2n+ 1 ≥ p+ q. Suppose π is in the semistable range of

θ(MO(p, q)→MSp(n,R))

and π(ε) = −1. If π ∼= π ⊗ det, then (, )π does not vanish. If π is not equivalent to
π ⊗ det, then at least one of (, )π, (, )π⊗det does not vanish.

Proof. Let h̃ be an element in MO(p, q) such that det h̃ = −1. Then
(φ⊗ v, ψ ⊗ u)π

=
∫
MO(p,q)

(φ, ω(g̃)ψ)(π(g̃)u, v)dg̃

=
∫
MSO(p,q)

(φ, ω(g̃)ψ)(π(g̃)u, v) + (φ, ω(g̃)ω(h̃)ψ)(π(g̃)π(h̃)u, v)dg̃

(φ ⊗ v, ψ ⊗ u)π⊗det

=
∫
MO(p,q)

det(g̃)(φ, ω(g̃)ψ)(π(g̃)u, v)dg̃

=
∫
MSO(p,q)

(φ, ω(g̃)ψ)(π(g̃)u, v)− (φ, ω(g̃)ω(h̃)ψ)(π(g̃)π(h̃)u, v)dg̃.

(12)

Now Corollary 5.1 will guarantee at least one of the summand is nonvanishing.
Therefore, at least one of (, )π, (, )π⊗det is nonvanishing. If π is equivalent to
π ⊗ det, then (, )π is nonvanishing. Because of Theorem 5.3, π occurs in the theta
correspondence. If π and π ⊗ det are not equivalent, then at least one of them
occurs in the theta correspondence.
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