BOUNDS FOR FOURIER TRANSFORMS OF REGULAR ORBITAL INTEGRALS ON p-ADIC LIE ALGEBRAS

REBECCA A. HERB

Abstract

Let G be a connected reductive p-adic group and let \mathfrak{g} be its Lie algebra. Let \mathcal{O} be a G-orbit in \mathfrak{g}. Then the orbital integral $\mu_{\mathcal{O}}$ corresponding to \mathcal{O} is an invariant distribution on \mathfrak{g}, and Harish-Chandra proved that its Fourier transform $\hat{\mu}_{\mathcal{O}}$ is a locally constant function on the set \mathfrak{g}^{\prime} of regular semisimple elements of \mathfrak{g}. Furthermore, he showed that a normalized version of the Fourier transform is locally bounded on \mathfrak{g}. Suppose that \mathcal{O} is a regular semisimple orbit. Let γ be any semisimple element of \mathfrak{g}, and let \mathfrak{m} be the centralizer of γ. We give a formula for $\hat{\mu}_{\mathcal{O}}(t H$) (in terms of Fourier transforms of orbital integrals on \mathfrak{m}), for regular semisimple elements H in a small neighborhood of γ in \mathfrak{m} and $t \in F^{\times}$sufficiently large. We use this result to prove that HarishChandra's normalized Fourier transform is globally bounded on \mathfrak{g} in the case that \mathcal{O} is a regular semisimple orbit.

1. Introduction

Let F be a p-adic field of characteristic zero. Let G be the set of F-rational points of a connected reductive group defined over F, and let \mathfrak{g} be its Lie algebra. For $X \in \mathfrak{g}$, let $\mathcal{O}=\mathcal{O}_{X}$ denote the G-orbit of X, and let $\mu_{\mathcal{O}}$ denote the orbital integral corresponding to \mathcal{O}, so that

$$
\begin{equation*}
\mu_{\mathcal{O}}(f)=\int_{G / G_{X}} f(x X) d x^{*}, f \in C_{c}^{\infty}(\mathfrak{g}) . \tag{1.1}
\end{equation*}
$$

Here G_{X} denotes the centralizer of X in G and $d x^{*}$ is an invariant measure on G / G_{X}. Let B denote a symmetric, nondegenerate, G-invariant bilinear form on \mathfrak{g}, and fix a nontrivial additive character ψ of F. Then we have the Fourier transform

$$
\begin{equation*}
\hat{f}(X)=\int_{\mathfrak{g}} f(Y) \psi(B(X, Y)) d Y, X \in \mathfrak{g}, f \in C_{c}^{\infty}(\mathfrak{g}) \tag{1.2}
\end{equation*}
$$

The distribution $\hat{\mu}_{\mathcal{O}}(f)=\mu_{\mathcal{O}}(\hat{f}), f \in C_{c}^{\infty}(\mathfrak{g})$, is the Fourier transform of the orbital integral. Harish-Chandra [1] proved that it is a locally constant function on \mathfrak{g}^{\prime}, the set of regular semisimple elements of \mathfrak{g}.

For $X \in \mathfrak{g}$, let $\eta_{\mathfrak{g}}(X)$ denote the coefficient of t^{l} in the polynomial $\operatorname{det}(t-\operatorname{ad} X)$, where t is an indeterminate and l is the rank of \mathfrak{g}. Then $\mathfrak{g}^{\prime}=\left\{X \in \mathfrak{g}: \eta_{\mathfrak{g}}(X) \neq 0\right\}$. For any G-orbit \mathcal{O} in \mathfrak{g}, we normalize $\hat{\mu}_{\mathcal{O}}$ by defining

$$
\begin{equation*}
\Phi(\mathfrak{g}, \mathcal{O}, X)=\left|\eta_{\mathfrak{g}}(X)\right|^{1 / 2} \hat{\mu}_{\mathcal{O}}(X), X \in \mathfrak{g}^{\prime} \tag{1.3}
\end{equation*}
$$

[^0]Harish-Chandra [1 proved that the normalized Fourier transform $\Phi(\mathfrak{g}, \mathcal{O})$ is locally bounded on \mathfrak{g}. In this paper we will prove the following theorem.

Theorem 1.1. Let \mathcal{O} be a regular semisimple G-orbit in \mathfrak{g}. Then

$$
\sup _{X \in \mathfrak{g}^{\prime}}|\Phi(\mathfrak{g}, \mathcal{O}, X)|<\infty
$$

It is not true that $\Phi(\mathfrak{g}, \mathcal{O})$ is uniformly bounded on \mathfrak{g} for arbitrary orbits \mathcal{O}. Let \mathcal{O} be any orbit, and define

$$
\begin{equation*}
d_{0}(\mathcal{O})=\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathcal{O}-\operatorname{rank} \mathfrak{g}=\operatorname{dim} \mathfrak{g}_{X}-\operatorname{rank} \mathfrak{g} \tag{1.4}
\end{equation*}
$$

where \mathfrak{g}_{X} denotes the centralizer in \mathfrak{g} of a representative $X \in \mathcal{O}$. Then $d_{0}(\mathcal{O}) \geq 0$ and $d_{0}(\mathcal{O})=0$ when \mathcal{O} is regular semisimple.

When \mathcal{O} is a nilpotent orbit, it follows from the homogeneity property of nilpotent orbital integrals (section 3.1 of [1) that

$$
\begin{equation*}
\Phi\left(\mathfrak{g}, \mathcal{O}, t^{2} X\right)=|t|^{d_{0}(\mathcal{O})} \Phi(\mathfrak{g}, \mathcal{O}, X), \quad X \in \mathfrak{g}^{\prime}, t \in F^{\times} \tag{1.5}
\end{equation*}
$$

The results of [2] show that for general orbits $\mathcal{O}, \Phi\left(\mathfrak{g}, \mathcal{O}, t^{2} X\right)$ also grows at infinity like $|t|^{d_{0}(\mathcal{O})}$. Thus $\Phi(\mathfrak{g}, \mathcal{O})$ is not uniformly bounded on \mathfrak{g}^{\prime} when $d_{0}(\mathcal{O})>0$.

The normalized Fourier transforms of regular semisimple orbital integrals are given by the following formula. Let \mathfrak{b} be a Cartan subalgebra of \mathfrak{g}, and let A denote the split component of the Cartan subgroup B of G corresponding to \mathfrak{b}. Let K be a compact open subgroup of G. Then for all $X \in \mathfrak{b}^{\prime}, Y \in \mathfrak{g}^{\prime}$, we define

$$
\begin{equation*}
\Phi\left(\mathfrak{g}, d x^{*}, X, Y\right)=\left|\eta_{\mathfrak{g}}(X)\right|^{1 / 2}\left|\eta_{\mathfrak{g}}(Y)\right|^{1 / 2} \int_{G / A} \int_{K} \psi(B(k Y, x X)) d k d x^{*} \tag{1.6}
\end{equation*}
$$

where $d x^{*}$ is an invariant measure on G / A and $d k$ is normalized Haar measure on K. It is independent of the choice K of compact open subgroup. When the choice of invariant measure $d x^{*}$ is not important, we will drop it from the notation and write $\Phi(\mathfrak{g}, X, Y)$. Harish-Chandra [1] proved that this integral is convergent, and that if \mathcal{O}_{X} denotes the G-orbit of $X \in \mathfrak{b}^{\prime}$, then we can normalize the Haar measure on G / G_{X} in (1.1) so that for all $Y \in \mathfrak{g}^{\prime}$,

$$
\begin{equation*}
\Phi\left(\mathfrak{g}, d x^{*}, X, Y\right)=\left|\eta_{\mathfrak{g}}(X)\right|^{1 / 2}\left|\eta_{\mathfrak{g}}(Y)\right|^{1 / 2} \hat{\mu}_{\mathcal{O}_{X}}(Y)=\left|\eta_{\mathfrak{g}}(X)\right|^{1 / 2} \Phi\left(\mathfrak{g}, \mathcal{O}_{X}, Y\right) \tag{1.7}
\end{equation*}
$$

Theorem 1.1 is a consequence of the following expansion at infinity. Fix a semisimple element $\gamma \in \mathfrak{g}$ and write $\mathfrak{m}=C_{\mathfrak{g}}(\gamma), M=C_{G}(\gamma)$. Define $N_{G}(\mathfrak{b}, \mathfrak{m})=$ $\left\{y \in G: y^{-1} \mathfrak{b} \subset \mathfrak{m}\right\}$. Then as in [2], $y \in N_{G}(\mathfrak{b}, \mathfrak{m})$ if and only if $y M \subset N_{G}(\mathfrak{b}, \mathfrak{m})$, and $W=W_{G}(\mathfrak{b}, \mathfrak{m})=N_{G}(\mathfrak{b}, \mathfrak{m}) / M$ is a finite set. Let $w \in W$, and let $y_{w} \in$ $N_{G}(\mathfrak{b}, \mathfrak{m})$ be a representative for w. Then $y_{w}^{-1} \mathfrak{b}$ is a Cartan subalgebra of the reductive Lie algebra \mathfrak{m}, so that given a normalization of invariant measure $d m_{w}^{*}$ on $M / y_{w}^{-1} A y_{w}$ we can define $\Phi\left(\mathfrak{m}, d m_{w}^{*}, y_{w}^{-1} X, Y\right), X \in \mathfrak{b}^{\prime}, Y \in \mathfrak{m}^{\prime}$, as in (1.6). For each $w \in W$, there is a locally constant function $c_{w}\left(d x^{*} / d m_{w}^{*}, \gamma, \cdot\right): \mathfrak{b}^{\prime} \rightarrow \mathbf{C}$ defined in (4.5). It has the property that $\left|c_{w}\left(d x^{*} / d m_{w}^{*}, \gamma, X\right)\right|$ is a nonzero constant independent of $X \in \mathfrak{b}^{\prime}$.

Theorem 1.2. Let ω be a compact subset of \mathfrak{b}^{\prime}. Then there exist a neighborhood $U(\gamma)$ of γ in \mathfrak{m} and $T(\gamma)>0$ so that for all $X \in \omega, H \in U(\gamma) \cap \mathfrak{g}^{\prime}$, and $t \in F,|t| \geq$ $T(\gamma)$,

$$
\Phi\left(\mathfrak{g}, d x^{*}, X, t H\right)=\sum_{w \in W} c_{w}\left(d x^{*} / d m_{w}^{*}, \gamma, t X\right) \Phi\left(\mathfrak{m}, d m_{w}^{*}, y_{w}^{-1} X, t H\right)
$$

In the case that $\gamma \in \mathfrak{g}^{\prime}$, Theorem 1.2 follows from Theorem 2.2 of 2] or from results of Waldspurger in [3]. The proof in the general case uses techniques from [2].

The following stronger version of Theorem[1.1 is an easy consequence of Theorem 1.2 and induction on the dimension of \mathfrak{g}.

Theorem 1.3. Let \mathfrak{b} be a Cartan subalgebra of \mathfrak{g}, and let ω be a compact subset of \mathfrak{b}^{\prime}. Then

$$
\sup _{X \in \omega, Y \in \mathfrak{g}^{\prime}}|\Phi(\mathfrak{g}, X, Y)|<\infty
$$

This paper is organized as follows. In $\S 2$ we show how Theorem 1.2 can be used to prove Theorem 1.3. In $\S 3$ we prove technical results which are needed for the proof of Theorem 1.2. Finally, Theorem 1.2 is proven in $\S 4$. This is done first in the case that \mathfrak{g} is semisimple and \mathfrak{b} is elliptic. The general case follows from this case using parabolic induction.

2. Proof of Theorem 1.3

The proof of Theorem 1.3 requires only the following simpler version of Theorem 1.2 which is proved in the first part of $\S 4$ as the first step in the proof of Theorem 1.2. Assume that \mathfrak{g} is semisimple and \mathfrak{b} is an elliptic Cartan subalgebra of \mathfrak{g}. Then the split component of B is trivial. Fix Haar measures $d x$ and $d m$ on G and M respectively, and define $c(\mathfrak{g}, \mathfrak{m}, d x / d m, \gamma, X), X \in \mathfrak{b}^{\prime}$, as in (3.9).

Proposition 2.1. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} with $\gamma \in \mathfrak{h}$, and let ω be a compact subset of \mathfrak{b}^{\prime}. Then there exist a neighborhood $\omega(\gamma)$ of γ in \mathfrak{h} and $T(\gamma)>0$ so that for all $X \in \omega, H \in \omega(\gamma) \cap \mathfrak{h}^{\prime}$, and $t \in F,|t| \geq T(\gamma)$,

$$
\Phi(\mathfrak{g}, d x, X, t H)=\sum_{w \in W_{G}(\mathfrak{b}, \mathfrak{m})} c\left(\mathfrak{g}, \mathfrak{m}, d x / d m, \gamma, t y_{w}^{-1} X\right) \Phi\left(\mathfrak{m}, d m, y_{w}^{-1} X, t H\right)
$$

The proof of Theorem 1.3 from Proposition 2.1 is by induction on the dimension of \mathfrak{g}. Since the normalizations of Haar measures are not important for Theorem 1.3 we drop them from the notation. If $\operatorname{dim} \mathfrak{g}<3$, then \mathfrak{g} is abelian and $|\Phi(\mathfrak{g}, X, H)|=$ $|\psi(B(X, H))|=1$ for all $H, X \in \mathfrak{g}$. Assume that $\operatorname{dim} \mathfrak{g} \geq 3$ and that the theorem is true for all reductive Lie algebras of smaller dimension.

Suppose that \mathfrak{g} is not semisimple. Then we can write $\mathfrak{g}=\mathfrak{z}+\mathfrak{g}_{1}$ where \mathfrak{z} is the center of \mathfrak{g}, \mathfrak{g}_{1} is the derived subalgebra, and $\operatorname{dim} \mathfrak{g}_{1}<\operatorname{dim} \mathfrak{g}$. Then $\mathfrak{b}=\mathfrak{z}+\mathfrak{b}_{1}$ where \mathfrak{b}_{1} is a Cartan subalgebra of \mathfrak{g}_{1}. Further, $\mathfrak{g}^{\prime}=\mathfrak{z}+\mathfrak{g}_{1}^{\prime}$ and $\mathfrak{b}^{\prime}=\mathfrak{z}+\mathfrak{b}_{1}^{\prime}$. Let $G_{1}=G / Z$. Then $A_{1}=A / Z$ is the split component of $B_{1}=B / Z$, and we can identify G / A and G_{1} / A_{1}. Now if we use the same invariant measure to define $\Phi(\mathfrak{g}, X, Y), X \in \mathfrak{b}^{\prime}, Y \in \mathfrak{g}^{\prime}$, and $\Phi\left(\mathfrak{g}_{1}, X_{1}, Y_{1}\right), X_{1} \in \mathfrak{b}_{1}^{\prime}, Y_{1} \in \mathfrak{g}_{1}^{\prime}$, we have

$$
\Phi\left(\mathfrak{g}, Z_{1}+X_{1}, Z_{2}+Y_{1}\right)=\psi\left(B\left(Z_{1}, Z_{2}\right)\right) \Phi\left(\mathfrak{g}_{1}, X_{1}, Y_{1}\right), Z_{1}, Z_{2} \in \mathfrak{z}, X_{1} \in \mathfrak{b}_{1}^{\prime}, Y_{1} \in \mathfrak{g}^{\prime}
$$

Let ω be a compact subset of \mathfrak{b}^{\prime}. Then there is a compact subset ω_{1} of $\mathfrak{b}_{1}^{\prime}$ so that $\omega \subset \mathfrak{z}+\omega_{1}$. By the induction hypothesis there is $C>0$ so that $\left|\Phi\left(\mathfrak{g}_{1}, X_{1}, Y_{1}\right)\right| \leq C$ for all $X_{1} \in \omega_{1}, Y_{1} \in \mathfrak{g}_{1}^{\prime}$. Thus for all $Z_{1}, Z_{2} \in \mathfrak{z}, X_{1} \in \omega_{1}, Y_{1} \in \mathfrak{g}_{1}^{\prime}$,

$$
\left|\Phi\left(\mathfrak{g}, Z_{1}+X_{1}, Z_{2}+Y_{1}\right)\right|=\left|\psi\left(B\left(Z_{1}, Z_{2}\right)\right) \Phi\left(\mathfrak{g}_{1}, X_{1}, Y_{1}\right)\right| \leq C
$$

Thus we may as well assume that \mathfrak{g} is semisimple.
Since $\Phi(\mathfrak{g}, X)$ is a class function on \mathfrak{g}, and \mathfrak{g} has a finite number of conjugacy classes of Cartan subalgebras, it suffices to show that for each Cartan subalgebra \mathfrak{h}
of $\mathfrak{g},|\Phi(\mathfrak{g}, X, H)|$ is uniformly bounded for $X \in \omega, H \in \mathfrak{h}^{\prime}$. Fix an arbitrary Cartan subalgebra \mathfrak{h} of \mathfrak{g}.

Let A be the split component of B and let $G_{\mathfrak{b}}$ denote the centralizer in G of A. Define $W_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right)=N_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right) / G_{\mathfrak{b}}$ where $N_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right)=\left\{y \in G: y^{-1} \mathfrak{h} \subset \mathfrak{g}_{\mathfrak{b}}\right\}$. For each $s \in W_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right)$, fix a representative $y_{s} \in N_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right)$ for s. The following lemma follows from combining Lemmas 1.7 and 1.13 of [1].
Lemma 2.2. Given a normalization $d x^{*}$ of invariant measure on G / A, there is a normalization $d x_{\mathfrak{b}}^{*}$ of invariant measure on $G_{\mathfrak{b}} / A$ (independent of \mathfrak{h}) so that for all $X \in \mathfrak{b}^{\prime}, H \in \mathfrak{h}^{\prime}$,

$$
\Phi\left(\mathfrak{g}, d x^{*}, X, H\right)=\sum_{s \in W_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right)} \Phi\left(\mathfrak{g}_{\mathfrak{b}}, d x_{\mathfrak{b}}^{*}, X, y_{s}^{-1} H\right)
$$

Now if \mathfrak{b} is not elliptic, $\operatorname{dim} \mathfrak{g}_{\mathfrak{b}}<\operatorname{dim} \mathfrak{g}$, so that for each s in the finite set $W_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right),\left|\Phi\left(\mathfrak{g}_{\mathfrak{b}}, d x_{\mathfrak{b}}^{*}, X, y_{s}^{-1} H\right)\right|$ is uniformly bounded for $X \in \omega$ and $H \in \mathfrak{h}^{\prime}$. Thus we may as well assume that \mathfrak{b} is elliptic.

Let $\|\cdot\|$ denote a norm on \mathfrak{g}, and let $\mathfrak{h}^{1}=\{H \in \mathfrak{h}:\|H\|=1\}$. For each $\gamma \in \mathfrak{h}^{1}$, let $\omega(\gamma) \subset \mathfrak{h}$ and $T(\gamma)>0$ satisfy the conditions of Proposition 2.1 Since \mathfrak{h}^{1} is compact, there are $\gamma_{1}, \ldots, \gamma_{k} \in \mathfrak{h}^{1}$ such that $\mathfrak{h}^{1} \subset \bigcup_{1 \leq i \leq k} \omega\left(\gamma_{i}\right)$. Let $T=\max \left\{T\left(\gamma_{i}\right): 1 \leq i \leq k\right\}$. Then $\mathfrak{h}_{T}=\{H \in \mathfrak{h}:\|H\| \leq T\}$ is compact so that by Theorem 7.7 of [1], there is C_{1} so that $|\Phi(\mathfrak{g}, X, H)| \leq C_{1}$ for all $X \in \omega, H \in \mathfrak{h}_{T} \cap \mathfrak{g}^{\prime}$. Further,

$$
\{H \in \mathfrak{h}:\|H\|>T\} \subset \bigcup_{1 \leq i \leq k}\left\{t H: H \in \omega\left(\gamma_{i}\right), t \in F^{\times},|t|>T\right\}
$$

Thus it suffices to bound $|\Phi(\mathfrak{g}, X, t H)|, X \in \omega, H \in \omega\left(\gamma_{i}\right) \cap \mathfrak{g}^{\prime}, t \in F^{\times},|t|>T$, for each $1 \leq i \leq k$.

Fix $1 \leq i \leq k$, and let $\mathfrak{m}_{i}=C_{\mathfrak{g}}\left(\gamma_{i}\right)$. For each $w \in W_{G}\left(\mathfrak{b}, \mathfrak{m}_{i}\right)$, let $y_{w} \in N_{G}\left(\mathfrak{b}, \mathfrak{m}_{i}\right)$ be a representative for w. Then by Proposition 2.1 for all $X \in \omega, H \in \omega\left(\gamma_{i}\right) \cap$ $\mathfrak{g}^{\prime},|t|>T \geq T\left(\gamma_{i}\right)$,

$$
\Phi(\mathfrak{g}, X, t H)=\sum_{w \in W_{G}\left(\mathfrak{b}, \mathfrak{m}_{i}\right)} c\left(\mathfrak{g}, \mathfrak{m}_{i}, \gamma_{i}, t y_{w}^{-1} X\right) \Phi\left(\mathfrak{m}_{i}, y_{w}^{-1} X, t H\right)
$$

Since \mathfrak{g} is semisimple and $\gamma_{i} \neq 0, \operatorname{dim} \mathfrak{m}_{i}<\operatorname{dim} \mathfrak{g}$. Fix $w \in W_{G}\left(\mathfrak{b}, \mathfrak{m}_{i}\right)$. Then $\omega(w)=$ $y_{w}^{-1} \omega$ is a compact subset of the regular set of the Cartan subalgebra $y_{w}^{-1} \mathfrak{b}$ of \mathfrak{m}_{i}. Thus by the induction hypothesis there is $C_{w}>0$ so that $\left|\Phi\left(\mathfrak{m}_{i}, y_{w}^{-1} X, Y\right)\right| \leq C_{w}$ for all $X \in \omega, Y \in \mathfrak{m}_{i}^{\prime}$. Further, by Lemma [3.4 $\left|c\left(\mathfrak{g}, \mathfrak{m}_{i}, \gamma_{i}, t y_{w}^{-1} X\right)\right|=C_{w}^{\prime}$ is a nonzero constant independent of $X \in \mathfrak{b}^{\prime}, t \in F$. Thus for all $X \in \omega, H \in \omega\left(\gamma_{i}\right) \cap \mathfrak{g}^{\prime},|t|>T$,

$$
|\Phi(\mathfrak{g}, X, t H)| \leq \sum_{w \in W_{G}\left(\mathfrak{b}, \mathfrak{m}_{i}\right)} C_{w}^{\prime} C_{w} .
$$

This concludes the proof of Theorem 1.3

3. Evaluation of an Integral

In this section we prove Lemma 3.3 which is a slight generalization of Lemma 4.4 of [2]. This Lemma will be needed in $\S 4$ to prove Theorem 1.2

Let \mathcal{R} denote the ring of integers of F, \mathcal{P} the maximal ideal in \mathcal{R}, and ϖ a uniformizing parameter so that $\mathcal{P}=\varpi \mathcal{R}$. Let $|\cdot|$ denote the absolute value on F such that $|\varpi|=q^{-1}$ where $q=[\mathcal{R} / \mathcal{P}]$. We assume that the character ψ of F used to define the Fourier transform in (1.2) has conductor \mathcal{R}.

There is $n \geq 1$ so that \mathfrak{g} and G are subsets of $M_{n}(F)$. We have the usual norm $\|\cdot\|$ on $\mathfrak{g} \subset M_{n}(F)$ given by

$$
\begin{equation*}
\|X\|=\max _{i, j}\left|X_{i j}\right|, \quad X=\left[X_{i j}\right] \in M_{n}(F) \tag{3.1}
\end{equation*}
$$

Let B denote the symmetric, nondegenerate, bilinear form on \mathfrak{g} given by

$$
\begin{equation*}
B(X, Y)=\operatorname{tr} X Y, X, Y \in \mathfrak{g} \subset M_{n}(F) \tag{3.2}
\end{equation*}
$$

Fix a reductive subalgebra \mathfrak{m} of \mathfrak{g} such that $\mathfrak{m}=C_{\mathfrak{g}}(\gamma)$ for some semisimple element γ of \mathfrak{g}. Since \mathfrak{m} is reductive, the restriction of B to \mathfrak{m} is nondegenerate, and $\mathfrak{g}=\mathfrak{m} \oplus \mathfrak{m}^{\perp}$ where $\mathfrak{m}^{\perp}=\{X \in \mathfrak{g}: B(X, Y)=0 \forall Y \in \mathfrak{m}\}$. For $X \in \mathfrak{g}$, write $X=X_{0}+X_{1}$ where $X_{0} \in \mathfrak{m}, X_{1} \in \mathfrak{m}^{\perp}$. Then as in [2] we define new norms on \mathfrak{g} as follows. For $X=X_{0}+X_{1} \in \mathfrak{g}$, define

$$
\begin{equation*}
\|X\|^{\prime}=\max \left\{\left\|X_{0}\right\|,\left\|X_{1}\right\|\right\}, \quad\|X\|^{\prime \prime}=\sup _{Z \in \mathfrak{g},\|Z\|^{\prime} \leq 1}|B(Z, X)| \tag{3.3}
\end{equation*}
$$

As in [2] $\|X\|^{\prime \prime}=\max \left\{\left\|X_{0}\right\|^{\prime \prime},\left\|X_{1}\right\|^{\prime \prime}\right\}$ and there is a constant $0<C_{0} \leq 1$ so that

$$
\begin{equation*}
C_{0}\|X\|^{\prime} \leq\|X\|^{\prime \prime} \leq\|X\| \leq\|X\|^{\prime}, \quad X \in \mathfrak{g} \tag{3.4}
\end{equation*}
$$

For any integer $c \geq 0$, define

$$
\mathfrak{k}_{c}=\left\{X \in \mathfrak{g}:\|X\|^{\prime} \leq q^{-c}\right\}
$$

It is a lattice in \mathfrak{g}. Define $c_{0}>0$ as in Lemma 4.1 of 2]. Then in particular, for any $c \geq c_{0}$, $\exp : \mathfrak{k}_{c} \rightarrow G$ is well defined and we let $K_{c}=\exp \left(\mathfrak{k}_{c}\right)$. It is a compact open subgroup of G contained in $G L(n, \mathcal{R})$. For $c \geq c_{0}$, write

$$
\phi_{c}(X, Y)=\int_{K_{c}} \psi(B(k X, Y)) d k, \quad X, Y \in \mathfrak{g}
$$

where $d k$ is normalized Haar measure on K_{c}.
Let $X \in \mathfrak{m}$. Then the restriction of ad X to \mathfrak{m}^{\perp} is a linear transformation $T_{X}: \mathfrak{m}^{\perp} \rightarrow \mathfrak{m}^{\perp}$. Define $\mathfrak{m}^{\text {reg }}$ to be the set of all $X \in \mathfrak{m}$ such that X is semisimple and $C_{\mathfrak{g}}(X) \subset \mathfrak{m}$. Then for all $X \in \mathfrak{m}^{\text {reg }}, T_{X}$ is invertible. For any integer $s>0$, we let

$$
\mathfrak{m}_{s}^{\mathrm{reg}}=\left\{X \in \mathfrak{m}^{\mathrm{reg}}:\|X\| \leq|2|^{1 / 2},\left\|T_{X}^{-1}\right\| \leq q^{s}\right\}
$$

where $\left\|T_{X}^{-1}\right\|$ is the operator norm of T_{X}^{-1}. Then for all $X \in \mathfrak{m}_{s}^{\text {reg }}, Z_{1} \in \mathfrak{m}^{\perp}$,

$$
\begin{equation*}
q^{-s}\left\|Z_{1}\right\| \leq\left\|\operatorname{ad} X Z_{1}\right\| \leq|2|^{1 / 2}\left\|Z_{1}\right\| \tag{3.5}
\end{equation*}
$$

Define C_{0} as in (3.4)
Lemma 3.1. Let $H, Y \in \mathfrak{m}_{s}^{\mathrm{reg}}$, and let $Z_{0} \in \mathfrak{m}, Z_{1} \in \mathfrak{m}^{\perp}$. Then

$$
\left\|Z_{1}\right\| \leq q^{2 s} C_{0}^{-1}\left\|\operatorname{ad} H \operatorname{ad} Y Z_{1}\right\|^{\prime \prime}
$$

and if $Z_{0}+Z_{1} \in \mathfrak{k}_{c}$ where c is large enough such that $q^{-c}<q^{-2 s} C_{0}$, then

$$
\left\|\left[H, \exp \left(-Z_{0}-Z_{1}\right) Y\right]\right\|^{\prime \prime}=\max \left\{\left\|\operatorname{ad} H \operatorname{ad} Y Z_{1}\right\|^{\prime \prime},\left\|\left[H, \exp \left(-Z_{0}\right) Y\right]\right\|^{\prime \prime}\right\}
$$

Proof. Let $Z_{0} \in \mathfrak{m}, Z_{1} \in \mathfrak{m}^{\perp}$. Then, since $H, Y \in \mathfrak{m}_{s}^{\text {reg }}$, using (3.5)

$$
\left\|\operatorname{ad} H a d Y Z_{1}\right\| \geq q^{-2 s}\left\|Z_{1}\right\|
$$

Thus by (3.4)

$$
\left\|Z_{1}\right\| \leq q^{2 s}\left\|\operatorname{ad} H \operatorname{ad} Y Z_{1}\right\| \leq q^{2 s} C_{0}^{-1}\left\|\operatorname{ad} H \operatorname{ad} Y Z_{1}\right\|^{\prime \prime}
$$

Now suppose that $Z_{0}+Z_{1} \in \mathfrak{k}_{c}$. Then $\left\|Z_{0}+Z_{1}\right\|^{\prime}=\max \left\{\left\|Z_{0}\right\|,\left\|Z_{1}\right\|\right\} \leq q^{-c}$, so that $\left\|Z_{i}\right\| \leq q^{-c}, i=0,1$. Now

$$
\left[H, \exp \left(-Z_{0}-Z_{1}\right) Y\right]=\sum_{k \geq 0} \frac{1}{k!}\left[H,\left(-\operatorname{ad} Z_{0}-\operatorname{ad} Z_{1}\right)^{k} Y\right]=W_{0}+W_{1}+V
$$

Here $W_{0}=\left[H, \exp \left(-Z_{0}\right) Y\right] \in \mathfrak{m}, W_{1}=\left[H,\left[-Z_{1}, Y\right]\right]=\operatorname{ad} H \operatorname{ad} Y Z_{1} \in \mathfrak{m}^{\perp}$, and

$$
V=\sum_{k \geq 2} \sum_{\epsilon} \frac{1}{k!}(-1)^{k}\left[H, \operatorname{ad} Z_{\epsilon_{1}} \operatorname{ad} Z_{\epsilon_{2}} \ldots \operatorname{ad} Z_{\epsilon_{k}} Y\right]
$$

where for each $k \geq 2$, the sum is over multi-indices $\epsilon=\left\{\epsilon_{i}\right\}_{i=1}^{k}, \epsilon_{i} \in\{0,1\}, 1 \leq i \leq$ k, for which at least one $\epsilon_{i}=1$.

Using Lemma 4.1 of [2], for each $k \geq 2$ and multi-index ϵ as above,

$$
\left\|\frac{1}{k!}\left[H, \operatorname{ad} Z_{\epsilon_{1}} \operatorname{ad} Z_{\epsilon_{2}} \ldots \operatorname{ad} Z_{\epsilon_{k}} Y\right]\right\| \leq\left|\frac{1}{k!}\right|\|H\|\|Y\| q^{-c(k-1)}\left\|Z_{1}\right\| \leq q^{-c}\left\|Z_{1}\right\|
$$

But by the first part of the lemma,
$q^{-c}\left\|Z_{1}\right\| \leq q^{-c} q^{2 s} C_{0}^{-1}\left\|\operatorname{ad} H \operatorname{ad} Y Z_{1}\right\|^{\prime \prime}<\left\|\operatorname{ad} H \operatorname{ad} Y Z_{1}\right\|^{\prime \prime}=\left\|W_{1}\right\|^{\prime \prime} \leq\left\|W_{0}+W_{1}\right\|^{\prime \prime}$ when $q^{-c}<q^{-2 s} C_{0}$. Thus for such c we have $\|V\|^{\prime \prime} \leq\|V\|<\left\|W_{0}+W_{1}\right\|^{\prime \prime}$.

Thus

$$
\begin{aligned}
& \left\|\left[H, \exp \left(-Z_{0}-Z_{1}\right) Y\right]\right\|^{\prime \prime}=\left\|W_{0}+W_{1}+V\right\|^{\prime \prime} \\
& \quad=\left\|W_{0}+W_{1}\right\|^{\prime \prime}=\max \left\{\left\|W_{0}\right\|^{\prime \prime},\left\|W_{1}\right\|^{\prime \prime}\right\}
\end{aligned}
$$

For $c \geq c_{0}$, let

$$
\begin{equation*}
\mathfrak{k}_{c}^{M}=\left\{X \in \mathfrak{m}:\|X\| \leq q^{-c}\right\}, \quad K_{c}^{M}=\exp \left(\mathfrak{k}_{c}^{M}\right) \tag{3.6}
\end{equation*}
$$

Lemma 3.2. There is $c^{\prime} \geq c_{0}$ so that for all $c \geq c^{\prime}, K_{c} \cap M=K_{c}^{M}$.
Proof. Let γ be a semisimple element of \mathfrak{g} such that $\mathfrak{m}=C_{\mathfrak{g}}(\gamma)$. We may as well assume that $\|\gamma\| \leq|2|$. Then since $\gamma \in \mathfrak{m}^{\text {reg }}$, there is $s>0$ so that for all $Z_{1} \in \mathfrak{m}^{\perp}$,

$$
q^{-s}\left\|Z_{1}\right\| \leq\left\|\left[Z_{1}, \gamma\right]\right\| \leq|2|\left\|Z_{1}\right\|
$$

Let $c \geq c_{0}$ such that $q^{-c}<q^{-s}$. Then clearly $K_{c}^{M} \subset K_{c} \cap M$. Let $k \in$ $K_{c} \cap M$. Then we can write $k=\exp \left(Z_{0}+Z_{1}\right)$ where $Z_{0} \in \mathfrak{m}, Z_{1} \in \mathfrak{m}^{\perp}$ with $\left\|Z_{0}+Z_{1}\right\|^{\prime} \leq q^{-c}$. Thus $\left\|Z_{0}\right\| \leq q^{-c}$ and $\left\|Z_{1}\right\| \leq q^{-c}$. Now since $k \in M, k \gamma=\gamma$. But $k \gamma=\exp \left(Z_{0}+Z_{1}\right) \gamma=\gamma+\left[Z_{1}, \gamma\right]+W$ where

$$
W=\sum_{k \geq 2} \frac{1}{k!} \operatorname{ad}\left(Z_{0}+Z_{1}\right)^{k-1}\left[Z_{1}, \gamma\right]
$$

Thus $\left[Z_{1}, \gamma\right]=-W$.
But for each $k \geq 2$, using Lemma 4.1 of [2]

$$
\left\|\frac{1}{k!} \operatorname{ad}\left(Z_{0}+Z_{1}\right)^{k-1}\left[Z_{1}, \gamma\right]\right\| \leq q^{-c}\left\|Z_{1}\right\|
$$

Thus $\|W\| \leq q^{-c}\left\|Z_{1}\right\|<q^{-s}\left\|Z_{1}\right\|$. But $\left\|\left[Z_{1}, \gamma\right]\right\| \geq q^{-s}\left\|Z_{1}\right\|$. Thus $\left[Z_{1}, \gamma\right]=-W$ implies that $Z_{1}=0$. Thus $k=\exp Z_{0} \in K_{c}^{M}$.

For $H, Y \in \mathfrak{m}_{s}^{\text {reg }}$, define

$$
\mathfrak{m}^{\perp}(H, Y)=\left\{Z_{1} \in \mathfrak{m}^{\perp}:\left\|\operatorname{ad} H \operatorname{ad} Y Z_{1}\right\|^{\prime \prime} \leq 1\right\}
$$

and

$$
\begin{equation*}
I\left(\mathfrak{m}^{\perp}, H, Y\right)=\int_{\mathfrak{m}^{\perp}(H, Y)} \psi\left(1 / 2 B\left(Z_{1}, \operatorname{ad} H \operatorname{ad} Y Z_{1}\right)\right) d Z_{1} \tag{3.7}
\end{equation*}
$$

where $d Z_{1}$ is Haar measure on \mathfrak{m}^{\perp} normalized so that $\left\{Z_{1} \in \mathfrak{m}^{\perp}:\left\|Z_{1}\right\| \leq 1\right\}$ has volume one. Let $d\left(\mathfrak{m}^{\perp}\right)$ denote the dimension of \mathfrak{m}^{\perp}, and for $X, Y \in \mathfrak{m}$, define

$$
\begin{equation*}
\phi_{c}^{M}(X, Y)=\int_{K_{c}^{M}} \psi(B(k X, Y)) d k \tag{3.8}
\end{equation*}
$$

where $d k$ is normalized Haar measure on K_{c}^{M}.
Lemma 3.3. $I\left(\mathfrak{m}^{\perp}\right)$ is a locally constant function on $\mathfrak{m}_{s}^{\mathrm{reg}} \times \mathfrak{m}_{s}^{\mathrm{reg}}$. Further, let c be large enough so that $q^{-c}<q^{-4 s-c_{0}} C_{0}^{2}$. Then for all $H, Y \in \mathfrak{m}_{s}^{\text {reg }},|t| \geq q^{2 s+c} C_{0}^{-1}$,

$$
\phi_{c}\left(t^{2} H, Y\right)=q^{c d\left(\mathfrak{m}^{\perp}\right)}|t|^{-d\left(\mathfrak{m}^{\perp}\right)} \phi_{c}^{M}\left(t^{2} H, Y\right) I\left(\mathfrak{m}^{\perp}, H, Y\right)
$$

Proof. The first part is clear from the definition.
Fix $c>0$ such that $q^{-c}<q^{-4 s-c_{0}} C_{0}^{2}, H, Y \in \mathfrak{m}_{s}^{\text {reg }}$, and $t \in F^{\times}$such that $|t| \geq q^{2 s+c} C_{0}^{-1}$. By Proposition 4.2 of [2], since $|t| \geq q^{c}$, we have

$$
\phi_{c}\left(t^{2} H, Y\right)=\int_{K_{c}(H, Y, t)} \psi\left(t^{2} B(k H, Y)\right) d k
$$

where $K_{c}(H, Y, t)=\left\{k \in K_{c}:\left\|\left[H, k^{-1} Y\right]\right\|^{\prime \prime} \leq|t|^{-1}\right\}$. Define

$$
\begin{aligned}
& \mathfrak{k}_{c}^{M}(H, Y, t)=\left\{Z_{0} \in \mathfrak{k}_{c}^{M}:\left\|\left[H, \exp \left(-Z_{0}\right) Y\right]\right\|^{\prime \prime} \leq|t|^{-1}\right\}, \\
& \mathfrak{k}_{c}^{1}(H, Y, t)=\left\{Z_{1} \in \mathfrak{m}^{\perp} \cap \mathfrak{k}_{c}:\left\|\operatorname{ad} H \operatorname{ad} Y Z_{1}\right\|^{\prime \prime} \leq|t|^{-1}\right\} .
\end{aligned}
$$

Now $K_{c}=\left\{\exp \left(Z_{0}+Z_{1}\right): Z_{0} \in \mathfrak{k}_{c}^{M}, Z_{1} \in \mathfrak{m}^{\perp} \cap \mathfrak{k}_{c}\right\}$, and by Lemma 3.1, since $q^{-c}<q^{-2 s} C_{0}$, for all $Z_{0} \in \mathfrak{m}, Z_{1} \in \mathfrak{m}^{\perp}$,

$$
\left\|\left[H, \exp \left(-Z_{0}-Z_{1}\right) Y\right]\right\|^{\prime \prime}=\max \left\{\left\|\operatorname{ad} H \operatorname{ad} Y Z_{1}\right\|^{\prime \prime},\left\|\left[H, \exp \left(-Z_{0}\right) Y\right]\right\|^{\prime \prime}\right\}
$$

Thus $K_{c}(H, Y, t)=\left\{\exp \left(Z_{0}+Z_{1}\right): Z_{0} \in \mathfrak{k}_{c}^{M}(H, Y, t), Z_{1} \in \mathfrak{k}_{c}^{1}(H, Y, t)\right\}$.
Let $d Z$ denote the Haar measure on \mathfrak{g} for which \mathfrak{k}_{c} has volume one and let $d Z_{0}$ denote the Haar measure on \mathfrak{m} for which \mathfrak{k}_{c}^{M} has volume one. Then if $Z=$ $Z_{0}+Z_{1}, Z_{0} \in \mathfrak{m}, Z_{1} \in \mathfrak{m}^{\perp}$, we have $d Z=q^{c d\left(\mathfrak{m}^{\perp}\right)} d Z_{0} d Z_{1}$. Thus we have

$$
\phi_{c}\left(t^{2} H, Y\right)=q^{c d\left(\mathfrak{m}^{\perp}\right)} \int_{\mathfrak{k}_{c}^{M}(H, Y, t)} \int_{\mathfrak{k}_{c}^{1}(H, Y, t)} \psi\left(t^{2} B\left(\exp \left(Z_{0}+Z_{1}\right) H, Y\right)\right) d Z_{0} d Z_{1}
$$

Let $Z_{0} \in \mathfrak{k}_{c}^{M}$ and $Z_{1} \in \mathfrak{k}_{c}^{1}(H, Y, t)$. Then

$$
B\left(\exp \left(Z_{0}+Z_{1}\right) H, Y\right)=B\left(\exp \left(Z_{0}\right) H, Y\right)+\sum_{k \geq 1} b_{k}
$$

where for $k \geq 1$,

$$
b_{k}=\sum_{\epsilon} \frac{1}{k!} B\left(\operatorname{ad} Z_{\epsilon_{1}} \operatorname{ad} Z_{\epsilon_{2}} \ldots \operatorname{ad} Z_{\epsilon_{k}} H, Y\right) .
$$

Here, as in the proof of Lemma 3.1 the sum is over multi-indices ϵ for which at least one $\epsilon_{i}=1$. Suppose that exactly one $\epsilon_{i}=1$. Then $\operatorname{ad} Z_{\epsilon_{1}} \operatorname{ad} Z_{\epsilon_{2}} \ldots \operatorname{ad} Z_{\epsilon_{k}} H \in \mathfrak{m}^{\perp}$ and $Y \in \mathfrak{m}$, so that $B\left(\operatorname{ad} Z_{\epsilon_{1}}\right.$ ad $\left.Z_{\epsilon_{2}} \ldots \operatorname{ad} Z_{\epsilon_{k}} H, Y\right)=0$. Thus $b_{1}=0$ and $b_{2}=$
$1 / 2 B\left(\left(\operatorname{ad} Z_{1}\right)^{2} H, Y\right)=1 / 2 B\left(Z_{1}, \operatorname{ad} H \operatorname{ad} Y Z_{1}\right)$. Suppose that $k \geq 3$ and at least two of the $\epsilon_{i}=1$. Then

$$
\begin{aligned}
& \left|\frac{1}{k!} B\left(\operatorname{ad} Z_{\epsilon_{1}} \operatorname{ad} Z_{\epsilon_{2}} \ldots \operatorname{ad} Z_{\epsilon_{k}} H, Y\right)\right| \\
& \quad \leq\left|\frac{1}{k!}\right| q^{-(k-2) c}\|H\|\|Y\|\left\|Z_{1}\right\|^{2} \leq q^{-\left(c-c_{0}\right)(k-2)}\left\|Z_{1}\right\|^{2} .
\end{aligned}
$$

But by Lemma 3.1 for $k \geq 3$,

$$
q^{-\left(c-c_{0}\right)(k-2)}\left\|Z_{1}\right\|^{2} \leq q^{-\left(c-c_{0}\right)} q^{4 s} C_{0}^{-2}\left(\left\|\operatorname{ad} H \operatorname{ad} Y Z_{1}\right\|^{\prime \prime}\right)^{2} \leq|t|^{-2}
$$

for $Z_{1} \in \mathfrak{k}_{c}^{1}(H, Y, t)$ since $q^{-c} \leq q^{-4 s-c_{0}} C_{0}^{2}$. Thus

$$
\psi\left(t^{2} B\left(\exp \left(Z_{0}+Z_{1}\right) H, Y\right)\right)=\psi\left(t^{2} B\left(\exp \left(Z_{0}\right) H, Y\right)\right) \psi\left(t^{2} 1 / 2 B\left(Z_{1}, \operatorname{ad} H \operatorname{ad} Y Z_{1}\right)\right)
$$

so that

$$
\begin{aligned}
& \phi_{c}\left(t^{2} H, Y\right)=q^{c d\left(\mathfrak{m}^{\perp}\right)} \\
& \quad \times \int_{\mathfrak{k}_{c}^{M}(H, Y, t)} \psi\left(t^{2} B\left(\exp \left(Z_{0}\right) H, Y\right)\right) d Z_{0} \\
& \quad \times \int_{\mathfrak{k}_{c}^{1}(H, Y, t)} \psi\left(t^{2} 1 / 2 B\left(Z_{1}, \operatorname{ad} H \operatorname{ad} Y Z_{1}\right)\right) d Z_{1} .
\end{aligned}
$$

But applying Lemma 4.2 of [2] to \mathfrak{m} in place of \mathfrak{g}, since $|t| \geq q^{c}$,

$$
\int_{\mathfrak{k}_{c}^{M}(H, Y, t)} \psi\left(t^{2} B\left(\exp \left(Z_{0}\right) H, Y\right)\right) d Z_{0}=\phi_{c}^{M}\left(t^{2} H, Y\right)
$$

Further, using the proof of Lemma 4.4 of [2], since $|t| \geq q^{2 s+c} C_{0}^{-1}$,

$$
\int_{\mathfrak{k}_{c}^{1}(H, Y, t)} \psi\left(t^{2} 1 / 2 B\left(Z_{1}, \operatorname{ad} H a d Y Z_{1}\right)\right) d Z_{1}=|t|^{-d\left(\mathfrak{m}^{\perp}\right)} I\left(\mathfrak{m}^{\perp}, H, Y\right) .
$$

For $H \in \mathfrak{m}^{\text {reg }}$, define $\eta_{\mathfrak{g} / \mathfrak{m}}(H)=\left.\operatorname{det} \operatorname{ad} H\right|_{\mathfrak{m}^{\perp}}=\operatorname{det} T_{H}$. Let

$$
\mathfrak{g}(\mathfrak{m})=\left\{\gamma \in \mathfrak{g}: C_{\mathfrak{g}}(\gamma)=\mathfrak{m}\right\} .
$$

Then $\mathfrak{g}(\mathfrak{m}) \subset \mathfrak{m}^{\text {reg }}$. The following was proven in Lemma 4.5 and Theorem 2.2 of [2].

Lemma 3.4. There is a unique locally constant function $c_{0}(\mathfrak{g}, \mathfrak{m})$ on $\mathfrak{g}(\mathfrak{m}) \times \mathfrak{m}^{\text {reg }}$ with the following properties. First, suppose that $Y \in \mathfrak{g}(\mathfrak{m}) \cap \mathfrak{m}_{s}^{\text {reg }}$ and $H \in \mathfrak{m}_{s}^{\text {reg }}$ for some $s>0$. Then

$$
c_{0}(\mathfrak{g}, \mathfrak{m}, Y, H)=\left|\eta_{\mathfrak{g} / \mathfrak{m}}(H)\right|^{1 / 2}\left|\eta_{\mathfrak{g} / \mathfrak{m}}(Y)\right|^{1 / 2} I\left(\mathfrak{m}^{\perp}, Y, H\right)
$$

In addition, for all $Y \in \mathfrak{g}(\mathfrak{m}), H \in \mathfrak{m}^{\mathrm{reg}}$,
(i) $c_{0}(\mathfrak{g}, \mathfrak{m}, t Y, H)=c_{0}(\mathfrak{g}, \mathfrak{m}, Y, t H)$ for all $t \in F^{\times}$;
(ii) $c_{0}\left(\mathfrak{g}, \mathfrak{m}, Y, t^{2} H\right)=c_{0}(\mathfrak{g}, \mathfrak{m}, Y, H)$ for all $t \in F^{\times}$;
(iii) $\left|c_{0}(\mathfrak{g}, \mathfrak{m}, Y, H)\right|$ is nonzero and independent of Y, H;
(iv) $c_{0}(\mathfrak{g}, \mathfrak{m}, Y, m H)=c_{0}(\mathfrak{g}, \mathfrak{m}, Y, H)$ for all $m \in M$.

Let $d x$ and $d m$ denote Haar measures on G and M respectively. For $c \geq c_{0}$, let $V\left(K_{c}, d x\right)$ denote the volume of K_{c} with respect to $d x$ and let $V\left(K_{c}^{M}, d m\right)$ denote the volume of K_{c}^{M} with respect to $d m$. Then $q^{c d\left(\mathfrak{m}^{\perp}\right)} V\left(K_{c}, d x\right) V\left(K_{c}^{M}, d m\right)^{-1}$ is independent of c. For $Y \in \mathfrak{g}(\mathfrak{m}), X \in \mathfrak{m}^{\text {reg }}, c \geq c_{0}$, define

$$
\begin{equation*}
c(\mathfrak{g}, \mathfrak{m}, d x / d m, Y, X)=q^{c d\left(\mathfrak{m}^{\perp}\right)} V\left(K_{c}, d x\right) V\left(K_{c}^{M}, d m\right)^{-1} c_{0}(\mathfrak{g}, \mathfrak{m}, Y, X) \tag{3.9}
\end{equation*}
$$

Suppose that \mathfrak{b} is a Cartan subalgebra of \mathfrak{m} and let A denote the split component of the Cartan subgroup of G corresponding to \mathfrak{b}. Fix an invariant measure $d x^{*}$ on G / A and an invariant measure $d m^{*}$ on M / A. Then if $d a$ is a choice of Haar measure on A, we can normalize Haar measures $d x$ and G and $d m$ on M so that $d x=d x^{*} d a, d m=d m^{*} d a$. In this case we write

$$
\begin{equation*}
c\left(\mathfrak{g}, \mathfrak{m}, d x^{*} / d m^{*}, Y, X\right)=c(\mathfrak{g}, \mathfrak{m}, d x / d m, Y, X), Y \in \mathfrak{g}(\mathfrak{m}), X \in \mathfrak{b}^{\prime} \tag{3.10}
\end{equation*}
$$

Lemma 3.5. Let $Y \in \mathfrak{g}(\mathfrak{m}), X \in \mathfrak{b}^{\prime}, H \in \mathfrak{m} \cap \mathfrak{g}^{\prime}$. Then
(i) $c\left(\mathfrak{g}, \mathfrak{m}, d x^{*} / d m^{*}, Y, X\right) \Phi\left(\mathfrak{m}, d m^{*}, X, H\right)$ is independent of the choice of $d m^{*}$.
(ii) Let $u \in G$ and fix any invariant measure $d m_{u}^{*}$ on $u M u^{-1} / u A u^{-1}$. Then

$$
\begin{aligned}
& c\left(\mathfrak{g}, u \mathfrak{m}, d x^{*} / d m_{u}^{*}, u Y, u X\right) \Phi\left(u \mathfrak{m}, d m_{u}^{*}, u X, u H\right) \\
& \quad=c\left(\mathfrak{g}, \mathfrak{m}, d x^{*} / d m^{*}, Y, X\right) \Phi\left(\mathfrak{m}, d m^{*}, X, H\right)
\end{aligned}
$$

Proof. Part (i) is clear from the definitions. Thus in (ii) we may as well assume that $d m_{u}^{*}$ is chosen so that $d m^{*}$ corresponds to $d m_{u}^{*}$ under the map $m \mapsto u m u^{-1}$. Then we have

$$
\Phi\left(u \mathfrak{m}, d m_{u}^{*}, u X, u H\right)=\Phi\left(\mathfrak{m}, d m^{*}, X, H\right), X \in \mathfrak{b}^{\prime}, H \in \mathfrak{m}^{\prime}
$$

Fix $H \in \mathfrak{m} \cap \mathfrak{g}^{\prime}$, and let \mathfrak{h} be the Cartan subalgebra of \mathfrak{g} containing $u H$. Then $u \in N(\mathfrak{h}, \mathfrak{m})$. It is shown in the last part of the proof of Theorem 2.2 of [2] that for this choice of $d m_{u}^{*}, c\left(\mathfrak{g}, u \mathfrak{m}, d x^{*} / d m_{u}^{*}, u Y, u H\right)=c\left(\mathfrak{g}, \mathfrak{m}, d x^{*} / d m^{*}, Y, H\right)$ for all $Y \in \mathfrak{g}(m)$.

4. An Expansion at Infinity

In this section we will give the proof of Theorem 1.2. The first step is to prove Proposition 2.1. This will be done in a series of lemmas. Thus we assume through Lemma 4.4 that \mathfrak{g} is semisimple and \mathfrak{b} is elliptic. Let γ be an arbitrary semisimple element of \mathfrak{g}, and let $\mathfrak{m}=C_{\mathfrak{g}}(\gamma)$. Then the Cartan subgroup B corresponding to \mathfrak{b} has trivial split component. Fix a normalization $d x$ of invariant measure on G and define $\Phi(\mathfrak{g}, d x, X, H), X \in \mathfrak{b}^{\prime}, H \in \mathfrak{g}^{\prime}$ as in (1.1). Fix $w \in W_{G}(\mathfrak{b}, \mathfrak{m})$ and a representative $y_{w} \in N_{G}(\mathfrak{b}, \mathfrak{m})$. Then the Cartan subgroup $B_{w}=y_{w}^{-1} B y_{w}$ of M corresponding to $y_{w}^{-1} \mathfrak{b}$ must also have trivial split component. Fix a normalization $d m$ of invariant measure on M. Then we also have $\Phi\left(\mathfrak{m}, d m, y_{w}^{-1} X, H\right), X \in \mathfrak{b}^{\prime}, H \in$ \mathfrak{m}^{\prime}, as in (1.1). Define $c(\mathfrak{g}, \mathfrak{m}, d x / d m)$ as in (3.9). Since $d x$ and $d m$ are fixed throughout the proof of Proposition [2.1] we drop them from the notation.

Suppose that $\gamma=0$. Then $\mathfrak{m}=\mathfrak{g}, W_{G}(\mathfrak{b}, \mathfrak{m})=\{1\}, c(\mathfrak{g}, \mathfrak{g}, \gamma) \equiv 1$, and Proposition [2.1] is trivial. Thus we may as well assume that $\gamma \neq 0$.

Let ω be a compact subset of \mathfrak{b}^{\prime}, and let $X_{0} \in \omega$. Then $C_{\mathfrak{g}}\left(X_{0}\right)=\mathfrak{b}$ is abelian, and so there is an open closed subset ω_{0} of \mathfrak{b} with $X_{0} \in \omega_{0} \subset \omega^{B}=\omega$ which satisfies the conditions of Corollary 2.3 of [1]. Since ω can be covered by a finite number of sets ω_{0}, we may as well assume that $\omega=\omega_{0}$ for some $X_{0} \in \omega$. Then $V_{0}=\omega_{0}^{G}$ is a G-domain (open, closed G-invariant set) in \mathfrak{g} by Corollary 2.4 of [1].

Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} containing γ. Then \mathfrak{h} is a Cartan subalgebra of \mathfrak{m}. Let $\mathfrak{h}=\mathfrak{h}_{1}, \ldots ., \mathfrak{h}_{k}$ denote a complete set of representatives for the M-conjugacy classes of Cartan subalgebras of \mathfrak{m}. Then we can choose representatives $y_{v} \in$ $N_{G}(\mathfrak{h}, \mathfrak{m})=\left\{y \in G: y^{-1} \mathfrak{h} \subset \mathfrak{m}\right\}$ for $W_{G}(\mathfrak{h}, \mathfrak{m})=N_{G}(\mathfrak{h}, \mathfrak{m}) / M$ so that for each $v \in W_{G}(\mathfrak{h}, \mathfrak{m}), y_{v}^{-1} \mathfrak{h}=\mathfrak{h}_{j}$ for some $1 \leq j \leq k$. We may as well take $y_{1}=1$ as the representative of $1 \in W_{G}(\mathfrak{h}, \mathfrak{m})$. Also, we can choose representatives $y_{w} \in N_{G}(\mathfrak{b}, \mathfrak{m})$ for $W_{G}(\mathfrak{b}, \mathfrak{m})$ so that for each $w \in W_{G}(\mathfrak{b}, \mathfrak{m}), y_{w}^{-1} \mathfrak{b}=\mathfrak{h}_{j}$ for some $1 \leq j \leq k$. These representatives will be fixed throughout the proof of Proposition 2.1.

Since ω_{0} is compact and $W_{G}(\mathfrak{b}, \mathfrak{m})$ is finite, there is $r_{0}>0$ so that $\|\gamma\| \leq q^{r_{0}}|2|^{1 / 2}$ and $\left\|y_{w}^{-1} X\right\| \leq q^{r_{0}}|2|^{1 / 2}$ for all $w \in W_{G}(\mathfrak{b}, \mathfrak{m}), X \in \omega_{0}$. Let $t_{0}=\varpi^{r_{0}}$. Then $\left\|t_{0} \gamma\right\| \leq|2|^{1 / 2}$ and $\left\|y_{w}^{-1} t_{0} X\right\| \leq|2|^{1 / 2}$ for all $w \in W_{G}(\mathfrak{b}, \mathfrak{m}), X \in \omega_{0}$. Assume that Proposition 2.1 holds for $\gamma^{\prime}=t_{0} \gamma$ and $\omega_{0}^{\prime}=\left\{t_{0} X: X \in \omega_{0}\right\}$. Define $T(\gamma)=$ $q^{-2 r_{0}} T\left(\gamma^{\prime}\right)$ and $\omega(\gamma)=t_{0}^{-1} \omega\left(\gamma^{\prime}\right)$. Let $t \in F^{\times}$such that $|t| \geq T(\gamma), X \in \omega_{0}$, and $H \in \omega(\gamma) \cap \mathfrak{g}^{\prime}$. Then $\left|t t_{0}^{-2}\right| \geq T(\gamma) q^{2 r_{0}}=T\left(\gamma^{\prime}\right), t_{0} X \in \omega_{0}^{\prime}$, and $t_{0} H \in \omega\left(\gamma^{\prime}\right)$, so that

$$
\begin{aligned}
& \Phi\left(\mathfrak{g}, t_{0} X,\left(t t_{0}^{-2}\right) t_{0} H\right) \\
& \quad=\sum_{w \in W_{G}(\mathfrak{b}, \mathfrak{m})} c\left(\mathfrak{g}, \mathfrak{m}, t_{0} \gamma, t t_{0}^{-2} y_{w}^{-1} t_{0} X\right) \Phi\left(\mathfrak{m}, y_{w}^{-1} t_{0} X,\left(t t_{0}^{-2}\right) t_{0} H\right)
\end{aligned}
$$

But it is clear from (1.6) that

$$
\begin{gathered}
\Phi(\mathfrak{g}, X, t H)=\Phi\left(\mathfrak{g}, t_{0} X,\left(t t_{0}^{-2}\right) t_{0} H\right) \\
\Phi\left(\mathfrak{m}, y_{w}^{-1} t_{0} X,\left(t t_{0}^{-2}\right) t_{0} H\right)=\Phi\left(\mathfrak{m}, y_{w}^{-1} X, t H\right)
\end{gathered}
$$

and from Lemma 3.4(i) and (3.9) that

$$
c\left(\mathfrak{g}, \mathfrak{m}, t_{0} \gamma, t t_{0}^{-2} y_{w}^{-1} t_{0} X\right)=c\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right)
$$

Thus we may as well assume that $\|\gamma\| \leq|2|^{1 / 2}$ and $\left\|y_{w}^{-1} X\right\| \leq|2|^{1 / 2}$ for all $w \in$ $W_{G}(\mathfrak{b}, \mathfrak{m}), X \in \omega_{0}$.

Define

$$
\begin{equation*}
\Omega_{0}=\left\{t y_{w}^{-1} X: X \in \omega_{0}, w \in W_{G}(\mathfrak{b}, \mathfrak{m}), t \in F^{\times}, q^{-1} \leq|t| \leq 1\right\} \tag{4.1}
\end{equation*}
$$

Then $\Omega_{0} \subset \mathfrak{m} \cap \mathfrak{g}^{\prime} \subset \mathfrak{m}^{\text {reg }}$ and $\gamma \in \mathfrak{g}(\mathfrak{m}) \subset \mathfrak{m}^{\text {reg }}$, and Ω_{0} is compact, so there is $s>0$ so that $\gamma \in \mathfrak{m}_{s}^{\text {reg }}$ and $\Omega_{0} \subset \mathfrak{m}_{s}^{\text {reg }}$.

Let ω_{γ} be a compact open neighborhood of γ in \mathfrak{m} which is small enough such that the following conditions are satisfied. First, since $\mathfrak{m}_{s}^{\text {reg }}$ is open, we can assume that $\omega_{\gamma} \subset \mathfrak{m}_{s}^{\text {reg }}$. Next, since $I\left(\mathfrak{m}^{\perp}\right)$ is a locally constant function on $\mathfrak{m}_{s}^{\text {reg }} \times \mathfrak{m}_{s}^{\text {reg }}$ and Ω_{0} is compact, and $\left|\eta_{\mathfrak{g} / \mathfrak{m}}\right|$ is a locally constant functions on $\mathfrak{m}_{s}^{\text {reg }}$, we can assume that

$$
\begin{equation*}
\left|\eta_{\mathfrak{g} / \mathfrak{m}}(H)\right|=\left|\eta_{\mathfrak{g} / \mathfrak{m}}(\gamma)\right| \quad \text { and } I\left(\mathfrak{m}^{\perp}, H, X\right)=I\left(\mathfrak{m}^{\perp}, \gamma, X\right), \quad H \in \omega_{\gamma}, X \in \Omega_{0} \tag{4.2}
\end{equation*}
$$

Next, since $M=C_{G}(\gamma)$, the $y_{v} \gamma, v \in W_{G}(\mathfrak{h}, \mathfrak{m})$, are distinct. Similarly the $y_{w} \gamma, w \in$ $W_{G}(\mathfrak{b}, \mathfrak{m})$, are distinct. Thus we can choose ω_{γ} so that $y_{v} \omega_{\gamma} \cap y_{v^{\prime}} \omega_{\gamma} \neq \emptyset$ for $v, v^{\prime} \in W_{G}(\mathfrak{h}, \mathfrak{m})$ implies that $v=v^{\prime}$ and $y_{w} \omega_{\gamma} \cap y_{w^{\prime}} \omega_{\gamma} \neq \emptyset$ for $w, w^{\prime} \in W_{G}(\mathfrak{b}, \mathfrak{m})$ implies that $w=w^{\prime}$.

Fix ω_{γ} satisfying the above conditions. Since ω_{γ} and Ω_{0} are compact open subsets of \mathfrak{m}, there is a compact open subgroup K_{M}^{0} of M small enough such that $K_{M}^{0} \omega_{\gamma}=\omega_{\gamma}$ and $K_{M}^{0} \Omega_{0}=\Omega_{0}$. Now since the sets $y_{w} \omega_{\gamma}$ are disjoint and compact, $w \in W_{G}(\mathfrak{b}, \mathfrak{m})$, we can choose a compact open subgroup K of G which is small enough such that the sets $K y_{w} \omega_{\gamma}$ are disjoint and $y_{w}^{-1} K y_{w} \cap M \subset K_{M}^{0}$ for all
$w \in W_{G}(\mathfrak{b}, \mathfrak{m})$. Fix such a compact open subgroup K, and for $w \in W_{G}(\mathfrak{b}, \mathfrak{m})$, write $K(w)=y_{w}^{-1} K y_{w}$ and $K_{M}(w)=K(w) \cap M$.

Let U be an M-domain (open, closed, M-invariant set) in \mathfrak{m} such that $\gamma \in U \subset$ ω_{γ}^{M} which satisfies the conditions of Corollary 2.3 of [1]. In particular, we can assume that $U \cap \mathfrak{h}_{i} \subset \omega_{\gamma}, 1 \leq i \leq k, C_{\mathfrak{g}}(X) \subset \mathfrak{m}$ for all $X \in U$, and for every compact subset Q of \mathfrak{g} there is a compact subset Ω of G such that $x U \cap Q \neq \emptyset$ implies that $x \in \Omega M$. Define $V=U^{G}$. By Corollary 2.4 of [1], $V \subset \omega_{\gamma}^{G}$ and is a G domain in \mathfrak{g}. We will show that $\omega(\gamma)=U \cap \mathfrak{h}$ satisfies the condition of Proposition 2.1.

Define $V(K)=\left\{k y Y: k \in K, y \in N_{G}(\mathfrak{b}, \mathfrak{m}), Y \in U\right\}$.
Lemma 4.1. (i) The double cosets $K y_{w} M, w \in W_{G}(\mathfrak{b}, \mathfrak{m})$, are disjoint.
(ii) For all $w \in W_{G}(\mathfrak{b}, \mathfrak{m}), k \in K(w), U \cap k y_{w}^{-1} \mathfrak{b} \subset \omega_{\gamma}$.
(iii) For all $w \in W_{G}(\mathfrak{b}, \mathfrak{m}), k \in K(w), k y_{w}^{-1} \mathfrak{b}^{\prime} \cap \mathfrak{m} \neq \emptyset$ if and only if $k \in K_{M}(w)$.
(iv) Let $x \in G$ such that $x H \in V(K)$ for some $H \in \omega(\gamma) \cap \mathfrak{h}^{\prime}$. Then $x \in$ $K N_{G}(\mathfrak{b}, \mathfrak{m})$.

Proof. (i) Suppose that $x \in K y_{w} M \cap K y_{w^{\prime}} M, w, w^{\prime} \in W_{G}(\mathfrak{b}, \mathfrak{m})$. Then there are $k, k^{\prime} \in K, m, m^{\prime} \in M$ such that $x=k y_{w} m=k^{\prime} y_{w^{\prime}} m^{\prime}$. Now $x \gamma=k y_{w} \gamma=k^{\prime} y_{w^{\prime}} \gamma \in$ $K y_{w} \omega_{\gamma} \cap K y_{w^{\prime}} \omega_{\gamma}$. Thus by assumption on $K, w=w^{\prime}$.
(ii) Let $w \in W_{G}(\mathfrak{b}, \mathfrak{m}), k \in K(w)$ and $Y \in U \cap k y_{w}^{-1} \mathfrak{b}$. Then $k y_{w}^{-1} \mathfrak{b} \subset C_{\mathfrak{g}}(Y) \subset \mathfrak{m}$ so that $y_{w} k^{-1} \in N_{G}(\mathfrak{b}, \mathfrak{m})$. Thus there are $w^{\prime} \in W, m \in M$, such that $y_{w} k^{-1}=$ $k_{1} y_{w}=y_{w^{\prime}} m$ where $k_{1}=y_{w} k^{-1} y_{w}^{-1} \in K$. Thus $y_{w} \in K y_{w^{\prime}} M \cap K y_{w} M$. Now by (i), $w=w^{\prime}$ so that $k=m^{-1} \in M \cap K(w) \subset K_{M}^{0}$. Now $k^{-1} Y \in U \cap y_{w}^{-1} \mathfrak{b} \subset \omega_{\gamma}$ so that $Y \in k \omega_{\gamma}=\omega_{\gamma}$ since $k \in K_{M}^{0}$.
(iii) Let $w \in W_{G}(\mathfrak{b}, \mathfrak{m}), k \in K(w)$. Then $k y_{w}^{-1} \mathfrak{b}^{\prime} \cap \mathfrak{m} \neq \emptyset$ if and only if there is $X \in$ \mathfrak{b}^{\prime} such that $k y_{w}^{-1} X \in \mathfrak{m}$ if and only if $k y_{w}^{-1} \mathfrak{b} \subset \mathfrak{m}$ if and only if $y_{w} k^{-1} \in N_{G}(\mathfrak{b}, \mathfrak{m})$. But as in the proof of (ii), $y_{w} k^{-1} \in N_{G}(\mathfrak{b}, \mathfrak{m})$ implies that $k \in M \cap K(w)=K_{M}(w)$. Conversely, if $k \in K_{M}(w)$, then $y_{w} k^{-1} \in y_{w} M \subset N_{G}(\mathfrak{b}, \mathfrak{m})$.
(iv) Let $x \in G$ and $H \in \omega(\gamma) \cap \mathfrak{h}^{\prime}$ such that $x H \in V(K)$. Then there are $k \in K$ and $w \in W_{G}(\mathfrak{b}, \mathfrak{m})$ such that $x H \in k y_{w} U$, so that $y_{w}^{-1} k^{-1} x H \subset U \subset \mathfrak{m}$. Since $H \in \mathfrak{h}^{\prime}$, this implies that $y_{w}^{-1} k^{-1} x \mathfrak{h} \subset \mathfrak{m}$, so that $x^{-1} k y_{w} \in N_{G}(\mathfrak{h}, \mathfrak{m})$. Thus there are $v \in W_{G}(\mathfrak{h}, \mathfrak{m})$ and $m \in M$ such that $x^{-1} k y_{w}=y_{v} m$. Now $y_{w}^{-1} k^{-1} x H=$ $m^{-1} y_{v}^{-1} H \in U$ implies that $y_{v}^{-1} H \in m U=U$. But there is $\mathfrak{h}_{i}, 1 \leq i \leq k$, so that $y_{v}^{-1} \mathfrak{h}=\mathfrak{h}_{i}$. Thus $y_{v}^{-1} H \in U \cap \mathfrak{h}_{i} \subset \omega_{\gamma}$. But $\omega(\gamma)=U \cap \mathfrak{h}=U \cap \mathfrak{h}_{1} \subset \omega_{\gamma}$. Thus $H \in \omega_{\gamma} \cap y_{v} \omega_{\gamma}$. Now since $\omega_{\gamma} \cap y_{v} \omega_{\gamma} \neq \emptyset$, we have $y_{v}=1$. Thus $x^{-1} k y_{w}=m$ so that $x=k y_{w} m^{-1} \in K N_{G}(\mathfrak{b}, \mathfrak{m})$.

From now on we write $W=W_{G}(\mathfrak{b}, \mathfrak{m})$. Define $\eta_{\mathfrak{g} / \mathfrak{m}}$ and $c(\mathfrak{g}, \mathfrak{m})$ as in Lemma 3.4 and (3.9).

Lemma 4.2. There is $T \geq 1$ with the following properties.
(i) For all $X \in \omega_{0}, Y \in V,|t| \geq T$,

$$
\int_{K} \psi(B(t Y, k X)) d k=0
$$

unless $Y \in V(K)$.
(ii) For all $X \in \omega_{0}, w \in W, Y \in U,|t| \geq T$,

$$
\begin{aligned}
& \left.\left|\eta_{\mathfrak{g} / \mathfrak{m}}(t Y)\right|^{1 / 2} \mid \eta_{\mathfrak{g} / \mathfrak{m}}\left(y_{w}^{-1} X\right)\right)\left.\right|^{1 / 2} \int_{K} \psi\left(B\left(t y_{w} Y, k X\right)\right) d k \\
& \quad=V(K, d x)^{-1} V\left(K_{M}(w), d m\right) c\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right) \int_{K_{M}(w)} \psi\left(t B\left(Y, k_{1} y_{w}^{-1} X\right)\right) d k_{1}
\end{aligned}
$$

where $K_{M}(w)=M \cap y_{w}^{-1} K y_{w}, d k_{1}$ is normalized Haar measure on $K_{M}(w)$, $V(K, d x)$, is the volume of K with respect to $d x$, and $V\left(K_{M}(w), d m\right)$ is the volume of $K_{M}(w)$ with respect to $d m$.

Proof. By Lemma 5.4 of [2] there is $T_{1} \geq 1$ so that for all $X \in \omega_{0}, Y \in V,|t| \geq T_{1}$,

$$
\int_{K} \psi(B(t Y, k X)) d k=0
$$

unless $Y \in V(K)$. Thus (i) will hold for any $T \geq T_{1}$.
Fix $w \in W$. Then for all $X \in \omega_{0}, Y \in U, t \in F$,

$$
\int_{K} \psi\left(B\left(t y_{w} Y, k X\right)\right) d k=\int_{K(w)} \psi\left(t B\left(Y, k^{\prime} y_{w}^{-1} X\right)\right) d k^{\prime}
$$

where $d k^{\prime}$ is normalized Haar measure on $K(w)=y_{w}^{-1} K y_{w}$.
For $X \neq 0 \in \mathfrak{g}$, define the integer $\nu(X)$ so that $\|X\|=\left|\varpi^{\nu(X)}\right|$. Let $S=\{X \in$ $\mathfrak{g}:\|X\|=1\}$. Then for all $X \neq 0 \in \mathfrak{g}, \varpi^{-\nu(X)} X \in S$.

Let $U_{1}=\left\{Y \in U: Y \notin \omega_{\gamma}\right\}$, and let S_{1} denote the closure in S of

$$
\left\{\varpi^{-\nu(Y)} Y: Y \in U_{1}\right\}
$$

It is a compact set. Now $U \subset \omega_{\gamma}^{M}$ where ω_{γ} is compact, so the eigenvalues of ad $X, X \in U$ are bounded. Since U_{1} is a closed subset of \mathfrak{m}, as in Lemma 7.4 of [1], every element of S_{1} is either nilpotent or is of the form $\varpi^{-\nu(Y)} Y$ for some $Y \in U_{1}$.

Let $Y^{\prime} \in S_{1}, X \in \omega_{0}$, and suppose that $\left[k y_{w}^{-1} X, Y^{\prime}\right]=0$ for some $k \in K(w)$. Then $k^{-1} Y^{\prime} \in y_{w}^{-1} \mathfrak{b}$, so that Y^{\prime} is semisimple, and hence of the form $Y^{\prime}=\varpi^{-\nu(Y)} Y$ for some $Y \in U_{1}$. But then $k^{-1} Y \in y_{w}^{-1} \mathfrak{b}$ so that $Y \in U \cap k y_{w}^{-1} \mathfrak{b}$. By Lemma 4.1 (ii), this implies that $Y \in \omega_{\gamma}$. This contradicts the assumption that $Y \in U_{1}$. Thus [$\left.k y_{w}^{-1} X, Y^{\prime}\right] \neq 0$ for all $X \in \omega_{0}, Y^{\prime} \in S_{1}, k \in K(w)$, so by Lemma 3.1 of [2] there is T_{2}^{\prime} such that

$$
\int_{K(w)} \psi\left(t B\left(Y^{\prime}, k y_{w}^{-1} X\right)\right) d k=0
$$

for all $X \in \omega_{0}, Y^{\prime} \in S_{1},|t| \geq T_{2}^{\prime}$.
Since $\gamma \neq 0$ and \mathfrak{g} is semisimple, $\mathfrak{m} \neq \mathfrak{g}$. Now since for all $Y \in U, C_{\mathfrak{g}}(Y) \subset \mathfrak{m}$, we have $0 \notin U$. Since U is closed, there is $\delta>0$ so that $\|Y\| \geq \delta$ for all $Y \in U$. Define $T_{2}=T_{2}^{\prime} \delta^{-1}$. Then for all $|t| \geq T_{2}, Y \in U_{1}, X \in \omega_{0}$,

$$
\int_{K(w)} \psi\left(t B\left(Y, k y_{w}^{-1} X\right)\right) d k=\int_{K(w)} \psi\left(t \varpi^{\nu(Y)} B\left(\varpi^{-\nu(Y)} Y, k y_{w}^{-1} X\right)\right) d k=0
$$

since $\left|t \varpi^{\nu(Y)}\right|=|t|\|Y\| \geq T_{2}^{\prime}$ and $\varpi^{-\nu(Y)} Y \in S_{1}$.
Using the same argument as above with $K_{M}(w)$ in place of $K(w)$, we can also prove that there is $T_{3}>0$ so that for all $|t| \geq T_{3}, Y \in U_{1}, X \in \omega_{0}$,

$$
\int_{K_{M}(w)} \psi\left(t B\left(Y, k_{1} y_{w}^{-1} X\right)\right) d k_{1}=0
$$

Thus as long as $T \geq T_{1}(w)=\max \left\{T_{2}, T_{3}\right\}$ and $Y \in U_{1}$,

$$
\begin{aligned}
& \left|\eta_{\mathfrak{g} / \mathfrak{m}}(t Y)\right|^{1 / 2}\left|\eta_{\mathfrak{g} / \mathfrak{m}}\left(y_{w}^{-1} X\right)\right|^{1 / 2} \int_{K} \psi\left(B\left(t y_{w} Y, k X\right)\right) d k=0 \\
& \quad=V(G, d x)^{-1} V\left(K_{M}(w), d m\right) c\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right) \int_{K_{M}(w)} \psi\left(t B\left(Y, k_{1} y_{w}^{-1} X\right)\right) d k_{1}
\end{aligned}
$$

for all $|t| \geq T, X \in \omega_{0}$.
Define c^{\prime} as in Lemma 3.2 and pick $c \geq c^{\prime}$ large enough such that $K_{c} \subset K(w)$ and $q^{-c}<q^{-4 s-c_{0}} C_{0}^{2}$. Let $k_{1}, \ldots, k_{d} \in K(w)$ denote a complete set of coset representatives for $K_{c} \backslash K(w)$. Since $V(K(w), d x)=V(K, d x)$, the volume of K_{c} with respect to normalized Haar measure on $K(w)$ is $V_{1}=V(K, d x)^{-1} V\left(K_{c}, d x\right)$. Thus for all $Y \in \omega_{\gamma}, X \in \omega_{0}$, and $t \in F^{\times}$,

$$
\int_{K(w)} \psi\left(t B\left(Y, k y_{w}^{-1} X\right)\right) d k=V_{1} \sum_{i=1}^{d} \phi_{c}\left(t Y, k_{i} y_{w}^{-1} X\right) .
$$

Define $I_{M}=\left\{1 \leq i \leq d: K_{c} k_{i} \cap K_{M}(w) \neq \emptyset\right\}, I_{M}^{\prime}=\left\{1 \leq i \leq d: i \notin I_{M}\right\}$. For $i \in I_{M}$, we may as well assume that the coset representative k_{i} is chosen so that $k_{i} \in K_{M}(w)$. Now since $c \geq c^{\prime}$, by Lemma 3.2 $K_{c} \cap M=K_{c}^{M}$. Thus $K_{M}(w)=\bigcup_{i \in I_{M}} K_{c}^{M} k_{i}$, so that for all $Y \in \omega_{\gamma}, X \in \omega_{0}$, and $t \in F^{\times}$,

$$
\int_{K_{M}(w)} \psi\left(t B\left(Y, k_{1} y_{w}^{-1} X\right) d k_{1}=V_{2} \sum_{i \in I_{M}} \phi_{c}^{M}\left(t Y, k_{i} y_{w}^{-1} X\right)\right.
$$

where $V_{2}=V\left(K_{M}(w), d m\right)^{-1} V\left(K_{c}^{M}, d m\right)$. Further, by Lemma 4.1 (iii),

$$
K_{c} k_{i} y_{w}^{-1} \mathfrak{b}^{\prime} \cap \mathfrak{m} \neq \emptyset
$$

if and only if there is $k \in K_{c}$ such that $k k_{i} \in K_{M}(w)$. Thus

$$
I_{M}=\left\{1 \leq i \leq d: K_{c} k_{i} y_{w}^{-1} \mathfrak{b}^{\prime} \cap \mathfrak{m} \neq \emptyset\right\}
$$

Let $1 \leq i \leq d$ and suppose there are $Y \in \omega_{\gamma}, X \in \omega_{0}$, and $k \in K_{c}$ such that $\left[Y, k k_{i} y_{w}^{-1} X\right]=0$. Then $k k_{i} y_{w}^{-1} X \in \mathfrak{m} \cap K_{c} k_{i} y_{w}^{-1} \mathfrak{b}^{\prime}$ so that $i \in I_{M}$. Thus for $i \in I_{M}^{\prime}$, for all $Y \in \omega_{\gamma}, X \in \omega_{0}$, and $k \in K_{c},\left[Y, k k_{i} y_{w}^{-1} X\right] \neq 0$, so that by Lemma 3.1 of [2] there is $T(i)>0$ so that $\phi_{c}\left(t Y, k_{i} y_{w}^{-1} X\right)=0$ for all $Y \in \omega_{\gamma}, X \in \omega_{0},|t| \geq T(i)$. Pick $T_{w}^{\prime}=\max \left\{T(i): i \in I_{M}^{\prime}\right\}$.

Now suppose that $i \in I_{M}$, so that $k_{i} \in K_{M}(w) \subset K_{M}^{0}$. Let $X_{0} \in \omega_{0}, Y \in \omega_{\gamma}$, and $t \in F^{\times},|t| \geq q^{4 s+2 c} C_{0}^{-2}$. Then $t=t_{1} t_{0}^{2}$ for some $t_{1}, t_{0} \in F^{\times}$such that $q^{-1} \leq\left|t_{1}\right| \leq$ 1 and $\left|t_{0}\right| \geq q^{2 s+c} C_{0}^{-1}$. Now $Y \in \omega_{\gamma} \subset \mathfrak{m}_{s}^{\text {reg }}$ and $t_{1} k_{i} y_{w}^{-1} X \in K_{M}^{0} \Omega_{0}=\Omega_{0} \subset \mathfrak{m}_{s}^{\text {reg }}$. Thus by Lemma 3.3 and (4.2),

$$
\begin{aligned}
& \phi_{c}\left(t Y, k_{i} y_{w}^{-1} X\right)=\phi_{c}\left(t_{0}^{2} Y, t_{1} k_{i} y_{w}^{-1} X\right) \\
& \quad=q^{c d\left(\mathfrak{m}^{\perp}\right)}\left|t_{0}\right|^{-d\left(\mathfrak{m}^{\perp}\right)} \phi_{c}^{M}\left(t_{0}^{2} Y, t_{1} k_{i} y_{w}^{-1} X\right) I\left(\mathfrak{m}^{\perp}, Y, t_{1} k_{i} y_{w}^{-1} X\right) \\
& \quad=q^{c d\left(\mathfrak{m}^{\perp}\right)}\left|t_{0}\right|^{-d\left(\mathfrak{m}^{\perp}\right)} \phi_{c}^{M}\left(t Y, k_{i} y_{w}^{-1} X\right) I\left(\mathfrak{m}^{\perp}, \gamma, t_{1} k_{i} y_{w}^{-1} X\right)
\end{aligned}
$$

But for all $X \in \mathfrak{m}^{\text {reg }}, t \in F^{\times}$,

$$
\left|\eta_{\mathfrak{g} / \mathfrak{m}}(t X)\right|=|t|^{d\left(\mathfrak{m}^{\perp}\right)}\left|\eta_{\mathfrak{g} / \mathfrak{m}}(X)\right|
$$

Thus using Lemma 3.4 and (4.2),

$$
\begin{aligned}
&\left|t_{0}\right|^{-d\left(\mathfrak{m}^{\perp}\right)} I\left(\mathfrak{m}^{\perp}, \gamma, t_{1} k_{i} y_{w}^{-1} X\right) \\
&=\left|t_{0}\right|^{-d\left(\mathfrak{m}^{\perp}\right)}\left|\eta_{\mathfrak{g} / \mathfrak{m}}(\gamma)\right|^{-1 / 2}\left|\eta_{\mathfrak{g} / \mathfrak{m}}\left(t_{1} k_{i} y_{w}^{-1} X\right)\right|^{-1 / 2} c_{0}\left(\mathfrak{g}, \mathfrak{m}, \gamma, t_{1} k_{i} y_{w}^{-1} X\right) \\
&=\left|t_{0}\right|^{-d\left(\mathfrak{m}^{\perp}\right)}\left|\eta_{\mathfrak{g} / \mathfrak{m}}(Y)\right|^{-1 / 2}\left|\eta_{\mathfrak{g} / \mathfrak{m}}\left(t_{1} y_{w}^{-1} X\right)\right|^{-1 / 2} c_{0}\left(\mathfrak{g}, \mathfrak{m}, \gamma, t_{1} y_{w}^{-1} X\right) \\
&=\left|\eta_{\mathfrak{g} / \mathfrak{m}}(t Y)\right|^{-1 / 2}\left|\eta_{\mathfrak{g} / \mathfrak{m}}\left(y_{w}^{-1} X\right)\right|^{-1 / 2} c_{0}\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \phi_{c}\left(t Y, k_{i} y_{w}^{-1} X\right) \\
& \quad=q^{c d\left(\mathfrak{m}^{\perp}\right)} \phi_{c}^{M}\left(t Y, k_{i} y_{w}^{-1} X\right)\left|\eta_{\mathfrak{g} / \mathfrak{m}}(t Y)\right|^{-1 / 2}\left|\eta_{\mathfrak{g} / \mathfrak{m}}\left(y_{w}^{-1} X\right)\right|^{-1 / 2} c_{0}\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right)
\end{aligned}
$$

Let $T_{2}(w)=\max \left\{T_{w}^{\prime}, q^{4 s+2 c} C_{0}^{-2}\right\}$, and let $Y \in \omega_{\gamma}, X \in \omega_{0}, t \in F^{\times},|t| \geq T_{2}(w)$. Then

$$
\begin{aligned}
& \left|\eta_{\mathfrak{g} / \mathfrak{m}}(t Y)\right|^{1 / 2}\left|\eta_{\mathfrak{g} / \mathfrak{m}}\left(y_{w}^{-1} X\right)\right|^{1 / 2} \int_{K(w)} \psi\left(t B\left(Y, k y_{w}^{-1} X\right)\right) d k \\
& \quad=V_{1} \sum_{i \in I_{M}}\left|\eta_{\mathfrak{g} / \mathfrak{m}}(t Y)\right|^{1 / 2}\left|\eta_{\mathfrak{g} / \mathfrak{m}}\left(y_{w}^{-1} X\right)\right|^{1 / 2} \phi_{c}\left(t Y, k_{i} y_{w}^{-1} X\right) \\
& \quad=V_{1} q^{c d\left(\mathfrak{m}^{\perp}\right)} c_{0}\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right) \sum_{i \in I_{M}} \phi_{c}^{M}\left(t Y, k_{i} y_{w}^{-1} X\right) \\
& \quad=q^{c d\left(\mathfrak{m}^{\perp}\right)} V_{1} V_{2}^{-1} c_{0}\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right) \int_{K_{M}(w)} \psi\left(t B\left(Y, k_{1} y_{w}^{-1} X\right)\right) d k_{1}
\end{aligned}
$$

But using (3.9),

$$
q^{c d\left(\mathfrak{m}^{\perp}\right)} V_{1} V_{2}^{-1} c_{0}\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right)=V(K, d x)^{-1} V\left(K_{M}(w), d m\right) c\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right)
$$

Thus the lemma is valid for $T=\max \left\{T_{1}, T_{1}(w), T_{2}(w): w \in W\right\}$.
Lemma 4.3. Fix $H \in \omega(\gamma) \cap \mathfrak{g}^{\prime}$. Then there is a compact open subset G_{H} of G satisfying the following conditions.
(i) For all $X \in \omega_{0},|t| \geq 1$,

$$
\Phi(\mathfrak{g}, X, t H)=\left|\eta_{\mathfrak{g}}(X)\right|^{1 / 2}\left|\eta_{\mathfrak{g}}(t H)\right|^{1 / 2} \int_{G_{H}} \int_{K} \psi\left(t B\left(x^{-1} H, k X\right)\right) d k d x
$$

(ii) For each $w \in W_{G}(\mathfrak{b}, \mathfrak{m})$, define $M_{H}(w)=M \cap G_{H} y_{w}$. Then for all $X \in \omega_{0}$, $|t| \geq 1$,
$\Phi\left(\mathfrak{m}, y_{w}^{-1} X, t H\right)$

$$
=\left|\eta_{\mathfrak{m}}\left(y_{w}^{-1} X\right)\right|^{1 / 2}\left|\eta_{\mathfrak{m}}(t H)\right|^{1 / 2} \int_{M_{H}(w)} \int_{K_{M}(w)} \psi\left(t B\left(m^{-1} H, k_{1} y_{w}^{-1} X\right)\right) d k_{1} d m
$$

Proof. Let $V_{0}=\omega_{0}^{G}$. Since $\{H\}$ is a compact subset of \mathfrak{h}^{\prime}, by Lemma 5.4 of [2] there is $C>0$ so that

$$
\int_{K} \psi(t B(k H, Y)) d k=0
$$

for all $Y \in V_{0},|t| \geq 1$ unless $\|Y\| \leq C$. Fix $w \in W_{G}(\mathfrak{b}, \mathfrak{m})$ and let $V_{M}=\left(y_{w}^{-1} \omega_{0}\right)^{M}$. Applying Lemma 5.4 of [2] to \mathfrak{m} and $K_{M}=K \cap M$ there is $C_{w}>0$ so that

$$
\int_{K_{M}} \psi(t B(k H, Y)) d k=0
$$

for all $Y \in V_{M},|t| \geq 1$ unless $\|Y\| \leq C_{w}$. Let $C_{H}=\max \left\{C, C_{w}: w \in W_{G}(\mathfrak{b}, \mathfrak{m})\right\}$.
Let $Q=\left\{Y \in V_{0}:\|Y\| \leq C_{H}\right\}$. It is a compact subset of G, so that there is a compact subset Ω of G such that $x \omega_{0} \cap Q \neq \emptyset$ implies that $x \in \Omega$. Let $G_{H}=K \Omega K$. It is a compact open subset of G satisfying $G_{H}=K G_{H} K$.

Let $X \in \omega_{0},|t| \geq 1$. Then

$$
\Phi(\mathfrak{g}, X, t H)=\left|\eta_{\mathfrak{g}}(X)\right|^{1 / 2}\left|\eta_{\mathfrak{g}}(t H)\right|^{1 / 2} \int_{G} \int_{K} \psi(t B(k H, x X)) d k d x
$$

Let $x \in G$ and suppose $\|x X\| \leq C_{H}$. Then $x X \in V_{0} \cap Q$ so that $x \in \Omega \subset G_{H}$. Thus for $x \notin G_{H},\|x X\|>C_{H}$, so that $\int_{K} \psi(t B(k H, x X)) d k=0$. Thus

$$
\int_{G} \int_{K} \psi(t B(k H, x X)) d k d x=\int_{G_{H}} \int_{K} \psi(t B(k H, x X)) d k d x
$$

But since G_{H} is compact and K bi-invariant, we have

$$
\begin{aligned}
\int_{G_{H}} & \int_{K} \psi(t B(k H, x X)) d k d x \\
& =\int_{K} \int_{G_{H}} \int_{K} \psi\left(t B\left(k H, x k_{1} X\right)\right) d k d x d k_{1} \\
& =\int_{K} \int_{G_{H}} \int_{K} \psi\left(t B\left(x^{-1} k H, k_{1} X\right)\right) d k_{1} d x d k \\
& =\int_{G_{H}} \int_{K} \psi\left(t B\left(x^{-1} H, k_{1} X\right)\right) d k_{1} d x
\end{aligned}
$$

Fix $w \in W_{G}(\mathfrak{b}, \mathfrak{m})$. Let $X \in \omega_{0},|t| \geq 1$. Then

$$
\Phi\left(\mathfrak{m}, y_{w}^{-1} X, t H\right)=\left|\eta_{\mathfrak{m}}\left(y_{w}^{-1} X\right)\right|^{1 / 2}\left|\eta_{\mathfrak{m}}(t H)\right|^{1 / 2} \int_{M} \int_{K_{M}} \psi\left(t B\left(k H, m y_{w}^{-1} X\right)\right) d k d m
$$

Let $m \in M$ and suppose $\left\|m y_{w}^{-1} X\right\| \leq C_{H}$. Then $m y_{w}^{-1} X \in V_{0} \cap Q$ so that $m y_{w}^{-1} \in G_{H}$. Thus $m \in M \cap G_{H} y_{w}=M_{H}(w)$. Thus we have

$$
\int_{M} \int_{K_{M}} \psi\left(t B\left(k H, m y_{w}^{-1} X\right)\right) d k d m=\int_{M_{H}(w)} \int_{K_{M}} \psi\left(t B\left(k H, m y_{w}^{-1} X\right)\right) d k d m
$$

Let $m \in M, k \in K_{M}=K \cap M, k_{1} \in K_{M}(w)=M \cap y_{w}^{-1} K y_{w}$. Then

$$
k^{-1} G_{H} y_{w} k_{1}^{-1}=k^{-1} G_{H}\left(y_{w} k_{1} y_{w}^{-1}\right)^{-1} y_{w}=G_{H} y_{w}
$$

since $k, y_{w} k_{1} y_{w}^{-1} \in K$. Thus $k m k_{1} \in M_{H}(w)$ if and only if $k m k_{1} \in G_{H} y_{w}$ if and only if $m \in k^{-1} G_{H} y_{w} k_{1}^{-1}=G_{H} y_{w}$ if and only if $m \in M_{H}(w)$. Thus as above we can write

$$
\begin{aligned}
\int_{M_{H}(w)} & \int_{K_{M}} \psi\left(t B\left(k H, m y_{w}^{-1} X\right)\right) d k d m \\
= & \int_{K_{M}(w)} \int_{M_{H}(w)} \int_{K_{M}} \psi\left(t B\left(k H, m k_{1} y_{w}^{-1} X\right)\right) d k d m d k_{1} \\
= & \int_{K_{M}} \int_{M_{H}(w)} \int_{K_{M}(w)} \psi\left(t B\left(m^{-1} k H, k_{1} y_{w}^{-1} X\right)\right) d k_{1} d m d k \\
= & \int_{M_{H}(w)} \int_{K_{M}(w)} \psi\left(t B\left(m^{-1} H, k_{1} y_{w}^{-1} X\right)\right) d k_{1} d m
\end{aligned}
$$

The following lemma completes the proof of Proposition [2.1] Define $T(\gamma)=T$ as in Lemma 4.2 .

Lemma 4.4. For all $X \in \omega_{0}, H \in \omega(\gamma) \cap \mathfrak{h}^{\prime},|t| \geq T$,

$$
\Phi(\mathfrak{g}, X, t H)=\sum_{w \in W_{G}(\mathfrak{b}, \mathfrak{m})} c\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right) \Phi\left(\mathfrak{m}, y_{w}^{-1} X, t H\right)
$$

Proof. Fix $X \in \omega_{0}, H \in \omega(\gamma) \cap \mathfrak{h}^{\prime},|t| \geq T$. Then by Lemma 4.3 since $|t| \geq 1$,

$$
\Phi(\mathfrak{g}, X, t H)=\left|\eta_{\mathfrak{g}}(X)\right|^{1 / 2}\left|\eta_{\mathfrak{g}}(t H)\right|^{1 / 2} \int_{G_{H}} \int_{K} \psi\left(t B\left(x^{-1} H, k X\right)\right) d k d x .
$$

Let $x \in G$. Then by Lemma 4.2 since $|t| \geq T$ and $x^{-1} H \in V$,

$$
\int_{K} \psi\left(t B\left(x^{-1} H, k X\right)\right) d k=0
$$

unless $x^{-1} H \in V(K)$. Now by Lemma 4.1(iv), this implies that $x^{-1} \in K y_{w} M$ for some $w \in W=W_{G}(\mathfrak{b}, \mathfrak{m})$. Write $x=m y_{w}^{-1} k$ for $m \in M, k \in K$. Then $x \in G_{H}$ if and only if $m y_{w}^{-1} \in G_{H}$ if and only if $m \in G_{H} y_{w} \cap M=M_{H}(w)$. Finally, by Lemma4.1 (i) the cosets $K y_{w} M, w \in W$, are disjoint, so that

$$
\begin{aligned}
& \int_{G_{H}} \int_{K} \psi\left(t B\left(x^{-1} H, k X\right)\right) d k d x \\
& =\sum_{w \in W} V(K, d x) V\left(K_{M}(w), d m\right)^{-1} \int_{K} \int_{M_{H}(w)} \int_{K} \psi\left(t B\left(k_{1}^{-1} y_{w} m^{-1} H, k X\right)\right) d k d m d k_{1} \\
& =\sum_{w \in W} V(K, d x) V\left(K_{M}(w), d m\right)^{-1} \int_{M_{H}(w)} \int_{K} \psi\left(t B\left(y_{w} m^{-1} H, k X\right)\right) d k d m
\end{aligned}
$$

Fix $w \in W, m \in M_{H}(w)$. Then since $m^{-1} H \in U$ and $|t| \geq T$, using Lemma4.2,

$$
\begin{aligned}
& V(K, d x) V\left(K_{M}(w), d m\right)^{-1} \int_{K} \psi\left(t B\left(y_{w} m^{-1} H, k X\right)\right) d k=\left|\eta_{\mathfrak{g} / \mathfrak{m}}\left(t m^{-1} H\right)\right|^{-1 / 2} \\
& \quad \times\left|\eta_{\mathfrak{g} / \mathfrak{m}}\left(y_{w}^{-1} X\right)\right|^{-1 / 2} c\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right) \int_{K_{M}(w)} \psi\left(t B\left(m^{-1} H, k_{1} y_{w}^{-1} X\right)\right) d k_{1} .
\end{aligned}
$$

But

$$
\begin{aligned}
& \left|\eta_{\mathfrak{g}}(X)\right|^{1 / 2}\left|\eta_{\mathfrak{g}}(t H)\right|^{1 / 2}\left|\eta_{\mathfrak{g} / \mathfrak{m}}\left(t m^{-1} H\right)\right|^{-1 / 2}\left|\eta_{\mathfrak{g} / \mathfrak{m}}\left(y_{w}^{-1} X\right)\right|^{-1 / 2} \\
& \quad=\left|\eta_{\mathfrak{m}}\left(y_{w}^{-1} X\right)\right|^{1 / 2}\left|\eta_{\mathfrak{m}}(t H)\right|^{1 / 2}
\end{aligned}
$$

Thus using Lemma 4.3,

$$
\begin{aligned}
& \Phi(\mathfrak{g}, X, t H)=\sum_{w \in W} c\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right) \\
& \quad \times\left|\eta_{\mathfrak{m}}\left(y_{w}^{-1} X\right)\right|^{1 / 2}\left|\eta_{\mathfrak{m}}(t H)\right|^{1 / 2} \int_{M_{H}(w)} \int_{K_{M}(w)} \psi\left(t B\left(m^{-1} H, k_{1} y_{w}^{-1} X\right)\right) d k_{1} d m \\
& \quad=\sum_{w \in W} c\left(\mathfrak{g}, \mathfrak{m}, \gamma, t y_{w}^{-1} X\right) \Phi\left(\mathfrak{m}, y_{w}^{-1} X, t H\right) .
\end{aligned}
$$

We now keep the assumption that \mathfrak{b} is elliptic, but remove the assumption that \mathfrak{g} is semisimple. Let Z denote the split component of the center of G. It is also the split component of the Cartan subgroup of G corresponding to \mathfrak{b}. Let $d x^{*}$ and $d m^{*}$ be choices of Haar measures on G / Z and M / Z respectively, and define $c\left(\mathfrak{g}, \mathfrak{m}, d x^{*} / d m^{*}\right)$ as in (3.10).

Lemma 4.5. Let ω be a compact subset of \mathfrak{b}^{\prime}, and let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} with $\gamma \in \mathfrak{h}$. Then there exist a neighborhood $\omega(\gamma)$ of γ in \mathfrak{h} and $T(\gamma)>0$ so that for all $X \in \omega, H \in \omega(\gamma) \cap \mathfrak{h}^{\prime}$, and $t \in F,|t| \geq T(\gamma)$,

$$
\Phi\left(\mathfrak{g}, d x^{*}, X, t H\right)=\sum_{w \in W_{G}(\mathfrak{b}, \mathfrak{m})} c\left(\mathfrak{g}, \mathfrak{m}, d x^{*} / d m^{*}, \gamma, t y_{w}^{-1} X\right) \Phi\left(\mathfrak{m}, d m^{*}, y_{w}^{-1} X, t H\right)
$$

Proof. Write $\mathfrak{g}=\mathfrak{z}+\mathfrak{g}_{1}, \mathfrak{b}=\mathfrak{b}_{1}+\mathfrak{z}, \mathfrak{h}=\mathfrak{h}_{1}+\mathfrak{z}$, where \mathfrak{g}_{1} is semisimple, \mathfrak{b}_{1} is an elliptic Cartan subalgebra of \mathfrak{g}_{1}, and \mathfrak{h}_{1} is an arbitrary Cartan subalgebra of \mathfrak{g}_{1}. Write $\gamma=Z_{0}+\gamma_{1}, Z_{0} \in \mathfrak{z}, \gamma_{1} \in \mathfrak{h}_{1}$. Then $\mathfrak{m}=C_{\mathfrak{g}}(\gamma)=\mathfrak{z}+\mathfrak{m}_{1}$ where $\mathfrak{m}_{1}=C_{\mathfrak{g}_{1}}\left(\gamma_{1}\right)$. We can identify $G_{1}=G / Z$ and $M_{1}=M / Z$. Let $d x_{1}$ and $d m_{1}$ be the Haar measures on G_{1} and M_{1} corresponding to $d x^{*}$ and $d m^{*}$ respectively with these identifications. Then for all $Z_{1}, Z_{2} \in \mathfrak{z}, X_{1} \in \mathfrak{b}_{1}^{\prime}, H_{1} \in \mathfrak{h}_{1}^{\prime}, w \in W=W_{G}(\mathfrak{b}, \mathfrak{m})=W_{1}=W_{G_{1}}\left(\mathfrak{b}_{1}, \mathfrak{m}_{1}\right)$,

$$
\begin{gathered}
\Phi\left(\mathfrak{g}, d x^{*}, Z_{1}+X_{1}, Z_{2}+H_{1}\right)=\psi\left(B\left(Z_{1}, Z_{2}\right)\right) \Phi\left(\mathfrak{g}_{1}, d x_{1}, X_{1}, H_{1}\right) \\
\Phi\left(\mathfrak{m}, d m^{*}, y_{w}^{-1}\left(Z_{1}+X_{1}\right), Z_{2}+H_{1}\right)=\psi\left(B\left(Z_{1}, Z_{2}\right)\right) \Phi\left(\mathfrak{m}_{1}, d m_{1}, y_{w}^{-1} X_{1}, H_{1}\right) \\
c\left(\mathfrak{g}, \mathfrak{m}, d x^{*} / d m^{*}, \gamma, y_{w}^{-1}\left(Z_{1}+X_{1}\right)\right)=c\left(\mathfrak{g}_{1}, \mathfrak{m}_{1}, d x_{1} / d m_{1}, \gamma_{1}, y_{w}^{-1} X_{1}\right)
\end{gathered}
$$

By Proposition 2.1 there are a neighborhood $\omega_{1}\left(\gamma_{1}\right)$ in \mathfrak{h}_{1} and $T\left(\gamma_{1}\right)>0$ so that for all $X_{1} \in \omega_{1}, H_{1} \in \omega_{1}\left(\gamma_{1}\right) \cap \mathfrak{h}_{1}^{\prime},|t| \geq T\left(\gamma_{1}\right)$,

$$
\begin{aligned}
& \Phi\left(\mathfrak{g}_{1}, d x_{1}, X_{1}, t H_{1}\right) \\
& \quad=\sum_{w \in W_{1}} c\left(\mathfrak{g}_{1}, \mathfrak{m}_{1}, d x_{1} / d m_{1}, \gamma_{1}, t y_{w}^{-1} X_{1}\right) \Phi\left(\mathfrak{m}_{1}, d m_{1}, y_{w}^{-1} X_{1}, t H_{1}\right)
\end{aligned}
$$

Then for all $Z_{1}, Z_{2} \in \mathfrak{z}, X_{1} \in \omega_{1}, H_{1} \in \omega_{1}\left(\gamma_{1}\right) \cap \mathfrak{h}_{1}^{\prime},|t| \geq T\left(\gamma_{1}\right)$,

$$
\begin{aligned}
& \Phi\left(\mathfrak{g}, d x^{*}, Z_{1}+X_{1}, t\left(Z_{2}+H_{1}\right)\right)=\psi\left(B\left(Z_{1}, t Z_{2}\right)\right) \Phi\left(\mathfrak{g}_{1}, d x_{1}, X_{1}, t H_{1}\right) \\
& =\psi\left(B\left(Z_{1}, t Z_{2}\right)\right) \sum_{w \in W_{1}} c\left(\mathfrak{g}_{1}, \mathfrak{m}_{1}, d x_{1} / d m_{1}, \gamma_{1}, t y_{w}^{-1} X_{1}\right) \Phi\left(\mathfrak{m}_{1}, d x_{1}, y_{w}^{-1} X_{1}, t H_{1}\right) \\
& =\sum_{w \in W} c\left(\mathfrak{g}, \mathfrak{m}, d x^{*} / d m^{*}, \gamma, t y_{w}^{-1}\left(Z_{1}+X_{1}\right)\right) \Phi\left(\mathfrak{m}, d m^{*}, y_{w}^{-1}\left(Z_{1}+X_{1}\right), t\left(Z_{2}+H_{1}\right)\right)
\end{aligned}
$$

Thus we can take $\omega(\gamma)=\mathfrak{z}+\omega_{1}\left(\gamma_{1}\right)$ and $T(\gamma)=T\left(\gamma_{1}\right)$.
Suppose now that \mathfrak{b} is an arbitrary Cartan subalgebra of \mathfrak{g}. Let A be the split component of B, and fix an invariant measure $d x^{*}$ on G / A. Let $G_{\mathfrak{b}}$ denote the centralizer in G of A. Normalize the invariant measure $d x_{\mathfrak{b}}^{*}$ on $G_{\mathfrak{b}} / A$ so that in the notation of Lemma 2.2 we have

$$
\begin{equation*}
\Phi\left(\mathfrak{g}, d x^{*}, X, H\right)=\sum_{s \in W_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right)} \Phi\left(\mathfrak{g}_{\mathfrak{b}}, d x_{\mathfrak{b}}^{*}, X, y_{s}^{-1} H\right), X \in \mathfrak{b}^{\prime}, H \in \mathfrak{h}^{\prime} \tag{4.3}
\end{equation*}
$$

Fix $w \in W_{G}(\mathfrak{b}, \mathfrak{m})$ and a representative $y_{w} \in N_{G}(\mathfrak{b}, \mathfrak{m})$. Then $A_{w}=y_{w}^{-1} A y_{w}$ is the split component of the Cartan subgroup $y_{w}^{-1} B y_{w}$ of M. Fix an invariant measure $d m_{w}^{*}$ on M / A_{w}. Now the centralizer in M of A_{w} is $M_{w, \mathfrak{b}}=M \cap y_{w}^{-1} G_{\mathfrak{b}} y_{w}$. For each $u \in W_{M}\left(\mathfrak{h}, \mathfrak{m}_{w, \mathfrak{b}}\right)$, let $y_{u} \in N_{M}\left(\mathfrak{h}, \mathfrak{m}_{w, \mathfrak{b}}\right)$ be a representative for u. Then by

Lemma 2.2 applied to \mathfrak{m} and $\mathfrak{m}_{w, \mathfrak{b}}$, we can normalize the invariant measure $d m_{w, \mathfrak{b}}^{*}$ on $\left(M_{w, \mathfrak{b}}\right) / A_{w}$ so that for all $X \in \mathfrak{b}^{\prime}, H \in \mathfrak{h}^{\prime}$ we have

$$
\begin{equation*}
\Phi\left(\mathfrak{m}, d m_{w}^{*}, y_{w}^{-1} X, H\right)=\sum_{u \in W_{M}\left(\mathfrak{h}, \mathfrak{m}_{w, \mathfrak{b}}\right)} \Phi\left(\mathfrak{m}_{w, \mathfrak{b}}, d m_{w, \mathfrak{b}}^{*}, y_{w}^{-1} X, y_{u}^{-1} H\right) . \tag{4.4}
\end{equation*}
$$

Now $y_{w} \gamma \in \mathfrak{g}_{\mathfrak{b}}$ and $C_{\mathfrak{g}_{\mathfrak{b}}}\left(y_{w} \gamma\right)=\mathfrak{g}_{\mathfrak{b}} \cap y_{w} \mathfrak{m}=y_{w} \mathfrak{m}_{w, \mathfrak{b}}$. Define

$$
\begin{equation*}
c_{w}\left(d x^{*} / d m_{w}^{*}, \gamma, X\right)=c\left(\mathfrak{g}_{\mathfrak{b}}, y_{w} \mathfrak{m}_{w, \mathfrak{b}}, d x_{\mathfrak{b}}^{*} /\left(d m_{w, \mathfrak{b}}^{*}\right)^{w}, y_{w} \gamma, X\right), X \in \mathfrak{b}^{\prime}, \tag{4.5}
\end{equation*}
$$

where $c\left(\mathfrak{g}_{\mathfrak{b}}, y_{w} \mathfrak{m}_{w, \mathfrak{b}}, d x_{\mathfrak{b}}^{*} /\left(d m_{w, \mathfrak{b}}^{*}\right)^{w}, y_{w} \gamma, X\right)$ is defined as in (3.10) with $\mathfrak{g}_{\mathfrak{b}}$ instead of \mathfrak{g} and $y_{w} \mathfrak{m}_{w, \mathfrak{b}}$ instead of \mathfrak{m}, and the invariant measure $\left(d m_{w, \mathfrak{b}}^{*}\right)^{w}$ on $y_{w} M_{w, \mathfrak{b}} y_{w}^{-1} / A$ is normalized by transferring the invariant measure $d m_{w, \mathfrak{b}}^{*}$ on $M_{w, \mathfrak{b}} / A_{w}$ used in (4.4) via the map $m \rightarrow y_{w} m y_{w}^{-1}$.

Fix $s \in W_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right)$ and a representative $y_{s} \in N_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right)$. Then $y_{s}^{-1} \gamma \in y_{s}^{-1} \mathfrak{h} \subset \mathfrak{g}_{\mathfrak{b}}$, and we define $\mathfrak{m}_{\mathfrak{b}, s}=C_{\mathfrak{g}_{\mathfrak{b}}}\left(y_{s}^{-1} \gamma\right)=\mathfrak{g}_{\mathfrak{b}} \cap y_{s}^{-1} \mathfrak{m}$.
Lemma 4.6. There is a bijection $(s, v) \leftrightarrow(w, u)$ between

$$
\left\{(s, v): s \in W_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right), v \in W_{G_{\mathfrak{b}}}\left(\mathfrak{b}, \mathfrak{m}_{\mathfrak{b}, s}\right)\right\}
$$

and

$$
\left\{(w, u): w \in W_{G}(\mathfrak{b}, \mathfrak{m}), u \in W_{M}\left(\mathfrak{h}, \mathfrak{m}_{w, \mathfrak{b}}\right)\right\}
$$

such that if $y_{s} \in N_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right)$ is a representative for $s, y_{v} \in N_{G_{\mathfrak{b}}}\left(\mathfrak{b}, \mathfrak{m}_{\mathfrak{b}, s}\right)$ is a representative for v, and $y_{w} \in N_{G}(\mathfrak{b}, \mathfrak{m})$ is a representative for w, then $y_{s} y_{v}^{-1} y_{w} \in$ $N_{M}\left(\mathfrak{h}, \mathfrak{m}_{w, \mathfrak{b}}\right)$ is a representative of u.
Proof. Let $s \in W_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right), v \in W_{G_{\mathfrak{b}}}\left(\mathfrak{b}, \mathfrak{m}_{\mathfrak{b}, s}\right)$. Then $y_{v}^{-1} \mathfrak{b} \subset \mathfrak{m}_{\mathfrak{b}, s} \subset y_{s}^{-1} \mathfrak{m}$ so that $y_{s} y_{v}^{-1} \mathfrak{b} \subset \mathfrak{m}$. Thus $y_{v} y_{s}^{-1} \in N_{G}(\mathfrak{b}, \mathfrak{m})$. Thus there are unique $w \in W_{G}(\mathfrak{b}, \mathfrak{m})$ and $m \in M$ such that $y_{v} y_{s}^{-1}=y_{w} m^{-1}$. Now $y_{s} y_{v}^{-1} y_{w}=m \in M$ and $\mathfrak{h} \subset \mathfrak{m}$, so that $m^{-1} \mathfrak{h} \subset \mathfrak{m}$. Further, $m^{-1} \mathfrak{h}=y_{w}^{-1} y_{v} y_{s}^{-1} \mathfrak{h} \subset y_{w}^{-1} \mathfrak{g}_{\mathfrak{b}}$ since $y_{v} y_{s}^{-1} \mathfrak{h} \subset y_{v} \mathfrak{g}_{\mathfrak{b}}=\mathfrak{g}_{\mathfrak{b}}$. Thus $m^{-1} \mathfrak{h} \subset \mathfrak{m} \cap y_{w}^{-1} \mathfrak{g}_{\mathfrak{b}}=\mathfrak{m}_{w, \mathfrak{b}}$ so that $m \in N_{M}\left(\mathfrak{h}, \mathfrak{m}_{w, \mathfrak{b}}\right)$, and so represents a unique class $u \in W_{M}\left(\mathfrak{h}, \mathfrak{m}_{w, \mathfrak{b}}\right)$. Now we map $(s, v) \rightarrow(w, u)$.

Now let $w \in W_{G}(\mathfrak{b}, \mathfrak{m}), u \in W_{M}\left(\mathfrak{h}, \mathfrak{m}_{w, \mathfrak{b}}\right)$. Then for any representative y_{u} for u, $y_{w} y_{u}^{-1} \mathfrak{h} \subset \mathfrak{g}_{b}$ so there are unique $s \in W_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right)$ and $x \in G_{\mathfrak{b}}$ such that $y_{u} y_{w}^{-1}=$ $y_{s} x^{-1}$. But as above, $x^{-1} \mathfrak{b} \subset \mathfrak{m}_{\mathfrak{b}, s}$. Thus $x \in N_{G_{\mathfrak{b}}}\left(\mathfrak{b}, \mathfrak{m}_{\mathfrak{b}, s}\right)$ represents a unique $v \in$ $W_{G_{\mathfrak{b}}}\left(\mathfrak{b}, \mathfrak{m}_{\mathfrak{b}, s}\right)$. Now if y_{v} is any representative for v, there is $m \in M_{\mathfrak{b}, s}$ such that $x=$ $y_{v} m$. Now $y_{s} y_{v}^{-1} y_{w}=y_{u} m_{1}$ where $m_{1}=y_{w}^{-1} y_{v} m y_{v}^{-1} y_{w} \in y_{w}^{-1} y_{v}\left(M_{\mathfrak{b}, s}\right) y_{v}^{-1} y_{w}=$ $y_{w}^{-1} G_{\mathfrak{b}} y_{w} \cap m_{1}^{-1} M m_{1}$. Thus $m_{1} \in y_{w}^{-1} G_{\mathfrak{b}} y_{w} \cap M=M_{w, \mathfrak{b}}$ so that $y_{u} m_{1}$ is also a representative of u. Thus the map $(w, u) \rightarrow(s, v)$ gives an inverse mapping.

Lemma 4.7. Let ω be a compact subset of $\mathfrak{\mathfrak { b }}$. Then there exist a neighborhood $\omega(\gamma)$ of γ in \mathfrak{h} and $T(\gamma)>0$ so that for all $X \in \omega, H \in \omega(\gamma) \cap \mathfrak{h}^{\prime}$, and $t \in F,|t| \geq T(\gamma)$,

$$
\Phi\left(\mathfrak{g}, d x^{*}, X, t H\right)=\sum_{w \in W_{G}(\mathfrak{b}, \mathfrak{m})} c_{w}\left(d x^{*} / d m_{w}^{*}, \gamma, t X\right) \Phi\left(\mathfrak{m}, d m_{w}^{*}, y_{w}^{-1} X, t H\right) .
$$

Proof. By (4.3), for all $X \in \mathfrak{b}^{\prime}, H \in \mathfrak{h}^{\prime}$,

$$
\Phi\left(\mathfrak{g}, d x^{*}, X, H\right)=\sum_{s \in W_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right)} \Phi\left(\mathfrak{g}_{\mathfrak{b}}, d x_{\mathfrak{b}}^{*}, X, y_{s}^{-1} H\right) .
$$

Fix $s \in W_{G}\left(\mathfrak{h}, \mathfrak{m}_{\mathfrak{b}}\right)$. Then $y_{s}^{-1} \gamma \in \mathfrak{g}_{\mathfrak{b}}$ and $C_{\mathfrak{g}_{\mathfrak{b}}}\left(y_{s}^{-1} \gamma\right)=\mathfrak{g}_{\mathfrak{b}} \cap y_{s}^{-1} \mathfrak{m}=\mathfrak{m}_{\mathfrak{b}, s}$. Since \mathfrak{b} is an elliptic Cartan subalgebra of $\mathfrak{g}_{\mathfrak{b}}$ and $\omega \subset \mathfrak{b} \cap \mathfrak{g}^{\prime} \subset \mathfrak{b} \cap \mathfrak{g}_{\mathfrak{b}}^{\prime}$, we can apply Lemma
4.5 to $y_{s}^{-1} \gamma$ to obtain a neighborhood $\omega^{\prime}\left(y_{s}^{-1} \gamma\right)$ of $y_{s}^{-1} \gamma$ in $y_{s}^{-1} \mathfrak{h}$ and $T^{\prime}\left(y_{s}^{-1} \gamma\right)>0$ so that for all $X \in \omega, H \in \omega^{\prime}\left(y_{s}^{-1} \gamma\right) \cap \mathfrak{h}^{\prime},|t| \geq T^{\prime}\left(y_{s}^{-1} \gamma\right)$,

$$
\begin{aligned}
\Phi\left(\mathfrak{g}_{\mathfrak{b}},\right. & \left.d x_{\mathfrak{b}}^{*}, X, t H\right) \\
& =\sum_{v \in W_{G_{\mathfrak{b}}}\left(\mathfrak{b}, \mathfrak{m}_{\mathfrak{b}, s}\right)} c\left(\mathfrak{g}_{\mathfrak{b}}, \mathfrak{m}_{\mathfrak{b}, s}, d x_{\mathfrak{b}}^{*}, y_{s}^{-1} \gamma, t y_{v}^{-1} X\right) \Phi\left(\mathfrak{m}_{\mathfrak{b}, s}, y_{v}^{-1} X, t H\right) .
\end{aligned}
$$

Here, since by Lemma 4.5 $c\left(\mathfrak{g}_{\mathfrak{b}}, \mathfrak{m}_{\mathfrak{b}, s}, d x_{\mathfrak{b}}^{*} / d m_{s}^{*}\right) \Phi\left(\mathfrak{m}_{\mathfrak{b}, s}, d m_{s}^{*}\right)$ is independent of the choice $d m_{s}^{*}$ of invariant measure on $M_{\mathfrak{b}, s} / A$, we drop it from the notation.

Define $T(\gamma)=\max _{s} T^{\prime}\left(y_{s}^{-1} \gamma\right)$ and $\omega(\gamma)=\bigcap_{s} y_{s} \omega^{\prime}\left(y_{s}^{-1} \gamma\right)$. Then for all $X \in$ $\omega, H \in \omega(\gamma) \cap \mathfrak{h}^{\prime},|t| \geq T(\gamma)$, we have
$\Phi\left(\mathfrak{g}, d x^{*}, X, t H\right)$

$$
=\sum_{s \in W_{G}\left(\mathfrak{h}, \mathfrak{g}_{\mathfrak{b}}\right)} \sum_{v \in W_{G_{\mathfrak{b}}}\left(\mathfrak{b}, \mathfrak{m}_{\mathfrak{b}, s}\right)} c\left(\mathfrak{g}_{\mathfrak{b}}, \mathfrak{m}_{\mathfrak{b}, s}, d x_{\mathfrak{b}}^{*}, y_{s}^{-1} \gamma, t y_{v}^{-1} X\right) \Phi\left(\mathfrak{m}_{\mathfrak{b}, s}, y_{v}^{-1} X, t y_{s}^{-1} H\right)
$$

Fix a pair (s, v) and let (w, u) be the pair that corresponds to it by Lemma 4.6 so that $y_{v} \in G_{\mathfrak{b}}, y_{u} \in M$, and $y_{v} y_{s}^{-1}=y_{w} y_{u}^{-1}$. Then

$$
\begin{aligned}
y_{v} \mathfrak{m}_{b, s}=y_{v}\left(\mathfrak{g}_{\mathfrak{b}} \cap y_{s}^{-1} \mathfrak{m}\right) & =\mathfrak{g}_{\mathfrak{b}} \cap y_{v} y_{s}^{-1} \mathfrak{m}=\mathfrak{g}_{\mathfrak{b}} \cap y_{w} y_{u}^{-1} \mathfrak{m} \\
& =y_{w}\left(y_{w}^{-1} \mathfrak{g}_{\mathfrak{b}} \cap \mathfrak{m}\right)=y_{w} \mathfrak{m}_{w, \mathfrak{b}}
\end{aligned}
$$

Thus using Lemma 3.5 and 4.5, for all $X \in \mathfrak{b}^{\prime}, H \in \mathfrak{h}^{\prime}$,

$$
\begin{aligned}
c\left(\mathfrak{g}_{\mathfrak{b}},\right. & \left.\mathfrak{m}_{\mathfrak{b}, s}, d x_{\mathfrak{b}}^{*}, y_{s}^{-1} \gamma, y_{v}^{-1} X\right) \Phi\left(\mathfrak{m}_{\mathfrak{b}, s}, y_{v}^{-1} X, y_{s}^{-1} H\right) \\
& =c\left(\mathfrak{g}_{\mathfrak{b}}, y_{v} \mathfrak{m}_{\mathfrak{b}, s}, d x_{\mathfrak{b}}^{*}, y_{v} y_{s}^{-1} \gamma, X\right) \Phi\left(y_{v} \mathfrak{m}_{\mathfrak{b}, s}, X, y_{v} y_{s}^{-1} H\right) \\
& =c\left(\mathfrak{g}_{\mathfrak{b}}, y_{w} \mathfrak{m}_{w, \mathfrak{b}}, d x_{\mathfrak{b}}^{*} /\left(d m_{w, \mathfrak{b}}^{*}\right)^{w}, y_{w} \gamma, X\right) \Phi\left(y_{w} \mathfrak{m}_{w, \mathfrak{b}},\left(d m_{w, \mathfrak{b}}^{*}\right)^{w}, X, y_{w} y_{u}^{-1} H\right) \\
& =c_{w}\left(d x^{*} / d m_{w}^{*}, \gamma, X\right) \Phi\left(\mathfrak{m}_{w, \mathfrak{b}}, d m_{w, \mathfrak{b}}^{*}, y_{w}^{-1} X, y_{u}^{-1} H\right) .
\end{aligned}
$$

Finally, using (4.4) and Lemma 4.6, for all $X \in \omega, H \in \omega(\gamma) \cap \mathfrak{h}^{\prime},|t| \geq T(\gamma)$, we have

$$
\begin{aligned}
\Phi(\mathfrak{g}, & \left.d x^{*}, X, t H\right) \\
& =\sum_{w \in W_{G}(\mathfrak{b}, \mathfrak{m})} c_{w}\left(d x^{*} / d m_{w}^{*}, \gamma, t X\right) \sum_{u \in W_{M}\left(\mathfrak{h}, \mathfrak{m}_{w, \mathfrak{b}}\right)} \Phi\left(\mathfrak{m}_{w, \mathfrak{b}}, d m_{\mathfrak{b}, w}^{*}, y_{w}^{-1} X, t y_{u}^{-1} H\right) \\
& =\sum_{w \in W_{G}(\mathfrak{b}, \mathfrak{m})} c_{w}\left(d x^{*} / d m_{w}^{*}, \gamma, t X\right) \Phi\left(\mathfrak{m}, d m_{w}^{*}, y_{w}^{-1} X, t H\right)
\end{aligned}
$$

The following proposition completes the proof of Theorem 1.2 ,
Proposition 4.8. Let ω be a compact subset of \mathfrak{b}^{\prime}. Then there exist a neighborhood $U(\gamma)$ of γ in \mathfrak{m} and $T(\gamma)>0$ so that for all $X \in \omega, H \in U(\gamma) \cap \mathfrak{g}^{\prime}$, and $t \in F,|t| \geq$ $T(\gamma)$,

$$
\Phi\left(\mathfrak{g}, d x^{*}, X, t H\right)=\sum_{w \in W_{G}(\mathfrak{b}, \mathfrak{m})} c_{w}\left(d x^{*} / d m_{w}^{*}, \gamma, t X\right) \Phi\left(\mathfrak{m}, d m_{w}^{*}, y_{w}^{-1} X, t H\right)
$$

Proof. Since the measures $d x^{*}$ and $d m_{w}^{*}, w \in W=W_{G}(\mathfrak{b}, \mathfrak{m})$ are fixed, we drop them from the notation. Let $\mathfrak{h}_{1}, \ldots, \mathfrak{h}_{k}$ denote a complete set of representatives for the M-conjugacy classes of Cartan subalgebras of \mathfrak{m}, and fix $1 \leq i \leq k$. By

Lemma 4.7 there are a neighborhood $\omega_{i}(\gamma)$ of γ in \mathfrak{h}_{i} and $T_{i}(\gamma)>0$ so that for all $X \in \omega, H \in \omega_{i}(\gamma) \cap \mathfrak{g}^{\prime}$, and $t \in F,|t| \geq T_{i}(\gamma)$,

$$
\Phi(\mathfrak{g}, X, t H)=\sum_{w \in W} c_{w}(\gamma, t X) \Phi\left(\mathfrak{m}, y_{w}^{-1} X, t H\right)
$$

Let $T(\gamma)=\max _{1 \leq i \leq k} T_{i}(\gamma)$, and let $\omega(\gamma)$ be a neighborhood of γ in \mathfrak{m} small enough such that $\omega(\gamma) \cap \mathfrak{h}_{i} \subset \omega_{i}(\gamma)$ for $1 \leq i \leq k$. Now by Corollary 2.3 of [1] there is an open, closed, M-invariant neighborhood $U(\gamma)$ of γ in \mathfrak{m} such that $U(\gamma) \cap \mathfrak{h}_{i} \subset \omega(\gamma) \cap \mathfrak{h}_{i} \subset \omega_{i}(\gamma), 1 \leq i \leq k$. Now let $X \in \omega, H \in U(\gamma) \cap \mathfrak{g}^{\prime},|t| \geq T(\gamma)$. Then there are $m \in M, 1 \leq i \leq k, H_{i} \in \mathfrak{h}_{i}$, so that $H=m H_{i}$. But $H_{i}=m^{-1} H \in$ $U(\gamma) \cap \mathfrak{g}^{\prime} \cap \mathfrak{h}_{i} \subset \omega_{i}(\gamma) \cap \mathfrak{g}^{\prime}$. Thus

$$
\begin{aligned}
\Phi(\mathfrak{g}, X, t H) & =\Phi\left(\mathfrak{g}, X, t H_{i}\right)=\sum_{w \in W} c_{w}(\gamma, t X) \Phi\left(\mathfrak{m}, y_{w}^{-1} X, t H_{i}\right) \\
& =\sum_{w \in W} c_{w}(\gamma, t X) \Phi\left(\mathfrak{m}, y_{w}^{-1} X, t H\right)
\end{aligned}
$$

References

[1] Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, Preface and notes by S. DeBacker and P.J. Sally, Jr., University Lecture Series, Vol. 16, Amer. Math. Soc., Providence, R.I., 1999. MR 2001b:22015
[2] R. Herb, Orbital integrals on p-adic Lie algebras, Canadian J. Math. 52 (6) (2000), 11921220. MR 2001k:22021
[3] J.-L. Waldspurger, Une formule des traces locale pour les algebres de Lie p-adiques, J. Reine Angew. Math. 465 (1995), 41-99. MR 96i:22039

Department of Mathematics, University of Maryland, College Park, Maryland, 20742

E-mail address: rah@math.umd.edu

[^0]: Received by the editors March 14, 2001.
 2000 Mathematics Subject Classification. Primary 22E30, 22E45.
 Supported in part by NSF Grant DMS 0070649.

