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BOUNDS FOR FOURIER TRANSFORMS OF REGULAR
ORBITAL INTEGRALS ON p-ADIC LIE ALGEBRAS

REBECCA A. HERB

Abstract. Let G be a connected reductive p-adic group and let g be its Lie
algebra. LetO be a G-orbit in g. Then the orbital integral µO corresponding to
O is an invariant distribution on g, and Harish-Chandra proved that its Fourier
transform µ̂O is a locally constant function on the set g′ of regular semisimple
elements of g. Furthermore, he showed that a normalized version of the Fourier
transform is locally bounded on g. Suppose that O is a regular semisimple
orbit. Let γ be any semisimple element of g, and let m be the centralizer of
γ. We give a formula for µ̂O(tH) (in terms of Fourier transforms of orbital
integrals on m), for regular semisimple elements H in a small neighborhood of
γ in m and t ∈ F× sufficiently large. We use this result to prove that Harish-
Chandra’s normalized Fourier transform is globally bounded on g in the case
that O is a regular semisimple orbit.

1. Introduction

Let F be a p-adic field of characteristic zero. Let G be the set of F -rational
points of a connected reductive group defined over F , and let g be its Lie algebra.
For X ∈ g, let O = OX denote the G-orbit of X , and let µO denote the orbital
integral corresponding to O, so that

µO(f) =
∫
G/GX

f(xX) dx∗, f ∈ C∞c (g).(1.1)

Here GX denotes the centralizer of X in G and dx∗ is an invariant measure on
G/GX . Let B denote a symmetric, nondegenerate, G-invariant bilinear form on g,
and fix a nontrivial additive character ψ of F . Then we have the Fourier transform

f̂(X) =
∫

g

f(Y ) ψ(B(X,Y )) dY, X ∈ g, f ∈ C∞c (g).(1.2)

The distribution µ̂O(f) = µO(f̂), f ∈ C∞c (g), is the Fourier transform of the orbital
integral. Harish-Chandra [1] proved that it is a locally constant function on g′, the
set of regular semisimple elements of g.

For X ∈ g, let ηg(X) denote the coefficient of tl in the polynomial det(t−adX),
where t is an indeterminate and l is the rank of g. Then g′ = {X ∈ g : ηg(X) 6= 0}.
For any G-orbit O in g, we normalize µ̂O by defining

Φ(g,O, X) = |ηg(X)|1/2µ̂O(X), X ∈ g
′.(1.3)
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Harish-Chandra [1] proved that the normalized Fourier transform Φ(g,O) is locally
bounded on g. In this paper we will prove the following theorem.

Theorem 1.1. Let O be a regular semisimple G-orbit in g. Then

sup
X∈g′

|Φ(g,O, X)| <∞.

It is not true that Φ(g,O) is uniformly bounded on g for arbitrary orbits O. Let
O be any orbit, and define

d0(O) = dim g− dimO − rankg = dim gX − rankg(1.4)

where gX denotes the centralizer in g of a representative X ∈ O. Then d0(O) ≥ 0
and d0(O) = 0 when O is regular semisimple.

When O is a nilpotent orbit, it follows from the homogeneity property of nilpo-
tent orbital integrals (section 3.1 of [1]) that

Φ(g,O, t2X) = |t|d0(O)Φ(g,O, X), X ∈ g′, t ∈ F×.(1.5)

The results of [2] show that for general orbits O, Φ(g,O, t2X) also grows at infinity
like |t|d0(O). Thus Φ(g,O) is not uniformly bounded on g′ when d0(O) > 0.

The normalized Fourier transforms of regular semisimple orbital integrals are
given by the following formula. Let b be a Cartan subalgebra of g, and let A
denote the split component of the Cartan subgroup B of G corresponding to b. Let
K be a compact open subgroup of G. Then for all X ∈ b′, Y ∈ g′, we define

Φ(g, dx∗, X, Y ) = |ηg(X)|1/2|ηg(Y )|1/2
∫
G/A

∫
K

ψ(B(kY, xX))dkdx∗,(1.6)

where dx∗ is an invariant measure on G/A and dk is normalized Haar measure on
K. It is independent of the choice K of compact open subgroup. When the choice
of invariant measure dx∗ is not important, we will drop it from the notation and
write Φ(g, X, Y ). Harish-Chandra [1] proved that this integral is convergent, and
that if OX denotes the G-orbit of X ∈ b′, then we can normalize the Haar measure
on G/GX in (1.1) so that for all Y ∈ g′,

Φ(g, dx∗, X, Y ) = |ηg(X)|1/2|ηg(Y )|1/2µ̂OX (Y ) = |ηg(X)|1/2Φ(g,OX , Y ).(1.7)

Theorem 1.1 is a consequence of the following expansion at infinity. Fix a
semisimple element γ ∈ g and write m = Cg(γ),M = CG(γ). Define NG(b,m) =
{y ∈ G : y−1b ⊂ m}. Then as in [2], y ∈ NG(b,m) if and only if yM ⊂ NG(b,m),
and W = WG(b,m) = NG(b,m)/M is a finite set. Let w ∈ W , and let yw ∈
NG(b,m) be a representative for w. Then y−1

w b is a Cartan subalgebra of the re-
ductive Lie algebra m, so that given a normalization of invariant measure dm∗w on
M/y−1

w Ayw we can define Φ(m, dm∗w, y
−1
w X,Y ), X ∈ b′, Y ∈ m′, as in (1.6). For

each w ∈ W , there is a locally constant function cw(dx∗/dm∗w, γ, ·) : b′ → C de-
fined in (4.5). It has the property that |cw(dx∗/dm∗w, γ,X)| is a nonzero constant
independent of X ∈ b′.

Theorem 1.2. Let ω be a compact subset of b′. Then there exist a neighborhood
U(γ) of γ in m and T (γ) > 0 so that for all X ∈ ω,H ∈ U(γ)∩ g′, and t ∈ F, |t| ≥
T (γ),

Φ(g, dx∗, X, tH) =
∑
w∈W

cw(dx∗/dm∗w, γ, tX) Φ(m, dm∗w, y
−1
w X, tH).
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In the case that γ ∈ g′, Theorem 1.2 follows from Theorem 2.2 of [2] or from
results of Waldspurger in [3]. The proof in the general case uses techniques from
[2].

The following stronger version of Theorem 1.1 is an easy consequence of Theorem
1.2 and induction on the dimension of g.

Theorem 1.3. Let b be a Cartan subalgebra of g, and let ω be a compact subset of
b′. Then

sup
X∈ω,Y ∈g′

|Φ(g, X, Y )| <∞.

This paper is organized as follows. In §2 we show how Theorem 1.2 can be used
to prove Theorem 1.3. In §3 we prove technical results which are needed for the
proof of Theorem 1.2. Finally, Theorem 1.2 is proven in §4. This is done first in
the case that g is semisimple and b is elliptic. The general case follows from this
case using parabolic induction.

2. Proof of Theorem 1.3

The proof of Theorem 1.3 requires only the following simpler version of Theorem
1.2 which is proved in the first part of §4 as the first step in the proof of Theorem
1.2. Assume that g is semisimple and b is an elliptic Cartan subalgebra of g. Then
the split component of B is trivial. Fix Haar measures dx and dm on G and M
respectively, and define c(g,m, dx/dm, γ,X), X ∈ b′, as in (3.9).

Proposition 2.1. Let h be a Cartan subalgebra of g with γ ∈ h, and let ω be a
compact subset of b′. Then there exist a neighborhood ω(γ) of γ in h and T (γ) > 0
so that for all X ∈ ω,H ∈ ω(γ) ∩ h′, and t ∈ F, |t| ≥ T (γ),

Φ(g, dx,X, tH) =
∑

w∈WG(b,m)

c(g,m, dx/dm, γ, ty−1
w X) Φ(m, dm, y−1

w X, tH).

The proof of Theorem 1.3 from Proposition 2.1 is by induction on the dimension
of g. Since the normalizations of Haar measures are not important for Theorem 1.3
we drop them from the notation. If dim g < 3, then g is abelian and |Φ(g, X,H)| =
|ψ(B(X,H))| = 1 for all H,X ∈ g . Assume that dim g ≥ 3 and that the theorem
is true for all reductive Lie algebras of smaller dimension.

Suppose that g is not semisimple. Then we can write g = z + g1 where z is the
center of g, g1 is the derived subalgebra, and dim g1 < dim g. Then b = z + b1

where b1 is a Cartan subalgebra of g1. Further, g′ = z + g′1 and b′ = z + b′1.
Let G1 = G/Z. Then A1 = A/Z is the split component of B1 = B/Z, and we
can identify G/A and G1/A1. Now if we use the same invariant measure to define
Φ(g, X, Y ), X ∈ b′, Y ∈ g′, and Φ(g1, X1, Y1), X1 ∈ b′1, Y1 ∈ g′1, we have

Φ(g, Z1 +X1, Z2 + Y1) = ψ(B(Z1, Z2))Φ(g1, X1, Y1), Z1, Z2 ∈ z, X1 ∈ b
′
1, Y1 ∈ g

′.

Let ω be a compact subset of b′. Then there is a compact subset ω1 of b′1 so that
ω ⊂ z +ω1. By the induction hypothesis there is C > 0 so that |Φ(g1, X1, Y1)| ≤ C
for all X1 ∈ ω1, Y1 ∈ g′1. Thus for all Z1, Z2 ∈ z, X1 ∈ ω1, Y1 ∈ g′1,

|Φ(g, Z1 +X1, Z2 + Y1)| = |ψ(B(Z1, Z2))Φ(g1, X1, Y1)| ≤ C.
Thus we may as well assume that g is semisimple.

Since Φ(g, X) is a class function on g, and g has a finite number of conjugacy
classes of Cartan subalgebras, it suffices to show that for each Cartan subalgebra h
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of g, |Φ(g, X,H)| is uniformly bounded for X ∈ ω,H ∈ h′. Fix an arbitrary Cartan
subalgebra h of g.

Let A be the split component of B and let Gb denote the centralizer in G of A.
Define WG(h, gb) = NG(h, gb)/Gb where NG(h, gb) = {y ∈ G : y−1h ⊂ gb}. For
each s ∈ WG(h, gb), fix a representative ys ∈ NG(h, gb) for s. The following lemma
follows from combining Lemmas 1.7 and 1.13 of [1].

Lemma 2.2. Given a normalization dx∗ of invariant measure on G/A, there is a
normalization dx∗b of invariant measure on Gb/A (independent of h) so that for all
X ∈ b′, H ∈ h′,

Φ(g, dx∗, X,H) =
∑

s∈WG(h,gb)

Φ(gb, dx
∗
b, X, y

−1
s H).

Now if b is not elliptic, dim gb < dim g, so that for each s in the finite set
WG(h, gb), |Φ(gb, dx

∗
b
, X, y−1

s H)| is uniformly bounded for X ∈ ω and H ∈ h′.
Thus we may as well assume that b is elliptic.

Let ‖ · ‖ denote a norm on g, and let h1 = {H ∈ h : ‖H‖ = 1}. For each
γ ∈ h1, let ω(γ) ⊂ h and T (γ) > 0 satisfy the conditions of Proposition 2.1.
Since h1 is compact, there are γ1, ..., γk ∈ h1 such that h1 ⊂

⋃
1≤i≤k ω(γi). Let

T = max{T (γi) : 1 ≤ i ≤ k}. Then hT = {H ∈ h : ‖H‖ ≤ T } is compact so that by
Theorem 7.7 of [1], there is C1 so that |Φ(g, X,H)| ≤ C1 for all X ∈ ω,H ∈ hT ∩g′.
Further,

{H ∈ h : ‖H‖ > T } ⊂
⋃

1≤i≤k
{tH : H ∈ ω(γi), t ∈ F×, |t| > T }.

Thus it suffices to bound |Φ(g, X, tH)|, X ∈ ω,H ∈ ω(γi) ∩ g′, t ∈ F×, |t| > T , for
each 1 ≤ i ≤ k.

Fix 1 ≤ i ≤ k, and let mi = Cg(γi). For each w ∈WG(b,mi), let yw ∈ NG(b,mi)
be a representative for w. Then by Proposition 2.1, for all X ∈ ω,H ∈ ω(γi) ∩
g′, |t| > T ≥ T (γi),

Φ(g, X, tH) =
∑

w∈WG(b,mi)

c(g,mi, γi, ty
−1
w X) Φ(mi, y

−1
w X, tH).

Since g is semisimple and γi 6= 0, dim mi < dim g. Fix w ∈ WG(b,mi). Then ω(w) =
y−1
w ω is a compact subset of the regular set of the Cartan subalgebra y−1

w b of mi.
Thus by the induction hypothesis there is Cw > 0 so that |Φ(mi, y

−1
w X,Y )| ≤ Cw for

all X ∈ ω, Y ∈ m′i. Further, by Lemma 3.4, |c(g,mi, γi, ty
−1
w X)| = C′w is a nonzero

constant independent of X ∈ b′, t ∈ F . Thus for all X ∈ ω,H ∈ ω(γi) ∩ g′, |t| > T ,

|Φ(g, X, tH)| ≤
∑

w∈WG(b,mi)

C′wCw.

This concludes the proof of Theorem 1.3.

3. Evaluation of an Integral

In this section we prove Lemma 3.3 which is a slight generalization of Lemma
4.4 of [2]. This Lemma will be needed in §4 to prove Theorem 1.2.

Let R denote the ring of integers of F , P the maximal ideal in R, and $ a
uniformizing parameter so that P = $R. Let | · | denote the absolute value on F
such that |$| = q−1 where q = [R/P ]. We assume that the character ψ of F used
to define the Fourier transform in (1.2) has conductor R.
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There is n ≥ 1 so that g and G are subsets of Mn(F ). We have the usual norm
‖ · ‖ on g ⊂Mn(F ) given by

‖X‖ = max
i,j
|Xij |, X = [Xij ] ∈Mn(F ).(3.1)

Let B denote the symmetric, nondegenerate, bilinear form on g given by

B(X,Y ) = trXY, X, Y ∈ g ⊂Mn(F ).(3.2)

Fix a reductive subalgebra m of g such that m = Cg(γ) for some semisimple
element γ of g. Since m is reductive, the restriction of B to m is nondegenerate,
and g = m⊕ m⊥ where m⊥ = {X ∈ g : B(X,Y ) = 0 ∀ Y ∈ m}. For X ∈ g, write
X = X0 + X1 where X0 ∈ m, X1 ∈ m⊥. Then as in [2] we define new norms on g

as follows. For X = X0 +X1 ∈ g, define

‖X‖′ = max{‖X0‖, ‖X1‖}, ‖X‖′′ = sup
Z∈g,‖Z‖′≤1

|B(Z,X)|.(3.3)

As in [2] ‖X‖′′ = max{‖X0‖′′, ‖X1‖′′} and there is a constant 0 < C0 ≤ 1 so that

C0‖X‖′ ≤ ‖X‖′′ ≤ ‖X‖ ≤ ‖X‖′, X ∈ g.(3.4)

For any integer c ≥ 0, define

kc = {X ∈ g : ‖X‖′ ≤ q−c}.
It is a lattice in g. Define c0 > 0 as in Lemma 4.1 of [2]. Then in particular, for
any c ≥ c0, exp : kc → G is well defined and we let Kc = exp(kc). It is a compact
open subgroup of G contained in GL(n,R). For c ≥ c0, write

φc(X,Y ) =
∫
Kc

ψ(B(kX, Y ))dk, X, Y ∈ g,

where dk is normalized Haar measure on Kc.
Let X ∈ m. Then the restriction of adX to m⊥ is a linear transformation

TX : m⊥ → m⊥. Define mreg to be the set of all X ∈ m such that X is semisimple
and Cg(X) ⊂ m. Then for all X ∈ mreg, TX is invertible. For any integer s > 0, we
let

mreg
s = {X ∈ mreg : ‖X‖ ≤ |2|1/2, ‖T−1

X ‖ ≤ qs},

where ‖T−1
X ‖ is the operator norm of T−1

X . Then for all X ∈ mreg
s , Z1 ∈ m⊥,

q−s‖Z1‖ ≤ ‖adXZ1‖ ≤ |2|1/2‖Z1‖.(3.5)

Define C0 as in (3.4)

Lemma 3.1. Let H,Y ∈ mreg
s , and let Z0 ∈ m, Z1 ∈ m⊥. Then

‖Z1‖ ≤ q2sC−1
0 ‖adHadY Z1‖′′,

and if Z0 + Z1 ∈ kc where c is large enough such that q−c < q−2sC0, then

‖[H, exp(−Z0 − Z1)Y ]‖′′ = max{‖adHadY Z1‖′′, ‖[H, exp(−Z0)Y ]‖′′}.

Proof. Let Z0 ∈ m, Z1 ∈ m⊥. Then, since H,Y ∈ mreg
s , using (3.5)

‖adHadY Z1‖ ≥ q−2s‖Z1‖.
Thus by (3.4)

‖Z1‖ ≤ q2s‖adHadY Z1‖ ≤ q2sC−1
0 ‖adHadY Z1‖′′.
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Now suppose that Z0 +Z1 ∈ kc. Then ‖Z0 +Z1‖′ = max{‖Z0‖, ‖Z1‖} ≤ q−c, so
that ‖Zi‖ ≤ q−c, i = 0, 1. Now

[H, exp(−Z0 − Z1)Y ] =
∑
k≥0

1
k!

[H, (−adZ0 − adZ1)kY ] = W0 +W1 + V.

Here W0 = [H, exp(−Z0)Y ] ∈ m,W1 = [H, [−Z1, Y ]] = adHadY Z1 ∈ m⊥, and

V =
∑
k≥2

∑
ε

1
k!

(−1)k[H, adZε1adZε2 ...adZεkY ]

where for each k ≥ 2, the sum is over multi-indices ε = {εi}ki=1, εi ∈ {0, 1}, 1 ≤ i ≤
k, for which at least one εi = 1.

Using Lemma 4.1 of [2], for each k ≥ 2 and multi-index ε as above,

‖ 1
k!

[H, adZε1adZε2 ...adZεkY ]‖ ≤ | 1
k!
| ‖H‖ ‖Y ‖q−c(k−1)‖Z1‖ ≤ q−c‖Z1‖.

But by the first part of the lemma,

q−c‖Z1‖ ≤ q−cq2sC−1
0 ‖adHadY Z1‖′′ < ‖adHadY Z1‖′′ = ‖W1‖′′ ≤ ‖W0 +W1‖′′

when q−c < q−2sC0. Thus for such c we have ‖V ‖′′ ≤ ‖V ‖ < ‖W0 +W1‖′′.
Thus

‖[H, exp(−Z0 − Z1)Y ]‖′′ = ‖W0 +W1 + V ‖′′

= ‖W0 +W1‖′′ = max{‖W0‖′′, ‖W1‖′′}.

For c ≥ c0, let

k
M
c = {X ∈ m : ‖X‖ ≤ q−c}, KM

c = exp(kMc ),(3.6)

Lemma 3.2. There is c′ ≥ c0 so that for all c ≥ c′, Kc ∩M = KM
c .

Proof. Let γ be a semisimple element of g such that m = Cg(γ). We may as well
assume that ‖γ‖ ≤ |2|. Then since γ ∈ mreg, there is s > 0 so that for all Z1 ∈ m⊥,

q−s‖Z1‖ ≤ ‖ [Z1, γ] ‖ ≤ |2| ‖Z1‖.

Let c ≥ c0 such that q−c < q−s. Then clearly KM
c ⊂ Kc ∩ M . Let k ∈

Kc ∩ M . Then we can write k = exp(Z0 + Z1) where Z0 ∈ m, Z1 ∈ m⊥ with
‖Z0 + Z1‖′ ≤ q−c. Thus ‖Z0‖ ≤ q−c and ‖Z1‖ ≤ q−c. Now since k ∈ M,kγ = γ.
But kγ = exp(Z0 + Z1)γ = γ + [Z1, γ] +W where

W =
∑
k≥2

1
k!

ad (Z0 + Z1)k−1[Z1, γ].

Thus [Z1, γ] = −W .
But for each k ≥ 2, using Lemma 4.1 of [2]

‖ 1
k!

ad (Z0 + Z1)k−1[Z1, γ]‖ ≤ q−c‖Z1‖.

Thus ‖W‖ ≤ q−c‖Z1‖ < q−s‖Z1‖. But ‖[Z1, γ]‖ ≥ q−s‖Z1‖. Thus [Z1, γ] = −W
implies that Z1 = 0. Thus k = expZ0 ∈ KM

c .
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For H,Y ∈ mreg
s , define

m⊥(H,Y ) = {Z1 ∈ m⊥ : ‖adHadY Z1‖′′ ≤ 1}
and

I(m⊥, H, Y ) =
∫

m⊥(H,Y )

ψ(1/2B(Z1, adHadY Z1)) dZ1(3.7)

where dZ1 is Haar measure on m⊥ normalized so that {Z1 ∈ m⊥ : ‖Z1‖ ≤ 1} has
volume one. Let d(m⊥) denote the dimension of m⊥, and for X,Y ∈ m, define

φMc (X,Y ) =
∫
KM
c

ψ(B(kX, Y ))dk(3.8)

where dk is normalized Haar measure on KM
c .

Lemma 3.3. I(m⊥) is a locally constant function on mreg
s ×mreg

s . Further, let c be
large enough so that q−c < q−4s−c0C2

0 . Then for all H,Y ∈ mreg
s , |t| ≥ q2s+cC−1

0 ,

φc(t2H,Y ) = qcd(m⊥)|t|−d(m⊥) φMc (t2H,Y ) I(m⊥, H, Y ).

Proof. The first part is clear from the definition.
Fix c > 0 such that q−c < q−4s−c0C2

0 , H,Y ∈ mreg
s , and t ∈ F× such that

|t| ≥ q2s+cC−1
0 . By Proposition 4.2 of [2], since |t| ≥ qc, we have

φc(t2H,Y ) =
∫
Kc(H,Y,t)

ψ(t2B(kH, Y )) dk,

where Kc(H,Y, t) = {k ∈ Kc : ‖[H, k−1Y ]‖′′ ≤ |t|−1}. Define

kMc (H,Y, t) = {Z0 ∈ kMc : ‖[H, exp(−Z0)Y ]‖′′ ≤ |t|−1},

k1
c(H,Y, t) = {Z1 ∈ m⊥ ∩ kc : ‖adHadY Z1‖′′ ≤ |t|−1}.

Now Kc = {exp(Z0 + Z1) : Z0 ∈ kMc , Z1 ∈ m⊥ ∩ kc}, and by Lemma 3.1, since
q−c < q−2sC0, for all Z0 ∈ m, Z1 ∈ m⊥,

‖[H, exp(−Z0 − Z1)Y ]‖′′ = max{‖adHadY Z1‖′′, ‖[H, exp(−Z0)Y ]‖′′}.

Thus Kc(H,Y, t) = {exp(Z0 + Z1) : Z0 ∈ kMc (H,Y, t), Z1 ∈ k1
c(H,Y, t)}.

Let dZ denote the Haar measure on g for which kc has volume one and let
dZ0 denote the Haar measure on m for which kMc has volume one. Then if Z =
Z0 + Z1, Z0 ∈ m, Z1 ∈ m⊥, we have dZ = qcd(m⊥)dZ0 dZ1. Thus we have

φc(t2H,Y ) = qcd(m⊥)

∫
kMc (H,Y,t)

∫
k1
c(H,Y,t)

ψ(t2B(exp(Z0 + Z1)H,Y )) dZ0dZ1.

Let Z0 ∈ kMc and Z1 ∈ k1
c(H,Y, t). Then

B(exp(Z0 + Z1)H,Y ) = B(exp(Z0)H,Y ) +
∑
k≥1

bk,

where for k ≥ 1,

bk =
∑
ε

1
k!
B(adZε1adZε2 ...adZεkH,Y ).

Here, as in the proof of Lemma 3.1, the sum is over multi-indices ε for which at least
one εi = 1. Suppose that exactly one εi = 1. Then adZε1adZε2 ...adZεkH ∈ m⊥

and Y ∈ m, so that B(adZε1adZε2 ...adZεkH,Y ) = 0. Thus b1 = 0 and b2 =
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1/2B((adZ1)2H,Y ) = 1/2B(Z1, adHadY Z1). Suppose that k ≥ 3 and at least
two of the εi = 1. Then

| 1
k!
B(adZε1adZε2 ...adZεkH,Y )|

≤ | 1
k!
|q−(k−2)c‖H‖ ‖Y ‖ ‖Z1‖2 ≤ q−(c−c0)(k−2)‖Z1‖2.

But by Lemma 3.1, for k ≥ 3,

q−(c−c0)(k−2)‖Z1‖2 ≤ q−(c−c0)q4sC−2
0 (‖adHadY Z1‖′′)2 ≤ |t|−2

for Z1 ∈ k1
c(H,Y, t) since q−c ≤ q−4s−c0C2

0 . Thus

ψ(t2B(exp(Z0 + Z1)H,Y )) = ψ(t2B(exp(Z0)H,Y ))ψ(t21/2B(Z1, adHadY Z1)),

so that

φc(t2H,Y ) = qcd(m⊥)

×
∫

kMc (H,Y,t)

ψ(t2B(exp(Z0)H,Y ))dZ0

×
∫

k1
c(H,Y,t)

ψ(t21/2B(Z1, adHadY Z1)) dZ1.

But applying Lemma 4.2 of [2] to m in place of g, since |t| ≥ qc,∫
kMc (H,Y,t)

ψ(t2B(exp(Z0)H,Y ))dZ0 = φMc (t2H,Y ).

Further, using the proof of Lemma 4.4 of [2], since |t| ≥ q2s+cC−1
0 ,∫

k1
c(H,Y,t)

ψ(t21/2B(Z1, adHadY Z1)) dZ1 = |t|−d(m⊥)I(m⊥, H, Y ).

For H ∈ mreg, define ηg/m(H) = det adH |m⊥ = detTH . Let

g(m) = {γ ∈ g : Cg(γ) = m}.

Then g(m) ⊂ mreg. The following was proven in Lemma 4.5 and Theorem 2.2 of
[2].

Lemma 3.4. There is a unique locally constant function c0(g,m) on g(m) × mreg

with the following properties. First, suppose that Y ∈ g(m) ∩ mreg
s and H ∈ mreg

s

for some s > 0. Then

c0(g,m, Y,H) = |ηg/m(H)|1/2|ηg/m(Y )|1/2I(m⊥, Y,H).

In addition, for all Y ∈ g(m), H ∈ mreg,

(i) c0(g,m, tY,H) = c0(g,m, Y, tH) for all t ∈ F×;
(ii) c0(g,m, Y, t2H) = c0(g,m, Y,H) for all t ∈ F×;
(iii) |c0(g,m, Y,H)| is nonzero and independent of Y,H;
(iv) c0(g,m, Y,mH) = c0(g,m, Y,H) for all m ∈M .
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Let dx and dm denote Haar measures on G and M respectively. For c ≥ c0, let
V (Kc, dx) denote the volume of Kc with respect to dx and let V (KM

c , dm) denote
the volume of KM

c with respect to dm. Then qcd(m⊥)V (Kc, dx)V (KM
c , dm)−1 is

independent of c. For Y ∈ g(m), X ∈ mreg, c ≥ c0, define

c(g,m, dx/dm, Y,X) = qcd(m⊥)V (Kc, dx)V (KM
c , dm)−1c0(g,m, Y,X).(3.9)

Suppose that b is a Cartan subalgebra of m and let A denote the split component
of the Cartan subgroup of G corresponding to b. Fix an invariant measure dx∗

on G/A and an invariant measure dm∗ on M/A. Then if da is a choice of Haar
measure on A, we can normalize Haar measures dx and G and dm on M so that
dx = dx∗da, dm = dm∗da. In this case we write

c(g,m, dx∗/dm∗, Y,X) = c(g,m, dx/dm, Y,X), Y ∈ g(m), X ∈ b′.(3.10)

Lemma 3.5. Let Y ∈ g(m), X ∈ b′, H ∈ m ∩ g′. Then
(i) c(g,m, dx∗/dm∗, Y,X)Φ(m, dm∗, X,H) is independent of the choice of dm∗.
(ii) Let u ∈ G and fix any invariant measure dm∗u on uMu−1/uAu−1. Then

c(g, um, dx∗/dm∗u, uY, uX)Φ(um, dm∗u, uX, uH)

= c(g,m, dx∗/dm∗, Y,X)Φ(m, dm∗, X,H).

Proof. Part (i) is clear from the definitions. Thus in (ii) we may as well assume
that dm∗u is chosen so that dm∗ corresponds to dm∗u under the map m 7→ umu−1.
Then we have

Φ(um, dm∗u, uX, uH) = Φ(m, dm∗, X,H), X ∈ b′, H ∈ m′.

Fix H ∈ m ∩ g′, and let h be the Cartan subalgebra of g containing uH . Then
u ∈ N(h,m). It is shown in the last part of the proof of Theorem 2.2 of [2] that
for this choice of dm∗u, c(g, um, dx∗/dm∗u, uY, uH) = c(g,m, dx∗/dm∗, Y,H) for all
Y ∈ g(m).

4. An Expansion at Infinity

In this section we will give the proof of Theorem 1.2. The first step is to prove
Proposition 2.1. This will be done in a series of lemmas. Thus we assume through
Lemma 4.4 that g is semisimple and b is elliptic. Let γ be an arbitrary semisimple
element of g, and let m = Cg(γ). Then the Cartan subgroup B corresponding to
b has trivial split component. Fix a normalization dx of invariant measure on G
and define Φ(g, dx,X,H), X ∈ b′, H ∈ g′ as in (1.1). Fix w ∈ WG(b,m) and a
representative yw ∈ NG(b,m). Then the Cartan subgroup Bw = y−1

w Byw of M
corresponding to y−1

w b must also have trivial split component. Fix a normalization
dm of invariant measure on M . Then we also have Φ(m, dm, y−1

w X,H), X ∈ b′, H ∈
m′, as in (1.1). Define c(g,m, dx/dm) as in (3.9). Since dx and dm are fixed
throughout the proof of Proposition 2.1, we drop them from the notation.

Suppose that γ = 0. Then m = g,WG(b,m) = {1}, c(g, g, γ) ≡ 1, and Proposi-
tion 2.1 is trivial. Thus we may as well assume that γ 6= 0.

Let ω be a compact subset of b′, and let X0 ∈ ω. Then Cg(X0) = b is abelian,
and so there is an open closed subset ω0 of b with X0 ∈ ω0 ⊂ ωB = ω which satisfies
the conditions of Corollary 2.3 of [1]. Since ω can be covered by a finite number of
sets ω0, we may as well assume that ω = ω0 for some X0 ∈ ω. Then V0 = ωG0 is a
G-domain (open, closed G-invariant set) in g by Corollary 2.4 of [1].
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Fix a Cartan subalgebra h of g containing γ. Then h is a Cartan subalgebra of
m. Let h = h1, ...., hk denote a complete set of representatives for the M -conjugacy
classes of Cartan subalgebras of m. Then we can choose representatives yv ∈
NG(h,m) = {y ∈ G : y−1h ⊂ m} for WG(h,m) = NG(h,m)/M so that for each
v ∈ WG(h,m), y−1

v h = hj for some 1 ≤ j ≤ k. We may as well take y1 = 1 as the
representative of 1 ∈ WG(h,m). Also, we can choose representatives yw ∈ NG(b,m)
for WG(b,m) so that for each w ∈WG(b,m), y−1

w b = hj for some 1 ≤ j ≤ k. These
representatives will be fixed throughout the proof of Proposition 2.1.

Since ω0 is compact and WG(b,m) is finite, there is r0 > 0 so that ‖γ‖ ≤ qr0 |2|1/2
and ‖y−1

w X‖ ≤ qr0 |2|1/2 for all w ∈ WG(b,m), X ∈ ω0. Let t0 = $r0 . Then
‖t0γ‖ ≤ |2|1/2 and ‖y−1

w t0X‖ ≤ |2|1/2 for all w ∈ WG(b,m), X ∈ ω0. Assume that
Proposition 2.1 holds for γ′ = t0γ and ω′0 = {t0X : X ∈ ω0}. Define T (γ) =
q−2r0T (γ′) and ω(γ) = t−1

0 ω(γ′). Let t ∈ F× such that |t| ≥ T (γ), X ∈ ω0, and
H ∈ ω(γ) ∩ g′. Then |tt−2

0 | ≥ T (γ)q2r0 = T (γ′), t0X ∈ ω′0, and t0H ∈ ω(γ′), so
that

Φ(g, t0X, (tt−2
0 )t0H)

=
∑

w∈WG(b,m)

c(g,m, t0γ, tt−2
0 y−1

w t0X) Φ(m, y−1
w t0X, (tt−2

0 )t0H).

But it is clear from (1.6) that

Φ(g, X, tH) = Φ(g, t0X, (tt−2
0 )t0H),

Φ(m, y−1
w t0X, (tt−2

0 )t0H) = Φ(m, y−1
w X, tH),

and from Lemma 3.4(i) and (3.9) that

c(g,m, t0γ, tt−2
0 y−1

w t0X) = c(g,m, γ, ty−1
w X).

Thus we may as well assume that ‖γ‖ ≤ |2|1/2 and ‖y−1
w X‖ ≤ |2|1/2 for all w ∈

WG(b,m), X ∈ ω0.
Define

Ω0 = {ty−1
w X : X ∈ ω0, w ∈ WG(b,m), t ∈ F×, q−1 ≤ |t| ≤ 1}.(4.1)

Then Ω0 ⊂ m ∩ g′ ⊂ mreg and γ ∈ g(m) ⊂ mreg, and Ω0 is compact, so there is
s > 0 so that γ ∈ mreg

s and Ω0 ⊂ mreg
s .

Let ωγ be a compact open neighborhood of γ in m which is small enough such
that the following conditions are satisfied. First, since mreg

s is open, we can assume
that ωγ ⊂ mreg

s . Next, since I(m⊥) is a locally constant function on mreg
s ×mreg

s and
Ω0 is compact, and |ηg/m| is a locally constant functions on mreg

s , we can assume
that

|ηg/m(H)| = |ηg/m(γ)| and I(m⊥, H,X) = I(m⊥, γ,X), H ∈ ωγ , X ∈ Ω0.(4.2)

Next, sinceM = CG(γ), the yvγ, v ∈WG(h,m), are distinct. Similarly the ywγ, w ∈
WG(b,m), are distinct. Thus we can choose ωγ so that yvωγ ∩ yv′ωγ 6= ∅ for
v, v′ ∈ WG(h,m) implies that v = v′ and ywωγ ∩ yw′ωγ 6= ∅ for w,w′ ∈ WG(b,m)
implies that w = w′.

Fix ωγ satisfying the above conditions. Since ωγ and Ω0 are compact open
subsets of m, there is a compact open subgroup K0

M of M small enough such that
K0
Mωγ = ωγ and K0

MΩ0 = Ω0. Now since the sets ywωγ are disjoint and compact,
w ∈ WG(b,m), we can choose a compact open subgroup K of G which is small
enough such that the sets Kywωγ are disjoint and y−1

w Kyw ∩ M ⊂ K0
M for all
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w ∈ WG(b,m). Fix such a compact open subgroup K, and for w ∈WG(b,m), write
K(w) = y−1

w Kyw and KM (w) = K(w) ∩M .
Let U be an M -domain (open, closed, M -invariant set) in m such that γ ∈ U ⊂

ωMγ which satisfies the conditions of Corollary 2.3 of [1]. In particular, we can
assume that U ∩ hi ⊂ ωγ , 1 ≤ i ≤ k, Cg(X) ⊂ m for all X ∈ U , and for every
compact subset Q of g there is a compact subset Ω of G such that xU ∩ Q 6= ∅
implies that x ∈ ΩM . Define V = UG. By Corollary 2.4 of [1], V ⊂ ωGγ and is a G-
domain in g. We will show that ω(γ) = U ∩ h satisfies the condition of Proposition
2.1.

Define V (K) = {kyY : k ∈ K, y ∈ NG(b,m), Y ∈ U}.

Lemma 4.1. (i) The double cosets KywM,w ∈WG(b,m), are disjoint.
(ii) For all w ∈WG(b,m), k ∈ K(w), U ∩ ky−1

w b ⊂ ωγ.
(iii) For all w ∈WG(b,m), k ∈ K(w), ky−1

w b′ ∩m 6= ∅ if and only if k ∈ KM (w).
(iv) Let x ∈ G such that xH ∈ V (K) for some H ∈ ω(γ) ∩ h′. Then x ∈

KNG(b,m).

Proof. (i) Suppose that x ∈ KywM ∩ Kyw′M,w,w′ ∈ WG(b,m). Then there are
k, k′ ∈ K,m,m′ ∈M such that x = kywm = k′yw′m

′. Now xγ = kywγ = k′yw′γ ∈
Kywωγ ∩Kyw′ωγ . Thus by assumption on K, w = w′.

(ii) Let w ∈WG(b,m), k ∈ K(w) and Y ∈ U ∩ky−1
w b. Then ky−1

w b ⊂ Cg(Y ) ⊂ m

so that ywk−1 ∈ NG(b,m). Thus there are w′ ∈ W,m ∈ M , such that ywk−1 =
k1yw = yw′m where k1 = ywk

−1y−1
w ∈ K. Thus yw ∈ Kyw′M ∩KywM . Now by

(i), w = w′ so that k = m−1 ∈ M ∩K(w) ⊂ K0
M . Now k−1Y ∈ U ∩ y−1

w b ⊂ ωγ so
that Y ∈ kωγ = ωγ since k ∈ K0

M .
(iii) Let w ∈WG(b,m), k ∈ K(w). Then ky−1

w b′∩m 6= ∅ if and only if there is X ∈
b′ such that ky−1

w X ∈ m if and only if ky−1
w b ⊂ m if and only if ywk−1 ∈ NG(b,m).

But as in the proof of (ii), ywk−1 ∈ NG(b,m) implies that k ∈M∩K(w) = KM (w).
Conversely, if k ∈ KM (w), then ywk

−1 ∈ ywM ⊂ NG(b,m).
(iv) Let x ∈ G and H ∈ ω(γ) ∩ h′ such that xH ∈ V (K). Then there are

k ∈ K and w ∈ WG(b,m) such that xH ∈ kywU , so that y−1
w k−1xH ⊂ U ⊂ m.

Since H ∈ h′, this implies that y−1
w k−1xh ⊂ m, so that x−1kyw ∈ NG(h,m). Thus

there are v ∈ WG(h,m) and m ∈ M such that x−1kyw = yvm. Now y−1
w k−1xH =

m−1y−1
v H ∈ U implies that y−1

v H ∈ mU = U . But there is hi, 1 ≤ i ≤ k, so that
y−1
v h = hi. Thus y−1

v H ∈ U ∩ hi ⊂ ωγ . But ω(γ) = U ∩ h = U ∩ h1 ⊂ ωγ . Thus
H ∈ ωγ ∩ yvωγ . Now since ωγ ∩ yvωγ 6= ∅, we have yv = 1. Thus x−1kyw = m so
that x = kywm

−1 ∈ KNG(b,m).

From now on we write W = WG(b,m). Define ηg/m and c(g,m) as in Lemma 3.4
and (3.9).

Lemma 4.2. There is T ≥ 1 with the following properties.

(i) For all X ∈ ω0, Y ∈ V, |t| ≥ T ,∫
K

ψ(B(tY, kX))dk = 0

unless Y ∈ V (K).



BOUNDS FOR FOURIER TRANSFORMS OF ORBITAL INTEGRALS 515

(ii) For all X ∈ ω0, w ∈ W,Y ∈ U, |t| ≥ T ,

|ηg/m(tY )|1/2|ηg/m(y−1
w X))|1/2

∫
K

ψ(B(tywY, kX))dk

= V (K, dx)−1V (KM (w), dm)c(g,m, γ, ty−1
w X)

∫
KM (w)

ψ(tB(Y, k1y
−1
w X))dk1,

where KM (w) = M ∩ y−1
w Kyw, dk1 is normalized Haar measure on KM (w),

V (K, dx), is the volume of K with respect to dx, and V (KM (w), dm) is the
volume of KM (w) with respect to dm.

Proof. By Lemma 5.4 of [2] there is T1 ≥ 1 so that for all X ∈ ω0, Y ∈ V, |t| ≥ T1,∫
K

ψ(B(tY, kX))dk = 0

unless Y ∈ V (K). Thus (i) will hold for any T ≥ T1.
Fix w ∈W . Then for all X ∈ ω0, Y ∈ U, t ∈ F ,∫

K

ψ(B(tywY, kX))dk =
∫
K(w)

ψ(tB(Y, k′y−1
w X))dk′

where dk′ is normalized Haar measure on K(w) = y−1
w Kyw.

For X 6= 0 ∈ g, define the integer ν(X) so that ‖X‖ = |$ν(X)|. Let S = {X ∈
g : ‖X‖ = 1}. Then for all X 6= 0 ∈ g, $−ν(X)X ∈ S.

Let U1 = {Y ∈ U : Y 6∈ ωγ}, and let S1 denote the closure in S of

{$−ν(Y )Y : Y ∈ U1}.

It is a compact set. Now U ⊂ ωMγ where ωγ is compact, so the eigenvalues of
adX,X ∈ U are bounded. Since U1 is a closed subset of m, as in Lemma 7.4 of [1],
every element of S1 is either nilpotent or is of the form $−ν(Y )Y for some Y ∈ U1.

Let Y ′ ∈ S1, X ∈ ω0, and suppose that [ky−1
w X,Y ′] = 0 for some k ∈ K(w).

Then k−1Y ′ ∈ y−1
w b, so that Y ′ is semisimple, and hence of the form Y ′ = $−ν(Y )Y

for some Y ∈ U1. But then k−1Y ∈ y−1
w b so that Y ∈ U ∩ ky−1

w b. By Lemma 4.1
(ii), this implies that Y ∈ ωγ . This contradicts the assumption that Y ∈ U1. Thus
[ky−1

w X,Y ′] 6= 0 for all X ∈ ω0, Y
′ ∈ S1, k ∈ K(w), so by Lemma 3.1 of [2] there is

T ′2 such that ∫
K(w)

ψ(tB(Y ′, ky−1
w X))dk = 0

for all X ∈ ω0, Y
′ ∈ S1, |t| ≥ T ′2.

Since γ 6= 0 and g is semisimple, m 6= g. Now since for all Y ∈ U,Cg(Y ) ⊂ m,
we have 0 6∈ U . Since U is closed, there is δ > 0 so that ‖Y ‖ ≥ δ for all Y ∈ U .
Define T2 = T ′2δ

−1. Then for all |t| ≥ T2, Y ∈ U1, X ∈ ω0,∫
K(w)

ψ(tB(Y, ky−1
w X))dk =

∫
K(w)

ψ(t$ν(Y )B($−ν(Y )Y, ky−1
w X))dk = 0

since |t$ν(Y )| = |t| ‖Y ‖ ≥ T ′2 and $−ν(Y )Y ∈ S1.
Using the same argument as above with KM (w) in place of K(w), we can also

prove that there is T3 > 0 so that for all |t| ≥ T3, Y ∈ U1, X ∈ ω0,∫
KM (w)

ψ(tB(Y, k1y
−1
w X))dk1 = 0.
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Thus as long as T ≥ T1(w) = max{T2, T3} and Y ∈ U1,

|ηg/m(tY )|1/2|ηg/m(y−1
w X)|1/2

∫
K

ψ(B(tywY, kX))dk = 0

= V (G, dx)−1V (KM (w), dm)c(g,m, γ, ty−1
w X)

∫
KM (w)

ψ(tB(Y, k1y
−1
w X))dk1

for all |t| ≥ T,X ∈ ω0.
Define c′ as in Lemma 3.2, and pick c ≥ c′ large enough such that Kc ⊂ K(w)

and q−c < q−4s−c0C2
0 . Let k1, ..., kd ∈ K(w) denote a complete set of coset repre-

sentatives for Kc\K(w). Since V (K(w), dx) = V (K, dx), the volume of Kc with
respect to normalized Haar measure on K(w) is V1 = V (K, dx)−1V (Kc, dx). Thus
for all Y ∈ ωγ , X ∈ ω0, and t ∈ F×,∫

K(w)

ψ(tB(Y, ky−1
w X))dk = V1

d∑
i=1

φc(tY, kiy−1
w X).

Define IM = {1 ≤ i ≤ d : Kcki ∩ KM (w) 6= ∅}, I ′M = {1 ≤ i ≤ d : i 6∈ IM}.
For i ∈ IM , we may as well assume that the coset representative ki is chosen
so that ki ∈ KM (w). Now since c ≥ c′, by Lemma 3.2 Kc ∩ M = KM

c . Thus
KM (w) =

⋃
i∈IM KM

c ki, so that for all Y ∈ ωγ , X ∈ ω0, and t ∈ F×,∫
KM (w)

ψ(tB(Y, k1y
−1
w X)dk1 = V2

∑
i∈IM

φMc (tY, kiy−1
w X),

where V2 = V (KM (w), dm)−1V (KM
c , dm). Further, by Lemma 4.1 (iii),

Kckiy
−1
w b′ ∩m 6= ∅

if and only if there is k ∈ Kc such that kki ∈ KM (w). Thus

IM = {1 ≤ i ≤ d : Kckiy
−1
w b′ ∩m 6= ∅}.

Let 1 ≤ i ≤ d and suppose there are Y ∈ ωγ , X ∈ ω0, and k ∈ Kc such that
[Y, kkiy−1

w X ] = 0. Then kkiy−1
w X ∈ m∩Kckiy

−1
w b′ so that i ∈ IM . Thus for i ∈ I ′M ,

for all Y ∈ ωγ , X ∈ ω0, and k ∈ Kc, [Y, kkiy−1
w X ] 6= 0, so that by Lemma 3.1 of

[2] there is T (i) > 0 so that φc(tY, kiy−1
w X) = 0 for all Y ∈ ωγ , X ∈ ω0, |t| ≥ T (i).

Pick T ′w = max{T (i) : i ∈ I ′M}.
Now suppose that i ∈ IM , so that ki ∈ KM (w) ⊂ K0

M . Let X0 ∈ ω0, Y ∈ ωγ , and
t ∈ F×, |t| ≥ q4s+2cC−2

0 . Then t = t1t
2
0 for some t1, t0 ∈ F× such that q−1 ≤ |t1| ≤

1 and |t0| ≥ q2s+cC−1
0 . Now Y ∈ ωγ ⊂ mreg

s and t1kiy
−1
w X ∈ K0

MΩ0 = Ω0 ⊂ mreg
s .

Thus by Lemma 3.3 and (4.2),

φc(tY, kiy−1
w X) = φc(t20Y, t1kiy

−1
w X)

= qcd(m⊥)|t0|−d(m⊥) φMc (t20Y, t1kiy
−1
w X) I(m⊥, Y, t1kiy−1

w X)

= qcd(m⊥)|t0|−d(m⊥) φMc (tY, kiy−1
w X) I(m⊥, γ, t1kiy−1

w X).

But for all X ∈ mreg, t ∈ F×,

|ηg/m(tX)| = |t|d(m⊥)|ηg/m(X)|.
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Thus using Lemma 3.4 and (4.2),

|t0|−d(m⊥)I(m⊥, γ, t1kiy−1
w X)

= |t0|−d(m⊥)|ηg/m(γ)|−1/2|ηg/m(t1kiy−1
w X)|−1/2c0(g,m, γ, t1kiy−1

w X)

= |t0|−d(m⊥)|ηg/m(Y )|−1/2|ηg/m(t1y−1
w X)|−1/2c0(g,m, γ, t1y−1

w X)

= |ηg/m(tY )|−1/2|ηg/m(y−1
w X)|−1/2c0(g,m, γ, ty−1

w X).

Thus

φc(tY, kiy−1
w X)

= qcd(m⊥)φMc (tY, kiy−1
w X)|ηg/m(tY )|−1/2|ηg/m(y−1

w X)|−1/2c0(g,m, γ, ty−1
w X).

Let T2(w) = max{T ′w, q4s+2cC−2
0 }, and let Y ∈ ωγ , X ∈ ω0, t ∈ F×, |t| ≥ T2(w).

Then

|ηg/m(tY )|1/2|ηg/m(y−1
w X)|1/2

∫
K(w)

ψ(tB(Y, ky−1
w X))dk

= V1

∑
i∈IM

|ηg/m(tY )|1/2|ηg/m(y−1
w X)|1/2φc(tY, kiy−1

w X)

= V1q
cd(m⊥)c0(g,m, γ, ty−1

w X)
∑
i∈IM

φMc (tY, kiy−1
w X)

= qcd(m⊥)V1V
−1

2 c0(g,m, γ, ty−1
w X)

∫
KM(w)

ψ(tB(Y, k1y
−1
w X))dk1.

But using (3.9),

qcd(m⊥)V1V
−1

2 c0(g,m, γ, ty−1
w X) = V (K, dx)−1V (KM (w), dm)c(g,m, γ, ty−1

w X).

Thus the lemma is valid for T = max{T1, T1(w), T2(w) : w ∈W}.
Lemma 4.3. Fix H ∈ ω(γ) ∩ g′. Then there is a compact open subset GH of G
satisfying the following conditions.

(i) For all X ∈ ω0, |t| ≥ 1,

Φ(g, X, tH) = |ηg(X)|1/2|ηg(tH)|1/2
∫
GH

∫
K

ψ(tB(x−1H, kX))dkdx.

(ii) For each w ∈ WG(b,m), define MH(w) = M ∩ GHyw. Then for all X ∈ ω0,
|t| ≥ 1,

Φ(m, y−1
w X, tH)

= |ηm(y−1
w X)|1/2|ηm(tH)|1/2

∫
MH (w)

∫
KM (w)

ψ(tB(m−1H, k1y
−1
w X))dk1dm.

Proof. Let V0 = ωG0 . Since {H} is a compact subset of h′, by Lemma 5.4 of [2]
there is C > 0 so that ∫

K

ψ(tB(kH, Y ))dk = 0

for all Y ∈ V0, |t| ≥ 1 unless ‖Y ‖ ≤ C. Fix w ∈WG(b,m) and let VM = (y−1
w ω0)M .

Applying Lemma 5.4 of [2] to m and KM = K ∩M there is Cw > 0 so that∫
KM

ψ(tB(kH, Y ))dk = 0
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for all Y ∈ VM , |t| ≥ 1 unless ‖Y ‖ ≤ Cw. Let CH = max{C,Cw : w ∈ WG(b,m)}.
Let Q = {Y ∈ V0 : ‖Y ‖ ≤ CH}. It is a compact subset of G, so that there is a

compact subset Ω of G such that xω0∩Q 6= ∅ implies that x ∈ Ω. Let GH = KΩK.
It is a compact open subset of G satisfying GH = KGHK.

Let X ∈ ω0, |t| ≥ 1. Then

Φ(g, X, tH) = |ηg(X)|1/2|ηg(tH)|1/2
∫
G

∫
K

ψ(tB(kH, xX))dkdx.

Let x ∈ G and suppose ‖xX‖ ≤ CH . Then xX ∈ V0 ∩ Q so that x ∈ Ω ⊂ GH .
Thus for x 6∈ GH , ‖xX‖ > CH , so that

∫
K ψ(tB(kH, xX))dk = 0. Thus∫

G

∫
K

ψ(tB(kH, xX))dkdx =
∫
GH

∫
K

ψ(tB(kH, xX))dkdx.

But since GH is compact and K bi-invariant, we have∫
GH

∫
K

ψ(tB(kH, xX))dkdx

=
∫
K

∫
GH

∫
K

ψ(tB(kH, xk1X))dkdxdk1

=
∫
K

∫
GH

∫
K

ψ(tB(x−1kH, k1X))dk1dxdk

=
∫
GH

∫
K

ψ(tB(x−1H, k1X))dk1dx.

Fix w ∈WG(b,m). Let X ∈ ω0, |t| ≥ 1. Then

Φ(m, y−1
w X, tH) = |ηm(y−1

w X)|1/2|ηm(tH)|1/2
∫
M

∫
KM

ψ(tB(kH,my−1
w X))dkdm.

Let m ∈ M and suppose ‖my−1
w X‖ ≤ CH . Then my−1

w X ∈ V0 ∩ Q so that
my−1

w ∈ GH . Thus m ∈M ∩GHyw = MH(w). Thus we have

∫
M

∫
KM

ψ(tB(kH,my−1
w X))dkdm =

∫
MH(w)

∫
KM

ψ(tB(kH,my−1
w X))dkdm.

Let m ∈M,k ∈ KM = K ∩M,k1 ∈ KM (w) = M ∩ y−1
w Kyw. Then

k−1GHywk
−1
1 = k−1GH(ywk1y

−1
w )−1yw = GHyw

since k, ywk1y
−1
w ∈ K. Thus kmk1 ∈ MH(w) if and only if kmk1 ∈ GHyw if and

only if m ∈ k−1GHywk
−1
1 = GHyw if and only if m ∈ MH(w). Thus as above we

can write ∫
MH(w)

∫
KM

ψ(tB(kH,my−1
w X))dkdm

=
∫
KM (w)

∫
MH(w)

∫
KM

ψ(tB(kH,mk1y
−1
w X))dkdmdk1

=
∫
KM

∫
MH (w)

∫
KM(w)

ψ(tB(m−1kH, k1y
−1
w X))dk1dmdk

=
∫
MH (w)

∫
KM(w)

ψ(tB(m−1H, k1y
−1
w X))dk1dm.
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The following lemma completes the proof of Proposition 2.1. Define T (γ) = T
as in Lemma 4.2.

Lemma 4.4. For all X ∈ ω0, H ∈ ω(γ) ∩ h′, |t| ≥ T ,

Φ(g, X, tH) =
∑

w∈WG(b,m)

c(g,m, γ, ty−1
w X)Φ(m, y−1

w X, tH).

Proof. Fix X ∈ ω0, H ∈ ω(γ) ∩ h′, |t| ≥ T . Then by Lemma 4.3, since |t| ≥ 1,

Φ(g, X, tH) = |ηg(X)|1/2|ηg(tH)|1/2
∫
GH

∫
K

ψ(tB(x−1H, kX))dkdx.

Let x ∈ G. Then by Lemma 4.2, since |t| ≥ T and x−1H ∈ V ,∫
K

ψ(tB(x−1H, kX))dk = 0

unless x−1H ∈ V (K). Now by Lemma 4.1 (iv), this implies that x−1 ∈ KywM for
some w ∈ W = WG(b,m). Write x = my−1

w k for m ∈ M,k ∈ K. Then x ∈ GH
if and only if my−1

w ∈ GH if and only if m ∈ GHyw ∩M = MH(w). Finally, by
Lemma 4.1 (i) the cosets KywM,w ∈ W , are disjoint, so that∫
GH

∫
K

ψ(tB(x−1H, kX))dkdx

=
∑
w∈W

V (K, dx)V (KM (w), dm)−1

∫
K

∫
MH(w)

∫
K

ψ(tB(k−1
1 ywm

−1H, kX))dkdmdk1

=
∑
w∈W

V (K, dx)V (KM (w), dm)−1

∫
MH(w)

∫
K

ψ(tB(ywm−1H, kX))dkdm.

Fix w ∈W,m ∈MH(w). Then since m−1H ∈ U and |t| ≥ T , using Lemma 4.2,

V (K, dx)V (KM (w), dm)−1

∫
K

ψ(tB(ywm−1H, kX))dk = |ηg/m(tm−1H)|−1/2

× |ηg/m(y−1
w X)|−1/2c(g,m, γ, ty−1

w X)
∫
KM (w)

ψ(tB(m−1H, k1y
−1
w X))dk1.

But

|ηg(X)|1/2|ηg(tH)|1/2|ηg/m(tm−1H)|−1/2|ηg/m(y−1
w X)|−1/2

= |ηm(y−1
w X)|1/2|ηm(tH)|1/2.

Thus using Lemma 4.3,

Φ(g, X, tH) =
∑
w∈W

c(g,m, γ, ty−1
w X)

× |ηm(y−1
w X)|1/2|ηm(tH)|1/2

∫
MH(w)

∫
KM (w)

ψ(tB(m−1H, k1y
−1
w X))dk1dm

=
∑
w∈W

c(g,m, γ, ty−1
w X)Φ(m, y−1

w X, tH).
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We now keep the assumption that b is elliptic, but remove the assumption that
g is semisimple. Let Z denote the split component of the center of G. It is also
the split component of the Cartan subgroup of G corresponding to b. Let dx∗

and dm∗ be choices of Haar measures on G/Z and M/Z respectively, and define
c(g,m, dx∗/dm∗) as in (3.10).

Lemma 4.5. Let ω be a compact subset of b′, and let h be a Cartan subalgebra of
g with γ ∈ h. Then there exist a neighborhood ω(γ) of γ in h and T (γ) > 0 so that
for all X ∈ ω,H ∈ ω(γ) ∩ h′, and t ∈ F, |t| ≥ T (γ),

Φ(g, dx∗, X, tH) =
∑

w∈WG(b,m)

c(g,m, dx∗/dm∗, γ, ty−1
w X) Φ(m, dm∗, y−1

w X, tH).

Proof. Write g = z+g1, b = b1+z, h = h1+z, where g1 is semisimple, b1 is an elliptic
Cartan subalgebra of g1, and h1 is an arbitrary Cartan subalgebra of g1. Write
γ = Z0+γ1, Z0 ∈ z, γ1 ∈ h1. Then m = Cg(γ) = z+m1 where m1 = Cg1(γ1). We can
identify G1 = G/Z and M1 = M/Z. Let dx1 and dm1 be the Haar measures on G1

and M1 corresponding to dx∗ and dm∗ respectively with these identifications. Then
for all Z1, Z2 ∈ z, X1 ∈ b′1, H1 ∈ h′1, w ∈W = WG(b,m) = W1 = WG1(b1,m1),

Φ(g, dx∗, Z1 +X1, Z2 +H1) = ψ(B(Z1, Z2))Φ(g1, dx1, X1, H1),

Φ(m, dm∗, y−1
w (Z1 +X1), Z2 +H1) = ψ(B(Z1, Z2))Φ(m1, dm1, y

−1
w X1, H1),

c(g,m, dx∗/dm∗, γ, y−1
w (Z1 +X1)) = c(g1,m1, dx1/dm1, γ1, y

−1
w X1).

By Proposition 2.1 there are a neighborhood ω1(γ1) in h1 and T (γ1) > 0 so that
for all X1 ∈ ω1, H1 ∈ ω1(γ1) ∩ h′1, |t| ≥ T (γ1),

Φ(g1, dx1, X1, tH1)

=
∑
w∈W1

c(g1,m1, dx1/dm1, γ1, ty
−1
w X1)Φ(m1, dm1, y

−1
w X1, tH1).

Then for all Z1, Z2 ∈ z, X1 ∈ ω1, H1 ∈ ω1(γ1) ∩ h′1, |t| ≥ T (γ1),

Φ(g, dx∗, Z1 +X1, t(Z2 +H1)) = ψ(B(Z1, tZ2))Φ(g1, dx1, X1, tH1)

= ψ(B(Z1, tZ2))
∑
w∈W1

c(g1,m1, dx1/dm1, γ1, ty
−1
w X1)Φ(m1, dx1, y

−1
w X1, tH1)

=
∑
w∈W

c(g,m, dx∗/dm∗, γ, ty−1
w (Z1 +X1))Φ(m, dm∗, y−1

w (Z1 +X1), t(Z2 +H1)).

Thus we can take ω(γ) = z + ω1(γ1) and T (γ) = T (γ1).

Suppose now that b is an arbitrary Cartan subalgebra of g. Let A be the split
component of B, and fix an invariant measure dx∗ on G/A. Let Gb denote the
centralizer in G of A. Normalize the invariant measure dx∗b on Gb/A so that in the
notation of Lemma 2.2 we have

Φ(g, dx∗, X,H) =
∑

s∈WG(h,gb)

Φ(gb, dx
∗
b, X, y

−1
s H), X ∈ b′, H ∈ h′.(4.3)

Fix w ∈ WG(b,m) and a representative yw ∈ NG(b,m). Then Aw = y−1
w Ayw

is the split component of the Cartan subgroup y−1
w Byw of M . Fix an invariant

measure dm∗w on M/Aw. Now the centralizer in M of Aw is Mw,b = M ∩y−1
w Gbyw.

For each u ∈WM (h,mw,b), let yu ∈ NM (h,mw,b) be a representative for u. Then by
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Lemma 2.2 applied to m and mw,b, we can normalize the invariant measure dm∗w,b
on (Mw,b)/Aw so that for all X ∈ b′, H ∈ h′ we have

Φ(m, dm∗w, y
−1
w X,H) =

∑
u∈WM (h,mw,b)

Φ(mw,b, dm
∗
w,b, y

−1
w X, y−1

u H).(4.4)

Now ywγ ∈ gb and Cgb
(ywγ) = gb ∩ ywm = ywmw,b. Define

cw(dx∗/dm∗w, γ,X) = c(gb, ywmw,b, dx
∗
b/(dm

∗
w,b)w, ywγ,X) , X ∈ b

′,(4.5)

where c(gb, ywmw,b, dx
∗
b/(dm

∗
w,b)w, ywγ,X) is defined as in (3.10) with gb instead of

g and ywmw,b instead of m, and the invariant measure (dm∗w,b)w on ywMw,by
−1
w /A

is normalized by transferring the invariant measure dm∗w,b on Mw,b/Aw used in
(4.4) via the map m→ ywmy

−1
w .

Fix s ∈ WG(h, gb) and a representative ys ∈ NG(h, gb). Then y−1
s γ ∈ y−1

s h ⊂ gb,
and we define mb,s = Cgb

(y−1
s γ) = gb ∩ y−1

s m.

Lemma 4.6. There is a bijection (s, v)↔ (w, u) between

{(s, v) : s ∈WG(h, gb), v ∈WGb
(b,mb,s)}

and

{(w, u) : w ∈ WG(b,m), u ∈ WM (h,mw,b)}
such that if ys ∈ NG(h, gb) is a representative for s, yv ∈ NGb

(b,mb,s) is a rep-
resentative for v, and yw ∈ NG(b,m) is a representative for w, then ysy

−1
v yw ∈

NM (h,mw,b) is a representative of u.

Proof. Let s ∈ WG(h, gb), v ∈ WGb
(b,mb,s). Then y−1

v b ⊂ mb,s ⊂ y−1
s m so that

ysy
−1
v b ⊂ m. Thus yvy−1

s ∈ NG(b,m). Thus there are unique w ∈ WG(b,m) and
m ∈ M such that yvy−1

s = ywm
−1. Now ysy

−1
v yw = m ∈ M and h ⊂ m, so that

m−1h ⊂ m. Further, m−1h = y−1
w yvy

−1
s h ⊂ y−1

w gb since yvy−1
s h ⊂ yvgb = gb. Thus

m−1h ⊂ m ∩ y−1
w gb = mw,b so that m ∈ NM (h,mw,b), and so represents a unique

class u ∈WM (h,mw,b). Now we map (s, v)→ (w, u).
Now let w ∈ WG(b,m), u ∈ WM (h,mw,b). Then for any representative yu for u,

ywy
−1
u h ⊂ gb so there are unique s ∈ WG(h, gb) and x ∈ Gb such that yuy−1

w =
ysx
−1. But as above, x−1b ⊂ mb,s. Thus x ∈ NGb

(b,mb,s) represents a unique v ∈
WGb

(b,mb,s). Now if yv is any representative for v, there is m ∈Mb,s such that x =
yvm. Now ysy

−1
v yw = yum1 where m1 = y−1

w yvmy
−1
v yw ∈ y−1

w yv(Mb,s)y−1
v yw =

y−1
w Gbyw ∩m−1

1 Mm1. Thus m1 ∈ y−1
w Gbyw ∩M = Mw,b so that yum1 is also a

representative of u. Thus the map (w, u)→ (s, v) gives an inverse mapping.

Lemma 4.7. Let ω be a compact subset of b′. Then there exist a neighborhood ω(γ)
of γ in h and T (γ) > 0 so that for all X ∈ ω,H ∈ ω(γ) ∩ h′, and t ∈ F, |t| ≥ T (γ),

Φ(g, dx∗, X, tH) =
∑

w∈WG(b,m)

cw(dx∗/dm∗w, γ, tX) Φ(m, dm∗w, y
−1
w X, tH).

Proof. By (4.3), for all X ∈ b′, H ∈ h′,

Φ(g, dx∗, X,H) =
∑

s∈WG(h,gb)

Φ(gb, dx
∗
b, X, y

−1
s H).

Fix s ∈WG(h,mb). Then y−1
s γ ∈ gb and Cgb

(y−1
s γ) = gb∩y−1

s m = mb,s. Since b

is an elliptic Cartan subalgebra of gb and ω ⊂ b∩g′ ⊂ b∩g′b, we can apply Lemma



522 REBECCA A. HERB

4.5 to y−1
s γ to obtain a neighborhood ω′(y−1

s γ) of y−1
s γ in y−1

s h and T ′(y−1
s γ) > 0

so that for all X ∈ ω,H ∈ ω′(y−1
s γ) ∩ h′, |t| ≥ T ′(y−1

s γ),

Φ(gb, dx
∗
b, X, tH)

=
∑

v∈WGb
(b,mb,s)

c(gb,mb,s, dx
∗
b, y
−1
s γ, ty−1

v X)Φ(mb,s, y
−1
v X, tH).

Here, since by Lemma 4.5, c(gb,mb,s, dx
∗
b/dm

∗
s)Φ(mb,s, dm

∗
s) is independent of the

choice dm∗s of invariant measure on Mb,s/A, we drop it from the notation.
Define T (γ) = maxs T ′(y−1

s γ) and ω(γ) =
⋂
s ysω

′(y−1
s γ). Then for all X ∈

ω,H ∈ ω(γ) ∩ h′, |t| ≥ T (γ), we have

Φ(g, dx∗, X, tH)

=
∑

s∈WG(h,gb)

∑
v∈WGb

(b,mb,s)

c(gb,mb,s, dx
∗
b, y
−1
s γ, ty−1

v X)Φ(mb,s, y
−1
v X, ty−1

s H).

Fix a pair (s, v) and let (w, u) be the pair that corresponds to it by Lemma 4.6,
so that yv ∈ Gb, yu ∈M , and yvy−1

s = ywy
−1
u . Then

yvmb,s = yv(gb ∩ y−1
s m) = gb ∩ yvy−1

s m = gb ∩ ywy−1
u m

= yw(y−1
w gb ∩m) = ywmw,b.

Thus using Lemma 3.5 and (4.5), for all X ∈ b′, H ∈ h′,

c(gb,mb,s, dx
∗
b, y
−1
s γ, y−1

v X)Φ(mb,s, y
−1
v X, y−1

s H)

= c(gb, yvmb,s, dx
∗
b, yvy

−1
s γ,X)Φ(yvmb,s, X, yvy

−1
s H)

= c(gb, ywmw,b, dx
∗
b/(dm

∗
w,b)w, ywγ,X)Φ(ywmw,b, (dm∗w,b)w, X, ywy−1

u H)

= cw(dx∗/dm∗w, γ,X)Φ(mw,b, dm
∗
w,b, y

−1
w X, y−1

u H).

Finally, using (4.4) and Lemma 4.6, for all X ∈ ω,H ∈ ω(γ) ∩ h′, |t| ≥ T (γ), we
have

Φ(g, dx∗, X, tH)

=
∑

w∈WG(b,m)

cw(dx∗/dm∗w, γ, tX)
∑

u∈WM(h,mw,b)

Φ(mw,b, dm
∗
b,w, y

−1
w X, ty−1

u H)

=
∑

w∈WG(b,m)

cw(dx∗/dm∗w, γ, tX)Φ(m, dm∗w, y
−1
w X, tH).

The following proposition completes the proof of Theorem 1.2.

Proposition 4.8. Let ω be a compact subset of b′. Then there exist a neighborhood
U(γ) of γ in m and T (γ) > 0 so that for all X ∈ ω,H ∈ U(γ)∩ g′, and t ∈ F, |t| ≥
T (γ),

Φ(g, dx∗, X, tH) =
∑

w∈WG(b,m)

cw(dx∗/dm∗w, γ, tX) Φ(m, dm∗w, y
−1
w X, tH).

Proof. Since the measures dx∗ and dm∗w, w ∈ W = WG(b,m) are fixed, we drop
them from the notation. Let h1, ...., hk denote a complete set of representatives
for the M -conjugacy classes of Cartan subalgebras of m, and fix 1 ≤ i ≤ k. By
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Lemma 4.7 there are a neighborhood ωi(γ) of γ in hi and Ti(γ) > 0 so that for all
X ∈ ω,H ∈ ωi(γ) ∩ g′, and t ∈ F, |t| ≥ Ti(γ),

Φ(g, X, tH) =
∑
w∈W

cw(γ, tX) Φ(m, y−1
w X, tH).

Let T (γ) = max1≤i≤k Ti(γ), and let ω(γ) be a neighborhood of γ in m small
enough such that ω(γ) ∩ hi ⊂ ωi(γ) for 1 ≤ i ≤ k. Now by Corollary 2.3 of
[1] there is an open, closed, M -invariant neighborhood U(γ) of γ in m such that
U(γ)∩hi ⊂ ω(γ)∩hi ⊂ ωi(γ), 1 ≤ i ≤ k. Now let X ∈ ω,H ∈ U(γ)∩ g′, |t| ≥ T (γ).
Then there are m ∈ M, 1 ≤ i ≤ k,Hi ∈ hi, so that H = mHi. But Hi = m−1H ∈
U(γ) ∩ g′ ∩ hi ⊂ ωi(γ) ∩ g′. Thus

Φ(g, X, tH) = Φ(g, X, tHi) =
∑
w∈W

cw(γ, tX) Φ(m, y−1
w X, tHi)

=
∑
w∈W

cw(γ, tX) Φ(m, y−1
w X, tH).
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