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COMPARISONS OF GENERAL LINEAR GROUPS
AND THEIR METAPLECTIC COVERINGS II

PAUL MEZO

Abstract. Let A be the adele ring of a number field containing the nth roots

of unity, and let G̃L(r,A) be an n-fold metaplectic covering of GL(r,A). Under
an assumption on n, we prove identities between all of the terms in Arthur’s

invariant trace formulas for G̃L(r,A) and GL(r,A). We then establish a cor-
respondence between the automorphic representations of these groups.

1. Introduction

Correspondences of metaplectic covering groups have their origin in the work of
Shimura ([35]). Shimura constructed a correspondence between modular forms of
half-integral weight and cusp forms of even weight, which preserves L-functions. He
suggested that this correspondence be studied further by using the representation-
theoretic techniques developed by Jacquet and Langlands ([22]). This approach
was explored (among others) by Flicker ([17]), who gave a complete description of
the correspondence between the automorphic representations of an n-fold covering
of GL(2) and the automorphic representations of GL(2). Flicker’s correspondence
was proved using the Selberg trace formula and followed Langlands’ proof of base
change for GL(2) ([29]). Trace formula methods were also exploited by Flicker,
Kazhdan and Patterson ([18], [25]) in the proof of some additional correspondences
between the automorphic representations of n-fold metaplectic coverings of GL(r),
r ≥ 2, and automorphic representations of GL(r). We prove correspondences of
automorphic representations for the same groups under some assumptions on n,
the order of the covering. Our approach is novel in that we use the invariant trace
formula of Arthur ([8]) and follow Arthur and Clozel’s proof of base change for
GL(r) ([13]). We refer the reader to the introductions of [17], [24], [25] and [18] for
the ramifications of metaplectic correspondences to number theory.

This paper is the sequel to another paper ([30]), in which the local metaplectic
correspondence and the invariant trace formulas are described. We shall assume
that the reader is familiar with this work and adopt its notation without further
comment.

The topic of §§2–12 is the comparison of invariant trace formulas. This compar-
ison is made under an assumption on the order of the covering. We first describe
the content of these sections and then consider the assumption. Let A be the adele
ring of a number field F . The conjectural invariant trace formula for G̃L(r,A) is
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placed into the form∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈(M(F ))F,S/µMn

aM̃ (S, γ′)IMM (γ, f̃)

=
∑
M∈L

|WM
0 ||WG

0 |−1
∑
t≥0

∫
Π(M̃,t)

aM̃ (π̃)IM̃ (π̃, f̃)dπ̃,

and a special version of the invariant trace formula for GL(r,A) is placed into the
form ∑

M∈L
|WM

0 ||WG
0 |−1

∑
γ∈(M(F ))F,S/µMn

aM (S, γ)IΣ
M (γ, f̃)

=
∑
M∈L

|WM
0 ||WG

0 |−1
∑
t≥0

∫
ΠΣ(M,t)

aM,Σ(π̃)IΣ
M (π̃, f̃)dπ̃.

The function f̃ in these equations is taken to be arbitrary in the global Hecke space
of G̃L(r,A). The interesting terms in these formulas are of two types: local and
global. The local terms, which are each identified by an “I”, are distributions
defined in terms of weighted orbital integrals and weighted characters. The global
terms, which are each distinguished by an “a”, are constants which depend either
on the automorphic nature of the representations involved, or the rational geometry
of the groups.

The principal results of §§2–12 are Theorems A and B which match the global
terms, aM̃ (S, γ′) with aM (S, γ), and aM̃ (π̃) with aM,Σ(π̃); and the local distribu-
tions, IMM (γ) with IΣ

M (γ), and IM̃ (π̃) with IΣ
M (π̃).

The structure of the proof of Theorems A and B follows II [13] very closely. There
are however two notable deviations. The first is our use of the local invariant trace
formula ([12]) in §§3 and 12. We assume that this formula holds for metaplectic
coverings. The second is the use of strong approximation in §12. Otherwise, the
reader familiar with [13] should have no difficulties in relating the ideas of §§2–12
to II [13]. To make this relation more transparent, the results of §§2–12, which
have counterparts in II of [13], have references to their counterparts in parentheses
immediately following their own numbering.

Let us now consider the assumption on the order of the covering. This is given
as Assumption 1 in §2. Under this assumption n is relatively prime to the positive
integers less than or equal to r and is also relatively prime to i(1 + 2m)− 1, where
1 < i ≤ r, and 0 ≤ m ≤ n − 1 is a fixed integer which stems from the metaplectic
covering. The reader may find it helpful to consider Assumption 1 with m = 0, in
which case the assumption is greatly simplified, but the covering groups are still
non-trivial. We list below the obstructions that are removed under this assumption.
The list is given in increasing order of the author’s perception of their difficulty.

Assumption 1 excludes even coverings. If n is even, the orbit map, the basic
means of comparison, is defined only on a proper subset of G(Fv) and contains a
term defined in terms of K-theory. The former consequence would require the proof
of an additional vanishing property for the geometric side of the trace formula of
GL(r,A), or restrictions on f̃ . The latter would make computations involving the
orbit map more complicated.

Proposition 26.2 of [18] and the Appendix to [30] ensure that the local metaplec-
tic correspondence commutes with parabolic induction under the assumption that
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n is relatively prime to i(1+2m)−1, 1 < i ≤ r. It is expected that this assumption
can be lifted, but to date there is no proof of this expectation.

Assumption 1 implies that n ≥ 3. In this case the archimedean completions of F
are all complex. Since metaplectic coverings of GL(r,C) are trivial, the representa-
tion theory at the archimedean valuations is very straightforward. Jordan canonical
form may also be used to simplify the comparison at the archimedean valuations.
In order to complete the comparison in the case n = 2, one would presumably have
to prove identities of differential operators on G̃L(r,R) parallel to those in [33].

The assumption that n is relatively prime to the positive integers less than or
equal to r simplifies the comparison of γ and γn, and of their centralizers in G(Fv).
Many terms in the invariant trace formulas are expressed in terms of these objects
(see §§3 and 4). Under the above assumption, the discrepancies in these terms may
be described purely in terms of nth roots of unity.

As mentioned in the introduction of [30], the vanishing property for the geomet-
ric distributions of G̃L(r, Fv) does not follow for general n. It does follow under
Assumption 1 (Proposition 8.2, [30]). This obstacle might be circumvented by mak-
ing restrictions on f̃ , or by showing that the sum of the undesirable distributions
vanishes.

Last, but certainly not least, the matching of weighted orbital integrals required
for Lemma 3.4 and the approximation arguments of §12 is only proved in the case
that n is relatively prime to certain integers which are included in Assumption 1
([31]). Even under the assumption that the local trace formula ([12]) holds for
metaplectic coverings, this matching is not immediate.

Theorem B entails some global metaplectic correspondences which are listed in
Theorem 13.1. In broad terms, there is a correspondence between unitary auto-
morphic representations of G̃L(r,A) and unitary automorphic representations of
Levi subgroups of GL(r,A). This correspondence preserves a character relation at
almost every valuation of F . If a representation π̃ of G̃L(r,A) corresponds as above
to a cuspidal representation π of GL(r,A), then a character relation is preserved at
every valuation of F and π̃ is the only representation of G̃L(r,A) which corresponds
to π. This implies the multiplicity one and strong multiplicity one properties for π̃.

Aside from the elimination of the rather vexing Assumption 1, there remains
much more work to be done in obtaining a general metaplectic correspondence. The
paper is concluded with two conjectures concerning the general correspondence and
suggestions for their possible solutions.

Portions of this paper appeared in the author’s thesis [32]. The author would
like to thank J. Arthur for his encouragement and the Max-Planck-Institut für
Mathematik in Bonn for their generous support.

2. Statement of Theorem A

We adopt the notation of [30]. The global metaplectic covering,

G̃(A) = G̃L(r,A),

depends on three integral parameters, which are suppressed from the notation (see
§2, [30]). The first is the rank, r ≥ 2, of the general linear group. The second is the
order, n ≥ 1, of the metaplectic covering. The third is the degree, 0 ≤ m ≤ n− 1,
of the “twist” of the underlying metaplectic two-cocycle defined by Matsumoto
(p. 58, [18]). Any two metaplectic coverings associated to distinct triples are not
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isomorphic. Moreover, for any choice of the above three parameters, there exists
a corresponding metaplectic covering. Henceforth, we assume that the following
assumption holds on the parameters of G̃(A).

Assumption 1. The the order of the metaplectic covering n is relatively prime to
i(1 + 2m)− 1 and i for all 1 < i ≤ r.

The relevance of Assumption 1 has been discussed in the introduction. The
restrictions involving the fixed integer 0 ≤ m ≤ n−1 are required for the arguments
of the Appendix to [30], which ensure that parabolic induction commutes with the
local metaplectic correspondence (cf. §26.2, [18] and §3.1, [30]). These restrictions
are also needed for the geometric vanishing properties of §8 in [30].

The second main assumption that we work under is related to the trace formulas
of Arthur. Recall that the centralizer of σ ∈ G(F ) in G is denoted by Gσ.

Assumption 2. Suppose σ is a semisimple element of G(F ). Then the local trace
formula of [12] and global trace formula of [8] are valid for G̃σ.

Assumption 2 is rather expansive, but is not expected to be grave. We refer the
reader to §1 and the beginning of §7 in [30] for more details on this matter.

In §9 of [30] we expressed the conjectural invariant trace formula for G̃(A) as∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈(M(F ))M,S/µMn

aM̃ (S, γ′)IM
M̃

(γ, f̃)

=
∑
t

∑
M∈L

|WM
0 ||WG

0 |−1

∫
Π(M̃,t)

aM̃ (π̃)IM̃ (π̃, f̃)dπ̃,

where f̃ is a test function in the global Hecke space H(G̃(A)), and S is a sufficiently
large finite set of valuations of F .

This function f̃ ∈ H(G̃(A)) is taken to be a restricted tensor product of the
form

⊗
v f̃v. Each f̃v belongs to the local Hecke space H(G̃(Fv)) and is associated

to a function f̃ ′v defined on the tempered representations of G(Fv). The function
f̃ ′v is defined by

f̃ ′(π) =

{
tr
(
π̃(f̃)

)
, if π̃′ = π for some π̃ ∈ Πtemp(G̃(FS)),

0, otherwise.

where π̃ 7→ π̃′ is the local metaplectic correspondence of Flicker and Kazhdan
(Theorem 27.3, [18] and §3, [30]). In fact, f̃ ′v belongs to the Paley-Wiener space
I(G(Fv)) as defined in §3 of [30]. The distributions of Arthur’s invariant trace
formula pass to maps on Paley-Wiener spaces. We may therefore substitute

f̃ ′ =
⊗
v

f̃ ′v ∈ I(G(A))

into the invariant trace formula for G(A). With this substitution, the invariant
trace formula for G(A) is expressed in Proposition 9.2 of [30] as∑

M∈L
|WM

0 ||WG
0 |−1

∑
γ∈(M(F ))M,S/µMn

aM (S, γ)IΣ
M (γ, f̃)

= n−1
∑
t

∑
M∈L

|WM
0 ||WG

0 |−1

∫
Π(M,t)

aM (π)ÎM (π, f̃ ′)dπ.
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The distribution IΣ
M (γ) on the left is defined by

IΣ
M (γ, f̃) =

∑
η∈µMn /µGn

ÎM (ηγ, f̃ ′), f̃ ∈ H(G̃(FS)),

where the sum is taken over a certain set of nth roots of unity in the center of M(F )
(§6, [30]). The forms of these two trace formulas and Theorem A in [13] motivate
the first main theorem of our comparison.

Theorem A. Under Assumptions 1 and 2, the following two assertions are true.
(i) Suppose that S is a finite set of valuations with the closure property. Then

IΣ
M (γ, f̃) = IMM (γ, f̃), γ ∈Mcomp(FS), f̃ ∈ H(G̃(FS)).

(ii) Suppose γ ∈M(F ). Then

aM̃ (S, γ′) = aM (S, γ)

for any suitably large finite set S.

The closure property of assumption of Theorem A (i) is a technical property
given in §3.1 of [30]. The closure property is satisfied if and only if S contains an
archimedean valuation or S is comprised entirely of valuations which divide a fixed
rational prime. The set Mcomp(FS) is a dense open subset of M(FS), defined in §4
of [30].

The proof of Theorem A will be completed in §12. Observe that by the splitting
properties ((23) and Proposition 6.2, [30]), Theorem A (i) holds if and only if it
holds in the case that S consists of a single valuation.

The proof of Theorem A consists of several induction arguments. Suppose σ is
a semisimple element of G(F ). We make the induction hypothesis that Theorem A
holds if G is replaced by the centralizer Gσ and dim(Gσ) < dim(G).

The subgroup G̃σ(A) ⊂ G̃(A) is defined in terms of the same three parameters
which determine G̃(A). It should therefore not be too surprising that Assumption
1 pertains to G̃σ(A) in the same way it pertains to G̃(A). The relationship between
the induction hypothesis and Assumption 1 is further explored in the Appendix.

Every Levi subgroup in L is of the form Gσ. Furthermore, it follows from Propo-
sition 3, §2, II of [27] (Krasner’s Lemma) and §1 of [25] that for any nonarchimedean
valuation v and semisimple element σ1 ∈ G(Fv) there exists a semisimple element
σ ∈ G(F ) such that Gσ1 (Fv) = Gσ(Fv). This fact allows us to apply the induction
hypothesis in the local nonarchimedean context.

Let us consider some immediate implications of our induction hypothesis. By
combining the induction hypothesis with the descent properties, we obtain the
following lemma.

Lemma 2.1. Suppose M1 and M are in L such that M1 $ M . Suppose further
that γ ∈M1(FS) ∩Mcomp(FS) satisfies M1,γ = Mγ. Then

IMM (γ, f̃) = IΣ
M (γ, f̃), f̃ ∈ H(G̃(FS)).

In particular, this equation holds for γ ∈M1(FS) ∩Goreg(FS).

Proof. It follows from Jordan canonical form and exercises 33–34, Chapter 5 of [1]
that M1,γ = Mγ if and only if M1,σ = Mσ. We therefore have

M1,σ ⊂M1,σn ⊂Mσn = Mσ = M1,σ,
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and so M1,σ = M1,σn . That is, γ ∈ M1,comp(FS). By the descent properties ((22),
Corollary 6.1, [30]), we have

IMM (γ, f̃)− IΣ
M (γ, f̃) =

∑
L∈L(M1)

dGM1
(M,L)

(
ÎL,MM1

(γ, f̃L̃)− ÎL,ΣM1
(γ, f̃L̃)

)
.

The induction hypothesis and the fact that dGM1
(M,G) = 0 (§7, [7]) imply that the

right-hand side vanishes.

Applying our induction hypothesis to the geometric sides of the trace formulas
and also to expansions (28) and (29) of [30], we obtain the following lemma whose
proof can be gleaned from the proof of Lemma 5.2, II of [13].

Lemma 2.2 (5.2). The distribution,

f̃ 7→ I(f̃)− IΣ(f̃ ′), f̃ ∈ H(G̃(FS)),

is the sum of∑
M∈L,M 6=G

|WM
0 ||WG

0 |−1
∑

γ∈(M(F ))M,S/µMn

aM (S, γ)
(
IMM (γ, f̃)− IΣ

M (γ, f̃)
)

and ∑
δ∈AG(F )\µGn

∑
u∈(UG(F ))G,S

(
aG̃(S, u)− aG(S, u)

)
IMG (δu, f̃).

3. Comparison of IMM (γ, f̃) and IΣ
M (γ, f̃)

Our aim here is to show that IΣ
M (γ, f̃) is equal to IMM (γ, f̃) under various circum-

stances. We begin by showing that Theorem A (i) holds if it holds at certain regular
elements. In order to do this, we need to be able to compare the functions rM (γ, a),
which appear in the definitions of our invariant distributions. The following two
lemmas afford such a comparison.

Lemma 3.1. Suppose that γ ∈M(Fv) is not G(Fv)-conjugate to any element γ0 ∈
L(Fv), such that L ∈ L, L $ M and Lγ0 = Mγ0 . Suppose further that γ = σu
is the Jordan decomposition of γ in M(Fv). Then there exists η ∈ µMn such that
Gηγ = Gγn and Gησ = Gσn . Moreover, Mσ = Mσn .

Proof. We shall show that dim(Gηγ) = dim(Gγn) for some η ∈ µMn . The first
assertion of the lemma then follows from the fact that centralizers in G are closed
and connected. The remaining assertions shall follow easily from the proof of the
first. Recall decomposition (4) of [30],

M = M(1)× · · · ×M(`) ∼= GL(r1)× · · · ×GL(r`).

Identify γ ∈ M(Fv) with (γ1, . . . , γ`), where γi ∈ GL(ri, Fv), 1 ≤ i ≤ `. As
explained at the beginning of §1 of [25], there exist positive integers, ki, rij , and
commuting elements, σij , uij ∈ GL(rij , Fv), for 1 ≤ i ≤ `, 1 ≤ j ≤ ki, such
that the elements σi1, . . . , σiki are semisimple, pairwise distinct and generate field
extensions, Ei1, . . . , Eiki , respectively; the elements ui1, . . . , uiki are unipotent and
upper-triangular; and γi is GL(ri, Fv)-conjugate to the block diagonal matrix σi1ui1 0

. . .
0 σikiuiki

 ∈ GL(ri, Fv) ∼= M(i)(Fv).(1)



530 PAUL MEZO

This matrix determines a unique Levi subgroup,

Li ∼= GL(ri1)× · · · ×GL(riki ),

of M(i) ∼= GL(ri). In turn, we obtain a unique Levi subgroup L ∈ L such that
L ∼= L1 × · · · × L` and L ⊂ M . Suppose γ0 is the element of L(Fv) determined
by (1). Then Lγ0 = Mγ0 . To see this, observe that for 1 ≤ j1 < j2 ≤ ki, the
eigenvalues of σij1 are pairwise distinct from the eigenvalues of σij2 . This implies
that Li,γi = M(i)γi (exercise 33–34, Chapter 5, [1]). This last equality clearly
implies Lγ0 = Mγ0 . By the hypothesis of the lemma we must have L = M . This
means that k1 = · · · = k` = 1 and that γi is GL(ri, Fv)-conjugate to σiui, where
σi = σi1 and ui = ui1. An immediate consequence is that γni is GL(ri, Fv)-conjugate
to σni u

n
i . The element σni generates a field Fi which lies between Ei = Ei1 and Fv.

Assumption 1 implies that Ei = Fi. Indeed, after identifying σi with an element of
Ei, we have Ei = Fi(σi) = Fi((σni )1/n). According to Theorem 10 (b), VIII, §6 of
[28], the index [Ei : Fi] divides n. At the same time we have [Ei : Fi] ≤ ri ≤ r and
so Assumption 1 implies that [Ei : Fi] = 1. It is immediate that the degree of the
minimal polynomial of σi, namely [Ei : Fv], is the same as that of σni . Furthermore,
by applying Jordan canonical form (in GL(ri/[Ei : Fv], Ei)) and Lemma 4.1 of [30]
to σni u

n
i , we find that it is GL(ri, Fv)-conjugate to σni ui. Suppose that

σnj1 6= σnj2 , whenever σj1 6= σj2 , 1 ≤ j1 < j2 ≤ `.(2)

Then the previous two observations imply that there is a degree-preserving bijection
between the elementary divisors of γ and γn. Since the dimensions of Gγ and Gγn
are determined by the degrees of the elementary divisors of γ and γn respectively
(Theorem 5.15, [1]), we have dim(Gγ) = dim(Gγn). Now suppose that σnj1 = σnj2 ,
but σj1 6= σj2 for some 1 ≤ j1 < j2 ≤ `. By regarding σj1 and σj2 as elements of
Ej1(= Ej2), we find that σj1 = ζσj2 for some ζ ∈ µn. This implies the existence of
an element η ∈ µMn , such that if γ is replaced by ηγ in the earlier argument, then
(2) holds. This proves the first assertion of the lemma. The second assertion is
seen to follow easily from the above argument by taking u = 1. The final assertion
of the lemma is a consequence of Ei = Fi.

We already mentioned in the proof of Lemma 6.2 in [30] that rM (γ, a) is invariant
under translation by AG(FS) in the first variable. This justifies the appearance of
the quotient in the index set of the sum in the following lemma.

Lemma 3.2. Suppose γ ∈ M(Fv) satisfies the hypotheses of Lemma 3.1 and a ∈
AM,reg(Fv). Then ∑

η∈µMn /µGn

rM (ηγ, a) = rM (γn, a).

Proof. By Lemma 3.1, we may assume that γ satisfies Gγ = Gγn , Gσ = Gσn and
Mσ = Mσn . Suppose η ∈ µMn . We would like to use Lemma 8.2 of [9] to show that

rM (ηγ, a) =
{
r
Gη
M (γ, a), if aGη = aG,

0, otherwise.
(3)

In order to be able to invoke Lemma 8.2 of [9] we must verify the three conditions
listed on p. 262 of [9]. To satisfy the first condition, we must have η ∈ G(F ).
This is trivial. The second condition is satisfied if aMη = aM . This is obvious as
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Mη = M . Finally, we must verify that Gηγ(Fv) is contained in Gγ(Fv). This is
simple to verify since,

Gηγ(Fv) ⊂ G(ηγ)n(Fv) = Gγn(Fv) = Gγ(Fv).

We now have equation (3). A moments thought reveals that aGη = aG if and only
if η ∈ µGn . Thus, ∑

η∈µMn /µGn

rM (ηγ, a) = rM (γ, a).

Now rM (γ, a) is defined in the usual fashion (cf. §6, [2]) from the (G,M) family

rP (ν, γ, a) = rP (ν, σu, a) =
∏
β

∣∣aβ − a−β∣∣ρ(β,u)ν(β∨)/2
, P ∈ P(M).

The product on the right is taken over the roots of (P ∩Gσ, AMσ ), and ρ(β, u) is a
real number (defined in §3, [9]) which depends only on the conjugacy class of u in
Mσ. Since un is conjugate to u in Mσ (Lemma 4.1, [30]) and

(P ∩Gσ, AMσ ) = (P ∩Gσn , AMσn
),

we have in turn that

rP (ν, γn, a) = rP (ν, σnun, a) = rP (ν, σu, a) = rP (ν, γ, a)

and

rM (γn, a) = rM (γ, a).

This completes the lemma.

Lemma 3.3 (3.6). Suppose that f̃ is a function in H(G̃(FS)) such that

IΣ
M (γ, f̃) = IMM (γ, f̃)

for every element γ ∈ M(FS) ∩ Goreg(FS). Then the same formula holds for any
element γ ∈Mcomp(FS).

Proof. By the splitting properties ((23) and Proposition 6.2, [30]), it suffices to
prove the lemma in the case that S consists of a single valuation v. By Lemma 2.1,
it suffices to prove the lemma under the assumption that γ ∈ Mcomp(Fv) satisfies
the hypotheses of Lemma 3.1. By following the argument of Lemma 3.6, II of [13],
we may conclude that

IΣ
M (γ, f̃) = IMM (γ, f̃),

if the semisimple component σ of γ satisfies Gσ = Mσ. Now suppose that a ∈
AM,reg(Fv) is close to the identity so that

IΣ
M (aγ, f̃) = IMM (aγ, f̃)

holds. According to the definitions of our invariant distributions and Lemma 3.2,
we have

IΣ
M (γ, f̃) = lim

a→1

∑
L∈L(M)

∑
η∈µMn /µLn

rLM (ηγ, a)IΣ
L (aηγ, f̃)

= lim
a→1

∑
L∈L(M)

rLM (γn, a)IML (aγ, f̃)

= IMM (γ, f̃).
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Lemma 3.3 tells us that in order to prove Theorem A (i) it is enough to consider
the case that γ belongs to M(FS) ∩ Goreg(FS). This is an important observation
which we shall, often implicitly, make use of in the rest of this paper.

We now consider a very different comparison. At almost every place v, a function
in H(G̃(A)) is of the form f̃0

v defined in (27) of [30]. It is therefore valuable to
compare IMM (γ, f̃0

v ) with IΣ
M (γ, f̃0

v ).

Lemma 3.4. Suppose v is a valuation such that |n|v = 1. Then

IMM (γ, f̃0
v ) = IΣ

M (γ, f̃0
v ), γ ∈Mcomp(Fv).

Proof. By Lemma 3.3, it suffices to prove the lemma for γ ∈ M(Fv) ∩ Goreg(Fv).
Obviously, |n|v = 1 implies

IMM (γ, f̃0
v ) = IM̃ (γ′, f̃0

v ).

By Lemma 2.1 of [7] the term on the right is equal to the weighted orbital integral
JM̃ (γ′, f̃0

v ) (cf. §2, [9]). Let f0
v ∈ H(G(Fv)) be the characteristic function of Kv.

It may easily be verified that f0
v,G = (f̃0

v )′. Under Assumption 1 we may apply the
Theorem of [31] to conclude that

JM̃ (γ′, f̃0
v ) =

∑
η∈µMn /µGn

JM (ηγ, f0
v ).

Again, by Lemma 2.1 of [7], the sum on the right is equal to∑
η∈µMn /µGn

IM (ηγ, f0
v ) = IΣ

M (γ, f̃0
v ).

We now turn to comparisons which are more obviously connected to Theorem
A. Through the comparison of trace formulas in §12, we will prove Theorem A (i)
in the special case that S contains {v : |n|v 6= 1}. The purpose of the next theorem
and its corollary is to show that the general case of Theorem A (i) follows from this
special case.

Theorem 3.1 (6.1). In the special case that S contains {v : |n|v 6= 1}, we suppose
that

IML (γ, f̃) = IΣ
L (γ, f̃),

for any γ ∈ Lcomp(FS) and L ∈ L(M). Then there are unique constants

εL(S) = εGL(S), L ∈ L(M),

such that

IMM (γ, f̃) =
∑

L∈L(M)

ÎL,ΣM (γ, εL(S)f̃L̃), γ ∈M(FS).

The constants have the descent property

εM (S) =
∑

L∈L(M1)

dGM1
(M,L)εLM1

(S), M1 ⊂M,

and the splitting property

εM (S) =
∑

L1,L2∈L(M)

dGM (L1, L2)εL1
M (S1)εL2

M (S2), S = S1 ∪ S2.
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Proof. This theorem follows from the proof of Theorem 6.1, II of [13], with IEM
replaced by IMM and IM replaced by IΣ

M .

Corollary 3.1 (6.4). In the special case that S contains {v : |n|v 6= 1}, we suppose
that

IML (γ, f̃) = IΣ
L (γ, f̃),

for any γ ∈ Lcomp(FS) and L ∈ L(M). Then

εM (S) =
{

1, M = G,
0, M 6= G

for any finite set S of valuations with the closure property.

Proof. Fix M $ G. By the induction hypothesis following Theorem A we have that
εLM (S) = 0, if M $ L $ G. It follows from the the descent property of Theorem 3.1
that εM (S) = 0 unless M = M0. It follows from the splitting property of Theorem
3.1 that

εM0(S) =
∑
v∈S

εM0(v).

The corollary therefore follows if we show that εM0(v) = 0. Under Assumption 2,
we assume that the invariant local trace formula of Arthur (Proposition 8.1, [12])
holds for G̃(Fv) and we compare local trace formulas to show that εM0(v) = 0. Our
assumption is that the geometric side of the local trace formula ((8.5), [12]),∑

M∈L
|WM

0 ||WG
0 |−1(−1)dim(AM/AG)

∫
(M̃(Fv)ell)

IM̃ (γ̃, f̃1 × f̃2)dγ̃,

is equal to the spectral side ((8.6), [12]),∑
M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM/AG)

×
∑

π̃∈Πdisc(M̃)

aM̃disc(π̃)
∫
ia∗M

rM̃ (π̃λ, P̃ )tr
(

IndG̃
P̃

(π̃λ, f̃1 × f̃2)
)
dλ.

We shall make a few remarks concerning the notations. The set (M̃(Fv)ell) is
the set of M̃(Fv)-conjugacy classes of elements γ̃ in M(Fv) such that p(γ̃) is Fv-
elliptic in M(Fv). It is a measure space by virtue of an identification with a set of
anisotropic tori. The invariant distribution IM̃ (γ̃, f̃1× f̃2) is defined analogously to
the distribution IM̃ (γ̃, f̃) of §7 in [30], the only differences being that f̃1 and f̃2 are
Hecke functions on the same group and that f̃1 is genuine, not antigenuine. The
set Πdisc(M̃) is, in our case (Proposition 27, [18]), a subset of (equivalence classes
of) representations of the form

π̃ = π̃∨1 ⊗ π̃1, π̃1 ∈ Πtemp(M̃(Fv)),

where π̃∨1 denotes the contragredient of π̃1. The term rM̃ (π̃λ, P̃ ) is obtained from
the (G,M) family of normalizing factors given in §5 of [30]. The reader is referred
to [12] for a description of the remaining notations. Applying the local vanishing
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property (Lemma 8.1, [30]), making the change of variable from γ to γ′, and making
some obvious definitions, we find that the geometric side is equal to∑

M∈L
|WM

0 ||WG
0 |−1(−1)dim(AM/AG)

∫
(M(Fv)ell)/µMn

|n|rvIM̃ (γ′, f̃1 × f̃2)dγ

=
∑
M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM/AG)

∫
(M(Fv)ell)/µMn

IMM (γ, f̃1 × f̃2)dγ.

The geometric side of the local trace formula for G(Fv) at f̃ ′1 × f̃ ′2 is equal to∑
M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM/AG)

∫
(M(Fv)ell)

ÎM (γ, f̃ ′1 × f̃ ′2)dγ

= n
∑
M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM/AG)

∫
(M(Fv)ell)/µMn

IΣ
M (γ, f̃1 × f̃2)dγ.

The comparison of the spectral side of the local trace formula of G(Fv) follows in
three steps. First, from a simple computation (cf. §8) and the definition of our
normalizing factors (§5, [30]), it follows that

rM̃ (π̃λ, P̃ ) = ndim(AM/AG)rM (π̃′λ′ , P ), P ∈ P(M).

Second, the local metaplectic correspondence for tempered representations ((8),
[30]) implies that

tr
(

IndG̃
P̃

(π̃λ, f̃1 × f̃2)
)

= (f̃ ′1 × f̃ ′2)
(

IndGP (π̃′λ′)
)
.

Finally, we leave it to the interested reader to show that once the terms in the
definition of aM̃disc(π̃) and aMdisc(π̃

′) are unraveled, they are easily seen to be equal.
Taking the foregoing into consideration and noting that dλ′ equals ndim(AM )dλ, we
conclude that the spectral side of the local trace formula for G(Fv) is n times the
spectral side of the local trace formula for G̃(Fv). The coefficient n cancels the
n appearing in front of the geometric side of the trace formula for G(Fv). Thus,
taking the difference of our modified local trace formulas yields∑

M∈L
|WM

0 ||WG
0 |−1(−1)dim(AM/AG)

×
∫

(M(Fv)ell)/µMn

IMM (γ, f̃1 × f̃2)− IΣ
M (γ, f̃1 × f̃2)dγ = 0.

An application of the splitting properties of IMM (γ) and IΣ
M (γ) (which follow as in

(23), [30] and Proposition 6.2, [30]) and the induction hypothesis to the integrand
reduces this equation to

r−1(−1)r−1

∫
M0(Fv)/µMn

2|n|rvεM0(v)ÎM̃0

M̃0
(γ′, f̃1,M̃0

)ÎM̃0

M̃0
(γ′, f̃2,M̃0

)dγ = 0,

which in turn implies∫
M0(Fv)/µMn

εM0(v)IG̃(γ′, f̃1)IG̃(γ′, f̃2)dγ = 0.(4)

Choosing appropriate non-negative functions f̃1, f̃2 in this equation implies that
εM0(v) = 0 and the corollary is complete.
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4. Comparison of germs

We shall establish germ expansions for IMM (γ) and IΣ
M (γ) and then compare

them. Before writing the germ expansion for IM̃ (γ̃) we extend the notion of (M,σ)-
equivalence (cf. §2, [9]) to metaplectic coverings. Suppose that σ̃ is a semisimple
element of M̃(FS), and φ1, φ2 are functions defined on an open subset Σ of M̃σ̃(FS),
whose closure contains an M̃σ̃-invariant neighborhood of σ̃. We say φ1 is (M̃, σ̃)-
equivalent to φ2 and write

φ1(γ̃)
(M̃,σ̃)∼ φ2(γ̃), γ̃ ∈ Σ,

if there exists h̃ ∈ C∞c (M̃(FS)) and a neighborhood U of σ̃ in M̃(FS) such that

φ1(γ̃)− φ2(γ̃) = IM̃
M̃

(γ̃, h̃), γ̃ ∈ Σ ∩ U.

For the remainder of this section we assume that v is nonarchimedean and f̃ ∈
H(G̃(Fv)). Suppose that γ̃ ∈ M̃(Fv) such that p(γ̃) has Jordan decomposition σu.
Choose σ̃ such that p(σ̃) = σ and γ̃ = σ̃u. The germ expansion of IM̃ (γ̃, f̃) is the
extension of (2.5) of [7] to metaplectic coverings and reads as

IM̃ (γ̃, f̃)
(M̃,σ̃)∼

∑
L∈L(M)

∑
δ̃∈σ̃(ULσ (Fv))

gL̃
M̃

(γ̃, δ̃)IL̃(δ̃, f̃).(5)

As in the germ expansions of invariant orbital integrals (§4, [30]), the germs gL̃
M̃

(γ̃, δ̃)
are parameterized by classes in (ULσ (Fv)) (by way of the orbit map s). Therefore
in comparing germ expansions at γ = σu ∈ M(Fv) and γ′ it would be convenient
to have a bijection between (ULσ(Fv)) and (ULσn (Fv)). The following lemma gives
us such a bijection provided σ is Fv-elliptic in L.

Lemma 4.1. Suppose L ∈ L(M) and σ is a semisimple element of M(Fv) such
that σ is Fv-elliptic in M and σn is Fv-elliptic in L. Then there exists an element
η in µMn such that Lησ(Fv) = Lσn(Fv). In particular, ησ is Fv-elliptic in L.

Proof. For the sake of convenience, we suppose that L = G. Recall decomposition
(4) of [30],

M(Fv) = M(1)(Fv)× · · · ×M(`)(Fv) ∼= GL(r1, Fv)× · · · ×GL(r`, Fv).

We identify M(Fv) with this direct product of general linear groups. By assump-
tion, σ is Fv-elliptic in M(Fv). It is therefore M(Fv)-conjugate to

 σ1 0
. . .

0 σ1

 0

. . .

0

 σ` 0
. . .

0 σ`




,

where σi ∈ GL(mi, Fv) generates an extension Fi/Fv of degree mi, mi divides ri,
and σi appears ri/mi times (cf. §1, [25]). Since σn is Fv-elliptic in G(Fv), it is
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M(Fv)-conjugate to  σ0 0
. . .

0 σ0

 ,

where σ0 ∈ GL(m0, Fv) generates a field extension F0 of degree m0, m0 divides r,
and σ0 appears r/m0 times. The elements σi ∈ GL(mi, Fv) may also be regarded
as elements of the fields Fi, 0 ≤ i ≤ `. From this perspective we have

Fi = Fv(σi) ⊃ Fv(σni ) = Fv(σ0) = F0, 1 ≤ i ≤ `.
Obviously [Fi : F0] ≤ r and, by Theorem 10 (b), VIII, §6 of [28], [Fi : F0] divides n,
1 ≤ i ≤ `. As we are working under Assumption 1, we must have F0 = F1 = · · · =
F`. As a result, m1 = · · · = m` = m0 and σn1 = · · · = σn` = σ0. Since F0 contains
µn, it follows that there exist ζ1, . . . , ζ` ∈ µn such that ζiσ1 = σi. The elements
ζ1, . . . , ζ` determine an element η ∈ µMn such that

ησ =

 σ1 0
. . .

0 σ1

 .

The lemma now follows from the fact that

Gησ(Fv) ∼= GL(r/m0, F0) ∼= Gσn(Fv).

In the hypothesis of Lemma 4.1 we take σ to be Fv-elliptic in M(Fv). We shall
see in a moment that this restriction does not pose a problem for the comparison of
germs because the germs of (5) vanish for non-elliptic σ. We therefore assume for
the rest of this section that σ is a semisimple element of M(Fv) which is Fv-elliptic
in M(Fv).

Let us consider the ellipticity of σn. There exists a unique maximal Levi sub-
group L0 ∈ L(M) such that σn is Fv-elliptic in L0. Indeed, if σn is Fv-elliptic in
L1, L2 ∈ L(M), then the centralizer in G of the split torus AL1 ∩ AL2 is a Levi
subgroup L ∈ L(M). It is then simple to verify that

AL(Fv) = AL1(Fv) ∩AL2(Fv) = AL1,σn (Fv) ∩AL2,σn (Fv) = ALσn (Fv),

which is equivalent to σn being Fv-elliptic in L. By Lemma 4.1 we know that there
exists η0 ∈ µMn such that L0,η0σ(Fv) = L0,σn(Fv). We shall assume that η0 is the
identity for the rest of this section. As a result, σ is Fv-elliptic in L ∈ L(M) if and
only if σn is Fv-elliptic in L.

Lemma 4.2. Suppose that L ∈ L(M), σ is Fv-elliptic in L, and η ∈ µMn . Then
ησ is Fv-elliptic in L if and only if η ∈ µLn .

Proof. If η ∈ µLn , then Lησ(Fv) = Lσ(Fv), so ησ is clearly seen to be Fv-elliptic in
L. Conversely, suppose ησ is Fv-elliptic in L and, for the sake of simplicity, that
L = G. Since σ is Fv-elliptic in G, we may assume by rational canonical form that

σ =

 σ0 0
. . .

0 σ0

 ,
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where σ0 ∈ GL(m0, Fv) generates a field extension F0 of degree m0 and σ0 appears
r/m0 times. Consequently,

ησ =

 η1σ0 0
. . .

0 ηr/m0σ0

 ,

where the scalar matrices, η1, . . . , ηr/m0 , are projections of η into the GL(m0, Fv)-
blocks. In order for ησ to be Fv-elliptic in G, we must have ηiσ0 = ηjσ0 for
1 ≤ i, j ≤ r/m0. This implies that η ∈ µGn .

We are now ready to give germ expansions for the local geometric terms of the
trace formula.

Lemma 4.3. Suppose γ ∈ Mσ(Fv) ∩ Goreg(Fv) and f̃ ∈ H(G̃(Fv)). Then there
exist functions γ 7→ gLM (γ, δ) such that

IΣ
M (γ, f̃)

(M,σ)∼
∑

L∈L(M)

∑
δ∈σ(ULσ (Fv))

gLM (γ, δ)IΣ
L (δ, f̃).

Proof. Suppose f ∈ H(G(Fv)). If η ∈ µMn , then ησ is a semisimple element and by
(2.5) of [7], we have

IM (γ, f)
(M,ησ)∼

∑
L∈L(M)

∑
δ∈(ησULησ (Fv))

gLM (γ, δ)IL(δ, f), γ ∈Mησ(Fv) ∩Goreg(Fv).

As η lies in the center of M(Fv), it is easy to see that (M,ησ)-equivalence of a
function in γ is the same as (M,σ)-equivalence of a function in ηγ. The above
expansion may thus be written as

IM (ηγ, f)
(M,σ)∼

∑
L∈L(M)

∑
δ∈(ησULησ (Fv))

gLM (ηγ, δ)IL(δ, f), γ ∈Mσ(Fv) ∩Goreg(Fv).

Consequently

IΣ
M (γ, f̃) =

∑
η∈µMn /µGn

ÎM (ηγ, f̃ ′)

(M,σ)∼
∑

L∈L(M)

∑
η∈µMn /µGn

∑
δ∈ησ(ULησ (Fv))

gLM (ηγ, δ)ÎL(δ, f̃ ′).

Now if γ = σγ1 and δ = ησu, where u ∈ ULησ (Fv), then by Lemma 9.2 of [7] we
have

gLM (ηγ, δ) =
{
g
Lησ
Mσ

(γ1, u), if ησ is Fv-elliptic in L,
0, otherwise.

If σn is not Fv-elliptic in L, then neither is ησ for any η ∈ µMn /µGn and gLM (ηγ, δ) = 0.
On the other hand, if σn is Fv-elliptic in L, then, by our assumption on σ, Lemma
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4.2 and Lemma 9.2 of [7],

gLM (ηγ, δ) =
{
g
Lησ
Mσ

(γ1, u), if η ∈ µLn/µGn ,
0, otherwise

=
{
gLσMσ

(γ1, u), if η ∈ µLn/µGn ,
0, otherwise

=
{
gLM (γ, δ), if η ∈ µLn/µGn ,
0, otherwise.

Combining these last two observations, we find that

IΣ
M (γ, f̃)

(M,σ)∼
∑

L∈L(M)

∑
δ∈σ(ULσ (Fv))

gLM (γ, δ)
∑

η∈µLn/µGn

ÎL(ηδ, f̃ ′)

=
∑

L∈L(M)

∑
δ∈σ(ULσ (Fv))

gLM (γ, δ)IΣ
L (δ, f̃).

The next lemma shows that there is a similar germ expansion for the distribution
IMM (γ, f). We shall abuse notation slightly by identifying the index set (ULσ (Fv))
below with (s(ULσ(Fv))).

Lemma 4.4. Suppose γ ∈ Mσ(Fv) ∩ Goreg(Fv) and f̃ ∈ H(G̃(Fv)). Then there
exist functions γ 7→ gL̃

M̃
(s(γ), s(δ)) such that

IMM (γ, f̃)
(M,σ)∼

∑
L∈L(M)

∑
δ∈σ(ULσ (Fv))

gL̃
M̃

(s(γ), s(δ))IML (δ, f̃).

Proof. Expansion (2.5) of [7] translates into the metaplectic context as

IM̃ (γ̃, f̃)
(M̃,σ′)∼

∑
L∈L(M)

∑
δ̃∈σ′(ULσn (Fv))

gL̃
M̃

(γ̃, δ̃)IL̃(δ̃, f̃)

for γ̃ ∈ M̃σ′(Fv) ∩ G̃reg(Fv). Lemma 9.2 of [9] translates as

gL̃
M̃

(γ̃, δ̃) =

{
gL̃σn
M̃σn

(γ1, s(u)), if σn is Fv-elliptic in L,

0, otherwise,

where γ̃ = σ′γ1, δ̃ = σ′s(u) and u ∈ ULσn (Fv). If σn is Fv-elliptic in L, it follows
from our assumptions on σ that Lσ = Lσn . Consequently, L̃σ = L̃σn and the
previous equation becomes

gL̃
M̃

(γ̃, δ̃) =

{
gL̃σ
M̃σ

(γ1, s(u)), if σ is Fv-elliptic in L,

0, otherwise.
(6)

By taking these facts into consideration, we obtain the expansion,

IM̃ (γ̃, f̃)
(M̃,σ′)∼

∑
L∈L(M)

∑
δ̃∈σ′(ULσ (Fv))

gL̃
M̃

(γ̃, δ̃)IL̃(δ̃, f̃), γ̃ ∈ M̃σ′(Fv) ∩ G̃reg(Fv).

The local vanishing property, Lemma 8.3 of [30], tells us that IL̃(δ̃, f̃) vanishes
unless p(δ̃) = δn for some δ ∈ G(Fv). The set σ(ULσ (Fv)) maps bijectively onto
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the set σ′(ULσ (Fv)) under the orbit map. This can be deduced from Lemma 4.1 of
[30] and the identity of cocycles (1) of [30]. Hence,

IM̃ (γ̃, f̃)
(M̃,σ′)∼

∑
L∈L(M)

∑
δ∈σ(ULσ (Fv))

gL̃
M̃

(γ̃, δ′)IL̃(δ′, f̃), γ̃ ∈ M̃σ′(Fv) ∩ G̃reg(Fv).

Once again, by the local vanishing property, IM̃ (γ̃, f̃) vanishes unless p(γ̃) = γn for
some γ ∈ G(Fv)∩Goreg(Fv). We claim that for each L ∈ L(M) and δ ∈ σ(ULσ (Fv)),
the function gL̃

M̃
(γ̃, δ′) has the same vanishing property. We may assume inductively

that this is true for L 6= G. Fix δ1 ∈ σ(ULσ (Fv)). There exists a function f̃1 ∈
H(G̃(Fv)) such that

IG̃(δ̃, f̃1) =
{

1, if δ̃ = δ′1,
0, otherwise

}
, δ̃ ∈ σ′(UGσ (Fv))

(cf. §3.3, [38]). In particular,

IG̃(δ′, f̃1) =
{

1, if δ′ = δ′1,
0, otherwise

}
, δ ∈ σ(UGσ (Fv)).

It is easily shown using Lemma 4.1 of [30] in this instance that δ′ = δ′1 if and only
if δ = δ1. Thus

IG̃(δ′, f̃1) =
{

1, δ = δ1
0, otherwise

}
, δ ∈ σ(UGσ (Fv)).

If we substitute f̃1 into our last germ expansion, the desired vanishing property for
gG̃
M̃

(γ̃, δ′) follows. Our germ expansion now has the form

IM̃ (γ′, f̃)
(M̃,σ′)∼

∑
L∈L(M)

∑
δ∈σ(ULσ (Fv))

gL̃
M̃

(γ′, δ′)IL̃(δ′, f̃), γ ∈M(Fv) ∩Goreg(Fv).

As noted in §3.1 of [30], the orbital integral of any function in C∞c (M̃(Fv)) is equal
to the orbital integral of a function in C∞c (M(Fv)). Therefore (M̃, σ′)-equivalence
may be taken to be (M,σ)-equivalence and we may write

IMM (γ, f̃)
(M,σ)∼ |n|r/2v

∑
L∈L(M)

∑
δ∈σ(ULσ (Fv))

gL̃
M̃

(γ′, δ′)IL̃(δ′, f̃), γ∈M(Fv) ∩Goreg(Fv).

We now follow an argument on pp. 121–122 of [13]. Suppose σ is Fv-elliptic in L.
Then by equation (6) we have

gL̃
M̃

(γ′, δ′) = gL̃σ
M̃σ

(γ′1, u
′) = gL̃σ

M̃σ
(s(γ1)n, s(u)n),

where γ = σγ1 and δ = σu. The metaplectic version of the homogeneity property of
germs (Proposition 10.2, [9]) implies that gL̃σ

M̃σ
(s(γ1)n, s(u)n) is equal to the product

of |n|(dim(Lσu)−r)/2
v with∑

L1∈LL(M)

∑
u1∈(UL1,σ (Fv))

g
L̃1,σ

M̃σ
(s(γ1), s(u1))cLσL1,σ

(u1, n)[uLσ1 : u],
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where cLσL1,σ
(u1, n) is defined as in (20) of [30] and

[uLσ1 : u] =
{

1, if u = uLσ1 ,
0, otherwise.

Suppose that u = uLσ1 and set δ1 = σu1. Then

|n|r/2v |n|(dim(Lσu)−r)/2 = |n|dim(L1,δ1 )/2 = ΛL1(δ1).

Furthermore, by Lemma 3.5, II of [13], we have

cLσnL1,σn
(u1, n) = cLσnL1,σn

(un1 , n) = cLL1
(σn1 u, n) = cLL1

(δn1 , n).

Again, by equation (6) we have

g
L̃1,σ

M̃σ
(s(γ1), s(u1)) = gL̃1

M̃
(s(γ), s(δ1)).

Putting these facts together, we see that

|n|r/2v

∑
δ∈σ(ULσ (Fv))

gL̃
M̃

(γ′, δ′)IL̃(δ′, f̃)

is (M,σ)-equivalent to∑
L1∈LL(M)

∑
δ1∈σ(UL1,σ (Fv))

ΛL1(δ1)gL̃1

M̃
(s(γ), s(δ1))cLL1

(δn1 , n)IL̃((δL1 )′, f̃),

if σ is Fv-elliptic in L. If σ is not Fv-elliptic in L, then equation (6) and Lemma
3.5, II of [13] imply that both of these expressions vanish, and are thus still equal.
In consequence, IMM (γ, f̃) is (M,σ)-equivalent to the sum of the latter expression
over L ∈ L(M). Interchanging the sums over L and L1 and substituting (20) of
[30] then completes the lemma.

In the remainder of this section we compare the germ expansions of Lemma 4.3
and Lemma 4.4.

Lemma 4.5 (7.1). Suppose Theorem A (i) holds for G. Then for each u ∈ UG(Fv)
we have

gGM (γ, u)
(M,1)∼ gG̃

M̃
(s(γ), s(u)), γ ∈M(Fv) ∩Goreg(Fv).

Proof. We may assume by induction that

gLM (γ, u)
(M,1)∼ gL̃

M̃
(s(γ), s(u)), γ ∈M(Fv) ∩Goreg(Fv),

for all L ∈ L(M) such that L 6= G. We may equate the germ expansions of Lemmas
4.3 and 4.4 since we are assuming Theorem A holds. Together with the induction
assumption, this yields∑

u∈(UG(Fv))

(
gG̃
M̃

(s(γ), s(u))− gGM (γ, u)
)

ΛG(u)IG̃(u′, f̃)
(M,1)∼ 0,

for γ ∈M(Fv)∩Goreg(Fv). As in Lemma 4.4, for a a fixed element u1 ∈ (UG(Fv)),
we may choose f̃1 ∈ H(G̃(Fv)) such that

IG̃(u, f̃1) =
{

1, u = u1,
0, otherwise

}
, u ∈ (UG(Fv)).

The lemma now follows by replacing f̃ with f̃1 in the last (M, 1)-equivalence.



COMPARISONS OF GENERAL LINEAR GROUPS 541

Lemma 4.6 (7.2). Suppose γ ∈M(Fv) ∩Goreg(Fv). Then

gG̃
M̃

(s(γ), 1)
(M,1)∼ gGM (γ, 1).

Proof. Fix a supercuspidal representation π̃ ∈ Πtemp(G̃(Fv)) and let f̃ be a matrix
coefficient of π̃. Although f̃ only has compact support modulo the center of G̃(Fv),
the distributions IM (γ) and IΣ

M (γ) are still defined at f̃ . Indeed, these distributions
are defined on the space Hac(G̃(Fv)) of “almost compact” Hecke functions (cf. §11,
[10]). Furthermore, it is clear from §27.3 of [18] that there exists a matrix coefficient
f of π̃′ such that

ΛG(γ)IG̃(γ′, f̃) = IG(γ, f), γ ∈ Goreg(Fv).

The local trace formula ((9.3), [12]) implies the equations,

nIM̃ (γ′, f̃) = (−1)dim(AM )|DG(γn)|1/2v Θπ̃(γ′),

IM (γ, f) = (−1)dim(AM )|DG(γ)|1/2v Θπ̃′(γ),

for γ ∈ M(Fv) ∩ Goreg(Fv) which are Fv-elliptic in M (the coefficient n in the
former equation arises from an invariant sum over i(µn)). It is immediate from
these equations that we also have

IMM (γ, f̃) = n−1|n|r/2v (−1)dim(AM )|DG(γn)|1/2v Θπ̃(γ′),

IΣ
M (γ, f̃) = (−1)dim(AM)

∑
η∈µMn /µGn

|DG(ηγ)|1/2v Θπ̃′(ηγ).

According to character relation (6) of [30] the right-hand sides of these equations
are equal. If γ ∈M(Fv) ∩Goreg(Fv) is not Fv-elliptic in M , then

IMM (γ, f̃) = 0 = IΣ
M (γ, f̃),

by [6]. Applying Lemma 3.3 we obtain

IMM (1, f̃) = IΣ
M (1, f̃).

Suppose u ∈ M(Fv) is unipotent and u 6= 1. Then u can be represented by
an induced unipotent conjugacy class uM1 , where u1 ∈ (UM1(Fv)), M1 ∈ L and
M1 $ M . Expansion (20) in [30] and the descent formula of Corollary 8.2 in [7]
(extended to metaplectic coverings) imply that

IMM (u, f̃) = ΛM (u)
∑

L∈L(M)

cLM (un, n)IL̃((uL1 )′, f̃)

= ΛM (u)
∑

L∈L(M)

cLM (un, n)
∑

L1∈L(M1)

dGM1
(L,L1)ÎL̃1

M̃1
(u′1, f̃L̃1

).

Since f̃ is a supercusp form on G̃, we have f̃L̃1
= 0 for any L1 ∈ L such that L1 $ G.

It follows that the right-hand side of this equation vanishes. Using a similar, but
simpler argument we see that IΣ

M (u, f̃) also vanishes. Collecting our results, we find
that many of the terms in the respective germ expansions in Lemma 4.3 and Lemma
4.4 of IΣ

M (γ, f̃) and IMM (γ, f̃) about the identity disappear. Assuming inductively
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that the lemma holds for G replaced by L ∈ L with L $ G, we find that the
difference of the remaining terms is

gG̃
M̃

(s(γ), 1)IMG (1, f̃)− gGM (γ, 1)IΣ
G(γ, f̃)

=
(
gG̃
M̃

(s(γ), 1)− gGM (γ, 1)
)
|n|r

2/2
v f̃(1)

(M,1)∼ 0.

The lemma now follows from the fact that f̃(1) 6= 0.

We now define a subspace H(G̃(FS))0 of H(G̃(FS)) upon which our distribu-
tions shall be easier to compare. Set H(G̃(FS))0 to be the subspace of H(G̃(FS))
generated by functions,

f̃ =
∏
v∈S

f̃v, f̃v ∈ H(G(Fv)),

such that for each nonarchimedean valuation v ∈ S the orbital integral of f̃v van-
ishes at any element of the form

(δvuv, ζ), δ ∈ AG(Fv), uv ∈ UG(Fv), uv 6= 1, ζ ∈ µn.

Proposition 4.1 (7.3). Suppose σ is as above and f̃ ∈ H(G̃(Fv))0. Then

IMM (γ, f̃)
(M,σ)∼

∑
L∈L(M)

∑
δ∈(ULσ (Fv))

gLM (γ, δ)IML (δ, f̃), γ ∈Mσ(Fv) ∩Goreg(Fv).

Proof. Suppose δ = σu, where u ∈ ULσ(Fv), and γ = σγ1, where γ1 ∈ Mσ(Fv).
Then according to Lemma 9.2 of [9] and the proof of Lemma 4.4,

gLM (γ, δ) =
{
gLσMσ

(γ1, u), if σ is Fv-elliptic in L,
0, otherwise,

and

gL̃
M̃

(s(γ), s(δ)) =

{
gL̃σ
M̃σ

(s(γ1), s(u)), if σ is Fv-elliptic in L,

0, otherwise.

By the germ expansion of Lemma 4.4, it suffices to show that

gLσMσ
(γ1, u)

(Mσ,1)∼ gL̃σ
M̃σ

(s(γ1), s(u)),

if σ is Fv-elliptic in L, and L ∈ L(M). Suppose that σ is Fv-elliptic in L and that
Lσ 6= G. Then the induction assumption following Theorem A holds for Lσ and we
may apply Lemma 4.5, with Lσ in place of G, to obtain

gLσMσ
(γ1, u)

(Mσ ,1)∼ gL̃σ
M̃σ

(s(γ1), s(u)).

By Lemma 2.1 of [9], it follows that (Mσ, 1)-equivalence of these germs as functions
of γ1 is that same as (M,σ)-equivalence as functions of γ. That is,

gLM (γ, δ) = gLσMσ
(γ1, u) = gL̃σ

M̃σ
(s(γ1), s(u)) = gL̃

M̃
(s(γ), s(δ)).

The remaining possibility is that σ ∈ AG(Fv) and L = G. Suppose this is the case.
Then, by our assumptions on σ and Lemma 4.5 of [30],∑

δ∈σ(UG(Fv))

gG̃
M̃

(s(γ), s(δ))IMG (δ, f̃) =
∑

δ∈σ(UG(Fv))

gG̃
M̃

(s(γ), s(δ))ΛG(δ)IG̃(δ, f̃).
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Since f̃ ∈ H(G̃(Fv))0, we see that IG̃(δ, f̃) vanishes in the above sum unless δ = σ.
Since σ is central,

gG̃
M̃

(s(γ), s(σ)) = gG̃
M̃

(s(γ1), 1) = gGM (γ1, 1) = gGM (γ, σ)

by Lemma 9.2 of [9] and Lemma 4.6. Hence,∑
δ∈σ(UG(Fv))

gG̃
M̃

(s(γ), s(δ))IMG (δ, f̃) = gG̃
M̃

(s(γ), s(σ))IMG (σ, f̃)

(M,σ)∼ gGM (γ, σ)IMG (σ, f̃ )

=
∑

δ∈σ(UG(Fv))

gGM (γ, δ)IMG (δ, f̃)

and the lemma is complete.

5. The distributions IM̃ (π̃, X) and IΣ
M (π̃, X)

Leaving the geometric side of the trace formula behind, we examine the spectral
side. The spectral side contains invariant distributions,

IM̃ (π̃, X, f̃), π̃ ∈ Π(M̃(FS)), X ∈ aM,S , f̃ ∈ H(G̃(FS)),

which are introduced in §3 of [7] in the case of the trivial covering. We assume that
the reader is to some degree familiar with this introduction and describe some of it
below in the context of non-trivial coverings.

Given ρ̃ ∈ Σ(M̃(FS)), we define

IG,ΣM (ρ̃, X, f̃) = n− dim(AG)ÎGM (ρ̃′, X ′, f̃ ′) = n−1ÎM (ρ̃′, X ′, f̃ ′),

for all X ∈ aM,S and f̃ ∈ H(G̃(FS)). The coefficient n−1 appears in this definition
in order absorb the same coefficient appearing in IΣ(f̃) = n−1I(f̃ ′). If L ∈ L(M)
and λ ∈ a∗M,S is in general position, then the induced representation ρ̃L̃λ belongs
to Σ(L̃(FS)). When ρ̃L̃λ appears as an argument of IL̃(·) or IΣ

L (·), we will often
suppress the superscript L̃. For π̃ ∈ Π(M̃(FS)), we define IΣ

M (π̃, X, f̃) as∑
P

ωP
∑
L

∑
ρ̃

∫
εP+ia∗M,S/ia

∗
L,S

rL̃
M̃

(π̃λ, ρ̃λ)IΣ
L (ρ̃λ, hL(X), f̃)e−λ(X)dλ,(7)

where P , L and ρ̃ are summed over P(M), L(M) and Σ(M̃(FS)) respectively. For
the definitions of hL(X) and ωP see §6 of [10] and §3 of [7]. The definition of
rL̃
M̃

(π̃λ, ρ̃λ) follows §6 of [10].
As on p. 127 of [13], we identify a representation π̃ in Π(M̃(FS)1) with the orbit

{π̃λ : λ ∈ a∗M,C} in Π(M̃(FS)), if π̃ is not unitary. If π̃ belongs to Πunit(M̃(FS)1),
then we identify it with the orbit {π̃λ : λ ∈ ia∗M} in Πunit(M̃(FS)). We make
similar identifications for representations in Π(M̃(A)1) and Πunit(M̃(A)1). If π̃ ∈
Πunit(M̃(FS)1), set

IM̃ (π, f̃) = IM̃ (π̃λ, 0, f̃),

and

IΣ
M (π̃, f̃) = IΣ

M (π̃λ, 0, f̃),

for any λ ∈ ia∗M . It may be verified that these definitions are well-defined. Both of
these definitions are independent of S, if S is large, and therefore may be extended
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to representations in Πunit(M̃(A)1). In complete analogy with the expressions of
the geometric side of the trace formula, we shall compare IM̃ (π̃, f̃) with the term
IΣ
M (π̃, f̃) occurring in the spectral sides of the trace formulas.

We may draw parallels between the local geometric and the local spectral terms
of the trace formulas. In order to compare the local geometric terms of the trace
formulas for G and G̃, we use the orbit map. One might surmise that the analogous
transfer map for the local spectral terms might be given by the local metaplectic
correspondence (11) of [30]. Unfortunately, this map does not intrinsically relate
the characters of the representations to each other. In what follows, we define
certain constants which relate representations in Π(M̃(FS)) to representations in
Π(M(FS)) in a fashion that is compatible with their characters.

By the Langlands quotient theorem and §5 of [10] there exist constants ∆(π̃, ρ̃)
and Γ(ρ̃, π̃) for arbitrary ρ̃ ∈ Σ(M̃(FS)) and π̃ ∈ Π(M̃ (FS)), such that

tr(ρ̃) =
∑

π̃∈Π(M̃(FS))

Γ(ρ̃, π̃)tr(π̃),

and

tr(π̃) =
∑

ρ̃∈Σ(M̃(FS))

∆(π̃, ρ̃)tr(ρ̃).

For π ∈ Π(M(FS)) and ρ̃ ∈ Σ(M̃(FS)) define

∆(π, ρ̃) = ∆(π, ρ̃′).

Given π̃ ∈ Π(M̃(FS)), we set

δ(π, π̃) =
∑

ρ̃∈Σ(M̃(FS))

∆(π, ρ̃)Γ(ρ̃, π̃).

As can be seen from the next proposition, the map of virtual characters,

Θπ 7→
∑

π̃∈Π(M̃(FS))

δ(π, π̃)Θπ̃,(8)

is the transfer map which allows us to compare characters of representations.

Proposition 5.1 (8.2). For any f̃ ∈ H(M̃(FS)) and matching f ∈ H(M(FS)) we
have

tr (π(f)) =
∑

π̃∈Π(M̃(FS))

δ(π, π̃)tr(π̃(f̃)), π ∈ Π(M(FS)).
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Proof. According to the character relations satisfied by the local metaplectic cor-
respondence

tr (π(f)) =
∑

ρ∈Σ(M(FS))

∆(π, ρ)tr (ρ(f))

=
∑

ρ̃∈Σ(M̃(FS))

∆(π, ρ̃′)tr(ρ̃(f̃))

=
∑

ρ̃∈Σ(M̃(FS))

∑
π̃∈Π(M̃(FS))

∆(π, ρ̃′)Γ(ρ̃, π̃)tr(π̃(f̃))

=
∑

π̃∈Π(M̃(FS))

δ(π, π̃)tr(π̃(f̃)).

Corollary 5.1 (8.3). Suppose S consists of a single valuation v, for which |n|v =
1, and that π̃ ∈ Π(M̃(Fv)) is an unramified representation. Then for any π ∈
Π(M(Fv))

δ(π, π̃) =
{

1, if π = π̃′,
0, otherwise.

Proof. Take f̃ to be an arbitrary function in H(M(Fv)) which is bi-invariant under
s (Kv ∩M(Fv)). Theorem 16 of [18] tells us that tr (π̃′(f)) = tr(π̃(f̃)) for any
f ∈ H(M(Fv)) matching f̃ . The corollary now follows from Proposition 5.1 and
the linear independence of characters.

This corollary allows us to define a map

δ(π, π̃) =
∏
v

δ(πv, π̃v)

for adelic representations π̃ =
⊗

v π̃v ∈ Π(M̃(A)) and π =
⊗

v πv ∈ Π(M(A)). All
of the above formulas remain valid in the adelic context. Given π̃ ∈ Π(M̃(A)1) and
π ∈ Π(M(A)1), set

δ(π, π̃) =
∑

λ∈a∗M,C

δ(πλ1 , π̃λ)

for arbitrary λ1 ∈ a∗M,C. This definition may be verified to be well-defined.

6. Statement of Theorem B

Now that we have a spectral transfer map (8), we can begin to compare the
spectral sides of the trace formulas. The spectral side of the (conjectural) trace
formula for G̃ is of the form

I(f̃) =
∑
t≥0

It(f̃),

where

It(f̃) =
∑
M∈L

|WM
0 ||WG

0 |−1

∫
Π(M̃,t)

aM̃ (π̃)IM̃ (π̃, f̃)dπ̃.(9)

A description of the terms occurring in this formula may be extrapolated from §4
of [8]. The definition of Π(M̃, t) is given here (cf. §4 of [8]), as we shall often
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consider it. Let M1 ∈ L and t be a positive real number. We are obliged to
first define two other sets, Π(M̃ (A)1, t) and Πdisc(M̃1, t), before we define Π(M̃, t).
Given a representation π̃ ∈ Π(M̃ (A)1), let νπ̃ be the infinitesimal character of
the archimedean factor of π̃. The set Π(M̃(A)1, t) is defined to be the set of
(equivalence classes) of representations π̃ ∈ Π(M̃(A)1) such that ‖Im(νπ̃)‖ = t.

We write Πdisc(M̃1, t) for the subset of Πunit(M̃(A)1, t) consisting of irreducible
constituents of induced representations

σ̃M̃1
λ , L ∈ LM1 , σ̃ ∈ Πunit(L̃(A)1, t), λ ∈ ia∗L/ia∗M1

,

in which σ̃λ satisfies the following two conditions:

1. aL̃disc(σ̃) 6= 0 (see (4.4), [8]).
2. There is an element s ∈WM1(aL)reg such that sσ̃λ = σ̃λ.

Then Π(M̃ , t) is defined as the disjoint union over M1 ∈ LM of the sets

ΠM̃1
(M̃, t) = {π̃ = π̃1,λ : π̃1 ∈ Πdisc(M̃1, t), λ ∈ ia∗M1

/ia∗M}.

The measure in (9) is given by

dπ̃ = dπ̃1,λ = |WM1
0 ||WM

0 |−1dλ.

Let us again consider §2, where we examined the geometric sides of the trace
formulas. In Proposition 9.1 of [30], the geometric side of the trace formula for G̃(A)
was expressed in a manner that was compatible with the orbit map. We shall follow
suit by expressing the spectral side of the trace formula for G̃(A) in a manner that
is compatible with the spectral transfer map (8). This will be carried out in §9. For
the the time being, we set up the appropriate grouping of representations for the
global datum aM̃ (π̃). In other words, we define the global datum aM,Σ(π̃), which
should equal the global datum aM̃ (π̃), occurring in the trace formula for G̃(A).
This is similar in spirit to the grouping of the local geometric terms according to
µMn in §6 of [30]. We first define aM1,Σ

disc (π̃1) for M1 ∈ LM . Set

aM1,Σ
disc (π̃1) =

∑
π∈Π(M1(A)1)

aM1
disc(π)δ(π, π̃1), π̃1 ∈ Π(M̃1(A)1).

This sum may be shown to be finite using the arguments of Lemma 9.1, II of [13].
Given π̃ = π̃1,λ, where λ ∈ a∗M1,C

/a∗M,C, we set

aM,Σ(π̃) = aM1,Σ
disc (π̃1)rM̃

M̃1
(π̃1,λ).

The number rM̃
M̃1

(π1,λ) is not defined for arbitrary π̃1 ∈ Π(M̃1(A)1), and so the
definition of aM,Σ(π̃) is not valid as it now stands. The obstacle stems from the
fact that rM̃

M̃1
(π̃1,λ) is derived from the adelic version of the normalizing factors of

intertwining operators (§5, [30] and §8). As such, it is defined as an infinite product
over the valuations of F and might not converge. One expects such normalizing
factors to converge and have analytic continuation for automorphic representations.
This is borne out by the theory of Eisenstein series (§4, [10]). In order to rectify
the above definition, we make the following induction hypothesis. We assume that
for any M1 ∈ L with M1 6= G, that

aM1,Σ
disc (π̃1) = aM1

disc(π̃1), π̃1 ∈ Π(M̃1(A)1).
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In this case aM1,Σ
disc (π̃1) vanishes unless π̃1 belongs to Πdisc(M̃1, t). If M1 ∈ LM ,

π̃1 ∈ Πdisc(M̃1, t) and λ ∈ ia∗M1,C
/ia∗M,C, then rM̃

M̃1
(π̃1,λ) is defined and the above

definition of aM,Σ(π̃1,λ) makes sense.
The global datum aM,Σ(π̃1), suggests the definitions of sets of representations are

made along the same lines as the definitions of Πdisc(M̃1, t), ΠM̃1
(M̃, t) and Π(M̃, t)

above. We define the sets of (equivalence classes of) representations ΠΣ
disc(M̃1, t),

ΠΣ
M̃1

(M̃, t) and ΠΣ(M̃, t) as above, except that aM̃disc is replaced with aM,Σ
disc .

We are now in the position to state the spectral analogue of Theorem A.

Theorem B. Under Assumptions 1 and 2 the following assertions are true.
(i) Suppose that S is a finite set of valuations with the closure property. Then

IΣ
M (π̃, f̃) = IM̃ (π̃, f̃), π̃ ∈ Πunit(M̃(A)1), f̃ ∈ H(G̃(FS)).

(ii) For any given

π̃ = π̃1,λ, π̃1 ∈ Π(M̃1(A)1), λ ∈ a
∗
M1,C/a

∗
M,C,

we have

aM,Σ(π̃) = aM̃ (π̃).

The proof of this theorem will be completed at the end of §12.

7. Comparison of IM̃ (π̃, X, f̃) and ÎΣ
M (π̃, X, f̃)

The purpose of this section is to show that Theorem A (i) implies Theorem B
(i). We achieve this using the maps θL̃

M̃
and cθL̃

M̃
defined as in §4 of [7]. These maps

are defined on H̃ac(L̃(FS)) and take values in Ĩac(M̃(FS)) for every pair of Levi
subgroups M ⊂ L in L. The spaces H̃ac(L̃(FS)) and Ĩac(M̃(FS)) containH(L̃(FS))
and I(M̃ (FS)) respectively and are defined as in §11 of [10]. The map (13) of [30]
extends in an obvious manner from a map on H(L̃(FS)) to a map on H̃ac(L̃(FS)).
The above maps satisfy the following properties:∑

L∈L(M)

θ̂L̃
M̃

(cθL̃(f̃)) =
∑

L∈L(M)

cθ̂L̃
M̃

(θL̃(f̃)) = 0,

IM̃ (γ̃, f̃) =
∑

L∈L(M)

cÎL̃
M̃

(γ̃, θL̃(f̃)),(10)

and
cIM̃ (γ̃, f̃) =

∑
L∈L(M)

ÎL̃
M̃

(γ̃, cθL̃(f̃)),(11)

for γ̃ ∈ M̃(FS) and f̃ ∈ H̃ac(G̃(FS)). For the definition of cIM̃ (γ̃) see §4 of [7]. Set
cIMM (γ, f̃) = ΛM (γ) cIM̃ (γ′, f̃), γ ∈M(FS) ∩Goreg(FS).

The analogue of property (11) for cIMM (γ) is then seen to be
cIMM (γ, f̃) =

∑
L∈L(M)

ΛM (γ)ÎL̃
M̃

(γ′, cθL̃(f̃))

=
∑

L∈L(M)

ÎL,MM (γ, cθL̃(f̃)), γ ∈M(FS) ∩Goreg(FS).(12)
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After a similar computation we may conclude that the analogue of property (10) is

IMM (γ, f̃) =
∑

L∈L(M)

cÎL,MM (γ, θL̃(f̃)), γ ∈M(FS) ∩Goreg(FS).(13)

Properties (10) and (11) may also be adapted to the distributions of the form IΣ
M (γ).

We mimic the arguments of §6 in [30] to arrive at the equation
cÎM (ηγ, f̃ ′) = cÎM (γ, f̃ ′), f̃ ∈ H̃ac(G̃(FS)), γ ∈M(FS), η ∈ µGn .

Thus, imitating the definition of IΣ
M (γ), we set

cIΣ
M (γ, f̃) =

∑
η∈µMn /µGn

cÎM (ηγ, f̃ ′), γ ∈M(FS), f̃ ∈ H̃ac(G̃(FS)).

The analogue of property (11) for cIΣ
M (γ) is then seen to be

cIΣ
M (γ, f̃) =

∑
η∈µMn /µGn

∑
L∈L(M)

ÎLM (ηγ, cθ̂L(f̃ ′))

=
∑

L∈L(M)

∑
η∈µMn /µLn

∑
η1∈µLn/µGn

ÎLM (η1ηγ,
cθ̂L(f̃ ′))

=
∑

L∈L(M)

∑
η∈µMn /µLn

ÎLM (ηγ,
∑

η1∈µLn/µGn

η1cθ̂L(f̃ ′)).(14)

Here, η1cθ̂M (f̃ ′) is defined as (η1h)M where h ∈ H̃ac(M(FS)) such that hM =
cθ̂M (f̃ ′) (Lemma 4.1, [7]), and η1h is the left-translate of h by η1 ∈ µLn .

Theorem 7.1 (10.2). Fix an element M ∈ L and assume that

IML (γ, f̃) = IΣ
L (γ, f̃), f̃ ∈ H(G̃(FS)),

for each L ∈ L(M) and γ ∈ Lcomp(FS). Then for any f̃ ∈ Hac(G̃(FS)) and
X ∈ aM,S, we have

cθM̃ (f̃)′ =
∑

η∈µMn /µGn

ηcθ̂M (f̃ ′),

θM̃ (f̃)′ =
∑

η∈µMn /µGn

ηθ̂M (f̃ ′),

IM̃ (ρ̃, X, f̃) = IΣ
M (ρ̃, X, f̃), ρ̃ ∈ Σ(M̃(FS)),

and

IM̃ (π̃, X, f̃) = IΣ
M (π̃, X, f̃), π̃ ∈ Π(M̃(FS)).

Proof. We shall not prove this theorem in its entirety as its proof is almost identical
to the proof of Theorem 10.2, II of [13]. We shall, however, provide a proof of the
first and third assertions. We begin with the first assertion. We assume inductively
that the theorem holds if G is replaced by L1 ∈ L such that L1 $ G. We also make
the inductive assumption that the theorem holds if M is replaced by L1 ∈ L(M)
such that L1 % M . We may assume that f̃ ∈ H(G̃(FS)) as the restriction of any
function in H̃ac(G̃(FS)) to

G̃(FS) = {γ̃ ∈ G̃(FS) : HG(p(γ̃)) = Z}, Z ∈ aG,S,
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lies in H(G̃(FS)). Suppose γ ∈M(FS) ∩Goreg(FS) and consider the expression
cIMM (γ, f̃)− cIΣ

M (γ, f̃)

=
∑

L∈L(M)

ÎL,MM (γ, cθL̃(f̃))−
∑

η∈µMn /µLn

ÎLM (ηγ,
∑

η1∈µLn/µGn

η1cθ̂L(f̃ ′)).

Under the assumption of the theorem and the above induction hypotheses this
difference reduces to

ÎM,M
M (γ, θM̃ (f̃))− ÎMM (γ,

∑
η∈µMn /µGn

ηcθ̂M (f̃ ′))

+
∑

{L∈L(M):L 6=M}
ÎL,MM (γ, cθL̃(f̃))− ÎΣ

M (γ, cθL̃(f̃))

= ÎMM (γ, cθM̃ (f̃)′ −
∑

η∈µMn /µGn

ηcθ̂M (f̃ ′)).

By Lemma 4.4 of [7], cIMM (·, f̃) − cIΣ
M (·, f̃) is a function of compact support in

the space M(FS)-conjugacy classes of M(FS). Given X ∈ aM,S and γ ∈ M(FS) ∩
Goreg(FS) such that HM (γ)=X , then ÎMM (γ, θM̃ (f̃)′ −

∑
η∈µMn /µGn

ηcθ̂M (f̃ ′)) is the
orbital integral of a function defined on

M(FS)X = {γ1 ∈M(FS) : HM (γ1) = X}.
The tempered characters of this function are

cθM̃ (f̃)′(π,X)−
∑

η∈µMn /µGn

ηcθ̂M (f̃ ′, π,X), π ∈ Πtemp(M(FS)).

Since ÎMM (γ, cθM̃ (f̃)′) −
∑

η∈µMn /µGn
ηcθ̂M (f̃ ′)) has compact support in γ, and HM

maps M(FS) ∩ Goreg(FS) onto aM,S, this difference has compact support in X ∈
aM,S. We shall combine this fact with the classical Paley-Wiener theorem in order
to deform contours of integration later in the proof. We proceed by showing that∑
η∈µMn /µGn

ηcθ̂M (f̃ ′, π,X) vanishes if π ∈ Πtemp(M(FS)) is not metic, that is if π
is not in the image of (10) in [30]. It follows easily from the definitions that for
π ∈ Πtemp(M(FS)),∑
η∈µMn /µGn

ηcθ̂M (f̃ ′, π,X) =
{
ndim(AM/AG) cθ̂M (f̃ ′, π,X), if π is µMn -invariant,
0, otherwise.

If π is metic, then it is µMn -invariant. Suppose therefore that π is not metic but is
µMn -invariant. Define

cÎM (ρ,X, f̃ ′) =
∑

L∈L(M)

ÎLM (ρ,X, cθ̂L(f̃ ′)), ρ ∈ Σ(M(FS)), X ∈ aM,S .

According to Lemma 5.2 of [7] and Proposition 5.4 of [7] there exist constants ωP
and a meromorphic function,

cθ̂M (f̃ ′, ρλ) =
∫

aM,S

cθ̂M (f̃ ′, ρλ, X)eλ(X)dX, λ ∈ a∗M,C,

such that
cÎM (ρ,X, f̃ ′) = lim

β

∑
P∈P(M)

ωP

∫
εP+ia∗M,S

β̂(λ) cθ̂M (f̃ ′, ρλ)e−λ(X)dλ.(15)
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Here β is a test function in C∞c (aM,S) which approaches Dirac measure at the origin
and X ∈ aM,S is any point at which the left-hand side is smooth. We take ρ = πν ,
where ν ∈ a∗M is in general position. We can then deform the contour of integration
in the above integral so that

cÎM (πν , X, f̃ ′) = lim
β

∑
P∈P(M)

ωP

∫
ia∗M,S

β̂(λ) cθ̂M (f̃ ′, πν+λ)e−λ(X)dλ

= eν(X) lim
β

∑
P∈P(M)

ωP

∫
ν+ia∗M,S

β̂(λ − ν) cθ̂M (f̃ ′, πλ)e−λ(X)dλ.

Notice that the function

λ 7→ β̂(λ− ν),

is the Fourier transform of the function,

X 7→ e−ν(X)β(X),

which approaches Dirac measure at the origin if β does. We may therefore replace
β̂(λ− ν) with β̂(λ) in the previous equation to obtain

e−ν(X) cÎM (πν , X, f̃ ′) = lim
β

∑
P∈P(M)

ωP

∫
ν+ia∗M,S

β̂(λ) cθ̂M (f̃ ′, πλ)e−λ(X)dλ.

By definition

λ 7→ cθ̂M (f̃ ′, πλ)(16)

the Fourier transform of the function

X 7→ cθ̂M (f̃ ′, π,X).

By our assumptions on π we have

X 7→ cθM̃ (f̃)′(π,X)−
∑

η∈µMn /µGn

ηcθ̂M (f̃ ′, π,X) = ndim(AM/AG) cθ̂M (f̃ ′, π,X).

This function has compact support in aM,S. It follows that (16) is the Fourier trans-
form of a function of compact support and is therefore entire. We may consequently
deform the contour of integration in the previous integral to ia∗M,S. This implies
that e−ν(X) cÎ(πν , X, f̃ ′) is independent of ν ∈ a∗M , for ν in general position, and
by a comment on p. 143 of [13] it follows that e−ν(X) cÎ(πν , X, f̃ ′) is independent
of ν ∈ a∗M without restriction. According to Lemma 4.5 of [7] we have∑

P∈P(M)

ωP (X)e−νP (X) cÎM (πνP , X, f̃
′) = 0.

Here, ωP (X) = vol(aP ∩BX)vol(BX)−1, where BX is a small ball in aM centered at
X and νP is a point in the chamber (a∗P )+ which is far from the walls. It is obvious
from this equation and the independence in ν just mentioned that cÎM (πν , X, f̃ ′) =
0. Setting ν = 0 and applying Lemma 4.7 of [7] we obtain

cθ̂M (f̃ ′, π,X) = cÎM (π,X, f̃ ′) = 0.
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We have just proved that
∑

η∈µMn /µGn
ηcθ̂M (f̃ ′, π,X) vanishes if π is not metic. Now

suppose that π̃ ∈ Πtemp(M̃(FS)). Define
cIΣ
M (ρ̃, X, f̃) = n− dim(AG) cÎM (ρ̃′, X ′, f̃ ′)

=
∑

L∈L(M)

n− dim(AG)ÎLM (ρ̃′, X ′, cθ̂L(f̃ ′))

=
∑

L∈L(M)

n− dim(AL)ÎLM (ρ̃′, X ′,
∑

η∈µLn/µGn

ηcθ̂L(f̃ ′)),

for ρ̃ ∈ Σ(M̃(FS)) and X ∈ aM,S . Equation (15) allows us to write cÎΣ
M (ρ̃, X, f̃) as

n− dim(AG) lim
β

∑
P∈P(M)

ωP

∫
εP+ia∗M,S

β̂(λ′) cθ̂M (f̃ ′, (ρ̃λ)′)e−λ
′(X′)dλ′

= lim
β

∑
P∈P(M)

ωP

∫
εP+ia∗M,S

β̂(λ)ndim(AM/AG) cθ̂M (f̃ ′, (ρ̃λ)′)e−λ(X)dλ.

Defining
cÎM̃ (ρ̃, X, f̃) =

∑
L∈L(M)

ÎL̃
M̃

(ρ̃, X, cθL̃(f̃)), ρ̃ ∈ Σ(M̃(FS)), X ∈ aM,S,

we follow the earlier argument to show that cIM̃ (π̃ν , X, f̃)− cIΣ
M (π̃ν , X, f̃) is equal

to

lim
β

∑
P∈P(M)

ωP

×
∫
ia∗M,S

β̂(λ)
(
cθM̃ (f̃)′((π̃ν+λ)′)− ndim(AM/AG) cθ̂M (f̃ ′, (π̃ν+λ)′)

)
e−λ(X)dλ,

and that this expression vanishes. It now follows as before that
cθM̃ (f̃ , π̃, X)− n− dim(AG)θ̂M (f̃ ′, π̃′, X ′) = 0.

This equation may be rewritten as

n− dim(AM ) cθM̃ (f̃)′(π̃′, X ′)− n− dim(AG) cθ̂M (f̃ ′, π̃′, X ′) = 0,

and the first assertion follows. The first assertion implies that
cθM̃ (f̃)′((π̃λ)′) = ndim(AM/AG) cθ̂M (f̃ ′, (π̃λ)′), π̃ ∈ Πtemp(M̃(FS)), λ ∈ a∗M,C.

By analytic continuation, this formula holds if π̃ is replaced by a standard repre-
sentation. Recalling (15), this implies that

cIM̃ (ρ̃, X, f̃) = cIΣ
M (ρ̃, X, f̃), ρ̃ ∈ Σ(M̃(FS)).

By the induction assumption and the first assertion we have

0 = cIM̃ (ρ̃, X, f̃)− cIΣ
M (ρ̃, X, f̃)

=
∑

L∈L(M)

ÎL̃
M̃

(ρ̃, X, cθL̃(f̃))− ÎL,ΣM (ρ̃, X, cθL̃(f̃))

= IM̃ (ρ̃, X, f̃)− IΣ
M (ρ̃, X, f̃).

This is the third assertion.
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With Theorem 7.1 in place, the proof of of Theorem B (i) follows mutatis mu-
tandis from the argument on p. 145 of [13]. We include it here for the sake of
continuity. We wish to show that

IΣ
M (π̃, 0, f̃) = IM̃ (π̃, 0, f̃), π̃ ∈ Πunit(M̃(FS)).

The distribution on the left is defined by equation (7), while the distribution on
the right is defined by∑

P

ωP
∑
L

∑
ρ̃

∫
εP+ia∗

M̃,S
/ia∗

L̃,S

rL̃
M̃

(π̃λ, ρ̃λ)IL̃(ρ̃λ, hL̃(X), f̃)e−λ(X)dλ,

where P , L and ρ̃ are summed over P(M), L(M) and Σ(M̃(FS)) respectively.
The number rL̃

M̃
(π̃λ, ρ̃λ) vanishes if ∆(π̃, ρ̃) vanishes ((6.4), [10]). Comparing the

expansions of these two distributions, it is clear that it suffices to prove

IΣ
L (ρ̃λ, hL(X), f̃) = IL̃(ρ̃λ, hL(X), f̃),(17)

for all L ∈ L(M), X ∈ aM , λ ∈ a∗M,C with small real part, and ρ̃ ∈ Σ(M̃(FS))
such that ∆(π̃, ρ̃) 6= 0. By using the splitting property for these distributions
(Proposition 9.4, [7]) it suffices to prove (17) for S = {v}. Suppose then that
ρ̃ ∈ Σ(M̃(Fv)) and ∆(π̃, ρ̃) 6= 0. Then the central character of ρ̃ must be unitary.
From the definition of standard representations, it follows that ρ̃ is either tempered
or induced from a proper parabolic subgroup ofM . Suppose first that ρ is tempered.
Then by the proof of Lemma 3.1 of [7], we have

IΣ
L (ρ̃λ, hL(X), f̃) =

{
0, L 6= G,∫
ia∗G,v

tr
(
ρ̃λ+ν(f̃)

)
e−ν(hG(X))dν, L = G

= IL̃(ρ̃λ, hL(X), f̃).

Now suppose that ρ̃ = ρ̃M̃1 , where ρ̃1 ∈ Σ(M̃1(Fv)) andM1 is a proper Levi subgroup
of M . We apply the descent property (Corollary 8.5, [7]) to (17) and find that it
suffices to show

ÎL1,Σ
M1

(ρ̃1,λ, X1, f̃L̃1
) = ÎL̃1

M̃1
(ρ̃1,λ, X1, f̃L̃1

),(18)

for X1 ∈ aM1 and L1 ∈ L(M1) with L1 6= G. The induction hypothesis of following
Theorem A allows us to apply Theorem 7.1, with G replaced by L1, in order to
obtain (18). The proof is now complete. �

8. More on normalizing factors

This section is devoted to the construction of a few additional (G,M) families
which are required for the comparison of the spectral sides of the trace formulas.
We shall return to the actual comparison of the trace formulas in the following
section.

Take π̃ =
⊗

v π̃v and π =
⊗

v πv to be representations in Π(M̃ (A)) and Π(M(A))
respectively, and suppose that

δ(π, π̃) =
∏
v

δ(πv, π̃v)

does not vanish (§5). Define

r̃P̃1|P̃2
(πv, π̃v) = rP1|P2(πv)−1rP̃1|P̃2

(π̃v), P1, P2 ∈ P(M).
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If |n|v = 1 and both π̃v and πv are unramified representations, then π̃′v = πv by
Corollary 5.1. The normalization of §5 in [30] then implies that

r̃P̃1|P̃2
(πv, π̃v) = rP1|P2(πv)−1rP̃1|P̃2

(π̃v) = rP1|P2(πv)−1rP1|P2(πv) = 1.

This fact allows us to define the infinite product

r̃P̃1|P̃2
(πλ′ , π̃λ) =

∏
v

r̃ ˜P1|P2
(πv,λ′ , π̃v,λ), P1, P2 ∈ P(M), λ ∈ a∗M,C.

Given P1 ∈ P(M) we define a (G,M) family by

r̃P̃ (ν, πλ′ , π̃λ, P1) = r̃P̃ |P̃1
(πλ′ , π̃λ)−1r̃P̃ |P̃1

(πλ′+ν′ , π̃λ+ν),

where P ∈ P(M) and ν ∈ ia∗M .

Lemma 8.1 (11.3). (a) Take π̃ and π as above. Then for each L ∈ L(M),
r̃L̃
M̃

(πλ′ , π̃λ) is independent of P1 and is also a rational function of the variables

{λ(α∨), q−λ(α∨)
v }v∈S, where α runs over the roots of (G,AM ), qv is the order of the

residue field of Fv and S is a finite set of valuations outside of which π̃ and π are
unramified.

(b) Suppose, in addition, that π̃ ∈ Πdisc(M̃, t) and π ∈ Πdisc(M, t). Then

r̃P̃1|P̃2
(πλ′ , π̃λ) = rP1|P2(πλ′ )−1rP̃1|P̃2

(π̃λ), P1, P2 ∈ P(M).

In particular, for each L ∈ L(M), the function r̃L̃
M̃

(πλ′ , π̃λ) is regular for λ ∈ ia∗M .
Moreover,

rL̃
M̃

(π̃λ) =
∑

L1∈LL(M)

ndim(AM/AL1 )rL1
M (πλ′)r̃L̃L̃1

(πλ′ , π̃λ).

Proof. (a) of the lemma follows from the computations on p. 149 of [13]. Under the
hypotheses of part (b), rP̃1|P̃2

(π̃λ) and rP1|P2(πλ′) are regular functions in λ ∈ ia∗M
(§6, [3]). Thus, if one unravels the definition of r̃P̃1|P̃2

(πλ′ , π̃λ), one obtains the first
equality and the regularity on ia∗M . The last equality follows from an application
of Lemma 6.5 in [2] to

rP̃ (ν, π̃λ, P̃1) = r̃P̃ (ν, πλ′ , π̃λ, P̃1)rP (ν′, πλ′ , P1).

We may define further (G,M) families along the same lines as r̃M̃ (πλ′ , π̃λ). If we
replace π̃ in the above discussion with some ρ̃ ∈ Σ(M̃(A)) such that ∆(π, ρ̃) 6= 0,
we obtain the (G,M) family

r̃P̃ (ν, πλ, ρ̃λ, P̃1) = r̃P̃ |P̃1
(πλ′ , ρ̃λ)−1r̃P̃ |P̃1

(πλ′+ν′ , ρ̃λ+ν).

We define yet another (G,M) family for representations π1, π2 ∈ Π(M(A)) such
that δ(πi, π̃) 6= 0 for i = 1, 2. Set

r̃P̃ (ν, π1,λ′ , π2,λ′ , P̃1) = r̃P̃ (ν, π1,λ′ , π̃, P̃1)r̃P̃ (ν, π2,λ′ , π̃λ, P̃1)−1.

This (G,M) family is independent of π̃. Lemma 6.5 of [2] applied to this last (G,M)
family yields

r̃L̃
M̃

(π1,λ′ , π̃λ) =
∑

L1∈LL(M)

r̃L̃1

M̃
(π1,λ′ , π2,λ′)r̃L̃L̃1

(π2,λ′ , π̃λ).(19)
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For arbitrary π ∈ Π(M(A)), ρ̃ =
⊗

v ρ̃v ∈ Σ(M̃(A)) and π̃ ∈ Π(M̃(A)). Set

rP̃ (π̃λ, ρ̃λ) = ∆(π̃, ρ̃)r̃P̃ (π̃λ, ρ̃λ),

rP̃ (ν, πλ′ , π̃λ) = δ(π, π̃)r̃P̃ (ν, πλ′ , π̃λ),

and

rP̃ (ν, πλ′ , ρ̃λ) = ∆(π, ρ̃)r̃P̃ (ν, πλ′ , ρ̃λ).

In the following lemma we compare the final (G,M) family in this list to another,
keeping in mind the normalization in §5 of [30].

Lemma 8.2 (11.4). For each L ∈ L(M) we have

rL̃
M̃

(πλ′ , ρ̃λ) = ndim(AM/AL)rLM (πλ′ , ρ̃′λ′).

Proof. According to Lemma 6.2 of [2], rL̃
M̃

(πλ′ , ρ̃λ) is equal to

∆(π, ρ̃) lim
ν→0

∑
P∈PL(M)

θLP (ν)−1rLP |P1
(πλ′ )rLP |P1

(πλ′+ν′)−1rL̃
P̃ |P̃1

(ρ̃λ)−1rL̃
P̃ |P̃1

(ρ̃λ+ν),

where

θLP (ν) = vol
(
a
L
M/Z(∆L

P )∨
)−1 ∏

α∈∆L
P

ν(α∨),

and ∆L
P are the simple roots of (P,AM ). (We apologize to the reader for the simi-

larity in notation of θLP with the maps of §7.) Making the change of variables from
ν to ν′ in the limit and noting that θLP (n−1ν) = n− dim(AM/AL)θLP , this expression
can be rewritten as the product of ∆(π, ρ̃′)ndim(AM/AL) with

lim
ν→0

∑
P∈PL(M)

θLP (ν)−1rLP |P1
(πλ′ )rLP |P1

(πλ′+ν)−1rLP |P1
(ρ̃′λ′)

−1rLP |P1
(ρ̃′λ′+ν).

This is by definition equal to ndim(AM/AL)rLM (πλ′ , ρ̃′λ′).

The other (G,M) families defined in this section satisfy versions of Lemma 8.2
as well. These versions are proven similarly.

9. A formula for IΣ
t

The object of this section is to express the spectral side∑
t≥0

IΣ
t (f̃) =

∑
t≥0

n−1It(f̃ ′)

in a manner that is compatible with the spectral expansion (8). This amounts to
expressing the spectral side for G(A) in terms of the global datum aM,Σ and the
set of representations ΠΣ(M, t).

The integrals in IΣ
t (f̃) are taken over spaces of representations which, on the face

of it, are not metic. We need the following spectral vanishing property to ensure
that these non-metic representations do not appear in IΣ(f̃).

Proposition 9.1. Suppose ρ ∈ Σ(M(FS)). Then

ÎM (ρ,X, f̃ ′) = 0, f̃ ∈ H(G̃(FS)),

unless ρ is metic.
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Proof. Recall that ρ is metic if there exists f̃1 ∈ H(M̃(FS)) such that f̃ ′1(ρ) 6= 0.
Therefore, the proposition follows in the case M = G. We assume inductively that
the proposition holds if G is replaced by L ∈ L with L $ G. By the splitting
property, Proposition 9.4 [7] (and the remark immediately following it), it suffices
to prove the proposition for S = {v}. Suppose that ρ is not metic. We may write
ρ = πMν , where M1 ∈ LM , π ∈ Πtemp(M1(Fv)) and ν ∈ a∗M1

. Since the local
metaplectic correspondence commutes with induction, it is clear that πν is not
metic. According to Corollary 8.5 of [7], the Fourier transform,∫

ia∗M1,v
/ia∗M,v

ÎM (ρλ, X, f̃ ′)e−λ(X1)dλ,

(where the projection hM (X1) of X1 ∈ aM1,v onto aM,v is X ∈ aM,v,) is equal to∑
L∈L(M1)

dGM1
(M,L)ÎLM1

(πν , X, f̃ ′).

If M1 $M , then dGM1
(M,G) = 0 and the right-hand side vanishes by the induction

assumption. Taking the inverse Fourier transform then implies that ÎM (ρλ, X, f̃ ′)
vanishes as well. We may therefore suppose that M1 = M , in which case ρ =
πν . If v is nonarchimedean, the infinitesimal character of πν is given by a finite
set of cuspidal pairs (ρ1,M1), . . . , (ρs,Ms) where M1, . . . ,Ms ∈ LM and ρ1 ∈
Σ(M1(Fv)), . . . , ρs ∈ Σ(Ms(Fv)). If v is an archimedean valuation, then the infini-
tesimal character of πν also determines a set of cuspidal pairs (ρ1,M0), . . . , (ρs,M0)
as above. It follows from the remark immediately preceding Theorem 27.3 of
[18] and Theorem 26 of [18] in the nonarchimedean case; and §3.2 of [30] in the
archimedean case, that these supercuspidal (and hence elliptic) representations are
not metic. The discussion of §7 in [11] tells us that for ν ∈ a∗M in general position
we may express ÎM (πν , X, f̃ ′)e−ν(X) as∑

{L1,L∈L(M):L1⊃L%M}

∫
νL+ia∗L,v/ia

∗
M1,v

t∑
i=1

s∑
j=1

(∆ij(π)Φ) (λi, ρj)dλ.

Here, ∆ij(π) is a differential operator on a∗M,C × a∗Mj,C
and Φ(λi, ρj) is equal to

the product of

lim
ν1→0

∑
Q∈PL1 (L)

r̃Q|Q0(πLλi+λ, ρj,λ)−1r̃Q|Q0(πLλi+λ+ν1
, ρj,λ+ν1)θL1

Q (ν1)−1

with ÎL1(ρLj,λ, hL1(X), f̃ ′). It is obvious from this equation that ÎM (πν , X, f̃ ′) van-
ishes if

ÎL1(ρLj,λ, hL1(X), f̃ ′) = 0, L1 ⊃ L %M.

Since L1 %M and ρj,λ is not metic, the earlier descent argument shows that this is
indeed true. We have thus succeeded in showing that ÎM (πν , X, f̃ ′) = 0 if ν ∈ a∗M is
in general position. However, the mean value property (Lemma 3.2, [7]) expresses
the value of ÎM (πν , X, f̃ ′) at any ν ∈ a∗M in terms of nearby points. In consequence,
ÎM (πν , X, f̃ ′) vanishes for all ν ∈ a∗M .

The following lemma gives an expansion of the local distributions occurring in
IΣ
t (f̃) in terms of the distributions IΣ

M (π̃).
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Lemma 9.1 (12.1). Suppose that π ∈ Πunit(M(A)1) and f̃ ∈ H(G̃(FS)). Then
n−1ÎM (π, f̃ ′) is equal to∑

L∈L(M)

∑
π̃∈Π(M̃(A)1)

∫
εM+ia∗M/ia

∗
L

rL̃
M̃

(πλ′ , π̃λ)IΣ
L (π̃λ, f̃)dλ.(20)

Proof. This proof is almost identical to the proof of Lemma 12.1, II of [13]. It is
included so that the reader may feel a sense of continuity. Any statements which
seem unjustified may be compared to the analogous statements in Lemma 12.1,
where the details are given. To begin, relabel the summation index L in (20) by
L1. We then replace IΣ

L1
(π̃λ, f̃) with expression (7),∑

Q∈P(L1)

ωQ
∑

L∈L(L1)

∑
ρ̃∈Π(M̃(A)1)

∫
εQ+ia∗L1

/ia∗L

rL̃
L̃1

(π̃λ+µ, ρ̃λ+µ)IΣ
L (ρ̃λ+µ, f̃)dµ.

We deform the contour of integration in µ so that (20) is equal to the sum over
L1, L ∈ L(M), with L1 ⊂ L, of∑

π̃∈Π(M̃(A)1)

∑
ρ̃∈Σ(M̃(A)1)

∫
εM+ia∗M/ia

∗
L

rL̃
M̃

(πλ′ , π̃λ)rL̃
L̃1

(π̃λ, ρ̃λ)IΣ
L (ρ̃λ, f̃)dλ.

Taking the sums over L1 and π̃ inside the integral we find that∑
π̃∈Π(M̃(A)1)

∑
L1∈LL(M)

rL̃1

M̃
(πλ′ , π̃λ)rL̃

L̃1
(π̃λ, ρ̃λ)

= r̃L̃
M̃

(πλ′ , ρ̃λ)
∑

π̃∈Π(M̃(A)1)

δ(π, π̃)∆(π̃, ρ̃)

= r̃L̃
M̃

(πλ′ , ρ̃λ)
∑

ρ̃1∈Σ(M̃(A)1)

∆(π, ρ̃1)
∑

π̃∈Π(M̃(A)1)

Γ(ρ̃1, π̃)∆(π̃, ρ̃)

= r̃L̃
M̃

(πλ′ , ρ̃λ)∆(π, ρ̃)

= rL̃
M̃

(πλ′ , ρ̃λ).

Expansion (20) is therefore equal to∑
L∈L(M)

∑
ρ̃∈Σ(M̃(A)1)

∫
εM+ia∗M/ia

∗
L

rL̃
M̃

(πλ′ , ρ̃λ)IΣ
L (ρ̃λ, f̃)dλ.(21)

By Lemma 8.2 and the spectral vanishing property, Proposition 9.1, we have∑
ρ̃∈Σ(M̃(A)1)

rL̃
M̃

(πλ′ , ρ̃λ)IΣ
L (ρ̃λ, f̃)

= ndim(AM/AL)
∑

ρ̃∈Σ(M(A)1)

rLM (πλ′ , ρ̃′λ′)
(
n−1ÎL(ρ̃′λ′ , f̃

′)
)

= ndim(AM/AL)
∑

ρ∈Σ(M(A)1)

rLM (πλ′ , ρλ′)
(
n−1ÎL(ρλ′ , f̃ ′)

)
.

Substituting back into (21) and noting that dλ′ = ndim(AM/AL)dλ, we obtain∑
L∈L(M)

∑
ρ∈Σ(M(A)1)

∫
εM+ia∗M/ia

∗
L

rLM (πλ, ρλ)
(
n−1ÎL(ρλ, f̃ ′)

)
dλ.
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Since π is unitary, this expression is equal to n−1ÎM (π, f̃ ′).

Proposition 9.2 (12.2). Suppose that t ≥ 0 and f̃ ∈ H(G(A)). Then

IΣ
t (f̃) =

∑
M∈L

|WM
0 ||WG

0 |−1

∫
ΠΣ(M,t)

aM,Σ(π̃)IΣ
M (π̃, f̃)dπ.(22)

Proof. From §5 (cf. (9)) we know that IΣ
t (f̃) equals∑

{M1,M∈L:M⊃M1}
|WM1

0 ||WG
0 |−1

×
∑

π∈Πdisc(M1,t)

∫
ia∗M1

/ia∗M

aMdisc(π)rMM1
(πλ′)n−1ÎM (πλ′ , f̃ ′)dλ′.

Substituting expression (20), deforming the contour of integration appropriately,
and noting that dλ′ = ndim(AM1/AM )dλ, we find that IΣ

t (f̃) equals∑
{M1,M,L∈L:M1⊂M⊂L}

∑
π̃1∈Π(M̃1(A)1,t)

|WM1
0 ||WG

0 |−1ndim(AM1/AM )

×
∫
εM+ia∗M1

/ia∗L

∑
π∈Πdisc(M1,t)

aM1
disc(π)rMM1

(πλ′ )rL̃M̃ (πλ′ , π̃1,λ)IΣ
L (π̃1,λ, f)dλ.(23)

The term rL̃
M̃

(πλ′ , π̃1,λ) in the above sum vanishes unless δ(π, π̃1) 6= 0. Fix some
π1 ∈ Πdisc(M1, t) such that δ(π1, π̃1) 6= 0. Then for any other π ∈ Πdisc(M1, t) with
δ(π, π̃1) 6= 0 we may write

ndim(AM1/AM )rMM1
(πλ′)

=
∑

{L1:M1⊂L1⊂M}
ndim(AM1/AL1 )rL1

M1
(π1,λ′ )ndim(AL1/AM )r̃ML1

(π1,λ′ , πλ′)

=
∑

{L1:M1⊂L1⊂M}
ndim(AM1/AL1 )rL1

M1
(π1,λ′ )r̃M̃L̃1

(π1,λ′ , πλ′).

We substitute this expression into (23) and deform the contour of integration from
εM + ia∗M1

/ia∗L to εL1 + ia∗M1
/ia∗L for some small regular point εL1 in a∗L1

. We then
bring the sum over M inside the integral. Notice that∑

{M :L1⊂M⊂L}
r̃M̃
L̃1

(π1,λ′ , πλ′)rL̃M̃ (πλ′ , π̃1,λ) = δ(π, π̃1)r̃L̃
L̃1

(π1,λ′ , π̃1,λ)

by equation (19). Observe also that∑
π∈Πdisc(M1,t)

aM1
disc(π)δ(π, π̃1) = aM1,Σ

disc (π̃1).

Now (23) may be written as∑
{M1,L∈L:M1⊂L}

|WM1
0 ||WG

0 |−1
∑

π̃1∈Π(M̃1(A)1,t)

∑
{L1:M1⊂L1⊂L}

ndim(AM1/AL1 )

×
∫
εL1+ia∗M1

/ia∗L

aM1,Σ
disc (π̃1)rL1

M1
(π1,λ′)r̃L̃L̃1

(π1,λ′ , π̃1,λ)IΣ
L (π̃1,λ, f̃)dλ.(24)
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The summand indexed by M1 = G in (24) reduces to∑
π̃1∈ΠΣ

disc(G̃,t)

aΣ
disc(π̃1)IΣ

G(π̃1, f̃).(25)

If M1 6= G, then the induction hypothesis stated after the definition of aM1,Σ
disc implies

that

aM1,Σ
disc (π̃1) = aM̃1

disc(π̃1), π̃1 ∈ Π(M̃1(A)1, t).

It is immediate from this equation that aM1,Σ
disc (π̃1) vanishes unless π̃1 ∈ Πdisc(M̃1, t).

Thus, by a variant of Lemma 8.1, the integrand of (24) is analytic for λ near ia∗M1
,

and we may deform the contour of integration from εL1 + ia∗M1
/ia∗L to ia∗M1

/ia∗L.
This allows us to take the sum over L1 inside the integral. It is a simple exercise
in (G,M) families (cf. proof of Lemma 8.1 (b)) to show that∑

{L1:M1⊂L1⊂L}
ndim(AM1/AL1 )rL1

M1
(π1,λ′ )r̃L̃L̃1

(π1,λ′ , π̃1,λ) = rL̃
M̃1

(π̃1,λ).

Therefore the summand indexed by M1 6= G in (24) is equal to

|WM1
0 ||WG

0 |−1
∑

L∈L(M1)

∑
π̃1∈Πdisc(M̃1,t)

∫
ia∗M1

/ia∗L

aM1,Σ
disc (π̃1)rL̃

M̃1
(π̃1,λ)IΣ

L (π̃1,λ, f̃)dλ.

Combining this expression with (25) we obtain

IΣ
t (f̃) =

∑
L∈L
|WL

0 ||WG
0 |−1

∫
ΠΣ(L̃,t)

aL,Σ(π̃)IΣ
L (π̃, f̃)dπ̃.

We can now apply Proposition 9.2 to obtain a striking comparison between the
spectral sides of the trace formulas.

Lemma 9.2 (12.3). Suppose that t ≥ 0 and f̃ ∈ H(G̃(A)). Then

IΣ
t (f̃)− It(f̃) =

∑
π̃∈Π(G̃(A)1,t)

(
aΣ

disc(π̃)− adisc(π̃)
)

tr(π̃(f̃1)),

where f̃1 is the restriction of f̃ to G̃(A)1.

Proof. This proof is almost identical to Lemma 12.3, II of [13] and is included solely
for the sake of continuity. Consider the difference of (22) and

It(f̃) =
∑
M∈L

|WM
0 ||WG

0 |−1

∫
Π(M̃,t)

aM (π̃)IM̃ (π̃, f̃)dπ̃.

If M1 ∈ L and M1 $M ⊂ G, then the induction hypothesis of §6 implies that

aM,Σ(π̃) = aM̃ (π̃), π̃ ∈ ΠM̃1
(M̃, t),

and ΠΣ
M̃1

(M̃, t) = ΠM̃1
(M̃, t). If π̃ is not unitary, both aM,Σ(π̃) and aM (π̃) vanish.

When π̃ is unitary, we know from the discussion at the end of §7 that

IΣ
M (π̃, f̃) = IM̃ (π̃, f̃).
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Therefore, the only terms which remain in the difference, IΣ
t (f̃)− It(f̃), are those

parametrized by M1 = M = G. The lemma now follows from

IΣ
G(π̃, f̃) = tr(π̃(f̃1)) = IG̃(π̃, f̃), π̃ ∈ Πdisc(G̃, t).

10. The map εM

Having simplified the comparison of the spectral sides, we do the same for the
geometric sides. We lighten the burden of this task by adding yet another induction
hypothesis. From this point on, fix M ∈ L such that M 6= G. The additional
induction hypothesis is that

IML (γ, f̃) = IΣ
L (γ, f̃), γ ∈ Lcomp(FS), f̃ ∈ H(G̃(FS)),

where L ∈ L(M) with L 6= M .
The following proposition brings us closer to the proof of Theorem A (i) in that

it expresses the difference of our invariant distributions in terms of orbital integrals,
which are easier to manage.

Proposition 10.1 (13.2). There exists a unique map

εM : H(G̃(FS))0 → Iac(M(FS)),

such that

IMM (γ, f̃)− IΣ
M (γ, f̃) = ÎMM (γ, εM (f̃)), γ ∈Mcomp(FS), f̃ ∈ H(G̃(FS))0.

The map satisfies the splitting property

εM (f̃) = εM (f̃1)f̃ ′2,M + f̃ ′1,MεM (f̃2),

where S is the disjoint union of S1 and S2 (each satisfying the closure property)
and f̃ = f̃1f̃2 is a corresponding decomposition.

Proof. If εM satisfies the first property of the proposition, then the earlier splitting
properties ((23) and Proposition 6.2, [30]) imply that the splitting property for εM .
Therefore, we only need to show that the map εM exists. In other words, we must
show that

εM (γ, f̃) = IMM (γ, f̃)− IΣ
M (γ, f̃), γ ∈Mcomp(FS),

is an orbital integral at γ of a function in Hac(M(FS)). The splitting properties
((23) and Proposition 6.2, [30]) allow us to restrict our proof to the case that
S is comprised of a single valuation v. Also, Lemma 3.3 allows us to restrict
to the case that γ ∈ M(Fv) ∩ Goreg(Fv). Suppose first that v is archimedean.
By our assumptions on F , this means that Fv = C. We may therefore apply
Jordan canonical form to conclude that every element of M(C)∩Goreg(C) is G(C)-
conjugate to an element in M0(C). If M % M0, then Lemma 2.1 implies that
εM (γ, f̃) vanishes. In other words, if M %M0, then

εM (f̃) = 0, f̃ ∈ H(G̃(C)).(26)

We therefore need only consider the case M = M0. We proceed by showing that,
for fixed f̃ ∈ H(G̃(C)), the function,

γ 7→ εM0(γ, f̃), γ ∈M0(C) ∩Goreg(C),
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extends to a smooth function of M0(C). Suppose γ0 is an arbitrary element of
M0(C). Then, by the definition of IMM0

(γ0, f̃) − IΣ
M0

(γ0, f̃) (§§6 and 7, [30]) and
Lemma 3.2, the limit,

lim
{a→1:a∈AM0,reg(C)}

∑
L∈L

rLM0
(γn0 , a)

(
IML (aγ0, f̃)− IΣ

L (aγ0, f̃)
)

= lim
{a→1:a∈AM0,reg(C)}

εM0(aγ0, f̃),

exists. In consequence, εM0(·, f̃) extends to a continuous function on M0(C). To
see that this function is smooth, suppose that z is a differential operator in ZC, the
center of the universal enveloping algebra of the complexified Lie algebra of G(C).
This operator passes to a differential operator on G̃(C) ∼= G(C) × µn by virtue of
its action on G(C). It follows from Theorem 1 of [33] and results on p. 9 of [33]
that

εM0(γ0, zf̃) = lim
{a→1:a∈AM0,reg(C)}

εM0(aγ0, zf̃)

= lim
{a→1:a∈AM0,reg(C)}

z′M0
εM0(aγ0, f̃).

Here, zM0 is the image of z under the Harish-Chandra isomorphism and

zM0 7→ z′M0

is an algebra automorphism (§3, [33]). We can choose a set of generators, z1, . . . , z2r,
of ZC and apply a well-known argument involving the fundamental theorem of cal-
culus to show that z′i,M0

εM0(γ0, f̃), 1 ≤ i ≤ 2r exists and is equal to

lim
{a→1:a∈AM0,reg(C)}

z′i,M0
εM0(aγ0, f̃) = εM0(γ0, zif̃).

A simple induction argument on the number of generators occurring in z then
implies that z′M0

εM0(γ0, f̃) exists and

z′M0
εM0(γ0, f̃) = εM0(γ0, zf̃).(27)

This proves that εM0(·, f̃) extends to a smooth function on M0(C). We continue
by showing that the function,

ε̃M0(f̃ , π,X) =
∫
M0(C)X

εM0(γ, f̃)π(γ)dγ, X ∈ aM0 , π ∈ Πtemp(M0(C)),

where

M0(C)X = {γ ∈M0(C) : HM0(γ) = X},

is a Schwartz function of X . To see this, set
cεM0(γ, f̃) = cIMM0

(γ, f̃)− cIΣ
M0

(γ, f̃), γ ∈M0(C) ∩Goreg(C),

and recall that by expansions (13) and (14) and the first assertion of Theorem 7.1
we have

εM0(γ, f̃) = cεM0(γ, f̃) + ÎM0
M0

γ, ∑
η∈µM0

n /µGn

ηcθ̂M0(f̃ ′)− cθM̃0
(f̃)′

 ,
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for any γ ∈ M0 ∩ Goreg(C). Given X ∈ aM0 and π ∈ Πtemp(M0(C)), the function
ε̃M0(f̃ , π,X) is equal to the sum of∫

M0(C)X

cεM0(γ, f̃)π(γ)dγ,

and ∑
η∈µM0

n /µGn

ηcθ̂M0(f̃ ′, π,X)− cθM̃0
(f̃)′(π,X).

The former summand vanishes for X outside of a fixed compact subset (Lemma 4.4,
[7]). Corollary 5.3 of [7] tells us that any invariant differential operator on aM0 ap-
plied to the latter summand yields a rapidly decreasing function inX ∈ aM0 . Conse-
quently the same property holds for εM0(f̃ , π,X). The smoothness of ε̃M0(f̃ , π,X)
in X ∈ aM0 follows from the smoothness of εM0(γ, f̃) in γ ∈ M0(C), hence
εM0(f̃ , π,X) is a Schwartz function on aM0 . Now if ε̃M0(f̃) belongs to Iac(M0(C)),
then we may define εM0(f̃) to be ε̃M0(f̃) and the proposition is proven at the
archimedean valuations. It is easy to see that ε̃M0(f̃) is almost compact in the
sense of §11 in [10] as M0 is a minimal Levi subgroup. The only requirement that
ε̃M0(f̃) does not obviously satisfy for it to be in Iac(M̃0(C)) is the Kv ∩M0(C)-
finiteness requirement. This is equivalent to showing that there exists a finite set
ΓM0 of (equivalence classes of) irreducible admissible representations of Kv∩M0(C)
such that ∫

M0(C)

εM0(γ, f̃)π(γ)dγ =
∫

aM0

ε̃M0(f̃ , π,X)dX

vanishes unless the restriction of π ∈ Πtemp(M0(C)) to Kv ∩ M0(C) contains a
representation in ΓM0 . Since f̃ is K̃v-finite, there exists a finite set Γ̃ of (equiv-
alence classes of) irreducible admissible representations of K̃v such that f̃M̃0

(π̃),
π̃ ∈ Πtemp(M̃0(C)), vanishes unless the restriction of π̃G̃ to K̃v contains a represen-
tation in Γ̃. Clearly, Γ̃ determines a finite set of (equivalence classes of) irreducible
admissible representations Γ of Kv such that f̃ ′M0

(π), π ∈ Πtemp(M0(C)), vanishes
unless the restriction of πG to Kv contains a representation in Γ. Let ΓM0 be
the finite set of irreducible constituents of restrictions of representations in Γ to
Kv ∩M0(C). It is a straightforward consequence of equation (27) that

f̃ 7→
∫

aM0

ε̃M0(f̃ , π̃′, X)dX, π̃ ∈ Πtemp(M̃0(C)),

is an invariant eigendistribution of ZC. It then follows from Harish-Chandra’s work
([19]) that there exists a smooth function c on Πtemp(M̃0(C)) such that∫

aM0

ε̃M0(f̃ , π̃′, X)dX = c(π̃)f̃M̃0
(π̃) = c(π̃)f̃ ′M0

(π̃′), π̃ ∈ Πtemp(M̃0(C)).(28)

Moreover, if π ∈ Πtemp(M0(C)) is not metic, then it is not µM0
n -invariant (Lemma

3.1, [30]). Since εM0(·, f̃) is µM0
n -invariant, we must have∫

M0(C)

εM0(γ, f̃)π(γ)dγ = 0.
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This vanishing property together with equation (28) imply that ΓM0 satisfies the
Kv ∩M0(C)-finiteness requirement for ε̃M0(f̃). This completes the archimedean
case of the proposition.

Now suppose v is nonarchimedean. For γ ∈M(Fv) ∩Goreg(Fv) define

cεM (γ, f̃) = cIMM (γ, f̃)− cIΣ
M (γ, f̃), f̃ ∈ H(G̃(Fv))0,

(cf. §7). By Lemma 4.4 of [7], this function has compact support as a function of
M(Fv)-conjugacy classes of M(Fv). It is related to εM (γ, f̃) by

εM (γ, f̃)− cεM (γ, f̃) = ÎMM (γ, θM̃ (f̃)′ −
∑

η∈µMn /µGn

η θ̂M (f̃ ′)).

To see this, recall that by the induction assumption after Theorem A, Theorem 7.1,
equations (10) and (11) and their analogues for IΣ

M (γ), we have

εM (γ, f̃)− cεM (γ, f̃)

=
∑

{L∈L(M):L$G}

cÎL,MM (γ, θL̃(f̃))−
∑

η1∈µMn /µLn

ÎLM

η1γ,
∑

η∈µMn /µGn

ηθ̂L(f̃ ′)


=

∑
{L∈L(M):M$L$G}

cÎL,MM (γ, θL̃(f̃))− cÎL,ΣM (γ, θL̃(f̃))

+ ÎMM

γ, θM̃ (f̃)′ −
∑

η∈µMn /µGn

ηθ̂M (f̃ ′)


= ÎMM

γ, θM̃ (f̃)′ −
∑

η∈µMn /µGn

ηθ̂M (f̃ ′)

 .

Since θM̃ (f̃)′ −
∑

η∈µMn /µGn
η θ̂M (f̃ ′) belongs to Iac(M(Fv)) (§4, [7]), this equation

implies that cεM (γ, f̃) is an orbital integral of a function in Hac(M(Fv)) if and only
if εM (γ, f̃) is as well. More generally, given a semisimple element σ ∈ M(Fv), it
implies that

cεM (γ, f̃)
(M,σ)∼ 0, γ ∈Mσ(Fv) ∩Goreg(Fv)

if and only if

εM (γ, f̃)
(M,σ)∼ 0, γ ∈Mσ(Fv) ∩Goreg(Fv).

We shall complete the proposition by showing that

εM (γ, f̃)
(M,σ)∼ 0, γ ∈Mσ(Fv) ∩Goreg(Fv)

and then showing that this implies that cεM (γ, f̃) is an orbital integral of a function
in Hac(M(Fv)). If σ is not Fv-elliptic in M , that is, if aMσ 6= aM , then there is a
proper Levi subgroup M1 ∈ LM of M such that Mσ(Fv) ⊂ M1(Fv). Lemma 2.1
then implies that

εM (γ, f̃)
(M,σ)∼ 0, γ ∈Mσ(Fv) ∩Goreg(Fv).
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Suppose that σ is Fv-elliptic inM . We may assume that σ is Fv-elliptic in L ∈ L(M)
if and only if σn is Fv-elliptic in L. Indeed, we know by Lemma 4.1 that a translate
of σ by an element in µMn satisfies this property and we also know that

εM (ηγ, f̃) = εM (γ, f̃), η ∈ µMn .

We may therefore apply Lemma 4.3 and Proposition 4.1 to see that εM (γ, f̃) is
(M,σ)-equivalent to∑

L∈L(M)

∑
δ∈σ(ULσ (Fv))

gLM (γ, δ)
(
IML (δ, f̃)− IΣ

L (δ, f̃)
)
, γ ∈Mσ(Fv) ∩Goreg(Fv).

Since gMM (γ, δ) = 0, we may apply the induction hypothesis of this section to con-
clude that the right-hand side vanishes. From our earlier remark we now have

cεM (γ, f̃)
(M,σ)∼ εM (γ, f̃)

(M,σ)∼ 0, γ ∈Mσ(Fv) ∩Goreg(Fv),

for any semisimple element σ ∈ M(Fv). We use a partition of unity argument
on the compact support of cεM (γ, f̃) in the space of M(Fv)-conjugacy classes to
conclude that cεM (γ, f̃) is in fact an orbital integral.

Suppose v is a valuation for which |n|v = 1. Then it is an immediate consequence
of Lemma 3.4 that εM (f̃0

v ) = 0. It therefore follows from the splitting property of
Proposition 10.1 that the map εM extends to a map on H(G̃(A))0.

11. Comparison for f̃ ∈ H(G̃(A),M)

We now give a sketch of the proof that I(f̃) = IΣ(f̃) for f̃ in a certain subspace
H(G̃(A),M) of H(G̃(A)). The train of reasoning in this section is based entirely
on §§15 and 16, II of [13]. We shall outline the arguments found there and leave
the confirmation of the details to the reader.

Recall that M ∈ L was fixed in the previous section. Let H(G̃(A),M) be the
subspace of H(G̃(A)) spanned by functions

f̃ =
∏
v

f̃v, f̃v ∈ H(G̃(Fv)),

which satisfy the following property. For two nonarchimedean places v1 and v2,
which are not in {v : |n|v 6= 1},

f̃vi,L̃ = 0, L ∈ L, i = 1, 2,

unless L contains a conjugate of M . If S contains {v : |n|v 6= 1} and at least two
other nonarchimedean places, we define H(G̃(FS),M) in the same way.

The proof of Lemma 13.1, II of [13] may be imitated to obtain the following
lemma.

Lemma 11.1 (13.1). For f̃ ∈ H(G̃(A),M), the distribution

I(f̃)− IΣ(f̃)

equals the sum of

|W (aM )|−1
∑

γ∈(M(F ))M,S/µMn

aM (S, γ)
(
IMM (γ, f̃)− IΣ

M (γ, f̃)
)
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and ∑
δ∈AG(F )\µGn

∑
u∈(UG(F ))G,S

(
aM̃ (S, u′)− a(S, u)

)
IMG (δu, f̃).

Proof. The lemma follows from the splitting properties and the properties of f̃ . See
Lemma 13.1, II of [13] for details.

Let H(G̃(A),M)0 be the space of functions f̃ in

H(G(A),M) ∩H(G(A))0

which satisfy one additional condition, namely, that f̃ vanishes at any element in
G̃(A) whose component at each nonarchimedean place v belongs to AG(Fv). This
ensures that f̃ ∈ H(G̃(A),M)0 vanishes at

(δu, ζ), δ ∈ AG(F ), u ∈ UG(F ), ζ ∈ µn.

Lemma 11.2 (15.1). Suppose that f̃ ∈ H(G̃(A),M)0. Then

I(f̃)− IΣ(f̃) = ndim(AM )|W (aM )|−1ÎM (εM (f̃)),

where IM is the analogue for M of I = IG.

Proof. By the properties of f̃ Lemma 11.1 and Proposition 10.1, we see that I(f̃)−
IΣ(f̃) is equal to

ndim(AM )|W (aM )|−1
∑

γ∈(M(F ))M,S

aM (S, γ)ÎMM (γ, εM (f̃)),

for a large set of valuations S. By the descent property (Corollary 8.3, [7]) and
Lemma 2.1 it follows that

ÎM1
M1

(γ, εM (f̃)M1) = ÎMM (γ, εM (f̃)) = 0, γ ∈M1(FS) ∩Goreg(FS),

for any M1 ∈ L such that M1 $ M . Therefore, for such M1, εM (f̃)M1 = 0.
Combining this with the splitting property (Proposition 9.1, [7]) applied to IMM1

(γ),
we find that

ÎMM1
(γ, εM (f)) = 0, γ ∈M1(F ) ∩Goreg(F ),

for any M1 ∈ LM such that M1 $ M . Thus by the geometric side of the trace
formula for M is

ndim(AM )|W (aM )|−1
∑

γ∈(M(F ))M,S

aM (S, γ)ÎMM (γ, εM (f̃))

= ndim(AM )|W (aM )|−1
∑

M1∈LM
|WM1

0 ||WM
0 |−1

×
∑

γ∈(M1(F ))M1,S

aM1(S, γ)ÎMM1
(γ, εM (f̃))

= ndim(AM )|W (aM )|−1ÎM (εM (f̃)).
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We now give an outline of the method of separation by infinitesimal characters,
which is found in §15, II of [13]. Let S∞ denote the set of archimedean (in our
case complex) valuations of F . Then G(FS∞) may be regarded as a real Lie group.
Let hC denote the standard Cartan subalgebra of its complexified Lie algebra. Let
h be the real form of hC associated to the split real form of G(FS∞). Then h

contains aM0 as a vector space and in turn contains all vector spaces of the form
aL, L ∈ L. Let h1 be the orthogonal complement of aG in h. We recall the theory
of multipliers ([4]). Let α belong to E(h1)W , the convolution algebra of compactly
supported, distributions on h1, which are invariant under the complex Weyl group
W of G(FS∞). Then there is an action, f̃ 7→ f̃α, on H(G̃(A)) such that

f̃α,M̃ (π̃) = α̂(νπ̃)f̃M̃ (π̃), π̃ ∈ Π(M̃(A)).

As usual, νπ̃ is taken to be the infinitesimal character of the archimedean factor
of π̃. This action of E(h1)W on H(G̃(A)) affects only the archimedean factor of f̃ ,
and is supported on characters. The map,

α 7→ α′, α ∈ E(h1)W ,

given by

α′(ν) = n− dim(h1)α(n−1ν), ν ∈ h1,(29)

is compatible with the map (13) of [30]. More precisely, given α ∈ E(h1)W and
π̃ ∈ Πtemp(G̃(FS)), we have νπ̃ = νn−1π̃′ (§3.1, [30]) and in turn

(f̃α)′(π̃′) = α̂(n−1νπ̃′)f̃G̃(π̃) = α̂′(νπ̃′)f̃ ′(π̃′) = f̃ ′α′(π̃
′).

This map is also compatible with the map εM of Proposition 10.1.

Lemma 11.3 (14.4). Suppose f̃ ∈ H(G̃(A)), and α ∈ E(h1)W . Then εM (f̃α) =
εM (f)α′ .

Proof. Suppose f̃ =
∏
v f̃v ∈ H(G̃(A)) and suppose S contains all valuations at

which f̃v 6= f̃0
v . If v is nonarchimedean, then α acts trivially on f̃v, that is, f̃v,α = f̃v.

If v is complex, it follows from equations (26) and (28) that εM (f̃v,α) = εM (f̃)α′ .
Repeated applications of the splitting property of Proposition 10.1 yield

εM (f̃α) =
∑
v1∈S

εM (fv1,α)
∏

w∈S−v1

(f̃w,α)′M
∏
v/∈S

(f̃0
v )′M

=
∑
v1∈S

εM (fv1)α′
∏

w∈S−v1

((f̃w)′α′)M
∏
v/∈S

(f̃0
v )′M

= εM (f̃)α′ .

Let h∗u be the set of points ν in h∗C/ia
∗
G such that the complex conjugate of ν with

respect to h∗ is equal to −sν for some element s ∈W of order two. The archimedean
infinitesimal character of νπ̃ associated to any π̃ ∈ Πunit(G̃(A)1) belongs to h∗u.
Given ν1 ∈ h∗u define

Πν1(G̃(A)1) = {π̃ ∈ Π(G̃(A)1) : νπ̃ = sν1 for some s ∈ W}.

We can use multipliers to prove the following lemma.
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Lemma 11.4 (15.4). For each f̃ ∈ H(G̃(A),M)0 and ν1 ∈ h∗u, we have∑
π̃∈Πν1(G̃(A)1)

(
adisc(π̃)− aΣ

disc(π̃)
)

tr
(
π̃(f̃1)

)
= 0.

As the proof of Lemma 11.4 is almost identical to that of Lemma 15.4, II of
[13], we shall only sketch the proof. Given f̃ ∈ H(G̃(A),M)0, T ≥ 0 and ν1 ∈ h∗u
we choose α1 ∈ E(h1)W as in Lemma 15.2, II of [13]. The multiplier α1 has the
property that 0 ≤ α̂1(νπ̃) ≤ 1 for any π̃ ∈ Πunit(G̃(A)) whose K-type is the same as
that of f̃ . Furthermore, the inverse image of 1 under α̂1 is {sν1 : s ∈W}. Following
Corollaries 14.2 and 14.3, II of [13], we find that εM (f̃) is a moderate function in
Iac(M(A)) in the sense of §6 of [8]. We may then apply Corollary 6.5 of [8] (cf.
(15.5), II of [13]) to obtain∣∣∣∣∣∣

∑
t≤T

It(f̃αm1 )− IΣ
t (f̃αm1 )− ndim(AM )|W (aM )|−1ÎMt (εM (f̃)(α′1)m)

∣∣∣∣∣∣ ≤ Ce−kNm
for some positive constants C, k and N . Thus∑

t≤T
It(f̃αm1 )− IΣ

t (f̃αm1 )(30)

approaches ∑
t≤T

ndim(AM)|W (aM )|−1ÎMt (εM (f̃)(α′1)m)(31)

as m approaches infinity. According to Lemma 15.3, II of [13] we may write (31)
as∑
t≤T

ndim(AM )|W (aM )|−1
∑

π∈Πdisc(M,t)

aMdisc(π)
∫
ia∗M/ia

∗
G

εM (f̃1, π, λ)α̂′1(νπ + λ)mdλ,

for some Schwartz function

λ 7→ εM (f̃1, π, λ), λ ∈ ia∗M/ia∗G.
The multiplier α1 was chosen so that

0 ≤ α̂′1(νπ + λ) < 1,

for all but finitely many λ ∈ ia∗M/ia∗G in the above integral. Thus, by the domi-
nated convergence theorem, the integral approaches zero as m approaches infinity.
Expression (30) therefore also approaches zero as m approaches infinity. Moreover,
by Lemma 9.2 it is equal to∑

t≤T

∑
π̃∈Π(G̃(A)1,t)

(adisc(π̃)− aΣ
disc(π̃))tr

(
π̃(f̃1)

)
α̂1(νπ̃)m.

By our choice of α1, the limit of this expression as m approaches infinity is the
expression in Lemma 11.4.

In §16, II of [13] it is shown, using the Plancherel formula, how to extend Lemma
11.4 to functions in H(G̃(A),M). We shall not repeat the arguments here. We
merely translate the final result of that section into the following proposition.

Proposition 11.1 (16.2). For any f̃ ∈ H(G̃(A),M), we have

I(f̃) = IΣ(f̃).
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Proof. By Lemma 9.2 and the extension of Lemma 11.4 to H(G̃(A),M), the dif-
ference It(f̃)− IΣ

t (f̃), t ≥ 0, is equal to∑
{ν1:‖Im(ν1)‖=t}

∑
π̃∈Πν1(G̃(A)1)

(
adisc(π̃)− aΣ

disc(π̃)
)

tr
(
π̃(f̃1)

)
= 0.

It is then obvious that

I(f̃) =
∑
t

It(f̃) =
∑
t

IΣ
t (f̃) = IΣ(f̃).

12. Completion of the proofs of Theorems A and B

We first prove Theorem A (i). The structure of the proof is as follows. We begin
by showing that for any valuation v of F and each γv ∈ M(Fv) ∩ Goreg(Fv) there
exists a constant εM (γv) such that

IMM (γv, f̃)− IΣ
M (γv, f̃) = εM (γv)IMG (γv, f̃), f̃ ∈ H(G̃(Fv)).

This part of the proof follows §17, II of [13] almost exactly. It then follows from
the splitting properties that for any S0 containing {v : |n|v 6= 1} and

γ =
∏
v∈S0

γv ∈M(FS0) ∩Goreg(FS0),

we have

IMM (γ, f̃)− IΣ
M (γ, f̃) =

(∑
v∈S0

εM (γv)

)
IMG (γ, f̃), f̃ ∈ H(G̃(FS0)).(32)

Using the strong approximation theorem, we show that
∑
v∈S0

εM (γv) vanishes
unless M = M0.1 The induction hypothesis of §10 and Corollary 3.1 then imply
that εM (γv) = 0 unless M = M0. We then take care of the case M = M0 by using
the local trace formula as in the proof of Corollary 3.1.

Suppose f̃ ∈ H(G̃(A),M). According to Lemma 11.1 and Proposition 11.1 the
sum of

|W (aM )|−1
∑

γ∈(M(F ))M,S/µMn

aM (S, γ)
(
IMM (γ, f̃)− IΣ

M (γ, f̃)
)

(33)

and ∑
δ∈AG(F )\µGn

∑
u∈(UG(F ))G,S

(
aM(S, u)− a(S, u)

)
IMG (δu, f̃)(34)

vanishes. Recall that S is a large finite set of valuations which depends on f̃ and
contains {v : |n|v 6= 1}. We may assume that S = {v1, . . . , vk}, where v1 and v2

are any two distinct valuations satisfying

|n|v1 = |n|v2 = 1.

1I am indebted to J. Arthur for providing the underlying ideas for this portion of the proof.
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Take γ to be an element in M(F )∩Goreg(F ) such that γ is Fvi -elliptic inM(Fvi), i =
1, 2. Choose f̃i ∈ H(G̃(Fvi )) such that it is supported on a very small neighborhood
of γ′i(µn) in G̃(Fvi) and

ÎM,M
M (γ, f̃i,M̃ ) = IMG (γ, f̃i) = 1, i = 1, 2.

For the remaining 3 ≤ i ≤ k, let f̃i ∈ H(G̃(Fvi)) be arbitrary and set f̃ = f̃1 · · · f̃k.
This function lies in H(G̃(FS),M) by the construction of f̃1 and f̃2. If we shrink
the support of f̃1 and f̃2 around γ′i(µn), the set S is not affected. Bearing in mind
that M̃(F ) is a discrete subgroup of M̃(A), we may then assume that the support
of f̃1 and f̃2 is so small that (34) vanishes and the only contribution to the sum in
(33) comes from G̃(FS)-conjugates of γ′. The distributions in (33) are constant on
G̃(FS)-conjugacy classes. By Theorem 8.2 of [5] we have

aM (S, γ) = vol(Mγ(F )\Mγ(A)1),

for S large enough (in a sense depending only on γ). Consequently,

IMM (γ, f̃)− IΣ
M (γ, f̃) = 0.(35)

We apply the splitting properties ((23) and Proposition 6.2, [30]) and the induction
hypothesis of §2 to this equation repeatedly in order to obtain

k∑
i=1

(
IMM (γ, f̃i)− IΣ

M (γ, f̃i)
)∏
j 6=i

ÎM,M
M (γ, f̃j,M̃ ) = 0.(36)

Suppose 3 ≤ i ≤ k. Choose γ ∈M(F ) as in (36), f̃i ∈ H(G̃(Fvi)) such that

ÎM,M
M (γ, f̃i,M̃ ) = IMG (γ, f̃i) = 0,

and the remaining f̃j ∈ H(G̃(Fvj )), j 6= i, such that

ÎM,M
M (γ, f̃j,M̃ ) 6= 0.

In this case, the left-hand side of (36) is a nonzero multiple of

IMM (γ, f̃i)− IΣ
M (γ, f̃i).

Consequently, this distribution vanishes for any f̃i ∈ H(G̃(Fvi )) such that IMG (γ, f̃i)
vanishes. This implies that there exists a constant εM (γ) such that

IMM (γ, f̃i)− IΣ
M (γ, f̃i) = εM (γ)IMG (γ, f̃i),(37)

for any f̃i ∈ H(G̃(Fvi )). Observe that if M % M0 and Fvi = C, then the left-
hand side of this equation vanishes by Jordan canonical form and Lemma 2.1. This
implies that εM (γ) = 0 at the archimedean places whenever M %M0.

Let Vi = {vi, v1, v2}. Suppose that vi is nonarchimedean. The set{∏
v∈Vi

γv ∈M(FVi) ∩Goreg(FVi ) : γvj is Fvj -elliptic in M(Fvj ), j = 1, 2

}
is open in M(FVi). Since M(F ) is dense in M(FVi), it is also dense in the above
open subset. It follows that we may approximate any γi ∈ M(Fvi) by an element
γ occurring in (37). Since all of the distributions in (37) are smooth on M(Fvi) ∩
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Goreg(Fvi), the function εM also extends to a smooth function on this space and
we have

IMM (γi, f̃i)− IΣ
M (γi, f̃i) = εM (γi)IMG (γi, f̃i), γi ∈M(Fvi) ∩Goreg(Fvi ).(38)

Now suppose that Fvi = C. If M %M0, then, as we have already remarked, equa-
tion (38) holds with εM (γi) = 0. Otherwise, it is obvious that one can approximate
γi ∈ M0(C) ∩ Goreg(C) by an element γ ∈ M(F ) ∩ Goreg(F ) which is Fvj -elliptic
in M0(Fvj ), for j = 1, 2. After all, the latter condition is satisfied for any element
in M0(Fvj ), j = 1, 2. As a result, equation (38) holds for the archimedean places
as well. Finally, notice that since our choice of v1 and v2 was arbitrary as long as
|n|v1 = |n|v2 = 1, equation (38) holds for any 1 ≤ i ≤ k.

Suppose M % M0 and S0 ⊃ {v : |n|v 6= 1}. We may assume that S ⊃ S0.
By approximating elements of M(FS) with elements of M(F ) as above, repeated
use of the splitting properties ((23) and Proposition 6.2, [30]) and the induction
hypothesis of §2, we obtain equation (32) from (35). We would like to show that∑
v∈S0

εM (γv) vanishes and then apply Corollary 3.1.
Suppose that v /∈ S0 and γv lies in Kv ∩M(Fv) ∩ Goreg(Fv). It is obvious that

IMG (γv, f̃0
v ) 6= 0 (cf. (27), [30]). However, according to Lemma 3.4 the left-hand

side of equation (38) vanishes. Therefore,

εM (γv) = 0, γv ∈ Kv ∩M(Fv) ∩Goreg(Fv), v /∈ S0.(39)

Recall decomposition (4) of [30],

M =
∏̀
i=1

M(i) ∼=
∏̀
i=1

GL(ri).

We consider the subgroup
∏`
i=1 SL(ri) of

∏`
i=1 GL(ri) and identify it with its image

in M using the above isomorphism. We shall show that

∑
v∈S0

εM (γv) = 0, γ0 =
∏
v∈S0

γv ∈
∏̀
i=1

SL(ri, FS0) ∩Goreg(FS0).(40)

One should keep in mind that the summands parameterized by archimedean valu-
ations all vanish, as we are assuming that M % M0. We may suppose that v1, v2

are as earlier and v1, v2 /∈ S0. For i = 1, 2 we choose γvi to be Fvi -elliptic ele-
ments in M(Fvi) which also lie in

∏`
j=1 SL(rj , Fvi), Kvi and Goreg(Fvi ). To see

that this is possible, consider a finite Galois extension E of Fvi . Let x1 be an ele-
ment of E such that Fvi(xn1 ) = E. Choose a non-trivial element σ in Gal(E/Fvi)
and set x = x1/σ(x1). Then |x|E = 1, NE/Fvi (x) = 1 and F (xn) = E. These
properties of x can be translated respectively into the above context as γvi ∈ Kvi ,
γvi ∈

∏`
i=1 SL(ri, Fvi) and γvi ∈ Goreg(Fvi) being Fvi -elliptic in M(Fvi). Now sup-

pose γ0 ∈
∏`
i=1 SL(ri, FS0) ∩ Goreg(FS0). The the strong approximation theorem

([26]) allows us to choose γ ∈
∏`
i=1 SL(ri, F ) ∩Goreg(F ) such that γ is close to γ0

at the nonarchimedean valuations in S0, γ is close to γvi in M(Fvi) for i = 1, 2,
and γ ∈ Kv for any v /∈ S0 ∪ {v1, v2}. Choose f̃i ∈ H(G̃(Fvi)), 1 ≤ i ≤ k, such that
f̃1, f̃2 are supported on very small neighborhoods of γ′i(µn) and f̃i = f̃0

vi if vi /∈ S0.
It then follows from equation (36), equation (39) and our earlier observations that
equation (40) holds.
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Suppose δ =
∏
v∈S0

δv ∈M(FS0) ∩Goreg(FS0) and

γ0 =
∏
v∈S0

γv ∈
∏̀
i=1

SL(ri, FS0) ∩Goreg(FS0)

such that δγ0 ∈M(FS0) ∩Goreg(FS0). Our next step is to show that∑
v∈S0

εM (δvγv) =
∑
v∈S0

εM (δv).(41)

It is easily seen that we may choose γvi , i = 1, 2, as in the previous paragraph, but
with the additional requirement that γ2

vi satisfies the same conditions as γvi . Weak
approximation allows us to choose γ1 ∈ M(F ) ∩ Goreg(F ) such that γ1 is close to
γvi in M(Fvi) for i = 1, 2, and γ1 is close to δ at the nonarchimedean valuations
of S0. Let V be the finite set of valuations {v /∈ S0 : γ1 /∈ Kv}. Choosing S large
enough and f̃1, . . . , f̃k appropriately in equation (36), we may conclude that

0 =
∑

v∈S0∪V
εM (γ1) =

∑
v∈S0

εM (δv) +
∑
v∈V

εM (γ1).(42)

(In this equation we are abusing notation as εM (γ1) depends on v ∈ S0 ∪ V .) As
earlier, by strong approximation, we may choose γ2 ∈

∏`
i=1 SL(ri, F ) ∩ Goreg(F )

such that it is close to γvi in M(Fvi) for i = 1, 2; it is close to γ0 at the nonar-
chimedean valuations in S0; it is close to the identity in M(FV ); and it lies in Kv

for v /∈ S0 ∪ V . We may assume that the product γ1γ2 ∈M(F ) is also in Goreg(F ).
By construction, γ1γ2 is close to γ2

vi in M(Fvi) for i = 1, 2; close to δγ0 at the
nonarchimedean valuations of S0; and close to γ1 in M(FV ). Furthermore, γ1γ2

lies in Kv for valuations v /∈ S0 ∪ V . Again, a judicious choice of S and f̃1, . . . , f̃k
in equation (36) implies that

0 =
∑

v∈S0∪V
εM (γ1γ2) =

∑
v∈S0

εM (δvγv) +
∑
v∈V

εM (γ1).

Comparing this equation with equation (42), we find that (41) is true.
It is a simple exercise to show that any δ0 =

∏
v∈S0

δ0,v ∈M(FS0) ∩Goreg(FS0)
can be written as a product δγ0, where δ ∈ M0(FS0) ∩ Goreg(FS0) and γ0 is as
above. As M %M0, equation (41) and Lemma 2.1 imply that∑

v∈S0

εM (δ0,v) =
∑
v∈S0

εM (δv) = 0.

By equation (32) and Corollary 3.1 this constitutes a proof of Theorem A (i) for
M %M0.

To take care of the case M = M0, we must show that

εM0(γ) = 0, γ ∈M0(Fv) ∩Goreg(Fv).

Bearing in mind the induction hypothesis of §10, we may argue as in the proof of
Corollary 3.1 (cf. equation (4)) to conclude that∫

M0(Fv)/µMn

εM0(γ)IG̃(γ′, f̃1)IG̃(γ′, f̃2)dγ = 0,

for any genuine Hecke function f̃1 on G̃(Fv) and f̃2 ∈ H(G̃(Fv)). Fix γ1 ∈M0(Fv)∩
Goreg(Fv). Since H(G̃(Fv)) is dense in C∞c (G̃(Fv)), we may let f̃2 approach the
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antigenuine analogue of Dirac measure on G̃(Fv) at γ′1. The Weyl integration
formula then implies that the function

γ̃ 7→ |DG(p(γ̃))|1/2IG̃(γ̃, f̃2), γ̃ ∈ M̃0(Fv),

approaches the antigenuine analogue of Dirac measure on M̃0(Fv) at γ′1. It then
follows from our equation that

εM0(γ1)|DG(γn1 )|−1/2IG̃(γ′1, f̃1) = 0,

and in turn that εM0(γ1) = 0. This concludes the proof of Theorem A (i).
All that remains to be done now is to prove Theorem A (ii) and Theorem B.

Proof of Theorem A (ii). We wish to show that

aM̃ (S, γ′) = aM (S, γ), γ ∈M(F ).

Suppose first that γ ∈M(F ) has Jordan decomposition γ = σu, where the semisim-
ple element σ is not in AG(F ) if M = G. Then

dim(Mσ) < dim(G),

so we may apply the induction hypothesis of §2 to decompositions (28) and (29) of
[30] and the lemma follows. On the other hand, if M = G and σ ∈ AG(F ), then

aG̃(S, γ′) = aG̃(S, u′)

and

aG(S, γ) = aG(S, u),

by (28) and (29) of [30] respectively. It follows from Theorem A (i) and Lemma
11.1, where we may now take M = M0, that∑

σ∈AG(F )

∑
u∈(UG(F ))

(
aG̃(S, u′)− aG(S, u)

)
IMG (σu, f̃) = 0,

for any f̃ ∈ H(G̃(A)). We may choose f̃ ∈ H(G̃(A)) above so that for a fixed
element u1 ∈ UG(F ), we have

IMG (σu, f̃) =
{

1, if σ = 1 and u = u1,
0, otherwise

(§3.3, [38]). This clearly implies that aG̃(S, u′1) = aG(S, u1).

It has already been shown in §7 that Theorem B (i) follows from Theorem A (i).
This leaves us with a single proof to be completed.

Proof of Theorem B (ii). By the induction hypothesis of §6, we need only show that

aG,Σdisc (π̃) = aG̃disc(π̃), π̃ ∈ Π(G̃(A)1).

Let ν1 be the infinitesimal character of the archimedean factor of some fixed π̃ ∈
Π(G̃(A)1), and let K1 be a compact open subgroup of

∏
v/∈S∞ Kv such that π̃ is bi-

s(K1)-invariant. Let Πν1,K1(G̃(A)1) be the set of bi-s(K1)-invariant representations
in Π(G̃(A)1) with infinitesimal character ν1. In the process of proving Proposition
11.1 (cf. (16.6), II of [13]), one obtains∑

π̃∈Πν1,K1 (G̃(A)1)

(
aG,Σdisc (π̃)− aG̃disc(π̃)

)
tr
(
π̃(f̃1)

)
= 0,
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for any f̃ ∈ H(G̃(A)1) which is bi-s(K1)-invariant. This sum is finite by Lemma
4.2 of [8], and the linear forms,

f̃ 7→ tr
(
π̃(f̃1)

)
, π̃ ∈ Πν1,K1(G̃(A)1),

on the space of bi-s(K1)-invariant functions in H(G̃(A)) are linearly independent.
The result follows.

13. A global correspondence

We derive a global correspondence from a special case of Theorem B (ii). The
global datum aG̃disc(π̃) is defined by the equation (cf. (4.3), [8] and (9.2), II, [13]),∑

π̃∈Π(G̃(A)1,t)

aG̃disc(π̃)IG̃(π̃, f̃)

=
∑
M∈L

|WM
0 ||WG

0 |−1
∑

s∈W (aM )reg

| det(s− 1)aGM
|−1tr

(
M̃(s, 0)ρQ̃,t(0, f̃)

)
.(43)

Here, f̃ ∈ H(G̃(A)), Q is any element of P(M) and ρQ̃,t(0) is the induced rep-
resentation of G̃(A)1 obtained from the genuine subrepresentation of M̃(A)1 on
L2(s0(M(F ))\M̃(A)1) which decomposes into a discrete sum of elements in
Π(M̃(A)1, t). The term M̃(s, 0) is the global intertwining operator associated to
an element in

W (aM )reg = {s ∈ W (aM ) : det(s− 1)aGM
6= 0}.

By Theorem B (ii) and the definitions of §§5–7, the right-hand side of (43) is equal
to ∑
π̃∈Π(G̃(A)1,t)

aG,Σdisc (π̃)IΣ
G(π̃, f̃)

=
∑

π∈Π(G(A)1,nt)

aGdisc(π)n−1ÎG(π, f̃ ′)

= n−1
∑
M∈L

|WM
0 ||WG

0 |−1
∑

s∈W (aM )reg

| det(s− 1)aGM
|−1tr (M(s, 0)ρQ,nt(0, f)) ,

where f ∈ H(G(A)) is a function whose “Fourier transform” fG ((13), [30]) is equal
to f̃ ′ ∈ I(G(A)). (This uses the trace Paley-Wiener theorems of [16] and [15].) We
would like to convert this identity of representations on G̃(A)1 and G(A)1 to an
identity of representations on G̃(A) and G(A). We may embed the connected
component AG(R)0 of AG(R) diagonally into

∏
v∈S∞ AG(Fv). The map,

HM : AG(R)0 → aG,

is an isomorphism which allows us to pull back the Haar measure on aG to AG(R)0.
Given λ ∈ ia∗G, we define

Idisc,t,λ(f̃) =
∫
AG(R)0

∑
π̃∈Π(G̃(A)1,t)

aGdisc(π̃)IG̃(π̃, f̃a′)eλ(HG(p(a′)))da′,

where

f̃a′(γ̃) = f̃(a′γ̃), γ̃ ∈ G̃(A), a ∈ AG(R)0.
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Since f̃ ′a′ = f̃ ′a, λ(HG(p(a′))) = λ′(HG(a)) and da′ ◦ s = nda, our earlier identity
becomes

Idisc,t,λ(f̃) = Idisc,nt,λ′(f).(44)

This identity may be rewritten as∑
M∈L

|WM
0 ||WG

0 |−1
∑

s∈W (aM )reg

| det(s− 1)aGM
|−1tr

(
M̃(s, 0)ρQ̃,t,λ(0, f̃)

)
=

∑
M∈L

|WM
0 ||WG

0 |−1
∑

s∈W (aM )reg

| det(s− 1)aGM
|−1tr (M(s, 0)ρQ,nt,λ′(0, f)) .

Here

ρQ̃,t,λ(0) =
⊕

π̃∈Πdisc(M̃(A),t,λ)

IndG̃
Q̃
π̃,

where Πdisc(M̃(A), t, λ) is the set of irreducible, λ-equivariant and genuine sub-
representations of M̃(A) on L2(s0(M(F ))\M̃(A)) whose infinitesimal characters’
imaginary parts have norm equal to t ≥ 0. Since M̃(s, 0) intertwines ρQ̃,t,λ(0) with
itself, Schur’s lemma implies that there exist complex numbers cs,π̃ such that

tr
(
M̃(s, 0)ρQ̃,t,λ(0, f̃)

)
=

∑
π̃∈Πdisc(M̃(A),t,λ)

cs,π̃tr
(

(IndG̃
Q̃
π̃)(f̃)

)
.

Set

cπ̃ = |WM
0 ||WG

0 |−1
∑

s∈W (aM )reg

| det(s− 1)aGM
|−1cs,π̃, π̃ ∈ Πdisc(M̃(A), t, λ).

Identity (44) now has the form∑
M∈L

∑
π̃∈Πdisc(M̃(A),t,λ)

cπ̃tr
(
π̃G̃(f̃)

)
−

∑
π∈Πdisc(M(A),nt,λ′)

cπtr
(
πG(f)

)
= 0.(45)

Given a valuation v such that |n|v = 1, let H(G̃(Fv),Kv) be the subset of
H(G̃(Fv)) of s(Kv)-bi-invariant functions. Suppose π̃ =

⊗
v π̃v ∈ Π(G̃(A)) and

π =
⊗

v πv ∈ Π(G(A)). We say that π̃ corresponds (or lifts) weakly to π if

tr
(
π̃v(f̃v)

)
= tr (πv(fv)) ,

for any matching functions f̃v ∈ H(G̃(Fv),Kv), fv ∈ H(G(Fv),Kv) and almost
every valuation v of F . We say that π̃ corresponds (or lifts) to π if

tr
(
π̃v(f̃v)

)
= tr (πv(fv)) ,

for any matching functions f̃v ∈ H(G̃(Fv)), fv ∈ H(G(Fv)) and every valuation
v of F . We say that π is metic if πv is metic (§2) for all valuations v and that
f =

∏
v fv ∈ H(G(A)) matches f̃ =

∏
v f̃v ∈ H(G̃(A)) if fv matches f̃v for all

valuations v.

Theorem 13.1. Under Assumptions 1 and 2, the following assertions are true.
(i) Suppose t ≥ 0, λ ∈ ia∗G and π̃0 =

⊗
v π̃0,v belongs to Πdisc(G̃(A), t, λ).

Then there exist a unique Levi subgroup L ∈ L and a unique representation π0 ∈
Πdisc(L(A), nt, λ′) such that π0 is metic and π̃0 corresponds weakly to πG0 .
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(ii) Suppose t ≥ 0, λ ∈ ia∗G and π0 = π0,v ∈ Πdisc(G(A), nt, λ′) is metic. Then
there exists π̃0 ∈ Πdisc(G̃(A), t, λ) such that π̃0 corresponds weakly to π0. Moreover,
if π̃ ∈ Πdisc(M̃(A), t, λ) and π̃G̃ corresponds weakly to π0, then M = G.

(iii) Suppose the representation π0 of (ii) is cuspidal. Then there exists a unique
representation π̃0 ∈ Πdisc(G̃(A), t, λ) which corresponds to π0. Moreover, if π̃1 ∈
Πdisc(M̃(A), t, λ) and π̃G̃1 corresponds weakly to π0, then π̃1 = π̃0.

Proof of (i). We assume inductively that (i) holds if G is replaced by a proper Levi
subgroup in L. Let V be the finite set of valuations at which π̃0 is ramified. Suppose
w /∈ V . By §§11, 16, 17 of [18], we can assign to each unramified representation in
Π(G̃(Fw)) a Satake parameter. Recall that a Satake parameter corresponds to an
element of (Cr)Sr , the set of equivalence classes of Cr under permutation. Suppose
f̃ =

∏
v f̃v ∈ H(G̃(A)) such that f̃w ∈ H(G̃(Fw),Kw), f =

∏
v fv ∈ H(Gv) matches

f̃ , and tw ∈ (Cr)Sr . Set

a(tw) =
∑
M∈L

∑
π̃

cπ̃
∏
v 6=w

tr
(
π̃G̃v (f̃v)

)
−
∑
π

cπ
∏
v 6=w

tr
(
πGv (fv)

) ,

where the first sum is parametrized by the representations π̃ =
⊗

v π̃v belonging
to Πdisc(M̃(A), t, λ) such that π̃w has Satake parameter tw and the second sum is
parametrized by the representations π =

⊗
v π̃v belonging to Πdisc(M(A), nt, λ′)

such that πw has Satake parameter ntw. By Theorem 19 of [18] fw ∈ H(G(Fw),Kw)
and so equation (45) implies that∑

tw∈(Cr)Sr−{0}

a(tw)f̃∨w (tw) = 0,

where f̃∨w is the Satake transform (§11, [18]) of f̃w. It follows from the Satake
isomorphism that

a(tw) = 0, tw ∈ (Cr)Sr − {0}.
Suppose tπ̃0,w is the Satake parameter of π0,w. We can combine the earlier argument
with an induction argument on the number of valuations outside of V to conclude
that ∑

M∈L

∑
π̃∈Π(M̃,π̃0,V )

cπ̃
∏
v∈V

tr
(
π̃G̃v (f̃v)

)
=
∑
M∈L

∑
π∈Π(M,π̃0,V )

cπ
∏
v∈V

tr
(
πGv (fv)

)
.(46)

Here, Π(M̃, π̃0, V ) is the set of representations,

π̃ =
⊗
v

π̃v ∈ Πdisc(M̃(A), t, λ),

which satisfy

tr
(
π̃G̃w (h̃)

)
= h̃∨(tπ̃0,w), h̃ ∈ H(G̃(Fw),Kw), w /∈ V,

and Π(M, π̃0, V ) is the set of representations,

π =
⊗
v

πv ∈ Πdisc(M(A), nt, λ′),

which satisfy

tr
(
πGw (h)

)
= h∨(ntπ̃0,w), h ∈ H(G(Fw),Kw), w /∈ V.
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Of course, π̃0 is an element of set Π(G̃, π̃0, V ) and cπ̃0 = 1. If Π(M̃, π̃0, V ) is empty
for every M 6= G, then Lemma 16.1.1 of [22], applied to equation (46), implies that
Π(M, π̃0, V ) is not empty for some M ∈ L. If Π(M̃, π̃0, V ) is not empty for some
M 6= G, then our induction assumption implies that Π(M, π̃, V1) is not empty for
some finite set V1 ⊃ V . In any case, we have shown the existence of π0 as in the
theorem. The uniqueness of this representation follows from the strong multiplicity
one property for the cuspidal representations of general linear groups (Theorem
4.4, [23]) and the construction of the discrete spectrum of general linear groups in
terms of the cuspidal representations ([34]).
Proof of (ii). Suppose V is the finite set of valuations at which π0 is ramified. Given
w /∈ V , set tπ0,w to be the Satake parameter of π0,w. Given a finite set V1 ⊃ V ,
define Π(M̃ , π0, V1) to be the set of representations

π̃ =
⊗
v

π̃v ∈ Πdisc(M̃(A), t, λ)

which satisfy

tr
(
π̃G̃w (h̃)

)
= h̃∨(ntπ0,w), h̃ ∈ H(G̃(Fw),Kw), w /∈ V.

Arguing as in (i) and applying the strong multiplicity property for general linear
groups, we obtain∏

v∈V1

tr
(
πG0,v(fv)

)
=
∑
M∈L

∑
π̃∈Π(M̃,π0,V1)

cπ̃
∏
v∈V1

tr
(
π̃G̃v (f̃v)

)
.(47)

Since the left-hand side is not zero, there exists a representation π̃0 belonging
to Πdisc(M̃(A), t, λ) such that π̃G̃ corresponds weakly to π0. Furthermore, any
π̃ ∈ Πdisc(M̃(A), t, λ) such that π̃G̃ corresponds weakly to π0 occurs as a summand
on the right-hand side for some V1 ⊃ V . By (i) (with G replaced by M) there exist
M1 ∈ LM and π1 ∈ Πdisc(M1, nt, λ

′) such that π̃0 corresponds weakly to πM1 . In
particular, π1,v and π0,v have the same Satake parameters at almost every valuation
v. By the strong multiplicity one property mentioned earlier, it follows that π1 = π0

and in turn that M1 = M = G.
Proof of (iii). According to Theorem 27.3 of [18], for every valuation v of F , there
exists a unitary representation π̃0,v ∈ Π(G̃(Fv)) such that

tr
(
π̃0,v(f̃v)

)
= tr (π0,v(fv)) ,

for any matching functions f̃v ∈ H(G̃(Fv)) and fv ∈ H(G(Fv)). Together with the
second assertion of (ii) this allows us to rewrite equation (47) as∏

v∈V1

tr
(
π̃0,v(f̃)

)
=

∑
π̃∈Π(G̃,π0,V1)

∏
v∈V1

tr
(
π̃v(f̃)

)
.

It follows from Lemma 16.1.1, applied to this equation, that there exists a unique
representation π̃0 ∈ Π(G̃, π0, V1) which corresponds to π0. The second assertion of
(iii) follows from the second assertion of (ii) and the fact that the finite set V1 ⊃ V
is arbitrary.

Theorem 13.1 (iii) yields the multiplicity one and strong multiplicity one property
for the representations of G̃(A) which lift to cuspidal representations of G(A). We
expect the same properties to hold for representations of G̃(A) which lift to any
representation in the discrete spectrum of G(A). One could attempt to prove this
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by showing that the local metaplectic correspondence preserves character identities
for the local factors of representations in the residual spectrum of G(A) and then
argue as in Theorem 13.1 (iii). Let us describe the residual spectrum of G(A) in
more detail so that we can state these character identities as a precise conjecture.

Recall decomposition (4) of [30],

M = M(1)× · · · ×M(`) ∼= GL(r1)× · · ·GL(r`).

Suppose r1 = · · · = r`, so that r = `r1. Suppose further that π =
⊗

v πv is a unitary,
cuspidal and metic representation of GL(r1,A). Let

⊗`
i=1 π| det(·)|(`(2i−1))/2 be the

representation of M(A) given by γ1 0
. . .

0 γ`

 7→ ∏̀
i=1

π(γi)| det(γi)|
`−(2i−1)

2 , γ1, . . . , γ` ∈ GL(r1,A),

where | · | =
⊗

v | · |v, and let P ∈ P(M) be the unique parabolic subgroup
containing the group of upper-triangular matrices. The induced representation
IndGP

(⊗`
i=1 π| det(·)|(`−(2i−1))/2

)
has a unique irreducible quotient which belongs

to the discrete spectrum of G(A) (§2, [21]). Conversely, any discrete representation
of G(A) is of the above form ([34]).

Conjecture 1. Suppose that v is a nonarchimedean valuation of F and πv ∈
Π(GL(r1, Fv)) and P ∈ P(M) are as above. Suppose further that πv is metic and
that π1 is the unique irreducible quotient of IndGP

(
πv| det(·)|(`−(2i−1))/2

v

)
. Then

there exists π̃v ∈ Π(G̃L(r1, Fv)) such that

IndG̃
P̃

(
π̃v| det ◦p(·)|

`−(2i−1)
2

v

)
has a unique irreducible quotient π̃1 which satisfies

tr
(
π̃1(f̃)

)
= tr (π1(f))

for any matching functions f̃ ∈ H(G̃(Fv)) and f ∈ H(G(Fv)).

This conjecture can be shown to hold in the case that πv is supercuspidal by
using an argument in the proof of Theorem 29.1 in [18]. Conjecture 1 would follow
from a character identity of unitary representations if one could generalize the work
of Bernstein, Tadić and Zelevinsky ([14], [39], [37]) to G̃(Fv) (see also [20]).

Taking the case r = 2 into consideration ([17]), we make a second conjecture.

Conjecture 2. Suppose t ≥ 0, λ ∈ ia∗G and π̃ belongs to Πdisc(G̃(A), t, λ). Then
there exists a unique metic representation π ∈ Πdisc(G(A), nt, λ′) such that π̃ cor-
responds to π. Moreover, if π̃1 is a representation in Πdisc(M̃(A), t, λ) such that
π̃G̃1 corresponds weakly to π, then π̃1 = π̃. This correspondence maps cuspidal
representations to cuspidal representations and residual representations to residual
representations.

This conjecture holds true given the general strong multiplicity one property,
which follows from Conjecture 1, and given a characterization of the residual spec-
trum of G̃(A) as in [34]. We refer the reader to [36] for a discussion of the residual
spectrum of G̃(A). The final assertion of Conjecture 2 is false if Assumption 1 is
not assumed. This can be seen in [17] and §29 of [18].
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14. Appendix

Suppose Fv is nonarchimedean and σ is a semisimple element of G(Fv) such that
dim(Gσ) < dim(G). It is implicit in the induction hypothesis of §2 that the results
of the proof of Theorem A apply to Gσ(Fv) just as they do for G(Fv). In particular,
the results depending on the fixed integer 0 ≤ m ≤ n−1 must hold for Gσ(Fv) just
as they do for G(Fv). The purpose of this appendix is to convince the reader that
these particular results do indeed hold for Gσ(Fv) under Assumption 1.

There are two such results and both occur in the preparatory paper [30]. The
first result pertains to the vanishing of some local geometric terms in the trace
formula. This is the local geometric vanishing property of Lemma 8.3 in [30]. The
other result depending on m occurs in the Appendix (Lemma 10.1, [30]) and is
used to show that the local metaplectic correspondence commutes with parabolic
induction. In both of these results the integer m appears purely by way of the
commutator computation of Proposition 0.1.5 in [24]. As G̃σ(Fv) is a subgroup of
G̃(Fv), the analogous commutator computation in G̃σ(Fv) is identical to the one
in the ambient group G̃(Fv). This observation should be sufficient to convince the
reader that Lemma 8.3 of [30] follows for Gσ(Fv) exactly as it does for G(Fv).

We shall reproduce Lemma 10.1 of [30] here in the context of Gσ(Fv). In §1 of
[25] it is shown that there are integers, 1 ≤ a1, . . . , ak ≤ r, and field extensions,
E1, . . . , Ek, of Fv such that Gσ(Fv) is isomorphic to GL(a1, E1)×· · ·×GL(ak, Ek).
Suppose L is a Levi subgroup of of Gσ which is defined over F . Then there exist
integers m0 = 0 < m1 < · · · < mk and b1, . . . , bmk such that

∑mi
j=mi−1+1 bj = ai,

for 1 ≤ i ≤ k, and L(Fv) is isomorphic to
m1∏
j=1

GL(bj , E1)× · · · ×
mk∏

j=mk−1+1

GL(bj , Ek).

Suppose 1 ≤ i ≤ k, mi−1 + 1 ≤ j < mi and set L(j)(Fv) to be the subgroup of
L(Fv) which corresponds to GL(bj , Ei) in this isomorphism.

Let (·, ·)Fv : F×v × F×v → µn be the nth Hilbert symbol on Fv and let B be a
maximal subgroup of F×v with respect to the property that (x1, x2)Fv = 1 for all
x1, x2 ∈ B. Set

L̃B(j)(Fv) = {γ̃ ∈ L̃(j)(Fv) : det(p(γ̃)) ∈ B},

where the determinant above is taken with respect to the ambient group G(Fv). It
is a simple matter to check that L̃B(j)(Fv) is a normal subgroup of finite index in
L̃(j)(Fv).

Suppose π̃ is a genuine irreducible admissible representation of L̃(j)(Fv). Its
restriction to L̃B(j)(Fv) is the sum of conjugates of some irreducible representation
ρ̃ of L̃B(j)(Fv). In other words, we have

π̃|L̃B(j) =
∑
γ

ρ̃γ ,

where the sum runs over representatives γ of cosets in L̃(j)(Fv)/L̃B(j)(Fv) and

ρ̃γ(γ1) = ρ̃(γγ1γ
−1), γ1 ∈ L̃B(j)(Fv).

Lemma 14.1. Suppose that γ is a representative as above. Then ρ̃ is not equivalent
to ρ̃γ unless L(j)(Fv) ∼= F×v or γ ∈ L̃B(j)(Fv).
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Proof. If L(j)(Fv) ∼= F×v , then L̃(j)(Fv) ∼= F×v × µn. In particular, L̃(j)(Fv) is
abelian and ρ̃ = ρ̃γ . Suppose that L(j)(Fv) is not isomorphic to F×v . By using
the Iwasawa decomposition, it is easy to see that representatives of the quotient
L̃(j)(Fv)/L̃B(j)(Fv) may be taken to be diagonal matrices in GL(bj , Ei). Let γ be
such a representative corresponding to the diagonal element γ1 0

. . .
0 γbj

 ∈ GL(bj , Ei),

and suppose that ρ̃γ is equivalent to ρ̃. In other words, suppose that there exists a
linear isomorphism T such that

T ◦ ρ̃γ(γ̃) = ρ̃(γ̃) ◦ T, γ̃ ∈ L̃B(j)(Fv).

Suppose x ∈ B and choose γ̃ ∈ L̃B(j)(Fv) such that p(γ̃) corresponds to the scalar
matrix  x 0

. . .
0 x

 ∈ GL(bj , Fv).

Let (·, ·)Ei be the nth Hilbert symbol of Ei. By Proposition 0.1.5 of [24] and the
properties of the Hilbert symbol, we have

ρ̃(γ̃) = T ◦ ρ̃γ(γ̃) ◦ T−1

= T ◦ ρ̃(γγ̃γ−1) ◦ T−1

=

(det(γ), det(p(γ̃)))1+2m
Fv

/

bj∏
t=1

(γt, x)Ei

T ◦ ρ̃(γ̃) ◦ T−1

=
(
(det(γ), det(p(γ̃)))1+2m

Fv
/(NEi/Fv (γ1 · · · γbj ), x)Fv

)
T ◦ ρ̃(γ̃) ◦ T−1

=
(
(det(γ), det(p(γ̃)))1+2m

Fv
/(det(γ), x)Fv

)
T ◦ ρ̃(γ̃) ◦ T−1.

It may be verified by following 0.1.1 of [24] that γ̃ is in the center of L̃B(j)(Fv) and
so, by Schur’s lemma, ρ̃(γ̃) is a nonzero scalar operator. Consequently the above
identity reduces to

(det(γ), x)bj(1+2m)−1
Fv

= 1.

As n and bj(1+2m)−1 are relatively prime by Assumption 1, we have (det(γ), x)Fv
= 1. The element x ∈ B was chosen arbitrarily, so this means that γ ∈ L̃B(j)(Fv).

This lemma can now be employed in showing how the genuine representations of
L̃(Fv) are related to those of L̃(j)(Fv) as in §26.2 of [18] and the Appendix of [30].
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