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ANALYTIC FAMILIES OF EIGENFUNCTIONS
ON A REDUCTIVE SYMMETRIC SPACE

E. P. VAN DEN BAN AND H. SCHLICHTKRULL

Abstract. Let X = G/H be a reductive symmetric space, and let D(X) de-
note the algebra of G-invariant differential operators on X. The asymptotic
behavior of certain families fλ of generalized eigenfunctions for D(X) is stud-
ied. The family parameter λ is a complex character on the split component of a
parabolic subgroup. It is shown that the family is uniquely determined by the
coefficient of a particular exponent in the expansion. This property is used to
obtain a method by means of which linear relations among partial Eisenstein
integrals can be deduced from similar relations on parabolic subgroups. In the
special case of a semisimple Lie group considered as a symmetric space, this
result is closely related to a lifting principle introduced by Casselman. The
induction of relations will be applied in forthcoming work on the Plancherel
and the Paley-Wiener theorem.
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Introduction

In harmonic analysis on a reductive symmetric space X an important role is
played by families of generalized eigenfunctions for the algebra D(X) of invariant
differential operators. Such families arise, for instance, as matrix coefficients of
representations that come in series such as the (generalized) principal series. In
particular, relations between such families are of great interest. We recall that a
real reductive group G, equipped with the left times right multiplication action, is
a reductive symmetric space. In the case of the group, examples of the mentioned
relations are functional equations for Eisenstein integrals (see [23] and [25]), or
Arthur-Campoli relations for Eisenstein integrals; see [1], [14]. In this paper we
develop a general tool to establish relations of this kind. We show that they can be
derived from similar relations satisfied by the family of functions obtained by taking
one particular coefficient in a certain asymptotic expansion. Since the functions in
the family so obtained are eigenfunctions on symmetric spaces of lower split rank,
this yields a powerful inductive method; we call it induction of relations. In the case
of the group, a closely related lifting theorem by Casselman was used by Arthur in
the proof of the Paley-Wiener theorem, see [1], Thm. II.4.1. However, no proof has
yet appeared of Casselman’s theorem.

The tools developed in this paper are used in [11], and they will also be applied in
forthcoming papers [12] and [13]. For example, it is the induction of relations that
allows us to establish symmetry properties of certain integral kernels appearing in
a Fourier inversion formula in [11]. Also in [11], the induction of relations is used
to define generalized Eisenstein integrals corresponding to non-minimal principal
series. In [12], the results of this paper will be applied to identify these ‘formal’
Eisenstein integrals with those defined in Delorme [18]. This is a key step towards
the Plancherel decomposition. The results will also be applied to establish func-
tional equations for the Eisenstein integrals. Applied in this manner our technique
serves as a replacement for the use of the Maass-Selberg relations as in Harish-
Chandra [25] and [18]. On the other hand, in [13] we apply our tool to show that
Arthur-Campoli relations satisfied by normalized Eisenstein integrals of spaces of
lower split rank induce similar relations for normalized Eisenstein integrals of X.
This result is then used to prove a Paley-Wiener theorem for X that generalizes
Arthur’s theorem for the group. In particular, the missing proof of Casselman’s
theorem will then be circumvented by means of a technique of the present paper.

It should be mentioned that in the case of the group, induction of Arthur-
Campoli relations for unnormalized Eisenstein integrals is easily derived from their
integral representations (see [1], p. 77, proof of Lemma 2.3). For normalized Eisen-
stein integrals, which are not representable by integrals, the result seems to be
much deeper, also in the group case.

One of the interesting features of the theory is that it also deals with families of
functions that are not necessarily globally defined on the space X but on a suitable
open dense subset.

Asymptotic behavior of eigenfunctions on a symmetric space has been studied
at many other places in the literature. The following papers hold results that are
related to some of the ideas of the present paper [22], [20], [32], [24], [25], [26], [28],
[30], [17], [33], [1], [29], [6], [15].

The core results of this paper were found and announced in the fall of 1995,
when both authors were guests at the Mittag-Leffler Institute. In the same period
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Delorme announced his proof of the Plancherel theorem, which has now appeared
in [19].

We shall now explain the contents of this paper in more detail. The space X is
of the form G/H, with G a real reductive Lie group of Harish-Chandra’s class, and
H an open subgroup of the set of fixed points for an involution σ of G.

The groupG has a σ-stable maximal compact subgroupK, let θ be the associated
Cartan involution of G. Let P0 = M0A0N0 be a fixed minimal σ ◦ θ-invariant
parabolic subgroup of G, with the indicated Langlands decomposition. The Lie
algebra a0 of A0 is invariant under the infinitesimal involution σ; we denote the
associated −1 eigenspace in a0 by aq. Its dimension is called the split rank of X.
Let Aq be the vectorial subgroup of G with Lie algebra aq and let Areg

q be the set
of regular points relative to the adjoint action of Aq in g. Then X+ := KAreg

q H is a
K-invariant dense open subset of X. Let A+

q be the open chamber in Aq determined
by P0. Then X+ is a finite union of disjoint sets of the form KA+

q vH, with v in the
normalizer of aq in K. In this introduction we assume, for simplicity of exposition,
that X+ = KA+

q H. This assumption is actually fulfilled in the case that X is a
group.

Let (τ, Vτ ) be a finite dimensional continuous representation of K. Then by
C∞(X+ : τ) we denote the space of smooth functions f : X+ → Vτ that are τ -
spherical, i.e., f(kx) = τ(k)f(x), for all x ∈ X+ and k ∈ K.

Let Pσ denote the (finite) set of σ ◦ θ-invariant parabolic subgroups of G contain-
ing Aq. Let Q = MQAQNQ be an element of Pσ. Then σ restricts to an involution
of aQ, the Lie algebra of AQ; we denote its −1 eigenspace by aQq. In the first part
of the paper we study a family f of the following type (cf. Definition 7.1). The
family is a smooth map of the form

f : Ω×X+ → Vτ ,

with Ω an open subset of a∗QqC, the complexified linear dual of aQq. It is assumed
that f is holomorphic in its first variable. Moreover, for every λ ∈ Ω the function
fλ: = f(λ, · ) belongs to C∞(X+ : τ). It is furthermore assumed that the functions
fλ allow suitable exponential polynomial expansions along A+

q . More precisely, we
assume, for m ∈M0 and a ∈ A+

q , that

fλ(ma) =
∑

s∈W/WQ

asλ−ρP0

∑
ξ∈−sWQY+NΣ(P0)

a−ξqs,ξ(λ, log a,m).(0.1)

Here W is the Weyl group of Σ = Σ(g, aq) and WQ is the centralizer of aQq in W.
Moreover, Σ(P0) denotes the collection of roots from Σ occurring in N0 and Y is
a finite subset of ∗a∗QqC, the annihilator of aQq in a∗qC. Finally, the qs,ξ are smooth
functions, holomorphic in the first and polynomial in the second variable. Thus, we
impose a limitation on the set of exponents and assume that the coefficients depend
holomorphically on the parameter λ. The type of convergence that we impose on
the expansion (0.1) is described in general terms in the preliminary Section 1.

We show that the functions fλ actually allow exponential polynomial expansions
similar to (0.1) along any (possibly non-minimal) P ∈ Pσ. These expansions are
investigated in detail in Sections 3 and 7. Their coefficients are families of τ |MP∩K-
spherical functions on XP,+, the analogue of X+ for the lower split rank symmetric
space XP : = MP /MP ∩H.

The operators from D(X) also allow expansions along every P ∈ Pσ. In Section 4
this is shown by investigating a radial decomposition that reflects the decomposition
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G = KMPAPqH. It is of importance that the coefficients in these expansions are
globally defined smooth functions on MP ; see Proposition 4.10 and Corollaries 4.9.
From the expansions we derive that the algebra D(X) acts on the space of families
of the above type; see Proposition 7.6.

In Section 8 we introduce the notion of asymptotic s-globality of a family along
P. Loosely speaking, it means that the coefficients qs,ξ(λ, log a, · ) of the expansion
along P extend smoothly from XP,+ to the full space XP , for every ξ ∈ (sWQY −
NΣ(P ))|aPq . This notion is proved to be stable under the action of D(X).

In Section 9 we impose three other conditions on the family. The first is that
each member satisfies a system of differential equations of the form

Dfλ = 0 (D ∈ Iδ,λ).

Here Iδ,λ is a certain cofinite ideal in the algebra D(X) depending polynomially
on λ ∈ a∗QqC in a suitable way. Accordingly, λ is called the spectral parameter of
the family. The second condition imposed is a suitable condition of asymptotic
globality along certain parabolic subgroups P with dim(aq/aPq) = 1. Thirdly, it is
required that the domain Ω for the parameter λ is unbounded in certain directions
(see Definition 9.9).

The first main result of the paper is then the following vanishing theorem; see
Theorem 9.10.

The vanishing theorem. Let f be a family as above, and assume that the coeffi-
cient of λ− ρQ in the expansion along Q vanishes for λ in a nonempty open subset
of Ω. Then the family f is identically zero.

In the proof the globality assumption is needed to link suitably many asymp-
totic coefficients together; the vanishing of one of them then inductively causes the
vanishing of others. In the induction step a key role is played by the observation
that a symmetric space cannot have a continuum of discrete series (see Lemma 5.8
and its proof).

The importance of the vanishing theorem is that it applies to many families that
naturally arise in representation theory. In the present paper we show that this
is so for Eisenstein integrals associated with the minimal principal series for X;
in [12] we will show that Eisenstein integrals obtained by parabolic induction from
discrete series form a family of the above type. The idea is that the latter Eisenstein
integrals can be obtained from those associated with the minimal principal series by
the application of residual operators with respect to the spectral parameter. Such
residual operators occur in our papers [10] and [11].

A suitable class of operators containing the residual operators is formed by the
Laurent operators. In the second half of the paper we study the application of them
to suitable families of eigenfunctions, with respect to the spectral parameter. The
Laurent operators are best described by means of Laurent functionals; see Sections
10 and 11.

In Section 12 we introduce a special type of families g of eigenfunctions. It is
of the above type, with Ω dense in a∗PqC, P a minimal parabolic subgroup in Pσ,
and satisfies some additional requirements; see Definition 12.8. One of these is that
the family and its asymptotic expansions should depend meromorphically on the
spectral parameter λ ∈ a∗PqC with singularities along translated root hyperplanes.
This allows the application of Laurent functionals with respect to the spectral
parameter. More precisely, let Q ∈ Pσ contain P, and let L be a Laurent functional
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on ∗a∗QqC. From the family g a new family f = L∗g, with a spectral parameter from
a∗QqC, is obtained by the application of L to the ∗a∗QqC-component of the spectral
parameter. In Theorem 13.12 it is shown that the resulting family L∗g satisfies
the requirements of the vanishing theorem, provided the special family g satisfies
certain holomorphic asymptotic globality conditions.

In Section 14 we introduce partial Eisenstein integrals associated with a mini-
mal parabolic subgroup P from Pσ. The partial Eisenstein integrals are spherical
generalized eigenfunctions on X+ obtained from the normalized Eisenstein integral
E◦(P : λ), (λ ∈ a∗qC generic), by splitting it according to its exponential polynomial
expansion along P. More precisely, the exponents of E◦(P : λ) are contained in
Wλ− ρP − NΣ(P ); the partial Eisenstein integrals E+,s(P : λ), for s ∈ W, are the
smooth spherical functions on X+ determined by the requirements that

E◦(P : λ) =
∑
s∈W

E+,s(P : λ)

and the set of exponents of E+,s(P : λ) along P should be contained in sλ− ρP −
NΣ(P ). It is then shown that the partial Eisenstein integrals yield examples of
the special families mentioned above. Moreover, if Q ∈ Pσ, Q ⊃ P, let WQ be
the collection of minimal length (with respect to Σ(P )) coset representatives for
W/WQ in W. Then it is shown that for each t ∈WQ the family

ft =
∑
s∈WQ

E+,st(P : · )(0.2)

satisfies the additional holomorphic asymptotic globality property guaranteeing
that L∗ft satisfies the hypothesis of the vanishing theorem, for L a Laurent func-
tional on ∗a∗QqC.

In Section 15 the asymptotic behavior of L∗ft is investigated, and the coeffi-
cient of aλ−ρQ in the expansion along Q is expressed in terms of partial Eisenstein
integrals of XQ.

The above preparations pave the way for the induction of relations in Section
16. The idea is as follows. Let ft be the family defined by (0.2), and let a Laurent
functional Lt on ∗a∗QqC be given for each t ∈ WQ. Then by the vanishing theorem
a relation of the form

∑
t Ltft = 0 is valid if a similar relation is valid for the

(λ − ρQ)-coefficients along Q; this in turn may be expressed as a similar relation
between partial Eisenstein integrals for the lower split rank space XQ. In this setting,
taking the (λ−ρQ)-coefficient along Q essentially inverts the procedure of parabolic
induction fromQ to G. This motivaties our choice of terminology. The precise result
is formulated in Theorem 16.1. An equivalent result, closer to the formulation of
Casselman’s theorem in [1] is stated at the end of the section.

1. Exponential polynomial series

In this section we define the concept of an exponential polynomial series and the
type of convergence that we will use for such series. Furthermore, we discuss some
properties of the map ep, which associates to a given function f , assumed to be
expandable, the corresponding exponential polynomial series epf .

Let A be a vectorial group and a its Lie algebra. The exponential map exp: a→ A
is a diffeomorphism; we denote its inverse by log . If ξ belongs to a∗C , the complexified
linear dual of a, then we define the function eξ: a 7→ aξ on A by aξ = eξ(log a). Let
P (a) denote the algebra of polynomial functions a→ C. If d ∈ N, let Pd(a) denote
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the (finite dimensional) subspace of polynomials of degree at most d. Let ∆ be a
set of linearly independent vectors in a∗ (we do not require this set to span a∗). We
put

a+ = a+(∆): = {X ∈ a | α(X) > 0, ∀ α ∈ ∆},
and A+ = A+(∆) = exp(a+). We define N∆ to be the N-span of ∆; if ∆ = ∅, then
N∆ = {0}. Moreover, if X is a subset of a∗C , we denote by X − N∆ the vectorial
sum of X and N∆.

Let V be a complete locally convex space; here and in the following we will always
assume such a space to be Hausdorff. If ξ ∈ a∗C , then by a V -valued ξ-exponential
polynomial function on A we mean a function A → V of the form a 7→ aξq(log a),
with q ∈ P (a)⊗ V.

Definition 1.1. By a ∆-exponential polynomial series on A with coefficients in V
we mean a formal series F of exponential polynomial functions of the form∑

ξ∈a∗C

aξ qξ(log a),(1.1)

with ξ 7→ qξ a map a∗C → P (a)⊗ V, such that
(a) there exists a finite subset X ⊂ a∗C such that qξ = 0 for ξ /∈ X − N∆;
(b) there exists a constant d ∈ N such that qξ ∈ Pd(a)⊗ V for all ξ ∈ a∗C .

The smallest d ∈ N with property (b) will be called the polynomial degree of the
series; this number is denoted by deg(F ).

The collection of all ∆-exponential polynomial series with coefficients in V is
denoted by Fep(A, V ) = Fep

∆ (A, V ).

If F ∈ Fep(A, V ) is an expansion of the form (1.1), then, for every ξ ∈ a∗C ,
we write qξ(F ) for qξ. Moreover, we write q(F ) for the map ξ 7→ qξ(F ) from a∗C
to Pd(a) ⊗ V. Then F 7→ q(F ) defines a bijection from Fep(A, V ) onto a linear
subspace of (Pd(a)⊗V )a

∗
C , the space of maps a∗C → Pd(a)⊗V. Via this bijection we

equip Fep(A, V ) with the structure of a linear space.
If F ∈ Fep(A, V ), then

Exp(F ): = {ξ ∈ a∗C | qξ(F ) 6= 0}
is called the set of exponents of F. If F1, F2 ∈ Fep(A, V ), we call F1 a subseries of
F2 if qξ(F2) = qξ(F1) for all ξ ∈ Exp(F1).

The series (1.1) is said to converge absolutely at a fixed point a0 ∈ A if the series∑
ξ∈Exp(F )

aξ0qξ(log a0)

with coefficients in V converges absolutely. It is said to converge absolutely on a
subset Ω ⊂ A if it converges absolutely at every point a0 ∈ Ω. In this case pointwise
summation of the series defines a function Ω→ V.

We will also need a more special type of convergence for the series (1.1).

Definition 1.2. The series (1.1) is said to converge neatly at a fixed point a0 ∈ A
if for every continuous seminorm s on Pd(a)⊗ V, where d = deg(F ), the series∑

ξ∈Exp(F )

s(qξ)a
Re ξ
0

converges.
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The series (1.1) is said to converge neatly on a subset Ω of A if it converges
neatly at every point of Ω.

Remark 1.3. If the series (1.1) converges neatly at a point a0 ∈ A, then so does
every subseries. Moreover, neat convergence at a0 implies absolute convergence at
a0. However, we should warn the reader that neat convergence at a0 cannot be
seen from the series with coefficients in V arising from (1.1) by evaluation of its
terms at a = a0, since this type of convergence involves the global behavior of the
polynomials qξ. In particular, it is possible that the series (1.1) does not converge
neatly at a0, whereas its evaluation in a0 is identically zero.

The motivation for the definition of neat convergence is provided later by Lem-
mas 1.5 and 1.9, which express that neat convergence of the series (1.1) on an
open subset Ω ⊂ A guarantees that (a) the function f : Ω → V defined by (1.1)
is real analytic on Ω; (b) its derivatives are given by series obtained by termwise
differentiation from (1.1).

By a ∆-power series on A, with coefficients in V, we mean a ∆-exponential
polynomial series F with degF = 0 and Exp(F ) ⊂ −N∆, i.e.,

F =
∑

ξ∈−N∆

aξcξ,(1.2)

with cξ ∈ V, for ξ ∈ −N∆. Note that for a ∆-power series the notion of neat
convergence at a point a0 ∈ A coincides with the notion of absolute convergence in
the point a0.

The terminology ‘power series’ is motivated by the following consideration. If
µ ∈ N∆, we put µ =

∑
α∈∆ µαα, with µα ∈ N. For z ∈ C∆, we write

zµ =
∏
α∈∆

zµαα .

Finally, to the series (1.2) we associate the power series∑
µ∈N∆

zµc−µ(1.3)

with coefficients in V.
Let z:A → C∆ be the map defined by z(a)α = a−α. Then it is obvious that

the series (1.2) converges with sum S for a = a0 if and only if the power series
(1.3) converges with sum S for z = z(a0). If r ∈ ] 0,∞ [∆ we write D(0, r) for the
polydisc in C∆ consisting of the points z with |zα| < rα for all α ∈ ∆. Note that
the preimage of this set in A under the map z is given by

A+(∆, r): = {a ∈ A | a−α < rα, ∀ α ∈ ∆}.
If R > 0, we also agree to write A+(∆, R) for A+(∆, r) with r defined by rα = R
for all α ∈ ∆. Finally, if a0 ∈ A, we write A+(∆, a0): = A+(∆, z(a0)). Thus,

A+(∆, a0): = {a ∈ A | aα > aα0 , ∀ α ∈ ∆} = A+a0.(1.4)

We now note that if (1.2) converges absolutely for a = a0, then the power series
(1.3) converges absolutely for z = z(a0), hence uniformly absolutely on the closure
of the polydisc D(0, z(a0)). It follows that the series (1.2) then converges uniformly
absolutely on the closure of A+(∆, a0).

Let a0 ∈ A. ByO(A+(∆, a0), V ) we denote the space of functions f :A+(∆, a0)→
V that are given by an absolutely converging series of the form (1.2). For such
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a function the associated power series (1.3) converges absolutely on the polydisc
D(0, r), with r = z(a0); let f̃ :D(0, r)→ V be the holomorphic function defined by
it. Then obviously

f(a) = f̃(z(a)), (a ∈ A+(∆, a0)).

We see that the ∆-power series representing f ∈ O(A+(∆, a0) is unique. Moreover,
let O(D(0, r), V ) denote the space of holomorphic functions D(0, r) → V, then it
follows that the map

f 7→ f̃ , O(A+(∆, r), V )→ O(D(0, r), V )

is a linear isomorphism.
In particular, it follows that every f ∈ O(A+(∆, r), V ) is real analytic on

A+(∆, r). Moreover, its ∆-power series converges uniformly absolutely on every
set of the form A+(∆, ρ), where ρ ∈ ] 0,∞ [∆, ρα < rα for all α ∈ ∆.

If v is a real linear space, then by S(v) we denote the symmetric algebra of its
complexification vC. Via the right regular action we identify S(a) with the algebra
of invariant differential operators on A. If f ∈ O(A+(∆, r), V ) and u ∈ S(a), then
uf belongs to O(A+(∆, r), V ) again; its series may be obtained from the series of
f by termwise application of u.

We now return to the more general exponential polynomial series (1.1) with
coefficients in V. Let d ≥ deg(F ). Fix a basis Λ of a∗. For m ∈ NΛ we write
m =

∑
λ∈Λ mλλ and |m| =

∑
λmλ. For such m we define the polynomial function

X 7→ Xm on a by

Xm =
∏
λ∈Λ

λ(X)mλ .

These polynomial functions with |m| ≤ d constitute a basis for Pd(a). Accordingly,
we may write

qξ(X) =
∑
|m|≤d

Xmcξ,m,(1.5)

with cξ,m ∈ V.

Lemma 1.4. The series (1.1) converges neatly on a set Ω ⊂ A if and only if for
every m ∈ NΛ with |m| ≤ d the series∑

ξ∈Exp(F )

aξcξ,m

with coefficients in V converges absolutely for all a ∈ Ω.

Proof. This is a straightforward consequence of the definition of neat convergence
and the finite dimensionality of the space Pd(a).

We define a partial ordering �∆ on a∗C by

ξ1 �∆ ξ2 ⇐⇒ ξ2 − ξ1 ∈ N∆.(1.6)

Moreover, we define the relation of ∆-integral equivalence on a∗C by

ξ1 ∼∆ ξ2 ⇐⇒ ξ2 − ξ1 ∈ Z∆.

Let F ∈ Fep(A, V ) be as in (1.1) and have polynomial degree at most d. In view of
condition (a) of Definition 1.1, the restriction of the relation ∼∆ to the set Exp(F )
induces a finite partition of it. Every class ω in this partition has a least �∆-upper
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bound s(ω) in a∗C . Let S = SF be the set of these upper bounds. For every s ∈ S
and every m ∈ NΛ with |m| ≤ d we define the ∆-power series

fs,m(a) =
∑
µ∈N∆

a−µcs−µ,m,(1.7)

with coefficients determined by (1.5).

Lemma 1.5. Let the series (1.1) be neatly convergent at the point a0 ∈ A. Then
the series (1.1) and, for every s ∈ S = SF and m ∈ NΛ with |m| ≤ d, the series
(1.7) is neatly convergent on the closure of the set A+(∆, a0). The functions fs,m,
defined by (1.7), belong to O(A+(∆, a0), V ). Moreover, let f :A+(∆, a0)→ V be the
function defined by the summation of (1.1). Then

f(a) =
∑
s∈S
|m|≤d

as(log a)mfs,m(a), (a ∈ A+(∆, a0)).(1.8)

In particular, the function f :A+(∆, a0)→ V is real analytic.

Proof. From the neat convergence of (1.1) at a0 it follows by Lemma 1.4 that
for every s and m the series

∑
µ∈N∆ as−µcs−µ,m converges absolutely for a = a0.

This implies that the ∆-power series (1.7) converges absolutely for a = a0. Hence
it converges (uniformly) absolutely on the closure of A+(∆, a0); in particular, it
converges neatly on that set. It follows from this that fs,m ∈ O(A+(∆, a0), V ), for
s ∈ S and m ∈ NΛ with |m| ≤ d. Moreover,

as(log a)m fs,m(a) =
∑

ξ∈s−N∆

aξ(log a)mcξ,m(1.9)

where the ∆-exponential polynomial series on the right-hand side converges neatly
on the closure of A+(∆, a0). The series (1.9), for s ∈ S and m ∈ NΛ with |m| ≤ d
add up to the series (1.1), which is therefore neatly convergent as well. Moreover,
(1.8) follows. This in turn implies the real analyticity of the function f.

Remark 1.6. Let a∆: =
⋂
α∈∆ kerα and A∆: = exp(a∆). Then the functions fs,m,

defined by (1.7) satisfy fs,m(aa∆) = fs,m(a) for all a ∈ A, a∆ ∈ A∆. In particular,
the function f of (1.8) generates a finite dimensional A∆-module with respect to the
right regular action. Thus, if ∆ = ∅, then f is an exponential polynomial function.

Lemma 1.7 (Uniqueness of asymptotics). Let a0 ∈ A, and assume that the ∆-
exponential polynomial series (1.1) converges neatly on A+(∆, a0). If the sum of
the series is zero for all a ∈ A+(∆, a0), then qξ = 0 for all ξ ∈ a∗C .

Proof. Let f :A+(∆, a0)→ V be defined by summation of the series (1.1). Then it
follows from Lemma 1.5 that the series (1.1) is an asymptotic expansion for f in the
sense of [6], Sect. 3. Hence, if f = 0, then by uniqueness of asymptotics (see [22],
p. 305, Cor. and [6], Prop. 3.1) it follows that the series vanishes identically.

Definition 1.8. Let a0 ∈ A. By Cep(A+(∆, a0), V ) we denote the space of func-
tions f :A+(∆, a0)→ V that are given by the summation of a (necessarily unique)
neatly converging ∆-exponential polynomial series of the form (1.1).

If f ∈ Cep(A+(∆, a0), V ), then by ep(f) we denote the unique series from
Fep(A, V ) whose summation gives f. Moreover, the asymptotic degree of f is de-
fined to be the number

dega(f): = deg(ep(f)).
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Note that the map

ep:Cep(A+(∆, a0), V )→ Fep(A, V ),

defined above, is a linear embedding.
Let f ∈ Cep(A+(∆, a0), V ). We briefly write Exp(f) for the set Exp(ep(f)); its

elements are called the exponents of f. We put qξ(f, · ): = qξ(ep(f), · ), for ξ ∈ a∗C .
Then ξ ∈ Exp(f) ⇐⇒ qξ(f) 6= 0.

The �∆-maximal elements in Exp(f) are called the (∆-)leading exponents of f
(or of the expansion). The set of these is denoted by ExpL(f).

By the formal application of S(a) to Fep(A, V ) we shall mean the linear map

S(a)⊗Fep(A, V )→ Fep(A, V )

induced by termwise differentiation (recall that S(a) acts on C∞(A) via the right
regular action). The image of an element u⊗F under this map will be denoted by
uF.

Lemma 1.9. Let a0 ∈ A and let f ∈ Cep(A+(∆, a0), V ). If u ∈ S(a), then the
function uf : a 7→ Ruf(a) belongs to Cep(A+(∆, a0), V ). Moreover,

ep(uf) = u ep(f).

Proof. We may assume that u ∈ a. Express f as in (1.8). For each s,m the func-
tion ufs,m belongs to O(A+(∆, a0), V ); its expansion is obtained from ep(fs,m) by
termwise application of u, hence by the formal application of u.

We shall also need a second type of formal application. Suppose that complete
locally convex spaces U and W are given, and a continous bilinear map U×V →W,
denoted by (u, v) 7→ uv. By the formal application of Fep(A,U) to Fep(A, V ) we
mean the linear map

Fep(A,U)⊗Fep(A, V )→ Fep(A,W ),

given by ∑
ξ∈a∗C

aξpξ(log a)⊗
∑
η∈a∗C

aηqη(log a) 7→
∑
ν∈a∗C

aν
∑

ξ+η=ν

pξ(log a)qη(log a).(1.10)

This map is indeed well defined. To see this, let F denote the first series and G the
second. Then for every ν ∈ a∗C , the collection Sν of (ξ, η) ∈ Exp(F )× Exp(G) with
ξ + η = ν is finite. Hence the W -valued polynomial function

rν :X 7→
∑

(ξ,η)∈Sν

pξ(X)qη(X)

has degree at most deg(F ) + deg(G). Moreover, let X1, X2 ⊂ a∗C be finite subsets
such that Exp(F ) ⊂ X1 − N∆ and Exp(G) ⊂ X2 − N∆ and put X = X1 + X2.
Then for ν ∈ a∗C \ [X−N∆] the collection Sν is empty, hence rν = 0. Therefore, the
formal series on the right-hand side of (1.10) satisfies the conditions of Definition
1.1.

The image of an element F ⊗G under the map (1.10) is denoted by FG. Again
we have a lemma relating the formal application with neat convergence.

Lemma 1.10. Let U × V → W, (u, v) 7→ uv be a continuous bilinear map of com-
plete locally convex spaces. Let a0 ∈ A and let f ∈ Cep(A(∆, a0), U) and g ∈
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Cep(A(∆, a0), V ). Then the function fg: a 7→ f(a)g(a) belongs to Cep(A(∆, a0),W ).
Moreover, its ∆-exponential polynomial expansion is given by

ep(fg) = ep(f) ep(g).

Proof. This follows by a straightforward application of Lemma 1.5.

2. Basic notation, spherical functions

In this section we study spherical functions that are defined on a certain open
dense subset X+ of the symmetric space X, and are (radially) given by exponential
polynomial series. This class of functions will play an important role in the paper.
Later we will see that D(X)-finite spherical funtions belong to this class.

Throughout this paper, we assume that X is a reductive symmetric space of
Harish-Chandra’s class, i.e., X = G/H with G a real reductive group of Harish-
Chandra’s class and H an open subgroup of Gσ, the group of fixed points for an
involution σ of G. There exists a Cartan involution θ of G, commuting with σ. The
associated fixed point group K is a σ-stable maximal compact subgroup.

We adopt the usual convention to denote Lie groups by Roman capitals and their
Lie algebras by the corresponding Gothic lower cases. The infinitesimal involutions
θ and σ of g commute; let

g = k⊕ p = h⊕ q(2.1)

be the associated decompositions into +1 and −1 eigenspaces for θ and σ, respec-
tively. We equip g with a positive definite inner product 〈 · , · 〉 that is invariant
under the compact group of automorphisms generated by Ad(K), eiad(p), θ and σ.
Then the decompositions (2.1) are orthogonal.

Let aq be a maximal abelian subspace of p ∩ q. We equip aq with the restricted
inner product 〈 · , · 〉 and its dual a∗q with the dual inner product. The latter is
extended to a complex bilinear form, also denoted 〈 · , · 〉, on the complexified dual
a∗qC.

The exponential map is a diffeomorphism from aq onto a vectorial subgroup Aq

of G. We recall that G = KAqH. Let Σ be the restricted root system of aq in g; we
recall that the associated Weyl group W is naturally isomorphic to NK(aq)/ZK(aq),
the normalizer modulo the centralizer of aq in K. Let areg

q denote the associated set
of regular elements in aq, i.e., the complement of the union of the root hyperplanes
kerα, as α ∈ Σ. We put Areg

q := exp(areg
q ) and define the dense subset X+ of X by

X+ = KAreg
q H.

If Q is a parabolic subgroup of G, we denote its Langlands decomposition by
Q = MQAQNQ. By a σ-parabolic subgroup of G we mean a parabolic subgroup
that is invariant under the composition σ ◦ θ. It follows from [4], Lemmas 2.5 and
2.6, that the collection Pσ of σ-parabolic subgroups of G containing Aq is finite.

If Q is a σ-parabolic subgroup, then the Lie algebra aQ of its split component
is σ-stable, hence decomposes as aQ = aQh⊕ aQq, the vector sum of the associated
+1 and −1 eigenspaces of σ|aQ , respectively. We write AQq: = exp aQq and MQσ: =
MQ(AQ ∩H); the decomposition

Q = MQσAQqNQ(2.2)

is called the σ-Langlands decomposition of Q. If Q ∈ Pσ, then M1Q = Q ∩ θ(Q)
contains Aq. Hence aQq is contained in p ∩ q and centralizes aq; it follows that
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aQq ⊂ aq. By Σ(Q) we denote the set of roots of Σ occurring in nQ. Obviously,

nQ =
⊕

α∈Σ(Q)

gα.

Let Pmin
σ denote the collection of elements of Pσ that are minimal with respect

to inclusion. An element P ∈ Pσ belongs to Pmin
σ if and only if aPq = aq; see [4],

Cor. 2.7. This implies that the associated groups MP and AP are independent of
P ∈ Pmin

σ . We denote them by M and A, respectively. From the maximality of aq

in p ∩ q it follows that m ∩ p ⊂ h. Thus, if KM: = K ∩M and HM: = H ∩M, then
the inclusion map KM →M induces a diffeomorphism

KM/KM ∩H '−→ M/HM.(2.3)

In particular, the symmetric space M/HM is compact.
According to [4], Lemma 2.8, the map P 7→ Σ(P ) induces a bijective map from

Pmin
σ onto the collection of positive systems for Σ. If Φ is a positive system for Σ,

then the associated element P ∈ Pmin
σ is given by the following characterization of

its Lie algebra: Lie (P ) = m + a +
∑

α∈Φ gα. From this we see that NK(aq) acts
on Pmin

σ by conjugation; moreover, the action commutes with the map P 7→ Σ(P ).
Accordingly, the action factors to a free transitive action of W on Pmin

σ ; see also
[4], Lemma 2.8.

If P ∈ Pmin
σ , then the collection of simple roots for the positive system Σ(P ) is

denoted by ∆(P ); the associated positive chamber in aq is denoted by a+
q (P ) and

the corresponding chamber in Aq by A+
q (P ). Thus, we see that Areg

q is the disjoint
union of the chambers A+

q (P ), as P ∈ Pmin
σ .

More generally, if Q ∈ Pσ, we write

a
+
Qq: = {X ∈ aQq | α(X) > 0 for α ∈ Σ(Q)}.(2.4)

It follows from [4], Lemmas 2.5 and 2.6, that a
+
Qq 6= ∅. Moreover, if X ∈ a

+
Qq, then

the parabolic subgroup Q is determined by the following characterization of its Lie
algebra

Lie (Q) = m⊕ a⊕
⊕
α∈Σ

α(X)≥0

gα.(2.5)

Conversely, if X is any element of aq, then (2.5) defines the Lie algebra of a group
Q from Pσ; moreover, X ∈ a

+
Qq. From this we readily see that conjugation induces

an action of NK(aq) on Pσ, which factors to an action of W.
By a straightforward calculation involving root spaces, it follows that the multi-

plication map K ×Areg
q → X induces a diffeomorphism

K ×NK(aq)∩H Areg
q

'−→ X+.

In particular, it follows that X+ is an open dense subset of X. Let WK∩H denote the
canonical image of NK(aq)∩H in W and letW be a complete set of representatives
for W/WK∩H in NK(aq). If P ∈ Pmin

σ , then it follows that

X+ =
⋃
w∈W

KA+
q (P )wH (disjoint union).(2.6)
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Moreover, for each w ∈ W the multiplication map (k, a) 7→ kawH induces a diffeo-
morphism

K ×KM∩wHw−1 A+
q (P ) '−→ KA+

q (P )wH.(2.7)

Here we have written KM = K ∩M ; in (2.7) the set on the right is an open subset
of X.

Let (τ, Vτ ) be a smooth representation of K in a complete locally convex space.
For later applications it will be crucial that we allow τ to be infinite dimensional
(see the proof of Theorem 7.7).

By C∞(X+ : τ) we denote the space of smooth functions f : X+ → Vτ that are
τ -spherical, i.e.,

f(kx) = τ(k)f(x),(2.8)

for x ∈ X+, k ∈ K. The space C∞(X : τ) of smooth τ -spherical functions on X will
be identified with the subspace of functions in C∞(X+ : τ) that extend smoothly
to all of X.

In the following we assume that P ∈ Pmin
σ is fixed. If w ∈ NK(aq), then by

C∞P,w(X+ : τ) or C∞w (X+ : τ) we denote the space of functions f ∈ C∞(X+ : τ) with
support contained in KA+

q (P )wH. From (2.6) we see that

C∞(X+ : τ) =
⊕
w∈W

C∞w (X+ : τ).

Let w ∈ NK(aq) be fixed for the moment. For f ∈ C∞(X+ : τ) we define the
function T ↓P,wf ∈ C∞(A+

q (P ), V KM∩wHw−1

τ ) by

T ↓P,wf(a) = f(awH).

Since (2.7) is a diffeomorphism, the restriction of T ↓P,w to C∞w (X+ : τ) is an isomor-

phism of complete locally convex spaces onto the space C∞(A+
q (P ), V KM∩wHw−1

τ ).
Taking the direct sum of the maps T ↓P,w, as w ∈ W , we therefore obtain an isomor-
phism of complete locally convex spaces

T ↓P,W : C∞(X+ : τ) '−→
⊕
w∈W

C∞(A+
q (P ), V KM∩wHw−1

τ ).(2.9)

Definition 2.1. We denote by Cep(X+ : τ) the space of functions f ∈ C∞(X+ : τ)
such that for everyw ∈ W the function T ↓P,wf belongs to Cep(A+

q (P ), V KM∩wHw−1

τ ),
where the latter space is defined as in Definition 1.8, with a, a0 and ∆ replaced by
aq, e and ∆(P ), respectively.

If f ∈ Cep(X+ : τ), we define its asymptotic degree to be the number

dega(f): = max
w∈W

dega(T ↓P,wf).

It follows from the above definition that restriction of T ↓P,W induces a linear
isomorphism

Cep(X+ : τ) '
⊕
w∈W

Cep(A+
q (P ), V KM∩wHw−1

τ ).(2.10)

Using conjugations by elements of NK(aq) it is readily seen that the space
Cep(X+ : τ) and the map dega:Cep(X+ : τ) → N are independent of the partic-
ular choices of P andW . In particular, if P ∈ Pmin

σ and w ∈ NK(aq), then T ↓P,wf ∈



628 E. P. VAN DEN BAN AND H. SCHLICHTKRULL

Cep(A+
q (P ), V KM∩wHw−1

τ ) and deg(T ↓P,wf) ≤ dega(f). We put

Exp(P,w | f): = Exp(T ↓P,wf), and ExpL(P,w | f): = ExpL(T ↓P,wf).

Moreover, for all ξ ∈ a∗qC we define q
ξ
(P,w | f) = qξ(T

↓
P,wf). Then, for every a ∈

A+
q (P ),

f(aw) =
∑

ξ∈Exp(P,w | f)

aξ q
ξ
(P,w | f, log a),(2.11)

where the ∆(P )-exponential polynomial series on the right-hand side neatly con-
verges on A+

q (P ).
For w ∈ NK(aq), we will use the notation

X0,w: = M/M ∩ wHw−1;(2.12)

moreover, we put τM: = τKM and write C∞(X0,w : τM) for the space of τM-spherical
C∞ functions from X0,w to Vτ , i.e., the space of functions f ∈ C∞(X0,w, Vτ ) satisfy-
ing the rule (2.8) for k ∈ KM and x ∈ X0,w. From (2.3) with wHw−1 in place ofH we
see that the inclusion KM →M induces a diffemorphism from KM/KM ∩ wHw−1

onto X0,w. Hence evaluation at the point e(M ∩ wHw−1) induces a linear iso-
morphism from C∞(X0,w : τM) onto V KM∩wHw−1

τ . Thus, if f ∈ Cep(X+ : τ), then
for every ξ ∈ aqC there exists a unique C∞(X0,w : τM)-valued polynomial function
qξ(P,w | f) on aq such that

qξ(P,w | f,X, e) = q
ξ
(P,w | f)(X) (X ∈ aq).

Using sphericality of the function f we obtain from (2.11) that

f(maw) =
∑

ξ∈Exp(P,w | f)

aξqξ(P,w | f, log a,m),(2.13)

for m ∈ M, a ∈ A+
q (P ). The series on the right-hand side is a ∆(P )-exponential

polynomial series in the variable a, with coefficients in C∞(X0,w : τM), relative to
the variable m. As such it converges neatly on A+

q (P ).
We shall now discuss a lemma whose main purpose is to enable us to reduce on

the set of exponents in certain proofs, in order to simplify the exposition.

Lemma 2.2. Let P ∈ Pmin
σ and let W ⊂ NK(aq) be a complete set of representa-

tives of W/WK∩H . Assume that f ∈ Cep(X+ : τ).
There exists a finite set S ⊂ a∗qC of mutually ∆(P )-integrally inequivalent ele-

ments such that Exp(P, v | f) ⊂ S − N∆(P ) for every v ∈ W .
If S is a set as above, then there exist unique functions fs ∈ Cep(X+ : τ), for

s ∈ S, such that

f =
∑
s∈S

fs,

and such that Exp(P, v | fs) ⊂ s− N∆(P ), for every v ∈ W .

Proof. There exists a finite set X ⊂ a∗qC such that Exp(P, v | f) ⊂ X − N∆(P ) for
all v ∈ W . Obviously there exists a finite set S as required, such that X−N∆(P ) ⊂
S − N∆(P ).
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If S is such as mentioned, then for s ∈ S and v ∈ W we define the function
fs,v:A+

q (P )→ V KM∩vHv−1

τ by

fs,v(a) =
∑

ν∈N∆(P )

as−νqs−ν(P, v | f, log a, e);

here the exponential polynomial series is neatly convergent, hence fs,v belongs to
the space Cep(A+

q (P ), V KM∩vHv−1

τ ), for every v ∈ W . By the isomorphism (2.10)
there exists a unique function fs ∈ Cep(X+ : τ) such that fs(av) = fs,v(a) for
v ∈ W , a ∈ A+

q (P ). By the hypothesis on S the sets s − N∆(P ), for s ∈ S, are
disjoint. Hence f =

∑
s∈S fs on A+

q (P )v, for every v ∈ W . By (2.6) and sphericality
this equality holds on all of X+.

3. Asymptotic behavior along walls

In this section we study the asymptotic behavior along walls of functions from
Cep(X+ : τ) (see Definition 2.1). The behavior is described (in Theorem 3.4) by an
exponential polynomial series on AQq, where Q ∈ Pσ. The coefficients of the series
depend on an element m ∈MQ, and the convergence exhibits a certain uniformity
with respect to this element. This uniformity will be described by means of a
map introduced in (3.4). Moreover, as a function of m each coefficient allows an
expansion in an exponential polynomial series on the complement ∗AQq = MQ∩Aq

of AQq in Aq. The relation between these series on ∗AQq and the original series on
Aq is described in Theorem 3.5.

As before, let τ be a smooth representation in a complete locally convex space
Vτ . Let P ∈ Pmin

σ and let Q be a σ-parabolic subgroup with Langlands decompo-
sition Q = MQAQNQ, containing P. In addition to the notation introduced in the
beginning of the previous section, the following notation will also be convenient.

We agree to write KQ: = K ∩MQ and HQ: = H ∩MQ. Moreover, WQ denotes
the centralizer of aQq in W. Then WQ ' NKQ(aq)/ZKQ(aq). On the other hand,
WQ is also the subgroup of W generated by the reflections in the roots from the set

∆Q(P ): = {α ∈ ∆(P ) | α|aQq = 0}.

We note that Σ(Q) = Σ(P ) \ N∆Q(P ). Moreover, let Σr(Q) denote the collection
of aQq-weights in nQ. Then

Σr(Q) = {α|aQq | α ∈ Σ(Q)}.

Let ∆r(Q) be the collection of weights from the set Σr(Q) that cannot be written
as the sum of two weights from that set; then one readily verifies that ∆r(Q) equals
the set of restrictions of elements from ∆(P ) \ ∆Q(P ) to aQq. In particular, the
elements of ∆r(Q) are linearly independent.

Given a0 ∈ AQq we shall briefly write A+
Qq(a0) for the set A+

Qq(∆r(Q), a0) defined
as in (1.4) with aQq and ∆r(Q) in place of a and ∆, respectively. Similarly, if
ρ ∈ ] 0,∞ [∆r(Q), we briefly write

A+
Qq(ρ): = A+

Qq(∆r(Q), ρ) = {a ∈ AQq | a−α < ρα, ∀α ∈ ∆r(Q)}.

If R > 0, we write A+
Qq(R) for A+

Qq(ρ), where ρ is defined by ρα = R for every
α ∈ ∆r(Q). Note that A+

Qq(1) equals the positive chamber A+
Qq: = exp(a+

Qq); see
(2.4).
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If v ∈ NK(aq), we define

X1Q,v: = M1Q/M1Q ∩ vHv−1.(3.1)

This is a symmetric space for the involution σv of M1Q defined by σv(m) =
vσ(v−1mv)v−1. Note that this involution commutes with the Cartan involution
θ|M1Q . Note also that aq is a maximal abelian subspace of Ad(v)(p∩q) = p∩Ad(v)q.
Hence it is the analogue of aq for the triple (M1Q,KQ,M1Q ∩ vHv−1). The corre-
sponding group Aq may naturally be identified with a subspace of X1Q,v.

The image of MQ in X1Q,v may be identified with

XQ,v: = MQ/MQ ∩ vHv−1,

the symmetric space for the involution σv|MQ . It follows from the characterization
of Pσ expressed by (2.5) that

Pσ = Pσv .(3.2)

Hence Q is a σv-parabolic subgroup as well. Hence aQ ∩Ad(v)q = aQ ∩ aq = aQq,
and we deduce that the inclusion AQq → AQ induces a diffeomorphism AQq '
AQ/AQ∩vHv−1. From this we conclude that the multiplication map MQ×AQq →
M1Q induces the decomposition

X1Q,v ' XQ,v ×AQq.(3.3)

Remark 3.1. In particular, the above definitions cover the two extreme cases that
Q is minimal and that it equals G.

In the case that Q ∈ Pmin
σ , we have Q = MANQ, and XQ,v equals the space

X0,v defined in (2.12). Moreover, X1Q,v ' X0,v ×Aq.
In the other extreme case we have X1G,v = G/vHv−1. This symmetric space will

also be denoted by Xv. Note that right multiplication by v induces an isomorphism
of Xv onto X. Note also that MG equals ◦G, the intersection of kerχ, as χ ranges
over the positive characters of G. Hence XG,v = ◦G/◦G ∩ vHv−1. Finally, Xv '
XG,v × AGq, where AGq is the image under exp of the space aGq, which in turn is
the intersection of the root hyperplanes kerα as α ∈ Σ.

Let n̄Q: = θnQ be equipped with the restriction of the inner product 〈 · , · 〉 from
g. If Q 6= G, we define the function RQ,v:M1Q →]0,∞[ by

RQ,v(m) = ‖Ad(mσv(m)−1)|n̄Q‖1/2op ,(3.4)

where ‖ · ‖op denotes the operator norm. We define RG,v to be the constant function
1.

The function RQ,v is right M1Q ∩ vHv−1-invariant. It may therefore also be
viewed as a function on X1Q,v. We shall describe the function RQ,v in more detail
below.

The orthocomplement of aQq in aq is denoted by ∗aQq. Note that
∗
aQq = mQ ∩ aq;(3.5)

hence ∗aQq is the analogue of aq for the triple (MQ,KQ, HQ). We recall from the
text following (3.1) that aq is maximal abelian in p∩Ad(v)q hence is the analogue
of aq for the triple (G,K, vHv−1). Accordingly, ∗aQq is also the analogue of aq for
the triple (MQ,KQ,MQ ∩ vHv−1).
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In view of (3.2), the group ∗P = P ∩MQ is readily seen to be a minimal σv-
parabolic subgroup for MQ; the associated positive chamber in ∗AQq = exp(∗aQq)
is denoted by ∗A+

Qq(∗P ).
Let WQ,v be an analogue for XQ,v of W , that is, WQ,v is a complete set of

representatives in NKQ(aq) for the quotient WQ/WKQ∩vHv−1 . Let XQ,v,+ be the
analogue for XQ,v of the open dense subset X+ of X. According to (2.6) this set
may be expressed as the following disjoint union of open subsets of XQ,v

XQ,v,+: =
⋃

u∈WQ,v

KQ
∗A+
Qq(∗P )u (MQ ∩ vHv−1) (disjoint union).(3.6)

Let X1Q,v,+ be the analogue of X+ for X1Q,v; then from (3.3) we see that X1Q,v,+ '
XQ,v,+ ×AQq. In terms of this decomposition and (3.6) the function RQ,v may be
expressed as follows.

Lemma 3.2. The function RQ,v:M1Q →]0,∞[ is continuous, and right M1Q ∩
vHv−1- and left KQ-invariant. Moreover, if Q 6= G and if a ∈ Aq and u ∈
NKQ(aq), then

RQ,v(au) = max
α∈Σ(Q)

a−α.(3.7)

Finally, RQ,v ≥ 1 on XQ,v.

Proof. Since RG,v is the constant function 1, we may as well assume that Q 6= G.
Continuity of the function RQ,v is obvious from its definition. The group KQ

is σv invariant and acts unitarily on n̄Q; hence the left KQ-invariance is obvious
from the definition. If a ∈ Aq, then aσv(a)−1 = a2. Hence the operator norm of
Ad(aσv(a)−1) on n̄Q equals the maximal value of a−2α as α ∈ Σ(Q). This implies
(3.7) for u = 1.

The element u ∈ NKQ(aq) belongs to MQ, hence Ad(u) normalizes nQ. Therefore,
Ad(u) leaves the collection Σ(Q) of aq-roots in nQ invariant. Put a′ = u−1au. Then
RQ,v(au) = RQ,v(a′) = maxα∈Σ(Q)(a′)−α. Since Ad(u) leaves Σ(Q) invariant, (3.7)
follows.

If α ∈ Σ, let hα be the element of aq determined by α(X) = 〈hα , X〉, for X ∈ aq.
Then the closure of ∗a+

Qq(∗P ) is contained in the closed convex cone generated by
the elements hβ , for β ∈ ∆Q(P ). If α ∈ ∆(P ) \∆Q(P ), then α(hβ) = 〈α , β〉 ≤ 0,
for β ∈ ∆Q(P ); hence α ≤ 0 on ∗a+

Qq(∗P ). But ∆(P ) \ ∆Q(P ) ⊂ Σ(Q), hence
it follows that RQ,v ≥ 1 on ∗A+

Qq(∗P )u, for every u ∈ WQ,v. The final assertion
follows from combining this observation with (3.6), the left KQ-invariance of RQ,v
and density of XQ,v,+ in XQ,v.

If 1 ≤ R ≤ ∞ we define

XQ,v[R]: = {m ∈ XQ,v | RQ,v(m) < R}.(3.8)

Note that XQ,v[1] = ∅ and XQ,v[∞] = XQ,v; moreover, R1 < R2 ⇒ XQ,v[R1] ⊂
XQ,v[R2]. Finally, the union of the sets XQ,v[R] as 1 ≤ R <∞ equals XQ,v.

In accordance with (3.8) we define XQ,v,+[R]: = XQ,v,+∩XQ,v[R], for 1 ≤ R ≤ ∞.
Moreover, we also put (see above (1.4))

∗A+
Qq(∗P )[R]: = ∗A+

Qq(∗P ) ∩A+
q (∆(P ), R).
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Note that, if α ∈ Σ(P ) \ Σ(Q), then a−α < 1 ≤ R for all a ∈ ∗A+
Qq(∗P ). Hence

∗A+
Qq(∗P )[R]: = {a ∈ ∗A+

Qq(∗P ) | a−α < R, ∀α ∈ Σ(Q)}.
It follows from (3.6) and Lemma 3.2 that

XQ,v,+[R] =
⋃

u∈WQ,v

KQ
∗A+
Qq(∗P )[R] u (MQ ∩ vHv−1) (disjoint union).(3.9)

The function RQ,v plays a role in the description of the asymptotic behavior of
a function f ∈ Cep(X+ : τ) along ‘the wall’ A+

Qqv. This behaviour is described in
terms of an expansion of f(mav) in the variable a ∈ A+

Qq, for m ∈ XQ,v,+. Thus, it
is of interest to know when mavH belongs to X+, the domain of f .

Lemma 3.3.
(a) If b ∈ ∗A+

Qq(∗P ) and a ∈ A+
Qq(RQ,v(b)−1), then ba ∈ A+

q (P ).
(b) Let m ∈ XQ,v,+. Then mavH ∈ X+ for all a ∈ A+

Qq(RQ,v(m)−1).
(c) Let R ≥ 1. Then XQ,v,+[R]A+

Qq(R−1)vH ⊂ X+.

Proof. Let b and a fulfill the hypotheses of (a). If α ∈ ∆Q(P ), then (ba)−α =
b−α < 1. On the other hand, we have, for α ∈ ∆(P )\∆Q(P ), that α ∈ Σ(Q), hence
(ba)−α ≤ RQ,v(b)a−α < 1, by Lemma 3.2. Hence ba ∈ A+

q (P ), and (a) is proved.
Let m be as in (b), and let a ∈ A+

Qq(RQ,v(m)−1). In view of (3.6) we may write
m = kbuh with k ∈ KQ, b ∈ ∗A+

Qq(∗P ), u ∈ WQ,v and h ∈ MQ ∩ vHv−1. Now
mavH = kbuhavH = kbauvH. Thus, it suffices to show that ba ∈ A+

q (P ). This
follows from (a) and the observation that RQ,v(b) = RQ,v(m), by Lemma 3.2.

Finally, (c) is a straightforward consequence of (b).

If Q ∈ Pσ we put τQ: = τ |KQ . Then, for v ∈ NK(aq), the space Cep(XQ,v,+ : τQ)
is defined as in Definition 2.1 with XQ,v and τQ in place of X and τ, respectively.

Theorem 3.4. Let f ∈ Cep(X+ : τ). Let Q ∈ Pσ and v ∈ NK(aq).
(a) There exist a constant k ∈ N, a finite set Y ⊂ a∗QqC, and for each η ∈ Y −

N∆r(Q) a C(XQ,v,+, Vτ )-valued polynomial function qη = qη(Q, v | f) on aQq

of degree at most k, such that for every m ∈ XQ,v,+,

f(mav) =
∑

η∈Y−N∆r(Q)

aηqη(log a,m), (a ∈ A+
Qq(RQ,v(m)−1)),(3.10)

where the ∆r(Q)-exponential polynomial series with coefficients in Vτ con-
verges neatly on the indicated subset of AQq.

(b) The set Exp(Q, v | f): = {η ∈ Y − N∆r(Q) | qη 6= 0} is uniquely determined.
Moreover, the functions qη, where η ∈ Y −N∆r(Q), are unique and belong to
Pd(aQq) ⊗ Cep(XQ,v,+ : τQ), where d: = dega(f). Finally, if R > 1, then the
the series on the right-hand side of (3.10) converges neatly on A+

Qq(R−1) as a
∆r(Q)-exponential polynomial series with coefficients in C∞(XQ,v,+[R] : τQ).

Proof. We will establish existence. Uniqueness then follows from uniqueness of
asymptotics; see Lemma 1.7.

Fix P ∈ Pmin
σ with P ⊂ Q. Select a complete set WQ,v ⊂ NKQ(aq) of represen-

tatives for WQ/WQ ∩WK∩vHv−1 .
The set WQ,vv maps injectively into the coset space W/WK∩H . Hence it may be

extended to a complete set W of representatives in NK(aq) for W/WK∩H . In view
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of Lemma 2.2 we may therefore decompose f, if necessary, so that we arrive in the
situation that there exists a s ∈ a∗qC such that Exp(P, uv | f) ⊂ s − N∆(P ), for all
u ∈ WQ,v. We put sQ = s|aQq.

Let u ∈ WQ,v. Then the function fuv: a 7→ f(auv) has a (unique) ∆(P )-expo-
nential polynomial expansion on A+

q (P ) of the following type:

fuv(a) = f(auv) =
∑

ξ∈s−N∆(P )

qu,ξ(log a)aξ.(3.11)

Here qu,ξ( · ) = qξ(P, uv | f, · , e) belongs to Pd(aq)⊗ V KM∩uvHv−1u−1

τ .
Let ∂ ∈ S(aq). Then according to Lemma 1.9, the function ∂fuv is given on

A+
q (P ) by a neatly convergent ∆(P )-exponential polynomial series that is obtained

from (3.11) by term by term application of ∂. That is,

∂fuv(a) =
∑

ξ∈s−N∆(P )

q∂,u,ξ(log a)aξ,(3.12)

where q∂,u,ξ is the V KM∩uvHv−1u−1

τ -valued polynomial function on aq of degree at
most d given by

q∂,u,ξ(X) = e−ξ(X)∂[eξ( · )qu,ξ](X) (X ∈ aq).

Now let R > 1 and let K and K′ be compact subsets of ∗A+
Qq(∗P )[R] and A+

Qq(R−1),
respectively. Then K′K is a compact subset of A+

q (P ), by Lemma 3.3 (a). Thus, if
a ∈ K′ and b ∈ K, then the series in (3.12) with ba in place of a converges absolutely,
and may be rearranged as follows:

∂fuv(ab) =
∑

η∈sQ−N∆r(Q)

aη
∑

ξ∈s−N∆(P)
ξ|aQq=η

bξ q∂,u,ξ(log b+ log a).(3.13)

In view of Lemma 1.5, the convergence is absolutely uniformly for (a, b) ∈ K′ ×K.
By a similar reasoning it follows from the neat convergence of the series (3.12)

that, for any continuous seminorm σ0 on Pd(aq)⊗ Vτ , the series∑
η∈sQ−N∆r(Q)

aRe η
∑

ξ∈s−N∆(P)
ξ|aQq=η

bRe ξ σ0(q∂,u,ξ)(3.14)

converges uniformly for a ∈ K′ and b ∈ K.
Now let η ∈ sQ −N∆r(Q) and let b ∈ ∗A+

Qq(∗P ) and a ∈ A+
Qq(RQ,v(b)−1). Then

there exists a R > 1 such that b ∈ ∗A+
Qq(∗P )[R] and a ∈ A+

Qq(R−1). Hence the series
(3.14) converges, and by positivity of all of its terms we infer that the series∑

ξ∈s−N∆(P)
ξ|aQq=η

bRe ξ σ0(q∂,u,ξ)(3.15)

converges for every continuous seminorm σ0 on Pd(aq)⊗Vτ , for every b ∈ ∗A+
Qq(∗P ).

We now specialize to ∂ = 1 and note that q1,u,ξ = qu,ξ. Let X ∈ aQq. We
define the linear endomorphism TX of Pd(aq) ⊗ Vτ by TXp(H) = p(X + H). This
endomorphism is continuous linear by finite dimensionality. Combining this with
the convergence of (3.15) we infer, for every X ∈ aQq, that

qQ,u,η(X, b): =
∑

ξ∈s−N∆(P)
ξ|aQq=η

bξ TX(qu,ξ)(log b)(3.16)
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is a function of b defined by a neatly convergent ∆Q(P )-exponential polynomial
series on ∗A+

Qq(∗P ). It is polynomial in X of degree at most d, and real analytic

in b ∈ ∗A+
Qq(∗P ). Moreover, its values are in the space V KM∩uvHv−1u−1

τ . Thus
qQ,u,η ∈ Pd(aQq) ⊗ Cep(∗A+

Qq(∗P ), V KM∩uvHv−1u−1

τ ). In view of the isomorphism
(2.10) for XQ,v,+, τQ, WQ,v in place of X+, τ , W (see also the decomposition (3.6))
there exists a unique polynomial function qη = qη(Q, v | f) on aQq with values in
Cep(XQ,v,+ : τQ) such that

qη(X, bu) = qQ,u,η(X, b), (X ∈ aQq, u ∈ WQ,v, b ∈ ∗A+
Qq(∗P )).(3.17)

The degree of qη as a polynomial function on aQq is at most d. Combining this with
(3.16) and (3.13) and using that RQ,v(bu) = RQ,v(b), we arrive at the expansion
(3.10) for m = bu and a ∈ A+

Qq(RQ,v(m)−1). Using the left KQ-invariance of
RQ,v and the sphericality of f and the functions m 7→ qη(log a,m), we now obtain
(3.10) with absolute convergence; the first two assertions of (b) follow as well. The
assertion of neat convergence in (a) is a consequence of the final assertion in (b),
which we will now proceed to establish.

Let u ∈ WQ,v and R > 1 be fixed. Then in view of the union (3.9) it suffices
to prove the neat convergence of the series (3.10) as a ∆r(Q)-exponential polyno-
mial series with coefficients in C∞(KQ

∗A+
Qq(∗P )[R] u(MQ∩ vHv−1) : τQ). The map

(k, a) 7→ kau(MQ ∩ vHv−1) induces a diffeomorphism from KQ/(KQ ∩ vHv−1) ×
∗A+
Qq(∗P )[R] onto the open subset KQ

∗A+
Qq(∗P )[R] u(MQ ∩ vHv−1) of XQ,v,+. By

sphericality of the coefficients of the series (3.10) we see that it suffices to prove
that ∑

η∈sQ−N∆r(Q)

aησ1(qQ,u,η)

converges absolutely, for a ∈ A+
Qq(R−1) and for σ1 any continuous seminorm on

Pd(aQq)⊗ C∞(∗A+
Qq(∗P )[R], V

KM∩uvHv−1u−1

τ ).
Fix X ∈ aQq, ∂ ∈ S(∗aQq), a ∈ A+

Qq(R−1) and K ⊂ ∗A+
Qq(∗P )[R] a compact

subset. Then it suffices to prove that∑
η∈sQ−N∆r(Q)

aη sup
K
‖∂(qQ,u,η(X, · ))‖(3.18)

converges absolutely.
From the neat convergence of the series (3.16), for b ∈ ∗AQq(∗P ), it follows that

term by term differentiation is allowed. Since ∂ ∈ S(∗aQq), whereas X ∈ aQq, we
have

b−ξ∂(bξTX(qu,ξ)(log b)) = q∂,u,ξ(X + log b).

Hence, for every η ∈ sQ − N∆r(Q),

∂(qQ,u,η(X, · ))(b) =
∑

ξ∈s−N∆(P)
ξ|aQq=η

bξq∂,u,ξ(X + log b).(3.19)

There exists a continuous seminorm σ2 on Pd(aq)⊗Vτ , such that, for every b ∈ K
and all q ∈ Pd(aq)⊗ Vτ ,

‖q(X + log b)‖ ≤ σ2(q).
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In particular, this implies that

‖q∂,u,ξ(X + log b)‖ ≤ σ2(q∂,u,ξ),(3.20)

for every b ∈ K.
Combining (3.19) with (3.20) we now obtain

|aη| sup
K
‖∂(qQ,u,η)(X, · )‖ ≤

∑
ξ∈s−N∆(P)
ξ|aQq=η

aRe ηbRe ξ σ2(q∂,u,ξ).

Thus, the absolute convergence of (3.18) follows from the uniform convergence of
(3.14), b ∈ K.

Let f ∈ Cep(X+ : τ) and let Q ∈ Pσ and v ∈ NK(aq). Moreover, let the set
Y ⊂ a∗QqC and the polynomials qη = qη(Q, v | f), for η ∈ Y − N∆r(Q) be as in
Theorem 3.4. As in that theorem, we define

Exp(Q, v | f) = {η ∈ Y − N∆r(Q) | qη 6= 0}

and call the elements of this set the exponents of f along (Q, v). If η ∈ a∗QqC does
not belong to Exp(Q, v | f), we agree to write qη(Q, v | f) = 0.

Now let P ∈ Pmin
σ be contained in Q and put ∗P : = P ∩MQ. Then, for u ∈

NKQ(aq), we define

Exp(Q, v | f)P,u = {η ∈ a∗QqC | qη 6= 0 on aQq ×KQ
∗A+
Qq(∗P )u(MQ ∩ vHv−1)}.

The elements of this set are called the (Q, v)-exponents of f on ∗A+
Qq(∗P )u. Let

WQ,v ⊂ NKQ(aq) be a complete set of representatives of WQ/WQ ∩ WK∩vHv−1 .
Then it follows from (3.6) that

Exp(Q, v | f) =
⋃

u∈WQ,v

Exp(Q, v | f)P,u.(3.21)

We now have the following result.

Theorem 3.5 (Transitivity of asymptotics). Let f ∈ Cep(X+ : τ). Let P,Q ∈ Pσ,
assume that P is minimal and P ⊂ Q and put ∗P = P ∩MQ. Then for all v ∈
NK(aq) and u ∈ NKQ(aq) we have

Exp(Q, v | f)P,u = Exp(P, uv | f) |aQq .(3.22)

Moreover, if η ∈ Exp(P, uv | f)|aQq , then for every b ∈ ∗A+
Qq(∗P ), X ∈ aQq, and

m ∈M,

qη(Q, v | f,X,mbu) =
∑

ξ∈Exp(P,uv | f)
ξ|aQq=η

bξqξ(P, uv | f,X + log b,m),(3.23)

where the ∆Q(P )-exponential polynomial series (in the variable b) on the right is
neatly convergent on ∗A+

Qq(∗P ). Furthermore, the series∑
ξ∈Exp(P,uv | f)

ξ|aQq=η

bξqξ(P, uv | f,X + log b)(3.24)

converges neatly as a ∆Q(P )-exponential polynomial series in the variable b ∈
∗A+
Qq(∗P ) with coefficients in C∞(X0,uv : τM).
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Proof. Let v ∈ NK(aq) and u ∈ NKQ(aq) be fixed. Fix a set WQ,v such as in the
beginning of the proof of Theorem 3.4, and such that it contains u. Moreover, we
select a set W of representatives for W/WK∩H in NK(aq) containing WQ,vv. As in
the proof of the mentioned theorem we may restrict ourselves to the situation that
Exp(P, u′v | f) ⊂ s− N∆(P ), for some s ∈ a∗qC and all u′ ∈ WQ,v. In the following
we may now use the notation and results of the proof of Theorem 3.4.

Let η ∈ sQ − N∆r(Q). Then from (3.17) and (3.16) we infer that, for every
X ∈ aQq,

qη(Q, v | f,X, bu) =
∑

ξ∈s−N∆(P)
ξ|aQq=η

bξqξ(P, uv | f,X + log b, e), (b ∈ ∗A+
Qq(∗P ));

the series on the left-hand side converges neatly as a ∆Q(P )-exponential polynomial
series in the variable b ∈ ∗A+

Qq(∗P ). The function m 7→ qη(Q, v | f,X,mbu) belongs
to C∞(X0,uv : τM), and so does the function m 7→ qξ(P, uv | f,X + log b,m), for
every ξ ∈ s − N∆(P ). Evaluation at e induces a topological linear isomorphism
C∞(X0,w : τM) ' VM∩wHw

−1

τ , for every w ∈ NK(aq), hence in particular for w =
uv. Thus, it follows from the above that (3.23) holds, with the asserted convergence.
In addition, it follows that the series (3.24) converges as asserted.

In the proof of Theorem 3.4 we saw that Exp(Q, v | f) ⊂ sQ−N∆r(Q). It follows
from the derived expansion (3.23) that (3.22) holds with the inclusion ‘⊂’ in place
of the equality sign. For the converse inclusion, let ξ0 ∈ Exp(P, uv | f) and put
η = ξ0|aQq . We select X ∈ aQq such that the function b 7→ qξ0(P, uv | f,X+ log b, e)
does not vanish identically on ∗AQq. The equality (3.23) holds for all b ∈ ∗A+

Qq(∗P )
with a ∆Q(P )-exponential polynomial series that converges neatly on ∗A+

Qq(∗P ).
Any exponent ξ of this series coincides with η = ξ0|aQq on aQq; if it also coincides
with ξ0 on ∗aQq, then ξ = ξ0. Therefore, the function of b defined by the series on the
right-hand side of (3.23) is nonzero. Hence qη(Q, v | f) does not vanish identically
on aQq × ∗A+

Qq(∗P )u and we conclude that η ∈ Exp(Q, v | f)P,u.

We proceed by discussing some useful transformation properties for the coeffi-
cients in the expansion (3.10).

If u ∈ NK(aq) it will sometimes be convenient to write uX : = Ad(u)X for
X ∈ aq. Similarly, we will write uξ: = ξ ◦Ad(u)−1, for ξ ∈ a∗qC.

If u, v ∈ NK(aq) and Q ∈ Pσ, then conjugation by u induces a diffeomorphism γu
from the space XQ,v onto XuQu−1,uv; we note that γu maps XQ,v,+ onto XuQu−1,uv,+.
It is easily seen that RuQu−1,uv(γu(m)) = RQ,v(m), for m ∈ XQ,v.

For ϕ ∈ C∞(XQ,v,+ : τQ), we define the function ρτ,uϕ: XuQu−1,uv,+ → Vτ by

ρτ,uϕ(x) = τ(u)ϕ(γ−1
u (x)).(3.25)

Then ρτ,u is a topological linear isomorphism from the space C∞(XQ,v,+ : τQ) onto
the space C∞(XuQu−1,uv,+ : τuQu−1). Likewise, by similar definitions we obtain
a topological linear isomorphism from C∞(X1Q,v,+ : τQ) onto C∞(X1 uQu−1,uv,+ :
τuQu−1), also denoted by ρτ,u.

Lemma 3.6. Let f ∈ Cep(X+ : τ), let Q ∈ Pσ and u, v ∈ NK(aq). Then

Exp(uQu−1, uv | f) = uExp(Q, v | f).

Moreover, for every η ∈ Exp(Q, v | f),

quη(uQu−1, uv | f) = [Ad(u−1)∗ ⊗ ρτ,u] qη(Q, v | f).



ANALYTIC FAMILIES OF EIGENFUNCTIONS 637

Proof. Put Q′ = uQu−1. Let m ∈ XQ′,uv,+. Then, by Theorem 3.4,

f(mauv) =
∑

η∈Exp(Q′,uv | f)

aηqη(Q′, uv | f)(log a,m),(3.26)

for a ∈ A+
Q′q(RQ′,uv(m)−1), where the series on the right-hand side is neatly con-

vergent. On the other hand, from f(mauv) = τ(u)f(γ−1
u (m)u−1au v) we see, using

Theorem 3.4 again, that

f(mauv) = τ(u)
∑

ζ∈Exp(Q,v | f)

auζqζ(Q, v | f)(Ad(u)−1 log a, γ−1
u (m)),(3.27)

for u−1au ∈ A+
Qq(RQ,v(γ−1

u (m))−1). We now note that the latter condition is equiv-
alent to

a ∈ A+
Q′q(RQ,v(γ−1

u (m))−1) = A+
Q′q(RQ′,uv(m)−1).

Hence the series (3.26) and (3.27) both converge neatly for a ∈ AQ′q(RQ′,uv(m)−1).
All assertions now follow by uniqueness of asymptotics.

For later purposes, we also need another type of transformation property. Recall
from Remark 3.1 that for u ∈ NK(aq) we write Xu = X1G,u = G/uHu−1; let
Xu,+ denote the analogue of X+ for this symmetric space. We note that right
multiplication by u induces a diffeomorphism ru from Xu onto X, mapping Xu,+

onto X+. Hence pull-back by ru the topological linear isomorphism Ru: = r∗u from
C∞(X+ : τ) onto C∞(Xu,+ : τ); it is given by Ruf(x) = f(xu). We note that the
map Ru coincides with the map ρτ,u, introduced in the text above Lemma 3.6, by
sphericality of the functions involved.

The following result is now an immediate consequence of the definitions.

Lemma 3.7. Let f ∈ Cep(X+ : τ) and u ∈ NK(aq). Then Ruf ∈ Cep(Xu,+ : τ).
Moreover, for each Q ∈ Pσ and every v ∈ NK(aq), the set Exp(Q, vu | f) equals
Exp(Q, v |Ruf). Finally, if ξ ∈ Exp(Q, vu | f), then

qξ(Q, vu | f) = qξ(Q, v |Ruf).

4. Behavior of differential operators along walls

We assume that Q ∈ Pσ is fixed. The purpose of this section is to study
a Q-radial decomposition of invariant differential operators on X. This leads (in
Proposition 4.10) to a series expansion of such operators along (Q, e). The coef-
ficients turn out to be globally defined (see Proposition 4.8) on the group MQσ,
defined above (2.2), a fact that will be of crucial importance for the applications
later on (see Proposition 8.3). The expansion of D ∈ D(X) allows us (in Lemma
4.12) to determine the exponential polynomial series of Df from that of f , where
f ∈ Cep(X+ : τ).

The involution θσ fixes aq pointwise, hence leaves every root space gα, for α ∈ Σ,
invariant. We denote the associated eigenspaces of θσ|gα for the eigenvalues +1 and
−1 by g+

α and g−α , respectively. Moreover, we put m±α : = dim g±α .
We recall that KQ = K ∩MQ and HQ = H ∩MQ. Define H1Q: = H ∩M1Q;

then H1Q = HQ(AQ ∩H). Note that KQ = K ∩M1Q. The group M1Q admits the
Cartan decomposition M1Q = KQAqH1Q and normalizes the subalgebra n̄Q.

For m ∈M1Q we define the endomorphism A(m) = AQ(m) ∈ End(n̄Q) by

A(m): = σ ◦Ad(m−1) ◦ θ ◦Ad(m).(4.1)
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Moreover, we define the real analytic function δ = δQ:M1Q → R by

δ(m) = det(I −A(m)).(4.2)

Finally, we define the following subset of M1Q

M ′1Q: = M1Q \ δ−1(0).(4.3)

Lemma 4.1.
(a) Let m∈M1Q, k∈KQ and h∈H1Q. Then A(kmh) = Ad(h−1) ◦A(m) ◦Ad(h).
(b) The endomorphism A(m) ∈ End(n̄Q) is diagonalizable, for every m ∈ M1Q.

The eigenvalues are given as follows. Let m = kah, with k ∈ KQ, a ∈ Aq

and h ∈ H1Q. Then the eigenvalues of A(m) are ±a−2α, α ∈ Σ(Q), with
multiplicities m±α .

(c) The operator norm of A(m) is given by ‖A(m)‖op = RQ,1(m)2.

Proof. (a) is an immediate consequence of (4.1). Hence, for (b) we may assume
that m = a ∈ Aq. It is easily seen that A(a)|

g
±
−α

= ±a−2αI for α ∈ Σ(Q).
Finally, (c) is an immediate consequence of (b) and (3.7) with v = 1.

Corollary 4.2. If k ∈ KQ, a ∈ Aq, h ∈ H1Q, then

δ(kah) =
∏

α∈Σ(Q)

(1− a−2α)m
+
α (1 + a−2α)m

−
α .

The set M ′1Q is left KQ- and right H1Q-invariant, and open dense in M1Q.

Proof. This follows immediately from Lemma 4.1 combined with (4.2) and (4.3).

We define the linear subspace k(Q) of k by k(Q): = k ∩ (nQ + n̄Q). Then the map
(I + θ):X 7→ X + θX is a linear isomorphism from n̄Q onto k(Q).

Lemma 4.3.
(a) If m ∈M1Q, then Ad(m−1)k(Q) + h ⊂ n̄Q + h.
(b) If m ∈M ′1Q, then Ad(m−1)k(Q)⊕ h = n̄Q + h.

Proof. (a) Since k(Q) ⊂ n̄Q + nQ ⊂ n̄Q + h, we have, for all m ∈M1Q,

Ad(m−1)k(Q) ⊂ Ad(m−1)(n̄Q + nQ) = n̄Q + nQ ⊂ n̄Q + h.

(b) The dimension of Ad(m−1)k(Q) equals that of k(Q), which in turn equals that of
n̄Q. Hence it suffices to prove, for m ∈M ′1Q, that Ad(m−1)k(Q) ∩ h = 0.

Let X ∈ Ad(m−1)k(Q) ∩ h. Then θAd(m)X = Ad(m)X and σX = X, and we
see that (I − A(m))X = 0. If m ∈ M ′1Q, then det(I − Ad(m)) = δ(m) 6= 0 and it
follows that X = 0.

From Lemma 4.3(b) we see that for m ∈M ′1Q we may define linear maps Ψ(m) =
ΨQ(m) ∈ Hom(n̄Q, k(Q)) and R(m) = RQ(m) ∈ Hom(n̄Q, h) by

X = Ad(m−1)Ψ(m)X +R(m)X.(4.4)

Lemma 4.4. Let m ∈M ′1Q, k ∈ KQ and h ∈ H1Q. Then

Ψ(kmh) = Ad(k) ◦Ψ(m) ◦Ad(h),
R(kmh) = Ad(h−1) ◦R(m) ◦Ad(h).

Proof. This is an immediate consequence of (4.4) combined with Lemma 4.3(b).
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Lemma 4.5. Let m ∈M ′1Q. Then

Ψ(m) ◦ (I −A(m)) = (I + θ) ◦Ad(m),
R(m) ◦ (I −A(m)) = −(I + σ) ◦A(m).

Proof. From (4.1) it follows that

I + σ ◦A(m) = Ad(m−1) ◦ (I + θ) ◦Ad(m).

This implies in turn that

I −A(m) = Ad(m−1) ◦ (I + θ) ◦Ad(m)− (I + σ) ◦A(m).(4.5)

Since I + θ and I +σ map n̄Q into k(Q) and h, respectively, the lemma follows from
combining (4.5) with (4.4).

Corollary 4.6. The functions Ψ:M ′1Q→Hom(n̄Q, k(Q)) and R:M ′1Q→Hom(n̄Q, h)
are real analytic. Moreover, the functions δΨ and δ R extend to real analytic func-
tions on M1Q.

Proof. From (4.2) and (4.3) we see that I−A(m) is an invertible endomorphism of
n̄Q, for m ∈ M ′1Q. Since Ad(m) and A(m) depend real analytically on m ∈ M1Q,
all statements now follow from Lemma 4.5.

If R > 0, then in accordance with (3.8) we define

M1Q[R]: = {m ∈M1Q | RQ,1(m) < R}.

Here RQ,1(m) is given by (3.4). Moreover, we set MQσ[R]: = MQσ ∩M1Q[R].

Lemma 4.7.

(a) M1Q[1] ⊂M ′1Q.
(b) Let R1, R2 > 0. Then MQσ[R1]A+

Qq(R2) ⊂M1Q[R1R2].

Proof. Letm ∈M1Q[1]. Then ‖A(m)‖op < 1 by Lemma 4.1(c), and hence δ(m) 6= 0.
This establishes (a).

Assume that m ∈MQσ[R1] and a ∈ A+
Qq(R2). Write m = kbh with k ∈ KQ, b ∈

∗AQq and h ∈ H1Q. Then ma = k(ab)h, hence RQ,1(ma) = maxα∈Σ(Q) a
−αb−α <

R2RQ,1(m) < R1R2. It follows that ma ∈M1Q[R1R2].

Proposition 4.8. There exist unique real analytic functions

Ψµ, Rµ:MQσ → End(n̄Q), for µ ∈ N∆r(Q),

such that for every m ∈MQσ and every a ∈ A+
Qq(RQ,1(m)−1),

Ψ(ma) = (1 + θ) ◦
∑

µ∈N∆r(Q)

a−µΨµ(m),

R(ma) = (1 + σ) ◦
∑

µ∈N∆r(Q)

a−µRµ(m),

with absolutely convergent series. For every R > 1 the above series converge neatly
on A+

Qq(R−1) as ∆r(Q)-power series with coefficients in C∞(MQσ[R],End(n̄Q)).
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Proof. Let m ∈ MQσ and a ∈ A+
Qq(RQ,1(m)−1). It follows from Lemma 4.7 that

ma ∈M1Q[1] ⊂M ′1Q. Hence Ψ(ma) and R(ma) are defined.
It follows from Lemma 4.1 that ‖A(ma)‖op < 1. Hence the series

(I −A(ma))−1 =
∞∑
n=0

A(ma)n

converges absolutely. Let α ∈ Σr(Q). Then A(m) leaves the space g−α invariant,
and A(ma)|g−α = a−2αA(m)|g−α . Hence, in view of Lemma 4.5,

Ψ(ma)|g−α = (I + θ) ◦Ad(m) ◦
∞∑
n=0

a−(2n+1)αA(m)n|g−α

and

R(ma)|g−α = −(I + σ) ◦
∞∑
n=1

a−2nαA(m)n|g−α .

It is now easy to complete the proof.

We denote by R+
Q the algebra of functions on M ′1Q generated by the func-

tions ξ ◦ΨQ, where ξ ∈ Hom(n̄Q, k(Q))∗, and by the functions η ◦RQ, where η ∈
Hom(n̄Q, h)∗. By RQ we denote the algebra of functions generated by 1 and R+

Q.

Note that R+
Q is an ideal in RQ.

Corollary 4.9. The elements of RQ are left KQ- and right H1Q-finite functions
on M ′1Q.

Let ϕ ∈ RQ. There exists a k ∈ N such that δkQϕ extends to a real analytic
function on M1Q. Moreover, there exist unique real analytic functions ϕξ on MQσ,
for ξ ∈ N∆r(Q), such that for every m ∈MQσ and every a ∈ AQq(RQ,1(m)−1),

ϕ(ma) =
∑

ξ∈N∆r(Q)

a−ξϕξ(m).(4.6)

Let R ≥ 1. Then the series (4.6) converges neatly on AQq(R−1), as an exponential
polynomial series with coefficients in C∞(MQσ[R]).

Finally, if ϕ ∈ R+
Q, then (4.6) holds with ϕ0 = 0.

Proof. Uniqueness of the functions ϕξ is obvious. Therefore it suffices to prove exis-
tence and the remaining assertions. One readily checks that it suffices to prove the
assertions for a collection of generators of the algebra R+

Q. Such a collection of gen-
erators is formed by the functions of the form ϕ = ξ ◦Ψ, with ξ ∈ Hom(n̄Q, k(Q))∗,
and by the functions of the form ϕ = η ◦RQ, where η ∈ Hom(n̄Q, h)∗. For both
types of generators all assertions follow immediately from Proposition 4.8.

As is the previous section we assume that τ is a smooth representation of K in
a locally convex space Vτ . The space of continuous linear endomorphisms of Vτ is
denoted by End(Vτ ).

If an element u of the space

D1Q: = RQ ⊗ End(Vτ )⊗ U(m1Q)(4.7)

is of the form ϕ ⊗ L ⊗ v, with ϕ ∈ RQ, L ∈ End(Vτ ), and v ∈ U(m1Q), then we
define the differential operator u∗ on C∞(M ′1Q, Vτ ) by u∗f = ϕL ◦ [Rvf ]; here R
denotes the right regular representation. The map u 7→ u∗ extends to an injective
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linear map from D1Q to the space of smooth End(Vτ )-valued differential operators
of C∞(M ′1Q, Vτ ). We also define the subspace

D+
1Q: = R+

Q ⊗ End(Vτ )⊗ U(m1Q).

Via the map u 7→ 1 ⊗ I ⊗ u we identify U(m1Q) with a subspace of D1Q. Then
u∗ = Ru for u ∈ U(m1Q).

Let M1Q,+ be the preimage in M1Q of the set X1Q,1,+ (see below (3.6)). The set

M ′1Q,+: = M1Q,+ ∩M ′1Q
is an open dense subset of M1Q that is left KQ- and right H1Q-invariant.

In view of the decomposition g = n̄Q⊕(m1Q+h), there exists, for everyD ∈ U(g),
an element D0 ∈ U(m1Q) with deg(D0) ≤ deg(D), such that

D −D0 ∈ n̄QU(g) + U(g)h.(4.8)

The element D0 is uniquely determined modulo U(m1Q)h1Q. We recall from [5],
Sect. 2 (see also [7], p. 548–549) that the assignment D 7→ D0 induces an algebra
homomorphism µ′Q = 8µQ̄:D(X) → D(M1Q/H1Q), and that the homomorphism
µQ:D(X) → D(M1Q/H1Q), defined by µQ(D) = dQ ◦µ

′
Q(D) ◦ d−1

Q with dQ(m): =
| det(Ad(m)|nQ )|1/2 for m ∈M1Q, only depends on Q through the Levi component
M1Q.

Proposition 4.10. Let D ∈ D(X). There exists a u+ ∈ D+
1Q of degree deg(u+) <

deg(D) such that, for every f ∈ C∞(X+ : τ),

Df |M ′1Q,+ = [µ′Q(D) + u+∗](f |M ′1Q,+).

Proof. By induction on the degree we will first establish the following assertion for
an elementD of U(g). LetD0 ∈ U(m1Q) satisfy (4.8). Then there exist finitely many
ϕi ∈ R+

Q, ui ∈ U(k), and vi ∈ U(m1Q), for 1 ≤ i ≤ n, such that deg(ui) + deg(vi) <
deg(D), and such that

D −D0 ≡
n∑
i=1

ϕi(m) [Ad(m)−1ui] vi modU(g)h,(4.9)

for every m ∈M ′1Q.
The assertion is trivially true for D constant. Thus, assume that D is not

constant and that the assertion has been established for D of strictly smaller degree.
Let D0 ∈ U(m1Q) be as above. Then, modulo U(g)h, D − D0 equals a finite
sum of terms of the form XD1, with X ∈ n̄Q and D1 ∈ U(n̄Q ⊕ m1Q) such that
degD1 < degD.

For m ∈M ′1Q,+ we have X = Ad(m)−1Ψ(m)X + RQ(m)X ; hence

XD1 ≡ (Ad(m)−1Ψ(m)X)D1 + [RQ(m)X,D1] modU(g)h.

Now Ad(m)−1Ψ(m)X is a finite sum of terms of the form ϕ(m)[Ad(m)−1u] with
u ∈ k(Q) and ϕ ∈ R+

Q. Applying the induction hypothesis to D1 we see that
[Ad(m)−1Ψ(m)X ]D1 may be expressed as a sum similar to the one on the right-
hand side of (4.9).

On the other hand, [RQ(m)X,D1] is a finite sum of elements of the form ψ(m)D2,

with ψ ∈ R+
Q and D2 ∈ U(g), degD2 < degD. Applying the induction hypothesis

to D2, we see that [RQ(m)X,D1] may also be expressed as a sum of the form (4.9).
This establishes the assertion involving (4.9) of the beginning of the proof.
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Now let D ∈ D(X). By abuse of notation we use the same symbol D for a
representative of D in U(g)H , and let D0 be as above. Then µ′Q(D) equals the
canonical image of D0 in U(m1Q)H1Q . Let ϕi, ui, vi be as above and such that (4.9)
holds. Then for every f ∈ C∞(X+ : τ) and all m ∈M ′1Q,+ we have

Df(m) = µ′Q(D)(f |M ′1Q,+)(m) +
n∑
i=1

ϕi(m)RAd(m)−1uiRvif(m)

= µ′Q(D)(f |M ′1Q,+)(m) +
n∑
i=1

ϕi(m)τ(ǔi)Rvif(m)

where we have used that RAd(m)−1uiRvif(m) = LǔiRvif(m) = τ(ui)Rvif(m).
Thus, we obtain the desired expression with u+ =

∑n
i=1 ϕi ⊗ τ(ui)⊗ vi.

Let U ⊂ MQσ be an open subset. It will be convenient to be able to re-
fer to a ‘formal application’ of elements of the space D1Q, defined in (4.7), to
Fep(AQq, C

∞(U, Vτ )), the space of (formal) ∆r(Q)-exponential polynomial series
with coefficients in C∞(U, Vτ ), see the definition preceding Lemma 1.9. There is a
natural way to define a formal application that is compatible with the expansions
of Corollary 4.9 and with the map u 7→ u∗, defined in the text following (4.7). The
motivation for the following somewhat tedious chain of definitions will become clear
in Lemma 4.11.

The product decomposition M1Q 'MQσ ×AQq induces a natural isomorphism
from U(m1Q) onto U(mQσ) ⊗ U(aQq), by which we shall identify. Accordingly we
have a natural isomorphism

D1Q ' ◦D1Q ⊗ U(aQq),(4.10)

where ◦D1Q: = RQ ⊗ End(Vτ ) ⊗ U(mQσ). To each element ϕ ∈ RQ we may as-
sociate its ∆r(Q)-exponential polynomial series of the form (4.6); this induces a
linear embedding RQ → Fep(AQq, C

∞(MQσ)) which by identity on the other ten-
sor components may be extended to a linear embedding

◦D1Q → Fep(AQq,DQσ),

where DQσ: = C∞(MQσ) ⊗ End(Vτ ) ⊗ U(mQσ). By identity on the second tensor
component in (4.10) this embedding extends to a linear embedding

ep: D1Q → Fep(AQq,DQσ)⊗ U(aQq).(4.11)

The image ep(u) of an element u ∈ D1Q under this embedding will be called
the ∆r(Q)-exponential polynomial expansion of u. Via the right regular action
of U(mQσ) we may naturally identify DQσ with the space of C∞-differential op-
erators acting on C∞(MQσ, Vτ ). Accordingly, we have a continuous bilinear pair-
ing DQσ × C∞(U, Vτ ) → C∞(U, Vτ ). This induces a formal application map from
Fep(AQq,DQσ)⊗Fep(AQq, C

∞(U, Vτ )) to Fep(AQq, C
∞(U, Vτ )) in the fashion de-

scribed above Lemma 1.10. The image of an element of the form u⊗ f under this
map will be denoted by uf.

On the other hand, in Lemma 1.9 we described the formal application map
U(aQq)⊗Fep(AQq, C

∞(U, Vτ ))→ Fep(AQq, C
∞(U, Vτ )). The image of an element

of the form v⊗f under this map is denoted by vf. Combination of the above formal
application maps leads to the formal application map

[Fep(AQq,DQσ)⊗ U(aQq)]⊗Fep(AQq, C
∞(U, Vτ ))→ Fep(AQq, C

∞(U, Vτ )),
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given by (u⊗ v)⊗ f 7→ (u⊗ v)f : = u(vf), for u ∈ Fep(AQq,DQσ), v ∈ U(aQq) and
f ∈ Fep(AQq, C

∞(U, Vτ )). Composing with the embedding (4.11) we finally obtain
the linear map

D1Q ⊗Fep(AQq, C
∞(U, Vτ ))→ Fep(AQq, C

∞(U, Vτ ))

given by u ⊗ f 7→ uf : = ep(u)f, for u ∈ D1Q and f ∈ Fep(AQq, C
∞(U, Vτ )). We

shall call this map the formal application of D1Q to Fep(AQq, C
∞(U, Vτ )).

Now let R ≥ 1 and let U ⊂ MQσ[R] be an open subset. We use the obvious
natural isomorphism to identify the space Cep(A+

Qq(R−1), C∞(U, Vτ )) with a sub-
space of C∞(UA+

Qq(R−1), Vτ ). If u ∈ D1Q, then the associated differential operator
u∗ induces a map from the first space into the latter.

Lemma 4.11. Let u ∈ D1Q, let R ≥ 1 and let U ⊂ MQσ[R] be an open subset.
Then u∗ maps the space Cep(A+

Qq(R−1), C∞(U, Vτ )) into itself. Moreover, if f
belongs to that space, then the ∆r(Q)-exponential polynomial expansion of u∗f is
obtained from the formal application of u to the exponential polynomial expansion
of f.

Proof. This follows from retracing the definitions of u∗ and of the formal application
of u given above and applying Corollary 4.9 and Lemmas 1.9 and 1.10.

Given v ∈ NK(aq) we define µQ,v:D(X) → D(X1Q,v) = D(M1Q/M1Q ∩ vHv−1)
by

µQ,v = Ad(v) ◦µv−1Qv,

where Ad(v):D(X1v−1Qv,e)→ D(X1Q,v) is induced by the restriction to U(m1v−1Qv)
of Ad(v) on U(g). Then µQ,v depends on Q only through M1Q. It is easily seen
that

µQ,v = µvQ ◦Ad(v)(4.12)

where µvQ:D(Xv) = D(G/vHv−1)→ D(X1Q,v) = D(M1Q/M1Q ∩ vHv−1) is defined
similarly as µQ, but with H replaced by vHv−1, and where Ad(v):D(X)→ D(Xv)
is induced by Ad(v) on U(g).

Let MQσ,+ = MQσ ∩M1Q,+ and, for R ≥ 1, MQσ,+[R] = MQσ[R] ∩M1Q,+.

Lemma 4.12. Let f ∈ Cep(X+ : τ) and let D ∈ D(X). Then Df ∈ Cep(X+ : τ).
Let Q ∈ Pσ and let u+ ∈ R+

Q ⊗ End(Vτ ) ⊗ U(m1Q) be associated with D as in
Proposition 4.10. Then the following holds.

(a) The ∆r(Q)-exponential expansion of Df along (Q, e) is obtained by the formal
application of µ′Q(D) + u+ to the ∆r(Q)-exponential polynomial expansion of
f along (Q, e).

(b) Let v ∈ NK(aq), then Exp(Q, v |Df) ⊂ Exp(Q, v | f)− N∆r(Q).
(c) If ξ is a leading exponent of f along (Q, v), then

aξ+ρQqξ(Q, v |Df, log a,m) = [µQ,v(D)ϕ](ma),

(m ∈MQσ,+, a ∈ AQq),
(4.13)

where the function ϕ:M1Q,+ → Vτ is defined by

ϕ(ma) = aξ+ρQqξ(Q, v | f, log a,m),

for m ∈MQσ,+ and a ∈ AQq.
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Proof. Let R ≥ 1 and let f be the function A+
Qq(R−1) → C∞(MQσ,+[R], Vτ ) de-

fined by f(a,m) = f(ma). It follows from the hypothesis on f and Theorem 3.4
that f(a,m) belongs to Cep(A+

Qq(R−1), C∞(MQσ,+[R], Vτ )). Moreover, its ∆r(Q)-
exponential polynomial expansion coincides with the expansion of f along (Q, e).
Put u = µ′Q(D) + u+. Then it follows from the previous lemma that u∗f be-
longs to Cep(A+

Qq(R−1), C∞(MQσ,+[R], Vτ )); its expansion is obtained from the
formal application of u to the (Q, e)-expansion of f. It follows from Theorem
3.4 that the expansion is independent of R and that its coefficients are func-
tions in C∞(MQσ,+, Vτ ). On the other hand, it follows from Proposition 4.10 that
u∗f(a,m) = Df(ma). This implies that Df has a ∆r(Q)-exponential polynomial
expansion along (Q, e) with coefficients in C∞(MQσ,+, Vτ ). Since Df is right H-
invariant, the coefficients are actually functions in C∞(XQ,e,+, Vτ ). Moreover, the
expansion is independent of R and converges neatly on A+

Qq(R−1) as an expansion
with coefficients in C∞(XQ,e,+[R], Vτ ). In particular, this holds for every minimal
parabolic subgroup Q; hence Df ∈ Cep(X+ : τ).

In the above we have established assertion (a). It follows from this assertion that
(b) holds with v = 1 for every Q ∈ Pσ. By Lemma 3.6 it also holds for arbitrary
Q ∈ Pσ and v ∈ NK(aq).

It remains to establish (c). Assume first that v = e. Fix ξ ∈ ExpL(Q, e | f).
Then by (a), aξqξ(Q, e |Df, log a,m) is the term with exponent ξ in the series
that arises from the formal application of µ′Q(D) + u+ to the (Q, e)-expansion
of f. The exponents of the expansion ep(u+) of u+ all belong to −[N∆r(Q)] \
{0}. The application of u+ therefore gives rise to an expansion with exponents in
Exp(Q, e | f)− [N∆r(Q)] \ {0}. The latter set does not contain ξ, since ξ is leading.
Hence aξqξ(Q, e |Df, log a,m) is the term with exponent ξ in the expansion that
arises from the formal application of µ′Q(D) to the (Q, e)-expansion of f. Now
µ′Q(D) ∈ U(m1Q) ' U(mQσ) ⊗ U(aQq) and we see that the formal application
of µ′Q(D) to the (Q, e) expansion of f is induced by term by term differentiation
in the AQq and the MQσ variables. This implies that aξqξ(Q, e |Df, log a,m) =
[µ′Q(D)ϕ′](ma), where ϕ′(ma) = aξqξ(Q, e | f, log a,m). This implies (4.13) for v =
e.

Now let v ∈ NK(aq) be arbitrary, and put fv = Rvf . We shall apply the version
of (4.13) just established to the expansion along (Q, e) of the function fv on Xv.
Let ξ be a leading exponent of f along (Q, v), then it follows from Lemma 3.7 that
ξ is also a leading exponent of fv along (Q, e). Moreover, let D ∈ D(X), then
(Df)v = Dvfv where Dv: = Ad(v)D ∈ D(Xv). Hence

aξ+ρQqξ(Q, e | (Df)v, log a,m) = [µvQ(Dv)ϕ](ma),(4.14)

for m ∈ MQσ,+, a ∈ AQq, where ϕ(ma) = aξ+ρQqξ(Q, e | fv, log a,m). It follows
from Lemma 3.7 that ϕ(ma) = aξ+ρQqξ(Q, v | f, log a,m), and qξ(Q, e | (Df)v) =
qξ(Q, v |Df). Now (4.13) follows from (4.14) and (4.12).

Lemma 4.13. Let P ∈ Pmin
σ and assume that f ∈ Cep(X+ : τ). Let S ⊂ a∗qC be a

finite set as in Lemma 2.2, and let D ∈ D(X). Then Exp(P, v |Df) ⊂ S − N∆ for
every v ∈ NK(aq) and, with notation as in Lemma 2.2,

(Df)s = D(fs).(4.15)
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Proof. It follows immediately from Lemma 4.12(b) that Exp(P, v |Df) ⊂ S − N∆
and that Exp(P, v |D(fs)) ⊂ s − N∆ for s ∈ S. Now (4.15) follows from Lemma
2.2.

5. Spherical eigenfunctions

In this section we assume that (τ, Vτ ) is a finite dimensional continuous represen-
tation of K. Let I be a cofinite ideal of the algebra D(X). Then by C∞(X+ : τ : I) we
denote the space of f ∈ C∞(X+ : τ) satisfying the system of differential equations

Df = 0, (D ∈ I).

We shall see in the lemma below that these functions belong to Cep(X+ : τ). The
section is devoted to a study of the exponents and coefficients of the corresponding
exponential polynomial series.

Remark 5.1. Many results of [3] that are formulated for D(X)-finite τ -spherical
functions on X are actually valid for the bigger class of D(X)-finite functions in
C∞(X+ : τ) as well, since their proofs only involve behavior of functions and oper-
ators on X+. If such extended results are used in the text, we may give a reference
to the present remark.

Remark 5.2. Let v ∈ NK(aq). We recall from the text preceding Lemma 3.7 that
right translation by v induces a topological linear isomorphism Rv from C∞(X+ : τ)
onto the space C∞(Xv,+ : τ). It maps the subspace of D(X)-finite functions onto
the subspace of D(Xv)-finite functions. Thus, if f ∈ C∞(X+ : τ) is a D(X)-finite
function, then the theory of [3] may be applied to the D(Xv)-finite function Rvf ;
the results are then easily reformulated in terms of the function f.

Lemma 5.3. Let I ⊂ D(X) be a cofinite ideal. Then C∞(X+ : τ : I) ⊂ Cep(X+ : τ).
In particular, the elements of C∞(X+ : τ : I) are real analytic functions on X+.
Moreover, there exists a finite set XI ⊂ a∗qC such that ExpL(P, v | f) ⊂ XI , for all
f ∈ C∞(X+ : τ : I), P ∈ Pmin

σ and v ∈ NK(aq).

Proof. Let Q ∈ Pmin
σ . Applying Theorem 2.5 of [3] (see Remark 5.1) we obtain that

f |A+
q (Q) is given by a neatly converging ∆(Q)-exponential polynomial expansion

for each f ∈ C∞(X+ : τ : I). Moreover, by Theorem 2.4 of [3], there exists a finite
set XI,Q,e ⊂ a∗qC, such that ExpL(f |A+

q (Q)) ⊂ XI,Q,e. Let w ∈ W . Applying the
above argument to Rwf (cf. Remark 5.2) we see, more generally, that T ↓Q,wf is given
by the same type of expansion with leading exponents in a finite set XI,Q,w ⊂ a∗qC
independent of f . This implies that f ∈ Cep(X+ : τ), with ExpL(P, v | f) ⊂ XI : =⋃
Q,wXI,Q,w, for all P ∈ Pmin

σ and v ∈ W . Finally, if v ∈ NK(aq) is arbitrary,
there exists w ∈ W , m ∈ KM and h ∈ NK∩H(aq) such that v = mwh, and then
ExpL(P, v | f) = ExpL(P,w | f) ⊂ XI .

Corollary 5.4. Let P ∈ Pmin
σ and let W ⊂ NK(aq) be a complete set of represen-

tatives of W/WK∩H . Let I be a cofinite ideal in D(X). Then there exists a finite set
S = SI satisfying the properties of Lemma 2.2 for every f ∈ C∞(X+ : τ : I). More-
over, if SI is any such set, then fs ∈ C∞(X+ : τ : I) for every f ∈ C∞(X+ : τ : I)
and all s ∈ SI .

Proof. This is an immediate consequence of Lemmas 5.3 and 4.13.
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The set XI in Lemma 5.3 can be described more explicitly if the ideal I has
codimension 1. Let b be a maximal abelian subspace of q containing aq, let Σ(b)
be the restricted root system of b in gC, and let W (b) be the associated reflection
group.

Let γ be the Harish-Chandra isomorphism from D(X) onto the algebra I(b) of
W (b)-invariants in S(b); see [5], Sect. 2. To an element ν ∈ b∗C we associate the
character D 7→ γ(D : ν) of D(X) and denote its kernel by Iν . Then Iν is an ideal of
codimension one in D(X); in fact, any codimension one ideal is of this form.

Let W0(b) be the normalizer of aq in W (b). Then restriction to aq induces an
epimorphism from W0(b) onto W ; cf. [5], Lemma 4.6. We put bk: = b ∩ k. Then
b = bk ⊕ aq. Moreover, this decomposition is invariant under W0(b).

Lemma 5.5. There exists a finite subset L = Lτ of b∗kC with the following property.
Let ν ∈ b∗C and f ∈ C∞(X+ : τ : Iν). Let P ∈ Pmin

σ , v ∈ NK(aq) and assume that
ξ ∈ ExpL(P, v | f). Then

ν ∈W (b)(L+ ξ + ρP ).

The proof is based on the following result, which will be proved first.

Lemma 5.6. There exists a finite subset L = Lτ of b∗kC with the following property.
Let ν ∈ b∗C and ϕ ∈ C∞(M1/HM1 : τ), and assume that

µP (D)ϕ = γ(D : ν)ϕ

for all D ∈ D(X), where µP :D(X) → D(M1/HM1) is as defined above Proposition
4.10, with P ∈ Pmin

σ . Then ϕ|Aq is a linear combination of exponential polynomials
of the form a 7→ p(log a)awν , where p ∈ P (aq) and where w ∈ W (b) satisfies
wν|bk ∈ L.

Proof. The algebra D(M/HM) acts semisimply on C∞(M/HM : τ) (see [5], Lemma
4.8); let L be the (finite) set of Λ ∈ b∗kC such that the associated character of
D(M/HM) occurs. We may assume that ϕ is a joint eigenfunction for D(M/HM),
with eigenvalue character given by Λ ∈ L. It follows that

(Dϕ)|Aq = γM1(D : Λ + · )(ϕ|Aq)

for D ∈ D(M1/HM1) ' D(M/HM)⊗ S(aq). Here γM1 denotes the Harish-Chandra
isomorphism from D(M1/HM1) into S(b), defined as in [9], above (2.11), and
γM1(D : Λ + · ) ∈ S(aq) is considered as a differential operator on Aq. Combin-
ing this identity with the assumption on ϕ, the identity γM1 ◦µP = γ, and the
surjectivity of γ:D(X)→ S(b)W (b), it follows that

u(Λ + · )(ϕ|Aq) = u(ν)ϕ|Aq

for all u ∈ S(b)W (b). Let ϕ̃ ∈ C∞(b) be defined by ϕ̃(X + Y ) = eΛ(X)ϕ(expY ) for
X ∈ bk, Y ∈ aq, then uϕ̃ = u(ν)ϕ̃. This implies that ϕ̃ is a linear combination
of exponential polynomials of the form p ewν, where p ∈ P (b) and w ∈ W (b); see
[27], Thm. III.3.13. However, from the definition of ϕ̃ it is readily seen that w only
contributes if wν|bk = Λ.

Proof of Lemma 5.5. We define the τM-spherical function ϕ:M1/M1 ∩ vHv−1 '
M/M ∩ vHv−1 ×Aq → Vτ by

ϕ(ma) = aρP+ξqξ(P, v | f)(log a,m).
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Then it follows from the equation Df = γ(D : ν)f and Lemma 4.12 (c) applied to
D − γ(D : ν) in place of D, that

µP,v(D)ϕ = γ(D : ν)ϕ.

Since ϕ is τ -spherical and nonzero, its restriction to Aq does not vanish.
First let v = e, and let L be as in Lemma 5.6. It then follows immediately from

that lemma that there exists w ∈ W (b) such that wν|bk ∈ L and wν|aq = ξ + ρP .
For general v ∈ NK(aq) we also obtain the result from Lemma 5.6, by applying

it to the function ϕv: = ρτ,v−1ϕ. Indeed, it follows from the definition of µP,v that
ϕv satisfies the assumption of the lemma. Hence there exists w ∈ W (b) such that
wν|bk ∈ L and wν|aq = v−1(ξ + ρP ). Let v′ ∈W0(b) be such that v′Y = vY for all
Y ∈ aq, then ν ∈ (v′w)−1(v′L+ ξ + ρP ).

We will also need a result on leading coefficients along non-minimal parabolic
subgroups.

Lemma 5.7. Let f ∈ Cep(X+ : τ) be a D(X)-finite function. Let Q ∈ Pσ, v ∈
NK(aq) and assume that ξ ∈ ExpL(Q, v | f). Then the function ϕ: X1Q,v,+ → Vτ
defined by

ϕ(ma) = aξ+ρQqξ(Q, v | f, log a,m) (m ∈ XQ,v,+, a ∈ AQq),

is D(X1Q,v)-finite.

Proof. Let I be the annihilator of f in the algebra D(X). Then it follows from
Lemma 4.12 (c) that µQ,v(D)ϕ = 0 for all D ∈ I. The algebra D(X1Q,v) is a finite
module over the image of the homorphism µQ,v (see [5], p. 342), and apply conju-
gation by v. Hence µQ,v(I) generates a cofinite ideal in D(X1Q,v). This establishes
the result.

We end this section with a result that limits the asymptotic exponents occurring
in discrete series representations to a countable set. Later we will apply this result
to exclude the possibility of a ‘continuum of discrete series’ (see the last line of
proof of Lemma 9.13).

To formulate the result we need to define asymptotic exponents for a K-finite
rather than a τ -spherical function. We denote by K̂ the collection of equivalence
classes of irreducible continuous representations of K. If ϑ ⊂ K̂ is a finite subset,
then by C∞(X+)ϑ we denote the space of smooth K-finite functions in C∞(X+)
all of whose K-types belong to ϑ. By Vϑ: = C(K)ϑ we denote the space of left K-
finite continuous functions on K all of whose left K-types belong to ϑ. Moreover,
by τϑ we denote the restriction of the right regular representation to Vϑ. If f ∈
C∞(X+)ϑ, then the function ςϑ(f): X → Vϑ, defined by ςϑ(f)(x)(k) = f(kx) for
x ∈ X+, k ∈ K belongs to C∞(X+ : τϑ). The map ς: = ςϑ is a topological linear
isomorphism from C∞(X+)ϑ onto C∞(X+ : τϑ), intertwining the D(X)-actions on
these spaces. Moreover, ς maps the closed subspace C∞(X)ϑ of globally defined
smooth functions onto the similar subspace C∞(X : τϑ). We denote by Cep(X+)ϑ
the preimage of Cep(X+ : τϑ) under ς. It follows from Lemma 5.3 that D(X)-finite
funcitons in C∞(X+)ϑ belong to Cep(X+)ϑ. Let f ∈ Cep(X+)ϑ; then for P ∈ Pσ
and v ∈ NK(aq) we define the set of exponents of f along (P, v) by

Exp(P, v | f): = Exp(P, v | ς(f)).
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Note that this collection is the union for k ∈ K and m ∈ XP,v,+ of the collections
of exponents occurring in the ∆(P )-exponential polynomial expansions of a 7→
f(kamv).

Let C(X) denote the space of Schwartz functions on X (see [9], Section 6) and
let A2(X)K denote the space of K-finite and D(X)-finite functions f ∈ C(X). These
functions are real analytic and belong to L2(X); cf. [3], Thm. 7.3.

Lemma 5.8. Assume that the center of G is compact. Then

{ξ ∈ Exp(P, v | f) | P ∈ Pmin
σ , v ∈ NK(aq), f ∈ A2(X)K}

is a countable subset of a∗qC.

Proof. Let X̂d denote the set of equivalence classes of discrete series representations
of the symmetric space X. This set is countable, since L2(X) is a separable Hilbert
space. Given ω ∈ X̂d we denote by L2(X)ω the collection of functions f ∈ L2(X)
whose closed G-span in L2(X) is equivalent to a finite direct sum of copies of ω. Let
K̂ denote the countable set of equivalence classes of irreducible representations of K.
Given ω ∈ X̂d and δ ∈ K̂, we denote by L2(X)ω,δ the collection of K-finite elements
of type δ in L2(X)ω . It follows from [3], Thm. 7.3, that L2(X)ω,δ is a subspace of
A2(X)K , and from [2], Lemma 3.9, that this subspace is finite dimensional. On the
other hand, let f ∈ A2(X)K , and let V ⊂ L2(X) denote the closed G-span of f . It
follows from [2], Lemma 3.9, that V is admissible. Since V is finitely generated, it
must then be a finite direct sum of irreducible representations. This implies that f
belongs to a finite direct sum of spaces L2(X)ω,δ. From the above we conclude that
A2(X)K equals the following countable algebraic direct sum

A2(X)K =
⊕

ω∈X̂d, δ∈K̂

L2(X)ω,δ.(5.1)

Let ω ∈ X̂d and δ ∈ K̂.Then it follows from Lemma 5.3 and the finite dimensionality
of L2(X)ω,δ that there exists a countable subset Eω,δ ⊂ a∗qC such that

Exp(P, v | f) ⊂ Eω,δ
for all f ∈ L2(X)ω,δ, P ∈ Pmin

σ , v ∈ NK(aq). Combining this observation with (5.1),
we obtain the desired result.

6. Separation of exponents

Let Q ∈ Pσ. In the next section we shall consider functions fλ ∈ Cep(X+ : τ),
with parameter λ ∈ a∗QqC, whose exponents along P ∈ Pmin

σ lie in sets of the
form Wλ + S − N∆(P ), where S ⊂ a∗qC is a finite set. In general, given ξ ∈
Wλ+S−N∆(P ), the elements s ∈ W/WQ and η ∈ S−N∆(P ), such that ξ = sλ+η,
are not unique. In the present section we define a condition on λ that allows this
unique determination for all ξ. In particular, the condition is valid for generic
λ ∈ a∗QqC. We consider also the case where P is non-minimal.

Let P,Q ∈ Pσ. We define the equivalence relation ∼P |Q on W by

s ∼P |Q t ⇐⇒ ∀λ ∈ a
∗
Qq: sλ|aPq = tλ|aPq .(6.1)

The associated quotient is denoted by W/ ∼P |Q . We note that the classes in
W/∼P |Q are left WP - and right WQ-invariant. Thus, W/∼P |Q may also be viewed
as a quotient of WP \W/WQ.
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If s, t ∈ W , then one readily sees that s ∼P |Q t ⇐⇒ s−1 ∼Q|P t−1. Hence
the anti-automorphism s 7→ s−1 of W factors to a bijection from W/ ∼P |Q onto
W/∼Q|P , which we denote by σ 7→ σ−1.

If s ∈W and λ ∈ a∗QqC, then the restriction sλ|aPq depends on s through its class
[s] in W/∼P |Q . We therefore agree to write

[s]λ|aPq : = sλ|aPq .

Definition 6.1. For S ⊂ a∗qC a finite subset, we define a∗◦QqC(P, S) to be the subset
of a∗QqC consisting of elements λ such that, for all s1, s2 ∈ W,

(s1λ− s2λ)|aPq ∈ [S + (−S)]|aPq + Z∆r(P ) ⇒ s1 ∼P |Q s2.

Lemma 6.2. Let S ⊂ a∗qC be finite. Then, for λ ∈ a∗QqC,

Wλ|aPq + (S − N∆(P ))|aPq =
⋃

σ∈W/∼P |Q

(
σλ|aPq + (S − N∆(P ))|aPq

)
.

Moreover, the union is disjoint if and only if λ ∈ a∗◦QqC(P, S).

Proof. Straightforward.

Lemma 6.3. Let Q,P ∈ Pσ, and let S be a finite subset of a∗qC. Then a∗◦QqC(P, S)
equals the complement of the union of a locally finite collection of proper affine
subspaces in a∗QqC.

Proof. Let p: a∗qC → a∗PqC denote the map induced by restriction to aPq. Let Π be
the complement of the diagonal in the set W/ ∼P |Q ×W/ ∼P |Q . Then for every
σ = (σ1, σ2) ∈ Π and every η ∈ a∗PqC we write Aσ,η = {λ ∈ a∗QqC | p(σ1λ−σ2λ) = η}.
Note that Aσ,0 is a proper affine subspace of a∗QqC. If λ ∈ Aσ,η, then Aσ,η equals
λ+Aσ,0; hence the set Aσ,η is either empty or a proper affine subspace.

Let A be the collection of subsets of the form Aσ,ξ, for σ ∈ Π and ξ ∈ p(S +
(−S)) +Z∆r(P ). Then a∗◦QqC(P, S) equals the complement of

⋃
A in a∗QqC. Thus, it

remains to show that the collection A is locally finite.
Let C be a compact subset of a∗QqC and let X be the collection of ξ ∈ p(S +

(−S)) + Z∆r(P ) such that C ∩ Aσ,ξ 6= ∅ for some σ ∈ Π. Then it suffices to show
that X is finite.

Let C′ ⊂ a∗PqC be the image of Π × C under the map (σ, λ) 7→ p(σ1λ − σ2λ).
Then X equals the intersection of C′ with p(S + (−S)) +Z∆r(P ). The latter set is
discrete since S is finite, whereas the elements of ∆r(P ) are linearly independent.
It follows that X is finite.

Remark 6.4. In particular, it follows from the above lemma that a∗◦QqC(P, S) is a
full open subset of a∗QqC; see Section 18 for the notion of full.

Lemma 6.5. Let Q,P ∈ Pσ. If either aQq or aPq has codimension at most 1 in
aq, then the natural projection WP \W/WQ →W/∼P |Q is a bijection.

Proof. It suffices to prove injectivity of the map. Since s 7→ s−1 induces a bijection
from W/∼P |Q onto W/∼Q|P , it suffices to prove this when aPq has codimension
at most 1. We assume the latter holds.

For s ∈W, let [s] denote its canonical image in W/∼P |Q . Assume that s, t ∈W
and that [s] = [t]. Then for every λ ∈ a∗Qq we have sλ = tλ on aPq. If aPq = aq, this
implies that s = t on a∗Qq, hence sWQ = tWQ, and since WP is trivial in this case,
the proof is finished. Thus, we may as well assume that aPq has codimension 1.Then
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there exists a root α ∈ Σ such that aPq = kerα. Note that WP = {1, sα}. For every
λ ∈ a∗Qq the Weyl group images sλ and tλ have equal length in a∗q and equal image
under the orthogonal projection to α⊥. Hence there exists a constant η ∈ {0, 1}
such that 〈sλ , α〉 = (−1)η〈tλ , α〉 for all λ ∈ a∗Qq. It follows that sλ = sηαtλ for all
λ ∈ a∗Qq; hence sWQ = sηαtWQ, from which it follows in turn that s and t have the
same image in WP \W/WQ.

In particular, if P is minimal, then the natural map W/WQ → W/ ∼P |Q is a
bijection; we shall use it to identify the sets involved.

7. Analytic families of spherical functions

In this section we assume that (τ, Vτ ) is a finite dimensional continuous repre-
sentation of K. Let Q ∈ Pσ and let Y be a finite subset of ∗a∗QqC; see (3.5).

In the following definition we introduce a space of analytic families fλ of τ -
spherical functions that will play a crucial role in the rest of this paper. The phrase
‘analytic’ refers to the fact that fλ will depend holomorphically on the parameter λ
(see Lemma 7.4). It will be required of fλ that it allows an exponential polynomial
expansion along A+

q for each λ, and that the coefficients in this expansion depend
holomorphically on λ. The main results of the section are Proposition 7.6, which
describes the action of D(X) on fλ, and Theorems 7.7–7.8, which extend the ex-
pansion of fλ to hold also along the walls (cf. Section 3), with similar dependence
on λ as in the definition.

Definition 7.1. Let Q, Y be as above and let Ω ⊂ a∗QqC be an open subset. We
define

Cep
Q,Y (X+ : τ : Ω)(7.1)

to be the space of C∞-functions f : Ω×X+ → Vτ satisfying the following conditions.
(a) For every λ ∈ Ω the function fλ:x 7→ f(λ, x) belongs to C∞(X+ : τ).
(b) There exists a constant k ∈ N, and, for every P ∈ Pmin

σ and v ∈ NK(aq),
a collection of functions qs,ξ(P, v | f) ∈ Pk(aq) ⊗ O(Ω, C∞(X0,v : τM)), for
s ∈ W/WQ and ξ ∈ −sWQY + N∆(P ), with the following property. For all
λ ∈ Ω, m ∈ X0,v and a ∈ A+

q (P ),

fλ(mav) =
∑

s∈W/WQ

asλ−ρP
∑

ξ∈−sWQY+N∆(P )

a−ξqs,ξ(P, v | f, log a)(λ,m),(7.2)

where the ∆(P )-exponential polynomial series with coefficients in Vτ is neatly
convergent (Definition 1.2) on A+

q (P ).
(c) For every P ∈ Pmin

σ , v ∈ NK(aq) and s ∈ W/WQ, the series∑
ξ∈−sWQY+N∆(P )

a−ξqs,ξ(P, v | f, log a)

converges neatly on A+
q (P ) as a ∆(P )-exponential polynomial series with

coefficients in O(Ω, C∞(X0,v : τM)).
If f ∈ Cep

Q,Y (X+ : τ : Ω), we define the asymptotic degree of f, denoted degaf, to be
the smallest number k ∈ N for which the above condition (b) is fulfilled.

Remark 7.2. We note that the space (7.1) depends on Q through its σ-split compo-
nent AQq. Moreover, from Lemma 3.6 we see that in the above definition it suffices
to require (b) and (c) for a fixed given P ∈ Pmin

σ and for each v in a given set
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W ⊂ NK(aq) of representatives for W/WK∩H . Alternatively, by the same lemma it
suffices to require (b) and (c) for a fixed given v ∈ NK(aq) and arbitrary P ∈ Pmin

σ .

Lemma 7.3. Let f ∈ Cep
Q,Y (X+ : τ : Ω). Then fλ ∈ Cep(X+ : τ) (Definition 2.1)

and

Exp(P, v | fλ) ⊂W (λ+ Y )− ρP − N∆(P )(7.3)

for all λ ∈ Ω, P ∈ Pmin
σ , and v ∈ NK(aq). Moreover, let Ω′: = Ω ∩ a∗◦QqC(P,WY )

(see Definition 6.1). Then Ω′ is open dense in Ω and

qs,ξ(P, v | f,X, λ) = qsλ−ρP−ξ(P, v | fλ, X)(7.4)

for every s ∈W/WQ, ξ ∈ −sWQY +N∆(P ), X ∈ aq and λ ∈ Ω′. In particular, the
functions qs,ξ(P, v | f) are uniquely determined.

Proof. The first statement and (7.3) follow immediately from condition (b) in the
above definition. The set Ω′ is open dense in Ω by Lemma 6.3, and it follows from
Lemmas 6.2 and 6.5 that if λ ∈ Ω′, then the sets s(λ +WQY )− ρP − N∆(P ), s ∈
W/WQ, are mutually disjoint. Then (7.4) holds by uniqueness of asymptotics.

The following result shows that an element of Cep
Q,Y (X+ : τ : Ω) may be viewed

as an analytic family of spherical functions.

Lemma 7.4. Let f ∈ Cep
Q,Y (X+ : τ : Ω). Then λ 7→ fλ is a holomorphic function

on Ω with values in C∞(X+ : τ).

Proof. Let W ⊂ NK(aq) be a complete set of representatives for W/WK∩H . Note
that for v ∈ W the V KM∩vHv−1

τ -valued function T ↓P,vfλ on A+
q (P ) is given by

the series on the right-hand side of (7.2) with m = e. It follows from condition
(c) of Definition 7.1 that a 7→ T ↓P,vfλ(a) defines a smooth function on A+

q (P )

with values in O(Ω) ⊗ V KM∩vHv−1

τ . According to Appendix A, the function λ 7→
T ↓P,vfλ( · ) is a holomorphic function on Ω with values in C∞(A+

q (P ), V KM∩vHv−1

τ ).
Hence λ 7→ T ↓P,W(fλ) is a holomorphic function on Ω with values in C∞(A+

q (P ),⊕
v∈W V KM∩vHv−1

τ ). The conclusion of the lemma now follows by application of
the isomorphism (2.9).

If Ω′,Ω are open subsets of a∗qC with Ω′ ⊂ Ω, then restriction from Ω × X+ to
Ω′ ×X+ obviously induces a linear map

ρΩ
Ω′ :C

ep
Q,Y (X+ : τ : Ω)→ Cep

Q,Y (X+ : τ : Ω′).(7.5)

Accordingly, the assignment

Ω 7→ Cep
Q,Y (X+ : τ : Ω),(7.6)

defines a presheaf of complex linear spaces on a∗QqC. Here we agree that (7.6) assigns
the trivial space to the empty set.

The following lemma will be useful at a later stage.

Lemma 7.5. Let Q ∈ Pσ and Y ⊂ ∗a∗QqC a finite subset.
(a) If Ω′,Ω are open subsets of a∗QqC with Ω′ 6= ∅, Ω connected and Ω′ ⊂ Ω, then

the restriction map (7.5) is injective. Moreover, dega(ρΩ
Ω′f) = dega(f) for all

f ∈ Cep
Q,Y (X+ : τ : Ω).

(b) The presheaf (7.6) is a sheaf.
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Proof. The injectivity of the restriction map follows by analytic continuation, in
view of Lemma 7.4. Let f ′ = ρΩ

Ω′f . Let P ∈ Pmin
σ , v ∈ NK(aq), s ∈ W/WQ and

ξ ∈ −sWQλ+ N∆(P ). Then it follows from (7.4) that

qs,ξ(P, v | f ′, · , λ) = qs,ξ(P, v | f, · , λ)(7.7)

for λ in a dense open subset of Ω′, hence for all λ ∈ Ω′. In particular, this implies
that the polynomial degree of the function on the left-hand side of the equation is
bounded by dega(f); hence dega(f ′) ≤ dega(f). To prove the converse inequality,
we note that the polynomial on the left-hand side of (7.7) is of degree at most
k′: = dega(f ′) by the definition of the latter number. Since Ω is connected, it
follows by analytic continuation that deg qs,ξ(P, v | f, · , λ) ≤ k′ for all λ ∈ Ω. Since
this holds for all P, v, σ, ξ, it follows that dega(f) ≤ k′ and we obtain (a).

Assertion (b) is equivalent with the assertion that the presheaf satisfies the lo-
calization property (see [31], p. 9). This is established in a straightforward manner,
by using (a).

We shall now discuss the action of invariant differential operators on families.
If f is a family in Cep

Q,Y (X+ : τ : Ω), and D ∈ D(X), then we define the family
Df : Ω×X+ → Vτ by

(Df)λ = D(fλ), (λ ∈ Ω).(7.8)

Proposition 7.6. Let f ∈ Cep
Q,Y (X+ : τ : Ω). Then, for every D ∈ D(X), the family

Df belongs to Cep
Q,Y (X+ : τ : Ω); moreover, dega(Df) ≤ dega(f).

Proof. Let D ∈ D(X). Then g = Df is a smooth function Ω×X+ → Vτ ; moreover,
for λ ∈ Ω the function gλ = Dfλ is τ -spherical. Thus, g satisfies condition (a) of
Definition 7.1 and it remains to establish properties (b) and (c). In view of Remark
7.2 it suffices to do this for v = e and arbitrary P ∈ Pmin

σ . Let k: = degaf.
It follows from condition (b) of Definition 7.1 that, for λ ∈ Ω, the function fλ

belongs to Cep(X+ : τ); moreover, its (P, e)-expansion is given by

fλ(ma) =
∑

s∈W/WQ

asλ−ρP
∑

ξ∈−sWQY+N∆(P )

a−ξqs,ξ(P, e | f, log a)(λ,m),(7.9)

for a ∈ A+
q (P ) and m ∈M. Let u: = µ′P (D) + u+ be the element of D1P associated

with D as in Proposition 4.10 with P in place of Q. In view of Corollary 4.9 its
expansion ep(u), defined as in (4.11), is the sum, as i ranges over a finite index set
I, of series of the form

ep(u)i =
∑

ν∈N∆(P )

a−νϕi,ν ⊗ Si,ν ⊗ ui,ν ⊗ vi,ν .

Here ϕi,ν ∈ C∞(Mσ), Si,ν ∈ End(Vτ ), ui,ν ∈ U(mσ) and vi,ν ∈ U(aq), and
deg(ui,ν) + deg(vi,ν) ≤ d: = deg(D) for all i, ν. By Lemma 4.12, the function gλ
belongs to Cep(X+ : τ), for λ ∈ Ω, and its (P, e) expansion results from (7.9) by
the formal application of the element ep(u). This gives, for λ ∈ Ω, m ∈ M and
a ∈ A+

q (P ), the neatly converging exponential polynomial expansion

gλ(ma) =
∑

s∈W/WQ

asλ−ρP
∑

η∈−sWQY+N∆(P )

a−η q̃s,η(log a)(λ,m),
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where q̃s,η is given by the following finite sum

q̃s,η(X)(λ,m)

: =
∑
i∈I

∑
ν∈N∆(P)

ξ∈−sWQY+N∆(P)
ν+ξ=η

ϕi,ν(m)Si,ν [ qs,ξ(P, e | f,X ;Tsλ−ρP−ξ(vi,ν), λ,m;ui,ν) ],

for λ ∈ Ω, X ∈ aq and m ∈M. Here we have used Harish-Chandra’s convention to
indicate by a semicolon on the left or right-hand side of a Lie group variable the
differentiation on the corresponding side, with respect to that variable, by elements
of the appropriate universal enveloping algebra. Moreover, given γ ∈ a∗qC we have
denoted by Tγ the automorphism of U(aq) determined by Tγ(X) = X + γ(X) for
X ∈ aq.

From the above formula it readily follows that q̃s,η(X,λ) is a smooth function
of (X,λ) with values in C∞(M,Vτ ); moreover, it is polynomial in X of degree at
most k and holomorphic in λ ∈ Ω. This establishes condition (b) of Definition 7.1
with v = e, arbitrary P ∈ Pmin

σ , and with

qs,η(P, e | g) = q̃s,η, (s ∈ W/WQ, η ∈ −sWQY + N∆(P )).

For condition (c) we note that the series∑
η∈−sWQY+N∆(P )

a−ηqs,η(P, e | g, log a)(7.10)

arises from the series ∑
ξ∈−sWQY+N∆(P )

a−ξqs,ξ(P, e | f, log a)(7.11)

by the formal application of ep(u) conjugated with multiplication by a−sλ+ρP . From
this we see that (7.10) arises from (7.11) by the formal application of the series∑

ν∈N∆(P )

a−ν
∑
i∈I

ϕi,ν ⊗ Si,ν ⊗ ui,ν ⊗ vi,ν(λ),

with vi,ν(λ) = Tsλ−ρP (vi,ν). We now observe that λ 7→ Tsλ−ρP |Ud(aQq) is a polyno-
mial End(Ud(aQq))-valued function of degree at most d. Hence there exists a finite
set J and elements pj ∈ Pd(a∗Qq) and Tj ∈ End(Ud(aQq)), for j ∈ J, such that

Tsλ−ρP |Ud(aQq) =
∑
j∈J

pj(λ)Tj .

Let Bi,ν,j be the continuous endomorphism of O(Ω, C∞(Mσ, Vτ )) defined by

Bi,ν,jψ(λ)(m) = pj(λ)ϕi,ν(m)Si,ν [ψ(λ)(m;ui,ν)].

Then the series (7.10) arises from the formal application of the series∑
ν∈N∆(P )

a−ν
∑
i∈I
j∈J

Bi,ν,j ⊗ Tj(vi,ν)

with coefficients in End(O(Ω, C∞(Mσ, Vτ )))⊗U(aQq) to (7.11), viewed as a series
with coefficients in O(Ω, C∞(Mσ, Vτ )). It follows from Lemmas 1.9 and 1.10 that
the resulting series is neatly convergent as a series on A+

q (P ) with coefficients in
O(Ω, C∞(Mσ, Vτ )). This establishes (c) with v = e and arbitrary P ∈ Pmin

σ .
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We will now describe the asymptotic behavior along walls for a family. If P,Q ∈
Pσ and σ ∈W/∼P |Q (see (6.1)), then for every subset Y ⊂ a∗qC we put

σ · Y : = {sη|aPq | s ∈ W, [s] = σ, η ∈ Y }.(7.12)

Theorem 7.7 (Behavior along the walls). Let Q ∈ Pσ, Ω ⊂ a∗QqC a nonempty
open subset and Y ⊂ ∗a∗QqC a finite subset. Let f ∈ Cep

Q,Y (X+ : τ : Ω) and let
k = dega(f).

Let P ∈ Pσ and v ∈ NK(aq). Then Exp(P, v | fλ) ⊂W (λ+Y )|aPq−ρP−N∆r(P )
for every λ ∈ Ω. Moreover, there exist unique functions

qσ,ξ(P, v | f) ∈ Pk(aPq)⊗O(Ω, C∞(XP,v,+ : τP )),

for σ ∈ W/∼P |Q and ξ ∈ −σ · Y + N∆r(P ), with the following property. For all
λ ∈ Ω, m ∈ XP,v,+ and a ∈ A+

Pq(RP,v(m)−1),

fλ(mav) =
∑

σ∈W/∼P |Q

aσλ−ρP
∑

ξ∈−σ·Y+N∆r(P )

a−ξ qσ,ξ(P, v | f, log a)(λ,m),(7.13)

where the ∆r(P )-exponential polynomial series with coefficients in Vτ is neatly con-
vergent on A+

Pq(RP,v(m)−1). In particular, if λ ∈ Ω′: = Ω ∩ a∗◦QqC(P,WY ), then

qσ,ξ(P, v | f)(X,λ) = qσλ|aPq−ρP−ξ(P, v | fλ, X),(7.14)

for X ∈ aPq.
Finally, for each σ ∈W/∼P |Q and every R > 1, the series∑

ξ∈−σ·Y+N∆r(P )

a−ξqσ,ξ(P, v | f, log a)(7.15)

converges neatly on A+
Pq(R−1) as a ∆r(P )-exponential polynomial series with coef-

ficients in O(Ω, C∞(XP,v,+[R] : τP )).

Proof. Let P ∈ Pσ and let v ∈ NK(aq). Fix a minimal parabolic subgroup P1 ∈
Pmin
σ , contained in P. Fix a set WP,v ⊂ NKP (aq) of representatives for WP /WP ∩

vWK∩Hv
−1. Then the natural map NK(aq)→W induces an embedding WP,vv ↪→

W/WK∩H .Therefore, we may fix a setW ⊂ NK(aq) of representatives forW/WK∩H
containing WP,vv.

Fix λ ∈ Ω for the moment. Then by Lemma 7.3, the function fλ belongs to
Cep(X+ : τ), and Exp(P1, w | fλ) ⊂ W (λ + Y ) − ρP1 − N∆(P1), for every w ∈
NK(aq). According to Theorem 3.5, for every u ∈ WP,v, the set Exp(P, v | fλ)P1,u

is contained in Exp(P1, uv | fλ)|aPq . Hence, by (3.21) with P and P1 in place of Q
and P, respectively, we infer that

Exp(P, v | fλ) ⊂ [W (λ + Y )− ρP1 − N∆(P1)]|aPq

= W (λ+ Y )|aPq − ρP − N∆r(P ).(7.16)

Notice that (7.14) is a consequence of (7.13), by Lemma 6.2. Therefore the
functions qσ,ξ(P, v | f) are unique. We will now establish their existence.

It follows form (7.16) that the elements of Exp(P, v | fλ) are all of the form
σλ|aPq − ρP − ξ, with σ ∈W/∼P |Q and ξ ∈ −σ · Y +N∆r(P ). Fix such elements σ
and ξ. Then by transitivity of asymptotics (cf. Theorem 3.5) we have, for u ∈ WP,v,
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X ∈ aPq, m ∈M and b ∈ ∗A+
Pq(∗P1), that

qσλ|aPq−ρP−ξ(P, v | fλ, X,mbu)

=
∑

ζ∈Exp(P1,uv | fλ)
ζ|aPq=σλ|aPq−ρP−ξ

bζqζ(P1, uv | fλ, X + log b,m),(7.17)

where the ∆P (P1)-exponential polynomial series in the variable b converges neatly
on ∗A+

Pq(∗P1). It follows from condition (b) in Definition 7.1 that, for ζ ∈
Exp(P1, uv | fλ),

qζ(P1, uv | fλ, X + log b,m)

=
∑

s∈W/WQ
µ∈−sWQY+N∆(P1)

sλ−ρP1
−µ=ζ

qs,µ(P1, uv | f,X + log b)(λ,m).(7.18)

Now assume that λ is contained in the full (cf. Lemma 6.3 and Section 18) subset
Ω′ of Ω. Then, if s ∈ W and µ ∈ −sWQY + N∆(P1) satisfy [sλ − ρP1 − µ]|aPq =
σλ|aPq − ρP − ξ, it follows that [s] = σ and µ|aPq = ξ; see Lemma 6.2. Hence,
combining (7.17) and (7.18) we infer that for λ ∈ Ω′, u ∈ WP,v, X ∈ aPq, m ∈ M
and b ∈ ∗A+

Pq(∗P1),

qσλ|aPq−ρP−ξ(P, v | fλ, X,mbu)

=
∑

s∈W/WQ
[s]=σ

bsλ−ρP1

∑
µ∈−sWQY+N∆(P1)

µ|aPq=ξ

b−µqs,µ(P1, uv | f,X + log b, λ)(m).(7.19)

It will be seen below that each inner sum in (7.19) converges neatly, so that the
separation of terms by the outer sum is justified. This formula will guide us towards
the definition of the functions qσ,ξ(P, v | f).

In the following we assume that s ∈ W/WQ and [s] = σ. For w ∈ W we define
the function Fs,w:A+

q (P1)× Ω→ V KM∩wHw−1

τ by

Fs,w(a, λ) =
∑

µ∈−sWQY+N∆(P1)

a−µqs,µ(P1, w | f, log a, λ)(e),

for a ∈ A+
q (P1), λ ∈ Ω.

The representation τ̃ : = 1⊗τ ofK on the complete locally convex spaceO(Ω)⊗Vτ
is smooth. We shall apply the results of Section 3, with τ̃ in place of τ. The series
defining Fs,w is a ∆(P1)-exponential polynomial series with coefficients inO(Ω)⊗Vτ .
By condition (c) of Definition 7.1 it converges neatly on A+

q (P1); hence Fs,w may
be viewed as an element of Cep(A+

q (P1), [O(Ω) ⊗ Vτ ]KM∩wHw−1
). In view of the

isomorphism (2.10), there exists a unique function Fs ∈ Cep(X+ : τ̃) such that
T ↓P1,w

(Fs)(a) = Fs(aw) = Fs,w(a), for w ∈ W and a ∈ A+
q (P1). From the definition

of Fs it follows that Exp(P1, w |Fs) ⊂ sWQY −N∆(P1), for every w ∈ W . Moreover,
for every w ∈ W and every µ ∈ −sWQY + N∆(P1),

q−µ(P1, w |Fs, X,m)(λ) = qs,µ(P1, w | f,X)(λ,m),(7.20)

for X ∈ aPq, m ∈ X0,w and λ ∈ Ω. By transitivity of asymptotics (cf. Theorem
3.5) applied to Fs, we have that Exp(P, v |Fs)P1,u ⊂ σ ·Y −N∆r(P ), for u ∈ WP,v.
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Moreover, by the same result it follows that, for ξ ∈ −σ · Y + N∆r(P ),

q−ξ(P, v |Fs)(X,mbu) =
∑

µ∈−sWQY+N∆(P1)
µ|aPq=ξ

b−µq−µ(P1, uv |Fs, X + log b,m),(7.21)

where the series on the right-hand side converges neatly as a ∆P (P1)-exponential
polynomial series in the variable b ∈ ∗A+

Pq(∗P1), with coefficients in C∞(X0,uv : τ̃M).
In particular, the asserted convergence of (7.19) follows.

Substituting (7.20) in the right-hand side of (7.19) and using (7.21) we find, for
λ ∈ Ω′, that

qσλ|aPq−ρP−ξ(P, v | fλ, X,mbu)

=
∑

s∈W/WQ
[s]=σ

bsλ−ρP1 q−ξ(P, v |Fs)(X,mbu)(λ).(7.22)

We are now ready to define the functions qσ,ξ(P, v | f).
Let 1 denote the trivial representation of K in C, and 1P its restriction to KP .

If s ∈W/WQ, we define the function ϕs ∈ O(a∗QqC, C
∞(XP,v,+ : 1P )) by

ϕs(λ, kbu) = bsλ−ρP1 ,(7.23)

for λ ∈ a∗QqC, u ∈ WP,v, k ∈ KP and b ∈ ∗A+
Pq(∗P1). Moreover, for σ ∈W/∼P |Q and

ξ ∈ −σ·Y +N∆r(P ) we define the function qσ,ξ(P, v | f): aPq×Ω→ C∞(XP,v,+ : τP )
by

qσ,ξ(P, v | f,X, λ)(m) =
∑

s∈W/WQ
[s]=σ

ϕs(λ,m) q−ξ(P, v |Fs, X,m)(λ),(7.24)

for X ∈ aPq, λ ∈ Ω and m ∈ XP,v,+.
If 1 < R ≤ ∞, then the locally convex space C∞(XP,v,+[R],O(Ω)⊗ Vτ ) is natu-

rally isomorphic with O(Ω, C∞(XP,v,+[R], Vτ )); see Appendix A. The isomorphism
induces in turn a natural isomorphism of locally convex spaces

C∞(XP,v,+[R] : τ̃P )) ' O(Ω, C∞(XP,v,+[R] : τP )).(7.25)

In particular, for R = ∞, we obtain that C∞(XP,v,+ : τ̃P ) is naturally isomorphic
with O(Ω, C∞(XP,v,+ : τP )). Thus, from (7.24) we deduce that qσ,ξ(P, v | f) is an
element of Pk(aPq)⊗O(Ω, C∞(XP,v,+ : τP )).

Combining (7.22), (7.23) and (7.24) we infer that (7.14) holds for X ∈ aPq,
λ ∈ Ω′. On the other hand, if λ ∈ Ω′, then it follows from (3.10) with P and fλ in
place of Q and f, that, for R > 1, m ∈ XP,v,+[R] and a ∈ A+

Pq(R−1),

fλ(mav) =
∑

σ∈W/∼P |Q

aσλ−ρP
∑

ξ∈−σ·Y+N∆r(P )

a−ξqσλ|aPq−ρP−ξ(P, v | fλ, log a)(m),

(7.26)

where the series converges neatly on A+
Pq(R−1), as a ∆r(P )-exponential polynomial

series with coefficients in Vτ (use (7.16) and Lemma 6.2). Substituting (7.14) in
(7.26) we obtain the identity (7.13) for λ ∈ Ω′, m ∈ XP,v,+[R] and a ∈ A+

Pq(R−1),
with the convergence as asserted.

Thus, it remains to show that the identity (7.13) extends to all λ ∈ Ω and that
the final assertion of the theorem holds. We will first establish the final assertion.
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It follows from Theorem 3.5 that the series∑
ξ∈−sWQY |aPq+N∆r(P )

a−ξq−ξ(P, v |Fs, log a)(7.27)

converges neatly on A+
Pq(R−1) as a ∆r(P )-exponential polynomial series with co-

efficients in the space (7.25). The series (7.15) arises as the sum over s ∈ W/WQ

with [s] = σ of the series in (7.27) multiplied by ϕs. Since multiplication by ϕs
induces a continuous linear endomorphism of the space (7.25), this establishes the
final assertion of the theorem.

From the final assertion it follows that, for every R > 1, the series on the right-
hand side of (7.13) defines a holomorphic function of λ ∈ Ω, for everym ∈ XP,v,+[R]
and a ∈ A+

Pq(R−1). For such m, a the function λ 7→ fλ(mav) is holomorphic in
λ ∈ Ω by Lemma 7.4; hence the identity (7.13) extends to all λ ∈ Ω, by density of
Ω′ in Ω.

Theorem 7.8 (Transitivity of asymptotics). Let Q, Ω, Y , f , P and v be as in
Theorem 7.7. Let P1 ∈ Pmin

σ be contained in P. Let σ ∈W/∼P |Q and ξ ∈ −σ ·Y +
N∆r(P ). Then for every X ∈ aPq, all u ∈ NKP (aq), b ∈ ∗A+

Pq(∗P1), m ∈ M and
λ ∈ Ω,

qσ,ξ(P, v | f,X)(λ,mbu)

=
∑

s∈W/WQ
[s]=σ

bsλ−ρP1

∑
µ∈−sWQY+N∆(P1)

µ|aPq=ξ

b−µ qs,µ(P1, uv | f,X + log b)(λ,m).

(7.28)

Moreover, for every s ∈ W/WQ with [s] = σ and every X ∈ aPq, the series∑
µ∈−sWQY+N∆(P1)

µ|aPq=ξ

b−µ qs,µ(P1, uv | f,X + log b)(7.29)

converges neatly on ∗A+
Pq(∗P1) as a ∆(P1)-exponential polynomial series in the vari-

able b with coefficients in O(Ω, C∞(X0,uv : τM)).

Proof. Fix u ∈ NKP (aq). Moreover, we fix a set WP,v as in the beginning of the
proof of Theorem 7.7 such that it contains the element u. We will also use the
remaining notation of the proof of the mentioned theorem.

Using (7.20) we see that, via the natural isomorphism of O(Ω, C∞(X0,uv : τM))
with C∞(X0,uv : τ̃M), the series (7.29) may be identified with the series with co-
efficients in C∞(X0,uv : τ̃M) that arises from the series on the right-hand side of
(7.21) by omitting the evaluation at m. The neat convergence of the latter series
was noted already. Moreover, the identity (7.28) follows by insertion of (7.21) in
the definition (7.24) of qσ,ξ.

The following result is an important consequence of ‘holomorphy of asymptotics.’

Lemma 7.9. Let Q ∈ Pσ, Y ⊂ ∗a∗QqC a finite subset and Ω ⊂ a∗QqC a nonempty
open subset. Let f ∈ Cep

Q,Y (X+ : τ : Ω) and let P ∈ Pσ, v ∈ NK(aq), and σ ∈
W/∼P |Q .
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Let ξ ∈ −σ · Y + N∆r(P ) and assume that there exists a λ0 ∈ a∗◦QqC(P,WY ) ∩Ω
such that

σλ0|aPq − ρP − ξ ∈ Exp(P, v | fλ0).(7.30)

Then there exists a full (see Section 18) open subset Ω0 of Ω such that

σλ|aPq − ρP − ξ ∈ Exp(P, v | fλ), (∀λ ∈ Ω0).

Proof. From (7.30) combined with (7.14) it follows that the Pk(aPq) ⊗
C∞(XP,v,+ : τP )-valued holomorphic function q:λ 7→ qσ,ξ(P, v | f, · , λ) does not
vanish at λ = λ0. Hence there exists a full open subset Ω1 ⊂ Ω such that q(λ) 6= 0 for
all λ ∈ Ω. Let Ω0: = Ω1 ∩ a∗◦QqC(P,WY ), then the conclusion follows by application
of (7.14).

We end this section with a result describing the behavior of the functions qσ,ξ
under the action of NK(aq). Let Q,P ∈ Pσ and u ∈ NK(aq), and put P ′ = uPu−1.
The left multiplication by u naturally induces a map W/∼P |Q→W/ ∼P ′|Q, which
we denote by σ 7→ uσ. Moreover, the endomorphism Ad(u−1)∗ of a∗qC restricts to
a linear map a∗PqC → a∗P ′qC, which we denote by η 7→ uη. With these notations, if
Y ⊂ ∗a∗QqC is a finite subset and σ ∈W/∼P |Q, then

u(σ · Y ) = (uσ) · Y ;

see also (7.12). For v ∈ NK(aq), let the map

ρτ,u:C∞(XP,v,+ : τP )→ C∞(XP ′,uv,+ : τP ′)

be defined by (3.25) with P in place of Q.
If Ω ⊂ a∗QqC is an open subset, let Ad(u−1)∗⊗1⊗ρτ,u denote the naturally induced

map from P (aPq)⊗O(Ω, C∞(XP,v,+ : τP )) to P (aP ′q)⊗O(Ω, C∞(XP ′,uv,+ : τP ′)).

Lemma 7.10. Let Q ∈ Pσ, Y ⊂ ∗a∗QqC a finite subset and Ω ⊂ a∗QqC a nonempty
open subset. Let f ∈ Cep

Q,Y (X+ : τ : Ω). If P ∈ Pσ and u, v ∈ NK(aq), then for all
σ ∈W/∼P |Q and ξ ∈ σ · Y,

quσ,uξ(uPu−1, uv | f) = [Ad(u−1)∗ ⊗ 1⊗ ρτ,u]qσ,ξ(P, v | f).

Proof. By combining (7.14) and Lemma 3.6 it follows that there exists a full open
subset Ω0 of Ω such that, for λ ∈ Ω0,

quσ,uξ(uPu−1, uv | f, · , λ) = [Ad(u−1)∗ ⊗ ρτ,u]qσ,ξ(P, v | f, · , λ).

The result now follows by holomorphy of the above expressions in λ and density of
Ω0.

8. Asymptotic globality

In this section we introduce the notion of asymptotic globality of a function
f ∈ Cep(X+ : τ) and of an analytic family fλ of such functions. The requirement of
globality on f is that the coefficients for the expansion along P , which are functions
on XP,+, extend smoothly to XP . The requirement on the family fλ is similar, but
the condition is allowed to fail at singular values of λ.

The properties discussed here are needed in the statement and proof of the
vanishing theorem in the next section.
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Definition 8.1. Let P ∈ Pσ and v ∈ NK(aq). A function f ∈ Cep(X+ : τ) is
said to be asymptotically global along (P, v) at an element ξ ∈ a∗PqC if, for every
X ∈ aPq, the Vτ -valued smooth function qξ(P, v | f,X) has a C∞-extension from
XP,v,+ to XP,v.

Remark 8.2. Since qξ(P, v | f,X) is polynomial inX,with values inC∞(XP,v,+ : τP ),
the requirement on qξ implies that qξ(P, v | f) is a polynomial C∞(XP,v : τP )-valued
function on aPq.

Note that for P minimal the condition of asymptotic globality along (P, v) is
automatically fulfilled, since XP,v,+ = XP,v.

Finally, if f ∈ Cep(X+ : τ), then f is asymptotically global along (G, e) at every
exponent if and only if f extends smoothly to X (use Remark 1.6).

The property of asymptotic globality is preserved under the action of D(X) in
the following fashion. If P ∈ Pσ, then by �∆r(P ) we denote the partial ordering on
a∗PqC, defined as in (1.6), with aPq and ∆r(P ) in place of a and ∆, respectively.

Proposition 8.3. Let f ∈ Cep(X+ : τ) and D ∈ D(X). Let P ∈ Pσ, v ∈ NK(aq)
and ξ0 ∈ a∗PqC. If f is asymptotically global along (P, v) at every exponent ξ ∈
Exp(P, v | f) with ξ0 �∆r(P ) ξ, then Df is asymptotically global along (P, v) at ξ0.

Proof. Let u: = µ′P (D) + u+ be the element of D1P associated with D as in Propo-
sition 4.10, with P in place of Q. The key idea in the present proof is that u has a
∆r(P )-exponential polynomial expansion with coefficients that are globally defined
smooth functions on MPσ by Corollary 4.9. More precisely, the expansion ep(u) is
a finite sum, as i ranges over a finite index set I of terms of the form

ep(u)i =
∑

ν∈N∆r(P )

a−νϕi,ν ⊗ Si,ν ⊗ ui,ν ⊗ vi,ν .

Here ϕi,ν ∈ C∞(MPσ), Si,ν ∈ End(Vτ ), ui,ν ∈ U(mPσ) and vi,ν ∈ U(aPq),
and deg(ui,ν) + deg(vi,ν) ≤ deg(D) for all i, ν. By Lemma 4.12, Df belongs to
Cep(X+ : τ) and its (P, e)-expansion results from the (P, e)-expansion of f by the
formal application of the element ep(u). Hence the asymptotic coefficient of ξ0 is
given by the finite sum

qξ0(P, e |Df)(X,m) =
∑

ξ∈Exp(P,e | f)
ν∈N∆r(P )
ξ−ν=ξ0

∑
i∈I

ϕi,ν(m)Si,ν [ qξ(P, e | f)(X ;Tξ(vi,ν),m;ui,ν) ].

Now let f satisfy the hypothesis of the proposition. The ξ’s occurring in the above
sum belong to ξ0 + N∆r(P ), hence satisfy ξ0 �∆r(P ) ξ. By hypothesis, the asso-
ciated coefficients qξ(P, e | f) all extend smoothly to aPq ×MPσ; see Remark 8.2.
Therefore, so does qξ0(P, e |Df). This establishes the result for arbitrary P ∈ Pσ
and the special choice v = e. The result with general v ∈ NK(aq) now follows by
application of Lemma 3.6 (cf. Lemma 8.7 (a)).

We shall also introduce a notion of asymptotic globality for families from the
space Cep

Q,Y (X+ : τ : Ω) introduced in Definition 7.1, with Ω ⊂ a∗QqC an open subset.

Definition 8.4. Let Q ∈ Pσ, Y a finite subset of ∗a∗QqC and Ω ⊂ a∗QqC a nonempty
open subset. Let P ∈ Pσ, v ∈ NK(aq) and σ ∈W/∼P |Q .

We will say that a family f ∈ Cep
Q,Y (X+ : τ : Ω) is σ-global along (P, v), if there

exists a dense open subset Ω0 of Ω such that, for every λ ∈ Ω0, the function fλ is
asymptotically global along (P, v) at each exponent ξ ∈ σλ|aPq +σ·Y −ρP−N∆r(P ).
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Remark 8.5. If Y1 and Y2 are finite subsets of ∗a∗QqC with Y1 ⊂ Y2, then obviously

Cep
Q,Y1

(X+ : τ : Ω) ⊂ Cep
Q,Y2

(X+ : τ : Ω).

If f belongs to the first of these spaces, then the condition of σ-globality along
(P, v) relative to Y1 is equivalent to the similar condition relative to Y2. This is
readily seen by using Lemmas 6.2 and 6.3. From this we see that the notion of
σ-globality along (P, v) extends to the space

Cep
Q (X+ : τ : Ω): =

⋃
Y⊂∗a∗QqC finite

Cep
Q,Y (X+ : τ : Ω).(8.1)

The property of asymptotic globality for families is also stable under the action
of D(X).

Corollary 8.6. Let Q ∈ Pσ, Y a finite subset of ∗a∗QqC and Ω ⊂ a∗QqC a nonempty
open subset. Let P ∈ Pσ, v ∈ NK(aq) and σ ∈W/∼P |Q .

Let f ∈ Cep
Q,Y (X+ : τ : Ω) be σ-global along (P, v). Then for every D ∈ D(X) the

family Df ∈ Cep
Q,Y (X+ : τ : Ω) is σ-global along (P, v) as well.

Proof. It follows from Proposition 7.6 that Df belongs to Cep
Q,Y (X+ : τ : Ω). Ac-

cording to Theorem 7.7, both sets Exp(P, v | fλ) and Exp(P, v |Dfλ) are contained
in the set Eλ: = W (λ + Y )|aPq − ρP − N∆r(P ), for every λ ∈ Ω.

Let Ω0 be as in Definition 8.4. Then the set Ω′0: = Ω0 ∩ a∗◦QqC(P,WY ) is open
dense in Ω by Lemma 6.3. Let λ ∈ Ω′0 and let ξ0 ∈ σλ|aPq +σ ·Y −ρP −N∆r(P ). If
ξ ∈ Exp(P, v | fλ) satisfies ξ0 � ξ, then ξ ∈ σλ|aPq +σ ·Y −ρP −N∆r(P ) by Lemma
6.2. By hypothesis, fλ is asymptotically global along (P, v) at the exponent ξ. It
now follows by application of Proposition 8.3 that Dfλ is asymptotically global
along (P, v) at ξ0.

The following lemma describes the behavior of asymptotic globality under the
action of NK(aq).

Lemma 8.7. Let P ∈ Pσ and u, v ∈ NK(aq). Put P ′ = uPu−1 and v′ = uv.
(a) Let f ∈ Cep(X+ : τ) and ξ ∈ a∗PqC. If f is asymptotically global along (P, v)

at ξ, then f is asymptotically global along (P ′, v′) at uξ.
(b) Let Q ∈ Pσ, Ω ⊂ a∗QqC a nonempty open subset, Y ⊂ ∗a∗QqC a finite subset,

f ∈ Cep
Q,Y (X+ : τ : Ω) and σ ∈ W/∼P |Q . If f is σ-global along (P, v), then f

is uσ-global along (P ′, v′).

Proof. From (3.25) with P in place of Q it is readily seen that ρτ,u maps
C∞(XP,v : τP ) to C∞(XP ′,v′ : τP ′). Then (a) and (b) follow immediately from Lem-
mas 3.6 and 7.10, respectively.

We end this section with the following result, which shows that the globality
condition is fulfilled for a certain natural class of τ -spherical functions. From the
text preceding Lemma 5.5 we recall that b is a maximal abelian subspace of q

containing aq and that if µ ∈ b∗C , then by Iµ we denote the kernel of the character
γ( · : µ) of D(X). Thus Iµ is an ideal in D(X) of codimension one (over C).

Proposition 8.8. Let µ ∈ b∗C and let f ∈ E(X : τ : Iµ). Then f |X+ ∈ Cep(X+ : τ).
Moreover, this function is asymptotically global along all pairs (P, v) ∈ Pσ×NK(aq)
and at all exponents ξ ∈ a∗PqC.
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Proof. The first statement follows immediately from Lemma 5.3. By Lemma 8.7 (a)
it suffices to consider v = e and arbitrary P ∈ Pσ. Let ψ ∈ Vτ be fixed. Then it suf-
fices to prove that the scalar valued function m 7→ qξ(X,m): = 〈qξ(P, e|f,X,m) |ψ〉
on XP,+ has a C∞ extension to XP , for each ξ ∈ a∗PqC, X ∈ aPq. It follows from
Theorem 3.4 that

〈f(ma) |ψ〉 =
∑

ξ∈Y−N∆r(P )

aξqξ(log a,m).(8.2)

On the other hand, it follows from [5], Lemma 12.3, that [5], Thm. 12.8 can be
applied to the K-finite function F : x 7→ 〈f(x) |ψ〉. By uniqueness of asymptotics
(see Lemma 1.7 and its proof) the expansion (8.2) coincides with that of [5], Thm.
12.8. We conclude that, in the notation of loc. cit., qξ(X,m) = pµ|aq ,ξ

(P |F,m,X)
for all X ∈ aPq, m ∈ XP,+. The function x 7→ pµ|aq ,ξ

(P |F, x,X) is smooth on G.
From this the smooth extension of qξ(X,m) follows immediately.

9. A vanishing theorem

In this section we formulate and prove the central theorem of the paper, the
vanishing theorem (Theorem 9.10). It concerns families fλ of the type introduced
in Definition 7.1, with further conditions introduced in Definitions 9.1, 9.5 and 9.9.
We assume that Q is a σ-parabolic subgroup containing Aq.

As before (cf. Section 5), let b be a maximal abelian subspace of q containing aq.
By ∗aQq and ∗bQ we denote the orthocomplements of aQq in aq and b, respectively.
Let bk: = b ∩ k; then

∗bQ = bk ⊕ ∗aQq.

We write DQ for the collection

DQ: = {δ: ∗b∗QC → N | supp δ finite}(9.1)

of functions δ: ∗b∗QC → N with finite support supp δ. For δ ∈ DQ we put

|δ|: =
∑

ν∈supp δ

δ(ν).

For δ ∈ DQ and λ ∈ a∗QqC we define the ideal Iδ,λ in D(X) as the following product
of ideals

Iδ,λ: =
∏

ν∈supp δ

(Iν+λ)δ(ν).(9.2)

If δ = 0, this ideal is understood to be the full ring D(X). Being a product of cofinite
ideals in the Noetherian ring D(X), the ideal Iδ,λ is cofinite.

Definition 9.1. Let Ω ⊂ a∗QqC be a nonempty open subset and δ ∈ DQ. For every
finite subset Y ⊂ ∗a∗QqC we define

EQ,Y (X+ : τ : Ω : δ)(9.3)

to be the space of families f ∈ Cep
Q,Y (X+ : τ : Ω) (cf. Def. 7.1) such that for every λ ∈

Ω the function fλ:x 7→ f(λ, x) is annihilated by the cofinite ideal (9.2). Moreover,
we define

EQ(X+ : τ : Ω : δ): =
⋃

Y⊂∗a∗QqC finite

EQ,Y (X+ : τ : Ω : δ).
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Note that the space (9.3) depends on Q through its σ-split component AQq. If
ν ∈ ∗b∗QC, we denote by δν the characteristic function of the set {ν}. Then δν ∈ DQ.

Moreover, if δ ∈ DQ and ν ∈ supp δ, then δ − δν ∈ DQ and |δ − δν | = |δ| − 1.

Lemma 9.2. Let f ∈ EQ,Y (X+ : τ : Ω : δ).
(a) If D ∈ D(X), then Df ∈ EQ,Y (X+ : τ : Ω : δ).
(b) If D ∈ D(X) and ν ∈ supp δ, then the function g: Ω×X+ → Vτ defined by

g(λ, x): = [D − γ(D : ν + λ)]fλ(x), (λ ∈ Ω, x ∈ X+),(9.4)

belongs to EQ,Y (X+ : τ : Ω : δ − δν).

Proof. Let D ∈ D(X). By Proposition 7.6, the family Df belongs to Cep
Q,Y (X+ :

τ : Ω). Moreover, if λ ∈ Ω and D′ ∈ Iδ,λ, then D′(Df)λ = D′Dfλ = DD′fλ = 0
and we see that assertion (a) holds.

The function λ 7→ γ(D : ν + λ) is polynomial on a∗QqC, hence holomorphic on
Ω and it follows that G: (λ, x) 7→ γ(D : ν + λ)f(λ, x) belongs to Cep

Q,Y (X+ : τ : Ω).
Hence g = Df−G belongs to the latter space as well. Furthermore, if D′ ∈ Iδ−δν ,λ,
then D′′: = D′(D − γ(D : ν + λ)) ∈ Iδ,λ, and we see that D′gλ = D′′fλ = 0. Hence
(b) holds.

Remark 9.3. It follows from Lemma 9.2 (a) that (7.8) defines a representation of
D(X) in EQ(X+ : τ : Ω : δ), leaving the subspaces EQ,Y (X+ : τ : Ω : δ) invariant.

Lemma 9.4. Let Q ∈ Pσ, δ ∈ DQ and Ω a connected nonempty open subset of
a∗QqC. Assume that f ∈ Cep

Q (X+ : τ : Ω) (see (8.1)). If fλ is annihilated by Iδ,λ for
λ in a nonempty open subset Ω′ of Ω, then f ∈ EQ(X+ : τ : Ω : δ).

Proof. Fix a finite subset Y ⊂ ∗a∗QqC such that f ∈ Cep
Q,Y (X+ : τ : Ω). We proceed

by induction on |δ|.
First, assume that |δ| = 0. Then Iδ,λ = D(X) for all λ and hence f |Ω′×X+ = 0.

Since Ω is connected, this implies that f = 0; see Lemma 7.4.
Next assume that |δ| = k ≥ 1 and assume the result has already been established

for all δ ∈ DQ with |δ| < k. Fix ν ∈ supp δ and put δ′ = δ − δν , then |δ′| < k.
Let D ∈ D(X) and define g as in (9.4). Then g ∈ Cep

Q,Y (X+ : τ : Ω), as seen in the
proof of Lemma 9.2. On the other hand, it follows from (b) of that lemma that
g|Ω′×X+ ∈ EQ,Y (X+ : τ : Ω′ : δ′). Hence g ∈ EQ(X+ : τ : Ω : δ′) by the induction
hypothesis. Fix λ ∈ Ω. Then it follows, for D′ ∈ Iδ′,λ, that D′(D−γ(D : ν+λ))fλ =
D′gλ = 0. Since D was arbitrary, we conclude that fλ is annihilated by the ideal
Iδ′,λIν+λ = Iδ,λ.

We define the following subset of Pσ, consisting of the parabolic subgroups whose
σ-split rank is of codimension one,

P1
σ: = {P ∈ Pσ | dim(aq/aPq) = 1}.

Definition 9.5. Let Q ∈ Pσ, Ω ⊂ a∗QqC a nonempty open subset and δ ∈ DQ. By
EQ(X+ : τ : Ω : δ)glob we denote the space of functions f ∈ EQ(X+ : τ : Ω : δ) (see
Definition 9.1) satisfying the following condition.

For every s ∈ W and every P ∈ P1
σ with s(aQq) 6⊂ aPq, the family f is

[s]-global along (P, v), for all v ∈ NK(aq); here [s] denotes the image of s in
W/∼P |Q = WP \W/WQ.
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If Y ⊂ ∗a∗QqC is a finite subset, we define

EQ,Y (X+ : τ : Ω : δ)glob: = EQ,Y (X+ : τ : Ω : δ) ∩ EQ(X+ : τ : Ω : δ)glob.

Remark 9.6. Note that EQ(X+ : τ : Ω : δ)glob depends on Q through its σ-split com-
ponent aQq.

The equality W/∼P |Q = WP \W/WQ follows from Lemma 6.5. Note that the
condition s(aQq) 6⊂ aPq on s factors to a condition on its class in WP \W/WQ.

The following result reduces the globality condition of Definition 9.5 to a condi-
tion involving a smaller set of (s, P ) ∈W ×P1

σ. Its formulation requires some more
notation.

Let ∆ be a fixed basis for the root system Σ, let Σ+ be the associated system of
positive roots and a+

q the associated open positive chamber. Let P0 be the unique
element of Pmin

σ with ∆(P0) = ∆. A σ-parabolic subgroup Q is said to be standard
if it contains P0; of course then Q ∈ Pσ. Given such a Q, we write ∆Q for the subset
of ∆ consisting of the roots vanishing on aQq and ∆(Q) for its complement.

If α is any root in ∆, we write nα for the sum of the root spaces gβ where
β ranges over the set Σ+ \ Nα. Moreover, we put Nα: = exp(nα) and write M1α

for the centralizer in G of the root hyperplane kerα. Then Pα = M1αNα is the
standard parabolic subgroup with ∆Pα = {α}. We write Pα = MαAαNα and Pα =
MσαAαqNα for the Langlands and σ-Langlands decompositions of Pα, respectively.
Accordingly, aαq = kerα and ∗aαq = (kerα)⊥. Finally, we write Wα = WPα for the
centralizer of kerα in W.

Lemma 9.7. Let Q ∈ Pσ be a standard parabolic subgroup, let Ω ⊂ a∗QqC be a
nonempty open subset, δ ∈ DQ and f ∈ EQ(X+ : τ : Ω : δ). Then f belongs to
EQ(X+ : τ : Ω : δ)glob if and only if the following condition is fulfilled.

For every s ∈ W and every α ∈ ∆ with s−1α|aQq 6= 0, the family f is
[s]-global along (Pα, v), for all v ∈ NK(aq); here [s] denotes the image
of s in W/∼Pα|Q = Wα\W/WQ.

Proof. We must show that the condition of Definition 9.5 is fulfilled if and only if
the above condition holds. For this we first observe that for α ∈ ∆ and s ∈ W,

s−1α|aQq 6= 0 ⇐⇒ s(aQq) 6⊂ aαq.

The ‘only if part’ is now immediate. For the ‘if part’, assume that the above
condition is fulfilled. Let (s, P ) ∈ W × P1

σ be such that s(aQq) 6⊂ aPq. There exist
α ∈ ∆ and t ∈ W such that tP t−1 = Pα. It follows that ts(aQq) 6⊂ taPq = kerα,
hence (ts)−1α = α ◦ (ts) is not identically zero on aQq. From the hypothesis it now
follows that f is [ts]-global along (tP t−1, v), for all v ∈ NK(aq). By Lemma 8.7 it
follows that f is [s]-global along (P,w), for all w ∈ NK(aq).

Lemma 9.8. Let Q ∈ Pσ, Ω ⊂ a∗QqC a nonempty open subset and δ ∈ DQ. Then the
space EQ(X+ : τ : Ω : δ)glob is D(X)-invariant. Moreover, EQ,Y (X+ : τ : Ω : δ)glob is
a D(X)-submodule, for every finite subset Y ⊂ ∗a∗QqC.

Proof. This follows by combining the D(X)-invariance of the space EQ,Y (X+ : τ :
Ω : δ) with Proposition 8.3.

Definition 9.9. Let Q ∈ Pσ. An open subset Ω of a∗QqC is called Q-distinguished
if it is connected and if for every α ∈ Σ(Q) the function λ 7→ 〈Reλ , α〉 is not
bounded from above on Ω.
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In particular, a connected open dense subset of a∗QqC is Q-distinguished. In the
following theorem we assume that QW ⊂ NK(aq) is a complete set of representatives
for WQ\W/WK∩H .

Theorem 9.10 (Vanishing theorem). Let Q ∈ Pσ and δ ∈ DQ (see (9.1)). Let
Ω ⊂ a∗QqC be a Q-distinguished open subset and let f ∈ EQ(X+ : τ : Ω : δ)glob (see
Definition 9.5). Assume that there exists a nonempty open subset Ω′ ⊂ Ω such that,
for each v ∈ QW ,

λ− ρQ /∈ Exp(Q, v | fλ), (λ ∈ Ω′).(9.5)

Then f = 0.

The proof of this theorem will be given after the following lemmas on which it is
based. We may and shall assume that Q is standard. Thus, Q contains the minimal
standard σ-parabolic subgroup P0 which will be denoted by P in the rest of this
section.

Lemma 9.11. Let Ω ⊂ a∗QqC be a nonempty connected open subset, δ ∈ DQ and as-
sume that |δ| = 1. Let Y ⊂ ∗a∗QqC be a finite subset and let f ∈ EQ,Y (X+ : τ : Ω : δ).
Moreover, let v ∈ NK(aq) and assume that there exist t ∈ WQ, η ∈ Y, µ ∈ N∆ and
u ∈ NKQ(aq) such that

λ+ tη − ρ− µ ∈ Exp(P, uv | fλ)(9.6)

for λ in some nonempty open subset of Ω. Then there exists a full (see Section 18)
open subset Ω0 ⊂ Ω such that

λ− ρQ ∈ Exp(Q, v | fλ), (λ ∈ Ω0).

Proof. Let ν ∈ ∗b∗QC be the unique element such that supp δ = {ν}. Fix t, η, µ and
u with the mentioned property. Replacing µ by a �∆-smaller element if necessary
we may in addition assume that µ is �∆-minimal subject to the condition that (9.6)
holds for λ in some nonempty open subset of Ω. By holomorphy of asymptotics (see
Lemma 7.9) it follows that (9.6) holds for λ in a full open subset Ω′ of Ω. Moreover,
using the minimality of µ and applying Lemma 6.2 we see that for every λ in the
full open subset Ω0: = Ω′ ∩ a∗◦QqC(P,WY ) of Ω,

λ+ tη − ρ− µ ∈ ExpL(P, uv | fλ).

Since fλ is annihilated by Iδ,λ = Iν+λ, this implies, in view of Lemma 5.5, that
there exists a finite subset L ⊂ b∗kC such that

ν + λ ∈W (b)(L+ λ+ tη − µ), (λ ∈ Ω0).

For Λ0 ∈ L, w ∈W (b) we define Ω0(Λ0, w) to be the set of λ ∈ Ω0 satisfying

ν + λ = w(Λ0 + λ+ tη − µ).(9.7)

The union of these sets, over Λ0 ∈ L, w ∈ W (b), equals Ω0. By finiteness of the
union, we may select Λ0 and w such that Ω0(Λ0, w) has a nonempty interior in Ω0.
Since Ω0(Λ0, w) is also the intersection of Ω0 with an affine linear subspace of b∗C ,
it must be all of Ω0. Hence for all λ1, λ2 ∈ Ω0 we have w(λ1 − λ2) = λ1 − λ2. Since
Ω0 is a nonempty open subset of a∗QqC this implies that w belongs to WQ(b), the
centralizer of aQq in W (b). From (9.7) we now deduce that −wµ = ν −wΛ0−wtη.
The expression on the right-hand side of this equality has zero restriction to aQq.
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Therefore, so has wµ, and we conclude that also µ|aQq = 0. Combining this fact
with (9.6) and transitivity of asymptotics (see Theorem 3.5) we conclude that

λ− ρQ = [λ+ tη − ρ− µ]|aQq ∈ Exp(Q, v | fλ),

for all λ ∈ Ω0.

For the formulation of the next lemma, we need the following definition.

Definition 9.12. Let Ω ⊂ a∗QqC and s0 ∈ W be given. The subset W (Ω, s0) of
W is defined as follows. Let s′ ∈ W . Then s′ ∈ W (Ω, s0) if and only if there
exists a chain s1, . . . , sk of elements in W , with sjs

−1
j−1 = sαj a simple reflection

(j = 1, . . . , k) and with sk = s′, such that the following condition (9.8) holds for
each of the pairs (s, α) = (sj−1, αj) ∈W ×∆, j = 1, . . . , k.

If s−1α|aQq 6= 0, then λ 7→ Re 〈sλ , α〉 is not bounded from below on Ω.(9.8)

Notice that if Ω is dense in a∗QqC, then W (Ω, s0) = W for all s0 ∈ W . Indeed,
(9.8) is then fulfilled by all elements α ∈ ∆. Hence, in order to verify the conditions
of Definition 9.12 for s′ ∈ W arbitrary, we may choose as sα1 , . . . , sαk the elements
in a reduced expression s′s−1

0 = sαk · · · sα1 , and then define sj = sαj · · · sα1s0.

Lemma 9.13. Let Ω ⊂ a∗QqC be a nonempty connected open subset, Y ⊂ ∗a∗QqC a
finite subset, and δ ∈ DQ. Let f ∈ EQ,Y (X+ : τ : Ω : δ)glob and s ∈W. Assume that
there exist t ∈WQ, η ∈ Y , µ ∈ N∆ and w ∈ NK(aq) such that

sλ+ stη − ρ− µ ∈ Exp(P,w | fλ),(9.9)

for all λ in some nonempty open subset of Ω. Then for every s1 ∈ W (Ω, s) there
exist t1 ∈ WQ, η1 ∈ Y, µ1 ∈ N∆ and w1 ∈ NK(aq), such that

s1λ+ s1t1η1 − ρ− µ1 ∈ Exp(P,w1 | fλ),(9.10)

for all λ in a full open subset of Ω. In particular, if Ω is dense in a∗QqC, then the
above conclusion holds for every s1 ∈ W .

Proof. In the proof we will frequently use the following consequence of Lemma 7.9,
based on holomorphy of asymptotics. If s1 ∈ W, t1 ∈ WQ, η1 ∈ Y, µ1 ∈ N∆ and
w1 ∈ NK(aq), then (9.10) holds for λ in a full open subset of Ω as soon as it holds
for a fixed λ in the full open subset Ω ∩ a∗◦QqC(P,WY ) of Ω. We now turn to the
proof.

If s1 = s, or more generally, if s1 ∈ sWQ, then the conclusion readily follows by
the previous remark. By Definition 9.12 we now see that it suffices to prove the
lemma for s1 = sαs, with α ∈ ∆ such that (9.8) holds. There are two cases to
consider, namely that s−1α|aQq equals zero or not. In the first case, s1 = sss−1α ∈
sWQ and the conclusion is valid. We may thus assume that we are in the second
case, i.e., s1 = sαs with

s−1α|aQq 6= 0.(9.11)

We will complete the proof by showing that the following assumption leads to a
contradiction.

Assumption. For all t1 ∈WQ, η1 ∈ Y, µ1 ∈ N∆ and w1 ∈ NK(aq) there exists no
nonempty open subset Ω′ of Ω such that (9.10) holds for λ ∈ Ω′.
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Let Ξ be the set of elements (stη − µ)|aαq with t ∈ WQ, η ∈ Y, µ ∈ N∆ such
that (9.9) holds for λ in a nonempty open subset of Ω, for some w ∈ NK(aq).
Then Ξ is a nonempty subset of a∗αqC contained in a set of the form X −N∆r(Pα),
with X ⊂ a∗αqC finite. Hence we may select t ∈ WQ, η ∈ Y and µ ∈ N∆ such
that (stη−µ)|aαq is �∆r(Pα)-maximal in Ξ. According to the first paragraph of the
proof, there exists w ∈ NK(aq) such that (9.9) is valid for λ in a full open subset
Ω0 of Ω. For λ ∈ Ω0 we put

ξ(λ) = [sλ+ stη − ρ− µ]|aαq .

Then by transitivity of asymptotics (see Theorem 3.5) it follows that

ξ(λ) ∈ Exp(Pα, w | fλ)

for λ ∈ Ω0. In the following we shall investigate the coefficient of the expansion of
fλ along (Pα, w), for λ ∈ Ω0, given by

ϕλ(m): = qξ(λ)(Pα, w | fλ, · ,m).

Here ϕλ is a nontrivial τPα-spherical function on Xα,w,+ with values in Pk(aαq), for
k = degaf ; see Thm. 3.4 (b).

It follows from (9.11) and the asymptotic globality assumption on f (see Lemma
9.7), that actually, ϕλ extends to a smooth function on Xα,w, for every λ in a dense
open subset Ω′0 of Ω0. This observation will play a crucial role at a later stage of
this proof.

Let

Ω1: = Ω′0 ∩ a∗◦QqC(P,WY ) ∩ a∗◦QqC(Pα,WY ).

The second and third sets in this intersection are full open subsets of a∗QqC; see
Lemma 6.3. Hence Ω1 is a dense open subset of Ω. We claim that for λ ∈ Ω1 the
following holds. If s′ ∈ W, t′ ∈ WQ, η

′ ∈ Y, µ′ ∈ N∆ and w′ ∈ NK(aq) are such
that {

s′λ+ s′t′η′ − ρ− µ′ ∈ Exp(P,w′ | fλ),
ξ(λ) �∆r(Pα) (s′λ+ s′t′η′ − ρ− µ′)|aαq ,

(9.12)

then

s′ ∈ sWQ and (s′t′η′ − µ′)|aαq = (stη − µ)|aαq .(9.13)

To prove the claim, let s′, t′, η′, µ′, w′ satisfy (9.12). Then there exists a ν ∈ N∆(Pα)
such that s′λ+s′t′η′−ρ−µ′−ν and sλ+stη−ρ−µ have the same restriction ξ(λ)
to aαq. By the definition of Ω1 this implies that s′ and s define the same class in
W/ ∼Pα|Q; see Lemma 6.2. The latter set equals Wα\W/WQ, by Lemma 6.5, hence
s′ belongs to sαsWQ = s1WQ or to sWQ. In the first case it follows that s′λ = s1λ,
hence s1λ+ s1t

′′η′−ρ−µ′ ∈ Exp(P,w′ | fλ) for some t′′ ∈ WQ. This assertion then
holds for λ in a full open subset of Ω1, contradicting the above assumption.

It follows that we are in the second case s′ ∈ sWQ, hence s′ = st′′ for some
t′′ ∈ WQ. The element (s′t′η′ − µ′)|aαq = (st′′t′η′ − µ′)|aαq therefore belongs to Ξ;
from (9.12) it follows that it dominates the maximal element (stη − µ)|aαq , hence
is equal to that element. This implies (9.13), hence establishes the claim.

It follows from the above claim that, for λ ∈ Ω1, the exponent ξ(λ) is ac-
tually a leading exponent of fλ along (Pα, w). To see this, let λ ∈ Ω1 and let
ξ ∈ Exp(Pα, w | fλ) be an exponent with ξ(λ) �∆r(Pα) ξ. Then, in view of Theo-
rem 3.5, there exist s′ ∈ W, t′ ∈ WQ, η

′ ∈ Y and µ′ ∈ N∆ such that the element
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s′λ + s′t′η′ − ρ − µ′ restricts to ξ on aαq and belongs to Exp(P,w′ | fλ) for some
w′ ∈ W . It now follows from the claim established above that ξ = ξ(λ).

Thus, we see that ξ(λ) is a leading exponent indeed. Consequently, by Lemma
5.7 the function ϕλ is D(Xα,w)-finite, for every λ ∈ Ω1. We proceed by investigating
the exponents of its expansion.

Select a complete set Wα,w of representatives for Wα/(Wα ∩ WK∩wHw−1) in
NK(aq). We put ∗P = P ∩Mα. Then by transitivity of asymptotics (cf. Theorem
3.5) we see that for the set of (∗P, u)-exponents of ϕλ, as u ∈ Wα,w, the following
inclusion holds:

Exp(∗P, u |ϕλ) ⊂ {ξ|∗aαq | ξ ∈ Exp(P, uw | fλ) ξ|aαq = ξ(λ)|aαq}.
Hence, for λ ∈ Ω1, every exponent in Exp(∗P, u |ϕλ) is of the form (s′λ + s′t′η′ −
ρ− µ′)|∗aαq with s′ ∈ W, t′ ∈WQ, η

′ ∈ Y and µ′ ∈ N∆ satisfying{
s′λ+ s′t′η′ − ρ− µ′ ∈ Exp(P, uw | fλ),
[s′λ+ s′t′η′ − ρ− µ′]|aαq = ξ(λ)|aαq .

It follows from the claim established above that (9.13) holds.
We have thus shown that for every λ ∈ Ω1 the exponents in Exp(∗P, u |ϕλ) are

of the form (sλ+ st′η′ − ρ− µ′)|∗aαq with t′ ∈ WQ, η
′ ∈ Y, µ′ ∈ N∆ satisfying

[st′η′ − µ′]|aαq = [stη − µ]|aαq .

From this it follows that the restriction µ′|aαq of the µ′ occurring runs through a
finite subset of N∆r(Pα) = N[∆ \ {α}]|aαq , independent of λ. Hence there exists a
finite subset S′ ⊂ N∆ such that µ′ runs through S′ − Nα. We thus see that there
exists a finite subset S ⊂ ∗a∗αqC such that, for every λ ∈ Ω1,⋃

u∈Wα,w

Exp(∗P, u |ϕλ) ⊂ sλ|∗aαq + S − Nα.(9.14)

From (9.8) and (9.11) it now follows that we may select a nonempty open subset
Ω2 of the dense open subset Ω1 of Ω such that, for every λ ∈ Ω2, each u ∈ Wα,w

and all ξ ∈ Exp(∗P, u |ϕλ),

〈Re ξ + ∗ρ , α〉 < 0.

Since ϕλ is D(Xα,w)-finite this implies that ϕλ is square integrable on Xα,w (see [3],
Thm. 6.4) with p = 2; hence ϕλ a Schwartz function for λ ∈ Ω2; see [3], Thm. 7.3.

On the other hand, from (9.11) it follows that the linear map λ 7→ sλ|∗aαq is sur-
jective from a∗QqC onto ∗a∗αqC. Therefore, the set {sλ|∗aαq | λ ∈ Ω2} has a nonempty
interior in ∗a∗αqC. Combining this observation with (9.14) we infer that there exists
a nonempty open subset Ω3 ⊂ Ω2, such that the sets

⋃
u∈Wα,w

Exp(∗P, u |ϕλ),
for λ ∈ Ω3, are mutually disjoint. Now these sets are nonempty, since ϕλ 6= 0,
for λ ∈ Ω3. Therefore, the union of these sets, as λ ∈ Ω3, is uncountable. This
contradicts Lemma 5.8, applied to the space Xα,w.

Lemma 9.14. Assume that Ω ⊂ a∗QqC is Q-distinguished (see Definition 9.9).
Then e ∈W (Ω, s0) for all s0 ∈W .

Proof. Let k = l(s0) denote the length of s0, and let s0 = sα1 · · · sαk be a reduced
expression for s0. Put sj = sαj · · · sα1s0 = sαj+1 · · · sαk for j = 1, . . . , k, then
sk = e. We claim that (9.8) holds for each pair (s, α) = (sj−1, αj). Since l(sj) =
l(sj−1)− 1, the root s−1

j−1αj must be negative. Hence the restriction of this root to
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aQq is zero or belongs to −Σ(Q). Now (9.8) follows immediately from Definition
9.9.

Proof of Theorem 9.10. We prove the result by induction on |δ|. If δ = 0, then for
λ ∈ a∗QqC the ideal Iδ,λ equals D(X); hence EQ(X+ : τ : Ω : δ)glob = 0 and the result
follows.

Now let |δ| = 1, let f ∈ EQ(X+ : τ : Ω : δ)glob and let (9.5) be fulfilled for all v ∈
QW . Assume that f 6= 0.We will show that this assumption leads to a contradiction.
There exists a finite subset Y ⊂ ∗a∗QqC such that f ∈ EQ,Y (X+ : τ : Ω : δ)glob and a
λ0 ∈ Ω∩a∗◦QqC(P,WY ) such that fλ0 6= 0. LetW be a complete set of representatives
of W/WK∩H in NK(aq) containing QW . Then Exp(P,w | fλ0) 6= ∅ for some w ∈ W .
In view of (7.3) it follows that there exist s ∈W, t ∈WQ, η ∈ Y and µ ∈ N∆, such
that

sλ+ stη − ρ− µ ∈ Exp(P,w | fλ),(9.15)

for λ = λ0. From Lemma 7.9 it follows that (9.15) is valid for λ in a full open
subset of Ω. By Lemmas 9.13 and 9.14 this implies that there exist t1 ∈ WQ,
η1 ∈ Y, µ1 ∈ N∆ and w1 ∈ NK(aq), such that λ + t1η1 − ρ− µ1 ∈ Exp(P,w1 | fλ)
for λ in a full open subset of Ω. Let v ∈ QW be the representative of WQw1WK∩H .
By Lemma 9.11 it follows that λ − ρQ ∈ Exp(Q, v | fλ) for λ in a full open subset
Ω0 of Ω. Since Ω0 ∩ Ω′ is nonempty, we obtain a contradiction with (9.5).

Now suppose that |δ| = k > 1, and assume that the result has already been
established for δ ∈ DQ with |δ| < k. Fix ν ∈ supp (δ) and put δ′ = δ − δν . Then
δ′ ∈ DQ; moreover, |δν | = 1 and |δ′| = k − 1. Fix any D ∈ D(X) and define the
family g by (9.4). Then g ∈ EQ(X+ : τ : Ω : δ′) by Lemma 9.2. Moreover, it readily
follows from Lemma 9.8 that the family g belongs to EQ(X+ : τ : Ω : δ′)glob.

For λ ∈ Ω and v ∈ NK(aq) we have

Exp(Q, v | gλ) ⊂ Exp(Q, v | fλ)− NΣr(Q),(9.16)

in view of Lemma 4.12 (b). Moreover, by hypothesis we have the following inclusion,
for every λ ∈ Ω′,

Exp(Q, v | fλ) ⊂ [W (λ+ Y )|aQq − ρQ − NΣr(Q)] \ {λ− ρQ}.(9.17)

Combining (9.16) and (9.17) we infer that Exp(Q,w | gλ) does not contain λ−ρQ for
λ ∈ Ω′ and every w ∈ NK(aq). Consequently, the family g satisfies the hypotheses
of Theorem 9.10. Since |δ′| = k − 1, it follows from the induction hypothesis that
g = 0. Since D was arbitrary, we see that fλ is annihilated by Iδν ,λ, for every λ ∈ Ω.
Hence f belongs to EQ(X+ : τ : Ω : δν)glob. Since |δν | = 1 < k, it now follows from
the induction hypothesis that f = 0.

The following result is also based on Lemma 9.13.

Corollary 9.15. Let Ω ⊂ a∗QqC be a connected dense open subset, Y ⊂ ∗a∗QqC a
finite subset, and δ ∈ DQ. Let f ∈ EQ,Y (X+ : τ : Ω : δ)glob and s1 ∈W . If

(s1λ+ WY − ρ− N∆) ∩ Exp(P,w | fλ) = ∅,
for all λ in a nonempty open subset of Ω and for all w ∈ NK(aq), then f = 0.

Proof. Assume that f 6= 0. Then there exists an element λ ∈ Ω ∩ a∗◦QqC(P,WY )
such that fλ 6= 0, and then

sλ+ stη − ρ− µ ∈ Exp(P,w | fλ)(9.18)
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for some s ∈ W , t ∈ WQ, η ∈ Y , µ ∈ N∆ and w ∈ NK(aq). As remarked in the
beginning of the proof of Lemma 9.13, (9.18) then holds for all λ in a full open
subset of Ω. Hence Lemma 9.13 applies; its final statement contradicts the present
assumption for s1.

Finally, in this section we will show that for a family in EQ(X+ : τ : Ω : δ) that
allows a smooth extension to X, the hypothesis of asymptotic globality can be left
out in the vanishing theorem. Let

EQ(X : τ : Ω : δ) = {f ∈ EQ(X+ : τ : Ω : δ) | fλ ∈ C∞(X : τ), λ ∈ Ω}.

Corollary 9.16. Let Q ∈ Pσ and δ ∈ DQ. Let Ω ⊂ a∗QqC be a Q-distinguished
open subset and let f ∈ EQ(X : τ : Ω : δ). Assume that there exists a nonempty open
subset Ω′ ⊂ Ω such that, for each v ∈ QW ,

λ− ρQ /∈ Exp(Q, v | fλ), (λ ∈ Ω′).

Then f = 0.

Proof. As in the proof of Theorem 9.10 we proceed by induction on |δ|. If |δ| = 0,
the result is trivial. If |δ| = 1, it follows from Proposition 8.8 that EQ(X : τ : Ω : δ) ⊂
EQ(X+ : τ : Ω : δ)glob, and then the result follows directly from Theorem 9.10.

Now suppose that |δ| = k > 1, and assume that the result has already been
established for all δ ∈ DQ with |δ| < k. Let δ′ and g be as in the proof of Theorem
9.10. Then it is easily seen that g ∈ EQ(X : τ : Ω : δ′).

For the rest of the proof we can now proceed exactly as in the proof of Theorem
9.10.

10. Laurent functionals

In order to apply the vanishing theorem we will (in Section 14) show that certain
families of functions on X+, which are obtained in a natural fashion from Eisenstein
integrals, meet the requirements of the theorem. The construction of these families
is most conveniently described by means of so-called Laurent functionals and Lau-
rent operators. These tools are introduced in the present and the following section
(basically following [10] and [11], Appendix B). They are generalizations to a higher
dimensional setting of the operator which assigns to a meromorphic function on C
some given linear combination of the coefficients of its Laurent series at some given
points (cf. [10], Example 1.6). These two sections can be read independently of the
preceding sections of the paper.

Throughout the section, V will be a finite dimensional real linear space, equipped
with a (positive definite) inner product 〈 · , · 〉. Its complexification VC is equipped
with the complex bilinear extension of this inner product.

Let X be a (possibly empty) finite set of nonzero elements of V. At this stage we
allow proportionality between elements of X. By an X-hyperplane in VC, we mean
an affine hyperplane of the form H = a+α⊥C , with a ∈ VC, α ∈ X. The hyperplane
is called real if a can be chosen from V, or, equivalently, if it is the complexification
of a real hyperplane from V. A locally finite collection of X-hyperplanes in VC is
called an X-configuration in VC. It is called real if all its hyperplanes are real.

If a ∈ VC, we denote the collection of X-hyperplanes in VC through a by
H(a,X) = H(VC, a,X). If E is a complete locally convex space, then byM(a,X,E)
=M(VC, a,X,E) we denote the ring of germs of E-valued meromorphic functions
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at a whose singular locus at a is contained in H(a,X). Here and in the following we
will suppress the space E in the notation if E = C. Thus, M(a,X) =M(a,X,C).

Let NX denote the set of maps X → N. If d ∈ NX , we define the polynomial
function πa,d = πa,X,d:VC → C by

πa,d(z) =
∏
ξ∈X
〈ξ , z − a〉d(ξ), (z ∈ VC).(10.1)

If X = ∅, then NX has one element which we agree to denote by 0. We also
agree that πa,0 = 1. Let Oa(E) = Oa(VC, E) denote the ring of germs of E-valued
holomorphic functions at a. Then

M(a,X,E) =
⋃
d∈NX

π−1
a,dOa(E).

In the following we shall identify S(V ) with the algebra of constant coefficient
holomorphic differential operators on VC in the usual way; in particular, an element
v ∈ V corresponds to the operator ϕ 7→ vϕ(z) = d

dτ

∣∣
τ=0

ϕ(z + τv).

Definition 10.1 (Laurent functional at a point). An X-Laurent functional at a is
a linear functional L:M(a,X) → C such that for every d ∈ NX there exists an
element ud ∈ S(V ) such that

Lϕ = ud(πa,dϕ)(a),(10.2)

for all ϕ ∈ π−1
a,dOa. The space of all Laurent functionals at a is denoted by

M(a,X)∗laur =M(VC, a,X)∗laur.

Remark 10.2. Obviously, the string (ud)d∈NX of elements from S(V ) is uniquely
determined by the requirement (10.2). We shall denote it by uL.

If E is a complete locally convex space, then X-Laurent functionals at a may nat-
urally be viewed as linear maps fromM(a,X,E) to E. Indeed, let L ∈M(a,X)∗laur

and let uL = (ud)d∈NX be the associated string of elements from S(V ). If ϕ ∈
π−1
a,dOa(E), then Lϕ is given by formula (10.2).

Let Ta: z 7→ z+a denote translation by a in VC. Then Ta mapsH(0, X) bijectively
onto H(a,X). Pull-back under Ta induces an isomorphism of rings T ∗a :ϕ 7→ ϕ ◦Ta
from Oa onto O0. Therefore, pull-back under Ta also induces an isomorphism of
rings T ∗a :M(a,X)→M(0, X). By transposition we obtain an isomorphism of linear
spaces Ta∗:M(0, X)∗ →M(a,X)∗. It is readily seen that T ∗a (πa,d) = π0,d for every
d ∈ NX . From the definition of Laurent functionals it now follows that Ta∗ maps
M(0, X)∗laur isomorphically onto M(a,X)∗laur. Moreover,

uTa∗L = uL

for all L ∈ M(0, X)∗.
Let X ′ be another finite collection of nonzero elements of V. We say that X and

X ′ are proportional if H(0, X) = H(0, X ′).

Lemma 10.3. Let X,X ′ be proportional finite subsets of V \ {0} and let a ∈ VC.
Then M(a,X) =M(a,X ′) and M(a,X)∗laur =M(a,X ′)∗laur.

Proof. It is obvious that M(a,X) = M(a,X ′). Let L ∈ M(a,X)∗ = M(a,X ′)∗,
and assume that L ∈ M(a,X ′)∗laur. Let (ud′)d′∈NX′ be the associated string. Let
d ∈ NX . Then, by proportionality, there exists d′ ∈ NX′ and c ∈ R \ {0} such that
πa,X,d = cπa,X′,d′ . Let ud = c−1ud′ , then (10.2) follows immediately. This shows



ANALYTIC FAMILIES OF EIGENFUNCTIONS 671

that L ∈ M(a,X)∗laur and establishes the inclusion M(a,X ′)∗laur ⊂ M(a,X)∗laur.
The converse inclusion is proved similarly.

Following the method of [10], Sect. 1.3, we shall now give a description of the
space of strings uL, as L ∈ M(a,X)∗laur.

Put $d: = π0,d and equip the space NX with the partial ordering � defined by
d′ � d if and only if d′(ξ) ≤ d(ξ) for every ξ ∈ X. If d′ � d, then we define d − d′
componentwise as suggested by the notation. In [10], Sect. 1.3, we defined the
linear space S←(V,X) as follows. Let d, d′ ∈ NX with d′ � d. If u ∈ S(V ), then by
the Leibniz rule there exists a unique u′ ∈ S(V ) such that

u($d−d′ϕ)(0) = u′(ϕ)(0), (ϕ ∈ O0).

We denote the element u′ by jd′,d(u). The map jd′,d:S(V )→ S(V ) thus defined is
linear. Note that it only depends on d− d′; note also that, for d, d′, d′′ ∈ NX with
d′′ � d′ � d,

jd′′,d′ ◦ jd′,d = jd′′,d.

We now define S←(V,X) as the linear space of strings (ud)d∈NX in S(V ) such that
jd′,d(ud) = ud′ for all d, d ∈ NX with d′ � d. Thus, this space is the projective limit:

S←(V,X) = lim
←

(S(V ), j·).

The natural map S←(V,X) → S(V ) that maps a string to its d-component is
denoted by jd.

Lemma 10.4. The map L 7→ uL is a linear isomorphism from M(a,X)∗laur onto
S←(V,X).

Proof. See [11], Appendix B, Lemma B.2.

Lemma 10.5. Let a ∈ VC, d ∈ NX and u ∈ S(V ). Then there exists a Laurent
functional L ∈ M(a,X)∗laur such that (uL)d = u.

Proof. See [10], Lemma 1.7.

Remark 10.6. In particular, it follows that for each a ∈ VC there exists a Laurent
functional L ∈ M(a,X)∗laur such that Lϕ = ϕ(a) for all ϕ ∈ Oa. Note however,
that this functional is not unique, unless X = ∅.

Lemma 10.7. LetM(a,X)∗Olaur denote the annihilator of Oa inM(a,X)∗laur. Then
all functions ϕ in M(a,X), that are annihilated by M(a,X)∗Olaur, belong to Oa.

Proof. We may assume that a = 0. Let ϕ ∈ M(0, X) and assume that ϕ 6∈ O0.
Then there exist elements d, d′ ∈ NX and ξ ∈ X such that π0,d′ = ξπ0,d and
π0,d′ϕ ∈ O0 but π0,dϕ 6∈ O0. Here we have written ξ also for the function z 7→ 〈ξ , z〉
on VC. Since π0,d′ϕ is not divisible by ξ, its restriction to ξ⊥ = ξ−1(0) does not
vanish. Hence there exists u ∈ S(ξ⊥) such that u(π0,d′ϕ)(0) 6= 0. By Lemma 10.5
there exists an element L ∈ M(a,X)∗laur such that the d′ term of uL is u. Then
Lϕ = u(π0,d′ϕ)(0) 6= 0. However, for each ψ ∈ O0 we have Lψ = u(π0,d′ψ)(0) =
[ξu(π0,dψ)](0) = 0. Hence L ∈ M(a,X)∗Olaur.

We extend the notion of a Laurent functional as follows. The disjoint union of the
spaces M(a,X)∗laur as a ∈ VC is denoted by M(∗, X)∗laur = M(VC, ∗, X)∗laur. By a
section ofM(∗, X)∗laur we mean a map L:VC →M(∗, X)∗laur with La ∈M(a,X)∗laur
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for all a ∈ VC. The closure of the set {a ∈ VC | La 6= 0} is called the support of L
and denoted by supp (L).

Definition 10.8 (Laurent functional). An X-Laurent functional on VC is a finitely
supported section of M(∗, X)∗laur. The set of X-Laurent functionals is denoted by
M(VC, X)∗laur and equipped with the obvious structure of a linear space.

If S is a subset of VC, we define the space M(S,X)∗laur =M(VC, S,X)∗laur by

M(S,X)∗laur = {L ∈M(VC, X)∗laur | suppL ⊂ S}

and call this the space of X-Laurent functionals on VC supported in S.

Remark 10.9. Note that, for a ∈ VC, the map M({a}, X)∗laur → M(a,X)∗laur, de-
fined by L 7→ La, is a linear isomorphism. Accordingly, we shall viewM(a,X)∗laur as
a linear subspace ofM(VC, X)∗laur. In this wayM(S,X)∗laur becomes identified with
the algebraic direct sum of the linear spacesM(a,X)∗laur, as a ∈ S, for S any subset
of VC. Accordingly, if L ∈ M(VC, X)∗laur, then La ∈ M(a,X)∗laur ⊂ M(VC, X)∗laur

for a ∈ VC, and

L =
∑

a∈suppL
La.

Lemma 10.10. Let X and X ′ be proportional finite subsets of V \ {0}. Then

M(VC, X)∗laur =M(VC, X ′)∗laur.

Proof. This is an immediate consequence of Lemma 10.3 and the above definition.

We proceed by discussing the action of a Laurent functional on meromorphic
functions. Let E be a complete locally convex space and Ω ⊂ VC an open subset.
If a ∈ Ω, then by M(Ω, a,X,E) we denote the space of meromorphic functions
ϕ: Ω→ E whose germ ϕa at a belongs to M(a,X,E). If S ⊂ Ω, we define

M(Ω, S,X,E): =
⋂
a∈S
M(Ω, a,X,E).

Finally, we write M(Ω, X,E) for M(Ω,Ω, X,E). In particular, M(VC, X,E) de-
notes the space of functions ϕ ∈ M(VC, E) with singular locus sing(ϕ) contained
in an X-configuration.

There is a natural pairingM(S,X)∗laur ×M(Ω, S,X,E)→ E, given by

Lϕ =
∑

a∈suppL
Laϕa.(10.3)

Lemma 10.11. Let S ⊂ VC be arbitrary, and let Ω be an open subset of VC con-
taining S. Then the pairing given by (10.3) for E = C induces a linear embedding

M(S,X)∗laur ↪→M(Ω, S,X)∗.

Proof. Let L ∈ M(S,X)∗laur and assume that L = 0 on M(Ω, S,X). We may
assume that S = suppL. For every a ∈ S we write ua = (uad)d∈NX for the string
determined by La.

Select b ∈ S. Then it suffices to prove that Lb = 0. Fix d ∈ NX and φ ∈ Ob.
Then it suffices to show that ubd(φ)(b) = 0.
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For every a ∈ S\{b}we may select d(a) ∈ NX such that πa,d(a)π
−1
b,d is holomorphic

at a. Moreover, we put d(b) = d. For a ∈ S there exists a unique va ∈ S(V ) such
that for all f ∈ Oa we have

va(f)(a) = uad(a)(πa,d(a)π
−1
b,df)(a).

We note that vb = ubd. We may now apply the lemma below, with Ea = Cva, for
a ∈ S, and, finally with ξa = 0 if a 6= b and with ξb defined by ξb(vb) = vb(φ)(b).
Hence there exists a polynomial function ψ on VC such that va(ψ)(a) = 0 for all
a ∈ S \ {b}, and such that vb(ψ)(b) = vb(φ)(b).

Define ϕ = π−1
b,dψ. Then ϕ ∈M(Ω, S,X). Hence Lϕ = 0. On the other hand,

Lϕ =
∑
a∈S
Laϕa =

∑
a∈S
La(π−1

a,d(a)πa,d(a)π
−1
b,dψ)

=
∑
a∈S

uad(a)(πa,d(a)π
−1
b,dψ)(a) =

∑
a∈S

va(ψ)(a) = vb(ψ)(b) = ubd(φ)(b).

It follows that ubd(φ)(b) = 0.

Lemma 10.12. Let S ⊂ VC be a finite set. Suppose that for every a ∈ S a finite
dimensional complex linear subspace Ea ⊂ S(V ) together with a complex linear
functional ξa ∈ E∗a is given. Then there exists a polynomial function ψ on VC such
that uψ(a) = ξa(u) for every a ∈ S and all u ∈ Ea.

Proof. This result is well known.

We proceed by discussing the push-forward of a Laurent functional by an injective
linear mapping. Let V0 be a real linear space and ι:V0 → V an injective linear map.
We assume that no element of X is orthogonal to ι(V0). We equip V0 with the pull-
back of the inner product of V under ι and denote the corresponding transpose of ι
by p. Then X0: = p(X) consists of nonzero elements. We denote the complex linear
extensions of ι and p by the same symbols. Then, if H ⊂ VC is an X-hyperplane,
its preimage ι−1(H) is an X0-hyperplane of V0C.

Let a0 ∈ V0C and put a = ι(a0). Then pull-back by ι induces a natural algebra
homomorphism ι∗:Oa(VC)→ Oa0(V0C). On the other hand, pull-back by p induces
a natural algebra homomorphism p∗:Oa0(V0C)→ Oa(VC). From p ◦ ι = IV0 it follows
that ι∗ ◦ p∗ = I on Oa0(V0C), hence ι∗ is surjective.

If d:X → N is a map, then we write p∗(d) for the map X0 → N defined by

p∗(d)(ξ0) =
∑

ξ∈X,p(ξ)=ξ0

d(ξ).

One readily verifies that for every d:X → N we have

ι∗(πa,X,d) = πa0,X0,p∗(d).(10.4)

Let E be a complete locally convex space. Then it follows that pull-back by ι
induces a linear map

ι∗:M(VC, a,X,E)→M(V0C, a0, X0, E).(10.5)

Lemma 10.13. The linear map ι∗ in (10.5) is surjective.

Proof. Let d0:X0 → N be a map. Then one readily checks that there exists a map
d:X → N such that d0 = p∗(d). From this it follows that
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π−1
a0,X0,d0

Oa0(V0C, E) = ι∗(π−1
a,X,d) ι

∗p∗(Oa0(V0C, E)) ⊂ ι∗(π−1
a,X,dOa(VC, E)).

where the first equality follows from (10.4).

The pull-back map ι∗ in (10.5) with E = C has a transpose ι∗:M(V0C, a0, X0)∗ →
M(VC, a,X)∗ which is injective by Lemma 10.13.

Lemma 10.14. ι∗ maps M(V0C, a0, X0)∗laur injectively into M(VC, a,X)∗laur.

Proof. Let L ∈ M(V0C, a0, X0)∗laur. Then it suffices to show that ι∗L belongs to the
spaceM(VC, a,X)∗laur.

We first note that ι:V0 → V has a unique extension to an algebra homomorphism
ι∗:S(V0) → S(V ). One readily verifies that u[ι∗(ϕ)] = ι∗(ι∗(u)ϕ) for every ϕ ∈
Oa(VC) and all u ∈ S(V0). Let d be a map X → N. Then there exists a ud ∈ S(V0)
such that L = eva0 ◦ud ◦πa0,X0,p∗(d) on π−1

a0,X0,p∗(d)Oa0(V0C); here eva0 denotes
evaluation at the point a0. Put vd = ι∗(ud). Then, for ϕ ∈ Oa(VC),

ι∗(L)[π−1
a,X,dϕ] = L[ι∗(πa,X,d)−1ι∗ϕ)] = L[π−1

a0,X0,p∗d
ι∗ϕ] = ι∗(vdϕ)(a0) = vdϕ(a).

Hence, ι∗(L) = eva ◦ vd ◦πa,X,d on π−1
a,X,dOa(VC) and we see that ι∗(L) ∈

M(VC, a,X)∗laur.

There exists a unique linear map ι∗:M(V0C, X0)∗laur → M(VC, X)∗laur that re-
stricts to the map ι∗ of Lemma 10.14 for every a0 ∈ V0C; see Remark 10.9. Clearly,
supp (ι∗L) = ι(supp (L)), for every L ∈M(V0C, X0)∗laur.

On the other hand, if E is a complete locally convex space, Ω ⊂ VC an open
subset and S ⊂ ι−1(Ω) a subset, then pull-back by ι induces a natural map
ι∗:M(Ω, ι(S), X,E) → M(ι−1(Ω), S,X0, E). Moreover, if L ∈ M(V0C, S,X0)∗laur

and ϕ ∈ M(Ω, ι(S), X,E), then

ι∗(L)ϕ = L[ι∗ϕ].(10.6)

We end this section with a discussion of the multiplication by a meromorphic
function and the application of a differential operator to a Laurent functional.

First, assume that a ∈ VC and that ψ ∈ M(a,X). Then multiplication by ψ
induces a linear endomorphism ofM(a,X), which we denote by mψ. The transpose
of this linear endomorphism is denoted by m∗ψ:M(a,X)∗ → M(a,X)∗. It readily
follows from the definition of X-Laurent functionals at a that m∗ψ leaves the space
M(a,X)∗laur of those functionals invariant.

Now let S ⊂ VC be a finite subset, let Ω ⊂ VC be an open subset containing S
and let ψ ∈ M(Ω, S,X). If L ∈ M(VC, S,X)∗laur, we define the Laurent functional
m∗ψ(L) ∈M(VC, S,X)∗laur by

m∗ψ(L) =
∑
a∈S

m∗ψa(La).

On the other hand, multiplication by ψ induces a linear endomorphism of
M(Ω, S,X), and it is immediate from the definitions that

m∗ψ(L)(ϕ) = L(ψϕ)(10.7)

for ϕ ∈M(Ω, S,X).

Lemma 10.15. Let v ∈ S(V ), then vϕ ∈ M(a,X) for all ϕ ∈ M(a,X), and
the transpose ∂∗v of the endomorphism ∂v : ϕ 7→ vϕ of M(a,X) leaves M(a,X)∗laur

invariant.
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Proof. We may assume v ∈ V . Let d ∈ NX and define d′ ∈ NX by d′(ξ) = d(ξ) + 1
for all ξ ∈ X . Then πa,d divides v(πa,d′), and hence

πa,d′vϕ = v(πa,d′ϕ)− v(πa,d′)ϕ ∈ Oa

for all ϕ ∈ π−1
a,dOa. Thus ∂vϕ = vϕ ∈ π−1

a,d′Oa for ϕ ∈ π−1
a,dOa.

Now let L ∈ M(a,X)∗laur, and let u = uL ∈ S←(V,X). Then for d, d′ and ϕ as
above

∂∗vL(ϕ) = L(vϕ) = ud′(πa,d′vϕ)(a) = ud′v(πa,d′ϕ)(a) − ud′(v(πa,d′)ϕ)(a).

Each term on the right-hand side of this equation has the form u′(pϕ)(a) with
u′ ∈ S(V ) and p a polynomial which is divisible by πa,d. Hence, by the Leibniz
rule, ∂∗vL(f) has the required form u′′(πa,dϕ)(a), where u′′ ∈ S(V ).

For L ∈M(VC, X)∗laur and v ∈ S(V ) we now define ∂∗vL ∈ M(VC, X)∗laur by

∂∗vL =
∑

a∈suppL
∂∗vLa.

It is immediately seen that ∂∗vL(ϕ) = L(∂vϕ) for each ϕ ∈M(Ω, suppL, X), where
Ω is an arbitrary open neighborhood of suppL.

11. Laurent operators

In this section we discuss Laurent operators, originally introduced in [10], Section
5. However, the present context is the slightly more general one of meromorphic
functions with values in a complete locally convex space, whose singular locus is
contained in an X-configuration, not necessarily real.

Let V and X be as in the previous section, let H be an X-configuration and let
E be a complete locally convex space.

We define M(VC,H, E) to be the space of meromorphic functions ϕ:VC → E
whose singular locus is contained in

⋃
H. If H is real, we put HV = {H ∩ V | H ∈

H}. ThenM(VC,H) =M(VC,H,C) equals the spaceM(V,HV ) introduced in [10].
It is convenient to select a minimal subset X0 of X that is proportional to X.

Then for every X-hyperplane H ⊂ VC there exists a unique αH ∈ X0 and a unique
first order polynomial lH of the form z 7→ 〈αH , z〉 − c, with c ∈ C, such that
H = l−1

H (0). Note that a different choice of X0 causes only a change of lH by a
nonzero factor.

Let NH denote the collection of maps H → N.

Remark 11.1. If d ∈ NH, then for convenience we agree to write d(H) = 0 for any
X-hyperplane H not contained in H.

If ω ⊂ VC is a bounded subset and d ∈ NH we define the polynomial function
πω,d:VC → C by

πω,d =
∏
H∈H
H∩ω 6=∅

l
d(H)
H(11.1)

Note that a change of X0 only causes this polynomial to be multiplied by a
positive factor. Let M(VC,H, d, E) be the collection of meromorphic functions
ϕ ∈ M(VC, E) such that πω,dϕ ∈ O(ω,E) for every bounded open subset ω ⊂ VC.
We equip the space M(VC,H, d, E) with the weakest locally convex topology such
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that for every bounded open subset ω ⊂ VC the map ϕ 7→ πω,dϕ is continuous into
O(ω,E). This topology is complete; moreover, it is Fréchet if E is Fréchet.

We now note that

M(VC,H, E) =
⋃
d∈NH

M(VC,H, d, E).(11.2)

We equip NH with the partial ordering � defined by d′ � d if and only if d′(H) ≤
d(H) for all H ∈ H. If d, d′ are elements of NH with d′ � d, thenM(VC,H, d′, E) ⊂
M(VC,H, d, E) and the inclusion map id′,d is continuous. Thus, the inclusion maps
form a directed family and from (11.2) we see that the space M(VC,H, E) may
be viewed as the direct limit of the spaces M(VC,H, d, E). Accordingly, we equip
M(VC,H, E) with the direct limit locally convex topology.

By an X-subspace of VC we mean any nonempty intersection of X-hyperplanes;
we agree that VC itself is also an X-subspace. We denote the set of such affine
subspaces by A = A(VC, X). For L ∈ A there exists a unique real linear subspace
VL ⊂ V such that L = a+ VLC for some a ∈ VC. The intersection V ⊥LC ∩ L consists
of a single point, called the central point of L; it is denoted by c(L). The space L is
said to be real if c(L) ∈ V ; this means precisely that L is the complexification of an
affine subspace of V. Translation by c(L) induces an affine isomorphism from VLC
onto L. Via this isomorphism we equip L with the structure of a complex linear
space together with a real form that is equipped with an inner product.

If L ∈ A, the collection of X-hyperplanes containing L is finite; we denote this
collection by H(L,X). Moreover, we put X(L): = X ∩ V ⊥L and X0(L): = X0 ∩ V ⊥L .
From the definition of X0 it follows that the map H 7→ αH is a bijection from
H(L,X) onto X0(L). Accordingly we shall identify the sets NH(L,X) and NX0(L).
If H is any X-configuration and d ∈ NH, we define the polynomial function qL,d by

qL,d: =
∏

H∈H(L,X)

l
d(H)
H ,

see also Remark 11.1. Let Xr be the orthogonal projection of X \X(L) onto VL;
then Xr is a finite set of nonzero elements. Its image in L under translation by
c(L) is denoted by XL. If H is an X-configuration in VC, then the collection

HL: = {H ∩ L | H ∈ H, ∅ $ H ∩ L $ L}
is an XL-configuration in L; here L is viewed as a complex linear space in the way
described above.

We now assume that L ∈ A and that H is an X-configuration in VC. In ac-
cordance with [10], Sect. 1.3, a linear map R:M(VC,H) → M(L,HL) is called a
Laurent operator if for every d ∈ HN there exists an element ud ∈ S(V ⊥L ) such that

Rϕ = ud(qL,dϕ)|L for all ϕ ∈M(VC,H, d).(11.3)

The space of such Laurent operators is denoted by Laur (VC, L,H).
Now assume in addition that H contains H(L,X). Then as in loc. cit. it is seen

that, for R ∈ Laur (VC, L,H) and d ∈ NH, the element ud ∈ S(V ⊥L ) such that
(11.3) holds, is uniquely determined. Moreover, it only depends on the restriction
of d to H(L,X), and the associated string uR: = (ud | d ∈ NH(L,X)) belongs to
S←(V ⊥L , X

0(L)). As in [10], Lemma 1.5, the map R 7→ uR defines a linear isomor-
phism

Laur (VC, L,H) ' S←(V ⊥L , X
0(L)).(11.4)
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If E is a complete locally convex space, and R ∈ Laur (VC, L,H) a Laurent operator,
we may define a linear operator RE from M(VC,H, E) to M(L,HL, E) by the
formula (11.3), for ϕ ∈ M(VC,H, d, E) and with ud equal to the d-component of
uR. We shall often denote RE by R as well.

Remark 11.2. Here we note that the algebraic tensor product M(VC,H)⊗ E nat-
urally embeds onto a subspace of M(VC,H, E) which is dense. Thus, RE is the
unique continuous linear extension of R⊗ IE . However, we shall not need this.

Lemma 11.3. Let L ∈ A and let H be an X-configuration in VC containing
H(L,X). Let R ∈ Laur (VC, L,H). Then for every d ∈ NH there exists a d′ ∈ NHL
with the following property. For every complete locally convex space E the operator
RE maps M(VC,H, d, E) continuously into the space M(L,HL, d′, E).

Proof. This is proved in a similar fashion as in [10], Lemma 1.10.

We shall now relate Laurent operators to the Laurent functionals introduced in
the previous section. Let X0

r be a minimal subset of Xr subject to the condition
that it be proportional to Xr. Let X0

L be its image in L under translation by c(L).
Thus, with respect to the linear structure of L, the set X0

L is an analogue for the
pair (L,XL) of the set X0 for the pair (V,X).

Lemma 11.4. Let L ∈ A and let H be an X-configuration in VC containing
H(L,X). Let E be a complete locally convex space.

(a) If ϕ ∈ M(VC,H, E), then for w ∈ L \
⋃
HL the function z 7→ ϕ(w + z) is

meromorphic on V ⊥LC, with a germ at 0 that belongs to M(V ⊥LC, 0, X(L), E).
(b) If L ∈ M(V ⊥LC, 0, X(L))∗laur is an X(L)-Laurent functional in V ⊥LC, supported

at the origin, then for ϕ ∈M(VC,H, E) the function

L∗ϕ:w 7→ L(ϕ(w + · ))(11.5)

belongs to the space M(L,HL, E). The operator L∗:M(VC,H)→M(L,HL),
defined by (11.5) for E = C, is a Laurent operator.

(c) The map L 7→ L∗, defined by (11.5) for E = C, is an isomorphism from the
space M(V ⊥LC, 0, X(L))∗laur onto the space Laur (VC, L,H). This isomorphism
corresponds with the identity on S←(V ⊥L , X

0(L)), via the isomorphisms of
Lemma 10.4 and (11.4).

Proof. See [11], Appendix B, Lemma B.3.

Remark 11.5. In the formulation of (c) we use that the spacesM(V ⊥LC, 0, X(L))∗laur

and M(V ⊥LC, 0, X
0(L))∗laur are equal; see Lemma 10.3.

We now assume that H is an X-configuration, and that L ∈ A. If a ∈ V ⊥LC, then
by HL(a) we denote the collection of hyperplanes H ′ in L for which there exists a
H ∈ H such that H ′ = L ∩ [(−a) + H ]. Thus, HL(a) = (T−aH)L and we see that
HL(a) is an XL-configuration. If S ⊂ V ⊥LC is a finite subset, then

HL(S) =
⋃
a∈S
HL(a)(11.6)

is an XL-configuration in L as well. The corresponding set of regular points in L
equals

L \
⋃
HL(S) = {w ∈ L | ∀a ∈ S ∀H ∈ H: a+ w ∈ H ⇒ a+ L ⊂ H}.
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Corollary 11.6. Let L ∈ A and let H be an X-configuration. Let S ⊂ V ⊥LC be a
finite subset and let E be a complete locally convex space.

(a) For every ϕ ∈ M(VC,H, E) and each w ∈ L \
⋃
HL(S), there exists an open

neighborhood Ω of S in V ⊥LC such that the function ϕ(w + · ): z 7→ ϕ(w + z)
belongs to M(Ω, X(L), E).

(b) Let L ∈ M(V ⊥LC, X(L))∗laur be a Laurent functional supported at S. For every
ϕ ∈M(VC,H, E) the function L∗ϕ:L \

⋃
HL(S)→ E defined by

L∗ϕ(w): = L(ϕ(w + · ))(11.7)

belongs to M(L,HL(S), E). Finally, L∗ is a continuous linear map from
M(VC,H, E) to M(L,HL(S), E). In fact, for every d ∈ NH there exists a
d′ ∈ NHL(S), independent of E, such that L∗ maps M(VC,H, d, E) continu-
ously into M(L,HL(S), d′, E).

Proof. It suffices to prove the result for S consisting of a single point a. Applying a
translation by −a if necessary, we may as well assume that a = 0. Then HL(S) =
HL(0) = HL. Let H′ be the union of H with H(L,X). Then M(VC,H, E) ⊂
M(VC,H′, E) and (H′)L = HL = HL(S), hence assertions (a) and (b) of Lemma
11.4 withH′ in place ofH imply assertion (a) and (b), except for the final statement
about the continuity.

For the final statement of (b), we note that by Lemma 11.4(b), L∗ is a Laurent
operator M(VC,H′) → M(L,HL(S)). Let d:H → N be a map. We extend d to
H′ by triviality on H′ \ H. Then according to Lemma 11.3 there exists a map
d′:HL(S)→ N such that for any complete locally convex space E the map

L∗:M(VC,H′, d, E)→M(L,HL(S), d′, E)

is continuous linear. Since d is zero on H′ \ H, the first of these spaces equals
M(VC,H, d, E) and the asserted continuity follows.

Lemma 11.7. Let L, H, S and L be as in Corollary 11.6, and fix w ∈ L\
⋃
HL(S).

There exists a Laurent functional (in general not unique) L′ ∈ M(VC, X)∗laur, sup-
ported in w + S, such that L′ϕ = L(ϕ(w + · )) for all ϕ ∈M(VC,H).

Proof. As in the proof of Corollary 11.6 we may assume that S = {0}. Let H̃ =
H∪H(w,X). Then L∗ : ϕ 7→ L(ϕ(w+ · )) is a Laurent operator in Laur (VC, L, H̃),
according to Lemma 11.4 (b). On the other hand, it follows from Lemma 10.5 (see
Remark 10.6) that there exists a (in general not unique) XL-Laurent functional L′′
on L such that ψ(w) = L′′(ψw) for each ψ ∈ Ow(L). The functional ψ 7→ L′′(ψw)
is defined for ψ ∈ M(L, H̃L), and it may be viewed as a Laurent operator in
Laur (L, {w}, H̃L), which we denote by the same symbol L′′ (see [11], Appendix,
Remark B.4). It now follows from [10], Lemma 1.8 that the composed map L′′ ◦L∗
belongs to Laur (VC, {w}, H̃) and hence by [11], Appendix, Remark B.4 it is given
by an X-Laurent functional L′, supported at w. In particular, for ϕ ∈M(VC,H) we
have from Lemma 11.4 (b) that w 7→ L(ϕ(w+ · )) is holomorphic in a neighborhood
of w, hence its evaluation at w is obtained from the application of L′′ to it. Thus
L(ϕ(w + · )) = L′ϕ for ϕ ∈M(VC,H).

Recall from Section 10 thatM(VC, X,E) is the union of the spacesM(VC,H, E)
with H an X-configuration.
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Lemma 11.8. Let L ∈ A and let L ∈ M(V ⊥LC, X(L))∗laur be a Laurent functional.
Then for any complete locally convex space E there exists a unique linear operator

L∗:M(VC, X,E)→M(L,XL, E)

that coincides on the subspace M(VC,H, E) with the operator L∗ defined in Corol-
lary 11.6, for every X-configuration H in VC.

Proof. Let H1 and H2 be two X-configurations. Let S = supp (L) and let, for
j = 1, 2, the continuous linear operator Lj∗:M(VC,Hj , E) →M(L,HjL(S), E) be
defined as in Corollary 11.6 with Hj in place of H. Then it suffices to show that
L1
∗ and L2

∗ coincide on the intersection of M(VC,H1, E) and M(VC,H2, E). That
intersection equalsM(VC,H1∩H2, E). Let ϕ be a function in the latter space, then
from the defining formula (11.7) it follows that L1

∗ϕ = L2
∗ϕ on the intersection of

the sets L \
⋃
HjL(S), for j = 1, 2. This implies that L1

∗ϕ and L2
∗ϕ coincide as

elements of M(L).

We end this section with another useful consequence.

Lemma 11.9. Let L ∈ M(V ⊥LC, X(L))∗laur. Let the finite subset X̃ of V ×V \{(0, 0)}
be defined by X̃ = (X × {0}) ∪ ({0} ×X). If Φ ∈M(VC × VC, X̃), then

Ψ: (w1, w2) 7→ L(Φ( · + w1, · + w2))

defines a function in M(L× L, X̃L), where X̃L = (XL × {c(L)}) ∪ ({c(L)} ×XL).
In particular, the pull-back of Ψ under the diagonal embedding j:L→ L×L belongs
to the space M(L,XL).

Proof. Equip V ⊥L × V ⊥L with one half times the direct sum inner product. Then
the diagonal embedding ι: z 7→ (z, z) is an isometry of V ⊥L into V ⊥L × V ⊥L . Its
adjoint is the map p: (z1, z2) 7→ 1

2 (z1 +z2) from V ⊥L ×V ⊥L onto V ⊥L . The intersection
X̃(L): = X̃∩(V ⊥L ×V ⊥L ) equals (X(L)×{0})∪({0}×X(L)). Its image under p is given
by X̃(L)0 = 1

2X(L). Thus, according to Lemma 10.10, the space of X̃(L)0-Laurent
functionals on V ⊥LC is equal to the space of X(L)-Laurent functionals on V ⊥LC. Hence,
according to Lemma 10.14 and the remark following its proof, we have an associated
push-forward map ι∗ from M(V ⊥LC, X(L))∗laur to M(V ⊥LC × V ⊥LC, X̃(L))∗laur.

For generic w1, w2 ∈ L we define the meromorphic function Φ(w1,w2) on V ⊥LC ×
V ⊥LC by Φ(w1,w2)(z1, z2) = Φ(w1 + z1, w2 + z2). The definition of Ψ may now be
rewritten as Ψ(w1, w2) = L[ι∗(Φ(w1,w2))]. By (10.6) it follows that Ψ(w1, w2) =
ι∗(L)(Φ(w1,w2)), or, equivalently, in the notation of Lemma 11.8,

Ψ = [ι∗(L)]∗Φ.

We now observe that X̃L = (X̃)L×L. Hence it follows by application of Lemma
11.8. that Ψ ∈ M(L× L, X̃L). There exists an X̃L-configuration H̃ in L × L such
that Ψ ∈ M(L × L, H̃). Any hyperplane H̃ ∈ H̃ is of the form H̃ = H × L or
H̃ = L ×H , with H an XL-hyperplane in L. In both cases j−1(H̃) = H . It now
follows that j−1(H̃) is an XL-configuration in L, and that j∗Ψ ∈ M(L,XL).

12. Analytic families of a special type

In this section we introduce a space Ehyp
Q (X+ : τ : δ) of analytic families of D(X)-

finite τ -spherical functions whose singular locus is a Σ-configuration. The definition
of this space is motivated by the fact that it contains the families obtained from
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applying Laurent functionals to partial Eisenstein integrals related to a minimal
σ-parabolic subgroup, as we shall see in the following sections, and by the fact that
the vanishing theorem is applicable, provided the condition of asymptotic globality
is fulfilled; see Theorem 12.10.

In this section we fix a choice Σ+ of positive roots for Σ and denote by P0 the
associated minimal standard σ-parabolic subgroup.

Definition 12.1. Let Q ∈ Pσ and let Y ⊂ ∗a∗QqC be a finite subset. We define

Cep,hyp
Q,Y (X+ : τ)(12.1)

to be the space of functions f : a∗QqC ×X+ → Vτ , meromorphic in the first variable,
for which there exist a constant k ∈ N, a Σr(Q)-hyperplane configurationH in a∗QqC

and a function d:H → N such that the following conditions are fulfilled.

(a) The function λ 7→ fλ belongs to the spaceM(a∗QqC,H, d, C∞(X+ : τ)) defined
below (11.1).

(b) For every P ∈ Pmin
σ and v ∈ NK(aq) there exist functions qs,ξ(P, v | f) in

Pk(aq) ⊗M(a∗QqC,H, d, C∞(X0,v : τM)), for s ∈ W/WQ and ξ ∈ −sWQY +
N∆(P ), with the following property. For all λ ∈ a∗QqC \

⋃
H, m ∈ X0,v and

a ∈ A+
q (P ),

fλ(mav) =
∑

s∈W/WQ

asλ−ρP
∑

ξ∈−sWQY+N∆(P )

a−ξ qs,ξ(P, v | f, log a)(λ,m),(12.2)

where the ∆(P )-exponential polynomial series of each inner sum converges
neatly on A+

q (P ).
(c) For every P ∈ Pmin

σ , v ∈ NK(aq) and s ∈W/WQ, the series∑
ξ∈−sWQY+N∆(P )

a−ξqs,ξ(P, v | f, log a)

converges neatly on A+
q (P ), as an exponential polynomial series with coeffi-

cients in the spaceM(a∗QqC,H, d, C∞(X0,v : τM)) (see below (11.1)).

Finally, we define

Cep,hyp
0 (X+ : τ): = Cep,hyp

P0,{0}(X+ : τ).(12.3)

Remark 12.2. Note the analogy between the above definition and Definition 7.1.
In fact, let Ω = a∗QqC \

⋃
H, then it follows immediately from the definitions that

the restriction of f to Ω × X+ belongs to Cep
Q,Y (X+ : τ : Ω). Moreover, it follows

from Lemma 7.3 that the functions qs,µ(P, v | f) introduced above are unique, and
that the notation used here is consistent with the notation in Definition 7.1. The
precise relation between the definitions is given in Lemma 12.5 below.

Remark 12.3. In analogy with Remark 7.2 we note that the space (12.1) depends on
Q through its σ-split component AQq. Moreover, it suffices in the above definition
to require conditions (b) and (c) for a fixed P ∈ Pmin

σ and all v in a given set
W ⊂ NK(aq) of representatives for W/WK∩H . Alternatively, it suffices to require
those conditions for a fixed given v ∈ NK(aq) and each P ∈ Pmin

σ .
Finally, we note that aP0q = aq, hence ∗aP0 = {0}. Thus, if Q = P0, we only

need to consider the finite set Y = {0}. This explains the limitation in (12.3).
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It follows from Remark 12.2 that the following definition of the notion of asymp-
totic degree is in accordance with the definition of the similar notion in Definition
7.1.

Definition 12.4. Let f ∈ Cep,hyp
Q,Y (X+ : τ). We define the asymptotic degree of f,

denoted dega(f), to be the smallest integer k for which there existH, d such that the
conditions of Definition 12.1 are fulfilled. Moreover, we denote by Hf the smallest
Σr(Q)-configuration in a∗QqC such that the conditions of Definition 12.1 are fulfilled
with k = dega(f) and for some d:Hf → N. These choices being fixed, we denote
by df the �-minimal map Hf → N for which the conditions of the definition are
fulfilled. Finally, we put rega(f): = a∗QqC \

⋃
Hf .

If Q ∈ Pσ, we denote by Σr0(Q) the set of indivisible roots in Σr(Q), i.e., the
roots α ∈ Σr(Q) with ]0, 1]α ∩Σr(Q) = {α}. Moreover, we put Σ+

0 = Σr0(P0). Let
H be a Σr(Q)-configuration in a∗QqC and d:H → N a map. If ω ⊂ a∗QqC is a bounded
subset, we define πω,d as in (11.1) with V = a∗Qq, X = Σr(Q) and X0 = Σr0(Q).

Lemma 12.5. Let Q ∈ Pσ, Y ⊂ ∗a∗QqC a finite subset, H a Σr(Q)-configuration in
a∗QqC and d ∈ NH. Assume that f ∈ M(a∗QqC, C

∞(X+ : τ)). Then the following two
conditions are equivalent.

(a) The function f belongs to Cep,hyp
Q,Y (X+ : τ) and satisfies Hf ⊂ H and df � d.

(b) For every nonempty bounded open subset ω ⊂ a∗QqC, the function fπω,d : (λ, x)
7→ πω,d(λ)f(λ, x), ω ×X+ → Vτ belongs to Cep

Q,Y (X+ : τ : ω).
Moreover, if one of the above equivalent conditions is fulfilled, then for every non-
empty bounded open subset ω ⊂ a∗qC and all P ∈ Pmin

σ , v ∈ NK(aq), s ∈W/WQ and
ξ ∈ −sWQY + N∆(P ),

qs,ξ(P, v | fπω,d) = πω,d qs,ξ(P, v | f),(12.4)

where on the right-hand side we have identified πω,d with the function 1⊗ πω,d ⊗ 1
in P (aq)⊗O(ω)⊗ C∞(X0,v : τ).

Proof. Assume that (a) holds and that ω ⊂ a∗QqC is a nonempty bounded open
subset. Put π = πω,d and fπ = fπω,d . It follows from Definition 12.1 (a) that
fπ:ω × X+ → Vτ is smooth and that fπλ is τ -spherical for every λ ∈ ω. Thus, it
remains to verify conditions (b) and (c) of Definition 7.1 for fπ. Let P ∈ Pmin

σ and
v ∈ NK(aq). For s ∈W/WQ and ξ ∈ −sWQY + N∆(P ) we define

q′s,ξ(P, v | fπ, X, λ,m): = π(λ)qs,ξ(P, v | f,X, λ,m).

Then conditions (b) and (c) of Definition 7.1, with k = degaf and with q′s,ξ in place
of qs,ξ, follow from the similar conditions of Definition 12.1. Thus, it follows that
fπ ∈ Cep

Q,Y (X+ : τ : ω) and that (12.4) holds for all P ∈ Pmin
σ , v ∈ NK(aq), s ∈ W

and ξ ∈ −sWQY + N∆(P ).
Now assume that (b) holds, then it suffices to show that (a) holds. Let ω be a

bounded nonempty open subset of a∗QqC. Then it follows from Definition 7.1 that
the function fπ = fπω,d :ω × X+ → Vτ is smooth; moreover, from condition (a) of
the mentioned definition it follows that fπ,λ is τ -spherical for every λ ∈ ω. Hence
the map λ 7→ fπ belongs to O(ω,C∞(X+ : τ)). Since ω was arbitrary, this implies
that λ 7→ fλ belongs to M(a∗QqC,H, d, C∞(X+ : τ)). Hence f satisfies condition (a)
of Definition 12.1. Now let P ∈ Pmin

σ and v ∈ NK(aq). Then it remains to establish
conditions (b) and (c) of that definition.
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If ω is a nonempty bounded open subset of a∗QqC, then obviously the restriction
to ω \

⋃
H of the function fπ belongs to Cep

Q,Y (X+ : τ : ω \
⋃
H). Moreover, since

πω,d is nowhere zero on ω \
⋃
H, it follows from division by πω,d that the restriction

f |(ω\⋃H)×X+ belongs to Cep
Q,Y (X+ : τ : ω \

⋃
H). Hence, in view of Lemma 7.5, the

function f belongs to Cep
Q,Y (X+ : τ : Ω), where Ω: = a∗QqC \

⋃
H. Let k = degaf.

It follows from the division by πω,d, that for every s ∈ W and ξ ∈ −sWQY +
N∆(P ),

πω,d(λ)qs,ξ(P, v | f, · , λ) = qs,ξ(P, v | fπ, · , λ), (λ ∈ ω \
⋃
H).

In particular, the function (X,λ) 7→ πω,d(λ)qs,ξ(P, v | f,X, λ) belongs to the space
Pk(aq) ⊗ O(ω,C∞(X0,v : τM)). Since ω is arbitrary, this implies that f satisfies
condition (b) of Definition 12.1.

From condition (c) of Definition 7.1 with fπ and ω in place of f and Ω, respec-
tively, it follows that, for s ∈W, the series∑

ξ∈−sWQY+N∆(P )

a−ξπω,d(λ) qs,ξ(P, v | f, log a, λ)

converges neatly on A+
q (P ) as a ∆(P )-exponential polynomial series with coeffi-

cients in O(ω,C∞(X0,v : τ)). Since ω was arbitrary, it follows from the definition
of the topology on M(a∗QqC,H, d, C∞(X0,v : τM)) (see Section 11) that f satisfies
condition (c) of Definition 12.1.

Lemma 12.6. Let f ∈Cep,hyp
Q,Y (X+ : τ) and D∈D(X). Then Df ∈Cep,hyp

Q,Y (X+ : τ).
Moreover, HDf ⊂ Hf , dDf � df and degaDf ≤ degaf.

Proof. This follows from a straightforward combination of Lemma 12.5 with Propo-
sition 7.6.

If f ∈ Cep,hyp
Q,Y (X+ : τ), then by Remark 12.2 the function f belongs to

Cep
Q,Y (X+ : τ : Ω), with Ω = regaf. Let k = degaf. For P ∈ Pσ, v ∈ NK(aq), σ ∈

W/∼P |Q and ξ ∈ −σ ·Y +N∆r(P ), let qσ,ξ(P, v | f) ∈ Pk(aPq)⊗O(Ω, C∞(XP,v,+ :
τP )) be the function defined in Theorem 7.7.

Lemma 12.7. Let Q ∈ Pσ and Y ⊂ ∗a∗QqC a finite subset. Assume that f ∈
Cep,hyp
Q,Y (X+ : τ) and put k = degaf. Let P ∈ Pσ and v ∈ NK(aq). Then, for every

λ ∈ regaf, the set Exp(P, v | fλ) is contained in W (λ + Y )|aPq − ρP − N∆r(P ).
Moreover, let σ ∈ W/∼P |Q . Then

(a) for every ξ ∈ −σ · Y + N∆r(P ),

qσ,ξ(P, v | f) ∈ Pk(aPq)⊗M(a∗QqC,Hf , df , C∞(XP,v,+ : τP ));

(b) for every R > 1, the series∑
ξ∈−σ·Y+N∆r(P )

a−ξqσ,ξ(P, v | f, log a)

converges neatly on A+
Pq(R−1) as a ∆r(P )-exponential polynomial series with

coefficients in M(a∗qC,Hf , df , C∞(XP,v,+[R] : τP )).

Proof. Let Ω = regaf . Then f ∈ Cep
Q,Y (X+ : τ : Ω). It follows from Theorem 7.7

that the assertion about the (P, v)-exponents of fλ holds. That (a) and (b) hold
can be seen as in the last part of the proof of Lemma 12.5, with the reference to
Definition 7.1 replaced by reference to Theorem 7.7.
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The following definition is the analogue for Cep,hyp
Q,Y (X+ : τ) of Definitions 9.1 and

9.5.

Definition 12.8. Let Q ∈ Pσ and δ ∈ DQ (see (9.1)). Then for Y ⊂ ∗a∗QqC a finite
subset we define

Ehyp
Q,Y (X+ : τ : δ)

to be the space of functions f ∈ Cep,hyp
Q,Y (X+ : τ) (see Definition 12.1) such that, for

all λ ∈ rega(f), the function fλ:x 7→ f(λ, x) is annihilated by the cofinite ideal Iδ,λ.
Moreover, we define

Ehyp
Q (X+ : τ : δ): =

⋃
Y⊂∗a∗QqC finite

Ehyp
Q,Y (X+ : τ : δ).

The spaces

Ehyp
Q,Y (X+ : τ : δ)glob, Ehyp

Q (X+ : τ : δ)glob

are defined to be the spaces of functions f in Ehyp
Q,Y (X+ : τ : δ), resp. Ehyp

Q (X+ : τ : δ),
for which the condition in Definition 9.5 is satisfied by the restriction to Ω = regaf .

Finally, we define

Ehyp
0 (X+ : τ : δ): = Ehyp

P0
(X+ : τ : δ), Ehyp

0 (X+ : τ : δ)glob: = Ehyp
P0

(X+ : τ : δ)glob

for δ ∈ DP0 .

Remark 12.9. Combining Lemmas 12.5 and 9.4 we see that, in the above definition
of Ehyp

Q,Y (X+ : τ : δ), it suffices to require that Iδ,λ annihilates fλ for λ in a nonempty
open subset of rega(f).

We now come to a special case of Theorem 9.10 that will be particularly use-
ful in the following. Let QW ⊂ NK(aq) be a complete set of representatives for
WQ\W/WK∩H .

Theorem 12.10 (A special case of the vanishing theorem). Let Q ∈ Pσ and let
δ ∈ DQ. Let f ∈ Ehyp

Q (X+ : τ : δ)glob and let Ω′ be a nonempty open subset of
regaf. If

λ− ρQ /∈ Exp(Q, u | fλ)

for each u ∈ QW and all λ ∈ Ω′, then f = 0.

Proof. Put Ω = rega(f). It follows immediately from the definitions that the re-
striction fΩ of f to Ω is a family in EQ(X+ : τ : Ω : δ)glob. Moreover, being the
complement of a locally finite collection of hyperplanes, Ω is Q-distinguished in
a∗QqC. It follows that fΩ satisfies all hypothesis of Theorem 9.10; hence fΩ = 0 and
hence f = 0.

13. Action of Laurent functionals on analytic families

Let Q ∈ Pσ be fixed. We shall discuss the application of a Laurent functional
L ∈M(∗a∗QqC,ΣQ)∗laur, to the λ-variable of a family f ∈ Cep,hyp

0 (X+ : τ) (see (12.3)).
More precisely, we want to set up a natural condition on f under which the family
L∗f obtained from applying L to f belongs to the proper function space so that The-
orem 12.10 is applicable. We first show, in Lemma 13.5, that if f ∈ Ehyp

0 (X+ : τ : δ)
(see Definition 12.8), then L∗f ∈ Ehyp

Q,Y (X+ : τ : δ′) for some δ′. Thus, an extra
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condition is needed only to ensure the asymptotic globality of L∗f . The condition,
called holomorphic globality, is given in Definition 13.6, and the appropriate space
of functions is then defined in Definition 13.10. The statement that makes Theorem
12.10 applicable is finally given in Theorem 13.12.

Given a Σ-configuration H in a∗qC and a finite subset S ⊂ ∗a∗QqC we define the
Σr(Q)-configuration HQ(S) = Ha∗QqC

(S) as in (11.6), with V = a∗qC, X = Σ, and
L = a∗QqC. Thus, for ν ∈ a∗QqC we have

ν /∈
⋃
HQ(S) ⇐⇒ [ ∀λ ∈ S ∀H ∈ H: λ+ ν ∈ H ⇒ λ+ a∗QqC ⊂ H ].

We recall from Lemma 11.8 that a Laurent functional L ∈M(∗a∗QqC,ΣQ)∗laur induces
a linear operator

L∗:M(a∗qC,Σ, U)→M(a∗QqC,Σr(Q), U),(13.1)

for any complete locally convex space U.

Lemma 13.1. Let L ∈ M(∗a∗QqC,ΣQ)∗laur and put Y = suppL. Let H be a Σ-
configuration in a∗qC, and let H′ = HQ(Y ). Then for every map d:H → N there
exists a map d′:H′ → N such that, for every complete locally convex space U, the
linear map (13.1) restricts to a continuous linear operator

L∗:M(a∗qC,H, d, U)→M(a∗QqC,H′, d′, U),

Proof. This follows immediately from Corollary 11.6.

For the formulation of the next result it will be convenient to introduce a
particular linear map. Let L ∈ M(∗a∗QqC,ΣQ)∗laur and let λ0 ∈ Y : = suppL.
Let Lλ0 ∈ M(∗a∗QqC,ΣQ)∗laur be the Laurent functional supported at λ0, defined
as in Remark 10.9, and let U be a complete locally convex space. If P ∈ Pσ
and s ∈ WP \W, then we define the linear operator LP,sλ0∗ from M(a∗qC,Σ, U) into
C(aPq,M(a∗QqC,Σr(Q), U)) by the formula

LP,sλ0∗ϕ(X, ν) = e−s(λ0+ν)(X)Lλ0∗[e
s( · )(X)ϕ( · )](ν),(13.2)

for ϕ ∈M(a∗qC,H, U), X ∈ aPq and ν ∈ a∗QqC \
⋃
HQ(Y ).

If f ∈ Cep,hyp
0 (X+ : τ), then f, viewed as the function λ 7→ fλ, belongs to the

complete locally convex space M(a∗qC,Hf , df , C∞(X+ : τ)). Accordingly,

L∗f ∈ M(a∗QqC,H′, d′, C∞(X+ : τ)),(13.3)

where H′ = HfQ(Y ) and d′:H′ → N is associated with L,Hf and df as in Lemma
13.1. We note that by definition

L∗f(ν, x) = L[f( · + ν, x)], (ν ∈ a∗QqC \
⋃
H′, x ∈ X+).(13.4)

Proposition 13.2. Let Q ∈ Pσ and let L ∈ M(∗aQq,ΣQ)∗laur be a Laurent func-
tional with support contained in the finite subset Y ⊂ ∗a∗QqC. Assume that f ∈
Cep,hyp

0 (X+ : τ), and let k = degaf .

(a) The function L∗f, defined as in (13.4), belongs to the space Cep,hyp
Q,Y (X+ : τ).

Moreover, HL∗f ⊂ H′ = HfQ(Y ) and degaL∗f ≤ k + k′, with k′ ∈ N a
constant only depending on L,Hf and df .
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(b) Let P ∈ Pσ, v ∈ NK(aq). Then, for σ ∈W/∼P |Q and ξ ∈ −σ · Y + N∆r(P ),

qσ,ξ(P, v | L∗f,X, ν)

=
∑
λ∈Y

∑
s∈WP \W, [s]=σ

sλ|aPq+ξ∈N∆r(P )

LP,sλ∗
[
qs,sλ|aPq+ξ(P, v | f)(X, · )

]
(ν,X),(13.5)

for all X ∈ aPq and ν ∈ a∗QqC \
⋃
H′. In particular,

Exp(P, v | (L∗f)ν)
⊂ {s(ν + λ)|aPq − ρP − µ | s ∈ W,λ ∈ Y, µ ∈ N∆r(P ), qs,µ(P, v | f) 6= 0}.

Remark 13.3. Note that the index set of the inner sum in (13.5) may be empty.
We agree that such a sum should be interpreted as zero.

The following lemma prepares for the proof of the proposition.

Lemma 13.4. Let L ∈ M(∗a∗QqC,ΣQ)∗laur be a Laurent functional with support
contained in the finite set Y ⊂ ∗a∗QqC. Let H be a Σ-configuration in a∗qC and d:H →
N a map. Let H′ = HQ(Y ) and d′:H′ → N be as in Lemma 13.1. There exists a
natural number k′ ∈ N with the following property.

For every λ0 ∈ Y, every P ∈ Pσ, each s ∈ WP \W and any complete locally
convex space U, the operator LP,sλ0∗ restricts to a continuous linear map

LP,sλ0∗: M(a∗qC,H, d, U)→ Pk′(aPq)⊗M(a∗QqC,H′, d′, U).

Proof. For a fixed X ∈ aPq, multiplication by the holomorphic function es( · )(X): a∗qC
→ C yields a continuous linear endomorphism of the space M(a∗qC,H, d, U);
similarly, multiplication by the holomorphic function e−s(λ0+ · )(X): a∗QqC → C yields
a continuous linear endomorphism ofM(a∗QqC,H′, d′, U). It now follows from (13.2)
that for a fixed X ∈ aPq, the function LP,sλ0∗ϕ(X) belongs to the space
M(a∗QqC,H′, d′, U) and depends continuously on ϕ. Thus, it remains to establish
the polynomial dependence on X.

For any Σ-hyperplane H ⊂ a∗qC we denote by αH the root from Σ+
0 such that H is

a translate of α⊥HC. Let Σ+
Q,0: = ΣQ∩Σ+

0 and let d0: Σ+
Q,0 → N be defined by d0(α) =

d(α⊥+λ0); thus d0(α) = 0 if α⊥+λ0 /∈ H. We define π0 = πλ0,d0 as in (10.1) with
∗a∗Qq, λ0,Σ+

Q,0 and d0 in place of V, a,X and d, respectively. If ϕ ∈M(a∗qC,H, d, U),
then for ν ∈ a∗QqC \

⋃
H′, the germ of the function ϕν :λ 7→ ϕ(λ+ ν) at λ0 belongs

to π−1
0 Oλ0(∗a∗QqC, U). Hence there exists a constant coefficient differential operator

u0 ∈ S(∗a∗Qq), independent of U, such that

Lλ0∗ϕ(ν) = u0[π0( · )ϕ( · + ν)](λ0), (ν ∈ a∗Qq \
⋃
H′),(13.6)

for any ϕ ∈M(a∗qC,H, d, U). Inserting (13.6) in (13.2) we find that

LP,sλ0∗ϕ(X, ν) = e−s(λ0+ν)(X)u0[es( ·+ν)(X)π0( · )ϕ( · + ν)](λ0)

= e−s(λ0)(X)u0[es( · )(X)π0( · )ϕ( · + ν)](λ0).

By application of the Leibniz rule it finally follows that this expression is polynomial
in the variable X of degree at most k′: = order(u0).
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Proof of Proposition 13.2. By linearity we may assume that suppL consists of a
single point λ0 ∈ ∗a∗QqC. Let H = Hf and d = df , and let d′:H′ → N and k′ ∈ N be
associated as in Lemmas 13.1 and 13.4. We will establish parts (a), (b) and (c) of
Definition 12.1 for L∗f with k, H and d replaced by k + k′, H′ and d′. Note that
part (a) was observed already in (13.3). Put Ω: = a∗QqC \

⋃
H′. Then, in particular,

the function L∗f : Ω×X+ → Vτ is smooth.
We will establish parts (b) and (c) of Definition 12.1 by obtaining an exponential

polynomial expansion for (L∗f)ν , for ν ∈ Ω, along P ∈ Pmin
σ . However, having the

proof of (13.5) in mind, we assume only P ∈ Pσ at present. Let v ∈ NK(aq). Then
f ∈ Cep

P0,{0}(X+ : τ : a∗qC \
⋃
H) by Remark 12.2. Hence by Lemma 12.7 and (7.13)

we obtain, for λ ∈ a∗qC \
⋃
H,

f(λ,mav) =
∑

s∈WP \W
fs(λ, a,m), (m ∈ XP,v,+, a ∈ A+

Pq(RP,v(m)−1)),(13.7)

where the functions fs on the right-hand side are defined by

fs(λ, a,m) = asλ−ρP
∑

µ∈N∆r(P )

a−µqs,µ(P, v | f)(log a, λ,m).(13.8)

Here the functions qs,µ(P, v | f) belong to the space

Pk(aPq)⊗M(a∗qC,H, d, C∞(XP,v,+ : τP )).

By Lemma 12.7 (b), for every R > 1 the series in (13.8) converges neatly on
A+
Pq(R−1) as a series with coefficients in M(a∗qC,H, d, C∞(XP,v,+[R] : τP )). By

(13.2) we have, for ν ∈ Ω, m ∈ XP,v,+[R] and a ∈ A+
Pq(R−1)

L∗(fs)(ν, a,m) = as(λ0+ν)−ρPLP,sλ0∗[
∑

µ∈N∆r(P )

a−µqs,µ(P, v | f)(log a, · ,m)](log a, ν).

It follows from Lemma 13.4 that LP,sλ0∗ may be applied term by term to the series.
Moreover, the resulting series is neatly convergent on A+

Pq(R−1) as a ∆r(P )-expo-
nential polynomial series with coefficients in M(a∗QqC,H′, d′, C∞(XP,v,+[R] : τP )).

The application of L∗ thus leads to the following identity,

L∗(fs)(ν, a,m) = as(λ0+ν)−ρP
∑

µ∈N∆r(P )

a−µqLs,µ(P, v | f)(log a, ν,m),(13.9)

where the function qLs,µ(P, v | f): aPq × Ω→ C∞(XP,v,+ : τP ) is given by

qLs,µ(P, v | f)(log a, ν) = LP,sλ0∗[qs,µ(P, v | f, log a, · )](log a, ν).(13.10)

Using Lemma 13.4 we deduce that

qLs,µ(P, v | f) ∈ Pk+k′ (aPq)⊗M(a∗QqC,H′, d′, C∞(XP,v,+ : τP )).

Combining (13.9) with (13.7) we obtain an exponential polynomial expansion
along (P, v) for the τ -spherical function (L∗f)ν as

(L∗f)ν(mav) =
∑

s∈WP \W
as(λ0+ν)−ρP

∑
µ∈N∆r(P )

a−µqLs,µ(P, v | f)(log a, ν,m).

(13.11)
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If s ∈ WP \W and ν ∈ a∗QqC, then sν|aPq = [s]ν|aPq , where [s] denotes the class of
s in W/∼P |Q . It follows that the series in (13.11) may be rewritten as∑

σ∈W/∼P |Q

aσν−ρP
∑

s∈WP \W,[s]=σ
µ∈N∆r(P )

asλ0−µqLs,µ(P, v | f)(log a, ν,m).

The exponents sλ0 − µ as s ∈WP \W, [s] = σ and µ ∈ N∆r(P ), are all of the form
−ξ, with ξ ∈ −σ · {λ0}+N∆r(P ). Thus, we see that, for ν ∈ Ω, m ∈ XP,v,+[R] and
a ∈ A+

Pq(R−1),

(L∗f)ν(mav) =
∑

σ∈W/∼P |Q

aσν−ρP
∑

ξ∈−σ·{λ0}+N∆r(P )

a−ξ q̃σ,ξ(log a, ν,m)(13.12)

with

q̃σ,ξ =
∑

s∈WP \W, [s]=σ
sλ0|aPq+ξ∈N∆r(P )

qLs,sλ0|aPq+ξ(P, v | f)(13.13)

∈ Pk+k′ (aPq)⊗M(a∗QqC,H′, d′, C∞(XP,v,+ : τP )).

From what we said earlier about the convergence of the series in (13.9), it follows
that, for every R > 1, the inner series on the right-hand side of (13.12) converges
neatly on A+

Pq(R−1) as a ∆r(P )-exponential polynomial series with coefficients in
the spaceM(a∗QqC,H′, d′, C∞(XP,v,+[R] : τP )).

If P is minimal, then XP,v,+[R] = X0,v and we see that L∗f satisfies conditions
(b) and (c) of Definition 12.1 with qσ,ξ(P, v | L∗f) = q̃σ,ξ for σ ∈W/∼P |Q = W/WQ.
This establishes part (a) of the proposition.

For general P we now see that the functions q̃σ,ξ introduced above coincide with
functions qσ,ξ(P, v | L∗f) introduced in Theorem 7.7. Finally, combining (13.13)
and (13.10) we see that we have established part (b) of the proposition as well.

Lemma 13.5. Let δ ∈ DP0 and f ∈ Ehyp
0 (X+ : τ : δ) (see Definition 12.8). Let

Q ∈ Pσ and L ∈ M(∗a∗QqC,ΣQ)∗laur, and put Y = suppL. There exists a δ′ ∈ DQ

such that

L∗f ∈ Ehyp
Q,Y (X+ : τ : δ′).

Proof. It follows from Proposition 13.2 that L∗f ∈ Cep,hyp
Q,Y (X+ : τ). Moreover,

regaL∗f ⊃ Ω = a∗QqC \ HfQ(Y ). Then in view of Definition 12.8 and Remark 12.9
it suffices to establish the existence of a δ′ ∈ DQ such that, for every ν ∈ Ω, the
function (L∗f)ν is annihilated by the cofinite ideal Iδ′,ν .

By linearity we may assume that suppL consists of a single point λ0 ∈ ∗a∗QqC.
Then L = Lλ0 .

Let π0, u0 be as in the proof of Lemma 13.4. Then from (13.6) we see that

(L∗f)ν(x) = u0[π0( · )f( · + ν, x)](λ0),

for x ∈ X+, ν ∈ Ω. Moreover, since (λ, x) 7→ π0(λ)fλ+ν(x) is smooth in a neighbor-
hood of {λ0} ×X+, it follows that, for D ∈ D(X), ν ∈ Ω and x ∈ X+,

D(L∗f)ν(x) = u0[π0( · )D(f ·+ν)(x)](λ0).(13.14)

Put l = order(u0) and define δ′ ∈ DQ by supp δ′ = {λ0}+ supp δ and δ′(λ0 + Λ) =
δ(Λ) + l for Λ ∈ supp δ. It suffices to prove the following. Let elements DΛ

i ∈ D(X)
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be given for i = 1, . . . , δ(Λ) + l, for each Λ ∈ supp δ, and define the differential
operator

Dν : =
∏

Λ∈supp δ

δ(Λ)+l∏
i=1

(DΛ
i − γ(DΛ

i , λ0 + Λ + ν)) ∈ D(X)(13.15)

for ν ∈ a∗QqC. Then Dν annihilates (L∗f)ν for each ν ∈ Ω.
It follows from (13.4) and (13.14) that

Dν(L∗f)ν(x) = u0[π0( · )Dνf ·+ν(x)](λ0),(13.16)

where the dots indicate a variable in ∗a∗QqC. We write each factor in Dν as

DΛ
i − γ(DΛ

i , λ0 + Λ + ν)

= [DΛ
i − γ(DΛ

i , · + Λ + ν)] + [γ(DΛ
i , · + Λ + ν)− γ(DΛ

i , λ0 + Λ + ν)],

also with variables in ∗a∗QqC indicated by dots. Inserting this into (13.15) and (13.16)
we obtain an expression for Dν(L∗f)ν(x) as a sum of terms each of the form

u0[π0( · )
∏

Λ∈supp δ

pΛ( · )DΛ( · )f ·+ν(x)](λ0),(13.17)

where

DΛ(λ) =
∏
i∈SΛ

[DΛ
i − γ(DΛ

i , λ+ Λ + ν)]

and

pΛ(λ) =
∏
i∈ScΛ

[γ(DΛ
i , λ+ Λ + ν)− γ(DΛ

i , λ0 + Λ + ν)]

with SΛ a subset of {1, . . . , δ(Λ) + l} and ScΛ its complement in this set. On
the one hand, if SΛ has fewer than δ(Λ) elements for some Λ, there are at least
l + 1 factors in the corresponding product pΛ. Since each of these factors vanish
at λ0, it follows from the Leibniz rule that then (13.17) vanishes. On the other
hand, if for each Λ the set SΛ has at least δ(Λ) elements, then the differential
operator

∏
ΛD

Λ(λ) annihilates fλ+ν , again causing (13.17) to vanish. It follows
that Dν(L∗f)ν(x) = 0.

In the following definition we introduce a notion of asymptotic globality that is
somewhat stronger than the one in Definition 8.4. It is motivated by the fact that it
carries over by the application of Laurent functionals, as we shall see in Proposition
13.9

Definition 13.6. Let Q ∈ Pσ, and let Y ⊂ ∗a∗QqC be finite. Let P ∈ Pσ, v ∈
NK(aq) and σ ∈W/∼P |Q .

(a) Let Ω ⊂ a∗QqC be an open subset. A family f ∈ Cep
Q,Y (X+ : τ : Ω) (see Defini-

tion 7.1) is called holomorphically σ-global along (P, v) if there exists a full
open subset Ω∗ of a∗QqC such that, for every ξ ∈ −σ · Y + N∆r(P ), the func-
tion λ 7→ qσ,ξ(P, v | f, · )(λ) is a holomorphic Pk(aPq)⊗C∞(XP,v : τP )-valued
function on Ω∗ ∩ Ω, for some k ∈ N.

(b) A family f ∈ Cep,hyp
Q,Y (X+ : τ) (see Definition 12.1) is called holomorphically

σ-global along (P, v) if its restriction to Ω = regaf is holomorphically σ-global
along (P, v), according to (a).
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It is easily seen that the property of holomorphic globality according to (a) of
the above definition implies the globality in Definition 8.4. We have the follow-
ing analogue of Lemma 8.7, describing how the property of holomorphic globality
transforms under the action of NK(aq).

Lemma 13.7. Let Q, Y , P , v and σ be as above, and let f ∈ Cep,hyp
Q,Y (X+ : τ).

If f is holomorphically σ-global along (P, v), then f is holomorphically uσ-global
along (uPu−1, uv), for every u ∈ NK(aq).

Proof. The proof is completely analogous to the proof of Lemma 8.7, involving an
application of Lemma 7.10.

Proposition 13.8. Let Q ∈ Pσ, Y ⊂ ∗a∗QqC a finite subset and let P ∈ Pσ, v ∈
NK(aq) and σ ∈ W/∼P |Q . Let f ∈ Cep,hyp

Q,Y (X+ : τ) and put H = Hf , d = df and
k = degaf .

The family f is holomorphically σ-global along (P, v) if and only if, for every
element ξ ∈ −σ · Y + N∆r(P ), the function λ 7→ qσ,ξ(P, v | f, · )(λ) belongs to the
space M(a∗QqC,H, d, Pk(aPq)⊗ C∞(XP,v : τP )).

Proof. The ‘if’-statement is obvious. Assume that f is holomorphically σ-global
along (P, v), and let ξ ∈ −σ · Y +N∆r(P ). According to Lemma 12.7, the function

λ 7→ qσ,ξ(P, v | f, · , λ)(13.18)

belongs to the space

M(a∗QqC,H, d, Pk(aPq)⊗ C∞(XP,v,+ : τP )).(13.19)

Let Ω = rega(f) and let Ω∗ be a full open subset of a∗QqC satisfying the properties
of Definition 13.6 (a) for the restriction of f to Ω. Then the function (13.18)
not only belongs to the space (13.19), but also to the space O(Ω∗ ∩ Ω, Pl(aPq) ⊗
C∞(XP,v : τP )), for some l ∈ N. In particular, we see that this is true with l = k.

Now let X ∈ aPq be fixed. Then it suffices to show that the function (13.18),
with X substituted for the dot, belongs to the spaceM(a∗QqC,H, d, C∞(XP,v : τP )).
To prove the latter, we fix an arbitrary bounded nonempty open set ω ⊂ a∗QqC and
put π: = πω,d; see above Lemma 12.5. Then the function F :ω × XP,v,+ → Vτ ,
defined by

F (λ,m) = π(λ) qσ,ξ(P, v | f,X, λ)(m)

is C∞ and holomorphic in its first variable. Moreover, let ω0 be the full open subset
ω ∩ Ω∗ ∩ Ω of ω. Then by what we said above, the restricted function F |ω0×XP,v,+

admits a smooth extension to the manifold ω0×XP,v. It now follows from Corollary
18.2 that F has a unique smooth extension to ω×XP,v; this extension is holomorphic
in the first variable. It follows that the function λ 7→ π(λ)qσ,ξ(P, v | f,X, λ) belongs
to O(ω,C∞(XP,v : τP )). Since ω was arbitrary, this completes the proof.

Proposition 13.9. Let f ∈ Cep,hyp
0 (X+ : τ), let Q ∈ Pσ and let L be a Laurent

functional in M(∗a∗QqC,ΣQ)∗laur. Put Y = suppL. Let P ∈ Pσ, v ∈ NK(aq) and
σ ∈W/∼P |Q .

If f is holomorphically s-global along (P, v) for every s ∈ WP \W with [s] = σ,

then L∗f ∈ Cep,hyp
Q,Y (X+ : τ) is holomorphically σ-global along (P, v).
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Proof. It follows from Proposition 13.2 (a) that L∗f ∈ Cep,hyp
Q,Y (X+ : τ). Assume that

f satisfies the globality assumptions. Then it remains to establish the assertion on
σ-globality for L∗f .

Let k = degaf. Let H = Hf , d = df and H′ = HQ(Y ). Moreover, let d′:H′ → N
be associated with these data as in Lemma 13.1 and let k′ ∈ N be associated as in
Proposition 13.2 (a). According to the latter proposition, the set Ω′ = a∗QqC \

⋃
H′

is contained in rega(L∗f).
Let ξ ∈ −σ · Y + N∆r(P ). Moreover, let s ∈ WP \W be such that [s] = σ and

let λ0 ∈ Y be such that η: = sλ0|aPq + ξ belongs to N∆r(P ). Then by Proposition
13.8, the function

λ 7→ qs,η(P, v | f, · , λ)

belongs to M(a∗QqC,H, d, Pk(aPq) ⊗ C∞(XP,v : τP )). Using Lemma 13.4 with
C∞(XP,v : τP ) in place of U, we see that, for X ∈ aPq, the function

ϕX : = LP,sλ0∗[qs,η(P, v | f,X, · )]
belongs toM(a∗QqC,H′, d′, Pk′(aPq)⊗C∞(XP,v : τP )). Moreover, it depends on X ∈
aPq as a polynomial function of degree at most k. It follows that the function
(ν,X) 7→ ϕX(ν)(X) belongs to the space

M(a∗QqC,H′, d′, Pk+k′ (aPq)⊗ C∞(XP,v : τP )).(13.20)

Each term in the finite sum (13.5) is of this form. Hence the function

(ν,X) 7→ qσ,ξ(P, v | L∗f,X, ν)

belongs to the space (13.20) as well. This holds for all ξ ∈ −σ · Y + N∆r(P ).
Therefore the restriction of L∗f to rega(L∗f) satisfies Definition 13.6 (a) with Ω∗ =
Ω′.

The following definition is an analogue of the final part of Definition 12.8, re-
placing the globality condition by a condition of holomorphic globality.

Definition 13.10. Let Q ∈ Pσ and let δ ∈ DQ. We define

Ehyp
Q (X+ : τ : δ)hglob

to be the space of functions f ∈ Ehyp
Q (X+ : τ : δ) satisfying the following condition.

For each s ∈ W and every P ∈ P1
σ with s(aQq) 6⊂ aPq, the family f

is holomorphically [s]-global along (P, v), for all v ∈ NK(aq); here [s]
denotes the image of s in W/∼P |Q = WP \W/WQ.

If Y ⊂ ∗a∗QqC is a finite subset, we define

Ehyp
Q,Y (X+ : τ : δ)hglob = Ehyp

Q,Y (X+ : τ : δ) ∩ Ehyp
Q (X+ : τ : δ)hglob.

It is easily seen that Ehyp
Q (X+ : τ : δ)hglob ⊂ Ehyp

Q (X+ : τ : δ)glob. As in Lemma
9.7 the above condition allows a reduction to a smaller set of (s, P ).

Lemma 13.11. Let Q ∈ Pσ be standard, let δ ∈ DQ and f ∈ Ehyp
Q (X+ : τ : δ). Then

f belongs to Ehyp
Q (X+ : τ : δ)hglob if and only if the following condition is fulfilled.

For each s ∈ W and every α ∈ ∆ with s−1α|aQq 6= 0, the family f is
holomorphically [s]-global along (Pα, v), for all v ∈ NK(aq).
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Proof. The proof is similar to the proof of Lemma 9.7, involving Lemma 13.7 instead
of Lemma 8.7.

We now come to the main result of this section, which provides a source of
functions to which the vanishing theorem (Theorem 12.10) can be applied.

Theorem 13.12. Let δ ∈ DP0 and f ∈ Ehyp
0 (X+ : τ : δ)hglob: = Ehyp

P0
(X+ : τ : δ)hglob

(see Definition 13.10), let Q ∈ Pσ be a standard σ-parabolic subgroup and let
L ∈M(∗a∗QqC,ΣQ)∗laur. Put Y = suppL. Then there exists a δ′ ∈ DQ such that

L∗f ∈ Ehyp
Q,Y (X+ : τ : δ′)hglob.

Proof. From Lemma 13.5 it follows that L∗f is a family in Ehyp
Q,Y (X+ : τ : δ′) for

some δ′ ∈ DQ. Let s ∈ W and α ∈ ∆ be such that s−1α|aQq 6= 0. Then every
t ∈ WαsWQ also satisfies the condition t−1α|aQq 6= 0; hence t(aQq) 6⊂ aαq. Thus,
from the hypothesis, it follows that f is holomorphically Wαt-global along (Pα, v)
for every t in the double coset WαsWQ. According to Lemma 6.5 (see also Remark
9.6) the latter set equals the class [s] of s for the equivalence relation ∼Pα|Q in
W. It now follows from Proposition 13.9 that L∗f is holomorphically [s]-global
along (Pα, v). We conclude that L∗f satisfies the conditions of Lemma 13.11, hence
belongs to Ehyp

Q,Y (X+ : τ : δ′)hglob.

14. Partial Eisenstein integrals

Let P ∈ Pmin
σ be a minimal σ-parabolic subgroup and let (τ, Vτ ) be a finite di-

mensional unitary representation of K. In this section we will define partial Eisen-
stein integrals E+,s(P : λ) associated with P , τ and an element s ∈ W . It will be
shown (in Lemma 14.3) that for each s ∈ W the family λ 7→ E+,s(P : λ) belongs
to the space Ehyp

0 (X+ : τ : δ) (see Definition 12.8) for some δ. In order to be able
to apply the vanishing theorem, as explained in the introduction to the previous
section, we need to establish holomorphic globality (see Definition 13.6). In general
this condition fails for the individual partial Eisenstein integrals, but it will hold
when they are suitably grouped together. This is established in Corollary 14.8.

We start by recalling some properties of Eisenstein integrals. Let W ⊂ NK(aq)
be a fixed set of representatives for W/WK∩H . Following [9], (5.1), we define the
complex linear space ◦C = ◦C(τ) as the following formal direct sum of finite dimen-
sional linear spaces

◦C: =
⊕
w∈W

C∞(X0,w : τM).(14.1)

Every summand in the above sum, as w ∈ W , is a finite dimensional subspace of
the Hilbert space L2(X0,w, Vτ ); here the L2-inner product is defined relative to the
normalized M -invariant measure of the compact space X0,w = M/M ∩wHw−1 and
the Hilbert structure of Vτ . Thus, every summand is a finite dimensional Hilbert
space of its own right. The formal direct sum ◦C is equipped with the direct sum
inner product, turning (14.1) into an orthogonal direct sum.

For ψ ∈ ◦C, λ ∈ a∗qC and x ∈ X, the Eisenstein integral E(ψ : λ : x) =
E(P : ψ : λ : x) and its normalized version E◦(ψ : λ : x) = E◦(P : ψ : λ : x) are de-
fined as in [9], § 5. The Eisenstein integrals are τ -spherical functions of x, depend
meromorphically on λ and linearly on ψ. We view E◦(λ : x): = E◦( · : λ : x) (and
similarly its unnormalized version) as an element of Hom(◦C, Vτ ) ' Vτ ⊗ ◦C∗. Thus,
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for generic λ ∈ a∗qC, E
◦(λ) is a τ ⊗ 1-spherical function on X. The connection be-

tween the unnormalized and the normalized Eisenstein integral is now given by the
identity

E◦(λ : x) = E(λ : x) ◦C(1 : λ)−1, (x ∈ X),(14.2)

for generic λ ∈ a∗qC. Here C(1 : λ): = CP |P (1 : λ) is a meromorphic End(◦C)-valued
function of λ ∈ a∗qC; see [9], p. 283.

The Eisenstein integral is D(X)-finite. In fact, we recall from [9], (5.11), that
there exists a homomorphism µ from D(X) to the algebra of End(◦C)-valued poly-
nomial functions on a∗qC such that

DE◦(λ) = [I ⊗ µ(D : λ)∗]E◦(λ), (D ∈ D(X)).

It now follows from Lemma 5.3 that, for generic λ ∈ a∗qC, the Eisenstein integral
E◦(λ) belongs to Cep(X+ : τ ⊗ 1). It therefore has expansions of the form (2.13).
These expansions have been determined explicitly in [8]. We recall some of the
results of that paper.

In [8], (15), we define a function ΦP (λ : · ) on A+
q (P ) by an exponential polyno-

mial series with coefficients in End(VM∩K∩Hτ ) of the form

ΦP (λ : a) = aλ−ρP
∑

ν∈∆(P )

a−νΓP,ν(λ), (a ∈ A+
q (P )).(14.3)

Note that here P replaces the Q of [8], Sect. 5; also, in [8] we suppressed the Q
in the notation. The coefficients in the expansion (14.3) are defined by recursive
relations (see [8], (18) and Prop. 5.2); it follows from these that the coefficients
depend meromorphically on λ, and that the expansion (14.3) converges to a smooth
function on A+

q (P ), depending meromorphically on λ. In fact, we have the following
stronger result.

Let ΠΣ,R be the collection of polynomial functions a∗qC → C that can be written
as finite products of linear factors of the form λ 7→ 〈λ , α〉 − c, with α ∈ Σ and
c ∈ R. For R ∈ R, we define the set

a∗q(P,R): = {λ ∈ a∗qC | Re 〈λ , α〉 < R ∀α ∈ Σ(P )}.

Lemma 14.1. Let R ∈ R. Then there exists a polynomial function p ∈ ΠΣ,R such
that the functions pΓP,ν , for ν ∈ N∆(P ), are all regular on a∗q(P,R). Moreover, if
p is a polynomial function with the above property, then the series∑

ν∈N∆(P )

a−νp( · )ΓP,ν( · )(14.4)

converges neatly on A+
q (P ) as an exponential series with coefficients in O(a∗q(P,R))

⊗ End(VM∩K∩Hτ ). In particular, the function (a, λ) 7→ p(λ)ΦP (λ : a) is smooth on
A+

q (P )× a∗q(P,R), and in addition holomorphic in its second variable.

Proof. Let pR be the polynomial function described in [8], Thm. 9.1. As in the
proof of that theorem, it follows from the estimates in [8], Thm. 7.4, that the power
series

Ψ(λ : z) =
∑

ν∈N∆(P )

z−νpR(λ)ΓP,ν(λ)

converges absolutely locally uniformly in the variables z ∈ D∆(P ) and λ ∈ a∗q(P,R).
Here we have used the notation of Section 1 of the present paper. Since
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pR(λ)ΦP (λ : a) = aλ−ρP Ψ(λ : z(a)), for a ∈ A+
q (P ), this implies all assertions of

the lemma with pR in place of p.
This is not immediately good enough, since pR is a finite product of linear

factors of the form λ 7→ 〈λ , ν〉−c, with ν ∈ N∆(P ) and c ∈ R; see [8], the equation
preceding Lemma 7.3. To overcome this, we invoke [8], Prop. 9.4. It follows from
that result and its proof that there exists a p ∈ ΠΣ,R such that pΓP,ν is regular
on a∗q(P,R), for every ν ∈ N∆(P ). Let p be any polynomial with this property,
and let 8p be the least common multiple of p and pR. Then all assertions of the
lemma hold with 8p in place of p. Let q be the quotient of 8p by p. Denote the
image of the linear endomorphism mq:ϕ 7→ qϕ of O(a∗q(P,R)) by F , and equip this
space with the locally convex topology induced from O(a∗q(P,R)). It follows from
an easy application of the Cauchy integral formula that mq is a topological linear
isomorphism from O(a∗q(P,R)) onto F ; see also [9], Lemma 20.7. As said above,
all assertions of the lemma hold with 8p in place of p; on the other hand, by the
hypothesis the series (14.4) with 8p in place of p has coefficients in F . Applying the
continuous linear map m−1

q to that series, we infer that all assertions of the lemma
are true with the polynomial q−18p = p.

Following [8], Sect. 11, we define the function

ΦP,w: a∗qC ×A+
q (P )→ End(V KM∩wHw−1

τ ),

for w ∈ W , by

ΦP,w(λ : a) = τ(w) ◦Φw−1Pw(w−1λ : w−1aw) ◦ τ(w)−1.(14.5)

Following [9], p. 283, we define normalized C-functions C◦(s : λ) = C◦P |P (s : λ), for
s ∈W, by

C◦(s : λ) = C(s : λ) ◦C(1 : λ)−1;(14.6)

these are End(◦C)-valued meromorphic functions of λ ∈ a∗qC. From (14.2) and [8],
(54), we now obtain the following description of the normalized Eisenstein integral
in terms of the functions ΦP,w. Let ψ ∈ ◦C and w ∈ W . Then, for a ∈ A+

q (P ),

E◦(λ : aw)ψ =
∑
s∈W

ΦP,w(sλ : a)[C◦(s : λ)ψ]w(e),(14.7)

as a meromorphic identity in λ ∈ a∗q.
From (14.5) and (14.3) it follows that, for w ∈ W , the function ΦP,w is given by

the series

ΦP,w(λ : a) = aλ−ρP
∑

ν∈N∆(P )

a−νΓP,w,ν(λ),(14.8)

with coefficients

ΓP,w,ν(λ) = τ(w) ◦Γw−1Pw,w−1ν(w−1λ) ◦ τ(w)−1.(14.9)

We now have the following result on the convergence of the series (14.8).

Corollary 14.2. Let w ∈ W . Then there exists a locally finite real Σ-hyperplane
configuration H = Hw in a∗qC and a map d = dw:H → N, such that the functions
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ΓP,w,ν belong to M(a∗qC,H, d,End(V KM∩wHw−1

τ )), for every ν ∈ N∆(P ). Moreover,
the series ∑

ν∈N∆(P )

a−νΓP,w,ν(14.10)

converges neatly on A+
q (P ) as an exponential polynomial series with coefficients in

the space M(a∗qC,H, d,End(V KM∩wHw−1

τ )). In particular, the function λ

7→ ΦP,w(λ : · ) belongs to the spaceM(a∗qC,H, d, C∞(A+
q (P ))⊗End(V KM∩wHw−1

τ )).

Proof. For w = 1 the assertion of the corollary follows immediately from Lemma
14.1. For arbitrary w ∈ W it then follows by application of (14.9).

For s ∈W we define the so-called partial Eisenstein integralE+,s(λ)=E+,s(P : λ)
as the τ ⊗ 1-spherical function X+ → Vτ ⊗ ◦C∗ determined by

E+,s(λ : aw)ψ = ΦP,w(sλ : a)[C◦(s : λ)ψ]w(e),(14.11)

for ψ ∈ ◦C, w ∈ W , a ∈ A+
q (P ) and generic λ ∈ a∗qC (use the isomorphism (2.9)).

It follows from Corollary 14.2 that E+,s is a meromorphic C∞(X+ : τ ⊗ 1)-valued
function on a∗qC. By sphericality it follows from (14.7) and (14.11) that

E◦(λ) =
∑
s∈W

E+,s(λ) on X+.(14.12)

It follows from the definitions and the isomorphism (2.10) that, for generic λ ∈ a∗qC,
the function E+,s(λ)ψ belongs to Cep(X+ : τ ⊗ 1) for each ψ ∈ ◦C. Moreover,

Exp(P, v |E+,s(λ)ψ) ⊂ sλ− ρP − N∆(P ),(14.13)

for every v ∈ W and hence also for every v ∈ NK(aq). Thus, we see that (14.12)
is the splitting of Lemma 2.2 applied to the Eisenstein integral. We abbreviate
E+(λ) = E+,1(λ). Then from (14.11) and (14.6) we see that

E+(λ)(aw)ψ = ΦP,w(λ : a)ψw(e),

for ψ ∈ ◦C, w ∈ W , a ∈ A+
q (P ) and generic λ ∈ a∗qC. Moreover, the following holds

as a meromorphic identity in λ ∈ a∗qC

E+,s(λ : x) = E+(sλ : x)C◦(s : λ).(14.14)

In the next lemma we will need the following notation. If Λ ∈ b∗kC, we de-
note by ◦C[Λ] the subspace of ◦C consisting of elements ψ satisfying µ(D : λ)ψ =
γ(D : Λ + λ)ψ for all D ∈ D(X), λ ∈ a∗qC. We recall from [9], (5.14), that ◦C is a
finite direct sum

◦C =
⊕

Λ

◦C[Λ],

where Λ ranges over a finite subset Lτ of b∗kC. For each Λ ∈ b∗kC, we define

Ehyp
0 (X+ : τ : Λ): = Ehyp

0 (X+ : τ : δΛ)(14.15)

(see Definition 12.8) where δΛ ∈ DP is the characteristic function of {Λ}. Likewise,
we define (cf. Definition 13.10)

Ehyp
0 (X+ : τ : Λ)hglob: = Ehyp

P0
(X+ : τ : δΛ)hglob.(14.16)
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Lemma 14.3. Let P ∈ Pmin
σ , t ∈ W and ψ ∈ ◦C[Λ], where Λ ∈ b∗kC. Define the

family f = f{t}: a∗qC ×X+ → Vτ , by

f(λ, x) = E+,t(P : λ : x)ψ.

Then f ∈ Ehyp
0 (X+ : τ : Λ) and degaf = 0.

Proof. According to Definition 12.8 and Remark 12.9, in order to prove that f ∈
Ehyp

0 (X+ : τ : Λ) we must establish that f ∈ Cep,hyp
0 (X+ : τ) and that fλ is annihi-

lated by IΛ+λ for λ in a nonempty open subset of regaf .
We first assume that t = 1. Then f(λ, x) = E+(λ : x)ψ. It follows immediately

from [8], Cor. 9.3 and the hypothesis on ψ that fλ is annihilated by IΛ+λ for generic
λ ∈ a∗qC. We will now show that f ∈ Cep,hyp

0 (X+ : τ). Let H be the union of the hy-
perplane configurations Hw, w ∈ W , of Corollary 14.2, and let d:H → N be defined
by d = maxw∈W dw (see Remark 11.1). Then for every complete locally convex
space U, the spaces M(a∗qC,Hw, dw, U) are included in the space M(a∗qC,H, d, U),
with continuous inclusion maps. Hence for each w ∈ W the series (14.10) con-
verges as a ∆(P )-exponential polynomial series on A+

q (P ), with coefficients in the
space M(a∗qC,H, d,End(V KM∩wHw−1

τ )). Moreover, the function λ 7→ ΦP,w(λ : · ) is
contained in M(a∗qC,H, d, C∞(A+

q (P ))⊗ End(V KM∩wHw−1

τ )).
On the other hand, from (14.11) and (14.6) with s = 1, it follows that

T ↓P,w(fλ)(a) = f(λ, aw) = ΦP,w(λ : a)ψw(e),(14.17)

for all w ∈ W , a ∈ A+
q (P ) and λ ∈ a∗qC \

⋃
H. Hence the function λ 7→ T ↓P,w(fλ)

belongs to the space M(a∗qC,H, d, C∞(A+
q (P ), V KM∩wHw−1

τ )). In view of the iso-
morphism (2.9), it now follows that the function λ 7→ fλ belongs to M(a∗qC,H, d,
C∞(X+ : τ)). This establishes condition (a) of Definition 12.1, with Q = P0 and
Y = {0}.

The evaluation map ψ 7→ ψ(e) is a linear isomorphism from C∞(X0,w : τM)
onto V KM∩wHw−1

τ . Thus, for w ∈ W and ν ∈ N∆(P ) we may define a function
q̃1,ν(P,w | f): a∗qC → C∞(X0,w : τM) by

q̃1,ν(P,w | f, λ, e) = ΓP,w,ν(λ)ψw(e),(14.18)

for λ ∈ a∗qC. Then q̃1,ν(P,w | f) ∈ M(a∗q,H, d, C∞(X0,w : τM)). Moreover, from what
we said earlier about the convergence of the series (14.10), it follows that, for w ∈ W ,
the series ∑

ν∈N∆(P )

a−ν q̃1,ν(P,w | f)

converges neatly as a ∆(P )-exponential polynomial series on A+
q (P ), with coeffi-

cients in M(a∗qC,H, d, C∞(X0,w : τM)).
From (14.17), (14.8) and (14.18) it follows by sphericality that, for w ∈ W ,

λ ∈ a∗qC \
⋃
H, m ∈ X0,w and a ∈ A+

q (P ),

fλ(maw) = aλ−ρP
∑

ν∈N∆(P )

a−ν q̃1,ν(P,w | f)(λ,m),
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This establishes assertions (b) and (c) of Definition 12.1 with a fixed P, arbitrary
v ∈ W , and, for ν ∈ N∆(P ), X ∈ aq,

qs,ν(P, v | f,X) =
{
q̃1,ν(P, v | f) for s = 1;
0 for s ∈W \ {1}.

In view of Remark 12.3 we have shown that f ∈ Cep,hyp
0 (X+ : τ). Moreover, degaf =

0. This completes the proof for t = 1.
Now let t ∈W be arbitrary and let t̃ ∈W0(b) be such that t̃|aq = t; see the text

preceding Lemma 5.5. From (14.14) we see that

f(λ, x) = E+(tλ : x)C◦(t : λ)ψ.(14.19)

It follows from [9], Lemma 20.6, that there exists a Σ-configuration H′ in a∗qC and
a map d′:H′ → N, such that

C◦(t : · ) ∈ M(a∗qC,H′, d′,End(◦C)).(14.20)

From [9], (5.13), it follows that C◦(t : λ) maps ◦C[Λ] into ◦C[t̃Λ]. Fix a basis
ψ1, . . . , ψs for ◦C[t̃Λ]. Then there exist unique functions cj ∈ M(a∗qC,H′, d′) such
that

C◦(t : λ)ψ =
r∑
j=1

cj(λ)ψj .(14.21)

For 1 ≤ j ≤ r we define the family gj: a∗qC ×X+ → Vτ by

gj(λ, x) = E+(λ : x)ψj .(14.22)

Then by the first part of the proof, each gj belongs to Ehyp
0 (X+ : τ : t̃Λ). Moreover,

for every 1 ≤ j ≤ r, the family gj satisfies the conditions of Definition 12.1 with
Q = P0 and Y = {0}, with H and d as in the first part of the proof, and with k = 0.

For 1 ≤ j ≤ r we define the family fj: a∗qC × X+ → Vτ by fj(λ, x) = gj(tλ, x).
Then we readily see that fj satisfies the conditions of Definition 12.1 with t−1H and
d ◦ t in place of H and d, respectively, and with k = 0. Hence fj ∈ Cep,hyp

0 (X+ : τ).
Since It̃Λ+tλ = IΛ+λ we see that fj ∈ Ehyp

0 (X+ : τ : Λ). Moreover, degafj = 0.
Combining (14.19) and (14.21) with (14.22) and the definition of fj , we find that

f(λ, x) =
r∑
j=1

cj(λ)fj(λ, x).

Let H′′ = t−1H ∪ H′ and define d′′:H′′ → N by d′′(H) = d(tH) + d′(H) (see
Remark 11.1). Then by linearity it readily follows that f satisfies all conditions of
Definition 12.1, with k = 0 and with H′′ and d′′ in place of H and d, respectively.
Hence f ∈ Cep,hyp

0 (X+ : τ) and degaf = 0. Moreover, for generic λ, fλ is annihilated
by IΛ+λ, and hence f ∈ Ehyp

0 (X+ : τ : Λ).

Corollary 14.4. Let assumptions be as in Lemma 14.3 and let Q be a σ-parabolic
subgroup. Let L ∈M(∗a∗QqC,ΣQ)∗laur. Then L∗f ∈ Ehyp

Q,Y (X+ : τ : δ) for Y = suppL
and δ a suitable element in DQ. Moreover,

Exp(P, v | (L∗f)ν) ⊂ t(ν + Y )− ρP − N∆(P )

for v ∈ NK(aq) and ν ∈ regaL∗f .

Proof. This follows immediately from Lemmas 14.3 and 13.5, and from (14.13)
combined with the final statement in Proposition 13.2 (b).
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Lemma 14.5. Let ψ ∈ ◦C[Λ] where Λ ∈ b∗kC. Then the family f : a∗qC × X+ → Vτ ,
defined by

f(λ, x) = E◦(P0 : λ : x)ψ

belongs to Ehyp
0 (X+ : τ : Λ). Moreover, degaf = 0 and for all P ∈ Pσ, v ∈ NK(aq)

and every s ∈ WP \W, the family f is holomorphically s-global along (P, v) (see
Definition 13.6).

Proof. The function f equals the sum, for t ∈ W, of the functions f{t} defined
in Lemma 14.3, with P0 in place of P. Hence f ∈ Ehyp

0 (X+ : τ : Λ) and degaf = 0.
Moreover, for each λ ∈ regaf , the function fλ is asymptotically global along all pairs
(P, v) by Proposition 8.8. Thus, it remains to prove the assertion on holomorphic
globality. In view of Lemma 13.7, it suffices to do this for arbitrary P ∈ Pσ and
the special value v = e.

In the rest of this proof we shall use notation of the paper [7]. According to
[7], Lemma 14, there exists a locally finite collection H of Σ-hyperplanes such that
λ 7→ fλ is holomorphic on Ω0: = a∗qC \

⋃
H, with values in C∞(X : τ). According to

the same mentioned lemma it follows that f ∈ E∗(G/H, Vτ ,Ω0). According to [7],
p. 562, Cor. 1, for generic λ ∈ a∗qC the function fλ has an asymptotic expansion of
the form

fλ(x exp tX) ∼
∑

s∈WP \W
ν∈N∆r(P )

pP,ν(fλ : s : λ)(x) e(sλ−ρP−ν)(tX) (t→∞)(14.23)

for X ∈ aPq at every X0 ∈ a
+
Pq. Proposition 10 of [7] is valid with E∗(G/H, Vτ ,Ω0)

in place of E∗(G/H,Λ,Ω0), by the remarks in the beginning of [7], Sect. 12. In
particular, there exists a full open subset 88a∗qC of a∗qC such that, for all s ∈ WP \W
and ν ∈ N∆r(P ), the coefficient pP,ν(fλ : s : λ) is holomorphic as a C∞(G, Vτ )-
valued function of λ on the full open set Ω0 ∩ 88a∗qC.

On the other hand, since f ∈ Ehyp
0 (X+ : τ : Λ), and degaf = 0, the expansion

(12.2) holds, with k = 0 and Y = {0}, for all λ ∈ Ω: = regaf. Thus, if λ ∈
Ω ∩ a∗0qC(P, {0}) is generic, then it follows from comparing the expansions (14.23)
and (12.2), and using Lemma 6.2 and uniqueness of asymptotics (see the proof of
Lemma 1.7), that

qs,ν(P, e | f,X, λ)(m) = pP,ν(fλ : s : λ)(m),(14.24)

for all s ∈ WP \W, ν ∈ N∆r(P ), X ∈ aPq and m ∈ MP,+; here we have written
MP,+ for the preimage of XP,e,+ in MP .

By analytic continuation the equality (14.24) holds for all λ in the full, hence
connected, open subset Ω′: = Ω ∩ Ω0 ∩ 88a∗qC of a∗qC. In particular, it follows that
λ 7→ qs,ν(P, e | f, λ) is holomorphic on Ω′ as a function with values in P0(aPq) ⊗
C∞(XP,e : τP ), for all s ∈ WP \W and ν ∈ N∆r(P ). This establishes the assertion
on holomorphic globality; see Definition 13.6.

Lemma 14.6. Let Λ ∈ b∗kC, ψ ∈ ◦C[Λ], S ⊂W and define fS : a∗qC ×X+ → Vτ by

fS(λ, x): =
∑
s∈S

E+,s(P0 : λ : x)ψ.
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Then the family fS belongs to Ehyp
0 (X+ : τ : Λ). Moreover, let t ∈ W and α ∈ ∆,

and assume that either Wαt ⊂ S or Wαt ∩ S = ∅, where Wα = {1, sα}. Then the
family fS is holomorphically Wαt-global along (Pα, v), for every v ∈ NK(aq).

Proof. The first assertion is an immediate consequence of Lemma 14.3 with P0 in
place of P.

Let v ∈ NK(aq). It follows from (14.13) and Theorem 3.5 that

Exp(Pα, v | f{s}λ) ⊂ sλ|aαq − ρα − N∆r(Pα)

for each s ∈ W . For λ in the full open subset a∗0PαqC(P0, {0}) of a∗αqC the sets
sλ|aαq − ρα − N∆r(Pα) are mutually disjoint for different [s] = Wαs from Wα\W ;
see Lemmas 6.2 and 6.5. Hence

q[t],ξ(Pα, v | f{s}) = 0,(14.25)

for all s ∈W \Wαt and all ξ ∈ ∆r(Pα).
First assume that Wαt ∩ S = ∅. Then it follows from (14.25) that q[t],ξ(Pα, v |

fS) = 0 for all ξ ∈ ∆r(Pα). Hence fS is holomorphically [t]-global along (Pα, v).
Next assume that Wαt ⊂ S. Let Sc = W \S. Then fS = fW −fSc , and it follows

from Lemma 14.5 and what was just proved, that fS is holomorphically [t]-global
along (Pα, v).

If Q ∈ Pσ is standard, then we define the subset WQ of W by

WQ = {s ∈W | s(∆Q) ⊂ Σ+}.(14.26)

It is well known (see e.g. [16], Thm. 2.5.8) that the multiplication map WQ×WQ →
W is bijective. Moreover, if s ∈ WQ and t ∈ WQ, then l(st) = l(s) + l(t); here
l:W → N denotes the length function relative to ∆. In particular, this means that
WQ consists of the minimal length representatives in W of the cosets in W/WQ.

Lemma 14.7. Let s ∈ W, α ∈ ∆ and assume that s−1α|aQq 6= 0. Let t ∈ WQ.
Then s ∈WQt if and only if sαs ∈WQt.

Proof. The hypothesis s−1α|aQq 6= 0 is also satisfied by the elements s1 = st−1 and
s2 = sαst

−1. Hence we need only prove the implication s ∈WQ ⇒ sαs ∈ WQ.
Assume that s ∈ WQ. Then s(∆Q) ⊂ Σ+. From the hypothesis it follows that

s−1α /∈ ∆Q, hence α /∈ s(∆Q). Since α is simple, it follows that sα(s(∆Q)) ⊂ Σ+.
Hence sαs ∈WQ.

Corollary 14.8. Let ψ ∈ ◦C[Λ] where Λ ∈ b∗kC and let Q ∈ Pσ be a standard
parabolic subgroup. Fix t ∈WQ, and let the family f : a∗qC ×X+ → Vτ be defined by

f(λ, x) =
∑
s∈WQ

E+,st(P0 : λ : x)(ψ).

Then f ∈ Ehyp
0 (X+ : τ : Λ)hglob (see (14.16)). If L ∈ M(∗a∗QqC,ΣQ)∗laur, then the

family L∗f belongs to the space Ehyp
Q,Y (X+ : τ : δ)hglob (see Definition 13.10), where

Y = suppL, and where δ is a suitable element of DQ.

Proof. Let S = WQt. Then, f = fS , where we have used the notation of Lemma
14.6. It follows from the mentioned lemma that f ∈ Ehyp

0 (X+ : τ : Λ). Moreover,
let s ∈ W and α ∈ ∆ be such that s−1α|aQq 6= 0. Then it follows from Lemma
14.7 that either Wαs ⊂ S or Wαs ∩ S is empty. Hence it follows from Lemma 14.6
that f is holomorphically Wαs-global along (Pα, v), for every v ∈ NK(aq). Thus
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f ∈ Ehyp
0 (X+ : τ : Λ)hglob by Lemma 13.11. The remaining assertion now follows

from Theorem 13.12.

15. Asymptotics of partial Eisenstein integrals

Let P ∈ Pmin
σ and let Q be a σ-parabolic subgroup containing P. For the appli-

cation of the asymptotic vanishing theorem, Theorem 12.10, in the next section we
need to determine the coefficient of the leading exponent in the (Q, v)-expansion of
the Eisenstein integral E◦(P : λ), for every v ∈ NK(aq). This is done in Proposition
15.1, where the coefficient is expressed by means of an Eisenstein integral for XQ.
A similar result is derived in Proposition 15.3 for the partial Eisenstein integral
E+,s(P : λ) and in Proposition 15.4 for the family obtained by applying a Laurent
functional to E+,s(P : λ) (cf. Corollary 14.4).

We first need some notation related to the parabolic subgroup Q, in addition
to what was introduced in Section 3. Let v ∈ NK(aq) and select a complete set
of representatives WQ,v in NKQ(aq) for WQ/WKQ∩vHv−1 . We define ◦C(Q, v) =
◦C(Q, v, τ) to be the analogue of the space ◦C for the data X1Q,v, τQ. Thus

◦C(Q, v) =
⊕

u∈WQ,v

C∞(M/M ∩ uvH(uv)−1 : τ)(15.1)

with an orthogonal direct sum. Note that ◦C(Q, v) is also the analogue of ◦C for
the data XQ,v, τQ.

One readily checks that the map WQ,v → W/WK∩H given by u 7→ Ad(uv)|aq

is injective. Hence we may extend WQ,vv to a complete set W ⊂ NK(aq) of
representatives for W/WK∩H . If w ∈ W , then w ∈ WQ,vv ⇐⇒ wv−1 ∈ KQ. With
such choices made we have a natural isometric embedding iQ,v: ◦C(Q, v) ↪→ ◦C,
defined by

(iQ,vψ)w =
{
ψwv−1 if w ∈ WQ,vv,
0 otherwise.(15.2)

The adjoint of the embedding iQ,v is denoted by prQ,v: ◦C → ◦C(Q, v). It is given
by the following formula, for ψ ∈ ◦C,

(prQ,vψ)u = ψuv, (u ∈ WQ,v).(15.3)

The normalized Eisenstein integral associated with the data X1Q,v, τQ and ∗P : =
P ∩M1Q is denoted by E◦(X1Q,v : ∗P : ν), for ν ∈ a∗qC. Similarly, the partial Eisen-
stein integrals associated with these data are denoted by E+,s(X1Q,v : ∗P : ν), for
s ∈WQ and ν ∈ a∗qC. Note that all of these are (τQ ⊗ 1)-spherical smooth functions
on X1Q,v,+ with values in Hom(◦C(Q, v), Vτ ) ' Vτ ⊗ ◦C(Q, v)∗.

Proposition 15.1. Let P ∈ Pmin
σ , Q ∈ Pσ and assume that Q ⊃ P. Let v ∈

NK(aq), and choose WQ,v, W as above such that WQ,v ⊂ Wv−1. Let ψ ∈ ◦C and
let the family f : a∗qC ×X→ Vτ be defined by

f(λ, x) = E◦(P : λ : x)ψ.

Then, for λ ∈ a∗qC generic, and for all X ∈ aQq and m ∈ XQ,v,+,

qλ|aQq−ρQ(Q, v | fλ, X,m) = E◦(X1Q,v : ∗P : λ : m) prQ,vψ.(15.4)
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Proof. We first assume that v = e. Then X1Q,v = X1Q,e = M1Q/M1Q∩H. Moreover,
the set WQ: =WQ,e is contained in W . From [7], p. 563, Thm. 4, it follows that

qλ|aQq−ρQ(Q, e | fλ, X,m) = E◦(X1Q,e : ∗P : λ : m) prQψ,

for generic λ ∈ a∗qC and all X ∈ aQq and m ∈ XQ,e,+. Here prQ is the natural
projection map from ◦C onto ◦CQ(τ) =

⊕
v∈WQ

C∞(M/M ∩ vHv−1 : τM); see [7],
pp. 544 and 547. Thus, prQ equals the map prQ,e defined above and it follows that
(15.4) holds with v = e. To establish the result for arbitrary v ∈ NK(aq), we first
need a lemma.

From Remark 3.1 we recall that Xv = X1G,v = G/vHv−1. The setWG,v: =Wv−1

is a complete set of representatives for W/WK∩vHv−1 . Accordingly, the analogue
◦C(G, v) = ◦C(G, v, τ) of the space ◦C is given by (15.1) with G in place of Q.
The associated map iG,v: ◦C(G, v) → ◦C is now a bijective isometry; moreover, its
adjoint prG,v is its two-sided inverse.

We recall from the end of Section 3 that right translation by v induces a topo-
logical linear isomorphism Rv from C∞(X : τ) onto C∞(Xv : τ). In the following
lemma we will relate the right translate of E◦(P : λ) to the normalized Eisenstein
integral associated with Xv, Wv−1 and P.

Lemma 15.2. Let ψ ∈ ◦C. Then, for generic λ ∈ a∗qC,

Rv(E◦(X : P : λ)ψ) = E◦(Xv : P : λ)[prG,vψ].(15.5)

The formula remains valid if the normalized Eisenstein integrals are replaced by
their unnormalized versions.

Proof. We first prove the formula for the unnormalized Eisenstein integrals. Let
λ ∈ a∗qC be such that 〈Reλ + ρP , α〉 < 0 for all α ∈ Σ(P ). Define the func-
tion ψ̃(λ):G → Vτ as in [7], (19). Then E(P : λ : x)ψ =

∫
K τ(k) ψ̃(λ : k−1x) dk.

Hence E(P : λ : xv)ψ =
∫
K
τ(k)ψ̃G,v(λ : k−1x) dk, where ψ̃G,v(λ : x) = ψ̃(λ : xv).

One now readily checks that ψ̃G,v(λ) is the analogue of ψ̃(λ), associated with the
data Xv,Wv−1 and with the element ψG,v: = prG,vψ of ◦C(G, v). From this we
obtain the equality (15.5) for the present λ. For general λ, the result follows by
meromorphic continuation.

Let Q ∈ Pmin
σ . Then it follows, by application of Lemma 3.7 and the definition

of the c-functions (cf. [7], § 4), that, for every s ∈ W, each u ∈ Wv−1 and generic
λ ∈ a∗qC, we have [CQ|P (X : s : λ)ψ]uv = [CQ|P (Xv : s : λ)prG,vψ]u. In other words,

prG,v ◦CQ|P (X : s : λ) = CQ|P (Xv : s : λ) ◦ prG,v.

The proof is completed by combining this equation, after substitution of P and 1 for
Q and s, respectively, with the unnormalized version of (15.5) and the definitions
of the normalized Eisenstein integrals (cf. [7], (49)).

Completion of the proof of Proposition 15.1. Let v ∈ NK(aq) be arbitrary. Then
from Lemmas 3.7, 15.2 and equation (15.4) with Xv, e and prG,vψ in place of X, v
and ψ, respectively, it follows that, for X ∈ aQq and m ∈ XQ,v,+,

qλ|aQq−ρQ(Q, v | fλ, X,m) = qλ|aQq−ρQ(Q, e |Rv(fλ), X,m)

= E◦(X̃1Q,e : ∗P : λ : m) p̃rQ,eprG,vψ.

In the last expression the two tildes over objects indicate that the analogues of the
objects for the symmetric space Xv are taken. We now observe that X̃1Q,e equals
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the space M1Q/M1Q ∩ evHv−1e = X1Q,v. Hence, to establish (15.4), it suffices
to show that p̃rQ,eprG,vψ = prQ,vψ. For this we note that p̃rQ,e is the projection
from ◦C(G, v) onto the sum of the components parametrized by the elements u of
M1Q ∩Wv−1 =WQ,v. Moreover, for u ∈ WQ,v,

[p̃rQ,eprG,vψ]u = [prG,vψ]u = ψuv = [prQ,vψ]u.

The result just proved generalizes to partial Eisenstein integrals.

Proposition 15.3. Let P ∈ Pmin
σ . Let ψ ∈ ◦C, let S ⊂W and let the family f = fS

be defined by

f(λ, x) =
∑
s∈S

E+,s(P : λ : x)ψ;

see Lemma 14.6. Assume that Q ∈ Pσ contains P and that v ∈ NK(aq). Then, for
generic λ ∈ a∗qC, and all X ∈ aQq and m ∈ XQ,v,+,

qλ|aQq−ρQ(Q, v | fλ, X,m) =
∑

s∈S∩WQ

E+,s(X1Q,v : ∗P : λ : m) prQ,vψ.(15.6)

In particular, if S ∩WQ = ∅, then λ|aQq − ρQ /∈ Exp(Q, v | fλ).

Proof. For S = W this result is precisely Proposition 15.1. We shall use transitivity
of asymptotics to derive the result for arbitrary S from it.

It suffices to prove the above identity for m = bu ∈ XQ,v,+, with u ∈ NKQ(aq)
and b ∈ ∗A+

Qq(∗P ) arbitrary.
According to Lemma 14.3 and Remark 12.2, the function fS belongs to

Cep
0,{0}(X+ : τ : Ω), for the full open subset Ω: = regafS of a∗qC.

Hence, according to Theorem 7.8 with P0, Q and P in place of Q,P and P1,
respectively, for λ ∈ a∗qC generic the following holds, with [1] the class of 1 ∈ W in
W/ ∼Q|P0= WQ\W,

qλ|aQq−ρQ(Q, v | fSλ, X, bu) = q[1],0(Q, v | fS , X)(λ, bu)

=
∑
s∈WQ

∑
µ∈N∆Q(P )

bsλ−ρP−µqs,µ(P, uv | fS , X + log b)(λ, e).

Now, for all s, t ∈ W , µ ∈ N∆ and v ∈ NK(aq) it follows from (14.13) and Lemma
6.2 that qs,µ(P, v | f{t}) = 0 if s 6= t. Hence

qs,µ(P, v | fS) =
{
qs,µ(P, v | fW ) if s ∈ S,
0 otherwise.

Thus, we obtain that

qλ|aQq−ρQ(Q, v | fSλ, X, bu)

=
∑

s∈S∩WQ

∑
µ∈N∆Q(P )

bsλ−ρ−µqs,µ(P, uv | fW , X + log b)(λ, e).(15.7)
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This equation is valid for any subset S of W ; in particular, it is valid for S = W.
Using (15.4) we now obtain that, for any u ∈ NKQ(aq) and all b ∈ ∗A+

Qq(∗P ),

E◦(X1Q,v : ∗P : λ : bu) prQ,vψ

=
∑
s∈WQ

∑
µ∈N∆Q(P )

bsλ−ρ−µqs,µ(P, uv | fW , X + log b)(λ, e).(15.8)

This is the ∆Q(P )-exponential polynomial expansion of the Eisenstein integral
along (∗P, u). In view of (14.12) and the remark following (14.13), with X1Q,v in
place of X, we infer from (15.8) that, for each s ∈WQ, and every u ∈ NKQ(aq) and
b ∈ ∗A+

Qq(∗P ),

E+,s(X1Q,v : ∗P : λ : bu)prQ,vψ

=
∑

µ∈N∆Q(P )

bsλ−ρ−µqs,µ(P, uv | fW , X + log b)(λ, e).(15.9)

Finally, (15.6) with m = bu follows by combining (15.7) and (15.9).

We end this section with a generalization of Proposition 15.3, involving the
application of a Laurent functional.

Proposition 15.4. Let assumptions be as in Proposition 15.3 and let L ∈
M(∗a∗QqC,ΣQ)∗laur. Then the family L∗f defined by L∗f(ν, x) = L[f( · + ν, x)], for
generic ν ∈ a∗QqC and x ∈ X+, belongs to Ehyp

Q,Y (X+ : τ : δ), with Y = suppL and for
a suitable δ ∈ DQ.

Moreover, for generic ν ∈ a∗QqC and all X ∈ aQq and m ∈ XQ,v,+,

qν−ρQ(Q, v | (L∗f)ν , X,m)

= L[
∑

s∈S∩WQ

E+,s(X1Q,v : ∗P : · + ν : m) prQ,vψ].(15.10)

In particular, if S ∩WQ = ∅, then ν − ρQ /∈ Exp(Q, v | (L∗f)ν).

Proof. The first assertion follows from Corollary 14.4. For the second assertion, we
note that L∗f ∈ Cep

Q,Y (X+ : τ : Ω), where Ω is the full open subset a∗QqC \
⋃
HL∗f

of a∗QqC; see Remark 12.2. The set Ω∗: = Ω ∩ a∗◦QqC(P, {0}) is a full open subset of
a∗QqC. Moreover, from (7.14) it follows that, for ν ∈ Ω∗,

qν−ρQ(Q, v | (L∗f)ν , X) = q[1],0(Q, v | L∗f,X)(ν), (X ∈ aQq);(15.11)

here [1] denotes the image of the identity element of W in W/ ∼Q|Q. The expression
on the right-hand side of the above equation is given by (13.5), with P = Q, σ =
[1] ∈ W/ ∼Q|Q and ξ = 0. Note that an element s ∈ W satisfies [s] = [1] if and only
if s ∈ WQ. It follows from this that [1] · Y = {0}. Hence from (13.5) and (13.2) we
conclude, with 1̄ denoting the image of 1 ∈W in WQ\W,

q[1],0(Q, v | L∗f,X)(ν) =
∑
λ∈Y
LQ,1̄λ∗ [q1̄,0(Q, v | f)(X, · )](ν,X)

=
∑
λ∈Y

e−(λ+ν)(X)Lλ∗[e( · )(X)q1̄,0(Q, v | f)(X, · )](ν).

(15.12)
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for X ∈ aQq and generic ν ∈ a∗QqC. From (λ+ν)(X) = ν(X) we deduce that the last
expression in (15.12) equals

∑
λ∈Y Lλ∗[q1̄,0(Q, v | f)(X, · )](ν). Hence from (15.11)

and (15.12) we obtain

qν−ρQ(Q, v | (L∗f)ν , X) = L∗[q1̄,0(Q, v | f)(X, · )](ν).(15.13)

It follows from (15.6) and (7.14) that, for X ∈ aQq, m ∈ XQ,v,+,

q1̄,0(Q, v | f)(X,λ,m) =
∑

s∈S∩WQ

E+,s(X1Q,v : ∗P : λ : m) prQ,vψ,(15.14)

as a meromorphic identity in λ ∈ a∗qC. The equality (15.10) now follows by combining
(15.13) with (15.14).

16. Induction of relations

After the preparations of the previous sections we are now able to apply the
vanishing theorem, Theorem 12.10, to families obtained from applying Laurent
functionals to partial Eisenstein integrals. This will lead to what we call induction
of relations; see Theorem 16.1. The subsequent Corollaries 16.2–16.5 are reformula-
tions, which are useful for the applications. The lifting principle in Theorem 16.10
is also a reformulation. As mentioned in the introduction, a similar principle was
stated by Casselman for the group case in [1].

We retain the notation of the previous section. Moreover, we assume that Q ∈ Pσ
is a standard parabolic subgroup. Thus ∗P0: = MQ ∩ P0 is the standard minimal
σ-parabolic subgroup of MQ, relative to the positive system Σ+

Q: = ΣQ ∩ Σ.
We assume that QW is a complete set of representatives in NK(aq) for the double

coset space WQ\W/WK∩H . We also assume that for each v ∈ QW a set WQ,v as
above (15.1) is chosen. Then one readily verifies that

W =
⋃

v∈QW

WQ,vv (disjoint union).(16.1)

is a complete set of representatives for W/WK∩H in NK(aq). Combining this with
(15.2) and (15.3) we find that ∑

v∈QW

iQ,v ◦ prQ,v = I◦C .

Combining (16.1) with (15.2) and (15.3), it also follows, for u, v ∈ QW , that

prQ,u ◦ iQ,v =
{
I◦C(Q,v) if u = v;
0 otherwise.(16.2)

Theorem 16.1 (Induction of relations). Let Lt ∈ M(∗a∗QqC,ΣQ)∗laur ⊗ ◦C be given
for each t ∈WQ. If, for each v ∈ QW,∑

t∈WQ

Lt[E+,t(XQ,v : ∗P0 : · : m) ◦ prQ,v] = 0, (m ∈ XQ,v,+),(16.3)

then for each s ∈ WQ the following holds as a meromorphic identity in ν ∈ a∗QqC:∑
t∈WQ

Lt[ E+,st(X : P0 : · + ν : x) ] = 0, (x ∈ X+).(16.4)

Conversely, if the identity (16.4) holds for some s ∈ WQ and all ν in a nonempty
open subset of a∗QqC, then (16.3) holds for each v ∈ QW.
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Proof. Define for each w ∈ W the family gw : a∗QqC ×X+ → Vτ ⊗ ◦C∗ by

gw(ν, x) = Lt[ E+,st(X : P0 : · + ν : x) ]

for generic ν ∈ a∗QqC and every x ∈ X+; the elements s ∈ WQ, t ∈ WQ are deter-
mined by the unique product decomposition w = st (see below (14.26)).

It follows from Corollary 14.4, that there exist δw ∈ DQ such that gw ∈
Ehyp
Q,Yw

(X+ : τ : δw); here Yw = suppLt, where t ∈ WQ is determined as above.
If we put Y =

⋃
Yw and δ = max(δw), then gw belongs to Ehyp

Q,Y (X+ : τ : δ) for all
w ∈ W . Moreover, for generic ν ∈ a∗QqC,

Exp(P0, v | (gw)ν) ⊂ w(ν + Y )− ρ− N∆.(16.5)

In view of Proposition 15.4 it also follows for X ∈ aQq, m ∈ XQ,v,+ and generic
ν ∈ a∗QqC that

qν−ρQ(Q, v | (gt)ν , X,m)

= Lt[E+,t(XQ,v : ∗P0 : · + ν : m) ◦ prQ,v] (t ∈WQ),
(16.6)

and

qν−ρQ(Q, v | (gw)ν , X,m) = 0 (w /∈WQ).(16.7)

According to Corollary 14.8 the family
∑
s∈WQ gst belongs to the space

Ehyp
Q,Y (X+ : τ : δ)glob for each t ∈ WQ. Hence so does the family g =

∑
w∈W gw =∑

t∈WQ,s∈WQ gst. Moreover, by (16.6) and (16.7)

qν−ρQ(Q, v | (g)ν , X,m)

=
∑
t∈WQ

Lt[E+,t(XQ,v : ∗P0 : · + ν : m) ◦prQ,v] (m ∈ XQ,v,+).

From Theorem 12.10 we now see that (16.3) holds for each v ∈ QW if and only if
g = 0.

On the other hand, let gs =
∑

t∈WQ
gst for s ∈WQ. It follows from (16.5) that

Exp(P0, v | (gs)ν) ⊂ sν +WY − ρ− N∆.

Since the latter sets are mutually disjoint as s runs over WQ, for ν in a full open
subset (see Lemma 6.2), we conclude that for such ν,

(sν +WY − ρ− N∆) ∩ Exp(P0, v | gν) = Exp(P0, v | (gs)ν).

Hence g = 0 implies that gs = 0 for each s ∈ WQ. Conversely it follows from
Corollary 9.15 that g = 0 if gs = 0 for some s ∈ WQ. The theorem follows
immediately.

Corollary 16.2. Let v ∈ QW and let Lt ∈ M(∗a∗QqC,ΣQ)∗laur ⊗ ◦C(Q, v) be given
for each t ∈WQ. If∑

t∈WQ

Lt[E+,t(XQ,v : ∗P0 : · : m)] = 0, (m ∈ XQ,v,+),(16.8)

then for each s ∈ WQ the following holds as a meromorphic identity in ν ∈ a∗QqC:∑
t∈WQ

Lt[ E+,st(X : P0 : · + ν : x) ◦ iQ,v ] = 0, (x ∈ X+).(16.9)
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Conversely, if the identity (16.9) holds for some s ∈ WQ and all ν in a nonempty
open subset of a∗QqC, then (16.8) holds.

Proof. For t ∈ WQ we define the functional L◦t ∈ M(∗a∗QqC,ΣQ)∗laur ⊗ ◦C by L◦t =
[I ⊗ iQ,v](Lt). Then for F ∈ M(∗a∗QqC,ΣQ)⊗ ◦C∗ we have

L◦tF = Lt[F ( · ) iQ,v].(16.10)

Let u ∈ QW . Then from (16.2) and (16.8) we deduce that (16.3) holds with u
and L◦t in place of v and Lt, respectively. It follows that (16.4) holds with L◦t in
place of Lt. In view of (16.10) this implies (16.9). The converse statement is seen
similarly.

Another useful formulation of the principle of induction of relations is the fol-
lowing.

Corollary 16.3. Let v ∈ QW . Let Lt ∈ M(∗a∗QqC,ΣQ)∗laur and ϕt ∈ M(a∗qC,Σ) ⊗
◦C(Q, v) be given for each t ∈WQ. Assume that∑

t∈WQ

Lt[E+,t(XQ,v : ∗P0 : · : m)ϕt( · + ν)] = 0, (m ∈ XQ,v,+)(16.11)

for generic ν ∈ a∗QqC. Define ψt = (I⊗ iQ,v)ϕt ∈M(a∗qC,Σ)⊗ ◦C, for t ∈WQ. Then,
for each s ∈WQ,∑

t∈WQ

Lt[E+,st(X : P0 : · + ν : x)ψt( · + ν)] = 0, (x ∈ X+)

as an identity of Vτ -valued meromorphic functions in the variable ν ∈ a∗QqC.

Proof. Let H be a Σ-configuration such that sing(ϕt) ⊂
⋃
H, for each t ∈ WQ.

Moreover, let Y =
⋃
t∈WQ

suppLt ⊂ ∗a∗QqC. Fix t ∈ WQ. Let H′: = Ha∗QqC
(Y ) be

the Σr(Q)-configuration in a∗QqC defined as in Corollary 11.6. Let ν ∈ a∗QqC \
⋃
H′;

then the function ϕνt :λ 7→ ϕt(λ + ν) belongs to M(∗a∗QqC, Y,ΣQ). It follows from
(10.7) that the functional Lνt ∈M(∗a∗QqC,ΣQ)∗ ⊗ ◦C(Q, v) defined by

Lνt [F ( · )]: = Lt[F ( · )ϕt( · + ν)],

for F ∈ M(∗a∗QqC,ΣQ) ⊗ ◦C(Q, v)∗, is a ◦C(Q, v)-valued ΣQ-Laurent functional
on ∗a∗QqC. The hypothesis (16.11) may be rewritten as (16.8) with Lνt in place of
Lt, for each t ∈ WQ. By application of Corollary 16.2 we therefore obtain, for
ν ∈ a∗QqC \

⋃
H′, that∑

t∈WQ

Lt[ E+,st(X : P0 : · + µ : x)ψt( · + ν) ] = 0(16.12)

as an identity of Vτ -valued meromorphic functions in the variable µ ∈ a∗QqC. Accord-
ing to Lemma 11.9 the expression in this equation defines a meromorphic Vτ -valued
function on a∗QqC×a∗QqC whose restriction to the diagonal is a meromorphic function
on a∗QqC. Thus, if we substitute ν for µ in (16.12), we obtain an identity of Vτ -valued
meromorphic functions in the variable ν ∈ a∗QqC.

Corollary 16.4. Let L1,L2 ∈M(∗a∗QqC,ΣQ)∗laur ⊗ ◦C. If, for each v ∈ QW,

L1[E+(XQ,v : ∗P0 : · : m) ◦ prQ,v]

= L2[E◦(XQ,v : ∗P0 : · : m) ◦ prQ,v], (m ∈ XQ,v,+),
(16.13)
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then the following holds as a Vτ -valued meromorphic identity in ν ∈ a∗QqC:

L1[
∑
s∈WQ

E+,s(X : P0 : · + ν : x) ]

= L2[ E◦(X : P0 : · + ν : x) ], (x ∈ X+).
(16.14)

In particular, for regular values of ν, the expression on the left extends smoothly in
the variable x to all of X.

Conversely, if the identity (16.14) holds for ν in a nonempty open subset of a∗QqC,
then (16.13) holds for each v ∈ QW.

Proof. It follows from (14.12) that E◦(XQ,v : ∗P0 : λ)=
∑

t∈WQ
E+,t(XQ,v : ∗P0 : λ).

Define Lt ∈ M(∗a∗QqC,ΣQ)∗laur ⊗ ◦C for t ∈ WQ as follows. If t = e, then Lt: =
L2 − L1, and otherwise Lt: = L2. Then the hypothesis (16.3) in Theorem 16.1
follows from (16.13). Hence the conclusion (16.4) holds for each s ∈ WQ. By
summation over s this implies that∑

s∈WQ

∑
t∈WQ

Lt[E+,st(X : P0 : · + ν : x)] = 0, (x ∈ X+)(16.15)

which, by the definition of the operators Lt is equivalent to (16.14).
For the converse, let gs(ν, x) denote the expression in (16.4), as in the proof of

Theorem 16.1, with Lt specified as above. Then it was seen in the mentioned proof
that if the sum g of the gs vanishes, then so does each gs separately. Now (16.14)
implies (16.15) which exactly reads that g = 0. Thus (16.4) holds for each s ∈WQ,
so that the converse statement in Theorem 16.1 can be applied.

The result just proved allows a straightforward corollary similar to Corollary
16.2, in which the maps iQ,v are used instead of the maps prQ,v. We omit the
details. The following result is derived from Corollary 16.3 in exactly the same way
as the first part of Corollary 16.4 was derived from Theorem 16.1.

Corollary 16.5. Let v ∈ QW . Let L1,L2 ∈ M(∗a∗QqC,ΣQ)∗laur be ΣQ-Laurent func-
tionals on ∗a∗QqC, and let ϕ1, ϕ2 ∈M(a∗qC,Σ)⊗ ◦C(Q, v). Assume that

L1(E+(XQ,v : ∗P0 : · : m)ϕ1( · + ν)) = L2(E◦(XQ,v : ∗P0 : · : m)ϕ2( · + ν)),

for all m ∈ XQ,v,+ and generic ν ∈ a∗QqC. Define ψj = (I⊗iQ,v)ϕj ∈M(a∗qC,Σ)⊗◦C,
for j = 1, 2. Then, for every x ∈ X+,

L1(
∑
s∈WQ

E+,s(X : P0 : · + ν : x)ψ1( · + ν)) = L2(E◦(X : P0 : · + ν : x)ψ2( · + ν)),

as an identity of Vτ -valued meromorphic functions in the variable ν ∈ a∗QqC.

Corollary 16.6. Let v ∈ QW and let ψt ∈ M(∗a∗QqC,ΣQ) ⊗ ◦C(Q, v) be given for
each t ∈WQ. Let λ0 ∈ ∗a∗QqC. Assume that for each m ∈ XQ,v,+, the meromorphic
Vτ -valued function on a∗QqC, given by

λ 7→
∑
t∈WQ

E+,t(XQ,v : ∗P0 : λ : m)ψt(λ),

is regular at λ0. Then for s ∈WQ, x ∈ X+ and generic ν ∈ a∗QqC the meromorphic
function

λ 7→
∑
t∈WQ

E+,st(X : P0 : λ+ ν : x)iQ,vψt(λ)(16.16)

is also regular at λ0.
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Proof. The function in (16.16) has a germ at λ0 in M(∗a∗QqC, λ0,ΣQ). By Lemma
10.7 it suffices to show that it is annihilated by M(∗a∗QqC, λ0,ΣQ)∗Olaur. Let L ∈
M(∗a∗QqC, λ0,ΣQ)∗Olaur and define Lt ∈ M(∗a∗QqC,ΣQ)∗laur ⊗ ◦C for t ∈ WQ by Lt =
m∗ψtL; see (10.7). The desired conclusion now follows from Corollary 16.2.

We shall now give an equivalent formulation of the induction of relations. We
call it the lifting principle. For the group case a similar principle was formulated
by Casselman (see [1], Thm. II.4.1), however, with Eisenstein integrals that carry
a different normalization.

Definition 16.7. The space Alaur(X+ : τ) is defined as the space of functions

x 7→ L[E+(P0 : · : x)] ∈ Vτ
where L ∈M(a∗qC,Σ)∗laur ⊗ ◦C. It is a linear subspace of C∞(X+ : τ).

It follows from Corollary 14.4 with Q = G that Alaur(X+ : τ) consists of D(X)-
finite functions in Cep(X+ : τ).

Remark 16.8. Let L ∈M(a∗qC,Σ)∗laur⊗◦C. Then L[ϕ( · )E+(P0 : · )] ∈ Alaur(X+ : τ)
for all ϕ ∈ M(a∗qC,Σ) (see (10.7)). In particular, it follows from (14.20) that
C◦(s : · ) ∈ M(a∗qC,Σ) ⊗ End(◦C). Hence it follows from the identity (14.14) that
L[E+,s(P0 : · )] ∈ Alaur(X+ : τ) for each s ∈ W . Moreover, by similar reasoning it
can be seen that the spaceAlaur(X+ : τ) does not depend on the choice of P0 ∈ Pmin

σ .

Remark 16.9. Let λ0 ∈ a∗qC and ϕ ∈ M(a∗qC,Σ) ⊗ ◦C, and assume that λ 7→
E+(P0 : λ)ϕ(λ) is regular at λ0. Then the function x 7→ u[E+(P0 : λ : x)ϕ(λ)]|λ=λ0

belongs to Alaur(X+ : τ) for each u ∈ S(a∗q) (see the previous remark and Lemma
10.15). Moreover, it follows easily from the definition of M(a∗qC,Σ)∗laur that
Alaur(X+ : τ) is spanned by functions of this form.

Theorem 16.10 (Lifting principle). Let Q ∈ Pσ be a standard parabolic subgroup,
and let s ∈WQ be fixed.

(a) There exists for each v ∈ QW a unique linear map

F+,s,v : Alaur(XQ,v,+ : τQ)→M(a∗QqC,Σr(Q), C∞(X+ : τ))

with the following property. If ϕ ∈ Alaur(XQ,v,+ : τQ) is given by

ϕ(m) =
∑
t∈WQ

Lt[E+,t(XQ,v : ∗P0 : · : m)] (m ∈ XQ,v,+),(16.17)

for some Lt ∈M(∗a∗QqC,ΣQ)∗laur ⊗ ◦C(Q, v), t ∈WQ, then

F+,s,v(ϕ)(ν, x) =
∑
t∈WQ

Lt[ E+,st(X : P0 : · + ν : x) iQ,v ](16.18)

for x ∈ X+ and generic ν ∈ a∗QqC.
(b) The function x 7→ F+,s,v(ϕ, ν, x) belongs to Alaur(X+ : τ) for generic ν.
(c) The map

F+,s :
⊕
v∈QW

Alaur(XQ,v,+ : τQ)→M(a∗QqC,Σr(Q), C∞(X+ : τ)),

given by F+,s(ϕ) =
∑

v F+,s,vϕv, is injective.
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Proof. The uniqueness is clear from Definition 16.7. We use (16.17) and (16.18)
as the definition of F+,s,v; the fact that F+,s,v(ϕ) is well defined for all ϕ ∈
Alaur(XQ,v,+ : τQ) is equivalent with the first statement in Theorem 16.1 (see also
Corollary 16.2). Once the definition makes sense, it is easily seen that F+,s,v(ϕ)
depends linearly on ϕ. That F+,s,v(ϕ, ν) ∈ Alaur(X+ : τ) for generic ν is seen from
Lemma 11.7. Finally, the injectivity of F+,s is equivalent with the final statement
of Theorem 16.1.

Remark 16.11. Note that with ϕv = E◦(XQ,v : ∗P0 : λ) for each v ∈ QW we obtain∑
t∈WQ

E+,st(X : P0 : λ+ ν : x) iQ,v = F+,s,v(ϕv, ν, x),

for x ∈ X+, and hence by summation over v and s

E◦(X : P0 : λ+ ν : x) =
∑
s∈WQ

F+,s(ϕ, ν, x).

Remark 16.12. In [11], Definition 10.7, we define the generalized Eisenstein integral
E◦F (ψ : ν) ∈ C∞(X : τ) for ψ ∈ CF , ν ∈ a∗FqC (with the notation of loc. cit.). By
comparison with Theorem 16.10 for Q = PF it is easily seen that E◦F (ψ : ν : x) =
F+,1(ψ, ν, x) for x ∈ X+.

17. Appendix A: spaces of holomorphic functions

If Ω is a complex analytic manifold, then by O(Ω) we denote the space of holo-
morphic and by M(Ω) the space of meromorphic functions on Ω.

If V is a complete locally convex (Hausdorff) space, we say that a function
ϕ: Ω → V is holomorphic if for every a ∈ Ω there exists a holomorphic coordinati-
sation z = (z1, . . . , zn) at a such that in a neighborhood of a the function ϕ is
expressible as a converging V -valued power series in the coordinates z. The space
of such holomorphic functions is denoted by O(Ω, V ). We equip this space with a
locally convex topology as follows. Let P be a separating collection of continuous
seminorms for V. For every p ∈ P and every compact set K ⊂ Ω we define the
seminorm νK,p on O(Ω, V ) by νK,p(ϕ) = supK p ◦ϕ. This collection of seminorms
is separating hence equips O(Ω, V ) with a locally convex topology. Note that this
topology is independent of the choice of P . Moreover, it is complete; it is Fréchet
if V is a Fréchet space.

We recall that O(Ω, V ) is a closed subspace of C∞(Ω, V ). Indeed, if ∂̄ denotes
the anti-linear part of exterior differentiation, then O(Ω, V ) is the kernel of ∂̄ in
C∞(Ω, V ).

A densely defined function ϕ: Ω → V is called meromorphic if for every a ∈ Ω
there exists an open neighborhood U of a, and a function ψ ∈ O(U)\ {0} such that
ψϕ ∈ O(U, V ). As usual, meromorphic functions are considered to be equal if they
coincide on a dense open subset. The space of V -valued meromorphic functions
on Ω is denoted by M(Ω, V ). If ϕ is an V -valued meromorphic function on Ω, we
define reg(ϕ) to be the largest open subset U of Ω for which ϕ|U coincides (densely)
with an element of O(U, V ). The complement sing(ϕ) = Ω \ reg(ϕ) is called the
singular locus of ϕ.

Lemma 17.1. Let X be a C∞ and Ω a complex analytic manifold. Let V be a
complete locally convex space.
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Let F be the locally convex space of C∞-functions X × Ω → V that are holo-
morphic in the second variable. Given f ∈ F and x ∈ X, we define the func-
tion 1f(x): Ω → V by 1f(x)(z) = f(x, z). Given z ∈ Ω we define the function
2f(z):X → V by 2f(z)(x) = f(x, z).

(a) The map f 7→ 1f defines a natural isomorphism of locally convex spaces from
F onto C∞(X,O(Ω, V )).

(b) The map f 7→ 2f defines a natural isomorphism of locally convex spaces from
F onto O(Ω, C∞(X,V )).

In particular, the above maps lead to a natural isomorphism

C∞(X,O(Ω, V )) ' O(Ω, C∞(X,V )).

Proof. The above isomorphisms are valid with O replaced by C∞ everywhere. This
is a well known fact, and basically a straightforward consequence of the definitions,
though somewhat tedious to check. The isomorphisms with O are seen to be valid
by showing that the appropriate kernels of the operator ∂̄ correspond. Checking
this involves a local application of the multivariable Cauchy integral formula.

18. Appendix B: removable singularities

We discuss a variation on the idea of removable singularities for holomorphic
functions that is particularly useful for application in the present paper.

A subset T of a finite dimensional complex analytic manifold Ω will be called
thin if for every λ ∈ Ω there exists a connected open neighborhood U and a nonzero
holomorphic function ϕ ∈ O(U) such that T ∩U ⊂ ϕ−1(0); see [21], p. 19. An open
subset U of Ω will be called full if its complement is thin. It is clear that a full
subset of Ω is dense in Ω. Note that the union of finitely many thin subsets is thin
again; accordingly, the intersection of finitely many full open subsets of Ω is again
a full open subset. Obviously any union of full open subsets is a full open subset.
Note also that if Ω is connected, then every full open subset of Ω is connected ([21]
p. 20).

Lemma 18.1. Let j:V → W be an injective continuous linear map of complete
locally convex Hausdorf spaces, and let F be a W -valued holomorphic function on
a complex analytic manifold Ω. Assume that there exists a full open subset Ω0 of
Ω and a holomorphic function G0: Ω0 → V such that such that F = j ◦G0 on Ω0.
Then there exists a unique holomorphic map G: Ω→ V such that j ◦G = F.

Proof. Clearly the result is of a local nature in the Ω-variable, so that we may
assume that Ω is a connected open subset of Cn, for some n ∈ N. Moreover, we
may as well assume that Ω0 = Ω \ ϕ−1(0), with ϕ ∈ O(Ω) a nonzero holomorphic
function.

Fix λ0 ∈ Ω. Since ϕ is nonzero, the function z 7→ ϕ(λ0 + zµ), defined on a
neighborhood of 0 in C, is nonzero for some µ ∈ Cn \ {0}. Being holomorphic, this
function then takes the value 0 in isolated points. Hence we may choose µ such that
λ0 + zµ ∈ Ω0 for 0 < |z| ≤ 1. By compactness there exists an open neighborhood
N0 of λ0 in Ω such that λ+ zµ ∈ Ω for all λ ∈ N0 and z ∈ C with |z| ≤ 1, and such
that λ+ zµ ∈ Ω0 for |z| = 1. By the Cauchy integral formula we have

F (λ) =
1

2πi

∫
∂D

F (λ+ zµ)
dz

z
.(18.1)
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Here ∂D denotes the boundary of the unit circle in C, equipped with the orientation
induced by the complex structure, i.e., the counter clockwise direction.

Note that the W -valued (or V -valued) integration is well defined, since W (or
V ) is complete locally convex. In the integrand of (18.1) the function F (λ + zµ)
may be replaced by j(G0(λ+zµ)). Using that j is continuous linear we then obtain
that

F (λ) = j(G(λ)),(18.2)

where

G(λ): =
1

2πi

∫
∂D

G0(λ+ zµ)
dz

z
(λ ∈ N0).

Clearly G:N0 → V is a holomorphic function; moreover, it is uniquely determined
by equation (18.2), since j is injective. This implies that the local definition of G
is independent of the particular choice of µ. Moreover, it also follows from (18.2)
and the injectivity of j that all local definitions match and determine a global
holomorphic function G: Ω→ V satisfying our requirement.

Corollary 18.2. Let Ω0 be a full open subset of a complex analytic manifold Ω and
let X0 be a dense open subset of a C∞-manifold X. Moreover, let F : Ω ×X0 → C
be a C∞ function that is holomorphic in its first variable, and assume that its
restriction to Ω0 ×X0 has a smooth extension to Ω0×X. Then the function F has
a unique smooth extension to Ω×X. Moreover, the extension is holomorphic in its
first variable.

Proof. As in the proof of the above lemma we may as well assume that Ω is an
open subset of Cn, for some n.

Let V = C∞(X) and W = C∞(X0) be equipped with the usual Fréchet topolo-
gies. Restriction to X0 induces an injective continuous linear map j:V →W.

By Lemma 17.1(b) we see that the function F̃ : Ω → W, defined by F̃ (z) =
F (z, · ) is holomorphic. Let G0 be the extension of (z, x) 7→ F (z, x) to a smooth
map Ω0 × X → C. Then by density and continuity the function G0 satisfies the
Cauchy-Riemann equations in its first variable. Hence it is holomorphic in its first
variable, and it follows that the function G̃0: Ω0 → V defined by G̃0(z) = G0(z, · )
is holomorphic. From the definitions given we obtain that F̃ = j ◦ G̃0 on Ω0. By
the above lemma there exists a unique holomorphic function G̃: Ω → V such that
F̃ = j ◦ G̃. The function G: (z, x) 7→ G̃(z)(x) is the desired extension of F.
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1984. MR 86g:22021

http://www.ams.org/mathscinet-getitem?mr=98m:22016
http://www.ams.org/mathscinet-getitem?mr=98e:22003
http://www.ams.org/mathscinet-getitem?mr=99e:22021
http://www.ams.org/mathscinet-getitem?mr=2000k:43005
http://www.ams.org/mathscinet-getitem?mr=82i:22013
http://www.ams.org/mathscinet-getitem?mr=99b:22016
http://www.ams.org/mathscinet-getitem?mr=99j:22011
http://www.ams.org/mathscinet-getitem?mr=53:10946
http://www.ams.org/mathscinet-getitem?mr=85a:22024
http://www.ams.org/mathscinet-getitem?mr=96m:22027
http://www.ams.org/mathscinet-getitem?mr=99d:22022
http://www.ams.org/mathscinet-getitem?mr=44:6912
http://www.ams.org/mathscinet-getitem?mr=31:4927
http://www.ams.org/mathscinet-getitem?mr=20:925
http://www.ams.org/mathscinet-getitem?mr=21:92
http://www.ams.org/mathscinet-getitem?mr=53:3201
http://www.ams.org/mathscinet-getitem?mr=55:12875
http://www.ams.org/mathscinet-getitem?mr=55:3169
http://www.ams.org/mathscinet-getitem?mr=86c:22017
http://www.ams.org/mathscinet-getitem?mr=2001h:22001
http://www.ams.org/mathscinet-getitem?mr=81f:43013
http://www.ams.org/mathscinet-getitem?mr=87c:58121
http://www.ams.org/mathscinet-getitem?mr=81k:43014
http://www.ams.org/mathscinet-getitem?mr=86g:22021


712 E. P. VAN DEN BAN AND H. SCHLICHTKRULL

[32] P. C. Trombi and V. S. Varadarajan, Spherical transforms on semisimple Lie groups, Ann.
of Math. 94 (1971), 246-303. MR 44:6913

[33] N. R. Wallach, Asymptotic expansions of generalized matrix entries of representations of
real reductive groups, Lecture Notes in Math. 1024, Berlin-Heidelberg-New York, 1983,
287-369. MR 85g:22029

Mathematisch Institut, Universiteit Utrecht, PO Box 80 010, 3508 TA Utrecht, The

Netherlands

E-mail address: ban@math.uu.nl

Matematisk Institut, Københavns Universitet, Universitetsparken 5, 2100 København

Ø, Denmark

E-mail address: schlicht@math.ku.dk

http://www.ams.org/mathscinet-getitem?mr=44:6913
http://www.ams.org/mathscinet-getitem?mr=85g:22029

	Introduction
	1. Exponential polynomial series
	2. Basic notation, spherical functions
	3. Asymptotic behavior along walls
	4. Behavior of differential operators along walls
	5. Spherical eigenfunctions
	6. Separation of exponents
	7. Analytic families of spherical functions
	8. Asymptotic globality
	9. A vanishing theorem
	10. Laurent functionals
	11. Laurent operators
	12. Analytic families of a special type
	13. Action of Laurent functionals on analytic families
	14. Partial Eisenstein integrals
	15. Asymptotics of partial Eisenstein integrals
	16. Induction of relations
	17. Appendix A: spaces of holomorphic functions
	18. Appendix B: removable singularities
	References

