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ANALYTIC FAMILIES OF EIGENFUNCTIONS
ON A REDUCTIVE SYMMETRIC SPACE

E. P. VAN DEN BAN AND H. SCHLICHTKRULL

ABSTRACT. Let X = G/H be a reductive symmetric space, and let D(X) de-
note the algebra of G-invariant differential operators on X. The asymptotic
behavior of certain families fy of generalized eigenfunctions for D(X) is stud-
ied. The family parameter X is a complex character on the split component of a
parabolic subgroup. It is shown that the family is uniquely determined by the
coefficient of a particular exponent in the expansion. This property is used to
obtain a method by means of which linear relations among partial Eisenstein
integrals can be deduced from similar relations on parabolic subgroups. In the
special case of a semisimple Lie group considered as a symmetric space, this
result is closely related to a lifting principle introduced by Casselman. The
induction of relations will be applied in forthcoming work on the Plancherel
and the Paley-Wiener theorem.
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INTRODUCTION

In harmonic analysis on a reductive symmetric space X an important role is
played by families of generalized eigenfunctions for the algebra ID(X) of invariant
differential operators. Such families arise, for instance, as matrix coefficients of
representations that come in series such as the (generalized) principal series. In
particular, relations between such families are of great interest. We recall that a
real reductive group G, equipped with the left times right multiplication action, is
a reductive symmetric space. In the case of the group, examples of the mentioned
relations are functional equations for Eisenstein integrals (see [23] and [25]), or
Arthur-Campoli relations for Eisenstein integrals; see [I], [I4]. In this paper we
develop a general tool to establish relations of this kind. We show that they can be
derived from similar relations satisfied by the family of functions obtained by taking
one particular coefficient in a certain asymptotic expansion. Since the functions in
the family so obtained are eigenfunctions on symmetric spaces of lower split rank,
this yields a powerful inductive method; we call it induction of relations. In the case
of the group, a closely related lifting theorem by Casselman was used by Arthur in
the proof of the Paley-Wiener theorem, see [1], Thm. I1.4.1. However, no proof has
yet appeared of Casselman’s theorem.

The tools developed in this paper are used in [I1], and they will also be applied in
forthcoming papers [12] and [I3]. For example, it is the induction of relations that
allows us to establish symmetry properties of certain integral kernels appearing in
a Fourier inversion formula in [IT]. Also in [IT], the induction of relations is used
to define generalized Eisenstein integrals corresponding to non-minimal principal
series. In [I2], the results of this paper will be applied to identify these ‘formal’
Eisenstein integrals with those defined in Delorme [I8]. This is a key step towards
the Plancherel decomposition. The results will also be applied to establish func-
tional equations for the Eisenstein integrals. Applied in this manner our technique
serves as a replacement for the use of the Maass-Selberg relations as in Harish-
Chandra [25] and [1§]. On the other hand, in [13] we apply our tool to show that
Arthur-Campoli relations satisfied by normalized Eisenstein integrals of spaces of
lower split rank induce similar relations for normalized Eisenstein integrals of X.
This result is then used to prove a Paley-Wiener theorem for X that generalizes
Arthur’s theorem for the group. In particular, the missing proof of Casselman’s
theorem will then be circumvented by means of a technique of the present paper.

It should be mentioned that in the case of the group, induction of Arthur-
Campoli relations for unnormalized Eisenstein integrals is easily derived from their
integral representations (see [I], p. 77, proof of Lemma 2.3). For normalized Eisen-
stein integrals, which are not representable by integrals, the result seems to be
much deeper, also in the group case.

One of the interesting features of the theory is that it also deals with families of
functions that are not necessarily globally defined on the space X but on a suitable
open dense subset.

Asymptotic behavior of eigenfunctions on a symmetric space has been studied
at many other places in the literature. The following papers hold results that are
related to some of the ideas of the present paper [22], [20], [32], [24], [25], [26], [28],
301, [, [33], [, [29], [6], [15].

The core results of this paper were found and announced in the fall of 1995,
when both authors were guests at the Mittag-Leffler Institute. In the same period
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Delorme announced his proof of the Plancherel theorem, which has now appeared
in [19].

We shall now explain the contents of this paper in more detail. The space X is
of the form G/H, with G a real reductive Lie group of Harish-Chandra’s class, and
H an open subgroup of the set of fixed points for an involution ¢ of G.

The group G has a o-stable maximal compact subgroup K, let € be the associated
Cartan involution of G. Let Py = MyAgNg be a fixed minimal o o 6-invariant
parabolic subgroup of G, with the indicated Langlands decomposition. The Lie
algebra ag of Ag is invariant under the infinitesimal involution o; we denote the
associated —1 eigenspace in ag by aq. Its dimension is called the split rank of X.
Let Aq be the vectorial subgroup of G with Lie algebra aq and let Af® be the set
of regular points relative to the adjoint action of Aq in g. Then X := KAFeH is a
K-invariant dense open subset of X. Let Aar be the open chamber in A4 determined
by Py. Then X is a finite union of disjoint sets of the form KA;FUH, with v in the
normalizer of aq in K. In this introduction we assume, for simplicity of exposition,
that X, = K AérH . This assumption is actually fulfilled in the case that X is a
group.

Let (7,V;) be a finite dimensional continuous representation of K. Then by
C>*(X4:7) we denote the space of smooth functions f:X; — V; that are 7-
spherical, i.e., f(kz) = 7(k)f(x), for all z € X} and k € K.

Let P, denote the (finite) set of o o f-invariant parabolic subgroups of G contain-
ing Aq. Let Q@ = MgAgNg be an element of P,. Then o restricts to an involution
of ag, the Lie algebra of Ag; we denote its —1 eigenspace by agq. In the first part
of the paper we study a family f of the following type (cf. Definition [[I). The
family is a smooth map of the form

f:QXX+—)VT’

with € an open subset of ag, ., the complexified linear dual of agq. It is assumed
that f is holomorphic in its first variable. Moreover, for every A € Q the function
far= f(A, -) belongs to C*°(X,: 7). It is furthermore assumed that the functions
fx allow suitable exponential polynomial expansions along Ag‘. More precisely, we
assume, for m € My and a € A, that

(0.1) fa(ma) = Z a*}"Pro Z a"*qs ¢\, loga,m).

SEW/Wo Ee—sWQY+N(Py)

Here W is the Weyl group of ¥ = X(g,aq) and Wy is the centralizer of agq in W.
Moreover, 3(Fy) denotes the collection of roots from ¥ occurring in Ny and Y is
a finite subset of *ag, ., the annihilator of agq in af.. Finally, the g5 ¢ are smooth
functions, holomorphic in the first and polynomial in the second variable. Thus, we
impose a limitation on the set of exponents and assume that the coefficients depend
holomorphically on the parameter A\. The type of convergence that we impose on
the expansion (1)) is described in general terms in the preliminary Section [II

We show that the functions fy actually allow exponential polynomial expansions
similar to (II) along any (possibly non-minimal) P € P,. These expansions are
investigated in detail in SectionsBland [[l Their coefficients are families of 7|7, Ak -
spherical functions on Xp 4, the analogue of X for the lower split rank symmetric
space Xp:= Mp/Mp N H.

The operators from D(X) also allow expansions along every P € P,. In Section [
this is shown by investigating a radial decomposition that reflects the decomposition
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G = KMpApgH. 1t is of importance that the coeflicients in these expansions are
globally defined smooth functions on Mp; see Proposition 10 and Corollaries 9]
From the expansions we derive that the algebra D(X) acts on the space of families
of the above type; see Proposition [Z.6l

In Section [8] we introduce the notion of asymptotic s-globality of a family along
P. Loosely speaking, it means that the coefficients ¢, ¢ (A, loga, -) of the expansion
along P extend smoothly from Xp 4 to the full space Xp, for every & € (sWoY —
NY(P))|ap,- This notion is proved to be stable under the action of D(X).

In Section [0 we impose three other conditions on the family. The first is that
each member satisfies a system of differential equations of the form

Dfyx=0 (D€ lsy).

Here I5 ) is a certain cofinite ideal in the algebra D(X) depending polynomially
on A € ag,. in a suitable way. Accordingly, A is called the spectral parameter of
the family. The second condition imposed is a suitable condition of asymptotic
globality along certain parabolic subgroups P with dim(aq/apq) = 1. Thirdly, it is
required that the domain €2 for the parameter A is unbounded in certain directions
(see Definition [0.9).

The first main result of the paper is then the following vanishing theorem; see
Theorem 0.10,

The vanishing theorem. Let f be a family as above, and assume that the coeffi-
cient of A — pg in the expansion along ) vanishes for A in a nonempty open subset
of Q. Then the family f is identically zero.

In the proof the globality assumption is needed to link suitably many asymp-
totic coefficients together; the vanishing of one of them then inductively causes the
vanishing of others. In the induction step a key role is played by the observation
that a symmetric space cannot have a continuum of discrete series (see Lemma
and its proof).

The importance of the vanishing theorem is that it applies to many families that
naturally arise in representation theory. In the present paper we show that this
is so for Eisenstein integrals associated with the minimal principal series for X;
in [12] we will show that Eisenstein integrals obtained by parabolic induction from
discrete series form a family of the above type. The idea is that the latter Eisenstein
integrals can be obtained from those associated with the minimal principal series by
the application of residual operators with respect to the spectral parameter. Such
residual operators occur in our papers [10] and [T1].

A suitable class of operators containing the residual operators is formed by the
Laurent operators. In the second half of the paper we study the application of them
to suitable families of eigenfunctions, with respect to the spectral parameter. The
Laurent operators are best described by means of Laurent functionals; see Sections
[0 and [T

In Section we introduce a special type of families g of eigenfunctions. It is
of the above type, with €2 dense in ap ., P a minimal parabolic subgroup in P,
and satisfies some additional requirements; see Definition[TZ8 One of these is that
the family and its asymptotic expansions should depend meromorphically on the
spectral parameter A € a} . with singularities along translated root hyperplanes.
This allows the application of Laurent functionals with respect to the spectral
parameter. More precisely, let Q) € P, contain P, and let £ be a Laurent functional
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on *ag,.. From the family g a new family f = £, g, with a spectral parameter from
3qc 18 obtained by the application of £ to the *ag,,.-component of the spectral
parameter. In Theorem it is shown that the resulting family L£.g satisfies
the requirements of the vanishing theorem, provided the special family ¢ satisfies
certain holomorphic asymptotic globality conditions.

In Section [[4 we introduce partial Eisenstein integrals associated with a mini-
mal parabolic subgroup P from P,. The partial Eisenstein integrals are spherical
generalized eigenfunctions on X obtained from the normalized Eisenstein integral
E°(P: A), (A € aj generic), by splitting it according to its exponential polynomial
expansion along P. More precisely, the exponents of E°(P: A) are contained in
WX — pp — NE(P); the partial Eisenstein integrals Ey (P : A), for s € W, are the
smooth spherical functions on X determined by the requirements that

E°(P:A) =Y EyJ(P: )
seW
and the set of exponents of Ey s(P: A) along P should be contained in s\ — pp —
NX(P). It is then shown that the partial Eisenstein integrals yield examples of
the special families mentioned above. Moreover, if Q € Py, Q D P, let W? be
the collection of minimal length (with respect to 3(P)) coset representatives for
W/W¢q in W. Then it is shown that for each t € W the family

(0.2) fo=Y_ Bya(P: )

SEW®R
satisfies the additional holomorphic asymptotic globality property guaranteeing
that L. f; satisfies the hypothesis of the vanishing theorem, for £ a Laurent func-
tional on *ag),.

In Sectionqm the asymptotic behavior of L, f; is investigated, and the coeffi-
cient of a* 72 in the expansion along @ is expressed in terms of partial Eisenstein
integrals of Xg.

The above preparations pave the way for the induction of relations in Section
The idea is as follows. Let f; be the family defined by (0.2)), and let a Laurent
functional £ on *ag,,. be given for each t € Wq. Then by the vanishing theorem
a relation of the form ), £;f; = 0 is valid if a similar relation is valid for the
(A — pg)-coeflicients along @; this in turn may be expressed as a similar relation
between partial Eisenstein integrals for the lower split rank space X . In this setting,
taking the (A— pg)-coefficient along @) essentially inverts the procedure of parabolic
induction from @ to G. This motivaties our choice of terminology. The precise result
is formulated in Theorem [[G.I. An equivalent result, closer to the formulation of
Casselman’s theorem in [I] is stated at the end of the section.

1. EXPONENTIAL POLYNOMIAL SERIES

In this section we define the concept of an exponential polynomial series and the
type of convergence that we will use for such series. Furthermore, we discuss some
properties of the map ep, which associates to a given function f, assumed to be
expandable, the corresponding exponential polynomial series epf.

Let A be a vectorial group and a its Lie algebra. The exponential map exp:a — A
is a diffeomorphism; we denote its inverse by log . If € belongs to af, the complexified
linear dual of a, then we define the function ef:a — af on A by a¢ = e£(°89) Let
P(a) denote the algebra of polynomial functions a — C. If d € N, let Py(a) denote
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the (finite dimensional) subspace of polynomials of degree at most d. Let A be a
set of linearly independent vectors in a* (we do not require this set to span a*). We
put

af =at(A)={X€a|a(X)>0, VacAl,

and AT = AT(A) = exp(at). We define NA to be the N-span of A; if A = (), then
NA = {0}. Moreover, if X is a subset of af, we denote by X — NA the vectorial
sum of X and NA.

Let V be a complete locally convex space; here and in the following we will always
assume such a space to be Hausdorff. If £ € af, then by a V-valued &-exponential
polynomial function on A we mean a function A — V of the form a — a®q(loga),
with ¢ € P(a) ® V.

Definition 1.1. By a A-exponential polynomial series on A with coefficients in V'
we mean a formal series F' of exponential polynomial functions of the form

(1.1) > afge(loga),
£€ag
with £ — ¢¢ a map a} — P(a) ® V, such that
(a) there exists a finite subset X C af such that g¢ = 0 for £ ¢ X — NA;
(b) there exists a constant d € N such that ¢¢ € Py(a) ® V for all £ € a.
The smallest d € N with property (b) will be called the polynomial degree of the
series; this number is denoted by deg(F).

The collection of all A-exponential polynomial series with coefficients in V' is
denoted by FP(A,V) = FL(A, V).

If e FP(A,V) is an expansion of the form (III), then, for every ¢ € af,
we write g¢(F') for ge. Moreover, we write ¢(F') for the map § — ¢¢(F) from a}
to Py(a) ® V. Then F — ¢(F) defines a bijection from F°P(A,V) onto a linear
subspace of (Py(a) ® V)%, the space of maps a% — P;(a) ® V. Via this bijection we
equip FP(A, V) with the structure of a linear space.

If e F°P(A,V), then

Exp(F):={¢ € a; | q¢(F) # 0}
is called the set of exponents of F. If Fy, F» € F°P(A, V), we call F; a subseries of

Fy if qe(Fy) = qe(Fh) for all € € Exp(Fh).
The series ([I) is said to converge absolutely at a fixed point ag € A if the series

> agge(logag)
£eBExp(F)
with coefficients in V' converges absolutely. It is said to converge absolutely on a
subset Q C A if it converges absolutely at every point ag € €2. In this case pointwise
summation of the series defines a function Q — V.
We will also need a more special type of convergence for the series (I).

Definition 1.2. The series (LT is said to converge neatly at a fixed point ag € A
if for every continuous seminorm s on P;(a) ® V, where d = deg(F), the series

R
Z s(ge)ag” ¢
E€Exp(F)
converges.
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The series ([[CII) is said to converge neatly on a subset  of A if it converges
neatly at every point of 2.

Remark 1.3. If the series (I1)) converges neatly at a point ag € A, then so does
every subseries. Moreover, neat convergence at ag implies absolute convergence at
ag. However, we should warn the reader that neat convergence at ag cannot be
seen from the series with coefficients in V' arising from (LI) by evaluation of its
terms at a = ag, since this type of convergence involves the global behavior of the
polynomials g¢. In particular, it is possible that the series (I1]) does not converge
neatly at ag, whereas its evaluation in ag is identically zero.

The motivation for the definition of neat convergence is provided later by Lem-
mas and [[.9, which express that neat convergence of the series (1) on an
open subset @ C A guarantees that (a) the function f:Q — V defined by (L)
is real analytic on €; (b) its derivatives are given by series obtained by termwise
differentiation from (1]).

By a A-power series on A, with coefficients in V, we mean a A-exponential
polynomial series F' with deg F' = 0 and Exp(F) C —NA, i.e.,

(1.2) F= Z abce,
£€—NA
with ¢c € V, for £ € —NA. Note that for a A-power series the notion of neat
convergence at a point ag € A coincides with the notion of absolute convergence in
the point ag.
The terminology ‘power series’ is motivated by the following consideration. If
p € NA, we put =7 A fat, With p € N. For z € C», we write

no_ 7
o= 2t

acA

Finally, to the series (I.2]) we associate the power series

(1.3) Z zhe_y,

HENA

with coefficients in V.

Let 2:A — C* be the map defined by z(a), = a~®. Then it is obvious that
the series converges with sum S for a = ag if and only if the power series
converges with sum S for z = z(ag). If r €]0,00 [> we write D(0,7) for the
polydisc in C* consisting of the points z with |z4| < 74 for all & € A. Note that
the preimage of this set in A under the map z is given by

At (Ar):i={acAla®*<r,, VacA}

If R > 0, we also agree to write A™(A, R) for AT (A,r) with r defined by r, = R
for all @ € A. Finally, if ag € A, we write AT(A,ap):= AT(A, 2(ap)). Thus,

(1.4) AT(A ap):={a€ Al a® >af, YVae A} = ATa,.

We now note that if (C2) converges absolutely for a = ag, then the power series
(3) converges absolutely for z = z(ag), hence uniformly absolutely on the closure
of the polydisc D(0, z(ag)). It follows that the series (IZ)) then converges uniformly
absolutely on the closure of AT (A, ag).

Let ag € A. By O(AT (A, ap), V) we denote the space of functions f: AT(A, ag) —
V that are given by an absolutely converging series of the form ([CZ). For such
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a function the associated power series (3] converges absolutely on the polydisc
D(0,r), with = z(ag); let f: D(0,7) — V be the holomorphic function defined by
it. Then obviously

fla) = f(z(a),  (a€A*(A,a)).

We see that the A-power series representing f € O(A1(A, ag) is unique. Moreover,
let O(D(0,7), V) denote the space of holomorphic functions D(0,7) — V, then it
follows that the map

fre [, OAF(A),V) = OD(0,1),V)

is a linear isomorphism.

In particular, it follows that every f € O(AT(A,r),V) is real analytic on
AT(A,r). Moreover, its A-power series converges uniformly absolutely on every
set of the form AT (A, p), where p €]0,00[2, po < 74 for all a € A.

If v is a real linear space, then by S(v) we denote the symmetric algebra of its
complexification ve. Via the right regular action we identify S(a) with the algebra
of invariant differential operators on A. If f € O(AT(A,r),V) and u € S(a), then
uf belongs to O(AT(A,r),V) again; its series may be obtained from the series of
f by termwise application of u.

We now return to the more general exponential polynomial series (IJI) with
coefficients in V. Let d > deg(F). Fix a basis A of a*. For m € NA we write
m =3 \cnmaA and [m| = 3, my. For such m we define the polynomial function
X — X™ on a by

xm =T rax)™.
AEA

These polynomial functions with |m| < d constitute a basis for Py(a). Accordingly,
we may write

(1.5) g(X) =Y X"cem,

with Cem € V.

Lemma 1.4. The series (1) converges neatly on a set Q C A if and only if for
every m € NA with |m| < d the series

> atcem
£EExp(F)

with coefficients in V' converges absolutely for all a € €.

Proof. This is a straightforward consequence of the definition of neat convergence
and the finite dimensionality of the space Py(a). O

We define a partial ordering <A on a} by
(1.6) G20k = &—&G eNA
Moreover, we define the relation of A-integral equivalence on a} by
1 ~a b = & —& € ZA.

Let F € F°P(A,V) be as in (1) and have polynomial degree at most d. In view of
condition (a) of Definition [T} the restriction of the relation ~a to the set Exp(F’)
induces a finite partition of it. Every class w in this partition has a least <a-upper
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bound s(w) in af. Let S = Sp be the set of these upper bounds. For every s € S
and every m € NA with |m| < d we define the A-power series

(1.7) fS,m(a) = Z a " "Cs—pm,

HENA
with coefficients determined by ([LH).

Lemma 1.5. Let the series (1) be neatly convergent at the point ag € A. Then
the series (LI) and, for every s € S = Sp and m € NA with |m| < d, the series
(L7) is neatly convergent on the closure of the set AY(A,ap). The functions fs m,
defined by (1), belong to O(AT(A,ap), V). Moreover, let f: AT (A,ag) — V be the
function defined by the summation of (LI)). Then

(1.8) flay=>" a*(loga)"™ fom(a),  (a€ AT(A,ap)).
mid

In particular, the function f: AT (A, ag) — V is real analytic.

Proof. From the neat convergence of (I1]) at ag it follows by Lemma [ that
for every s and m the series ZHGNA a®"Hcs_,m converges absolutely for a = ag.
This implies that the A-power series (LT)) converges absolutely for a = ag. Hence
it converges (uniformly) absolutely on the closure of AT(A, ag); in particular, it
converges neatly on that set. It follows from this that fs., € O(AT (A, ap), V), for
s € S and m € NA with |m| < d. Moreover,

(1.9) a’(loga)™ fsm(a) = Z a(loga)™ce m

£€s—NA
where the A-exponential polynomial series on the right-hand side converges neatly
on the closure of A1 (A, ag). The series (LI), for s € S and m € NA with |m| < d
add up to the series (I.1)), which is therefore neatly convergent as well. Moreover,
(L) follows. This in turn implies the real analyticity of the function f. O

Remark 1.6. Let an:= [\, ca kera and Aa:= exp(aa). Then the functions f; ,
defined by [7) satisfy fs.m(aaa) = fom(a) for all a € A, an € Aa. In particular,
the function f of (I.8]) generates a finite dimensional Ax-module with respect to the
right regular action. Thus, if A = (J, then f is an exponential polynomial function.

Lemma 1.7 (Uniqueness of asymptotics). Let ag € A, and assume that the A-
exponential polynomial series (LI) converges neatly on A" (A, ap). If the sum of
the series is zero for all a € AT (A, ap), then g¢ =0 for all £ € a?.

Proof. Let f: AY(A,ap) — V be defined by summation of the series (ILT). Then it
follows from Lemmal[l.H that the series (L)) is an asymptotic expansion for f in the
sense of [6], Sect. 3. Hence, if f = 0, then by uniqueness of asymptotics (see [22],
p. 305, Cor. and [6], Prop. 3.1) it follows that the series vanishes identically. O

Definition 1.8. Let ag € A. By C°?(A*(A,ap),V) we denote the space of func-
tions f: AT(A,ag) — V that are given by the summation of a (necessarily unique)
neatly converging A-exponential polynomial series of the form .

If f € CP(AT(A,ap),V), then by ep(f) we denote the unique series from
FeP(A,V) whose summation gives f. Moreover, the asymptotic degree of f is de-
fined to be the number

deg, (f): = deg(ep(f))-
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Note that the map
ep: C°P(AT (A ag),V) — FP(A,V),

defined above, is a linear embedding.

Let f € C°?(AT(A,ap),V). We briefly write Exp(f) for the set Exp(ep(f)); its
elements are called the exponents of f. We put g (f, - ): = ge(ep(f), - ), for £ € a.
Then £ € Exp(f) <= q¢(f) #0.

The <a-maximal elements in Exp(f) are called the (A-)leading exponents of f
(or of the expansion). The set of these is denoted by Expy,(f).

By the formal application of S(a) to F°P(A, V) we shall mean the linear map

S(a) ® FP(A, V) — FPAV)

induced by termwise differentiation (recall that S(a) acts on C*°(A) via the right
regular action). The image of an element u ® F under this map will be denoted by
wF.

Lemma 1.9. Let ap € A and let f € CP(AT(A,a0),V). If u € S(a), then the
function uf:a— R, f(a) belongs to C°P(A* (A, ag), V). Moreover,

ep(uf) = uep(f).

Proof. We may assume that u € a. Express f as in (.8). For each s, m the func-
tion ufs ., belongs to O(AT(A,ap),V); its expansion is obtained from ep(fs,m) by
termwise application of u, hence by the formal application of u. O

We shall also need a second type of formal application. Suppose that complete
locally convex spaces U and W are given, and a continous bilinear map U xV — W,
denoted by (u,v) — uv. By the formal application of FP(A,U) to FP(A,V) we
mean the linear map

FPAU) @ FP(AV) — FPAW),
given by

(1.10) Y atpe(loga) @ > agy(loga) — Y a” > pe(loga)g,(loga).
£€ag neag veag {+n=v

This map is indeed well defined. To see this, let F' denote the first series and G the

second. Then for every v € a¥, the collection S, of (§,n) € Exp(F) x Exp(G) with

&+ n = v is finite. Hence the W-valued polynomial function

riX e Y pe(X)gn(X)
(&meESy

has degree at most deg(F') 4+ deg(G). Moreover, let X, X5 C af be finite subsets
such that Exp(F) C X; — NA and Exp(G) C X2 — NA and put X = X; + Xo.
Then for v € a%\ [X —NA] the collection S, is empty, hence r, = 0. Therefore, the
formal series on the right-hand side of ([LT0) satisfies the conditions of Definition
T
The image of an element F' ® G under the map ([LI0) is denoted by F'G. Again
we have a lemma relating the formal application with neat convergence.

Lemma 1.10. Let U x V — W, (u,v) — wv be a continuous bilinear map of com-
plete locally convexr spaces. Let ag € A and let f € CP(A(A,a9),U) and g €
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C°P(A(A, ap),V). Then the function fg:a — f(a)g(a) belongs to C°P(A(A, ag), W).
Moreover, its A-exponential polynomial expansion is given by

ep(fg) = ep(f) ep(g).
Proof. This follows by a straightforward application of Lemma O

2. BASIC NOTATION, SPHERICAL FUNCTIONS

In this section we study spherical functions that are defined on a certain open
dense subset X of the symmetric space X, and are (radially) given by exponential
polynomial series. This class of functions will play an important role in the paper.
Later we will see that ID(X)-finite spherical funtions belong to this class.

Throughout this paper, we assume that X is a reductive symmetric space of
Harish-Chandra’s class, i.e., X = G/H with G a real reductive group of Harish-
Chandra’s class and H an open subgroup of G, the group of fixed points for an
involution o of G. There exists a Cartan involution 6 of G, commuting with 0. The
associated fixed point group K is a o-stable maximal compact subgroup.

We adopt the usual convention to denote Lie groups by Roman capitals and their
Lie algebras by the corresponding Gothic lower cases. The infinitesimal involutions
f and o of g commute; let

(2.1) g=top=hdg
be the associated decompositions into +1 and —1 eigenspaces for 6 and o, respec-
tively. We equip g with a positive definite inner product (-, -) that is invariant

under the compact group of automorphisms generated by Ad(K), ¢®d(®) g and o.
Then the decompositions (2ZJ) are orthogonal.
Let a4 be a maximal abelian subspace of p N q. We equip aq with the restricted

inner product (-, -) and its dual a} with the dual inner product. The latter is
extended to a complex bilinear form, also denoted (- , - ), on the complexified dual
ar..

qc

The exponential map is a diffeomorphism from a4 onto a vectorial subgroup Aq
of G. We recall that G = K AqH. Let ¥ be the restricted root system of a4 in g; we
recall that the associated Weyl group W is naturally isomorphic to Nx (aq)/Zk (aq),
the normalizer modulo the centralizer of aq in K. Let ag®® denote the associated set
of regular elements in aq, i.e., the complement of the union of the root hyperplanes
ker o, as v € X. We put A := exp(affg) and define the dense subset X of X by

Xy = KA 8 H.

If @ is a parabolic subgroup of G, we denote its Langlands decomposition by
QQ = MgAgNg. By a o-parabolic subgroup of G we mean a parabolic subgroup
that is invariant under the composition o 8. It follows from [4], Lemmas 2.5 and
2.6, that the collection P, of o-parabolic subgroups of G containing A, is finite.

If Q is a o-parabolic subgroup, then the Lie algebra ag of its split component
is o-stable, hence decomposes as ag = agn @ 6Qq, the vector sum of the associated
+1 and —1 eigenspaces of 0|4, , respectively. We write Agq: = exp agq and Mg,: =
Mg (Ag N H); the decomposition

(2.2) Q = MgsAqqNg

is called the o-Langlands decomposition of Q. If Q € P,, then Mig = Q NH(Q)
contains Aq. Hence agq is contained in p N q and centralizes ag; it follows that



626 E. P. VAN DEN BAN AND H. SCHLICHTKRULL

agq C aq. By 3(Q) we denote the set of roots of ¥ occurring in ng. Obviously,

ng = @ da-

a€X(Q)

Let PMin denote the collection of elements of P, that are minimal with respect
to inclusion. An element P € P, belongs to P™" if and only if ap, = aq; see [4],
Cor. 2.7. This implies that the associated groups Mp and Ap are independent of
P € P™n We denote them by M and A, respectively. From the maximality of a,
in p N q it follows that mNp C h. Thus, if Kyi:= KN M and Hy:= H N M, then
the inclusion map Ky — M induces a diffeomorphism

(2.3) Ky/KaNH = M/Hy.

In particular, the symmetric space M/Hy is compact.

According to [], Lemma 2.8, the map P +— X(P) induces a bijective map from
PRI onto the collection of positive systems for 3. If ® is a positive system for 3,
then the associated element P € P is given by the following characterization of
its Lie algebra: Lie(P) = m+a+ ) cq 8o From this we see that Nx(aq) acts
on P by conjugation; moreover, the action commutes with the map P +— 3(P).
Accordingly, the action factors to a free transitive action of W on P2in: see also
[4], Lemma 2.8.

If P € P™n then the collection of simple roots for the positive system 3(P) is
denoted by A(P); the associated positive chamber in aq is denoted by af(P) and
the corresponding chamber in Ay by A(J{ (P). Thus, we see that Aff® is the disjoint
union of the chambers A} (P), as P € P,

More generally, if @ € P,, we write

(2.4) 35q3 ={X€agq|a(X) >0 foraec3(Q)}.

It follows from [M], Lemmas 2.5 and 2.6, that aaq # (). Moreover, if X € agq, then
the parabolic subgroup @ is determined by the following characterization of its Lie
algebra

(2.5) Lie(Q =m®a® @ ga-
a(X)20
Conversely, if X is any element of ay, then (2.5)) defines the Lie algebra of a group
Q@ from P,; moreover, X € agq. From this we readily see that conjugation induces
an action of Nk (aq) on P, which factors to an action of W.
By a straightforward calculation involving root spaces, it follows that the multi-
plication map K x Af*® — X induces a diffeomorphism

KXNK(aq)F‘IH Aaeg i) X+.

In particular, it follows that X is an open dense subset of X. Let Wxnpg denote the
canonical image of N (aq) N H in W and let W be a complete set of representatives
for W/Winan in Nk (aq). If P € P2 then it follows that

(2.6) X; = U KA} (P)wH (disjoint union).
wew
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Moreover, for each w € W the multiplication map (k, a) — kawH induces a diffeo-
morphism
(2.7) K X reyrwnw— AT (P) — KA (P)wH.
Here we have written Ky = K N M; in (Z7) the set on the right is an open subset
of X.

Let (7,V;) be a smooth representation of K in a complete locally convex space.
For later applications it will be crucial that we allow 7 to be infinite dimensional
(see the proof of Theorem [T7).

By C*(X4: 7) we denote the space of smooth functions f:X; — V, that are
T-spherical, i.e.,

(2.8) fka) = 7(k) f (),
for x € X4, k € K. The space C*(X: 7) of smooth 7-spherical functions on X will
be identified with the subspace of functions in C*°(X : 7) that extend smoothly
to all of X.

In the following we assume that P € PM is fixed. If w € Ngk(aq), then by
CR (X1 7) or Cgf (X4 1 7) we denote the space of functions f € C*°(Xy : 7) with
support contained in KA} (P)wH. From (26) we see that

Cx(Xy:7) @ CX(Xy:7)
wew
Let w € Nk (aq) be fixed for the moment. For f € C®(Xy:7) we define the
function T}D’wf € COO(A(j-(p), VTKM”“’H“fl) by

T}, f(a) = flawH).

Since (2.7) is a diffeomorphism, the restriction of Tllg, w 10 Co2(X 4 : 7) is an isomor-

phism of complete locally convex spaces onto the space C‘X’(Ag‘ (P), VEmnwH “’71).

Taking the direct sum of the maps ng,wa as w € W, we therefore obtain an isomor-
phism of complete locally convex spaces

(2.9) Tll’,W: C®(X4:71) @ C>(A VKmeHw ).

wew
Definition 2.1. We denote by C°?(X, : 7) the space of functions f € C*° (X, : 1)
such that for every w € W the function T}D ! belongs to CP(AF(P), VmnwHw™ ),
where the latter space is defined as in Definition [ ), with a, ag and A replaced by

aq, e and A(P), respectively.
If f e CP(Xy:7), we define its asymptotic degree to be the number

_ 1
deg, (f): = max deg, (T, f).

It follows from the above definition that restriction of T}D’W induces a linear
isomorphism

(2.10) CP (X4 : 7) @ CceP( A* VKmeHw ).
weW

Using conjugations by elements of Ng(aq) it is readily seen that the space
C°P(X4 : 7) and the map deg,: C°?(X;: 7) — N are independent of the partic-
ular choices of P and W. In particular, if P € P2 and w € Nk (aq), then T]ﬁ}wf €
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CP(AL(P), VEmnwHw™ ) ang deg(T}D’wf) < deg,(f). We put
Exp(P,w| f):=Exp(Tp,,f), and Expy(Pw|f):=Expy,(Tp,,f)-

Moreover, for all £ € a. we define gg(P,w [ f) = qg(Tlﬁwa). Then, for every a €
A (P),

(2.11) flaw) = Z aggg(P,w|f,1oga)7

£€Exp(Pw]| f)

where the A(P)-exponential polynomial series on the right-hand side neatly con-
verges on AF(P).
For w € Nk (aq), we will use the notation

(2.12) Xow:=M/MNwHw ™

moreover, we put Tv: = T, and write C°°(Xg ., : 7v) for the space of my-spherical
C* functions from Xg ,, to V-, i.e., the space of functions f € C* (X ., V) satisfy-
ing the rule Z]) for k € Ky and z € Xg 4. From 23)) with wHw ™! in place of H we
see that the inclusion Ky — M induces a diffemorphism from Ky/Ky N wH w1
onto Xg,. Hence evaluation at the point e(M N wHw™!) induces a linear iso-
morphism from C*(Xg, : 7m) onto VTKmeH“ﬁl. Thus, if f € C°°(X, : 7), then
for every £ € aqc there exists a unique C'*°(Xg 4 : Tm)-valued polynomial function
ge(P,w| f) on aq such that

q&(P’wlfaXae):gg(P7w|f)(X) (XEClq).

Using sphericality of the function f we obtain from ([2I1]) that

(2.13) f(maw) = Z acqe(P,w| f,loga,m),
§€Bxp(Pw| f)

for m € M, a € A} (P). The series on the right-hand side is a A(P)-exponential
polynomial series in the variable a, with coefficients in C*°(Xg , : Tm), relative to
the variable m. As such it converges neatly on Af (P).

We shall now discuss a lemma whose main purpose is to enable us to reduce on
the set of exponents in certain proofs, in order to simplify the exposition.

Lemma 2.2. Let P € P™" and let W C Ni(aq) be a complete set of representa-
tives of W/Wknm. Assume that f € C°P(X4: 7).

There exists a finite set S C aj. of mutually A(P)-integrally inequivalent ele-
ments such that Exp(P,v| f) C S — NA(P) for every v e W.

If S is a set as above, then there exist unique functions fs € C°P(X4: 1), for

s € 8, such that
[= Zf37

seS
and such that Exp(P,v| fs) C s — NA(P), for every v € W.
Proof. There exists a finite set X C a7 such that Exp(P,v|f) C X — NA(P) for

all v € W. Obviously there exists a finite set S as required, such that X —NA(P) C
S — NA(P).
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If S is such as mentioned, then for s € S and v € W we define the function
Fowt AF(P) = VIuOvHY py

fs,v(a) = Z as_’/q:s—u(Pa v | f7 IOg a, 6);

vENA(P)

here the exponential polynomial series is neatly convergent, hence fs, belongs to
the space C°P(Af (P), VEMWHU™ Cfor every v € W. By the isomorphism (2.10)
there exists a unique function f; € C°P(X4: 7) such that fs(av) = fs,(a) for
vEW, a € Ajl‘(P). By the hypothesis on S the sets s — NA(P), for s € S, are
disjoint. Hence f = 3" ¢ fs on Af (P)v, for every v € W. By (2.0) and sphericality
this equality holds on all of X . O

3. ASYMPTOTIC BEHAVIOR ALONG WALLS

In this section we study the asymptotic behavior along walls of functions from
C°P(X4 : 1) (see Definition 2I)). The behavior is described (in Theorem B.4]) by an
exponential polynomial series on Agq, where @ € P,. The coeflicients of the series
depend on an element m € Mg, and the convergence exhibits a certain uniformity
with respect to this element. This uniformity will be described by means of a
map introduced in ([3:4). Moreover, as a function of m each coefficient allows an
expansion in an exponential polynomial series on the complement *Agq = Mg N Ay
of Agq in Aq. The relation between these series on *Agq and the original series on
Aq is described in Theorem [B.5]

As before, let 7 be a smooth representation in a complete locally convex space
V;. Let P € P™n and let @ be a o-parabolic subgroup with Langlands decompo-
sition Q = MgAqQNg, containing P. In addition to the notation introduced in the
beginning of the previous section, the following notation will also be convenient.

We agree to write Kg:= K N Mg and Hg:= H N Mg. Moreover, W denotes
the centralizer of agq in W. Then Wq ~ Ng,(aq)/ZK,(aq). On the other hand,
Wy is also the subgroup of W generated by the reflections in the roots from the set

Aq(P):={a € A(P) | a|ag, = 0}.

We note that (@) = X(P) \ NAg(P). Moreover, let X,(Q) denote the collection
of agq-weights in ng. Then

5 (Q) = {lag, | @ € X(Q)}

Let A,.(Q) be the collection of weights from the set ¥,.(Q) that cannot be written
as the sum of two weights from that set; then one readily verifies that A,.(Q) equals
the set of restrictions of elements from A(P) \ Ag(P) to agq. In particular, the
elements of A,.(Q) are linearly independent.

Given ag € Agq we shall briefly write qu(ao) for the set qu(Ar (@), ap) defined
as in (C4) with agq and A,(Q) in place of a and A, respectively. Similarly, if
p €]0,00[Ar(@) we briefly write

qu(p):: qu(Ar(Q),p) ={a€Agq | a™ < pa, Yae A (Q)}.
If R > 0, we write qu(R) for Aaq(p)7 where p is defined by p, = R for every

E)AT(Q). Note that qu(l) equals the positive chamber qu: = exp(agq); see
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If v € Ng(aq), we define
(3.1) X1Q.w:= Mig/Mig NvHv ™

This is a symmetric space for the involution ¢V of Mg defined by o¥(m) =
vo(vtmwv)v~t. Note that this involution commutes with the Cartan involution
0|1, - Note also that aq is a maximal abelian subspace of Ad(v)(pNq) = pNAd(v)g.
Hence it is the analogue of a for the triple (Mg, Kg, Mig NvHv™!). The corre-
sponding group Ay may naturally be identified with a subspace of X1q..

The image of Mg in X;g,, may be identified with
Xg.vi= Mg/MgNvHv ™,

the symmetric space for the involution o”|az,. It follows from the characterization
of P, expressed by (ZH) that

(32) Pa - Po’“~

Hence @ is a o”-parabolic subgroup as well. Hence ag N Ad(v)q = ag Naq = agq,
and we deduce that the inclusion Agq — Ag induces a diffeomorphism Agq =~
Ag/AgNuHv ™. From this we conclude that the multiplication map Mg x Agq —
M, q induces the decomposition

(3.3) Xi1Q,0 = XQu X AQq-

Remark 3.1. In particular, the above definitions cover the two extreme cases that
@ is minimal and that it equals G.

In the case that Q € P™" we have Q = M AN, and Xg, equals the space
Xo,» defined in ZI2)). Moreover, X109, =~ Xo,» X Aq.

In the other extreme case we have X1G, = G/vHv~!. This symmetric space will
also be denoted by X,,. Note that right multiplication by v induces an isomorphism
of X, onto X. Note also that M¢ equals °G, the intersection of kery, as x ranges
over the positive characters of G. Hence Xg, = °G/°G N vHv~!. Finally, X, =~
Xaw X Agq, where Agq is the image under exp of the space agq, which in turn is
the intersection of the root hyperplanes ker v as a € X.

Let fig: = Ong be equipped with the restriction of the inner product (-, -) from
g. If Q # G, we define the function Rq ,: M1g —]0, oo[ by

(3-4) Rq.o(m) = [Ad(ma* (m) ™) agllap*,
where || - ||op denotes the operator norm. We define R¢ ,, to be the constant function

The function Rq, is right Mio N vHv '-invariant. It may therefore also be
viewed as a function on X;¢ ,. We shall describe the function Rg,, in more detail
below.

The orthocomplement of agq in a4 is denoted by *agq. Note that

(3.5) *agq = mg Nag;

hence *agq is the analogue of aq for the triple (Mg, Kq, Hg). We recall from the
text following (BI)) that a, is maximal abelian in p N Ad(v)q hence is the analogue
of aq for the triple (G, K,vHv™!). Accordingly, *agq is also the analogue of a, for
the triple (Mg, Kg, Mg NvHv™!).
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In view of (32), the group *P = P N My, is readily seen to be a minimal o*-
parabolic subgroup for Mg; the associated positive chamber in *Agq = exp(*agq)
is denoted by *Azgq(*P).

Let Wg,, be an analogue for Xqg, of W, that is, Wg,, is a complete set of
representatives in Ny, (aq) for the quotient Wo/Wk,nvmve—1- Let Xg o+ be the
analogue for Xq , of the open dense subset X1 of X. According to (ZI) this set
may be expressed as the following disjoint union of open subsets of Xg ,

(3.6) XQu 4= U KQ*AZSq(*P) u(MgNuvHv™t) (disjoint union).
ueEWgq v

Let X1Q,v,+ be the analogue of X4 for X1¢ ,; then from (B3)) we see that X1g 4+
XQ,u,+ X AQq. In terms of this decomposition and ([B6) the function Rg , may be
expressed as follows.

Lemma 3.2. The function Rg.,: Mig —]0,00] is continuous, and right Mig N
vHv™ - and left Kg-invariant. Moreover, if Q # G and if a € Aq and u €
Nk, (aq), then

3.7 Ro v - —a,
(3.7) Q.v(au) @

Finally, Rg., > 1 on Xg. .

Proof. Since Rg,,, is the constant function 1, we may as well assume that @ # G.
Continuity of the function Rg,, is obvious from its definition. The group Kgq
is o invariant and acts unitarily on ng; hence the left Kqg-invariance is obvious
from the definition. If a € Ay, then ac?(a)~! = a?. Hence the operator norm of
Ad(ac?(a)™1) on fig equals the maximal value of a=2% as a € 3(Q). This implies
B) for u=1.

The element v € Nk, (aq) belongs to Mg, hence Ad(u) normalizes ng. Therefore,
Ad(u) leaves the collection ¥(Q) of aq-roots in ng invariant. Put ' = u~tau. Then
Rg.w(au) = Rg(a") = max,ex(g)(a’) ™. Since Ad(u) leaves X(Q) invariant, ([B.7)
follows.

If a € 3, let h, be the element of aq determined by a(X) = (ho , X), for X € aq.
Then the closure of *agq(*P) is contained in the closed convex cone generated by
the elements hg, for § € Ag(P). If a € A(P) \ Ag(P), then a(hg) = (a, 5) <0,
for € Ag(P); hence o« < 0 on *agq(*P). But A(P) \ Ag(P) C 3(Q), hence
it follows that Rg., > 1 on *Azgq(*P)u, for every u € Wg . The final assertion
follows from combining this observation with (B.6)), the left K¢-invariance of Rq ,
and density of X, + in Xg,v- O

If 1 < R < oo we define
(3.8) Xou[R]:={m e Xg. | Rg,n(m) < R}.

Note that Xg ,[1] = 0 and Xg ,[00] = Xg,v; moreover, Ry < Ry = Xg,[R1] C
X v[R2]. Finally, the union of the sets X »[R] as 1 < R < oo equals X .

In accordance with (B8) we define Xq o 4 [R]: = X,4,+NXg,v[R], for 1 < R < oo.
Moreover, we also put (see above (L))

“AGq (" P)irj: = A5, ("P) N AL (A(P), R).



632 E. P. VAN DEN BAN AND H. SCHLICHTKRULL

Note that, if @ € 3(P) \ £(Q), then a=* <1 < R for all a € *qu(*P). Hence
AL CP) = {a € "AL (*P) | a™® < R, Ya e £(Q)}.
It follows from (B6) and Lemma [3.2] that

(3.9) Xgu+|Rl= U KQ*AEQ(*P)[R] u (Mg NvHv™') (disjoint union).
ueEWQ v
The function Rq . plays a role in the description of the asymptotic behavior of
a function f € C°?(X4 : 7) along ‘the wall’ quv. This behaviour is described in
terms of an expansion of f(mav) in the variable a € qu, for m € Xg y,+. Thus, it
is of interest to know when mavH belongs to X, the domain of f.

Lemma 3.3.
(a) If b€ AL, (*P) and a € AL (Rq.v(b)™"), then ba € AL (P).
(b) Let m € Xq,v,+- Then mavH € Xy for all a € A (Rg.o(m)™").
(c) Let R>1. Then Xq . +[RIAS (R~ )vH C X

Proof. Let b and a fulfill the hypotheses of (a). If a € Ag(P), then (ba)~* =
b~% < 1. On the other hand, we have, for & € A(P)\ Ag(P), that o € £(Q), hence
(ba)~* < Rgu(b)a~* < 1, by Lemma 3.2 Hence ba € Af(P), and (a) is proved.
Let m be as in (b), and let a € Azsq(RQ,v (m)~1). In view of (B.6) we may write
m = kbuh with k € Kqg, b € *qu(*P), u € Wq, and h € Mg NvHv™ . Now
mavH = kbuhavH = kbauvH. Thus, it suffices to show that ba € A¥(P). This
follows from (a) and the observation that Rg ,(b) = Rg,»(m), by Lemma[3.2]
Finally, (c) is a straightforward consequence of (b). O

If Q € Py we put 7q: = 7|k, Then, for v € Ni(ay), the space CP(Xq v 4 : 7Q)
is defined as in Definition T with Xq ,, and 7¢ in place of X and 7, respectively.

Theorem 3.4. Let f € CP(X;: 7). Let Q € Py and v € Nk (aq).
(a) There exist a constant k € N, a finite set Y C A5qer and for eachn €'Y —
NA(Q) a C(Xg,v,+, Vr)-valued polynomial function ¢, = ¢,(Q,v| f) on agq
of degree at most k, such that for every m € Xg v+,

(3.10)  f(mav)= > d'gy(loga,m),  (a € A (Rg.(m)™)),
neY —NA,.(Q)

where the A,(Q)-exponential polynomial series with coefficients in V; con-
verges neatly on the indicated subset of Agq.

(b) The set Exp(Q,v|f):={n €Y —NA(Q) | ¢, # 0} is uniquely determined.
Moreover, the functions q,, where n € Y — NA.(Q), are unique and belong to
Pi(agq) @ CP(Xg.v+: Tq), where d: = deg,(f). Finally, if R > 1, then the
the series on the right-hand side of (BI0) converges neatly on Aaq(R_l) as a
A (Q)-exponential polynomial series with coefficients in C°(Xq v +[R]: Q)

Proof. We will establish existence. Uniqueness then follows from uniqueness of
asymptotics; see Lemma [[.71

Fix P € P2 with P C Q. Select a complete set Wy, C Nk, (aq) of represen-
tatives for Wo/Wo N Winumo-1-

The set Wq ,v maps injectively into the coset space W/Wiknp. Hence it may be
extended to a complete set W of representatives in Ng (aq) for W/Wgnp. In view
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of Lemma [2.2] we may therefore decompose f, if necessary, so that we arrive in the
situation that there exists a s € aj. such that Exp(P,uv|f) C s — NA(P), for all
u € Wg,». We put sqg = s|agq.

Let u € Wg,,. Then the function f,,:a — f(auv) has a (unique) A(P)-expo-
nential polynomial expansion on A(‘l" (P) of the following type:

(3.11) fuv(a) = f(auwv) = Z qu.¢(loga)a®
¢es—NA(P)

1, —1

Here que(-) = qe(P,uv | f, -, €) belongs to Py(aq) ® VEmNuwHvu

Let 0 € S(aq). Then according to Lemma [T.9 the function 8fm, is given on
AF(P) by a neatly convergent A(P)-exponential polynomial series that is obtained
from (B.11) by term by term application of 9. That is,
(3.12) O fuv(a) = Z 4,u,¢(log a)a®

¢es—NA(P)

where gg ¢ is the VEMNMuvHv™u™
most d given by

-valued polynomial function on a, of degree at

Go,ue(X) = e C [t g, ] (X) (X €ay).

Now let R > 1 and let K and K’ be compact subsets of *qu(*P) (r] and qu(R_l)7
respectively. Then K'K is a compact subset of A (P), by Lemma B3] (a). Thus, if
a € K" and b € K, then the series in (B:12) with ba in place of a converges absolutely,
and may be rearranged as follows:

(313) 8fuv(a/b) = Z al Z bg QB,u,g(IOgb + 10g Cl).
nesqg—NAL(Q) sg‘s—NA(p)
aQq="

In view of Lemma [[5] the convergence is absolutely uniformly for (a,b) € K’ x K.
By a similar reasoning it follows from the neat convergence of the series (B.12)
that, for any continuous seminorm oy on Py(aq) ® V7, the series

(3.14) oo ad®m Y b og(gaue)

n€so—NAL(Q) £€s—NA(P)
Elagq=n

converges uniformly for a € K’ and b € K.

Now let n € sg — NA,(Q) and let b € *qu(*P) and a € qu(RQ,v(b)’l). Then
there exists a R > 1 such that b € *Azsq(*P)[R] and a € qu(R_l). Hence the series
(BI4)) converges, and by positivity of all of its terms we infer that the series

(3.15) > 0% o0(goue)

£€s—NA(P)
€lagq=n
converges for every continuous seminorm og on Py(aq)®V;, for every b € *AZS q(*P).
We now specialize to 0 = 1 and note that gi.4¢ = qu¢. Let X € agq. We
define the linear endomorphism T'x of Py(aq) ® V; by Txp(H) = p(X + H). This
endomorphism is continuous linear by finite dimensionality. Combining this with
the convergence of (B.I5) we infer, for every X € agq, that

(3.16) 4Qu.n(X, b): = Z b T'x (qu,¢)(log b)

£es—NA(P)
Elagq=n
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is a function of b defined by a neatly convergent Ag(P)-exponential polynomial

series on *Azgq(*P). It is polynomial in X of degree at most d, and real analytic

inb e *qu(*P). Moreover, its values are in the space VEMMuvHv™ u™! "mhyg

qQ.un € Palagq) ® Cep(*AZSq(*P),VTKMQ"”HUAUA). In view of the isomorphism
E30) for Xg,u,+, T7q, Wao,v in place of X, 7, W (see also the decomposition (B.6))

there exists a unique polynomial function ¢, = ¢,(Q,v| f) on agq with values in
C°?(X@g,v,+ : Tq) such that

(3.17) 4y(X,bu) = qQ.u.n(X,b), (X € agq,u € Wo.u,be A5 (*P)).

The degree of ¢, as a polynomial function on agq is at most d. Combining this with
(BI0) and BI3) and using that Rg ,(bu) = Rg.,(b), we arrive at the expansion
BI0) for m = bu and a € Azgq(RQ,v(m)*l). Using the left Kg-invariance of
R, and the sphericality of f and the functions m — g, (loga, m), we now obtain
(BI0) with absolute convergence; the first two assertions of (b) follow as well. The
assertion of neat convergence in (a) is a consequence of the final assertion in (b),
which we will now proceed to establish.

Let u € Wg,, and R > 1 be fixed. Then in view of the union ([B9) it suffices
to prove the neat convergence of the series (BI0) as a A, (Q)-exponential polyno-
mial series with coefficients in C‘X’(KQ*qu(*P)[R] u(MgNvHv™'): 79). The map
(k,a) — kau(Mg NvHv~1) induces a diffeomorphism from Kq/(Kg NvHv™!) x
*Azgq(*P)[R] onto the open subset KQ*qu(*P)[R] u(Mg NvHv™t) of Xg 4. By
sphericality of the coefficients of the series ([B-I0)) we see that it suffices to prove
that

Z a"01(4Qu.n)

n€sq—NAL(Q)

converges absolutely, for a € qu(R_l) and for o; any continuous seminorm on
Pd(aQq) ® COO(*AZSq(*P)[R]) VTKMﬂu’UHv_lu_l).
Fix X € agq, 0 € S(Fagq), a € qu(R_l) and K C *qu(*P)[R] a compact

subset. Then it suffices to prove that
(3.18) > a’supl|l9(gq.un(X, )l
nesq-NA, (@) ©

converges absolutely.

From the neat convergence of the series (B.16), for b € *Agy(*P), it follows that
term by term differentiation is allowed. Since 0 € S(*aqq), whereas X € agq, we
have

b~ (0 Tx (qu,e)(10gb)) = 4p,ue(X + logb).
Hence, for every n € sg — NA(Q),
(3.19) aqQun(X, -))(b) = Z bgqa,%g(X +logb).

g€s—NA(P)
Elagq=n

There exists a continuous seminorm oy on Py(aq) ® V;, such that, for every b € K
and all ¢ € Py(aq) ® V7,

lg(X +1logb)[| < o2(q)-



ANALYTIC FAMILIES OF EIGENFUNCTIONS 635

In particular, this implies that

(3.20) l[40.u.6 (X +10gb)|| < 02(go.u.e),

for every b € K.
Combining (319) with (B20) we now obtain

[ sup [10(gQ.u.n) (X, )l < > a0y (goue)-

£€s—NA(P)
Elagq=n

Thus, the absolute convergence of ([B.I8) follows from the uniform convergence of

@I, be K. 0

Let f € CP(X;1:7) and let Q@ € P, and v € Ni(aq). Moreover, let the set
Y C age and the polynomials ¢, = ¢,(Q,v|f), for n € Y — NA,(Q) be as in
Theorem B4 As in that theorem, we define

Exp(Q,v|f)={ne€Y —NA.(Q) | g, # 0}

and call the elements of this set the exponents of f along (Q,v). If n € a5qe does
not belong to Exp(Q, v | f), we agree to write ¢,(Q,v| f) =0.

Now let P € PXn be contained in @ and put *P:= PN Mg. Then, for u €
Nk, (aq), we define

Exp(Q,v| f)pu=1{n € ahqc | @y #0 on agq x KQ*qu(*P)u(MQ NovHv )}

The elements of this set are called the (Q,v)-exponents of f on *qu(*P)u. Let

Wg,w C Ni,(aq) be a complete set of representatives of Wo/Wo N Wirypy-1.
Then it follows from (B.6) that

(3.21) Exp(Qu]f)= |J Exp(@v|f)pu
uEWQ v
We now have the following result.
Theorem 3.5 (Transitivity of asymptotics). Let f € C°P(X;: 7). Let P,Q € Py,

assume that P is minimal and P C Q and put *P = P N Mqg. Then for all v €
Nk (aq) and u € Nk, (aq) we have

(3.22) Exp(Q,v| f)pu =Exp(P,uv| f) |agq-

MoreX/})er, if n € Exp(P,uv| f)|ag,, then for every b € *Azgq(*P), X € agq, and
me M,

(3.23) @(Qv| f, X, mbu) = Y bge(Puv|f, X +loghm),

E€Exp(P,uv | f)
f\qu:W

where the Ag(P)-exponential polynomial series (in the variable b) on the right is
neatly convergent on *qu(*P). Furthermore, the series

(3.24) Z bgqg(P7 wv| f, X + logb)

£€Exp(P,uv | f)
g‘ﬂQq=7]

converges neatly as a Ag(P)-exponential polynomial series in the variable b €
*qu(*P) with coefficients in C(Xo yv @ TM)-
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Proof. Let v € Nk(aq) and u € Nk, (aq) be fixed. Fix a set Wg,, such as in the
beginning of the proof of Theorem [3.4] and such that it contains u. Moreover, we
select a set W of representatives for W/Wxnp in Ni(aq) containing Wg ,v. As in
the proof of the mentioned theorem we may restrict ourselves to the situation that
Exp(P,u'v| f) C s — NA(P), for some s € a. and all v" € Wg .. In the following
we may now use the notation and results of the proof of Theorem [3.4]

Let n € sg — NA,(Q). Then from (3I7) and (BI6) we infer that, for every
X e aQqs

w(Qu] £, X, bu)= > bg(Puv|f, X +logbe), (b€ AL ("P));

£€s—NA(P)
Elagq=n

the series on the left-hand side converges neatly as a Ag(P)-exponential polynomial
series in the variable b € *qu(*P). The function m — ¢,(Q,v| f, X, mbu) belongs
to C°(Xo,uv: ™M), and so does the function m — g¢(P,uv| f, X + logb, m), for
every £ € s — NA(P). Evaluation at e induces a topological linear isomorphism
C™®(Xow: ™M) VTMF‘“’H“’_l, for every w € Nk (aq), hence in particular for w =
wv. Thus, it follows from the above that ([8:23) holds, with the asserted convergence.
In addition, it follows that the series (3.24]) converges as asserted.

In the proof of Theorem [3:4] we saw that Exp(Q,v| f) C sg —NA,(Q). It follows
from the derived expansion (3.23) that ([8:22) holds with the inclusion ‘C’ in place
of the equality sign. For the converse inclusion, let & € Exp(P,uv|f) and put
1 = &olag,- We select X € agq such that the function b+ g, (P, uv | f, X +logb, e)
does not vanish identically on *Agq. The equality (3:23) holds for all b € *qu(*P)
with a Ag(P)-exponential polynomial series that converges neatly on *Azgq(*P).
Any exponent { of this series coincides with 7 = {p|ag, On aqq; if it also coincides
with &y on *agq, then & = &y. Therefore, the function of b defined by the series on the
right-hand side of (B:23)) is nonzero. Hence ¢,(Q, v | f) does not vanish identically
on agq X *A%5,(*P)u and we conclude that 1) € Exp(Q,v | f)p.u- O

We proceed by discussing some useful transformation properties for the coeffi-
cients in the expansion (BI0).

If w € Ng(aq) it will sometimes be convenient to write uX:= Ad(u)X for
X € aq. Similarly, we will write u&: = o Ad(u)™!, for € € af.

If u,v € Ng(aq) and Q € P,, then conjugation by v induces a diffeomorphism ~,
from the space X, onto X,y -1 4,; We note that v, maps Xq,»,+ onto X,gu-1,up, +-
It is easily seen that R,qu-1 uu(Yu(m)) = Rgu(m), for m € Xq ..

For p € C*(X@Q,v,+: 7Q), we define the function pr ,¢: Xyou-1 uv,+ — V- by

(3.25) prup(r) = T(u)e(r ' (2)).

Then p-,, is a topological linear isomorphism from the space C*°(Xg ., + : 7q) onto
the space C*°(Xy,Qu-1,uv,+ : TuQu-1)- Likewise, by similar definitions we obtain
a topological linear isomorphism from C*(X1q s+ : 7¢) onto C(Xy yQu-1 uv,+
TuQu-1), also denoted by pr 4.

Lemma 3.6. Let f € C°P(Xy:7), let Q € P, and u,v € Nk (aq). Then
Exp(uQu™", uwv | f) = uExp(Q, v | f).
Moreover, for every n € Exp(Q,v] f),
Gun(uQu™  uv | ) = [Ad(u™")" @ pru] 4,(Q. 0| f)-
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Proof. Put Q' = uQu™'. Let m € X¢ yv.+. Then, by Theorem B4,
(3.26) f(mauv) = Z aq,(Q',uv | f)(loga, m),

n€Exp(Q’,uv | f)
for a € Aaq(RQ/,m, (m)~1), where the series on the right-hand side is neatly con-
vergent. On the other hand, from f(mauv) = 7(u)f (7, (m)u~tauv) we see, using

Theorem B.4 again, that

(3.27)  flmaw) =7(u) Y a“q(Q,v] /)(Ad(w)  loga, v, (m)),
cemxp(Qu /)

for u=tau € qu(RQw(’y;l(m))_l). We now note that the latter condition is equiv-
alent to

0 € Adyg(Rao( ' (m) ™) = Ay (Rarun(m) ™).

Hence the series (3.26) and (327 both converge neatly for a € Agq(Rgr ww(m)™1).
All assertions now follow by uniqueness of asymptotics. O

For later purposes, we also need another type of transformation property. Recall
from Remark [B] that for u € Nk (aq) we write X, = Xign = G/uHu™?; let
Xy,+ denote the analogue of Xy for this symmetric space. We note that right
multiplication by u induces a diffeomorphism r, from X, onto X, mapping X,
onto Xy. Hence pull-back by r, the topological linear isomorphism R,,:= r; from
C>®(X4:7) onto C®(X,, 4: 7); it is given by R, f(x) = f(zu). We note that the
map R, coincides with the map p; ., introduced in the text above Lemma [3.6] by
sphericality of the functions involved.

The following result is now an immediate consequence of the definitions.

Lemma 3.7. Let f € CP(Xy:7) and u € Ng(aq). Then R, f € CP(Xy4: 7).
Moreover, for each Q € P, and every v € Nk (aq), the set Exp(Q,vu| f) equals
Exp(Q,v| Ryf). Finally, if £ € Exp(Q,vu| f), then

4. BEHAVIOR OF DIFFERENTIAL OPERATORS ALONG WALLS

We assume that Q € P, is fixed. The purpose of this section is to study
a @-radial decomposition of invariant differential operators on X. This leads (in
Proposition 10) to a series expansion of such operators along (Q,e). The coef-
ficients turn out to be globally defined (see Proposition E.8) on the group Mg,
defined above (2:2)), a fact that will be of crucial importance for the applications
later on (see Proposition B:3). The expansion of D € D(X) allows us (in Lemma
E12) to determine the exponential polynomial series of Df from that of f, where
feC®Xy: 7).

The involution fo fixes aq pointwise, hence leaves every root space gq, for a € X,
invariant. We denote the associated eigenspaces of fo|g, for the eigenvalues +1 and
—1 by g} and g, respectively. Moreover, we put m>:= dim g.

We recall that Ko = K N Mg and Hg = H N Mq. Define Hig: = H N Mig;
then Hig = Ho(Ag N H). Note that Ko = K N Mig. The group M1g admits the
Cartan decomposition Mg = KgAqH1g and normalizes the subalgebra fig.

For m € Mj¢g we define the endomorphism A(m) = Ag(m) € End(ng) by

(4.1) A(m):= oo Ad(m™ ") o0 Ad(m).
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Moreover, we define the real analytic function § = dg: M1 — R by

(4.2) d(m) = det(I — A(m)).
Finally, we define the following subset of Mg
(4.3) Mig:= Mg\ 6 (0).

Lemma 4.1.
(a) Let me Mg, ke Ko and he€ Hyg. Then A(kmh) = Ad(h™1) o A(m) o Ad(h).
(b) The endomorphism A(m) € End(ng) is diagonalizable, for every m € Mig.
The eigenvalues are given as follows. Let m = kah, with k € Kg, a € Aq
and h € Hig. Then the eigenvalues of A(m) are £a=2%, a € £(Q), with
multiplicities mE.
(c) The operator norm of A(m) is given by ||A(m)|op = Rg.1(m)?.
Proof. (a) is an immediate consequence of ([AI). Hence, for (b) we may assume
that m = a € Aq. It is casily seen that A(a)|+ = +a2%] for a € B(Q).

Finally, (c) is an immediate consequence of (b) and [B7) with v = 1. O
Corollary 4.2. If k€ Kg, a € Ay, h € Hyig, then
d(kah) = J] (1—a=22)me(1+a 2™,
a€X(Q)
The set M, is left Kq- and right Hiq-invariant, and open dense in Miq.

Proof. This follows immediately from Lemma [£]] combined with (£2) and (43).
O

We define the linear subspace Q) of £ by €@Q): = €N (ng + ng). Then the map
(I+6): X — X +6X is a linear isomorphism from g onto £Q).

Lemma 4.3.
(a) If m € My, then Ad(m~')e@) +h C ng +b.
(b) If m € M, then Ad(m™")t@) @ h =ng +b.
Proof. (a) Since Q) C fig +ng C ng + b, we have, for all m € Mg,
Ad(m_l)E(Q) - Ad(m_l)(ﬁQ +ng) =ng +ng Cng+h.
(b) The dimension of Ad(m~1)€Q) equals that of £Q), which in turn equals that of
ng. Hence it suffices to prove, for m € Mj, that Ad(m~ Y@ Nh=0.
Let X € Ad(m™~1)e@) Nh. Then HAd(m)X = Ad(m)X and 0 X = X, and we
see that (I — A(m))X = 0. If m € Mj, then det(I — Ad(m)) = d(m) # 0 and it
follows that X = 0. O

From Lemma [.3|b) we see that for m € M, we may define linear maps ¥(m) =
Uo(m) € Hom(ng, ¢(@Q)) and R(m) = Rg(m) € Hom(ng, h) by

(4.4) X = Ad(m ¥ (m)X + R(m)X.
Lemma 4.4. Let m € Mj,, k € Kq and h € Hig. Then
U(kmh) = Ad(k)o¥(m)o.Ad(h),
R(kmh) = Ad(h™')o R(m)oAd(h).
Proof. This is an immediate consequence of (£4]) combined with Lemma3(b). O
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Lemma 4.5. Let m € M. Then
U(m)o(I —A(m)) = (I+0).Ad(m),
R(m)o(I —A(m)) = —(I+40)oA(m).
Proof. From (&) it follows that
I4+00A(m)=Ad(m ) o(I+6)oAd(m).
This implies in turn that
(4.5) I—A(m) =Ad(m™ ) o (I +0)oAd(m)— (I +0)oA(m).
Since I 46 and I + 0 map 1¢ into &) and b, respectively, the lemma follows from

combining (£5) with (Z4). O

Corollary 4.6. The functions ¥: M}, — Hom(ng, &(Q)) and R: M{,— Hom(ng, h)
are real analytic. Moreover, the functions § U and 6 R extend to real analytic func-
tions on Miq.

Proof. From (E2) and ([@3) we see that I — A(m) is an invertible endomorphism of
ng, for m € Mj,. Since Ad(m) and A(m) depend real analytically on m € Miq,
all statements now follow from Lemma 5] O

If R > 0, then in accordance with (B.8)) we define
Mig[R]:={m € Miq | Rq,1(m) < R}.
Here Rg 1(m) is given by (B4). Moreover, we set Mo [R]: = Mg, N Mi1g|[R].
Lemma 4.7.

(a) Mig[l] C Miq.
(b) Let Rl, Ry > 0. Then MQU[Rl] AEQ(RQ) C MlQ[RlRQ].
Proof. Let m € Myg[1]. Then ||A(m)]||op < 1 by Lemma[Tl(c), and hence §(m) # 0.
This establishes (a).
Assume that m € Mg,[R1] and a € qu(Rg). Write m = kbh with k € K, b e

*AQq and h € Hig. Then ma = k(ab)h, hence Rg 1(ma) = max,ecxg)a b~ <
RoRp.1(m) < RiRy. It follows that ma € M1g[R1Rs).

Proposition 4.8. There exist unique real analytic functions
U,, R, Mg, — End(ng), for pe NA(Q),
such that for every m € Mg, and every a € Azgq(RQ,l(m)’l),

U(ma) = (L+0)o > a "¥,(m),
HENA,(Q)

R(ma) = (140)o Z a MR, (m),
HENA(Q)

with absolutely convergent series. For every R > 1 the above series converge neatly
on Aaq(R_l) as A (Q)-power series with coefficients in C*°(Mqgq[R], End(ng)).
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Proof. Let m € Mg, and a € qu(RQJ(m)*l). It follows from Lemma A7 that
ma € Mig[l] C Mjg. Hence ¥(ma) and R(ma) are defined.
It follows from Lemma Tl that || A(ma)||op < 1. Hence the series

(I - A(ma))™" = A(ma)"
n=0

converges absolutely. Let a € ¥,(Q). Then A(m) leaves the space g_,, invariant,
and A(ma)|g . =a 2*A(m)|,_. . Hence, in view of Lemma A5,

V(ma)lg_, = (I +0)oAd(m)o Y a~ "D A(m)"|g_,
n=0

and
oo
R(ma)lg_, =—(I+0)o > a *"*A(m)"|;_,.
n=1
It is now easy to complete the proof. O

We denote by Rg the algebra of functions on M{Q generated by the func-
tions o U, where £ € Hom(ng, #(@))*, and by the functions noRg, where n €
Hom(ng, h)*. By Rg we denote the algebra of functions generated by 1 and Rg
Note that RZS is an ideal in Rq.

Corollary 4.9. The elements of Rq are left Kg- and right Hig-finite functions
on Mig.

Let ¢ € Rg. There exists a k € N such that 5590 extends to a real analytic
function on Mig. Moreover, there exist unique real analytic functions @¢ on Mqs,
for £ € NAL(Q), such that for every m € Mg, and every a € Agq(Rg,1(m)™1),

(4.6) p(ma) = > a Cpe(m).

£ENAL(Q)

Let R > 1. Then the series (@8] converges neatly on Agq(R™1), as an exponential
polynomial series with coefficients in C*>°(Mgq[R]).
Finally, if p € Rg, then (B0) holds with o = 0.

Proof. Uniqueness of the functions ¢ is obvious. Therefore it suffices to prove exis-
tence and the remaining assertions. One readily checks that it suffices to prove the
assertions for a collection of generators of the algebra Rg Such a collection of gen-
erators is formed by the functions of the form ¢ = £ ¥, with £ € Hom(ng, ¢(Q))*,
and by the functions of the form ¢ = noRg, where n € Hom(ng, h)*. For both
types of generators all assertions follow immediately from Proposition 8. O

As is the previous section we assume that 7 is a smooth representation of K in
a locally convex space V. The space of continuous linear endomorphisms of V; is
denoted by End(V;).

If an element u of the space

(4.7) Dig:=Ro @ End(V;) @ U(myg)
is of the form ¢ ® L ® v, with ¢ € Rg, L € End(V;), and v € U(m1q), then we

define the differential operator u, on COO(M{Q, Vi) by u.f = @Lo[R,f]; here R
denotes the right regular representation. The map u — u, extends to an injective
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linear map from D;¢ to the space of smooth End(V;)-valued differential operators
of C*°(Mjq, V:). We also define the subspace

Dfy:=RE @ End(V;) @ U(myg).

Via the map u — 1 ® I ® u we identify U(mig) with a subspace of D1g. Then
uy = Ry, for v € U(myq).
Let M1 + be the preimage in Mi¢ of the set X1g.1,+ (see below (3.0])). The set

Miq = Mg+ N Mig
is an open dense subset of Mg that is left K- and right H;g-invariant.

In view of the decomposition g = ng®(m1o+h), there exists, for every D € U(g),
an element Dy € U(mig) with deg(Dy) < deg(D), such that

(4.8) D — Dy € nU(g) + U(g)bh.

The element Dy is uniquely determined modulo U(mig)hig. We recall from [5],
Sect. 2 (see also [7], p. 548-549) that the assignment D +— Dy induces an algebra
homomorphism pg = ‘ug:D(X) — D(Mig/Hiq), and that the homomorphism
ug:D(X) — D(Mig/Hig), defined by pug(D) = dg o//Q(D)oclé1 with dg(m): =
| det(Ad(m)]ng,)|*/? for m € Mig, only depends on @ through the Levi component
M.

Proposition 4.10. Let D € D(X). There exists a uy € D;FQ of degree deg(u) <
deg(D) such that, for every f € C*(X4: 1),

Dfla, , = (D) +urd (Flarg, ).

Proof. By induction on the degree we will first establish the following assertion for
an element D of U(g). Let Dy € U(m1q) satisfy (). Then there exist finitely many
©; € Rg, u; € U(E), and v; € U(myq), for 1 < i < n, such that deg(u;) + deg(v;) <
deg(D), and such that
(4.9) D—Do =Y ¢i(m)[Ad(m) "u;]v; modU(g)h,

i=1
for every m € Mj.

The assertion is trivially true for D constant. Thus, assume that D is not
constant and that the assertion has been established for D of strictly smaller degree.
Let Dy € U(myg) be as above. Then, modulo U(g)h, D — Dy equals a finite
sum of terms of the form X D;, with X € ng and D; € U(ng & mig) such that
deg D1 < deg D.

For m € Mj, , we have X = Ad(m)~"¥(m)X + Rq(m)X; hence

XDy = (Ad(m) "' ¥(m)X)D;y + [Ro(m)X, D1] modU(g)h.

Now Ad(m)~!'¥(m)X is a finite sum of terms of the form (m)[Ad(m) 'u] with
u € ¥Q) and p € Rg Applying the induction hypothesis to D; we see that
[Ad(m)~1W¥(m)X]D; may be expressed as a sum similar to the one on the right-
hand side of (£.9).

On the other hand, [Rg(m)X, D1] is a finite sum of elements of the form 1 (m) D3,
with ¢ € Rg and Do € U(g), deg Dy < deg D. Applying the induction hypothesis
to Do, we see that [Rg(m)X, D1] may also be expressed as a sum of the form (3).
This establishes the assertion involving (3] of the beginning of the proof.
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Now let D € D(X). By abuse of notation we use the same symbol D for a
representative of D in U(g)f, and let Dy be as above. Then 11g(D) equals the
canonical image of Dy in U(myq)H12. Let ¢;, u;, v; be as above and such that (E9)
holds. Then for every f € C°°(Xy: 7) and all m € Mj, , we have

Df(m) = /-/Q(D)(f|M{Q+)(m) + Z @i(m)RAd(m)*lu,;qu‘,f(m)

= Ho(D)flasig, )+ D i (m)r() Ro, £ (m)

where we have used that Raq(m)-1u, R, f(m) = Ly, Ry, f(m) = 7(ui) Ry, f(m).
Thus, we obtain the desired expression with uy =Y | ¢; @ 7(u;) ® v;. O

Let U C Mg, be an open subset. It will be convenient to be able to re-
fer to a ‘formal application’ of elements of the space Dig, defined in (X)), to
FP(Agq, C*°(U,V;)), the space of (formal) A, (Q)-exponential polynomial series
with coefficients in C*°(U, V), see the definition preceding Lemma [C9 There is a
natural way to define a formal application that is compatible with the expansions
of Corollary B9 and with the map u +— u,, defined in the text following (Z7). The
motivation for the following somewhat tedious chain of definitions will become clear
in Lemma [A.TT]

The product decomposition Mg ~ Mg, x Agq induces a natural isomorphism
from U(myg) onto U(mge) ® U(agq), by which we shall identify. Accordingly we
have a natural isomorphism

(4.10) DlQ ~ OD1Q X U(aQq),

where °D1g: = Rgo ® End(V;) @ U(mg,). To each element ¢ € Rg we may as-
sociate its A, (Q)-exponential polynomial series of the form (@); this induces a
linear embedding Rg — FP(Agq, C*°(Mge)) which by identity on the other ten-
sor components may be extended to a linear embedding

“Dig — F(AQq: Do)

where Dg,: = C*(Mgy) ® End(V;) ® U(mge). By identity on the second tensor
component in (£I0) this embedding extends to a linear embedding

(4.11) ep: Dig — feP(AQq, DQU) ® U(aQq).

The image ep(u) of an element u € Dig under this embedding will be called
the A,(Q)-exponential polynomial expansion of u. Via the right regular action
of U(mg,) we may naturally identify Dg, with the space of C*°-differential op-
erators acting on C*°(Mq., V;). Accordingly, we have a continuous bilinear pair-
ing Dge x C°(U,V;) — C>(U,V;). This induces a formal application map from
FP(AQqs Dgo) @ FP(Agq, C*(U, V7)) to FP(Agq, C* (U, V;)) in the fashion de-
scribed above Lemma [[LT0l The image of an element of the form v ® f under this
map will be denoted by uf.

On the other hand, in Lemma [[J we described the formal application map
U(agq) ® FP(Agq, C(U,V;)) = FP(Agq, C=(U,V;)). The image of an element
of the form v® f under this map is denoted by v f. Combination of the above formal
application maps leads to the formal application map

[F(Aqq, Poo) @ Ulaqq)] @ F*P(Aqa, CF(U, V7)) — FP(Aqq, C*(U, V7)),
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given by (u®v) ® f — (u®v)f:=u(vf), for u € FP(Aqq, Dgs), v € Ul(agq) and
f e FP(Agq, C*(U,V;)). Composing with the embedding (EITl) we finally obtain
the linear map

D1g ® FP(AQq, C*(U, V7)) = FP(AQq, C*(U, V7))

given by u ® f — uf:= ep(u)f, for u € Dig and f € FP(Agq, C*(U,V;)). We
shall call this map the formal application of D1g to F°P(Agq, C=(U, V;)).

Now let R > 1 and let U C Mg,[R] be an open subset. We use the obvious
natural isomorphism to identify the space C’ep(qu(R_l), C>=(U,V,)) with a sub-
space of C"X’(UAEQ(R_l), V;). If u € D1, then the associated differential operator
uy induces a map from the first space into the latter.

Lemma 4.11. Let u € Dig, let R > 1 and let U C Mg,[R] be an open subset.
Then w, maps the space CeP(qu(R’l),COO(U, V;)) into itself. Moreover, if f
belongs to that space, then the A, (Q)-exponential polynomial expansion of u.f is
obtained from the formal application of u to the exponential polynomial expansion

of f.

Proof. This follows from retracing the definitions of u, and of the formal application
of u given above and applying Corollary[4.9 and Lemmas and [LT0. O

Given v € Nk (aq) we define pug ,: D(X) — D(X1g,0) = D(Mig/Mig NvHv™1)
by

HQv = Ad(’U) o Hy=1Qu>

where Ad(v):D(X;,-10y.e) — D(X10,v) is induced by the restriction to U(my,-10,)
of Ad(v) on U(g). Then ug,, depends on @ only through Mq. It is easily seen
that

(4.12) pQw = pig o Ad(v)
where p1¢): D(X,) = D(G/vHv™ 1) — D(X19.) = D(Mi1g/Mig NvHv 1) is defined
similarly as pg, but with H replaced by vHv ™!, and where Ad(v): D(X) — D(X,)
is induced by Ad(v) on U(g).

Let Mgs+ = Mgs N Mg+ and, for R > 1, MQU,+[R] = MQU[R] N Mg, +.
Lemma 4.12. Let f € C°P?(X;: 7) and let D € D(X). Then Df € CP(X,: 7).

Let Q € P, and let uy € RZS ® End(V;) ® U(mig) be associated with D as in
Proposition [f.10 Then the following holds.

(a) The A,(Q)-exponential expansion of D f along (Q,e) is obtained by the formal
application of ji(D) +uy to the A, (Q)-exponential polynomial expansion of

f along (@, ).
(b) Let v € Nk(aq), then Exp(Q,v|Df) C Exp(Q,v| f) — NA(Q).
(c) If € is a leading exponent of f along (Q,v), then

a**72q¢(Q,v| Df,log a,m) = [nq,.(D)p)(ma),

(4.13)
(m S ]\4(2074_7 a € AQq),

where the function p: My, + — Vi is defined by

p(ma) = a**2q¢(Q,v| f,loga,m),
form e Mgy + and a € Agq.
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fined by f(a,m) = f(ma). It follows from the hypothesis on f and Theorem B.4]
that f(a,m) belongs to C’ep(qu(R_l), C*®(Mgo,+[R], V:)). Moreover, its A, (Q)-
exponential polynomial expansion coincides with the expansion of f along (Q,e).
Put u = g (D) + uq. Then it follows from the previous lemma that w.f be-
longs to Cep(Aaq(R_l),COO(MQU7+[R],VT)); its expansion is obtained from the
formal application of u to the (Q,e)-expansion of f. It follows from Theorem
B4 that the expansion is independent of R and that its coefficients are func-
tions in C*°(Mgqe,+, V-). On the other hand, it follows from Proposition ET0l that
usf(a,m) = Df(ma). This implies that Df has a A,(Q)-exponential polynomial
expansion along (Q, e) with coefficients in C*° (Mg, +, V). Since Df is right H-
invariant, the coefficients are actually functions in C*°(Xg ¢ +,V:). Moreover, the
expansion is independent of R and converges neatly on qu(R’l) as an expansion
with coefficients in C°°(Xq e,+[R], V+). In particular, this holds for every minimal
parabolic subgroup @; hence Df € C°P(X : 7).

In the above we have established assertion (a). It follows from this assertion that
(b) holds with v = 1 for every Q € P,. By Lemma .G it also holds for arbitrary
Q € P, and v € Ng(aq).

It remains to establish (c). Assume first that v = e. Fix & € Expp(Q,e] f).
Then by (a), a®qe(Q,e|Df,loga,m) is the term with exponent ¢ in the series
that arises from the formal application of pg(D) + us to the (Q,e)-expansion
of f. The exponents of the expansion ep(uy) of uy all belong to —[NA,(Q)] \
{0}. The application of u, therefore gives rise to an expansion with exponents in
Exp(@Q,e| f)— [NA,(Q)]\ {0}. The latter set does not contain &, since ¢ is leading.
Hence a%q¢(Q,e| Df,loga,m) is the term with exponent ¢ in the expansion that
arises from the formal application of ug (D) to the (Q,e)-expansion of f. Now
pg(D) € U(mig) ~ U(mgs) ® Ulagq) and we see that the formal application
of yin(D) to the (@, e) expansion of f is induced by term by term differentiation
in the Agq and the Mg, variables. This implies that aq¢(Q,e| Df,loga, m) =
[ (D)g'](ma), where ¢’ (ma) = a*qe(Q, e| f,loga,m). This implies [EI3) for v =
e.

Proof. Let R > 1 and let f be the function qu(R’l) — C®(Mgs,+[R], V) de-

Now let v € Ni(aq) be arbitrary, and put f* = R, f. We shall apply the version
of (413) just established to the expansion along (Q,e) of the function f¥ on X,.
Let £ be a leading exponent of f along (Q,v), then it follows from Lemma [3.7] that
¢ is also a leading exponent of fv along (Q,e). Moreover, let D € D(X), then
(Df)Y = D?f¥ where DV:= Ad(v)D € D(X,). Hence

(4.14) a*72qe(Q, e | (Df)",loga,m) = [ug)(D*)¢](ma),

for m € Mgo,+, a € Agq, where ¢(ma) = a*+tP2qe(Q, e| f¥,loga, m). It follows
from Lemma 37 that p(ma) = a*7P2q¢(Q,v| f,loga,m), and ¢¢(Q,e|(Df)?) =
qe(Q,v | Df). Now [I3) follows from @I4) and (£I2). O

Lemma 4.13. Let P € P™ and assume that f € C°P(Xy : 7). Let S C af. be a
finite set as in LemmalZ2, and let D € D(X). Then Exp(P,v|Df) C S —NA for
every v € Nk (aq) and, with notation as in Lemma 23,

(4.15) (Df)s = D(fs)-
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Proof. It follows immediately from Lemma [ZT2(b) that Exp(P,v|Df) C S — NA
and that Exp(P,v|D(fs)) C s — NA for s € S. Now (ZIH) follows from Lemma
22 O

5. SPHERICAL EIGENFUNCTIONS

In this section we assume that (7, V) is a finite dimensional continuous represen-
tation of K. Let I be a cofinite ideal of the algebra D(X). Then by C*° (X4 : 7: I) we
denote the space of f € C°(X, : 7) satisfying the system of differential equations

Df=0, (Del).

We shall see in the lemma below that these functions belong to C°?(X4 : 7). The
section is devoted to a study of the exponents and coefficients of the corresponding
exponential polynomial series.

Remark 5.1. Many results of [3] that are formulated for D(X)-finite 7-spherical
functions on X are actually valid for the bigger class of D(X)-finite functions in
C> (X4 : 7) as well, since their proofs only involve behavior of functions and oper-
ators on X . If such extended results are used in the text, we may give a reference
to the present remark.

Remark 5.2. Let v € Nk (aq). We recall from the text preceding Lemma B7 that
right translation by v induces a topological linear isomorphism R, from C*° (X : 7)
onto the space C*°(X, +: 7). It maps the subspace of ID(X)-finite functions onto
the subspace of (X, )-finite functions. Thus, if f € C*(Xy : 7) is a D(X)-finite
function, then the theory of [3] may be applied to the D(X,)-finite function R, f;
the results are then easily reformulated in terms of the function f.

Lemma 5.3. Let I C D(X) be a cofinite ideal. Then C°(Xy:7: 1) C CP(X4: 7).
In particular, the elements of C*° (X4 : 7: I) are real analytic functions on X;.
Moreover, there exists a finite set X; C a7, such that Expy(P,v|f) C Xi, for all
feC®Xyi:7:1), PeP™ gnd v € Nk(ay).

Proof. Let Q € P™in. Applying Theorem 2.5 of [3] (see Remark (.I) we obtain that
I |A(J]1r (Q) is given by a neatly converging A(Q)-exponential polynomial expansion
for each f € C°°(X4: 7: I). Moreover, by Theorem 2.4 of [3], there exists a finite

set X1, C ag., such that ExpL(f|A(J{(Q)) C X1,0,e- Let w € W. Applying the

above argument to Ry, f (cf. Remark[5.2) we see, more generally, that Téw f is given
by the same type of expansion with leading exponents in a finite set X7 ¢ C age
independent of f. This implies that f € C°P(X4 : 7), with Expy (P,v|f) C X1:=
UQ_w X1.Quw, for all P € P™™ and v € W. Finally, if v € Nk(aq) is arbitrary,
there exists w € W, m € Knv and h € Ngnp(aq) such that v = mwh, and then
Exp,(P,v| f) = Exp(P,w]| f) C X;. O

Corollary 5.4. Let P € P™" gnd let W C Nk (aq) be a complete set of represen-
tatives of W/Wgnm. Let I be a cofinite ideal in D(X). Then there exists a finite set
S = St satisfying the properties of Lemmal2.2 for every f € C(X,: 7: I). More-
over, if St is any such set, then fs € C°(X4: 7: 1) for every f € C°(Xy:7:1)
and all s € Sy.

Proof. This is an immediate consequence of Lemmas [(.3] and BT3. O
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The set X7 in Lemma can be described more explicitly if the ideal I has
codimension 1. Let b be a maximal abelian subspace of q containing aq, let £(b)
be the restricted root system of b in g., and let W (b) be the associated reflection
group.

Let v be the Harish-Chandra isomorphism from D(X) onto the algebra I(b) of
W (b)-invariants in S(b); see [B], Sect. 2. To an element v € b} we associate the
character D — (D : v) of D(X) and denote its kernel by I,,. Then I, is an ideal of
codimension one in D(X); in fact, any codimension one ideal is of this form.

Let Wy(b) be the normalizer of aq in W (b). Then restriction to a4 induces an
epimorphism from Wy(b) onto W; cf. [B], Lemma 4.6. We put by: = b N ¢ Then
b = bk ® aq. Moreover, this decomposition is invariant under Wy(b).

Lemma 5.5. There exists a finite subset L = L, of by with the following property.
Let v € b} and f € C®°(Xy:71:1,). Let P € P™» v € Nk(aq) and assume that
& € Expr,(P,v| f). Then

veW(b)(L+E+pp).
The proof is based on the following result, which will be proved first.

Lemma 5.6. There exists a finite subset L = L, of by, with the following property.
Let v € b} and p € C°(M;/Hw, : T), and assume that

pp(D)p =~(D:v)p
for all D € D(X), where pup:D(X) — D(M;/Hyy, ) is as defined above Proposition
[[10, with P € P™™. Then @|a, is a linear combination of exponential polynomials

of the form a — p(loga)a™, where p € P(aq) and where w € W(b) satisfies
wvlp, € L.

Proof. The algebra D(M/Hy) acts semisimply on C*°(M/Hy; : 7) (see [5], Lemma
4.8); let £ be the (finite) set of A € by such that the associated character of
D(M/Hy) occurs. We may assume that ¢ is a joint eigenfunction for ID(M/Hy),
with eigenvalue character given by A € L. It follows that

(Dp)lag = (D A+ -)(pla,)

for D € D(M7/Hwm,) ~ D(M/Hwum) ® S(aq). Here v, denotes the Harish-Chandra
isomorphism from ID(M;/Hy,) into S(b), defined as in [9], above (2.11), and
i, (D: A+ ) € S(ag) is considered as a differential operator on Aq. Combin-
ing this identity with the assumption on ¢, the identity v, opup = 7, and the
surjectivity of v:D(X) — S(b)V () it follows that

w(A+ ) (pla,) = u)pla,

for all u € S(6)W(®). Let ¢ € C*(b) be defined by p(X + V) = A X p(expY) for
X € by, Y € ag, then up = u(v)@. This implies that ¢ is a linear combination
of exponential polynomials of the form pe®”, where p € P(b) and w € W (b); see
[27], Thm. I11.3.13. However, from the definition of ¢ it is readily seen that w only
contributes if wr|y, = A. O

Proof of Lemmal3.ll We define the my-spherical function ¢: My /M; N vHv ™ ~
M/M NvHv™! x Ay — V; by

p(ma) = a’" e qe(P,v| f)(loga,m).
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Then it follows from the equation Df = «(D: v)f and Lemma (c) applied to
D — ~(D: v) in place of D, that

ppw(D)p =(D: v)p.

Since ¢ is T-spherical and nonzero, its restriction to A, does not vanish.

First let v = e, and let £ be as in Lemma [B.06. It then follows immediately from
that lemma that there exists w € W(b) such that wvl|e, € £ and wv|q, =&+ pp.

For general v € N (aq) we also obtain the result from Lemma [5.6] by applying
it to the function ¢¥:= p, ,—1¢. Indeed, it follows from the definition of pp, that
v satisfies the assumption of the lemma. Hence there exists w € W (b) such that
wrlp, € £ and wy|o, = v~ (€ + pp). Let v € Wy(b) be such that 'Y = vY for all
Y € aq, then v € (v'w) (V'L + & + pp). O

We will also need a result on leading coefficients along non-minimal parabolic
subgroups.

Lemma 5.7. Let f € C®P(Xy:7) be a D(X)-finite function. Let Q € Py, v €
Ng(aq) and assume that & € Expp,(Q,v| f). Then the function ¢:X19.v,+ — Vi
defined by

w(ma) = angqug(Q, v| f,loga,m) (m € Xg v+, a € AQq)s
is D(X1g,v)-finite.

Proof. Let I be the annihilator of f in the algebra D(X). Then it follows from
Lemma[1T7] (c) that pug,.(D)e = 0 for all D € I. The algebra D(X;q ,) is a finite
module over the image of the homorphism g, (see [5], p. 342), and apply conju-
gation by v. Hence pg.(I) generates a cofinite ideal in (X ). This establishes
the result. |

We end this section with a result that limits the asymptotic exponents occurring
in discrete series representations to a countable set. Later we will apply this result
to exclude the possibility of a ‘continuum of discrete series’ (see the last line of
proof of Lemma 0.13).

To formulate the result we need to define asymptotic exponents for a K-finite
rather than a 7-spherical function. We denote by K the collection of equivalence
classes of irreducible continuous representations of K. If ¢ C K is a finite subset,
then by C*°(X4)y we denote the space of smooth K-finite functions in C*°(X}.)
all of whose K-types belong to 9. By Vy:= C(K)y we denote the space of left K-
finite continuous functions on K all of whose left K-types belong to ¢. Moreover,
by 79 we denote the restriction of the right regular representation to Vy. If f €
C>*(X4 )y, then the function ¢y9(f): X — Vy, defined by ¢y(f)(z)(k) = f(kz) for
x € X4,k € K belongs to C®°(X4: 79). The map ¢: = ¢y is a topological linear
isomorphism from C*° (X} )y onto C° (X4 : 7y), intertwining the D(X)-actions on
these spaces. Moreover, ¢ maps the closed subspace C*°(X)y of globally defined
smooth functions onto the similar subspace C*°(X: 7). We denote by CP (X, )y
the preimage of C°P(X : 7y) under <. It follows from Lemma B3 that D(X)-finite
funcitons in C*°(X; )y belong to C°P(Xy)y. Let f € C°P(Xy)y; then for P € P,
and v € Ni(aq) we define the set of exponents of f along (P, v) by

Exp(P,v| f): = Exp(P, v[<(f))-
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Note that this collection is the union for k € K and m € Xp, 1 of the collections
of exponents occurring in the A(P)-exponential polynomial expansions of a —
f(kamv).

Let C(X) denote the space of Schwartz functions on X (see [9], Section 6) and
let A3 (X) g denote the space of K-finite and ID(X)-finite functions f € C(X). These
functions are real analytic and belong to L?(X); cf. [3], Thm. 7.3.

Lemma 5.8. Assume that the center of G is compact. Then
{€ € Exp(Pv|f) | P € PP v e Ng(ag), f € As(X)x}

. *
is a countable subset of ag..

Proof. Let )A(d denote the set of equivalence classes of discrete series representations
of the symmetric space X. This set is countable, since L?(X) is a separable Hilbert
space. Given w € X4 we denote by L2(X),, the collection of functions f € L2(X)
whose closed G-span in L?(X) is equivalent to a finite direct sum of copies of w. Let
K denote the countable set of equivalence classes of irreducible representations of K.
Givenw € Xq and § € K, we denote by L2 (X)w,s the collection of K-finite elements
of type § in L?(X),. It follows from [3], Thm. 7.3, that L?(X),, s is a subspace of
A2(X) i, and from [2], Lemma 3.9, that this subspace is finite dimensional. On the
other hand, let f € A2(X)x, and let V C L?(X) denote the closed G-span of f. It
follows from [2], Lemma 3.9, that V' is admissible. Since V is finitely generated, it
must then be a finite direct sum of irreducible representations. This implies that f
belongs to a finite direct sum of spaces L?(X), 5. From the above we conclude that
A2 (X) i equals the following countable algebraic direct sum

(5.1) AX)r= P L2(X)y.s-

UJE)A(d, (562{'\

Letw € id and § € K. Then it follows from Lemmal5.3and the finite dimensionality
of L?(X),,s that there exists a countable subset &, 5 C a. such that

Exp(P,v| f) C &uys

for all f € L?(X)w,5, P € PM™" v € Ni(aq). Combining this observation with (51)),
we obtain the desired result. O

6. SEPARATION OF EXPONENTS

Let @ € P,. In the next section we shall consider functions fy € C°P(Xy : 7),
with parameter A € ag,., whose exponents along P € PRIn Jie in sets of the
form WA + S — NA(P), where S C a. is a finite set. In general, given { €
WA+S—NA(P), the elements s € W/Wg and n € S—NA(P), such that £ = sA+7,
are not unique. In the present section we define a condition on A that allows this
unique determination for all £. In particular, the condition is valid for generic
A € aq.- We consider also the case where P is non-minimal.

Let P,Q € P,. We define the equivalence relation ~p|g on W by

(61) S ~p|Q t < Ve aaq: S)\|apq = t)\|apq.

The associated quotient is denoted by W/ ~po . We note that the classes in
W/ ~p|q are left Wp- and right Wg-invariant. Thus, W/~ p|q may also be viewed
as a quotient of Wp\W/W.
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If s,t € W, then one readily sees that s ~pjg t <= 571 ~Q|P t~!. Hence
the anti-automorphism s +— s~ of W factors to a bijection from W/ ~ P|Q onto
W/ ~q|p, which we denote by o — oL

If s € W and A € a),, then the restriction 5A|ap, depends on s through its class

[s] in W/~p|q . We therefore agree to write
(8] M apq: = SA|apqg-

Definition 6.1. For S C af. a finite subset, we define agy, (P, S) to be the subset
of ag),. consisting of elements A such that, for all s1,s2 € W,

(51X = 52N |apq €[S+ (=9)]lapq +ZA(P) = 51 ~p|q S2-
Lemma 6.2. Let S C ag. be finite. Then, for A € ag),.,

Wlapg + (S =NAP)ap, = [ (0Map, + (5 = NAPL))ap,) -
UEW/NP‘Q

Moreover, the union is disjoint if and only if A € agy, (P, S).
Proof. Straightforward. O

Lemma 6.3. Let Q,P € Py, and let S be a finite subset of a.. Then agy, (P, 5)
equals the complement of the union of a locally finite collection of proper affine
subspaces in g

Proof. Let p:ag. — apqe denote the map induced by restriction to apq. Let II be
the complement of the diagonal in the set W/ ~pjg xW/ ~p|q . Then for every
o = (01,02) € land every n € ajp . we write A, = {\ € a5 | p(01A—02A) = n}.
Note that A, is a proper affine subspace of ag),.. If A € A, then A, equals
A+ Ag 0; hence the set A, , is either empty or a proper affine subspace.

Let A be the collection of subsets of the form A, ¢, for o € II and § € p(S +
(=5)) +ZA;(P). Then agy, (P, S) equals the complement of (J A in af).. Thus, it
remains to show that the collection A is locally finite.

Let C be a compact subset of af,,. and let X be the collection of § € p(S +
(=S)) + ZA,(P) such that C N A, ¢ # 0 for some o € II. Then it suffices to show
that X is finite.

Let C' C ap,. be the image of Il x C under the map (0, \) — p(a1A — o2).
Then X equals the intersection of C’ with p(S + (—=S5)) + ZA,(P). The latter set is
discrete since S is finite, whereas the elements of A, (P) are linearly independent.
It follows that X is finite. O

Remark 6.4. In particular, it follows from the above lemma that a*QoqC(P, S) is a
full open subset of ag,..; see Section [[Rl for the notion of full.

Lemma 6.5. Let Q,P € P,. If either agq or apq has codimension at most 1 in
aq, then the natural projection Wp\W/Wq — W/~pq is a bijection.

Proof. Tt suffices to prove injectivity of the map. Since s — s~! induces a bijection
from W/ ~pjq onto W/ ~qp, it suffices to prove this when apq has codimension
at most 1. We assume the latter holds.

For s € W, let [s] denote its canonical image in W/~p|q . Assume that s,t € W
and that [s] = [t]. Then for every A € ag,, we have s\ =tA on apq. If apq = aq, this
implies that s = ¢ on ag,,, hence sWq = tWgq, and since Wp is trivial in this case,
the proof is finished. Thus, we may as well assume that apq has codimension 1. Then
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there exists a root a € ¥ such that apq = ker .. Note that Wp = {1, s, }. For every
A € ag, the Weyl group images sA and ¢A have equal length in af and equal image
under the orthogonal projection to a*. Hence there exists a constant 7 € {0,1}
such that (sA, a) = (=1)"(tA, a) for all A € a,,. It follows that sA = s7tA for all
A € a5 hence sWq = sltWq, from which it follows in turn that s and ¢ have the
same image in Wp\W/Wg,. O

In particular, if P is minimal, then the natural map W/Wq — W/ ~p|q is a
bijection; we shall use it to identify the sets involved.

7. ANALYTIC FAMILIES OF SPHERICAL FUNCTIONS

In this section we assume that (7, V;) is a finite dimensional continuous repre-
sentation of K. Let @ € P, and let Y be a finite subset of *ag),.; see (£.3).

In the following definition we introduce a space of analytic families fy of 7-
spherical functions that will play a crucial role in the rest of this paper. The phrase
‘analytic’ refers to the fact that f) will depend holomorphically on the parameter A
(see Lemma [T4]). It will be required of fy that it allows an exponential polynomial
expansion along Aér for each A, and that the coefficients in this expansion depend
holomorphically on A. The main results of the section are Proposition [[.6, which
describes the action of D(X) on fy, and Theorems [[.THI8, which extend the ex-
pansion of fy to hold also along the walls (cf. Section ), with similar dependence
on A as in the definition.

Definition 7.1. Let Q,Y be as above and let Q C a5 be an open subset. We
define

(7.1) CoyX4:7:Q)
to be the space of C*>°-functions f: Q2 x X — V. satisfying the following conditions.
(a) For every A € Q the function fy:z — f(A, z) belongs to C° (X4 : 7).
(b) There exists a constant k € N, and, for every P € P™ and v € Ng(ay),
a collection of functions g ¢(P,v|f) € Pi(ag) @ O, C*®(Xg,: Tm)), for
s € W/Wq and § € —sWgY + NA(P), with the following property. For all
AeQ, me X, and a € Af(P),

(7.2)  fa(mav) = Z a* e Z a"%qs ¢(P,v] f,loga)(\,m),
SEW/Wq Ee—sWQY+NA(P)
where the A(P)-exponential polynomial series with coefficients in V; is neatly
convergent (Definition[I.2) on Af(P).
(c) For every P € PMn v € Nk(a,) and s € W/Wq, the series
Z a_EqS,E(P7U | fa IOga)
ge—sWqo Y +NA(P)
converges neatly on Aar (P) as a A(P)-exponential polynomial series with
coefficients in O(2, C*°(Xo, : ™M))-
Iffe CE;TY(XJr : 7: Q), we define the asymptotic degree of f, denoted deg, f, to be
the smallest number k € N for which the above condition (b) is fulfilled.

Remark 7.2. We note that the space ([.T)) depends on @ through its o-split compo-
nent Agq. Moreover, from Lemma B.6]we see that in the above definition it suffices
to require (b) and (c) for a fixed given P € P and for each v in a given set
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W C Ng(aq) of representatives for W/Wignp. Alternatively, by the same lemma it
suffices to require (b) and (c) for a fixed given v € Nk (a,) and arbitrary P € Pmin,

Lemma 7.3. Let f € C3y (X4 : 7: Q). Then fy € CP(Xy: 1) (Definition [21)
and

(7.3) Exp(P,v| fr) € W(A+Y) — pp — NA(P)

for all X € Q, P € PP, and v € N (aq). Moreover, let Q':= QN afy, (P,WY)
(see Definition[6.1]). Then Q' is open dense in Q and

(74) QS,E(P7v|faXa)‘):(Is)\fppff(Pav|f)\aX)

for every s € W/Wq, £ € —sWoY +NA(P), X € aq and A € . In particular, the
functions qs ¢ (P,v| f) are uniquely determined.

Proof. The first statement and (Z.3) follow immediately from condition (b) in the
above definition. The set Q' is open dense in by Lemma[6.3], and it follows from
Lemmas [6.2] and Bl that if A € €', then the sets s(A + WgY) — pp — NA(P), s €
W/Wgq, are mutually disjoint. Then (7.4]) holds by uniqueness of asymptotics. O

The following result shows that an element of C¢)’y (X4 : 7: Q) may be viewed
as an analytic family of spherical functions.

Lemma 7.4. Let f € C3'y(X4: 7: Q). Then X fx is a holomorphic function
on Q with values in C°(Xy: 7).

Proof. Let W C Nk (aq) be a complete set of representatives for W/Wxng. Note
that for v € W the VTKMW’H“_l—Valued function TIlD’UfA on AF(P) is given by
the series on the right-hand side of (Z2) with m = e. It follows from condition
(c) of Definition [Tl that a +— Tlﬁwf)\(a) defines a smooth function on A (P)

with values in O(Q) ® VTKM”“HVI. According to Appendix A, the function A\ —
T}D,Uf)\( +) is a holomorphic function on Q with values in C*° (A} (P), VTKMW’HV1 ).
Hence \ — T},’W( fx) is a holomorphic function on Q with values in C*(Af(P),

Do VTKvaHv_l). The conclusion of the lemma now follows by application of

the isomorphism (29). O

If ', Q are open subsets of a’. with Q' C €, then restriction from Q x X, to
Q' x X, obviously induces a linear map

(7.5) P Coy(Xy:7:Q) = Coy(Xy:7: Q).
Accordingly, the assignment
(7.6) Q= Oy (X4 7: Q)

defines a presheaf of complex linear spaces on ag,,.. Here we agree that (7.6) assigns
the trivial space to the empty set.
The following lemma will be useful at a later stage.

Lemma 7.5. Let Q € P, and Y C *ag, . a finite subset.

(a) If @', Q are open subsets of af,. with Q' # 0, Q connected and Q' C Q, then
the restriction map (LH) is injective. Moreover, deg, (p$, f) = deg, (f) for all
felyyXy:7: Q).

(b) The presheaf [ZH) is a sheaf.
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Proof. The injectivity of the restriction map follows by analytic continuation, in
view of Lemma [[4 Let f' = p&, f. Let P € PR v € Ng(ay), s € W/Wg and
& € —sWoA+ NA(P). Then it follows from ([(4) that

(77) qS,E(P7U|f/7'7)‘):qs,§(P7U|fa'7)‘)

for A\ in a dense open subset of €', hence for all A € €. In particular, this implies
that the polynomial degree of the function on the left-hand side of the equation is
bounded by deg,(f); hence deg, (f") < deg,(f). To prove the converse inequality,
we note that the polynomial on the left-hand side of (Z.7) is of degree at most
k':= deg,(f’) by the definition of the latter number. Since Q is connected, it
follows by analytic continuation that deggs.¢(P,v| f, -, A) < k' for all A € Q. Since
this holds for all P,v,0,¢&, it follows that deg,(f) < k' and we obtain (a).
Assertion (b) is equivalent with the assertion that the presheaf satisfies the lo-
calization property (see [1]], p. 9). This is established in a straightforward manner,
by using (a). O

We shall now discuss the action of invariant differential operators on families.
If fis a family in C3y (X4 : 7: Q), and D € D(X), then we define the family
Df:Qx Xy —V; by

(7.8) (DfIx=D(fr),  (Ae)

Proposition 7.6. Let f € Oy (X4 : 7: Q). Then, for every D € D(X), the family
Df belongs to C)y (X 7: Q); moreover, deg,(Df) < deg,(f).

Proof. Let D € D(X). Then g = Df is a smooth function Q x X; — V,; moreover,
for A € Q the function gy = Df) is T-spherical. Thus, g satisfies condition (a) of
Definition [[.J] and it remains to establish properties (b) and (c). In view of Remark
it suffices to do this for v = e and arbitrary P € P, Let k: = deg, f-

It follows from condition (b) of Definition [Z.] that, for A € Q, the function fy
belongs to C°P (X : 7); moreover, its (P, e)-expansion is given by

(7.9)  fa(ma) = Z a* e Z a"Cqs¢(P,e| f,loga)(\, m),

SEW/WQ EE*SWQY‘FNA(P)

for a € A(‘{ (P) and m € M. Let u: = p/p(D) + u4 be the element of D1 p associated
with D as in Proposition 10 with P in place of @. In view of Corollary 9] its
expansion ep(u), defined as in (@11, is the sum, as ¢ ranges over a finite index set
I, of series of the form

ep(u); = Z a" iy ®Sip @ Uiy ® Vi
vENA(P)

Here ¢;, € C>®(M,), Si, € End(V;), v, € U(m,) and v;, € Ulag), and
deg(ui,n) + deg(vin) < d:= deg(D) for all 4,v. By Lemma ET2, the function gy
belongs to C°P(X,: 7), for A € Q, and its (P, e) expansion results from (Z9) by
the formal application of the element ep(u). This gives, for A € Q, m € M and
a € Aér (P), the neatly converging exponential polynomial expansion

gr(ma) = Z a* e Z a” "4 n(log a) (A, m),

SEW/WQ T]E*SWQY‘FNA(P)
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where ¢, is given by the following finite sum
Gs,n(X)(A,m)
= Z Z Soi,u(m)si,v[QS,E(P;e|f;X;Ts)\—pp—E('Ui,u)aAvm;ui,v) ]7

€ renainy
viE=n

for A € Q, X € aq and m € M. Here we have used Harish-Chandra’s convention to
indicate by a semicolon on the left or right-hand side of a Lie group variable the
differentiation on the corresponding side, with respect to that variable, by elements
of the appropriate universal enveloping algebra. Moreover, given v € ag. we have
denoted by T, the automorphism of U(a,) determined by T, (X) = X + v(X) for
X €aq.

From the above formula it readily follows that g, ,(X,\) is a smooth function
of (X, \) with values in C*° (M, V;); moreover, it is polynomial in X of degree at
most k and holomorphic in A € Q. This establishes condition (b) of Definition [71]
with v = e, arbitrary P € P™2 and with

Is,n(Pielg) = Gsn, (s € W/Wq, n€ —sWqY + NA(P)).
For condition (c) we note that the series
(7.10) Z a~"qs ,(P,e|g,loga)
ne—sWqY+NA(P)
arises from the series
(7.11) Z a"*qs¢(P,e| f,loga)
ge—sWoY +NA(P)

by the formal application of ep(u) conjugated with multiplication by a~***#7 . From
this we see that (7.I0) arises from (Z.I11I)) by the formal application of the series

Z a7V Z Sai,u ® Si,u ® ui,u ® Ui,l/(A)v
veENA(P) el

with v; , (A) = Tsx—pp (vi,n). We now observe that X\ — Tsx—pp|U,(agq) 18 @ polyno-
mial End(Ug(agq))-valued function of degree at most d. Hence there exists a finite
set J and elements p; € Py(ap,,) and T; € End(U4(agq)), for j € J, such that

TS)\*PP |Ud(aQq) = ij ()‘)TJ
jeJ

Let B;,,; be the continuous endomorphism of O(Q2, C*°(M,, V;)) defined by
Bi b, j(A)(m) = pj(N) @i (m)Sin [ (A) (ms s, )]

Then the series (CIT) arises from the formal application of the series

Z a’ Z By @Tj(vi)
)

iel
veNA(P il

with coefficients in End(O(Q, C*®(M,,V;))) @ U(agq) to (C11]), viewed as a series
with coefficients in O(Q, C*°(M,, V;)). It follows from Lemmas [1.9 and [.I0 that
the resulting series is neatly convergent as a series on Ag‘(P) with coefficients in
O(Q, C>=(M,,V;)). This establishes (c) with v = e and arbitrary P € Pmin, O
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We will now describe the asymptotic behavior along walls for a family. If P,Q €
P, and 0 € W/ ~pjq (see (61)), then for every subset Y C a. we put

(7.12) 0-Y:i={sn|ap, | s€W,[s] =0, n €Y}

Theorem 7.7 (Behavior along the walls). Let Q € P,, Q C a5 a nonempty
open subset and Y C *ag,. a finite subset. Let f € C3y(Xy:7:Q) and let

k = deg,(f).
Let P € Py andv € Nk(aq). Then Exp(P,v| fx) C W(A+Y)|ap, —pp—NA,(P)
for every A € Q. Moreover, there exist unique functions

Goc(Pv] f) € P(apq) @ O(Q,C*(Xpy 4 : TP)),
foro € W/ ~pjq and § € —o - Y 4+ NA.(P), with the following property. For all
AeQ, meXp,y anda € A;q(RP,U(m)_l),

(7.13)  fa(mav) = Z a®=rr Z a=¢ goc(P,v ] f,loga)(A, m),

oc€EW/~plo £€—o-Y+NA,(P)

where the A, (P)-exponential polynomial series with coefficients in V; is neatly con-
vergent on AJISq(Rp,v(m)_l). In particular, if X € 't = QN ag, (P,WY), then

(7'14) qu(Pv'U | f)(Xa /\) = qd)\lapq*ppff(va | fz\vX)a
for X € apq.

Finally, for each o € W/~p|q and every R > 1, the series
(7.15) Z a *qse(Pv| f,loga)

¢€—0-Y+NA,.(P)

converges neatly on A;q(R_l) as a A(P)-exponential polynomial series with coef-
ficients in O(Q, C>®(Xp., +[R]: TP)).

Proof. Let P € P, and let v € Nk(aq). Fix a minimal parabolic subgroup P, €
Pmin’contained in P. Fix a set Wp,, C Nk, (aq) of representatives for Wp/Wp N
vWinmv~!. Then the natural map Ng(aq) — W induces an embedding Wp, ,v —
W/Wgnm. Therefore, we may fix a set W C N (aq) of representatives for W/ Wgng
containing Wp ,v.

Fix A €  for the moment. Then by Lemma [7.3], the function f) belongs to
C°?(X4 : 7), and Exp(Pr,w|fy) € WA+Y) — pp, — NA(P,), for every w €
Nk (aq). According to Theorem B3, for every u € Wp,, the set Exp(P,v| fo)p, u
is contained in Exp(Pi,uv| fx)|ap,. Hence, by (:2I) with P and P in place of Q
and P, respectively, we infer that

Exp(P,v|fx) C [WA+Y)—pp —NA(P)]ap,
(7.16) = WA+Y)|ap, — pp — NAL(P).

Notice that (TI4) is a consequence of (ZI3)), by Lemma Therefore the
functions ¢, ¢(P,v| f) are unique. We will now establish their existence.

It follows form (7I6]) that the elements of Exp(P,v| fy) are all of the form
M apy — PP —&, with 0 € W/ ~p|g and £ € —0-Y +NA,(P). Fix such elements o
and . Then by transitivity of asymptotics (cf. Theorem[3H) we have, for u € Wp ,,
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X €e€apy,me M and b e *A;q(*Pl), that
QU)\\qu—pp—E(va | f)\va mbu)
(7.17) = > boqc(Pryuv | fr, X +logh, m),

CEBxp(Py,uv | fy)

C\upqza/\\upq_PP_é

where the Ap(P;)-exponential polynomial series in the variable b converges neatly
on *A;q(*Pl). It follows from condition (b) in Definition [ that, for ¢ €

Exp(Pr,wv | f3),
QC(Plauv|f)\aX +1Ogb7m)

(7]_8) = Z QS,;L(PMU"U|f7X+1Ogb)(/\7m)'
SEW/Wq
/A,E—SWQY-l—NA(Pl)
sk—ppl —p=C

Now assume that \ is contained in the full (cf. Lemma [6.3] and Section [I8]) subset
O of Q. Then, if s € W and p € —sWqY + NA(Py) satisfy [sA — pp, — pi]ap, =
0Map, — pp — &, it follows that [s] = o and pfa,, = & see Lemma Hence,
combining (ZI7) and (ZI8) we infer that for A € ', u € Wp,, X € apq, m € M
and b € *A;q(*Pl),

qa)\|apq*PP*€(Pav | fx, X, mbu)

(7.19) = Z p¥A—PP Z bi“q(s,u (Ph uv | f, X +logb, )‘) (m)
SEW/W(q HE—sWqQY+NA(Py)
[s]=c Hlapq=¢

It will be seen below that each inner sum in ([(_I9) converges neatly, so that the
separation of terms by the outer sum is justified. This formula will guide us towards
the definition of the functions g,¢(P,v| f).

In the following we assume that s € W/Wg and [s] = 0. For w € W we define

the function Fj - A(J{(Pl) % O — VTKMﬁwHw—l by

Fs,w(aa /\) = Z a_HQS,u (Plv w | f,loga, )‘) (6)7
pne—sWqoY+NA(Py)

for a € AT(Py), A € Q.

The representation 7: = 1®7 of K on the complete locally convex space O(Q)QV;
is smooth. We shall apply the results of Section [3] with 7 in place of 7. The series
defining Fj ,, is a A(P;)-exponential polynomial series with coefficients in O(Q)®V.
By condition (c) of Definition it converges neatly on A('{(Pl); hence F,, may
be viewed as an element of C°P(A}(Py),[0O(Q) ® V[ KunwHe™ ) I view of the
isomorphism (2.I0), there exists a unique function Fy € C°°(X,: 7) such that
T},hw(Fs)(a) = Fi(aw) = Fs (a), for w € W and a € A (P1). From the definition
of F it follows that Exp(Py,w | F5) C sWoY —NA(P,), for every w € W. Moreover,
for every w € W and every p € —sWqY + NA(P),

(720) q—H(Pl,'LU | ES;Xa m)()‘) = qS,;L(Plaw | va)()‘am)a

for X € apq, m € Xg. and A € €. By transitivity of asymptotics (cf. Theorem
B.H) applied to Fy, we have that Exp(P,v | Fy)p, w C 0-Y —NA,.(P), for u € Wp,,.
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Moreover, by the same result it follows that, for £ € —o - Y + NA,.(P),
(7.21) q_¢(P,v | Fo) (X, mbu) = > b~"q_,(Pr,uv | Fs, X + logb,m),

HE—sWQ Y +NA(Py)
rlapq=¢
where the series on the right-hand side converges neatly as a Ap(P;)-exponential
polynomial series in the variable b € *A;q(*Pl), with coefficients in C'*°(Xg yy : Tn)-
In particular, the asserted convergence of ([Z.19) follows.
Substituting ([:20)) in the right-hand side of ([.19)) and using (7.21)) we find, for
A€ Y, that

qa)\|apq*PP*€(Pa v | f, X, mbu)
(729) ST g (P F)(Xmbu)().

SEW/Wg
[s]=o
We are now ready to define the functions go¢(P, v | f).
Let 1 denote the trivial representation of K in C, and 1p its restriction to Kp.
If s € W/Wq, we define the function ¢; € O(ag)c, C°(Xpo,+: 1p)) by

(7.23) 0s(\, kbu) = b Pr1

for A € afy o, u € Wpy, k € Kpand b € *A;q(*Pl). Moreover, for o € W/ ~p|qg and
¢ € —0-Y+NA,(P) we define the function g, ¢ (P, v | f): apgxQ — C°Xpy+: TP)
by

(7.24) Goc(Pol X Nm) = Y oi(\m)g_e(Pv| Fy, X,m)(N),

SEW/Wq
[s]=0

for X € apg, A€ Qand m € Xp,y 4.

If 1 < R < o0, then the locally convex space C*°(Xp, +[R], O(2) ® V;) is natu-
rally isomorphic with O(Q, C*(Xp, 1 [R], V;)); see Appendix A. The isomorphism
induces in turn a natural isomorphism of locally convex spaces

(7.25) O (Xpyi[R]: 7p)) ~ O(Q, O (Xp o [R]: 7p)).

In particular, for R = oo, we obtain that C>°(Xp, 4+ : 7p) is naturally isomorphic
with O(Q2,C®°(Xpy +: 7p)). Thus, from (T.24) we deduce that g, ¢(P,v | f) is an
element of Py(apq) @ O(Q,C®°(Xpy+: TP)).

Combining (7.22)), (T23) and (.24) we infer that (7.14)) holds for X € apq,
A € Q. On the other hand, if A € €, then it follows from 3:I0) with P and f) in
place of @ and f, that, for R > 1, m € Xp, +[R] and a € A;Q(R_l),

(7.26)
fa(mav) = Z a® PP Z afg%/\hpq—pp—E(Pav | fx,loga)(m),

oceW/~piq £€—o-Y+NA,(P)

where the series converges neatly on A;Q(R_l), as a A, (P)-exponential polynomial
series with coefficients in V; (use (((.I6) and Lemma B.2). Substituting (7.I4) in
(C26) we obtain the identity (TI3) for A € ', m € Xp, 4 [R] and a € AL (R™),
with the convergence as asserted.

Thus, it remains to show that the identity (ZI3) extends to all A € © and that
the final assertion of the theorem holds. We will first establish the final assertion.
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It follows from Theorem [B:5] that the series

(7.27) Z a_gq_g(P,v | Fs,loga)
€€—sWQY |ap +NA(P)

converges neatly on A;Q(R’l) as a A, (P)-exponential polynomial series with co-
efficients in the space (T.25)). The series (7.I5) arises as the sum over s € W/Wq
with [s] = o of the series in (Z21) multiplied by ¢s. Since multiplication by s
induces a continuous linear endomorphism of the space ([Z2H), this establishes the
final assertion of the theorem.

From the final assertion it follows that, for every R > 1, the series on the right-
hand side of (ZI3) defines a holomorphic function of A € Q, for every m € Xp,, +[R]
and a € A;q(Rfl). For such m,a the function A — fy(mav) is holomorphic in
A € Q by Lemma [T.4} hence the identity (Z13)) extends to all A € Q, by density of
Q' in Q. O

Theorem 7.8 (Transitivity of asymptotics). Let @, Q, Y, f, P and v be as in
Theorem [T Let P1 € Py be contained in P. Let 0 € W/ ~pjq and £ € —0-Y +
NA, (P). Then for every X € apq, all u € Ni,(aq), b € *A;;q(*Pl), m € M and
AeQ,

(7.28)
qo',i(va | f?X)(Avmbu)
= > pem > b g u(Pryuv | f, X +logb)(A, m).
SEW/Wq HE—sWQ Y +NA(Py)
[s]=o #lapy =€

Moreover, for every s € W/Wq with [s| = 0 and every X € apq, the series

(7.29) Z b g5, (Pr,uv ]| f, X +logb)

le—SWQY+NA(P1)
H\upqzé

converges neatly on *Aj{,q(*Pl) as a A(Py)-exponential polynomial series in the vari-
able b with coefficients in O(Q, C(Xo,uw : ™))-

Proof. Fix u € Nk, (aq). Moreover, we fix a set Wp,, as in the beginning of the
proof of Theorem [[7 such that it contains the element u. We will also use the
remaining notation of the proof of the mentioned theorem.

Using ([C.20) we see that, via the natural isomorphism of O(€2, C°° (X yv: Tn))
with C°°(Xg uy : Tm), the series (T.29) may be identified with the series with co-
efficients in C*°(Xg up: 7m) that arises from the series on the right-hand side of
([Z21)) by omitting the evaluation at m. The neat convergence of the latter series
was noted already. Moreover, the identity (7.28) follows by insertion of ({21 in
the definition (T:24) of ¢ ¢. O

The following result is an important consequence of ‘holomorphy of asymptotics.’

Lemma 7.9. Let Q) € Py, Y C "ag. a finite subset and () C ag,. a nonempty
open subset. Let [ € Oy (X4:7:Q) and let P € Py, v € Ni(aq), and 0 €

W/~piq -
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Let § € —o-Y + NA,(P) and assume that there exists a Ao € a5, (P,WY)NQ
such that

(7.30) oXolap, — PP — & € Exp(P,v | fx,)-
Then there exists a full (see Section[I8) open subset Qo of Q such that
0/\|0Pq —pP—§EEXp(P,’U|f)\), (V)‘EQO)

Proof. From (7.30) combined with (7I4) it follows that the Py(apq) ®
C*®(Xp,,+: Tp)-valued holomorphic function ¢: A — g, ¢(P,v]| f, -, A) does not
vanish at A = Ag. Hence there exists a full open subset €1 C Q such that ¢(\) # 0 for
all A € Q. Let Qo:= Q1 Nagy,.(P,WY), then the conclusion follows by application

of (ZI4). O

We end this section with a result describing the behavior of the functions g, ¢
under the action of Nk (aq). Let Q, P € P, and u € Nk(ay), and put P’ = uPu~!.
The left multiplication by u naturally induces a map W/ ~p|q— W/ ~ps|q, which
we denote by o — uo. Moreover, the endomorphism Ad(u~1)* of age restricts to
a linear map ap.. — ap/yc, Which we denote by n +— un. With these notations, if
Y C *ag, is a finite subset and o € W/ ~pq, then

u(o-Y) = (uo)-Y;
see also (T12). For v € Nk(ay), let the map
Prout c™ (XP,'U,Jr : TP) — C™ (XP/,uv,Jr : TP/)

be defined by (3:25) with P in place of Q.
If Q2 C agy, is an open subset, let Ad(u™1)*®1®p, , denote the naturally induced

map from P(apq) @ O, C®(Xpy +: 7p)) to Plapq) @ O(Q, C®°(Xpr .y, +: TP))-

Lemma 7.10. Let Q € P,, Y C "ag),. a finite subsel and €2 C ag),. a nonempty
open subset. Let f € Cy(Xy:7:Q). If P € P, and u,v € Nk/(aq), then for all
cgeW/~pgand € Y,

Qua,ui(upu_la uv | )= [Ad(u_l)* ®1® Pr,u]qU,g(Pa v | 1)

Proof. By combining (7.I4) and Lemma[3.0 it follows that there exists a full open
subset g of  such that, for A € Qo,

qua’ug(uPu_l,uv I f, - A) = [Ad(u_l)* ® pruldoc(Pvl f, -, ).

The result now follows by holomorphy of the above expressions in A and density of
Qo. O

8. ASYMPTOTIC GLOBALITY

In this section we introduce the notion of asymptotic globality of a function
f € C?(X4 : 7) and of an analytic family fy of such functions. The requirement of
globality on f is that the coefficients for the expansion along P, which are functions
on Xp 4, extend smoothly to Xp. The requirement on the family fy is similar, but
the condition is allowed to fail at singular values of \.

The properties discussed here are needed in the statement and proof of the
vanishing theorem in the next section.
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Definition 8.1. Let P € P, and v € Ni(aq). A function f € CP(X4:7) is
said to be asymptotically global along (P,v) at an element £ € Upge if, for every
X € apq, the Vi-valued smooth function g¢(P,v| f, X) has a C-extension from
XP,v,Jr to Xp’v.

Remark 8.2. Since g¢(P,v| f, X) is polynomial in X, with values in C*(Xp, 4+ : 7p),
the requirement on ¢¢ implies that g¢(P, v | f) is a polynomial C*>°(Xp,, : 7p)-valued
function on apq.

Note that for P minimal the condition of asymptotic globality along (P,v) is
automatically fulfilled, since Xp, + = Xp,.

Finally, if f € C°P(X, : 7), then f is asymptotically global along (G, e) at every
exponent if and only if f extends smoothly to X (use Remark [[6]).

The property of asymptotic globality is preserved under the action of D(X) in
the following fashion. If P € P, then by <, (p) we denote the partial ordering on
by, defined as in (L.G), with apq and A, (P) in place of a and A, respectively.

Proposition 8.3. Let f € C°P(Xy:7) and D € D(X). Let P € P,, v € Nk(aq)
and & € apyc. If [ is asymptotically global along (P,v) at every exponent & €
Exp(P,v | f) with & =, (p) &, then Df is asymptotically global along (P,v) at .

Proof. Let u:= p/p(D) + uy be the element of Dy p associated with D as in Propo-
sition EET0, with P in place of Q. The key idea in the present proof is that u has a
A,.(P)-exponential polynomial expansion with coefficients that are globally defined
smooth functions on Mp, by Corollary[Z9. More precisely, the expansion ep(u) is
a finite sum, as ¢ ranges over a finite index set I of terms of the form

ep(u); = Z a" " i @ SiL @ Uiy @ V.
vENA,(P)
Here @i, € C®(Mps), Sip € End(V;), u;, € U(mp,) and v;,, € Ulapg),
and deg(u;,.) + deg(v;,) < deg(D) for all ¢,v. By Lemma [ZT2 Df belongs to
C°P(X4 : 7) and its (P, e)-expansion results from the (P, e)-expansion of f by the
formal application of the element ep(u). Hence the asymptotic coefficient of &y is
given by the finite sum

qEO(Pae|Df)(X7m): E E Qpi,V(m)SiyV[Q§(Pve|f)(X;Ti(Ui,V)vm;ui,V)]'
EEExp(Pie | f) €]
vENAL(P)
§—v=¢o

Now let f satisfy the hypothesis of the proposition. The £’s occurring in the above
sum belong to § + NA,.(P), hence satisfy §o <a,(py & By hypothesis, the asso-
ciated coefficients g¢ (P, e f) all extend smoothly to apq X Mps; see Remark
Therefore, so does g, (P, e| Df). This establishes the result for arbitrary P € P,
and the special choice v = e. The result with general v € Nk (aq) now follows by
application of Lemma (cf. Lemma BT (a)). O

We shall also introduce a notion of asymptotic globality for families from the
space C’S’_Y (X4 : 7: Q) introduced in Definition [.T] with  C ag),. an open subset.

Definition 8.4. Let @ € P,, Y a finite subset of *af),. and 2 C ag, . a nonempty
open subset. Let P € P,, v € Ni(aq) and 0 € W/~p|q .

We will say that a family f € O3y (X4 : 7: Q) is o-global along (P,v), if there
exists a dense open subset g of Q such that, for every A € Qg, the function f) is
asymptotically global along (P, v) at each exponent § € o\ |ap,+0-Y —pp—NA,(P).
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Remark 8.5. If Y7 and Y5 are finite subsets of *a*Qq[C with Y7 C Y5, then obviously
Coy,(X4:7:Q) CCQy,(Xy:7: Q).

If f belongs to the first of these spaces, then the condition of o-globality along
(P,v) relative to Y7 is equivalent to the similar condition relative to Y. This is
readily seen by using Lemmas and 631 From this we see that the notion of
o-globality along (P,v) extends to the space

(8.1) Co(Xy:7m: Q)= U Coy(Xy:7: Q).

YC* aZ)qC finite

The property of asymptotic globality for families is also stable under the action
of D(X).

Corollary 8.6. Let Q € Py, Y a finile subset of *ag),. and 2 C a5, a nonempty
open subset. Let P € Py, v € Ni(aq) and o € W/~p|q .

Let f € O3y (X4 : 7: Q) be o-global along (P,v). Then for every D € D(X) the
family Df € C3y (X4 : 7: Q) is g-global along (P,v) as well.

Proof. Tt follows from Proposition that Df belongs to )y (X4 : 7: Q). Ac-
cording to Theorem [T7] both sets Exp(P, v | fx) and Exp(P,v | Dfy) are contained
in the set Ex:= W (A +Y)|ap, — pp — NA.(P), for every X € Q.

Let Qo be as in Definition 8.4l Then the set Qy:= Qo N agy, . (P,WY) is open
dense in by LemmaB.3l Let A € Qf and let {§y € oA |ap, +0-Y —pp —NA,(P). If
¢ € Exp(P,v | fy) satisfies § < &, then £ € 0A|qp, +0-Y —pp —NA,(P) by Lemma
B2, By hypothesis, fy is asymptotically global along (P,v) at the exponent £. It
now follows by application of Proposition B3] that Dfy is asymptotically global
along (P, v) at &. O

The following lemma describes the behavior of asymptotic globality under the
action of Nk (aq).

Lemma 8.7. Let P € P, and u,v € Nk(ay). Put P’ =uPu™! and v' = uv.
(a) Let f € CP(Xy:7) and § € apy.. If f is asymptotically global along (P,v)
at &, then f is asymptotically global along (P’,v") at ué.
(b) Let Q € Py, Q C a5, a nonempty open subset, Y C *af),. a finite subset,
feCyy(Xy:1:Q) and o € W/~pq . If f is 0-global along (P,v), then f
is uo-global along (P',v").

Proof. From (B25) with P in place of @Q it is readily seen that p,, maps
C®(Xpy: 7p) to C°(Xps v : Tp/). Then (a) and (b) follow immediately from Lem-
mas [3.6] and [7-10, respectively. O

We end this section with the following result, which shows that the globality
condition is fulfilled for a certain natural class of 7-spherical functions. From the
text preceding Lemma we recall that b is a maximal abelian subspace of g
containing a4 and that if ¢ € b, then by I, we denote the kernel of the character
(- : p) of D(X). Thus I, is an ideal in D(X) of codimension one (over C).

Proposition 8.8. Let p € b’ and let f € E(X: 7:1,). Then flx, € CP(Xy: 7).
Moreover, this function is asymptotically global along all pairs (P,v) € P, X Nk (aq)
and at all exponents { € ap ..
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Proof. The first statement follows immediately from Lemma[53l By Lemmal8T (a)
it suffices to consider v = e and arbitrary P € P,. Let ¢ € V; be fixed. Then it suf-
fices to prove that the scalar valued function m +— g¢ (X, m): = (qe(P, e|f, X, m) | ¢)
on Xp 1 has a O extension to Xp, for each £ € ap,., X € apq. It follows from
Theorem B4 that

(8:2) (f(ma)|yY)= > a‘ge(loga,m).
£€Y —NA,.(P)

On the other hand, it follows from [5], Lemma 12.3, that [5], Thm. 12.8 can be
applied to the K-finite function F': x — (f(z)|v). By uniqueness of asymptotics
(see Lemma [T and its proof) the expansion ([82)) coincides with that of [5], Thm.
12.8. We conclude that, in the notation of loc. cit., g¢(X,m) = pmuq’g(P|F,m,X)
for all X € apy, m € Xp 4. The function z — pu|uq,§(P|F,x,X) is smooth on G.
From this the smooth extension of g¢(X,m) follows immediately. [l

9. A VANISHING THEOREM

In this section we formulate and prove the central theorem of the paper, the
vanishing theorem (Theorem [0.10)). Tt concerns families fy of the type introduced
in Definition [T.1] with further conditions introduced in Definitions [9.1], [3.5] and [0.9]
We assume that @) is a o-parabolic subgroup containing A,.

As before (cf. Section [, let b be a maximal abelian subspace of q containing a,.
By *agq and *bg we denote the orthocomplements of agq in a4 and b, respectively.
Let bx: = bN¢; then

*bQ =bx & *aQq.
We write Dg for the collection
(9.1) Dq:= {0:7b5. — N[ suppd finite}

* [k

of functions d: *by,. — N with finite support supp d. For § € Dg we put
o= > ).
vEsupp

For § € Dg and A € ap),. we define the ideal 5\ in D(X) as the following product
of ideals

(9.2) =[] Tr)™.

vEsupp 6
If § = 0, this ideal is understood to be the full ring D(X). Being a product of cofinite
ideals in the Noetherian ring D(X), the ideal I5  is cofinite.

Definition 9.1. Let 2 C af),. be a nonempty open subset and § € Dg. For every
finite subset Y C *ag, . we define
(9.3) Eov(Xp:T:Q:0)

to be the space of families f € C()’y (X4 : 7: Q) (cf. Def. [LT) such that for every A €
Q the function fy:x +— f(A,x) is annihilated by the cofinite ideal (32)). Moreover,
we define

EoXy:1:Q:0):= U Eoyv(Xp:T:0:0).

YcC* aaqc finite
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Note that the space (@3]) depends on @ through its o-split component Agq. If
v € *b{, we denote by d, the characteristic function of the set {v}. Then 6, € Dq,.
Moreover, if § € Dg and v € suppd, then 6 — 4§, € Dg and |0 — d,| = [d| — 1.

Lemma 9.2. Let f € Egyv(X4:7:Q:9).

(a) If D e D(X), then Df € Eg vy (X4:7:Q:9).
(b) If D € D(X) and v € suppd, then the function g:Q x Xy — V. defined by

(9.4) g\ x):=[D—=~(D: v+ AN]fr(x), AeQ, zeXy),
belongs to Eq v (X4 :7: Q: 5 —6,).

Proof. Let D € D(X). By Proposition [T the family Df belongs to C¢)y (X4 :
7: Q). Moreover, if A € Q and D’ € I 5, then D'(Df)y = D'Dfy = DD'f\ =0
and we see that assertion (a) holds.

The function A — v(D: v + A) is polynomial on 0()qc» hence holomorphic on
Q and it follows that G: (A, z) = y(D: v + ) f(A, z) belongs to C)y (X1 7: Q).
Hence g = D f — G belongs to the latter space as well. Furthermore, if D" € I5_;, 1,
then D":= D'(D —~v(D: v+ )\)) € I », and we see that D'gy, = D" fx = 0. Hence
(b) holds. O

Remark 9.3. Tt follows from Lemma (a) that (T8) defines a representation of
D(X) in Eg(Xy: 7: Q: 6), leaving the subspaces Eg y (X4 : 7: Q: ) invariant.

Lemma 9.4. Let Q € P,, 6 € Dg and Q a connected nonempty open subset of
06qe- Assume that f € CF(Xy: 7: Q) (see BI)). If fx is annihilated by Is 5 for
A in a nonempty open subset U of Q, then f € Eo(X4:7: Q: ).

Proof. Fix a finite subset Y C *ag, . such that f € C3y (X4 : 7: Q). We proceed
by induction on |d].

First, assume that |§| = 0. Then I5 = ID(X) for all A and hence flo/xx, = 0.
Since Q is connected, this implies that f = 0; see Lemma [T4]

Next assume that |§| = k£ > 1 and assume the result has already been established
for all 6 € Dg with 0] < k. Fix v € suppd and put &' = ¢ — §,, then |§'| < k.
Let D € D(X) and define g as in (.4). Then g € Cy (X4 : 7: ©2), as seen in the
proof of Lemma [0.2. On the other hand, it follows from (b) of that lemma that
glarxx, € EQy(Xy:7:Q:¢"). Hence g € Eg(Xy:7:Q:0") by the induction
hypothesis. Fix A € Q. Then it follows, for D’ € I », that D'(D—~(D: v+\))fy =
D’gy = 0. Since D was arbitrary, we conclude that fy is annihilated by the ideal
Isr a1y = Is a- O

We define the following subset of P, consisting of the parabolic subgroups whose
o-split rank is of codimension one,

Pl:={P € P, |dim(ay/apq) = 1}.
Definition 9.5. Let Q € P,, {2 C ay,. a nonempty open subset and § € Dg. By

EQ(X4:7:9Q:6),,, we denote the space of functions f € Eo(Xy: 7:Q: §) (see
Definition [@.1)) satisfying the following condition.
For every s € W and every P € Pl with s(agq) ¢ apq, the family f is

[s]-global along (P, v), for all v € Nk (aq); here [s] denotes the image of s in
W/~pjq = Wp\W/Wg.
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IfY C *ag, is a finite subset, we define
EQy(Xy:7:Q:0) =8 y(Xp: 7: Q:0)NEQ(Xy: 7: Q2 6)

Remark 9.6. Note that Eg(X4: 7: Q:0)
ponent agq.

The equality W/~pjo = Wp\W/Wq follows from Lemma Note that the
condition s(agq) ¢ apq on s factors to a condition on its class in Wp\W/Woq.

glob”

alob depends on @ through its o-split com-

The following result reduces the globality condition of Definition to a condi-
tion involving a smaller set of (s, P) € W x PL. Its formulation requires some more
notation.

Let A be a fixed basis for the root system X, let T be the associated system of
positive roots and a(‘{ the associated open positive chamber. Let Py be the unique
element of P™" with A(Py) = A. A o-parabolic subgroup @ is said to be standard
if it contains Pp; of course then ) € P,. Given such a @), we write Ag for the subset
of A consisting of the roots vanishing on agq and A(Q) for its complement.

If a is any root in A, we write n, for the sum of the root spaces gg where
(3 ranges over the set ©1 \ Na. Moreover, we put N,:= exp(n,) and write M,
for the centralizer in G of the root hyperplane ker «. Then P, = M;,N, is the
standard parabolic subgroup with Ap, = {a}. We write P, = M A, N, and P, =
MyoAaqNg for the Langlands and o-Langlands decompositions of P,, respectively.
Accordingly, a,q = ker @ and *a,q = (ker ). Finally, we write W,, = Wp, for the
centralizer of ker a in W.

Lemma 9.7. Let Q € P, be a standard parabolic subgroup, let Q@ C af, . be a
nonempty open subset, 6 € Dg and f € Eo(Xy:7:Q:0). Then f belongs to
Eo(X4: T: Q2 8)glob if and only if the following condition is fulfilled.

For every s € W and every a € A with s*1a|aQq %0, the family f is

[s]-global along (P,,v), for all v € Nk (aq); here [s] denotes the image

of s in W/~p,1q = Wa\W/Wg.

Proof. We must show that the condition of Definition is fulfilled if and only if
the above condition holds. For this we first observe that for & € A and s € W,

571a|qu #0 < s(aQq) Z daq-
The ‘only if part’ is now immediate. For the ‘if part’, assume that the above
condition is fulfilled. Let (s, P) € W x P} be such that s(agq) ¢ apq. There exist
a € A and t € W such that tPt~! = P,. It follows that ts(agq) ¢ tapq = kera,
hence (ts)"'a = ao (ts) is not identically zero on agq. From the hypothesis it now
follows that f is [ts]-global along (tPt~1,v), for all v € Nk (aq). By Lemma [87 it
follows that f is [s]-global along (P, w), for all w € N (ay). O

Lemma 9.8. Let Q € Py, §) C ajy,. a nonempty open subset and 6 € Dg. Then the
space EQ(Xy 1 71 Q1 §)y,, is D(X)-invariant. Moreover, £,y (X4 : 7: Q2: 0)
a D(X)-submodule, for every finite subset Y C *ag ..

glob L&

Proof. This follows by combining the D(X)-invariance of the space Eg v (X4 : 7:
Q: 0) with Proposition B3l O

Definition 9.9. Let Q € P,. An open subset (2 of ag) . is called Q-distinguished
if it is connected and if for every o € X(Q) the function A\ — (Re X, ) is not
bounded from above on €.
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In particular, a connected open dense subset of A0qc 18 @-distinguished. In the

following theorem we assume that ®WW C N (a,) is a complete set of representatives
for WQ\W/WKQH.

Theorem 9.10 (Vanishing theorem). Let Q € P, and § € Dg (see (@1))). Let
Q C ahye be a Q-distinguished open subset and let f € Eo(Xy:7:Q: d)gon (see
Definition[9.8). Assume that there exists a nonempty open subset Q' C Q such that,
for each v € @W,

(9.5) A—pq ¢ Exp(Q,v|fr),  (Ae).
Then f =0.

The proof of this theorem will be given after the following lemmas on which it is
based. We may and shall assume that @ is standard. Thus, @ contains the minimal
standard o-parabolic subgroup Py which will be denoted by P in the rest of this
section.

Lemma 9.11. LetQ C 46qe be a nonempty connected open subset, 0 € Dg and as-
sume that 6] = 1. Let Y C *ag,. be a finite subset and let f € Eq,y (X4 : 7: Q1 6).
Moreover, let v € Nk (aq) and assume that there existt € W, n €Y, € NA and
u € Nk, (aq) such that

(9.6) A+t —p—p€Exp(Puv| fx)

for X in some nonempty open subset of Q). Then there exists a full (see Section[I8)
open subset Qo C Q such that

A= pq € Exp(Q,v] fr), (A € Qo).

Proof. Let v € “b¢)c be the unique element such that suppd = {v}. Fix ¢,n, p and
u with the mentioned property. Replacing i by a <a-smaller element if necessary
we may in addition assume that p is <A-minimal subject to the condition that (B0.6)
holds for A in some nonempty open subset of 2. By holomorphy of asymptotics (see
Lemma [79) it follows that (6) holds for A in a full open subset €’ of 2. Moreover,
using the minimality of p and applying Lemma we see that for every A in the
full open subset Qo:= Q' N agy, (P, WY) of £,

A+tn—p—p € Expy(Puv] fi).
Since fy is annihilated by Isx = I,4, this implies, in view of Lemma [0} that
there exists a finite subset £ C by, such that
v+Ae W)L+ AN+1tn—p), (A € Qo).
For Ag € L, w € W(b) we define Qo(Ag, w) to be the set of A € Qg satisfying
(9.7) v+ A=wAo+A+1tn—p).

The union of these sets, over Ag € L, w € W(b), equals Q. By finiteness of the
union, we may select Ag and w such that Qo(Ag, w) has a nonempty interior in €.
Since Qo (Ao, w) is also the intersection of o with an affine linear subspace of b,
it must be all of Q. Hence for all A1, s € Qo we have w(A; — A2) = A\ — Aa. Since
Qo is a nonempty open subset of a5qe this implies that w belongs to Wq(b), the
centralizer of agq in W(b). From (@7) we now deduce that —wp = v — wAo — win.
The expression on the right-hand side of this equality has zero restriction to agq.
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Therefore, so has wpu, and we conclude that also pfq,, = 0. Combining this fact
with (@6) and transitivity of asymptotics (see Theorem B5) we conclude that

)\_pQ = [)‘+t77_P_M]|qu € EXp(Q7U|f)\)7
for all A € Qg. O

For the formulation of the next lemma, we need the following definition.

Definition 9.12. Let Q C ap, . and so € W be given. The subset W (S, sg) of
W is defined as follows. Let s’ € W. Then s’ € W(Q,so) if and only if there
exists a chain sq,...,s, of elements in W, with sjsj__l1 = 54, a simple reflection
(j =1,...,k) and with s; = s, such that the following condition (3.8) holds for

each of the pairs (s,a) = (sj_1,a;) e W x A, j=1,... k.
(9.8) If 871a|qu # 0, then A — Re (sA, a) is not bounded from below on €.

Notice that if Q is dense in af),., then W(Q,so) = W for all sp € W. Indeed,
(@) is then fulfilled by all elements «« € A. Hence, in order to verify the conditions
of Definition for s’ € W arbitrary, we may choose as sq,, ... , Sq, the elements
in a reduced expression s’sa1 = Say " Say, and then define s; = Sa; ** Say S0-

Lemma 9.13. Let 2 C ag,. be a nonempty connected open subset, Y C *ag5. a
finite subset, and § € Dg. Let f € Egy (X4 : 7: Q: d)glob and s € W. Assume that
there existt € W, n €Y, p € NA and w € Nk (aq) such that

(9.9) sA+stn — p — p € Exp(P,w] fr),

for all X in some nonempty open subset of Q). Then for every s; € W(,s) there
exist t1 € Wo, m €Y, u1 € NA and wy € Nk (aq), such that

(9.10) S1A + sit1m —p— 1 € EXp(]D7 w1 | f,\),

Jor all X\ in a full open subset of 2. In particular, if Q is dense in agy,., then the
above conclusion holds for every s; € W.

Proof. In the proof we will frequently use the following consequence of Lemma [7.0]
based on holomorphy of asymptotics. If sy € W, t; € Wo, m € Y, p1 € NA and
w1 € Nk (aq), then (@I0) holds for A in a full open subset of {2 as soon as it holds
for a fixed A in the full open subset QN ag, (P, WY) of Q. We now turn to the
proof.

If s; = s, or more generally, if s; € sWy, then the conclusion readily follows by
the previous remark. By Definition we now see that it suffices to prove the
lemma for s; = s48, with a € A such that (@8]) holds. There are two cases to
consider, namely that 5_1oz|Cqu equals zero or not. In the first case, s1 = ssg—1, €
sWgq and the conclusion is valid. We may thus assume that we are in the second
case, i.e., 1 = S8 with

(9.11) s afag, # 0.

We will complete the proof by showing that the following assumption leads to a
contradiction.

Assumption. For all t; € Wg, m €Y, 1 € NA and wy € Nk (aq) there exists no
nonempty open subset ' of  such that (@I0) holds for A € .
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Let = be the set of elements (stn — p)|a,, With t € Wg,n € Y, € NA such
that (@) holds for A in a nonempty open subset of €2, for some w € Nk (aq).
Then = is a nonempty subset of a,,. contained in a set of the form X —NA,.(P,),
with X C @}, finite. Hence we may select ¢ € Wg,n € Y and p € NA such
that (stn — pt)]a., I8 2a,.(p,)-maximal in Z. According to the first paragraph of the
proof, there exists w € Ni(aq) such that (@) is valid for A in a full open subset
Qo of Q. For A € Qg we put

g()\) = [S)\ + Stn —pP— /’[/Haaq'
Then by transitivity of asymptotics (see Theorem [BH) it follows that
£(A) € Exp(Pa,w| fx)

for A € Qq. In the following we shall investigate the coefficient of the expansion of
fx along (P,,w), for A € Qg, given by

@)\(m):: qf(/\)(PO’aw | f)w . 7m)-

Here @, is a nontrivial 7p, -spherical function on X, 4, + with values in Py (aqq), for
k = deg, f; see Thm. [34] (b).

It follows from (@.11]) and the asymptotic globality assumption on f (see Lemma
0.7), that actually, ¢ extends to a smooth function on X, ., for every A in a dense
open subset ) of . This observation will play a crucial role at a later stage of
this proof.

Let

Q= 96 n a*Qoqc(Pv WY) N aaoqC(Pa’ WY)'

The second and third sets in this intersection are full open subsets of ap).; see
Lemmal[6.3. Hence € is a dense open subset of €. We claim that for A € €y the
following holds. If s’ € W, ¢ € Wo, 0’ € Y, i/ € NA and w' € Nk(aq) are such
that

9.12) { s'A+s't'y — p— ' € Exp(P,w'| fx),

§N) Z2a,pa) A+ = p = 1)lanq
then
(9.13) s'esWq and (s't'n' — p/)|an, = (5tn — 1)]auy-

To prove the claim, let s, ¢, 7/, /', w’ satisfy [@I2). Then there exists a v € NA(P,)
such that s'A\+s't'n’ — p—p' —v and s\ + stn — p — p have the same restriction ()
to aqq. By the definition of € this implies that s’ and s define the same class in
W/ ~p,|0; see LemmalG2l The latter set equals W, \W/Wq, by Lemma 63, hence
s" belongs to sqsWg = s1Wg or to sWg. In the first case it follows that s'A = s1A,
hence s1 A+ s1t"n —p— ' € Exp(P,w' | fx) for some ¢ € W. This assertion then
holds for A in a full open subset of €27, contradicting the above assumption.

It follows that we are in the second case s’ € sWg, hence s’ = st” for some
t" € Wq. The element (s't'n’ — p')|a,, = (st”"t'n’ — p')la., therefore belongs to Z;
from (@LI2) it follows that it dominates the maximal element (stn — p)|a,,, hence
is equal to that element. This implies ([II3), hence establishes the claim.

It follows from the above claim that, for A € i, the exponent &()) is ac-
tually a leading exponent of fy along (P,,w). To see this, let A € Q; and let
¢ € Exp(P,,w| fn) be an exponent with §(\) <a (p,) & Then, in view of Theo-
rem [30] there exist s’ € W, ¢’ € Wg, ' € Y and ¢/ € NA such that the element
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$A+ s't'y — p — 1/ restricts to £ on a,q and belongs to Exp(P,w’| fx) for some
w’ € W. It now follows from the claim established above that & = £()\).

Thus, we see that £()) is a leading exponent indeed. Consequently, by Lemma
b7 the function ¢y is D(Xq,q)-finite, for every A € 1. We proceed by investigating
the exponents of its expansion.

Select a complete set Wy, of representatives for W /(Wo N Wiawpw-1) in
Ng(aq). We put *P = PN M,. Then by transitivity of asymptotics (cf. Theorem
B.5) we see that for the set of (* P, u)-exponents of vy, as u € Wy, , the following
inclusion holds:

Exp(*P,u | 90)\) C {£|*uuq | f € EXp(Pv uw | f)\) £|aaq = £(>‘)|aaq}'

Hence, for A € 4, every exponent in Exp(*P,u|p,) is of the form (s'\ + s't'n’ —
p—u) with ' € W, ' € Wg, n' € Y and p’ € NA satisfying

SA+ sty —p— ' € Exp(Puw| f),

[SA+ 5t = p— 1 lan, = EN)[aaq-
It follows from the claim established above that (@I3) holds.

We have thus shown that for every A € Q; the exponents in Exp(*P,u|p,) are
of the form (s\ 4 st'n’ — p — p/)|+a,, with t' € Wg, ' € Y, p/ € NA satisfying

*agq

[st'n" = 1 1ang = [5t0 — 1] ag,-
From this it follows that the restriction p'|q,, of the ' occurring runs through a
finite subset of NA,.(P,) = N[A\ {a}]a,,, independent of . Hence there exists a
finite subset S’ C NA such that g runs through S — Na. We thus see that there
exists a finite subset S C *a¥ . such that, for every A\ € €y,

aqc

(9.14) U Exp("P,u|px) C sA
UEWa,w

*aq T 9 — Nau.

From (@8)) and (@IT)) it now follows that we may select a nonempty open subset
Qy of the dense open subset €2; of {2 such that, for every A € Qg, each u € Wy
and all £ € Exp(*P,u|p,),

(Re&+"p, a) <O.

Since @y is D(Xq,w)-finite this implies that ¢y is square integrable on X, ., (see [3],
Thm. 6.4) with p = 2; hence ) a Schwartz function for A € ; see [3], Thm. 7.3.

On the other hand, from (9.11)) it follows that the linear map A = sA|+q,, is sur-
jective from af) . onto *a7, .. Therefore, the set {sA | A € Q2} has a nonempty
interior in *aj, .. Combining this observation with (.14)) we infer that there exists
a nonempty open subset Q3 C o, such that the sets (J, )y, . Exp(*P,u|py),
for A € Qg, are mutually disjoint. Now these sets are nonembty, since @y # 0,
for A € Q3. Therefore, the union of these sets, as A € g, is uncountable. This
contradicts Lemma 0.8, applied to the space Xq - [l

*agq

Lemma 9.14. Assume that Q@ C ap),. is Q-distinguished (see Definition [7.9).
Then e € W(Q, sq) for all so € W.

Proof. Let k = (so) denote the length of sg, and let sg = s, * - - Sa,, be a reduced
expression for sg. Put s; = 84, "+ 84,50 = Sa;,, " Sa, for j = 1,... k, then
s = e. We claim that (@8) holds for each pair (s,a) = (sj_1, ;). Since I(s;) =
l(sj—1) — 1, the root sjillaj must be negative. Hence the restriction of this root to
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agQq is zero or belongs to —3(Q). Now (I.8) follows immediately from Definition
0.9 O

Proof of Theorem [II0. We prove the result by induction on |§|. If 6 = 0, then for
A € af),. the ideal s\ equals D(X); hence Eo(X4: 7: Q: §)glop = 0 and the result
follows.

Now let 6] =1, let f € Eo(Xy: 7: Q: 6)glob and let ([@H) be fulfilled for all v €
QW. Assume that f # 0. We will show that this assumption leads to a contradiction.
There exists a finite subset Y C *af) . such that f € £,y (X4 : 7: Q: d)glob and a
Ao € QN a”fQoqC(P, WY') such that fy, # 0. Let W be a complete set of representatives
of W/Wgnpm in Nk (aq) containing @W. Then Exp(P,w | f»,) # 0 for some w € W.
In view of ([Z3) it follows that there exist s € W, t € Wo, n € Y and u € NA, such
that

(9.15) sA+stn—p—p € Exp(P,w]| fy),

for A = Ag. From Lemma [Tl it follows that (@IH) is valid for A in a full open
subset of . By Lemmas and this implies that there exist t1 € Wy,
m €Y, u1 € NA and wy € Ng(aq), such that A+ t1m1 — p — p1 € Exp(P, w1 | fr)
for A in a full open subset of Q. Let v € @W be the representative of WouwiWknm.
By Lemma [@TTl it follows that A — pg € Exp(Q,v| fx) for A in a full open subset
Qo of Q. Since Qp N Q' is nonempty, we obtain a contradiction with ([@.3]).

Now suppose that |§] = k > 1, and assume that the result has already been
established for § € Dg with |§| < k. Fix v € supp (§) and put ' = § — §,. Then
8" € Dg; moreover, |§,| = 1 and |§'| = k — 1. Fix any D € D(X) and define the
family g by (@4). Then g € Eo(Xy: 7: Q: ¢') by Lemma B2 Moreover, it readily
follows from Lemma that the family g belongs to Eo(X4: 7: Q: 0")glob.

For A € Q and v € Ng(aq) we have

(9.16) Exp(Q,v|gx) C Exp(Q,v| fr) — NE,.(Q),

in view of LemmalZT2] (b). Moreover, by hypothesis we have the following inclusion,
for every A € 0,

(9.17) Exp(Q.v] £2) € WA+ V)lags — o — NEAQ)]\ £ - pg}-

Combining (I.16) and (@.I7) we infer that Exp(Q,w | gx) does not contain A—pg for
A € ¥ and every w € Nk (aq). Consequently, the family ¢ satisfies the hypotheses
of Theorem II0 Since |¢'| = k — 1, it follows from the induction hypothesis that
g = 0. Since D was arbitrary, we see that f) is annihilated by Is, x, for every A € Q.
Hence f belongs to Eo(X4: 7: Q: §,)giob. Since |0,] = 1 < k, it now follows from
the induction hypothesis that f = 0. |

The following result is also based on Lemma [I.13]

Corollary 9.15. Let 2 C ag),. be a connected dense open subset, Y C "agj,. a
finite subset, and § € Dg. Let f € Egv(Xy: 7:Q: )glob and s1 € W. If

(s1A+ WY — p— NA)NExp(P,w]| fr) =0,
for all A in a nonempty open subset of Q and for all w € Nk (ay), then f =0.

Proof. Assume that f # 0. Then there exists an element A € Q N ag, (P, WY)
such that fy # 0, and then

(9.18) sA+stn—p—p € Exp(P,w| fx)
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for some s € W, t € Wo,n €Y, up € NA and w € Ng(aq). As remarked in the
beginning of the proof of Lemma T3] (II8) then holds for all A in a full open
subset of ). Hence Lemma [J.13] applies; its final statement contradicts the present
assumption for si. O

Finally, in this section we will show that for a family in Eo(Xy : 7: Q: d) that
allows a smooth extension to X, the hypothesis of asymptotic globality can be left
out in the vanishing theorem. Let

EoX:T: Q) ={feloXy:7:Q:0)| freC®X:7),X €}

Corollary 9.16. Let Q € P, and § € Dq. Let Q C ag . be a Q-distinguished
open subset and let f € Eo(X: 7: Q: ). Assume that there exists a nonempty open
subset Q' C Q such that, for each v € W,

A=pq ¢ Exp(Q,v]fr),  (AeQ).
Then f = 0.

Proof. As in the proof of Theorem [0.10] we proceed by induction on |§]. If |§] = 0,
the result is trivial. If |§] = 1, it follows from PropositionB.8that £o(X: 7: Q: ) C
Eo(Xy: 71 Q: d)giob, and then the result follows directly from Theorem [9.10]
Now suppose that |§] = k > 1, and assume that the result has already been
established for all 6 € Dg with |6] < k. Let ¢’ and g be as in the proof of Theorem
O.I0 Then it is easily seen that g € Eg(X: 7: Q: §).
For the rest of the proof we can now proceed exactly as in the proof of Theorem

010, O

10. LAURENT FUNCTIONALS

In order to apply the vanishing theorem we will (in Section [[4)) show that certain
families of functions on X, which are obtained in a natural fashion from Eisenstein
integrals, meet the requirements of the theorem. The construction of these families
is most conveniently described by means of so-called Laurent functionals and Lau-
rent operators. These tools are introduced in the present and the following section
(basically following [10] and [I1], Appendix B). They are generalizations to a higher
dimensional setting of the operator which assigns to a meromorphic function on C
some given linear combination of the coefficients of its Laurent series at some given
points (cf. [10], Example 1.6). These two sections can be read independently of the
preceding sections of the paper.

Throughout the section, V' will be a finite dimensional real linear space, equipped
with a (positive definite) inner product (-, -). Its complexification V¢ is equipped
with the complex bilinear extension of this inner product.

Let X be a (possibly empty) finite set of nonzero elements of V. At this stage we
allow proportionality between elements of X. By an X-hyperplane in V¢, we mean
an affine hyperplane of the form H = a + o, with a € V¢, a € X. The hyperplane
is called real if a can be chosen from V, or, equivalently, if it is the complexification
of a real hyperplane from V. A locally finite collection of X-hyperplanes in V¢ is
called an X-configuration in V. It is called real if all its hyperplanes are real.

If a € Vg, we denote the collection of X-hyperplanes in V¢ through a by
H(a, X) = H(Ve,a, X). If E is a complete locally convex space, then by M(a, X, E)
= M(Vg,a, X, E) we denote the ring of germs of E-valued meromorphic functions
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at a whose singular locus at a is contained in H(a, X). Here and in the following we
will suppress the space F in the notation if £ = C. Thus, M(a, X) = M(a, X, C).

Let NX denote the set of maps X — N. If d € NX, we define the polynomial
function 74,4 = me,x,4: Vo — C by

(10.1) Ta,d(2) = H (€, z—a)t®), (z € Vo).

fex

If X = (), then NX has one element which we agree to denote by 0. We also
agree that m, 0 = 1. Let Og(E) = Oq(Ve, E) denote the ring of germs of E-valued
holomorphic functions at a. Then

M(a, X, E)= | =, ;0.(E).
deNX
In the following we shall identify S(V) with the algebra of constant coefficient
holomorphic differential operators on V¢ in the usual way; in particular, an element
v € V corresponds to the operator ¢ — vp(z) = % |T=0 o(z + Tv).

Definition 10.1 (Laurent functional at a point). An X-Laurent functional at a is
a linear functional £: M(a, X) — C such that for every d € NX there exists an
element ug € S(V') such that

(10.2) Lo = ug(ma,ap)(a),

for all ¢ € W;;Oa. The space of all Laurent functionals at a is denoted by

M(G,X)* :M(VC,G,X)*

laur laur*

Remark 10.2. Obviously, the string (uq)genx of elements from S(V) is uniquely
determined by the requirement ({0.2). We shall denote it by u,.

If F is a complete locally convex space, then X-Laurent functionals at a may nat-
urally be viewed as linear maps from M(a, X, E) to E. Indeed, let £ € M(a, X)}, .,
and let ugz = (ug)gqenx be the associated string of elements from S(V). If ¢ €

w;(lioa (E), then Ly is given by formula (10.2).

Let Ty,: z — z+a denote translation by a in V¢. Then T, maps H(0, X) bijectively
onto H(a, X ). Pull-back under T, induces an isomorphism of rings 7.1 ¢ — @o T,
from O, onto Ogy. Therefore, pull-back under T, also induces an isomorphism of
rings ToF: M(a, X)) — M(0, X). By transposition we obtain an isomorphism of linear
spaces Ty M(0, X)* — M(a, X)*. It is readily seen that T, (mq,q4) = mo,q for every
d € NX. From the definition of Laurent functionals it now follows that Ty, maps
M(0, X))}, ., isomorphically onto M (a, X);, .. Moreover,

laur laur*
UT,. L = UL

for all £ € M(0,X)*.
Let X’ be another finite collection of nonzero elements of V. We say that X and
X' are proportional if H(0, X) = H(0, X").

Lemma 10.3. Let X, X’ be proportional finite subsets of V' \ {0} and let a € V.
Then M(a, X) = M(a,X') and M(a, X);, . = M(a, X');

laur laur*®

Proof. Tt is obvious that M(a, X) = M(a, X’). Let £ € M(a, X)* = M(a, X")*,
and assume that £ € M(a, X'){,,,- Let (uq )y enx be the associated string. Let

laur*
d € NX. Then, by proportionality, there exists & € N¥" and ¢ € R\ {0} such that
Ta,X.d = CTax.a- Let ug = ¢ tug, then (IIZ) follows immediately. This shows
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that £ € M(a, X)f, . and establishes the inclusion M(a, X')f = C M(a, X);

laur laur laur*
The converse inclusion is proved similarly. [l

Following the method of [10], Sect. 1.3, we shall now give a description of the
space of strings uz, as £ € M(a, X){

Put wg: = mp,q4 and equip the space N* with the partial ordering < defined by
d' < d if and only if d'(§) < d(&) for every £ € X. If d' < d, then we define d — d’
componentwise as suggested by the notation. In [I0], Sect. 1.3, we defined the
linear space S (V, X) as follows. Let d,d’ € N¥ with d’ < d. If u € S(V), then by

the Leibniz rule there exists a unique u’ € S(V) such that

w(@a—ap)(0) = u'(¢)(0), (€ Oo).
We denote the element ' by jg.q(w). The map jg q: S(V) — S(V) thus defined is
linear. Note that it only depends on d — d’; note also that, for d,d’,d”’ € NX with
d/l j d/ j d,
Jar,dr o Jjdd = Jar d-

We now define S (V, X)) as the linear space of strings (ug)genx in S(V') such that
Jar.a(uq) = ug for all d,d € N¥X with d’ < d. Thus, this space is the projective limit:
S (V,X) = lm(S(V), ).

The natural map S (V,;X) — S(V) that maps a string to its d-component is

denoted by jg4.

Lemma 10.4. The map L — ug is a linear isomorphism from M(a, X)), onto
S (V,X).
Proof. See [11], Appendix B, Lemma B.2. O

Lemma 10.5. Let a € V¢, d € NX and u € S(V). Then there exists a Laurent
functional L € M(a,X);,,, such that (ug)q = u.

laur

Proof. See [10], Lemma 1.7. O

Remark 10.6. In particular, it follows that for each a € Vi there exists a Laurent
functional £ € M(a, X)},,, such that Lo = ¢(a) for all ¢ € O,. Note however,

laur
that this functional is not unique, unless X = ().

Lemma 10.7. Let M(a, X);©. denote the annihilator of O, in M(a, X); Then

laur laur*

all functions ¢ in M(a,X), that are annihilated by M(a, X);C., belong to O,.

laur~’

Proof. We may assume that a = 0. Let ¢ € M(0,X) and assume that ¢ & Oo.
Then there exist elements d,d’ € NX and ¢ € X such that mo,&r = &mo,q and
7o, € Op but mo 40 & Op. Here we have written £ also for the function z — (£, 2)
on Vg. Since o 4¢ is not divisible by &, its restriction to £+ = ¢71(0) does not
vanish. Hence there exists u € S(¢1) such that u(m 4¢)(0) # 0. By Lemma [[0.5
there exists an element £ € M(a, X)},,, such that the d’ term of us is u. Then
Lo = u(mo,arp)(0) # 0. However, for each ¢ € Oy we have Ly = u(m 1) (0) =
[€u(m0,41)](0) = 0. Hence £ € M(a, X);© O

laur*

We extend the notion of a Laurent functional as follows. The disjoint union of the
spaces M(a, X)}, . as a € V¢ is denoted by M(x, X)i . = M(V¢,*, X)i,,- By a

*
laur laur laur*

section of M(x, X )}, we mean a map L: Vg — M(x, X)}, . with £, € M(a, X)};

laur laur laur
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for all @ € V. The closure of the set {a € V¢ | L4 # 0} is called the support of £
and denoted by supp (£).

Definition 10.8 (Laurent functional). An X-Laurent functional on V¢ is a finitely
supported section of M (%, X)f, . The set of X-Laurent functionals is denoted by

laur-

M(Ve, X)), and equipped with the obvious structure of a linear space.

laur

If S is a subset of V¢, we define the space M(S, X){,,, = M(Vc, S, X)) by

laur

M(S’X)* :{‘CEM(VC7X)Taur|Supp‘CCS}

laur

and call this the space of X-Laurent functionals on V¢ supported in S.

Remark 10.9. Note that, for a € Vg, the map M({a}, X)}, . — M(a, X))y de-
fined by £ — Ly, is a linear isomorphism. Accordingly, we shall view M(a, X)}, ., as
a linear subspace of M(V¢, X))}, .- In this way M(S, X); ., becomes identified with
the algebraic direct sum of the linear spaces M(a, X)}; .., as a € S, for S any subset
of Vg. Accordingly, if £ € M(Vg, X)f, .., then £, € M(a, X)f, .. € M(Vg, X);

laur> laur laur
for a € V¢, and

L= Y L

a€supp L
Lemma 10.10. Let X and X' be proportional finite subsets of V '\ {0}. Then
MV, X)) = M(Ve, X'

* *
laur laur-

Proof. This is an immediate consequence of Lemma [[0.3] and the above definition.
O

We proceed by discussing the action of a Laurent functional on meromorphic
functions. Let E be a complete locally convex space and Q2 C V¢ an open subset.
If a € Q, then by M(Q,a,X, E) we denote the space of meromorphic functions
©:Q — E whose germ ¢, at a belongs to M(a, X, E). If S C Q, we define

M(Q,8,X,E):= (| M(Q,a,X,E).
acs

Finally, we write M(Q, X, E) for M(Q,Q, X, E). In particular, M(Vg, X, E) de-
notes the space of functions ¢ € M(V¢, E) with singular locus sing(y) contained
in an X-configuration.

There is a natural pairing M(S, X); . x M(Q, S, X, E) — E, given by
(10.3) Lo= Y Lafa.

a€supp L

Lemma 10.11. Let S C Vg be arbitrary, and let Q be an open subset of V¢ con-
taining S. Then the pairing given by [I03) for E = C induces a linear embedding

M8, X)fanr — M(£2, 5, X)".
Proof. Let L € M(S,X);, . and assume that £ = 0 on M(Q, S, X). We may

laur
assume that S = supp £. For every a € S we write u® = (u§)genx for the string
determined by L,.
Select b € S. Then it suffices to prove that £, = 0. Fix d € NX and ¢ € O,.

Then it suffices to show that u}(¢)(b) = 0.
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For every a € S\{b} we may select d(a) € N* such that 7ra7d(a)7r,;01l is holomorphic
at a. Moreover, we put d(b) = d. For a € S there exists a unique v, € S(V) such
that for all f € O, we have

va(£)(a) = ufy)(Ta,a(ay™, 4.f)(@).

We note that v, = ufi. We may now apply the lemma below, with £, = Cuv,, for
a € S, and, finally with &, = 0 if @ # b and with & defined by & (vs) = vp(¢)(D).
Hence there exists a polynomial function ¢ on Vg such that v, (1)(a) = 0 for all
a € S\ {b}, and such that vy(¢)(b) = vp($)(b).

Define p = Wl;éw. Then ¢ € M(£2, 5, X). Hence Lo = 0. On the other hand,

Lo = Z Laa = Z Ea(ﬂ;}i(a)ﬂa,d(a)wgéw)

a€s acs
=D i) (ot a¥) (@) = Y va(¥)(a) = vs (1) (b) = u($)(b).
acs acs
It follows that u8(¢)(b) = 0. O

Lemma 10.12. Let S C V¢ be a finite set. Suppose that for every a € S a finite
dimensional complez linear subspace E, C S(V) together with a complex linear
functional &, € E7 is given. Then there exists a polynomial function ¢ on V¢ such
that up(a) = & (u) for every a € S and all u € E,.

Proof. This result is well known. O

We proceed by discussing the push-forward of a Laurent functional by an injective
linear mapping. Let Vj be a real linear space and ¢: Vy — V an injective linear map.
We assume that no element of X is orthogonal to ¢(Vg). We equip V, with the pull-
back of the inner product of V' under ¢ and denote the corresponding transpose of ¢
by p. Then Xy: = p(X) consists of nonzero elements. We denote the complex linear
extensions of ¢ and p by the same symbols. Then, if H C V¢ is an X-hyperplane,
its preimage +~(H) is an Xo-hyperplane of Vyc.

Let ag € Voc and put a = t(ap). Then pull-back by ¢ induces a natural algebra
homomorphism ¢*: O, (Ve) — Oq, (Voc). On the other hand, pull-back by p induces
a natural algebra homomorphism p*: Oy, (Voc) — O (V). From por = Iy, it follows
that t* o p* =TI on O, (Voc), hence ¢* is surjective.

If d: X — N is a map, then we write p,(d) for the map Xy — N defined by

P (&)= > d).

§eX,p(§)=%0
One readily verifies that for every d: X — N we have
(104) L*('/Ta,X,d) = Wao,Xo,p*(d)-

Let E be a complete locally convex space. Then it follows that pull-back by ¢
induces a linear map

(10.5) FM(OVe,a, X, E) — M(Voc, ag, Xo, E).
Lemma 10.13. The linear map * in (I0H) is surjective.

Proof. Let dy: Xg — N be a map. Then one readily checks that there exists a map
d: X — N such that dy = p.(d). From this it follows that
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W;O{Xo,dooao(vbca E) = (W;§(7d) Lp" (an (VO(Cv E)) - (W;§(7dOG(VC7 E))

where the first equality follows from (I0.4)). O

The pull-back map ¢* in ([I0.5) with F = C has a transpose t.: M(Voc, ag, Xo)* —
M(Vg,a, X)* which is injective by Lemma [10.13

Lemma 10.14. ¢, maps M(Voc,ao, Xo)t,,, injectively into M(Ve, a, X))}

laur laur*

Proof. Let £ € M(Voc, ao, Xo)i,,,- Then it suffices to show that ¢, £ belongs to the
Space M(VCa a, X)Taur'

We first note that ¢: Vy — V has a unique extension to an algebra homomorphism
ts: S(Vo) — S(V). One readily verifies that u[t*(¢)] = t*(ts(u)g) for every ¢ €
0.(Ve) and all u € S(Vp). Let d be a map X — N. Then there exists a uqg € S(Vp)
such that £ = evy, oUdqomay, xy,p.(d) ON 7T(1_01,X0,p*(d)0a0 (Voc); here ev,, denotes

evaluation at the point ag. Put vg = t«(ug). Then, for ¢ € O,(Vr),
(L), X a0l = LI (ma,x,0) 71 0)] = Llm ) o™ 0l = ¢ (vaw) (a0) = vap(a).

Hence, t.(£) = evqoUgoTg x,d OL W;§(7d0a(VC) and we see that (L) €
M(V(C,CE,X)* O

laur-

There exists a unique linear map t.: M(Voc, Xo)fyue — M(Ve, X)), that re-
stricts to the map ¢, of Lemma[T0.T4 for every ag € Vyc; see Remark [[0.9 Clearly,
supp (¢ L) = t(supp (£)), for every £ € M(Voc, Xo)four-

On the other hand, if E is a complete locally convex space, 0 C V¢ an open
subset and S C ¢~ 1(Q) a subset, then pull-back by ¢ induces a natural map
i M(Q,0(S), X, E) — M), S, Xo, E). Moreover, if L € M(Vyc, S, Xo);

laur
and ¢ € M(£,(5), X, E), then
(10.6) (L) = L[" ).

We end this section with a discussion of the multiplication by a meromorphic
function and the application of a differential operator to a Laurent functional.

First, assume that a € V¢ and that ¥ € M(a,X). Then multiplication by
induces a linear endomorphism of M(a, X'), which we denote by m.;. The transpose
of this linear endomorphism is denoted by m;,: M(a, X)* — M(a, X)*. It readily
follows from the definition of X-Laurent functionals at a that m;, leaves the space
M(a, X)f,, of those functionals invariant.

Now let S C V¢ be a finite subset, let 2 C V¢ be an open subset containing S
and let ¢ € M(Q,8,X). If L € M(V¢, S, X)},,,,» we define the Laurent functional
my, (L) € M(Ve, S, X )i by

laur
my, (L) = Z my, (La).
a€S

On the other hand, multiplication by % induces a linear endomorphism of
M(9,5,X), and it is immediate from the definitions that

(10.7) my, (L) () = L(Ye)
for ¢ € M(Q, S, X).
Lemma 10.15. Let v € S(V), then vp € M(a,X) for all ¢ € M(a,X), and

the transpose 0} of the endomorphism 0y: ¢ — vo of M(a, X) leaves M(a, X){ s
invariant.
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Proof. We may assume v € V. Let d € NX and define d’ € N¥X by d’'(&) = d(¢) + 1
for all £ € X. Then m, g divides v(mg,q), and hence

Ta,a 0P = V(Ta,ar@) — V(Ta,a ) € Oq

for all ¢ € ﬂ;(liOa. Thus 0y = vp € ﬂ;(li/Oa for p € 71';7(110(1.
Now let £ € M(a, X))}, and let v =ug € S—(V,X). Then for d,d’ and ¢ as
above

9, L(p) = L(vp) = ua (ma,avp)(a) = ugv(Ta,ap)(a) = ua (v(Ta,a)p)(a)-

Each term on the right-hand side of this equation has the form u'(pp)(a) with
uw’ € S(V) and p a polynomial which is divisible by 7, 4. Hence, by the Leibniz
rule, 9 L(f) has the required form u”(m, q¢)(a), where v’ € S(V). O

For £ € M(Vg, X))}, and v € S(V) we now define 9L € M(Vg, X))}, by
L= Y L.

a€supp L

It is immediately seen that 9;L(p) = L(0,¢) for each ¢ € M(Q,supp £, X), where
Q) is an arbitrary open neighborhood of supp L.

11. LAURENT OPERATORS

In this section we discuss Laurent operators, originally introduced in [I0], Section
5. However, the present context is the slightly more general one of meromorphic
functions with values in a complete locally convex space, whose singular locus is
contained in an X-configuration, not necessarily real.

Let V and X be as in the previous section, let H be an X-configuration and let
FE be a complete locally convex space.

We define M(Ve,H, E) to be the space of meromorphic functions ¢: Vg — E
whose singular locus is contained in |JH. If H is real, we put Hy = {HNV | H €
H}. Then M(Ve, H) = M(Ve, H, C) equals the space M(V, Hy ) introduced in [10].

It is convenient to select a minimal subset X% of X that is proportional to X.
Then for every X-hyperplane H C V¢ there exists a unique ay € X° and a unique
first order polynomial Iy of the form z — (apy, z) — ¢, with ¢ € C, such that
H = l;Il (0). Note that a different choice of X° causes only a change of Iz by a
nonzero factor.

Let N* denote the collection of maps H — N.

Remark 11.1. If d € N™, then for convenience we agree to write d(H) = 0 for any
X-hyperplane H not contained in H.

If w C V¢ is a bounded subset and d € N** we define the polynomial function
T4t Ve — C by

(11.1) twa= [ "
HeH
HNw#0

Note that a change of X° only causes this polynomial to be multiplied by a
positive factor. Let M(Vg,H,d, E) be the collection of meromorphic functions
¢ € M(Vg, E) such that 7, 40 € O(w, E) for every bounded open subset w C V.
We equip the space M(Vg, H,d, E) with the weakest locally convex topology such
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that for every bounded open subset w C V¢ the map ¢ — 7, q¢ is continuous into
O(w, E). This topology is complete; moreover, it is Fréchet if E is Fréchet.
We now note that

(11.2) M(Ve,”H,BE) = | ] M(Ve,H,d, E).

deNH

We equip N7 with the partial ordering < defined by d’ < d if and only if d’(H) <
d(H) for all H € H. If d,d’ are elements of N* with d’ < d, then M(V¢, H,d', E) C
M(Ve, H,d, E') and the inclusion map ig ¢ is continuous. Thus, the inclusion maps
form a directed family and from ([[I2) we see that the space M(V¢, H, F) may
be viewed as the direct limit of the spaces M(V¢,H, d, E). Accordingly, we equip
M(Ve, H, E) with the direct limit locally convex topology.

By an X-subspace of V¢ we mean any nonempty intersection of X-hyperplanes;
we agree that Vg itself is also an X-subspace. We denote the set of such affine
subspaces by A = A(V¢, X). For L € A there exists a unique real linear subspace
Vi, € V such that L = a + V¢ for some a € V. The intersection V,—jC N L consists
of a single point, called the central point of L; it is denoted by ¢(L). The space L is
said to be real if ¢(L) € V; this means precisely that L is the complexification of an
affine subspace of V. Translation by ¢(L) induces an affine isomorphism from Vj,c
onto L. Via this isomorphism we equip L with the structure of a complex linear
space together with a real form that is equipped with an inner product.

If L € A, the collection of X-hyperplanes containing L is finite; we denote this
collection by H(L, X). Moreover, we put X (L):= X NV and X°(L):= X°N V.
From the definition of X° it follows that the map H ~— oy is a bijection from
H(L, X) onto X°(L). Accordingly we shall identify the sets N*(2:X) and NX°(£),
If H is any X-configuration and d € N*| we define the polynomial function qr.a by

qrL,a: = H i,
HeH(L,X)

see also Remark [[T.} Let X, be the orthogonal projection of X \ X (L) onto V;
then X, is a finite set of nonzero elements. Its image in L under translation by
¢(L) is denoted by X. If H is an X-configuration in V¢, then the collection

Hpy:={HNL|HecH, 0SHNLSG L}

is an X -configuration in L; here L is viewed as a complex linear space in the way
described above.

We now assume that L € A and that H is an X-configuration in Vg. In ac-
cordance with [I0], Sect. 1.3, a linear map R: M(Ve, H) — M(L,Hy) is called a
Laurent operator if for every d € HY there exists an element uy € S(V-) such that

(11.3) Ry = uq(qr,ap)|r  for all ¢ € M(Ve, H,d).

The space of such Laurent operators is denoted by Laur (V, L, H).

Now assume in addition that H contains H(L, X). Then as in loc. cit. it is seen
that, for R € Laur (V¢,L,’H) and d € N*, the element ug € S(V;) such that
(IT3) holds, is uniquely determined. Moreover, it only depends on the restriction
of d to H(L,X), and the associated string ug:= (ug | d € N*X)) helongs to
S (V4 XO(L)). As in [10], Lemma 1.5, the map R +— up defines a linear isomor-
phism

(11.4) Laur (Vo, L,H) ~ S (Vi-, X°(L)).
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If E is a complete locally convex space, and R € Laur (V¢, L, H) a Laurent operator,
we may define a linear operator Rg from M(Vg, H, E) to M(L,Hr, E) by the
formula (IT3), for ¢ € M(Ve,H,d, E) and with ug equal to the d-component of
ur. We shall often denote R by R as well.

Remark 11.2. Here we note that the algebraic tensor product M(Vg, H) ® E nat-
urally embeds onto a subspace of M(Vg,H, E) which is dense. Thus, Rg is the
unique continuous linear extension of R ® Ig. However, we shall not need this.

Lemma 11.3. Let L € A and let 'H be an X-configuration in Vg containing
H(L,X). Let R € Laur (Vg, L, H). Then for every d € N™ there exists a d' € Nt
with the following property. For every complete locally convex space E the operator
Rg maps M(Ve, H,d, E) continuously into the space M(L,Hr,d | E).

Proof. This is proved in a similar fashion as in [10], Lemma 1.10. g

We shall now relate Laurent operators to the Laurent functionals introduced in
the previous section. Let X be a minimal subset of X, subject to the condition
that it be proportional to X,. Let X? be its image in L under translation by c(L).
Thus, with respect to the linear structure of L, the set X? is an analogue for the
pair (L, X1) of the set XY for the pair (V, X).

Lemma 11.4. Let L € A and let H be an X-configuration in Vg containing
H(L,X). Let E be a complete locally conver space.
(a) If ¢ € M(Ve,H, E), then for w € L\ UHL the function z — o(w + z) is
meromorphic on Vi, with a germ at 0 that belongs to M(Vit,0, X (L), E).
(b) If L € M(Vie,0,X (L))}, s an X (L)-Laurent functional in Vs, supported
at the origin, then for o € M(Ve, H, E) the function

(11.5) Lop:w = Lp(w + +))

belongs to the space M(L,Hr,, E). The operator L.: M(Ve, H) — M(L, HL),
defined by (ITH) for E = C, is a Laurent operator.

(¢) The map L — L., defined by [(ITA) for E = C, is an isomorphism from the
space M(Vi=,0, X (L))f,,., onto the space Laur (Vc, L, H). This isomorphism
corresponds with the identity on S—(Vi, X°(L)), via the isomorphisms of

Lemma and ([IT4).
Proof. See [11], Appendix B, Lemma B.3. O

Remark 11.5. In the formulation of (c) we use that the spaces M(Vie, 0, X (L))},
and M(Vi, 0, XO(L))f,,, are equal; see Lemma [T0.3

laur

We now assume that H is an X-configuration, and that L € A. If a € Vi, then
by H(a) we denote the collection of hyperplanes H’ in L for which there exists a
H € H such that H' = LN [(—a) + H]. Thus, Hi(a) = (T_4H)r and we see that
Hr(a) is an Xp-configuration. If S C VLLC is a finite subset, then

(11.6) Ho(S) = U Hr(a)
a€sS

is an Xp-configuration in L as well. The corresponding set of regular points in L
equals

L\ JH(S)={weL|VacSYHeMH: a+weH=a+LCH}.
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Corollary 11.6. Let L € A and let H be an X -configuration. Let S C Vi be a
finite subset and let E be a complete locally convex space.

(a) For every p € M(Ve, H, E) and each w € L\ |JHL(S), there exists an open
neighborhood Q of S in Viu such that the function p(w + -):z — p(w + 2)
belongs to M(Q, X(L), E).

(b) Let £L € M(Vie, X(L))foue be @ Laurent functional supported at S. For every

laur
w0 € M(Vg,H, E) the function L.p: L\ UHL(S) — E defined by
(11.7) Loplw) = Lip(w+ )

belongs to M(L,H(S),E). Finally, L. is a continuous linear map from
M(Ve, H,E) to M(L,Hr(S),E). In fact, for every d € N™ there erists a
d'" € N"e(9) independent of E, such that L, maps M(Ve, H,d, E) continu-
ously into M(L,Hr(S),d, E).

Proof. Tt suffices to prove the result for S consisting of a single point a. Applying a
translation by —a if necessary, we may as well assume that a = 0. Then H(S) =
Hr(0) = Hr. Let ‘H' be the union of H with H(L,X). Then M(V¢,H,E) C
M(Ve,H',E) and (H'), = Hr = Hr(S), hence assertions (a) and (b) of Lemma
M4 with H’ in place of H imply assertion (a) and (b), except for the final statement
about the continuity.

For the final statement of (b), we note that by Lemma [T.4(b), L. is a Laurent
operator M(Vg,H') — M(L,Hr(S)). Let d:H — N be a map. We extend d to
H' by triviality on ‘H’' \ H. Then according to Lemma there exists a map
d': Hr(S) — N such that for any complete locally convex space E the map

ﬁ*:M(VC;Hl7d7 E) - M(LyHL(S)adlaE)

is continuous linear. Since d is zero on H' \ H, the first of these spaces equals
M(Ve, H, d, E) and the asserted continuity follows. O

Lemma 11.7. Let L, H, S and L be as in Corollary[IL8, and fitw € L\|JHL(S).
There exists a Laurent functional (in general not unique) L' € M(Vg, X) sup-
ported in w+ S, such that L' = L(p(w + -)) for all p € M(Vc, H).

*
laur’

Proof. As in the proof of Corollary we may assume that S = {0}. Let H =
HUH(w, X). Then L, : ¢ — L((w+ -)) is a Laurent operator in Laur (Ve, L, H),
according to Lemma [[T.4 (b). On the other hand, it follows from Lemma [I0LH (see
Remark [[6) that there exists a (in general not unique) X -Laurent functional £
on L such that ¢(w) = L (¢y) for each ¢ € O (L). The functional ¢ — L (1))
is defined for ¢ € M(L,7:{L), and it may be viewed as a Laurent operator in
Laur (L, {w}, Hy), which we denote by the same symbol £” (see [TT], Appendix,
Remark B.4). It now follows from [10)], Lemma 1.8 that the composed map £"” o L,
belongs to Laur (V¢, {w}, 7:1) and hence by [I1], Appendix, Remark B.4 it is given
by an X-Laurent functional £’, supported at w. In particular, for ¢ € M(V¢, H) we
have from Lemma [[TA4] (b) that w — L(p(w+ -)) is holomorphic in a neighborhood
of w, hence its evaluation at w is obtained from the application of £” to it. Thus
Llp(w+ -)) =Ly for ¢ € M(Vg, H). O

Recall from Section[IT that M (V¢, X, E) is the union of the spaces M(Vg, H, E)
with H an X-configuration.
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Lemma 11.8. Let L € A and let L € M(Vie, X (L))}, be a Laurent functional.
Then for any complete locally convex space E there exists a unique linear operator

Lo M(Ve,X,E) — M(L, X1, E)

that coincides on the subspace M(Ve, H, E) with the operator L, defined in Corol-
lary [I1.0, for every X -configuration H in V.

Proof. Let Hy and Hz be two X-configurations. Let S = supp (L) and let, for
j = 1,2, the continuous linear operator £1:M(Vc,Hj,E) — M(L,H;5(S), E) be
defined as in Corollary with H,; in place of H. Then it suffices to show that
Ll and £2 coincide on the intersection of M(Vg, Hy, E) and M(Vg, He, E). That
intersection equals M (Vg, H1N'Ha, E). Let ¢ be a function in the latter space, then
from the defining formula (I1.7) it follows that £l = L£2¢ on the intersection of
the sets L \ JH,;(S), for j = 1,2. This implies that lllgo and L2y coincide as
elements of M(L). O

We end this section with another useful consequence.

Lemma 11.9. Let £L € M(Viq, X (L))}, Let the finite subset X of VxV\{(0,0)}
be defined by X = (X x {0})U ({0} x X). If ® € M(Ve x Ve, X), then

Ut (wy, w) — L(P(+ + w1, - + w2))

defines a function in M(L x L, X1.), where X1, = (X1, x {e(L)}) U ({e(L)} x X1).
In particular, the pull-back of ¥ under the diagonal embedding j: L — L X L belongs
to the space M(L,Xr).

Proof. Equip VLl X VLl with one half times the direct sum inner product. Then
the diagonal embedding t:z +— (z,2) is an isometry of Vi into V& x Vit Tts
adjoint is the map p: (21, 22) — %(21 + 22) from Vi x V- onto Vi-. The intersection
X(L):= )~(|’1(VLl x Vi) equals (X (L)x{0})U({0} x X (L)). Its image under p is given
by X(L)o = 3X(L). Thus, according to Lemma the space of X (L)o-Laurent
functionals on VLJ;C is equal to the space of X (L)-Laurent functionals on VLJ;C. Hence,
according to Lemma[10.14 and the remark following its proof, we have an associated
push-forward map ¢, from M(Vie, X (L)), to M(Vik x Vi, X (L),

For generic wy,ws € L we define the meromorphic function @(wiw2) o VLL(C X
VLJ-(C by <I>(w1’w2)(zl,22) = ®(w;y + 21, w2 + 22). The definition of ¥ may now be
rewritten as W(wy,wy) = L[¢*(®W1w2)]. By (L) it follows that U(wq,ws) =
1(L£)(®(w1w2)) or, equivalently, in the notation of Lemma [T.8,

U = [1,(L)], ®.

We now observe that X L = (X )rxr- Hence it follows by apphcatlon of Lemma
T8 that ¥ € M(L x L, X1). There exists an X -configuration H in L x L such
that ¥ € M(L x L,7:{) Any hyperplane H € H is of the form H = H x L or
H = L x H, with H an Xp-hyperplane in L. In both cases j 1(H’) = H. It now
follows that j~!(H) is an X -configuration in L, and that j*¥ € M(L, X;). O

12. ANALYTIC FAMILIES OF A SPECIAL TYPE

In this section we introduce a space Egyp (X4 : 7:6) of analytic families of D(X)-
finite T-spherical functions whose singular locus is a 3-configuration. The definition
of this space is motivated by the fact that it contains the families obtained from
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applying Laurent functionals to partial Eisenstein integrals related to a minimal
o-parabolic subgroup, as we shall see in the following sections, and by the fact that
the vanishing theorem is applicable, provided the condition of asymptotic globality
is fulfilled; see Theorem [IZI0

In this section we fix a choice X of positive roots for ¥ and denote by Py the
associated minimal standard o-parabolic subgroup.

Definition 12.1. Let Q € P, and let Y’ C *ag,,. be a finite subset. We define
(12.1) CPYP(Xyt 7)

to be the space of functions f:af),. x X4 — V-, meromorphic in the first variable,
for which there exist a constant k € N, a ¥,.(Q)-hyperplane configuration H in A5qe
and a function d: ' H — N such that the following conditions are fulfilled.

(a) The function A — fy belongs to the space M(ag)., H,d,C>* (X4 : 7)) defined
below (IT1).

(b) For every P € P™n and v € Nk(aq) there exist functions gs¢(P,v|f) in
Pk(aq) &® M(aéq@H,d, COO(X()J)Z 7'1\/[))7 for s € W/WQ and ¢ € —SWQY +
NA(P), with the following property. For all A € a5, \ UH, m € Xo,, and
ac AF(P),

(12.2)  fa(mav) = Z a*A=rr Z a~% g5 e(P,v] f,loga)(\,m),

SEW/WQ §€7SWQY+NA(P)

where the A(P)-exponential polynomial series of each inner sum converges
neatly on A¥(P).
(c) For every P € PMin v € Nk(aq) and s € W/W, the series

Z a_EqS,E(P7 v | fa IOg a)

£e—sWQY+NA(P)

converges neatly on A(J{ (P), as an exponential polynomial series with coeffi-
cients in the space M(ag)e, H,d, O (Xo,: 7)) (see below (L))
Finally, we define

(12.3) CoP™P(Xy o 7):= O iR (X o 7).

Remark 12.2. Note the analogy between the above definition and Definition [7.1]
In fact, let = af). \ UH, then it follows immediately from the definitions that
the restriction of f to Q x X4 belongs to Cgiy(X+ : 7: ). Moreover, it follows
from Lemma [Z3] that the functions ¢s , (P, v| f) introduced above are unique, and
that the notation used here is consistent with the notation in Definition [ZIl The
precise relation between the definitions is given in Lemma, below.

Remark 12.3. In analogy with Remark[T.2] we note that the space (I2.1) depends on
Q through its o-split component Agq. Moreover, it suffices in the above definition
to require conditions (b) and (c) for a fixed P € P™n" and all v in a given set
W C Nk (aq) of representatives for W/Wgnp. Alternatively, it suffices to require
those conditions for a fixed given v € N (aq) and each P € Pmin,

Finally, we note that ap,q = a4, hence *ap, = {0}. Thus, if Q@ = Fp, we only
need to consider the finite set Y = {0}. This explains the limitation in (TZ3]).
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It follows from Remark[TZ.2 that the following definition of the notion of asymp-
totic degree is in accordance with the definition of the similar notion in Definition

s

Definition 12.4. Let f € C’g?;’yp(X+: 7). We define the asymptotic degree of f,
denoted deg, (f), to be the smallest integer k for which there exist H, d such that the
conditions of Definition [[2.I] are fulfilled. Moreover, we denote by Hy the smallest
¥, (Q)-configuration in a*Qq(C such that the conditions of Definition [[2.1] are fulfilled
with k = deg,(f) and for some d: H; — N. These choices being fixed, we denote
by d; the <-minimal map H; — N for which the conditions of the definition are
fulfilled. Finally, we put reg, (f): = a5, \ UH;-

If Q € P,, we denote by X,0(Q) the set of indivisible roots in X,.(Q), i.e., the
roots a € ¥,.(Q) with |0, 1Ja N %,.(Q) = {a}. Moreover, we put X3 = ,0(F). Let
H be a ¥,(Q)-configuration in af),. and d:' H — N a map. If w C ag),. is a bounded
subset, we define 7, 4 as in (ILT) with V = af),, X = %,(Q) and X° = %,0(Q).

Lemma 12.5. Let Q € Py, Y C "ag. a finite subset, H a %,.(Q)-configuration in
A5qc and d € N, Assume that f € M(ayyes O (X4 7). Then the following two
conditions are equivalent.
(a) The function f belongs to C’el)’hyp(XJr : 7) and satisfies Hy C H and dy < d.
(b) For every nonempty bounded open subset w C agy., the function fr, ,: (N, x)
= Tw,d(A) f(N, ), w x Xy — Vi belongs to Cyy (X 71 w).
Moreover, if one of the above equivalent conditions is fulfilled, then for every non-
empty bounded open subset w C a’. and all P € PP v € Nk (aq), s € W/Weq and
£ e —sWqoY + NA(P),

(124) QS,g(Pav|f7rw,d,) = Tw,d QS,g(va|f)v

where on the right-hand side we have identified m,, 4 with the function 1 ® m, 4 ® 1
in P(ag) ® O(w) ® C*(Xg,p: 7).

Proof. Assume that (a) holds and that w C 0()qc 18 a nonempty bounded open
subset. Put 7 = 7,4 and fr = fr_,. It follows from Definition [I21] (a) that
friw x X4 — V; is smooth and that fry is 7-spherical for every A € w. Thus, it
remains to verify conditions (b) and (c) of Definition [T1] for f.. Let P € P™m and
v € Nk (aq). For s € W/Wg and € € —sWoY + NA(P) we define

Qo e(Pov | fr, X, \,m): = 1(N)gs e (Pov | f, X, A, m).

Then conditions (b) and (c) of Definition [T, with k = deg, f and with ¢ . in place
of gs.¢, follow from the similar conditions of Definition T2Tl. Thus, it follows that
fr € CQy (X4 : 7: w) and that (IZ4) holds for all P € P, v € Nk(aq), s € W
and € € —sWoY + NA(P).

Now assume that (b) holds, then it suffices to show that (a) holds. Let w be a
bounded nonempty open subset of ag, .. Then it follows from Definition [Z1] that
the function fr = fr, ,:w x X4 — V; is smooth; moreover, from condition (a) of
the mentioned definition it follows that fr » is 7-spherical for every A € w. Hence
the map A — f belongs to O(w, C*™ (X4 : 7)). Since w was arbitrary, this implies
that A — fi belongs to M(ag., H,d,C>= (X4 : 7)). Hence f satisfies condition (a)
of Definition IZIl Now let P € P and v € Nk(aq). Then it remains to establish
conditions (b) and (c) of that definition.



682 E. P. VAN DEN BAN AND H. SCHLICHTKRULL

If w is a nonempty bounded open subset of qcs then obviously the restriction
to w \ UH of the function fr belongs to C)’y (X : 7: w \ UH). Moreover, since
Tw,d 18 nowhere zero on w \ |JH, it follows from division by 7, 4 that the restriction
Jle\Ur) xx,. belongs to ngy (X4 : 7: w\UH). Hence, in view of Lemma [T.F], the
function f belongs to C3y (X : 71 Q), where Q: = a5, \ UH. Let k = deg, f.

It follows from the division by m, 4, that for every s € W and £ € —sWgY +
NA(P),

Tw,d(Nas,e(Pyv| f, -, N) = gse(Pv] fry -, A)s Aew) U'H)
In particular, the function (X, ) — 7, a(A)gse(P,v]| f, X, A) belongs to the space
Pr(aq) ® O(w,C>®(Xon: Tm)). Since w is arbitrary, this implies that f satisfies
condition (b) of Definition [Z11.

From condition (¢) of Definition [Tl with f; and w in place of f and €, respec-
tively, it follows that, for s € W, the series

Z a_gﬂ'w,d()‘) 4s,¢ (P7 v | [, loga, )‘)
ce—sWoY +NA(P)
converges neatly on Af(P) as a A(P)-exponential polynomial series with coeffi-
cients in O(w, C*(Xo,,: 7)). Since w was arbitrary, it follows from the definition
of the topology on M (ag)., H,d, C*(Xo,: 7)) (see Section [I) that f satisfies
condition (c) of Definition [2.. O

Lemma 12.6. Let f € Cy"P(Xy 1 7) and D €D(X). Then Df € Cy*P(Xy : 7).
Moreover, Hpy C Hy, dpy = dy and deg, D f < deg, f.

Proof. This follows from a straightforward combination of Lemmal[TZH with Propo-
sition m

If f e C’g?’;lyp(X_F : 7), then by Remark the function f belongs to
Coy Xy :7:Q), with Q = reg, f. Let k = deg,f. For P € Py, v € Nk(aq), 0 €
W/~pjgand { € —0-Y +NA(P), let g ¢(P,v | f) € Pr(apq) ® O, C(Xpy,+
7p)) be the function defined in Theorem [T.7}

Lemma 12.7. Let () € P, and Y C “ag. a finite subsel. Assume thal [ €
ng’)l}yp(XJr :7) and put k = deg, f. Let P € P, and v € Nk (ay). Then, for every
A € reg, f, the set Exp(P,v| fx) is contained in W(X +Y)|ap, — pp — NA(P).
Moreover, let 0 € W/ ~p|q . Then
(a) for every £ € —o - Y + NA,(P),
qo’,.E(Pa v | f) € Pk(apq) & M(aaqca Hfa dfv COO(XP,'U,Jr : TP));
(b) for every R > 1, the series
Z aig%f,i (Pv v | fa IOg a)
€€—a Y +NA,(P)
converges neatly on A;q(R_l) as a A (P)-exponential polynomial series with
coefficients in M(aj., Hy,dy, C(Xpy +[R]: 7P)).

Proof. Let Q = reg,f. Then f € C3y (X4 : 7: Q). It follows from Theorem [
that the assertion about the (P,v)-exponents of fy holds. That (a) and (b) hold
can be seen as in the last part of the proof of Lemma [[2.5] with the reference to
Definition [Tl replaced by reference to Theorem [7.171 O
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The following definition is the analogue for Cg?’;/lyp (X4 : 7) of Definitions @Iland
0.3

Definition 12.8. Let Q € P, and 0 € Dg (see (8.1))). Then for Y C *a, . a finite
subset we define

€g¥§(X+ 271 0)

to be the space of functions f € Cg?gl;yp(XJr : 7) (see Definition [TZ]) such that, for
all A € reg,(f), the function f:x +— f(\, ) is annihilated by the cofinite ideal I5 .
Moreover, we define

ggyp(XJr: T:0):= U Sg}g}(XJr: T:0).
Y C*apc finite
The spaces
522¥§(X+: T: 6)glob, 55yp(X+: 71 0)glob

are defined to be the spaces of functions f in 55{'@ (Xy:7:0), resp. Egyp(XJr c7: ),
for which the condition in Definition[@.lis satisfied by the restriction to Q = reg, f.
Finally, we define

g(l)]yp(XJr cT0)= 5EKP(X+: 7:9), 5(1)]yp(X+: T:0)glob: = S?%'p(XJr: T: 0)glob
for 6 € Dp,.

Remark 12.9. Combining Lemmas [[2.5 and [0-4] we see that, in the above definition
of 82)3:{3 (X4 : 7:9), it suffices to require that I5 y annihilates fy for A in a nonempty
open subset of reg, (f).

We now come to a special case of Theorem [@I0 that will be particularly use-
ful in the following. Let ®W C Ng(aq) be a complete set of representatives for
Wo\W/Wknm.

Theorem 12.10 (A special case of the vanishing theorem). Let Q € P, and let
d € Dg. Let f € €gyp(X+: T:0)glob and let ' be a nonempty open subset of
reg, f. If

A= pq ¢ Exp(Q,ul fr)
for each w € W and all \ € ', then f = 0.

Proof. Put Q = reg,(f). It follows immediately from the definitions that the re-
striction fo of f to Q is a family in Eq(Xy: 7: Q: )glon. Moreover, being the
complement of a locally finite collection of hyperplanes, €2 is @-distinguished in
a5 It follows that fq satisfies all hypothesis of Theorem (.10} hence fo = 0 and
hence f = 0. O

13. ACTION OF LAURENT FUNCTIONALS ON ANALYTIC FAMILIES

Let @Q € P, be fixed. We shall discuss the application of a Laurent functional
L € M(*a5qer 2Q)faurs to the A-variable of a family f € CPMP(X 1) (see ).
More precisely, we want to set up a natural condition on f under which the family
L, f obtained from applying £ to f belongs to the proper function space so that The-
orem [ZITis applicable. We first show, in Lemmal[[Z5 that if f € E7P(X, : 7: 0)
(see Definition M22§), then L.f € Eggj/(XJr: 7:0") for some ¢'. Thus, an extra
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condition is needed only to ensure the asymptotic globality of L. f. The condition,
called holomorphic globality, is given in Definition [I3.6] and the appropriate space
of functions is then defined in Definition[I3.10 The statement that makes Theorem
[[Z.T0 applicable is finally given in Theorem [[3.12.

Given a X-configuration H in aj. and a finite subset S C *ay,,. we define the
Er(Q)-configuration Hq(S) = Hay, (5) as in (ILE), with V' = af., X = X, and
L = a3y Thus, for v € ag, . we have

v | JHo(S) <= [VAESVH e H: A+veH = A+ah, CHJ

We recall from Lemma[IT.8 that a Laurent functional £ € M(*ag) e, £Q )y, induces
a linear operator

(131) E*:M(aZCasz) HM(aaqcvzr(Q)vU)a
for any complete locally convex space U.

Lemma 13.1. Let L € M(*adqe, 2Q)iauy and put Y = supp L. Let H be a X-
configuration in ay., and let H' = Hq(Y'). Then for every map d:'H — N there
exists a map d': H' — N such that, for every complete locally convex space U, the
linear map (I30) restricts to a continuous linear operator

Lo Mai, H,d,U) = M(agye, H',d', U),

qc?

Proof. This follows immediately from Corollary [1.6] O

For the formulation of the next result it will be convenient to introduce a
particular linear map. Let £ € M(*af) ., XQ)jh,, and let Ao € Y:= supp L.
Let £y, € M(*a%qe; 2Q)iaur Pe the Laurent functional supported at Ao, defined
as in Remark [[L9 and let U be a complete locally convex space. If P € P,
and s € Wp\W, then we define the linear operator lli’)i from M(a?, 3, U) into
C(apq, M(a5e, 2+(Q),U)) by the formula

(13.2) LS p(X,v) = e Qot) X £y eI E ()] (),
for ¢ € M(a3., H,U), X € apq and v € aj . \ UHo(Y).

qc
If f e CPMP(X, :7), then f, viewed as the function A — fy, belongs to the

complete locally convex space M(aZ., Hy,dy, C*(X4 : 7)). Accordingly,

(13.3) Lof € M(ahee, H'yd',C(Xy 1 7)),

where H' = H;q(Y') and d’:'H' — N is associated with £, H; and dy as in Lemma
(33 We note that by definition

(13.4) Lof(wa) = LIf(- +va)l, (v eane\|JH, v eXa).

Proposition 13.2. Let Q € P, and let L € M(*agq, £q )5y, be @ Laurent func-
tional with support contained in the finite subset Y C *ag,.. Assume that f €

Cgp’hyp(X+ :7), and let k = deg, f.
(a) The function L.f, defined as in (I3.4), belongs to the space C’g?;’yp(X+: 7).

Moreover, Hre.; C H' = Hpq(Y) and deg, L.f < k+ k', with k¥ € N a
constant only depending on L, H; and dy.
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(b) Let P € Py,v € Nk(aq). Then, for o € W/~pjg and § € —0 - Y + NA,.(P),
qU,E(PaU|‘C*f7X7V)
(13.5) =3 > ] s POl N, )] . X),

AEY seWp\W,[s]=c
sAla pg TEENAR(P)

for all X € apq and v € agy,. \UH'. In particular,

Exp(P.v | (£.f)y)
C {50+ Nlapy —pp = | s EWAEY, 1 € NAL(P), g0 (P | f) # O}

Remark 13.3. Note that the index set of the inner sum in ([I3.5) may be empty.
We agree that such a sum should be interpreted as zero.

The following lemma prepares for the proof of the proposition.

Lemma 13.4. Let L € M(*a5 e, XQ) .y be a Laurent functional with support
contained in the finite set Y C *ag, .. Let H be a X-configuration in a}. and d:H —
N a map. Let H' = Hgo(Y) and d':'H" — N be as in Lemma [I31. There exists a
natural number k' € N with the following property.

For every \g € Y, every P € P,, each s € Wp\W and any complete locally
convex space U, the operator Ei’)‘i restricts to a continuous linear map

ﬁf\jéi M(a;ca H.d, U) - Pk’(an) ® M(aéqc7 H,d, U).

Proof. For a fixed X € apq, multiplication by the holomorphic function es() (X)), ge
— C yields a continuous linear endomorphism of the space M(a:lc, H,d,U);
similarly, multiplication by the holomorphic function =0+ )(X). ahHqe — C ylelds

a continuous linear endomorphism of M(ag,., H', d', U). It now follows from ([3.2)

that for a fixed X € apg, the function Ei’)iap(X) belongs to the space

M(atyye; H',d',U) and depends continuously on . Thus, it remains to establish
the polynomial dependence on X.

For any Y-hyperplane H C ag. we denote by ay the root from E(J{ such that H is
a translate of az.. Let ¥ : = LoNE{ and let do: X, ; — N be defined by do(a) =
d(at + \o); thus do(a) = 0 if a + \g ¢ H. We define w9 = 7y, 4, as in ([0.1)) with
*a5qs Ao an and dp in place of V, a, X and d, respectively. If ¢ € M(a:lc, H,d,U),
then for v € ag . \ UH', the germ of the function ¢”: A — (A +v) at Ao belongs
to m5 ' Oh, (*afqer U). Hence there exists a constant coefficient differential operator

ug € S(*ag,,), independent of U, such that

(13.6) Lagep(v) = uo[mo(-)e(- +)](N), (v € age \[JH),
for any ¢ € M(a*., H,d,U). Inserting (I3.6]) in we find that

qce?

ch

rp(Xyv) = et Pty [es I g (Do 4 v)](Ao)

e Q)X 15X 0 (V- + 1)) (No).

By application of the Leibniz rule it finally follows that this expression is polynomial
in the variable X of degree at most k’: = order(uo). O
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Proof of Proposition [I3.2. By linearity we may assume that supp £ consists of a
single point Ag € *ag, .. Let H = Hy and d = dy, and let d:H — Nand k' € N be
associated as in Lemmas [[3.1] and [[3:4 We will establish parts (a), (b) and (c) of
Definition [[21] for L. f with k, H and d replaced by k + k', H' and d’. Note that
part (a) was observed already in (I3.3). Put Q:= a§ .\ UM’ Then, in particular,
the function L, f: Q x X, — V, is smooth.

We will establish parts (b) and (c) of Definition [2.I]by obtaining an exponential
polynomial expansion for (L. f),, for v € Q, along P € P™. However, having the
proof of (IZH) in mind, we assume only P € P, at present. Let v € Nk (aq). Then
feCh (0yXq: 7 a5 \UH) by Remark Hence by Lemma[I2Z7 and (IZ13)
we obtain, for A € af. \ UH,

(13.7) fOymav) = Y fiha,m),  (m€Xpo, a € Ap(Rpo(m) ™),
seWp\W
where the functions fs on the right-hand side are defined by
(13.8) fs(\,a,m) = a®=rr Z a Hgs (Pv| f)(loga, A, m).
HENA,.(P)

Here the functions g, ,(P,v | f) belong to the space
Pk(apq) ® M(a* H,d, COO(XP’D’J’, : Tp)).

qe?
By Lemma [[27] (b), for every R > 1 the series in (I3.8) converges neatly on
A;Q(R_l) as a series with coefficients in M(a}.,H,d,C>*(Xp, +[R]: 7P)). By

qc

([I32) we have, for v € Q, m € Xp, +[R] and a € A;Q(R_l)

Lo(f) (v a,m) = a*PF)=PrLO0 [N T aH e w(Poo] f)(loga, -, m))(log a, v).
HENA,.(P)

It follows from Lemma [I34] that Ei’)‘i may be applied term by term to the series.

Moreover, the resulting series is neatly convergent on Aj{,q(R’l) as a A, (P)-expo-

nential polynomial series with coefficients in M(ag., H', d', C=(Xpy,+[R]: 7p)).
The application of £, thus leads to the following identity,

(13.9)  Lu(f)(va,m) = a*Cot)mer N " a7l (P f)(loga, v,m),
HENA,.(P)

where the function qéu(P,v | f)iapq x @ — C®(Xp,y 4 Tp) is given by
(13.10) g5, (Po| f)(loga,v) = L3 ]gs u(P,v] f,loga, -)](loga,v).
Using Lemma [13.4] we deduce that

qf,u(P,v | ) € Pryw (apg) @ M(age, H',d', C=(Xpa 4 2 7P)).

Combining ([I33) with (I370) we obtain an exponential polynomial expansion
along (P,v) for the 7-spherical function (L. f), as

(13.11)
(Lif)v(mav) = Z a*Gotv)—rr Z a*“qﬁu(P,Mf)(loga,y,m).

SEWP\W HENA,.(P)
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If s € Wp\W and v € ay, then sv|a,, = [s]V|ap,, Where [s] denotes the class of
sin W/ ~pjq . It follows that the series in (I3.I1]) may be rewritten as

Z a’v—rP Z aSAO_Hqﬁu (P, v | f) (logav v, m)

WRra S

The exponents s\g — p as s € Wp\W, [s] = 0 and p € NA,(P), are all of the form
—&, with £ € —o - {A\o} + NA,(P). Thus, we see that, for v € Q, m € Xp,, +[R] and
a€ A;q(R’l),

(13.12)  (Lyf)v(mav) = Z a’’ P Z a™¢ Gy ¢(loga,v,m)

oEW/~piq E€—a-{Ao}+NA,.(P)
with
(13.13)  Goe = > 05 aolep, (P01 F)

SEWP\W, [s]=0c
sXolapq +EENAR(P)

PkJrk/(an) & M(aaqcv Hla d,a COO(XP,vHr : TP))'

From what we said earlier about the convergence of the series in ([I3.9), it follows
that, for every R > 1, the inner series on the right-hand side of (I3:12) converges
neatly on A;q(Rfl) as a A,(P)-exponential polynomial series with coefficients in
the space M(ag)., H',d', C®(Xpy,+[R]: TP)).

If P is minimal, then Xp, 4[R] = Xy, and we see that L. f satisfies conditions
(b) and (c) of Definition ZZT with g,.¢ (P, v | L+ f) = o,e for 0 € W/ ~pjg = W/Wyq.
This establishes part (a) of the proposition.

For general P we now see that the functions ¢, ¢ introduced above coincide with
functions ¢y ¢(P,v|L.f) introduced in Theorem [7.71 Finally, combining (I3.13)
and ([3I0) we see that we have established part (b) of the proposition as well. O

m

Lemma 13.5. Let § € Dp, and f € EY°(Xy: 7:0) (see Definition IZ8). Let
Q € Po and L € M(*0540, 2Q)faurs and put Y = supp L. There exzists a ' € Dg
such that

L.feEFY(Xy:m:d).

Proof. Tt follows from Proposition [3.2] that L.f € ng’;lyp(XJr : 7). Moreover,
reg,L.f D Q= a5, \ Hyq(Y). Then in view of Definition [Z8 and Remark TZ1
it suffices to establish the existence of a ¢’ € Dg such that, for every v € Q, the
function (L. f), is annihilated by the cofinite ideal Iy , .

By linearity we may assume that supp £ consists of a single point Ag € "05qe
Then £ = L,,.

Let 7o, ug be as in the proof of Lemma[13.4l Then from (I3.6) we see that

(Lef)u(@) = uolmo(-)f (- + v, )] (M),

for x € X4, v € 2. Moreover, since (A, x) — () fatr () is smooth in a neighbor-
hood of {A\g} x X4, it follows that, for D € D(X), v € Q and z € X,

(13.14) D(L.f)u (@) = uolmo(-)D(f 1) (@) (ho).

Put [ = order(ug) and define ¢’ € Dg by suppd’ = {Ao} +suppd and &' (Ao +A) =
§(A) +1 for A € suppé. It suffices to prove the following. Let elements D} € D(X)
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be given for ¢ = 1,...,0(A) + I, for each A € suppd, and define the differential
operator

S(A)+1
(13.15) D= [[ I (D} —~(D} X0+ A+v)) e D(X)
A€suppd  i=1

for v € af),.. Then D, annihilates (L f), for each v € Q.
It follows from (I34)) and (I314) that

(13.16) Dy(Lif)v(x) = uolmo(-) Dy f. v (2)](Ao),
where the dots indicate a variable in *ag,,.. We write each factor in D, as
DN — (DM Mo+ A +v)
=D = (D - + A+ )]+ (D, - + A+ v) =y (D do + A+ )],
also with variables in *af), . indicated by dots. Inserting this into (I3.15) and (I3.16)

we obtain an expression for D, (L. f),(x) as a sum of terms each of the form

(13.17) wlm(-) [T "D ) f @) o),

A€supp d

where

DA = [T D} =DM A+ A+ )]
1ESA

and

PN = [T (DM A+ A +v) = (DM Ao+ A+v)]
i€S§
with Sp a subset of {1,...,d0(A) + 1} and S§ its complement in this set. On
the one hand, if Sy has fewer than §(A) elements for some A, there are at least
I + 1 factors in the corresponding product p™. Since each of these factors vanish
at Ao, it follows from the Leibniz rule that then ([3I7) vanishes. On the other
hand, if for each A the set Sy has at least J(A) elements, then the differential
operator [, D*()\) annihilates fi4,, again causing (I3.17) to vanish. It follows
that D, (L«f),(z) = 0. O

In the following definition we introduce a notion of asymptotic globality that is
somewhat stronger than the one in Definition R4l It is motivated by the fact that it
carries over by the application of Laurent functionals, as we shall see in Proposition

29

Definition 13.6. Let Q € P,, and let Y C "ag. be finite. Let P € Py, v €
Nk(aq) and 0 € W/~pjq
(a) Let Q C ag,,. be an open subset. A family f € C)’y (X4 : 7: Q) (see Defini-
tion [Z.1)) is called holomorphically o-global along (P,v) if there exists a full
open subset Q* of af, . such that, for every { € —o - Y + NA,.(P), the func-
tion A = goe(P,v | f, - )(A) is a holomorphic Py(apq) ® C*(Xp,,: Tp)-valued
function on Q* N €, for some k € N.
(b) A family f € CS?’}}}YP(XJF: 7) (see Definition [[2]) is called holomorphically
o-global along (P, v) if its restriction to = reg, f is holomorphically o-global
along (P, v), according to (a).
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It is easily seen that the property of holomorphic globality according to (a) of
the above definition implies the globality in Definition B4 We have the follow-
ing analogue of Lemma B7] describing how the property of holomorphic globality
transforms under the action of Ng (aq).

Lemma 13.7. Let Q, Y, P, v and o be as above, and let f € C’S?il}yp(X+: 7).
If f is holomorphically o-global along (P,v), then f is holomorphically uo-global
along (uPu™t, uwv), for every u € N (aq).

Proof. The proof is completely analogous to the proof of Lemma [87] involving an
application of Lemma [Z.10l O

Proposition 13.8. Let Q) € Py, Y C "ag, . a finite subset and let P € Py, v €
Nk(aq) and o0 € W/ ~pjq . Let f € C’gj’}l}yp(X+: 7) and put H =Hy, d = dy and
k =deg,f.

The family f is holomorphically o-global along (P,v) if and only if, for every
element £ € —o - Y + NA.(P), the function A — qoe(P,v|f, -)(\) belongs to the
space M(agqe, M, d, Pr(apg) ® C*(Xpy: 7p)).

Proof. The ‘if’-statement is obvious. Assume that f is holomorphically o-global
along (P,v), and let £ € —o - Y +NA,.(P). According to Lemma [[2.7] the function

(1318) )\’_)(IU,.E(Pav|fv 7>‘)
belongs to the space
(13.19) M(agqe, Hod, Pi(apq) ® CF(Xpo,+ 1 TP)).

Let 2 = reg,(f) and let Q* be a full open subset of a,. satisfying the properties
of Definition (a) for the restriction of f to Q. Then the function (I3.1])
not only belongs to the space ([3:19), but also to the space O(Q* N Q, Pi(apq) @
C>®(Xpy: 7p)), for some | € N. In particular, we see that this is true with [ = k.

Now let X € apq be fixed. Then it suffices to show that the function (I3I8)),
with X substituted for the dot, belongs to the space M(ag ., H, d, C*(Xpy: 7p)).
To prove the latter, we fix an arbitrary bounded nonempty open set w C a5qe and
put m: = m, q; see above Lemma Then the function Fiw x Xp, 4+ — V7,
defined by

FAm) =7n(A) goe(Pv] f, X, A)(m)

is C*° and holomorphic in its first variable. Moreover, let wg be the full open subset
wNQ*NQ of w. Then by what we said above, the restricted function F|oxxp.,
admits a smooth extension to the manifold wy x Xp,,. It now follows from Corollary
that F' has a unique smooth extension to wxXp ,; this extension is holomorphic
in the first variable. It follows that the function A +— w(X)gse(P,v | f, X, A) belongs
to O(w,C>®(Xpy: Tp)). Since w was arbitrary, this completes the proof. O

Proposition 13.9. Let f € CSP™P(X, : 1), let Q € P, and let L be a Laurent
functional in M(*ayqe; 2Q) oy Put Y = supp L. Let P € Py, v € Nk(aq) and
(oSS W/NP|Q .

If f is holomorphically s-global along (P,v) for every s € Wp\W with [s] = o,
then L.f € C’g?f}yp(X_F : 7) is holomorphically o-global along (P, v).
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Proof. Tt follows from Proposition[I3.2 (a) that L. f € Cg?’)}/lyp(XJr : 7). Assume that
f satisfies the globality assumptions. Then it remains to establish the assertion on
o-globality for L, f.

Let k = deg, f. Let H ="Hy, d =dy and H' = Hg(Y'). Moreover, let d:' H' — N
be associated with these data as in Lemma [[3Tland let &’ € N be associated as in
Proposition [3:2] (a). According to the latter proposition, the set Q' = a5qc \U H
is contained in reg, (L. f).

Let £ € —o - Y + NA,(P). Moreover, let s € Wp\W be such that [s] = o and
let A\g € Y be such that 7: = sAglap, + & belongs to NA,.(P). Then by Proposition
3-8, the function

AHQSJ}(Pavaa a>‘)
belongs to M(aj., H,d, Pr(apq) ® C°(Xpy: 7p)). Using Lemma [3.4 with
C>*(Xpy: 7p) in place of U, we see that, for X € apq, the function
px:= Lo gsn(Po ] £,X, )]

belongs to M (a5, H', d', Py (apq) @ C*°(Xpy : Tp)). Moreover, it depends on X €
apq as a polynomial function of degree at most k. It follows that the function
(v, X) — px(v)(X) belongs to the space

(13.20) M(agqc, H',d', Poyi (apq) ® C°(Xpy: 7p)).
Each term in the finite sum (I3 is of this form. Hence the function
(VaX) = qU,E(P7U|[’*f7X7V)

belongs to the space (I320) as well. This holds for all £ € —o - Y + NA,(P).
Therefore the restriction of L, f to reg, (L. f) satisfies Definition [[3.6] (a) with Q* =
Q. O

The following definition is an analogue of the final part of Definition [T2.8] re-
placing the globality condition by a condition of holomorphic globality.

Definition 13.10. Let Q € P, and let § € Dg. We define
ggyp(XJr: T: 6)hg10b

to be the space of functions f € Egyp(XJr : 7: 0) satisfying the following condition.

For each s € W and every P € P} with s(agq) ¢ apq, the family f
is holomorphically [s]-global along (P, v), for all v € Nk (aq); here [s]
denotes the image of s in W/~p|q = Wp\W/Wj.

If'Y C *ap,. is a finite subset, we define
ggbjip/(x-l- LT 5)hg10b = 85}/{; (X+ LT (5) N ggyp(X+ LT 5)}1g10b-

It is easily seen that €gyp(X+ 71 0)hglob C €gyp(X+ :T:0)glob. As in Lemma
@7 the above condition allows a reduction to a smaller set of (s, P).
Lemma 13.11. Let Q € P, be standard, let 6 € Dg and f € Sgyp(X+ :7:0). Then
f belongs to Sgyp(X+: T: 0)ngiob of and only if the following condition is fulfilled.

For each s € W and every o € A with 5_1oz|Cqu # 0, the family f is
holomorphically [s]-global along (P,,v), for all v € Nk (aq).
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Proof. The proof is similar to the proof of Lemma[@.7], involving Lemmall37instead
of Lemma B O

We now come to the main result of this section, which provides a source of
functions to which the vanishing theorem (Theorem [[2.10) can be applied.

Theorem 13.12. Letd € Dp, and f € Eélyp(X+: T: 0)hglob: = Sgg'p(X+: 72 0)hglob
(see Definition LZI0), let Q € P, be a standard o-parabolic subgroup and let
L€ M(*ahqes 2Q)faur- PutY =supp L. Then there exists a §' € Dg such that

L.f €EFY Xyt 00 ngob.

Proof. From Lemma [I335]it follows that L, f is a family in Eg‘z'{;(XJr :7:8') for
some ' € Dg. Let s € W and o € A be such that s~ 'afa,, # 0. Then every
t € WasWy also satisfies the condition ¢~ *ala,, # 0; hence t(agq) ¢ daq. Thus,
from the hypothesis, it follows that f is holomorphically W, t-global along (P,,v)
for every t in the double coset W,sWg. According to Lemma (see also Remark
9.6) the latter set equals the class [s] of s for the equivalence relation ~p, o in
W. Tt now follows from Proposition [[3.9] that L. f is holomorphically [s]-global
along (P, v). We conclude that L, f satisfies the conditions of Lemma [[3.11], hence
belongs to 82)3:{3 (X4 : 718 )nglob- O

14. PARTIAL EISENSTEIN INTEGRALS

Let P € PMM be a minimal o-parabolic subgroup and let (7,V;) be a finite di-
mensional unitary representation of K. In this section we will define partial Eisen-
stein integrals F; s(P: A) associated with P, 7 and an element s € W. It will be
shown (in Lemma[I43)) that for each s € W the family A\ — Ey ((P: \) belongs
to the space S(})l“"p(XJr : 7: J) (see Definition [2.8)) for some §. In order to be able
to apply the vanishing theorem, as explained in the introduction to the previous
section, we need to establish holomorphic globality (see Definition [[3:6). In general
this condition fails for the individual partial Eisenstein integrals, but it will hold
when they are suitably grouped together. This is established in Corollary I4.8]

We start by recalling some properties of Eisenstein integrals. Let W C Ng(aq)
be a fixed set of representatives for W/Wgnp. Following [9], (5.1), we define the
complex linear space °C = °C(7) as the following formal direct sum of finite dimen-
sional linear spaces

(14.1) C= P C*Xow: mv).
weWw

Every summand in the above sum, as w € W, is a finite dimensional subspace of
the Hilbert space L?(Xq,w, V5 ); here the L?-inner product is defined relative to the
normalized M-invariant measure of the compact space Xo ,, = M/M NwHw™! and
the Hilbert structure of V... Thus, every summand is a finite dimensional Hilbert
space of its own right. The formal direct sum °C is equipped with the direct sum
inner product, turning ([4.1]) into an orthogonal direct sum.

For ¢ € °C, A € aj. and z € X, the Eisenstein integral E(¢: A\: x) =
E(P:: A: z) and its normalized version E°(¢: A: z) = E°(P:¢: A: x) are de-
fined as in [9], § 5. The Eisenstein integrals are T-spherical functions of z, depend
meromorphically on A and linearly on 1. We view E°(A: x):= E°(-: A: z) (and
similarly its unnormalized version) as an element of Hom(°C, V) ~ V; ® °C*. Thus,
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for generic A € ag, E°()) is a 7 ® 1-spherical function on X. The connection be-
tween the unnormalized and the normalized Eisenstein integral is now given by the
identity

(14.2) E°(A\:z)=FEM\:2)oC(1: N7}, (z € X),

for generic A € af.. Here C(1: \):= Cp|p(1: \) is a meromorphic End(°C)-valued
function of A € ay; see [9], p. 283.

The Eisenstein integral is D(X)-finite. In fact, we recall from [9], (5.11), that
there exists a homomorphism p from D(X) to the algebra of End(°C)-valued poly-

nomial functions on af. such that

DE°(\) =[I® u(D: N)*|E°(N), (D € D(X)).
It now follows from Lemma that, for generic A € af., the Eisenstein integral
E°()) belongs to C°P(X;: 7 ® 1). It therefore has expansions of the form (ZI3).
These expansions have been determined explicitly in [8]. We recall some of the

results of that paper.
In [8], (15), we define a function ®p(A: -) on Af(P) by an exponential polyno-

mial series with coefficients in End(VMXNH) of the form
(14.3) Op(Aia)=a*" Y a'Tp,(N),  (a€Af(P)).
VEA(P)

Note that here P replaces the Q of [8], Sect. 5; also, in [§] we suppressed the Q
in the notation. The coefficients in the expansion ([[4.3) are defined by recursive
relations (see [§], (18) and Prop. 5.2); it follows from these that the coefficients
depend meromorphically on A, and that the expansion ([4.3)) converges to a smooth
function on Aér (P), depending meromorphically on A. In fact, we have the following
stronger result.

Let IIg r be the collection of polynomial functions ag. — C that can be written
as finite products of linear factors of the form A — (A, @) — ¢, with a € ¥ and
c € R. For R € R, we define the set

ai(P,R):={XA€ay. | Re(\, a) < R Va € X(P)}.

Lemma 14.1. Let R € R. Then there ezists a polynomial function p € llx g such
that the functions pI'p,, for v € NA(P), are all regular on a;’;(P, R). Moreover, if
p is a polynomial function with the above property, then the series

(14.4) > ap()Teu(+)
vENA(P)

converges neatly on AT (P) as an exponential series with coefficients in O(a (P, R))
® End(VMOKOH) - In particular, the function (a,\) — p(A\)®p(\: a) is smooth on
A (P) x aX(P, R), and in addition holomorphic in its second variable.

Proof. Let pr be the polynomial function described in [8], Thm. 9.1. As in the
proof of that theorem, it follows from the estimates in [8], Thm. 7.4, that the power
series

YA:z)= > 2 pr(NTes(N)
vENA(P)

converges absolutely locally uniformly in the variables z € DA() and \ € a: (P, R).
Here we have used the notation of Section 1 of the present paper. Since



ANALYTIC FAMILIES OF EIGENFUNCTIONS 693

prRON)®p(X: a) = a* PP U(X: z(a)), for a € AF(P), this implies all assertions of
the lemma with pg in place of p.

This is not immediately good enough, since pr is a finite product of linear
factors of the form A — (X, v) —¢, with v € NA(P) and ¢ € R; see [8], the equation
preceding Lemma 7.3. To overcome this, we invoke [§], Prop. 9.4. It follows from
that result and its proof that there exists a p € IIy g such that pI'p, is regular
on a;(P, R), for every v € NA(P). Let p be any polynomial with this property,
and let ‘p be the least common multiple of p and pr. Then all assertions of the
lemma hold with ‘p in place of p. Let ¢ be the quotient of ‘p by p. Denote the
image of the linear endomorphism mg: ¢ — gy of O(a; (P, R)) by F, and equip this
space with the locally convex topology induced from O(ag (P, R)). It follows from
an easy application of the Cauchy integral formula that m, is a topological linear
isomorphism from O(a} (P, R)) onto F; see also [9], Lemma 20.7. As said above,
all assertions of the lemma hold with ‘p in place of p; on the other hand, by the
hypothesis the series (I4.4]) with ‘p in place of p has coefficients in F. Applying the
continuous linear map m;l to that series, we infer that all assertions of the lemma
are true with the polynomial ¢~ ''p = p. [l

Following [§], Sect. 11, we define the function
Dp i al x AL (P) — End(Vumwiv™)
for w € W, by
(14.5) Bpop(X:a) =T(w)o Py 1py,(w A wlaw)or(w) ™!,

Following [9], p. 283, we define normalized C-functions C°(s: A) = Cp p(s: A), for
s € W, by

(14.6) C°(s: N\)=C(s: N)oC(1: N7}

these are End(°C)-valued meromorphic functions of A € a?.. From ([42) and [§],

(54), we now obtain the following description of the normalized Eisenstein integral
in terms of the functions ®p,,. Let ¢ € °C and w € W. Then, for a € A} (P),

(14.7) E°(\: aw)y = Z Dpy(sh: a)[C°(s: N)w(e),
seWw

as a meromorphic identity in A € ag.
From (IZ3) and (IZ3)) it follows that, for w € W, the function ®p,, is given by
the series

(14.8) Cpuw(Ara)=a*"" D> a " Tpuu(N),
vENA(P)

with coefficients
(149) FP,’LU,V(A) = T(w) ° Fw—lpw,w—lu(rwil)‘) ° T(w)il'
We now have the following result on the convergence of the series (IZ4.8).

Corollary 14.2. Let w € W. Then there exists a locally finite real ¥-hyperplane
configuration H = Hy, in aj. and a map d = dy: H — N, such that the functions
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Lpw,w belong to M(ay., H, d, End(VTKMOWH“’_l)), for every v € NA(P). Moreover,
the series

(14.10) > a " Truww

veENA(P)

converges neatly on Aér (P) as an exponential polynomial series with coefficients in

the space M(aéC,H,d,End(VTKM”“’H“’_l)). In particular, the function X

= ®poy(X: ) belongs to the space M(ak., H, d, COO(AQF(P))®End(VTKMm‘JHw71)).
Proof. For w = 1 the assertion of the corollary follows immediately from Lemma
[[AT. For arbitrary w € W it then follows by application of (T4.9). O

For s € W we define the so-called partial Eisenstein integral F; s(A\)=E4 (P: A)
as the 7 ® 1-spherical function Xy — V; ® °C* determined by

(14.11) Ei s(A:aw)yp = Pp(sh: a)[C°(s: N (e),

for ¢ € °C, w € W, a € AF(P) and generic A € af. (use the isomorphism (2.9).
It follows from Corollary that E 5 is a meromorphic C*° (X : 7 ® 1)-valued
function on aj.. By sphericality it follows from (IZ7) and (IZIT) that

(14.12) E°(\) =Y E;. () on Xi.
seWw

It follows from the definitions and the isomorphism (ZI0) that, for generic A € a?.,
the function Ey 5(A)1 belongs to C°P (X : 7 ® 1) for each ¢ € °C. Moreover,

(14.13) Exp(P,v| E4 s(A\)Y) C sA — pp — NA(P),

for every v € W and hence also for every v € Nk (aq). Thus, we see that (IZI12)
is the splitting of Lemma applied to the Eisenstein integral. We abbreviate

E+(A\) = E41()). Then from (IZII) and (IZG) we see that
Er(AN)(aw)p = @paw(A: a)pu(e),

fory € °C,w e W, a € Ag‘ (P) and generic A € a;.. Moreover, the following holds
as a meromorphic identity in A € ag.

(14.14) Eis(A:z)=E;(sA:x)C°(s: \).

In the next lemma we will need the following notation. If A € b}, we de-
note by °C[A] the subspace of °C consisting of elements v satisfying pu(D: \)y =
Y(D: A+ ANy for all D € D(X), A € aj.. We recall from [9], (5.14), that °C is a
finite direct sum

°c=Ep °cinl,
A
where A ranges over a finite subset L, of bj.. For each A € b}, we define
(14.15) EVP(Xy:7: A):i=EYP(Xy: 71 84)

(see Definition [I2.8)) where 5 € Dp is the characteristic function of {A}. Likewise,
we define (cf. Definition [[3.10)

(14.16) 8(})1yp(X+: T: A)hglob: = g;zp(x_,_ LT 5A)hglob-
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Lemma 14.3. Let P € P™n t € W and ¢ € °C[A], where A € b}.. Define the
Jamily f = f{t}: azc x X4 — Vo, by

f()\,x) = E+,t(PI A fE)’lZ)
Then f € EP(Xy: 7: A) and deg, f = 0.

Proof. According to Definition 2.8 and Remark [TZ9, in order to prove that f €
EMP(X, : 7: A) we must establish that f € CP™P(X, : 7) and that fy is annihi-
lated by Ip4 for A in a nonempty open subset of reg, f.

We first assume that t = 1. Then f(A,x) = E4(A: z)y. It follows immediately
from [§], Cor. 9.3 and the hypothesis on % that fy is annihilated by I for generic
A € al.. We will now show that f € CSP™P(X ;7). Let H be the union of the hy-
perplane configurations H,,, w € W, of Corollary [[4.2], and let d: H — N be defined
by d = max,ew dy (see Remark [IT]). Then for every complete locally convex
space U, the spaces M(a?, Hy,dyw,U) are included in the space M(aZ., H,d,U),
with continuous inclusion maps. Hence for each w € W the series (I£10) con-
verges as a A(P)-exponential polynomial series on Al (P), with coefficients in the

space M(aZ., H, d, End(VEMMwHw ™)) Moreover, the function A — Dp,(A: -) s

qc?
1

contained in M(a%, H, d, C*(A{ (P)) © End (Vs ™)),

qe?
On the other hand, from (IZ11) and (I46) with s = 1, it follows that
(14.17) Th o (f)(a) = fF(A aw) = ®py(A: a)y(e),

for all w € W, a € AY(P) and X\ € a’.\ [JH. Hence the function A — ng,w(fA)

belongs to the space M(as., M, d, C“(A(j‘(P), VTKM”“’H“’A)). In view of the iso-

morphism (Z9), it now follows that the function A — fy belongs to M(a}.,H,d,
C> (X4 : 7)). This establishes condition (a) of Definition 2.1, with Q@ = P, and
Y ={0}.

The evaluation map ¥ — (e) is a linear isomorphism from C*(Xg ,: ™)
onto VEMOwHw™ "Thys for w € W and v € NA(P) we may define a function
qQ1u(Pyw] f)rag. — C%(Xo,w: Tm) by

(1418) 61,V(P; w | fv >‘a 6) = ]-—‘P7w,u(>\)ww (6)7

for A € a’.. Then ¢, (P,w| f) € M(aj, H,d, C*(Xo,w: Tm)). Moreover, from what
we said earlier about the convergence of the series (I4.10), it follows that, for w € W,
the series

> a Vg (Pwlf)

VENA(P)

converges neatly as a A(P)-exponential polynomial series on A(‘{ (P), with coeffi-
cients in M(a., H,d,C>(Xo,w: 1))

From ([[£17), (048) and ([IZIR) it follows by sphericality that, for w € W,
Aeal \UH, me X, and a € A} (P),

fr(maw) = a*=PP Z a @ (Pow| f)(A,m),
vENA(P)
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This establishes assertions (b) and (c¢) of Definition [21] with a fixed P, arbitrary
v e W, and, for v € NA(P), X € aq,
| G (Pul|f) for s=1,
Gsw(Pv|f, X) = { 0 for se W\ {1}.
In view of Remark[IZ.3 we have shown that f € CP"P(X, : 7). Moreover, deg, f =
0. This completes the proof for ¢t = 1.

Now let ¢t € W be arbitrary and let £ € Wy(b) be such that #|,, = t; see the text
preceding Lemma [5.5] From (IZ414) we see that

(14.19) fx)=E (th: 2)C°(t: A

It follows from [9], Lemma 20.6, that there exists a Y-configuration H’ in aj. and
a map d:H' — N, such that

(14.20) C°(t: -) € M(a}.,, H',d' ,End(°C)).

qc?

From [9], (5.13), it follows that C°(t: A\) maps °C[A] into °C[tA]. Fix a basis
Y1, ... s for °C[tA]. Then there exist unique functions c; € M(al., H',d") such
that

(14.21) Co(t: Ny = Z ¢ (A

For 1 < j <r we define the family g;: a’. x X4 — V; by

Then by the first part of the proof, each g; belongs to Eg)lyp(XJr : 7: tA). Moreover,
for every 1 < j < r, the family g; satisfies the conditions of Definition [2.1] with
Q = Pyand Y = {0}, with H and d as in the first part of the proof, and with & = 0.

For 1 < j < r we define the family f;:a’. x X — V. by f;(\,x) = g;(t\, z).
Then we readily see that f; satisfies the conditions of Definition 2. with ¢t ~'H and
dot in place of H and d, respectively, and with k = 0. Hence f; € Cgp’hyp(X+ D 7).
Since I;y 4\ = Insa We see that f; € EYP(Xy: 7: A). Moreover, deg, f; = 0.

Combining (I£19) and (IZ21)) with (I4:22) and the definition of f;, we find that

T
) =Y (N 2).
j=1

Let H” = t~'H U H' and define d”:H"” — N by d"(H) = d(tH) + d'(H) (see
Remark [[TT)). Then by linearity it readily follows that f satisfies all conditions of
Definition M2l with & = 0 and with H” and d” in place of H and d, respectively.
Hence f € CP™P(X, : 7) and deg, f = 0. Moreover, for generic , f is annihilated
by Ipya, and hence f € P (X, : 7: A). O

Corollary 14.4. Let assumptions be as in Lemma[T{.3 and let Q be a o-parabolic
subgroup. Let £ € M(*a5),cs XQ)fpur- Then L f € €g¥§(X+ :7:0) for Y =supp L
and 0 o suitable element in Dg. Moreover,

Exp(P,v|(L.f),) Ctlv+Y) — pp — NA(P)
for v e Nk(aq) and v € reg, L. f.

Proof. This follows immediately from Lemmas and [3H, and from (I£I13)
combined with the final statement in Proposition (b). O
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Lemma 14.5. Let ¢ € °C[A] where A € by.. Then the family f:a5. x X4 — V7,
defined by

fOuz)=E°(Py: A: 2)v

belongs to EP (X, : 7: A). Moreover, deg,f = 0 and for all P € Py,v € Ni(ag)
and every s € Wp\W, the family f is holomorphically s-global along (P,v) (see
Definition [13.6]).

Proof. The function f equals the sum, for ¢t € W, of the functions fi;; defined
in Lemma [[Z3] with Py in place of P. Hence f € £P(X,: 7: A) and deg, f = 0.
Moreover, for each A € reg, f, the function f) is asymptotically global along all pairs
(P,v) by Proposition 88 Thus, it remains to prove the assertion on holomorphic
globality. In view of Lemma [[31, it suffices to do this for arbitrary P € P, and
the special value v = e.

In the rest of this proof we shall use notation of the paper [7]. According to
[7], Lemma 14, there exists a locally finite collection H of ¥-hyperplanes such that
A+ fy is holomorphic on Qq: = aj. \ JH, with values in C>°(X: 7). According to
the same mentioned lemma it follows that f € £,(G/H,V;, ). According to [7],
p. 562, Cor. 1, for generic A € a. the function f) has an asymptotic expansion of
the form

(14.23) falzexptX) ~ Z pru(fa:s: A)(z) e rr =X (1 o0)

SEWP\W

vENA,.(P)
for X € apq at every Xy € aj{,q. Proposition 10 of [7] is valid with E.(G/H, V;, Qo)
in place of £,(G/H,A,Qp), by the remarks in the beginning of [7], Sect. 12. In
particular, there exists a full open subset “'a’. of aj. such that, for all s € Wp\W
and v € NA,(P), the coefficient pp,(fy: s: A) is holomorphic as a C*(G, V;)-
valued function of A on the full open set Qo N “ag..

On the other hand, since f € EP(X,: 7: A), and deg, f = 0, the expansion
([I232) holds, with ¥ = 0 and Y = {0}, for all A € Q:= reg, f. Thus, if X\ €
QN a;2(P,{0}) is generic, then it follows from comparing the expansions ([423)
and (12.2), and using Lemma and uniqueness of asymptotics (see the proof of
Lemma [T.7)), that

(14.24) gsw(Pre| £, X, N)(m) =ppo(fr:s: A)(m),

for all s € Wp\W, v € NA,(P), X € apq and m € Mp_; here we have written
Mp, 4 for the preimage of Xp. t in Mp.

By analytic continuation the equality (IZ24) holds for all A in the full, hence
connected, open subset Q':= QN Qy N Vai. of aj.. In particular, it follows that
A — g5, (P,e| f,A) is holomorphic on Q' as a function with values in Py(apq) ®
C®(Xpe: Tp), for all s € Wp\W and v € NA,(P). This establishes the assertion
on holomorphic globality; see Definition [3.6. O

Lemma 14.6. Let A € by, ¥ € °C[A], S C W and define fs:a5. x Xy — V. by

fsNz):=Y " Ey o(Po: A a)ib,

ses
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Then the family fs belongs to E¥P (X : 7: A). Moreover, let t € W and a € A,
and assume that either Wyt C S or Wot NS = 0, where W, = {1,s,}. Then the
family fs is holomorphically Wyt-global along (Pu,v), for every v € Nk (aq).

Proof. The first assertion is an immediate consequence of Lemma [T4.3] with Py in
place of P.
Let v € Ni(aq). It follows from ([[Z13) and Theorem[3.H that

Exp(Pa; v | f{s}/\) C S>\|auq — Pa — NAT(PO()

for each s € W. For A in the full open subset a} .(Fo,{0}) of a%,. the sets
5Manq — Pa — NA,(Py) are mutually disjoint for different [s] = Was from W, \W;

see Lemmas and 6.0, Hence

(14.25) Q)¢ (Pasv | frsy) =0,
for all s € W\ Wyt and all £ € A.(P,).
First assume that Wt N .S = 0. Then it follows from (IZ23) that qjy,¢(Pa,v |
fs) =0 for all £ € A.(P,). Hence fgs is holomorphically [t]-global along (P,,v).
Next assume that Wt C S. Let S¢ = W\ S. Then fs = fw — fse, and it follows
from Lemma [IZH and what was just proved, that fg is holomorphically [¢]-global

along (Py,v). O
If Q € P, is standard, then we define the subset W& of W by
(14.26) WP ={secW|s(Ag)Cc X}

It is well known (see e.g. [I6], Thm. 2.5.8) that the multiplication map W% x Wg —
W is bijective. Moreover, if s € W? and t € Wy, then I(st) = I(s) + I(t); here
I: W — N denotes the length function relative to A. In particular, this means that
W® consists of the minimal length representatives in W of the cosets in W/ Wq.

Lemma 14.7. Let s € W, a € A and assume that s~ ala,, # 0. Let t € Wq.
Then s € W@t if and only if sqs € WEt.

Proof. The hypothesis s’la|aQq # 0 is also satisfied by the elements s; = st~! and
59 = 545t~ 1. Hence we need only prove the implication s € W® = s,s5 € W&.
Assume that s € W?. Then s(Ag) C . From the hypothesis it follows that
s7la ¢ Ag, hence a ¢ s(Ag). Since « is simple, it follows that s, (s(Ag)) € T
Hence s,s € WQ. O

Corollary 14.8. Let ¢ € °C[A] where A € bl and let Q € P, be a standard
parabolic subgroup. Fizt € W, and let the family f:ag. x X4 — V. be defined by

fOva)= > By a(Po: At a)(@).
sewWe
Then f € EP (X4 72 A)nglon (see ([AIB)). If £ € M(*aGqer 2Q)taur» then the
family L, f belongs to the space 853:5 (X4 7: O)nglob (see Definition I3 10), where
Y =supp L, and where § is a suitable element of Dqg.

Proof. Let S = W®t. Then, f = fg, where we have used the notation of Lemma
6. It follows from the mentioned lemma that f € EPP(X, : 7: A). Moreover,
let s € W and o € A be such that s™'alq,, # 0. Then it follows from Lemma
417 that either W,s C S or W,sN S is empty. Hence it follows from Lemma [T4.0
that f is holomorphically W,s-global along (Py,v), for every v € Nk (aq). Thus
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f e &P (X4 : 7: Angop by Lemma [[ZTT The remaining assertion now follows
from Theorem 312 O

15. ASYMPTOTICS OF PARTIAL EISENSTEIN INTEGRALS

Let P € P2 and let Q be a o-parabolic subgroup containing P. For the appli-
cation of the asymptotic vanishing theorem, Theorem [[2.10} in the next section we
need to determine the coefficient of the leading exponent in the (@, v)-expansion of
the Eisenstein integral E°(P : A), for every v € Nk (aq). This is done in Proposition
[5.0], where the coefficient is expressed by means of an Eisenstein integral for Xg.
A similar result is derived in Proposition [[5.3] for the partial Eisenstein integral
E{ (P: \) and in Proposition [[5.4 for the family obtained by applying a Laurent
functional to E4 (P : A) (cf. Corollary [4.4).

We first need some notation related to the parabolic subgroup @, in addition
to what was introduced in Section B. Let v € Nk (ay) and select a complete set
of representatives Wg ., in Nk, (aq) for Wo/Wk,nvme—1- We define °C(Q,v) =
°C(Q, v, T) to be the analogue of the space °C for the data X;¢ 4, 7g. Thus

(15.1) Q)= @ C®(M/MnuvHuv)™": 7)

uEWQ v

with an orthogonal direct sum. Note that °C(Q,v) is also the analogue of °C for
the data Xg v, Q.

One readily checks that the map Wg,, — W/Wgkng given by u — Ad(uv)|aqy
is injective. Hence we may extend Wy ,v to a complete set W C Ng(aq) of
representatives for W/Wgng. If w € W, then w € Wg v <= = Kq. With
such choices made we have a natural isometric embedding ig ,:°C(Q,v) — °C,
defined by

: _ wwv*1 ifwe WQ,UU7
(15.2) (iQo¥)uw = { 0 otherwise.
The adjoint of the embedding ig . is denoted by prg ,: °C — °C(Q,v). It is given
by the following formula, for ¢ € °C,

(15.3) (prQ,vw)u = Yuv, (u € WQ,D)'

The normalized Eisenstein integral associated with the data X,¢ ., 7@ and *P: =
PN Mg is denoted by E°(X1q,,: *P: v), for v € a.. Similarly, the partial Eisen-
stein integrals associated with these data are denoted by Ey s(Xig,: *P: v), for
s € Wq and v € aj.. Note that all of these are (7q ® 1)-spherical smooth functions
on X1g,v,+ with values in Hom(°C(Q,v), V;) ~ V; ® °C(Q, v)*.

Proposition 15.1. Let P € P™" Q € P, and assume that Q D P. Let v €

g

Nk (aq), and choose Wq ..., W as above such that Wg ., C Wo™L. Let 1 € °C and
let the family f:ag. x X — V; be defined by

f\x)=E°(P: A: 2)9.
Then, for A\ € ag. generic, and for all X € agq and m € Xq v +,

(15.4) Ulagy—ra (Q,v|fr, X,m) = E°(Xu1gu: "P: At m)prg .
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Proof. We first assume that v = e. Then X1¢ , = X1g,e = M1g/MigNH. Moreover,
the set Wg: = Wq . is contained in W. From [7], p. 563, Thm. 4, it follows that

Q)\\qu—pQ (Qv e | X, m) = EO(XIQ,e (TP m) prQl/J,
for generic A € ag. and all X € agq and m € Xq, +. Here pry, is the natural
projection map from °C onto °Cq(7) = ,ew, € (M/M N vHv™1: my); see [T,
pp. 544 and 547. Thus, pr equals the map prg, . defined above and it follows that

([I54) holds with v = e. To establish the result for arbitrary v € Nk (a,), we first
need a lemma. O

From Remark[3T]we recall that X, = X1¢,, = G/vHv™1. The set Wavi= Wo~1
is a complete set of representatives for W/Wgn,pp—1. Accordingly, the analogue
°C(G,v) = °C(G,v,T) of the space °C is given by ({5.)) with G in place of Q.
The associated map ig,,: °C(G,v) — °C is now a bijective isometry; moreover, its
adjoint prg , is its two-sided inverse.

We recall from the end of Section B that right translation by v induces a topo-
logical linear isomorphism R, from C*°(X: 7) onto C*°(X,: 7). In the following
lemma we will relate the right translate of E°(P: \) to the normalized Eisenstein
integral associated with X,,, Wov~™! and P.

Lemma 15.2. Let ¢ € °C. Then, for generic A € a.,
(15.5) R,(E°(X: P: A\)p) = E°(Xy: P: A)[prg ).

The formula remains valid if the normalized FEisenstein integrals are replaced by
their unnormalized versions.

Proof. We first prove the formula for the unnormalized Eisenstein integrals. Let
A € aj. be such that (ReA + pp, a) < 0 for all a € %(P). Define the func-

tion ¥(\):G — V; as in [7], (19). Then E(P: \: z)p = [, 7(k)¥(\: k~'z) dk.
Hence E(P: At zo)y = [, 7(k)da,o(A: k~'z)dk, where g o(X: ) = ¥(X: 2v).
One now readily checks that @G,U()\) is the analogue of 7;(/\), associated with the
data X,,Wv~! and with the element ¢ ,:= prg ¢ of °C(G,v). From this we
obtain the equality (I5.5) for the present A. For general A, the result follows by
meromorphic continuation.

Let Q € P™n, Then it follows, by application of Lemma B.7] and the definition
of the c-functions (cf. [7], § 4), that, for every s € W, each u € Wv~! and generic
A € ai, we have [Co p(X: s: AN)Yluy = [Coip(Xy: s: A\)prg ,¥]u. In other words,

qc
Pra, o Coip(X:s: X)) = Coip(Xy: 81 A)oprg,,.
The proof is completed by combining this equation, after substitution of P and 1 for

Q@ and s, respectively, with the unnormalized version of (I55) and the definitions
of the normalized Eisenstein integrals (cf. [7], (49)). O

Completion of the proof of Proposition [[5 1l Let v € Nk (aq) be arbitrary. Then
from Lemmas[3.17, and equation (I5.4) with X,,, e and prg 9 in place of X, v
and 1, respectively, it follows that, for X € agq and m € Xg 4 4,

qk|qu—pQ(vi|f)\aXam) = Q)\\qu—pQ(Qae|Rv(f)\)7X7m)
= EO(X1Q76: “P:X:im)prg preg -

In the last expression the two tildes over objects indicate that the analogues of the
objects for the symmetric space X, are taken. We now observe that X;q . equals
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the space Miq/Mig NevHv e = Xig,. Hence, to establish (I5.4), it suffices
to show that prg .prg ¢ = prg ,%. For this we note that pry . is the projection
from °C(G,v) onto the sum of the components parametrized by the elements u of
Mig N Wov~t =Wg .. Moreover, for u € Wg,,,

[ﬁrQ,eprG,vw]u = [prG,u¢]u = Yup = [prQ,vw]u'

The result just proved generalizes to partial Eisenstein integrals.

Proposition 15.3. Let P € P™in. Let ) € °C, let S C W and let the family f = fs
be defined by

FOvz) =) Ep (P X 2);

seS

see Lemma[IZ-0. Assume that Q@ € P, contains P and that v € Nk (aq). Then, for

generic A € ag., and all X € agq and m € Xq v+,

(15.6) oy, o (@ 0], Xom) = > Eio(Xigu: "P: A:m)prg .
SESF‘IWQ

In particular, if SNWg =0, then Mag, — po ¢ Exp(Q,v] fr).

Proof. For S = W this result is precisely Proposition [A.1l. We shall use transitivity
of asymptotics to derive the result for arbitrary S from it.

It suffices to prove the above identity for m = bu € Xq o +, with u € Nk, (aq)
and b € *qu(*P) arbitrary.

According to Lemma [[4.3] and Remark [12:2] the function fs belongs to
Cgff{o}(XJr : 7: Q), for the full open subset 2: = reg, fs of a’..

Hence, according to Theorem with Py, Q and P in place of @, P and P,
respectively, for A € a;. generic the following holds, with [1] the class of 1 € W in
W/ ~qip,=Wo\W,

QMHQq—pQ (vi | fS)\; X, bu) = Q[l],O(Qa v | fs,X)(A, bu)

= > > v rrrrg (P fs, X +logh)(Ae).
s€EWq neNAg(P)

Now, for all s,t € W, u € NA and v € Ng(aq) it follows from (I£I13) and Lemma
that s, (P,v| fry) = 0if s # t. Hence

qs, va f if s S S,
4s,u(Pv ] fs) :{ 0 n(Pv ) otherwise.

Thus, we obtain that

q)\|aQq*/JQ (Q7 v | fSka X; bu)
(15.7) = Z Z I)S)‘fpf"qs,u(P7 wv| fw, X +logb)(\ e).

s€SNWq peNAq(P)
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This equation is valid for any subset S of W; in particular, it is valid for S = W.

Using (5.4)) we now obtain that, for any v € Nx, (aq) and all b € *qu(*P),
E°(Xi1Qu: "P: At bu)prg ¢

(15.8) =Y > Mg u(Puv] fw, X +logb)(Ae).
s€EWq neNAq(P)

This is the Ag(P)-exponential polynomial expansion of the Eisenstein integral
along (*P,u). In view of (IZI2) and the remark following ([ZI3), with X1, in
place of X, we infer from (I5.8) that, for each s € Wy, and every u € Ng,, (aq) and
be AL (*P),

By s(Xigu: "P: A bu)prg ¢

(15.9) = Z bS)‘_p_“qS’M(P, wv | fw, X +logb) (A e).
HENAQ(P)
Finally, (I5.6) with m = bu follows by combining (I5.7) and (I5.9). O

We end this section with a generalization of Proposition [[5.3, involving the
application of a Laurent functional.

Proposition 15.4. Let assumptions be as in Proposition [I23 and let L €
M08 XQ)taur- Then the family L. f defined by L. f(v,x) = LIf(- + v,x)], for
generic v € ag,. and x € X4, belongs to 85%{;(X+ :7:0), with Y = supp L and for
a suitable 6 € Dq.

Moreover, for generic v € af, . and all X € agq and m € Xq,v,+,

qV*PQ (Q,’U| (‘C*f)Vva m)

(15.10) =L] Y Ey.(Xigw:"P: - +vim)prg, .
seSNWq

In particular, if SNWq =0, then v — pg ¢ Exp(Q,v | (L f)v)-

Proof. The first assertion follows from Corollary T44]l For the second assertion, we
note that L.f € Cy (X4 : 7: Q), where Q is the full open subset ag, . \ UHc. s
of af),.; see Remark The set Q.:= QN ag, (P,{0}) is a full open subset of
05qc- Moreover, from (Z.14) it follows that, for v € (U,

(15.11) Q—pq (@ V] (Laf)r, X) = quio(@,v] Laf, X)(v), (X € agq);

here [1] denotes the image of the identity element of W in W/ ~¢ . The expression
on the right-hand side of the above equation is given by (I3H), with P = Q,0 =
[1] € W/ ~q|q and § = 0. Note that an element s € W satisfies [s] = [1] if and only
it s € Wg. It follows from this that [1] - Y = {0}. Hence from (I30) and (I32) we
conclude, with 1 denoting the image of 1 € W in W \W,

(15.12) .
Q[l],O(Q7U | E*f7X)(V) - Z Eg;l[(ﬁ,o(@a v | f)(Xa ')](Va X)

AEY

= 3 e L, [ OX) gy Q| X ).

€Y
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for X € agq and generic v € agy .. From (A+v)(X) = v(X) we deduce that the last
expression in (I5.12) equals oy Laxlgr,0(Q,v ] f)(X, -)](v). Hence from (I5.I1))
and (I5:12) we obtain

(15.13) Q—pq (Q, v [ (Laf)v, X) = Lila1,0(Q, v [ £ (X, -)](¥).

It follows from (15.6) and (7.14) that, for X € agq, m € XQ.u,+,

(15.14)  qio(@u[HXAm) = Y By (Xige: "P: A:m)prg, v,
SESﬁWQ

as a meromorphic identity in A € aj.. The equality (I5.10) now follows by combining

((513) with (I514). O
16. INDUCTION OF RELATIONS

After the preparations of the previous sections we are now able to apply the
vanishing theorem, Theorem to families obtained from applying Laurent
functionals to partial Eisenstein integrals. This will lead to what we call induction
of relations; see Theorem[I6.1l The subsequent Corollaries[16.2HI6.5] are reformula-
tions, which are useful for the applications. The lifting principle in Theorem
is also a reformulation. As mentioned in the introduction, a similar principle was
stated by Casselman for the group case in [IJ.

We retain the notation of the previous section. Moreover, we assume that ) € P,
is a standard parabolic subgroup. Thus *FPy:= Mg N Py is the standard minimal
o-parabolic subgroup of Mg, relative to the positive system yii= YgNX.

We assume that @V is a complete set of representatives in N (a,) for the double
coset space Wo\W/Wgnn. We also assume that for each v € QW a set Wo,v as
above ([I5.) is chosen. Then one readily verifies that

(16.1) W= |J Wgwv  (disjoint union).
veEQRW
is a complete set of representatives for W/Wkng in N (aq). Combining this with

([[52) and [I53) we find that
Z iQ,v opl”Q,U = Ioc.
veERW
Combining ([I6.1) with ([5.2) and ([I5.3), it also follows, for u,v € W, that
. _ I°C(Q,'U) ifu= (N
(16.2) PlQuelQe = { 0 otherwise.

Theorem 16.1 (Induction of relations). Let Li € M(*ag) ., Xq)
for each t € Wq. If, for each v € @W,

(16.3) > LBy i(Xqgu: “Po: - :m)oprg,] =0, (m € XQuwa),
tEWQ

® °C be given

*
laur

then for each s € W€ the following holds as a meromorphic identity in v € 0O)qc
(16.4) > LBy «(X:Py: - 4viz)]=0, (zeXy).
teWeq

Conversely, if the identity (I6.4) holds for some s € W and all v in a nonempty
open subset of ajy., then (I6.3) holds for each v € QW.
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Proof. Define for each w € W' the family g, : a5 X X4 — V> ® °C* by
gu(v,x) = L B4 (X Po: - +v:x)]

for generic v € ag),. and every x € X ; the elements s € WQ t € Wg are deter-
mined by the unique product decomposition w = st (see below (IZ.20]).
It follows from Corollary [[4.4] that there exist d,, € D¢ such that g, €

Egy’{}w (X4:7:6y); here Y,y = supp Ly, where t € Wy is determined as above.
If we put Y = JY,, and § = max(d,), then g, belongs to 85%§(X+ :7:0) for all
w € W. Moreover, for generic v € ag.;

(16.5) Exp(Po,v | (gw)y) Cw(v+Y) — p— NA.

In view of Proposition [[5.4 it also follows for X € agq, m € Xg.»,+ and generic
v € a5, that

Qv—pq (Qv v | (gt)l/a Xa m)

(16:6) = LBy 1(Xgw: "Fo: - +v:im)oprg,] (t € Wo),
and
(167) dv—pq (Qa v | (gw)l/a X, m) =0 (’U} ¢ WQ)

According to Corollary the family ) .y gst belongs to the space
55¥§(X+: 7: 0)glob for each t € Wq. Hence so does the family g = >, i g =

ZteWQ’ser gst. Moreover, by (I6.6]) and (I6.7)
Q—po (Q,v|(g)y, X,m)

= Z LiEr (Xgu: *Py: - +v:m) oprQw] (m € Xgv,+)-
teWeq

From Theorem [[2.10 we now see that ([6.3) holds for each v € @W if and only if
g=0.
On the other hand, let g* =37,y gst for s € WQ. Tt follows from ([[6.5) that

Exp(Po,v|(g°)y) C sy + WY — p—NA.

Since the latter sets are mutually disjoint as s runs over W, for v in a full open
subset (see Lemma [.2)), we conclude that for such v,

(sv + WY — p—NA)NExp(Po,v|g,) = Exp(Po,v]|(g°)y).

Hence g = 0 implies that g° = 0 for each s € W?. Conversely it follows from
Corollary that ¢ = 0 if g¢° = 0 for some s € W®. The theorem follows
immediately. (|

Corollary 16.2. Let v € W and let L, € M(*a5qe, 2Q) e @ °C(Q,v) be given
for each t € Wq. If

(16.8) > LB i(Xgu: "Py: - :m)] =0, (m € XQua),
teWq

then for each s € W the following holds as a meromorphic identity in v € A5qct

(16.9) Y LE;a(X: Pyt - +v:iz)eige] =0, (x e Xy).
teWeq
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Conversely, if the identity (I69) holds for some s € W and all v in a nonempty
open subset of afy,., then [IG.8) holds.

Proof. For t € Wq we define the functional £y € M(*a5),., Xq)
[I ®iq,0](Lt). Then for F' € M(*a5),., Xq) ® °C* we have
(16.10) LYF = Ly[F(-)ig.v)-

Let u € ®W. Then from (I6.2) and (I6.8) we deduce that (I6.3) holds with u
and L in place of v and Ly, respectively. It follows that ([G.4) holds with £ in

place of £;. In view of (I6.10) this implies ([IG.9). The converse statement is seen
similarly. [l

®°C by L =

*
laur

Another useful formulation of the principle of induction of relations is the fol-
lowing.

Corollary 16.3. Let v € OW. Let L; € M(*a5, £q)
°C(Q,v) be given for each t € Wq. Assume that

(16.11) > LBy (Xgu: "Po: - :m)ei(- +1v)] =0, (m € XQut)
teWeq

for generic v € afy .. Define ¢y = (I®iq,v)pr € M(a3., ¥)®°C, fort € Wq. Then,

for each s € WO,

S LB (X Py - Avia)(-+v)] =0, (zeXy)
teWo

and ¢ € M(aj, %) ®

*
laur

as an identity of V;-valued meromorphic functions in the variable v € A0qe-

Proof. Let H be a X-configuration such that sing(¢:) C M, for each t € Wy.
Moreover, let Y = UteWQ supp Lt C *aq.- Fix t € Wgq. Let H':= Hay, (V) be
the ¥,.(Q)-configuration in ag,,. defined as in Corollary IT.6. Let v € ag. \ UH/;
then the function ¢y: A — @i(A + v) belongs to M(*ag,.,Y,Xq). It follows from
([017) that the functional £y € M(*ag) ., X@)* ® °C(Q,v) defined by
LYFC)):= L F (e + )],

for F' '€ M(*aj, Xq) ® °C(Q,v)*, is a °C(Q,v)-valued Xq-Laurent functional
on *ag.- The hypothesis (IG.II) may be rewritten as (IG8) with £} in place of

L, for each t € Wg. By application of Corollary we therefore obtain, for
v € ah, \ UM, that

(16.12) > LBy «(X: Py -+ pra)u(- +v)]=0
teWg

as an identity of V;-valued meromorphic functions in the variable p € a7, .. Accord-
ing to Lemma [T the expression in this equation defines a meromorphic V,-valued
function on ag,),. X ag),. whose restriction to the diagonal is a meromorphic function
on ag),.. Thus, if we substitute v for 41 in ([I612), we obtain an identity of V;-valued
meromorphic functions in the variable v € A5qe- |

Corollary 16.4. Let L1, L2 € M(*a8),c XQ)iaur ® °C. If; for each v € Qw,
L1[Ey(XQu: "Po: - :m)oprg,]

16.13 ° *
( ) = Lo[E°(XQu: "Po: - :m)oprg,], (m e XQu+),
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then the following holds as a V;-valued meromorphic identity in v € A5qct

Lq] Z Ei(X:Py:-+v:z)]
(16.14) sewe
=Ly E°(X: Py: - +v:x)], (x € Xy).
In particular, for reqular values of v, the expression on the left extends smoothly in
the variable x to all of X.
Conversely, if the identity (I6I4) holds for v in a nonempty open subset of ag).,

then [I6.13) holds for each v € YW,

Proof. It follows from (IZ.I2)) that E°(Xq,: *Fo: /\):ZteWQ Eii(Xguw: *Py: A).
Define £; € M(*a5yc, 2Q)au @ °C for t € Wq as follows. If t = e, then L;:=
Lo — L1, and otherwise L£;:= L5. Then the hypothesis (I63) in Theorem [I6.1]

follows from (I6.I3). Hence the conclusion ([6.4) holds for each s € W®. By
summation over s this implies that

(16.15) SN LB a(X: PRy +via)] =0,  (zeXy)
seWe teWqg

which, by the definition of the operators £; is equivalent to (IG.14).

For the converse, let ¢g°(v, x) denote the expression in ([I6.4), as in the proof of
Theorem[T6.1], with £; specified as above. Then it was seen in the mentioned proof
that if the sum g of the ¢g° vanishes, then so does each g° separately. Now (I6.14)
implies (I6.I5) which exactly reads that g = 0. Thus (I6.4)) holds for each s € W,
so that the converse statement in Theorem [I6.1] can be applied. O

The result just proved allows a straightforward corollary similar to Corollary
(6.2, in which the maps ig,, are used instead of the maps prg - We omit the
details. The following result is derived from Corollary [[6.3 in exactly the same way
as the first part of Corollary [6.4 was derived from Theorem [16.1]

Corollary 16.5. Letv € QW. Let L1, Lo € M(*a%0, Q) nur be o-Laurent func-

laur

tionals on *ag.., and let 1,2 € M(ai., %) ® °C(Q,v). Assume that
LBy (X “Po: - i m)gi(- +0)) = L2(E°(Xqu: “Po: - m)ga(- + 1)),
for allm € Xq v+ and generic v € ajy .. Define; = (I®ig,.)p; € M(ag., X)®°C,
for j=1,2. Then, for every x € X4,
L4 Z Ei(X:Py: - F+v:a)y(- +v)) =L B°(X: Py - +v:a)e(- +v)),
SEW®R
as an identity of V;-valued meromorphic functions in the variable v € A5qe-

Corollary 16.6. Let v € W and let 1), € M(*ad)e X@) ® °C(Q,v) be given for
eacht € Wq. Let Ao € *ag, .. Assume that for each m € Xq v+, the meromorphic
Vr-valued function on ag,,., given by

A Z Ei+(Xguw: "Po: A m)e(N),
tEWQ

is reqular at \g. Then for s € W®, x € X, and generic v € U6qe the meromorphic
function
(16.16) A Z Ei o(X: Po: A4 v: x)iguee(N)

teWgq

is also reqular at \g.
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Proof. The function in (I6I6) has a germ at Ao in M(*ag,., Ao, Xq). By Lemma
0.7 it suffices to show that it is annihilated by M(*a%.c, Ao, BQ) ey Let £ €

M(*afqe, Mo, o)y and define £; € M(*af, 0, 2Q) oy @ °C for t € Wo by L, =

laur

m;}tﬁ; see (I0.17). The desired conclusion now follows from Corollary [16.2. O

We shall now give an equivalent formulation of the induction of relations. We
call it the lifting principle. For the group case a similar principle was formulated
by Casselman (see [I], Thm. II.4.1), however, with Eisenstein integrals that carry
a different normalization.

Definition 16.7. The space A}, (X4 : 7) is defined as the space of functions
x— LIEL(Po: -1 x)] €V,
where £ € M(ag., X){,,, ® °C. It is a linear subspace of C*° (X : 7).

laur

It follows from Corollary [44 with Q@ = G that A (X4 : 7) consists of D(X)-
finite functions in C*P(Xy : 7).
Remark 16.8. Let £ € M(a}., ¥),,,®°C. Then Llp(-)E (P: )] € Alawr(X4: 7)
for all p € M(aj.,¥) (see ([0.7)). In particular, it follows from (I4.20) that
C°(s: -) € M(a}.,¥) ® End(°C). Hence it follows from the identity (I4.14)) that
LIE4 (Po: )] € Alawr(X4: 7) for each s € W. Moreover, by similar reasoning it
can be seen that the space Ajau: (X4 : 7) does not depend on the choice of Py € Pz,

Remark 16.9. Let Ao € aj. and ¢ € M(aj.,X) ® °C, and assume that A —
EL+(Py: N)@(A) is regular at Ag. Then the function = — u[E4(Po: At 2)o(A)]|a=x,
belongs to Ajaur (X4 : 7) for each u € S(a;;) (see the previous remark and Lemma
M0.15). Moreover, it follows easily from the definition of M(aj., ¥),,, that
Alaur (X4 1 7) is spanned by functions of this form.

Theorem 16.10 (Lifting principle). Let Q € P, be a standard parabolic subgroup,
and let s € W9 be fized.

(a) There exists for each v € @W a unique linear map
Fy st Al (XQuo4 1 7Q) = M(agqe, Br(Q), C%(Xy 2 7))

with the following property. If ¢ € Alaur(XQ v+ : TQ) is given by

(16.17) pm) =Y LB (Xgu: "Po: - :m)]  (m€Xquy),
tEWQ
for some L € M(*a5)0, Q) faur ® °C(Q,v), t € W, then
(16.18) Fiow(@)(vx) = Y L By w(X: Py: - +v:a)igu]
tEWQ

Jor x € Xy and generic v € agy..
(b) The function x — Fy ,(p,v,x) belongs to Alaur (X4 : 7) for generic v.
(¢c) The map

Fys: @ Al (XQuo,1 1 7Q) = M(aHqe, 20 (Q), O (X4 1 7)),
vEQRW

given by Fiy o(p) =3, Fy s 0, is injective.
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Proof. The uniqueness is clear from Definition I6.71 We use (I6.17) and (I6.I8)
as the definition of F ,,; the fact that Fly ;,(p) is well defined for all ¢ €
Alaur(Xg v+ 1 TQ) 1s equivalent with the first statement in Theorem [I6.1] (see also
Corollary 16.2). Once the definition makes sense, it is easily seen that Fl s, (p)
depends linearly on . That Fy 5., (p,v) € Ajau (X4 : 7) for generic v is seen from
Lemma[I1.7 Finally, the injectivity of F} s is equivalent with the final statement
of Theorem [I6.11 O

Remark 16.11. Note that with ¢, = E°(Xg.,: *Po: A) for each v € QW we obtain

Z Ei 4(X:Py: A+v:x)igy = F4 s0(00, v, ),
teWo

for z € X4, and hence by summation over v and s

E°X:Py: A+v:x)= Z Fi s(o,v,x).
SEW®

Remark 16.12. In [11], Definition 10.7, we define the generalized Eisenstein integral
En(p:v) € C°(X: 1) for i € Cp, v € af,. (With the notation of loc. cit.). By
comparison with Theorem [I6.10 for @) = Pp it is easily seen that ER(¢: v: z) =
Fi1(¢,v,x) for z € X4

17. APPENDIX A: SPACES OF HOLOMORPHIC FUNCTIONS

If Q is a complex analytic manifold, then by O(£2) we denote the space of holo-
morphic and by M(2) the space of meromorphic functions on .

If V' is a complete locally convex (Hausdorfl) space, we say that a function
p:Q — V is holomorphic if for every a € €2 there exists a holomorphic coordinati-
sation z = (z1,...,2,) at a such that in a neighborhood of a the function ¢ is
expressible as a converging V-valued power series in the coordinates z. The space
of such holomorphic functions is denoted by O(£2, V). We equip this space with a
locally convex topology as follows. Let P be a separating collection of continuous
seminorms for V. For every p € P and every compact set K C €2 we define the
seminorm v, on O(Q,V) by vk ,(¢) = supg po . This collection of seminorms
is separating hence equips O(€, V) with a locally convex topology. Note that this
topology is independent of the choice of P. Moreover, it is complete; it is Fréchet
if V' is a Fréchet space.

We recall that O(,V) is a closed subspace of C*°(Q, V). Indeed, if 9 denotes
the anti-linear part of exterior differentiation, then O(£2, V) is the kernel of 0 in
C>(Q,V).

A densely defined function ¢: — V is called meromorphic if for every a € Q
there exists an open neighborhood U of a, and a function ¢» € O(U) \ {0} such that
Y € O(U, V). As usual, meromorphic functions are considered to be equal if they
coincide on a dense open subset. The space of V-valued meromorphic functions
on Q is denoted by M(Q, V). If ¢ is an V-valued meromorphic function on Q, we
define reg(y) to be the largest open subset U of Q for which ¢|y coincides (densely)
with an element of O(U,V). The complement sing(yp) = Q \ reg(y) is called the
singular locus of ¢.

Lemma 17.1. Let X be a C* and 2 a complex analytic manifold. Let V' be a
complete locally convex space.
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Let F be the locally convex space of C*°-functions X x Q — V that are holo-
morphic in the second variable. Given f € F and x € X, we define the func-
tion 1f(2):Q = V by 1f(x)(2) = f(x,2). Given z € Q we define the function
2f(2): X =V by o f(2)(x) = f(2,2).

(a) The map f — 1f defines a natural isomorphism of locally convex spaces from
F onto C*(X,0(,V)).
(b) The map f — of defines a natural isomorphism of locally convex spaces from
F onto O(,C>*(X,V)).
In particular, the above maps lead to a natural isomorphism

CT(X,0(9Q,V)) = 0(Q,C=(X, V).

Proof. The above isomorphisms are valid with O replaced by C*° everywhere. This
is a well known fact, and basically a straightforward consequence of the definitions,
though somewhat tedious to check. The isomorphisms with O are seen to be valid
by showing that the appropriate kernels of the operator 0 correspond. Checking
this involves a local application of the multivariable Cauchy integral formula. O

18. APPENDIX B: REMOVABLE SINGULARITIES

We discuss a variation on the idea of removable singularities for holomorphic
functions that is particularly useful for application in the present paper.

A subset T of a finite dimensional complex analytic manifold © will be called
thin if for every A € Q there exists a connected open neighborhood U and a nonzero
holomorphic function ¢ € O(U) such that TNU C ¢~ 1(0); see [21], p. 19. An open
subset U of ) will be called full if its complement is thin. It is clear that a full
subset of () is dense in 2. Note that the union of finitely many thin subsets is thin
again; accordingly, the intersection of finitely many full open subsets of 2 is again
a full open subset. Obviously any union of full open subsets is a full open subset.
Note also that if 2 is connected, then every full open subset of € is connected ([21]
p. 20).

Lemma 18.1. Let j:V — W be an injective continuous linear map of complete
locally convexr Hausdorf spaces, and let F' be a W -valued holomorphic function on
a complex analytic manifold Q. Assume that there exists a full open subset Qg of
Q and a holomorphic function Go:Qy — V' such that such that F' = jo Gy on Q.
Then there exists a unique holomorphic map G:Q — V' such that joG = F.

Proof. Clearly the result is of a local nature in the Q-variable, so that we may
assume that  is a connected open subset of C™, for some n € N. Moreover, we
may as well assume that Qg = Q\ p=1(0), with ¢ € O(Q) a nonzero holomorphic
function.

Fix A9 € Q. Since ¢ is nonzero, the function z — (g + zu), defined on a
neighborhood of 0 in C, is nonzero for some p € C™\ {0}. Being holomorphic, this
function then takes the value 0 in isolated points. Hence we may choose i such that
Ao+ zp € Qo for 0 < |z| < 1. By compactness there exists an open neighborhood
No of A\ in Q such that A+ zpu € Q for all A € Ng and z € C with |z] < 1, and such
that A 4+ zp € Qg for |z| = 1. By the Cauchy integral formula we have

1

dz
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Here 0D denotes the boundary of the unit circle in C, equipped with the orientation
induced by the complex structure, i.e., the counter clockwise direction.

Note that the W-valued (or V-valued) integration is well defined, since W (or
V) is complete locally convex. In the integrand of (I8 the function F(A 4 zu)
may be replaced by j(Go(A+zu)). Using that j is continuous linear we then obtain
that

(18.2) F(X) =j(G(N),
where

-
27 Jap

G(\): Go(A + zu) % (A € Ny).

Clearly G: Ny — V is a holomorphic function; moreover, it is uniquely determined
by equation (I82), since j is injective. This implies that the local definition of G
is independent of the particular choice of u. Moreover, it also follows from (IR:2)
and the injectivity of j that all local definitions match and determine a global
holomorphic function G: ) — V satisfying our requirement. (|

Corollary 18.2. Let Qg be a full open subset of a complex analytic manifold 2 and
let Xy be a dense open subset of a C°°-manifold X. Moreover, let F:Q x Xg — C
be a C* function that is holomorphic in its first variable, and assume that its
restriction to Qo X Xg has a smooth extension to Qo x X. Then the function F' has
a unique smooth extension to ) x X. Moreover, the extension is holomorphic in its
first variable.

Proof. As in the proof of the above lemma we may as well assume that Q is an
open subset of C™, for some n.

Let V =C>(X) and W = C*(Xj) be equipped with the usual Fréchet topolo-
gies. Restriction to X, induces an injective continuous linear map j: V' — W.

By Lemma I7TI(b) we see that the function F:Q — W, defined by F(z) =
F(z, -) is holomorphic. Let Gy be the extension of (z,z) — F(z,z) to a smooth
map Qp x X — C. Then by density and continuity the function G satisfies the
Cauchy-Riemann equations in its first variable. Hence it is holomorphic in its first
variable, and it follows that the function Go: Qo — V defined by Go (2) = Go(z, +)
is holomorphic. From the definitions given we obtain that F = joéo on (. By
the above lemma there exists a unique holomorphic function G: 2 — V such that
F = joG. The function G: (z,2) — G(z)(x) is the desired extension of F. O
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