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TWINING CHARACTER FORMULA
OF KAC-WAKIMOTO TYPE

FOR AFFINE LIE ALGEBRAS

SATOSHI NAITO

Abstract. We prove a formula of Kac-Wakimoto type for the twining charac-
ters of irreducible highest weight modules of symmetric, noncritical, integrally
dominant highest weights over affine Lie algebras. This formula describes the
twining character in terms of the subgroup of the integral Weyl group consist-
ing of elements which commute with the Dynkin diagram automorphism. The
main tools in our proof are the (Jantzen) translation functor and the existence
result of a certain local composition series which is stable under the Dynkin
diagram automorphism.

1. Introduction

In [FSS] and [FRS], they introduced the notion of twining characters of cer-
tain highest weight modules over (generalized) Kac-Moody algebras, corresponding
to Dynkin diagram automorphisms. Moreover, they gave formulas for the twining
characters of Verma modules of arbitrary symmetric highest weights and irreducible
highest weight modules of symmetric, dominant integral highest weights (see The-
orems 4.4 and 4.5). The aim of this paper is to give a formula of Kac-Wakimoto
type for the twining characters of irreducible highest weight modules over affine Lie
algebras of symmetric, noncritical, integrally dominant highest weights (including
symmetric, dominant integral ones). We should note that our method of proof is
quite different from that in [FSS] and [FRS], since an irreducible highest weight
module is not integrable if its highest weight is not dominant integral.

Let us explain our formula more precisely. Let g := g(A) be an affine Lie
algebra over C with A = (aij)i,j∈I the Cartan matrix, h the Cartan subalgebra,
Π = {αi}i∈I ⊂ h∗ := HomC(h,C) the set of simple roots, Π∨ = {hi}i∈I ⊂ h the set
of simple coroots, and W = 〈ri | i ∈ I〉 ⊂ GL(h∗) the Weyl group, where ri is a
simple reflection. For a real root α = w(αi) ∈ ∆re := W ·Π with w ∈ W and i ∈ I,
the dual real root hα of α is defined to be an element hα := w(hi) ∈

∑
i∈I Zhi. For

λ ∈ h∗, we set

∆(λ) := {α ∈ ∆re | λ(hα) ∈ Z},

W (λ) := 〈rα | α ∈ ∆(λ)〉 ⊂W,
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where rα ∈W is the reflection of h∗ corresponding to α. Furthermore, let Π(λ) be
the set of simple roots for the positive system ∆(λ)+ := ∆(λ) ∩∆+.

For λ ∈ h∗, we denote by M(λ) the Verma module of highest weight λ, and
by L(λ) the irreducible highest weight module of highest weight λ over g. Let
ω : I → I be a bijection such that

aω(i),ω(j) = aij for i, j ∈ I

(such a bijection ω is called a (Dynkin) diagram automorphism). We choose and
fix a set of representatives Î of the ω-orbits in I, and denote by Ni the number of
elements in the ω-orbit of i ∈ I. This ω induces an automorphism (also called a
diagram automorphism by abuse of notation) ω : g → g of the affine Lie algebra
g, which stabilizes h. We denote the dual map of the restriction of ω to h by
ω∗ : h∗ → h∗. In addition, we define the following subgroup of W

W̃ := {w ∈W | ω∗w = wω∗}.

Let λ ∈ h∗ be a symmetric weight (i.e., ω∗(λ) = λ). Then the diagram automor-
phism ω induces on the highest weight modules V (λ) = M(λ), L(λ) unique linear
automorphisms

τω : V (λ)→ V (λ)

such that

τω(xv) = ω−1(x)τω(v) for x ∈ g, v ∈ V (λ)

and the restriction of τω to the highest weight space V (λ)λ is the identity. Now the
twining character chω(V (λ)) is defined to be the formal sum

chω(V (λ)) :=
∑
χ∈h

∗

ω∗(χ)=χ

Tr(τω |V (λ)χ) e(χ),

where V (λ)χ is the weight space corresponding to χ ∈ h∗.
Our main result in this paper is the following theorem.

Theorem. Let λ be an element of h∗ such that ω∗(λ) = λ, (λ + ρ)(c) 6= 0, and
(λ + ρ)(hα) > 0 for all α ∈ ∆(λ) ∩∆+. Here ρ ∈ h∗ is a fixed element such that
ρ(hi) = 1 for all i ∈ I and ω∗(ρ) = ρ, and c ∈ h is the canonical central element.

(a) When W (λ) ∩ W̃ = {1}, we have

chω(L(λ)) = chω(M(λ))

= e(λ) ·

∑
w∈W̃

(−1)̂̀(w) e(w(ρ) − ρ)

−1

,

where ̂̀ : W̃ → Z denotes the length function of the Coxeter group W̃ .
(b) When W (λ)∩W̃ 6= {1}, we further assume that for each α ∈ Π(λ), the integer

λ(hα) is a multiple of the greatest common divisor of the integers
∑Ni−1

k=0 lαωk(i),
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i ∈ Î, where hα =
∑

i∈I l
α
i hi ∈

∑
i∈I Z≥0hi. In this case, we have

chω(L(λ)) =
∑

w∈W (λ)∩W̃

(−1)̂̀λ(w) chω(M(w(λ + ρ)− ρ))

=

∑
w∈W (λ)∩W̃

(−1)̂̀λ(w) e(w(λ + ρ))

∑
w∈W̃

(−1)̂̀(w) e(w(ρ))
,

where ̂̀λ : W (λ)∩W̃ → Z denotes the length function of the Coxeter group W (λ)∩
W̃ .

Since the additional assumption on λ in part (b) of the theorem is made for
some technical reasons, it seems very likely that this assumption can be removed.
However, for our proof of the theorem, it is essential (see §6.2).

This paper is organized as follows. In §2, we recall some basic facts about affine
Lie algebras from [Ka]. In §3, we review the notion of orbit Lie algebras from [FRS]
and [FSS]. In §4, we recall the definition of twining characters and main results
of [FSS] or [FRS]. In §5, we introduce the (Jantzen) translation functor and show
some of its important properties. In §6, we show the existence of a certain τω-stable
local composition series. Making essential use of this, we finally prove our main
result (Theorem) stated above.

Acknowledgments. I express my sincere thanks to Professor Kiyokazu Suto for
many valuable discussions and helpful suggestions, which lead to the existence result
of a certain τω-stable local composition series (which is named a Suto filtration after
him). I also profitted greatly from discussions via e-mail with Professors Seok-Jin
Kang, Jae-Hoon Kwon, and Christoph Schweigert.

2. Affine Lie Algebras

We recall the definition and some basic properties of affine Lie algebras from
[Ka].

2.1. Generalized Kac-Moody algebras of at most affine type. Though
our interest is focused upon the twining characters for affine Lie algebras, it is
convenient for later use to explain the notion of generalized Kac-Moody algebras
(GKM algebras) of at most affine type. Here we follow the notation of [Ka] (see
also [B]).

Let I = {1, 2, . . . , n} be a finite index set, and let A = (aij)i,j∈I be an n × n
real matrix (called a GGCM) satisfying:

(C1) either aii = 2 or aii ≤ 0 for i ∈ I;
(C2) aij ≤ 0 for i, j ∈ I if i 6= j, and aij ∈ Z for j 6= i if aii = 2;
(C3) aij = 0 if and only if aji = 0.

We assume that after reordering the indices, the matrix A decomposes into a direct
sum of generalized Cartan matrices (GCMs) of finite type, GCMs of affine type,
and the 1 × 1 zero matrices. We call such a matrix A a GGCM of at most affine
type. Let g = g(A) be the generalized Kac-Moody algebra (GKM algebra) over
C assiciated to a GGCM A = (aij)i,j∈I of at most affine type, with h the Cartan
subalgebra, {ei, fi}i∈I the Chevalley generators, Π = {αi}i∈I ⊂ h∗ := HomC(h,C)
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the set of simple roots, and Π∨ = {hi}i∈I ⊂ h the set of simple coroots. We
have a root space decomposition of g with respect to the Cartan subalgebra h:
g =

(⊕
α∈∆−

gα

)
⊕ h ⊕

(⊕
α∈∆+

gα

)
, where ∆+ ⊂ Q+ :=

∑
i∈I Z≥0αi is the set

of positive roots, ∆− = −∆+ is the set of negative roots, and gα is the root space
corresponding to a root α ∈ ∆ = ∆− t∆+. Note that gαi = Cei, g−αi = Cfi for
i ∈ I. We call Q :=

∑
i∈I Zαi ⊂ h∗ the root lattice, and Q∨ :=

∑
i∈I Zhi ⊂ h the

coroot lattice of g.
We set Ire := {i ∈ I | aii = 2}, Iim := {i ∈ I | aii = 0}, and call Πre := {αi ∈

Π | i ∈ Ire} the set of real simple roots, Πim := {αi ∈ Π | i ∈ Iim} the set of
imaginary simple roots. Then the Weyl group W of the GKM algebra g is defined
to be W = 〈ri | i ∈ Ire〉 ⊂ GL(h∗), where ri is a simple reflection. Note that W is
a Coxeter group with the canonical generator system {ri | i ∈ Ire}. We denote by
` : W → Z the length function of W . We call ∆re := W ·Πre the set of real roots,
and ∆im := ∆ \ ∆re the set of imaginary roots. For a real root α = w(αi) with
w ∈ W and i ∈ Ire, the dual real root hα of α is given by hα = w(hi) ∈ Q∨.
2.2. Invariant bilinear forms. A GGCM A = (aij)i,j∈I of at most affine type is
clearly symmetrizable, i.e., there exist an invertible diagonal matrixD = diag(εi)i∈I
and a symmetric matrix B = (bij)i,j∈I such that A = DB. Note that all the εi can
be taken to be positive rational numbers, and all the bij to be rational numbers
since A = (aij)i,j∈I is an integral matrix. Thus, there exists a nondegenerate,
symmetric, invariant bilinear form (·|·) on g = g(A). The restriction of this form
(·|·) to h is again nondegenerate, so that it induces (through a linear isomorphism
ν : h → h∗ defined by ν(h)(h′) = (h|h′) for h, h′ ∈ h) on h∗ a nondegenerate,
symmetric, W -invariant bilinear form, which is also denoted by (·|·). We note that

(αi|αj) = bij = aij/εi for i, j ∈ I, λ(hi) = εi(λ|αi) for λ ∈ h
∗, i ∈ I,

λ(hα) = 2(λ|α)/(α|α) for λ ∈ h∗, α ∈ ∆re.

Remark 2.2.1. A root α is an imaginary root if and only if (α|α) ≤ 0, while for a
real root α = w(αi) with w ∈W and i ∈ Ire, we have (α|α) = (αi|αi) = 2/εi > 0.

2.3. Affine Lie algebras. Let us assume in this subsection that the matrix
A = (aij)i,j∈I is a GCM of affine type. The Kac-Moody algebra g = g(A) is called
an affine Lie algebra.

Let c =
∑

i∈I a
∨
i hi ∈ Q∨ (with the a∨i , i ∈ I, relatively prime positive integers) be

the canonical central element spanning the (one-dimensional) center. We know that
the restriction of the bilinear form (·|·) on h∗ to

∑
i∈I Rαi is positive-semidefinite

with one-dimensional radical. Let δ =
∑

i∈I aiαi ∈ Q (with the ai, i ∈ I, relatively
prime positive integers) be the null root spanning the radical. We remark that the
set ∆im

+ := ∆im ∩∆+ of positive imaginary roots is equal to Z≥1δ, and w(δ) = δ
for all w ∈W . Note that ν(c) = qδ for some positive rational number q ∈ Q.

3. Orbit Lie Algebras

We review the notion of orbit Lie algebras mainly from [FRS] and [FSS]. How-
ever, since we need to deal with decomposable GCMs, there are some additional
considerations. See also [N1] for the “transposed” version of orbit Lie algebras,
which were called folding subalgebras. In this section, we assume that the matrix
A = (aij)i,j∈I decomposes, after reordering the indices, into a direct sum of GCMs
of finite type and those of affine type.
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3.1. Diagram automorphisms. A bijection ω : I → I such that

aω(i),ω(j) = aij for i, j ∈ I(3.1.1)

is called a (Dynkin) diagram automorphism. This induces an automorphism of the
Dynkin diagram S(A) of the GCM A as a graph. Since the graph S(A) is not
necessarily connected, we have the following decomposition of S(A) into connected
components: S(A) =

⊔m
l=1 S(A(l)), where for each l, 1 ≤ l ≤ m, the subgraph

S(A(l)) of S(A) is a connected component corresponding to the subset I(l) of the
index set I. Note that by assumption the submatrix A(l) := (aij)i,j∈I(l) is a GCM
of finite type or affine type for 1 ≤ l ≤ m. We set K := {1, . . . ,m}. It is easy to see
that the diagram automorphism ω : I → I maps a connected component S(A(l))
to another (or the same) connected component, say S(A(ω̇(l))), for l ∈ K. Thus ω
induces a bijection ω̇ : K → K. It is obvious that the Dynkin diagram S(A(ω̇(l)))
is isomorphic to the Dynkin diagram S(A(l)) as a graph for l ∈ K.

Let N be the order of ω : I → I, and Ni the number of elements in the ω-orbit
of i ∈ I in I. It is clear that the restriction of ω to each ω-orbit of i ∈ I is a cyclic
permutation of order Ni. Similarly, let M be the order of ω̇ : K → K, and Ml the
number of elements in the ω̇-orbit of l ∈ K in K. Then the restriction of ω̇ to each
ω̇-orbit of l ∈ K is a cyclic permutation of order Ml, and hence the restriction of
ωMl to I(l) induces an automorphism of the Dynkin diagram S(A(l)) as a graph
for l ∈ K.

Since the matrix A = (aij)i,j∈I is symmetrizable, we have a decomposition
A = DB with D = diag(εi)i∈I as in §2.2. We immediately obtain the following:

Lemma 3.1.1. For each l ∈ K, there exists a positive rational number Rl such
that εω(i) = Rl εi for all i ∈ I(l).

Proof. Since A = DB, we have aij = εibij for i, j ∈ I. Hence, by condition (3.1.1),
we have εω(i)bω(i),ω(j) = εibij and εω(j)bω(j),ω(i) = εjbji for i, j ∈ I. So we obtain

εiεω(j)bijbω(j),ω(i) = εjεω(i)bjibω(i),ω(j).

Note that if aij = aω(i),ω(j) 6= 0, then bij = bji 6= 0 and bω(i),ω(j) = bω(j),ω(i) 6= 0.
Thus we have ε−1

i · εω(i) = ε−1
j · εω(j) if aij 6= 0. Recall that the subgraph S(A(l))

of the Dynkin diagram S(A) corresponding to the subset I(l) of I is connected.
Therefore there exists a positive rational number Rl such that ε−1

i · εω(i) = Rl for
all i ∈ I(l).

Remark 3.1.2. For l ∈ K with Ml = 1, it follows that Rl = 1 since
∏
i∈I(l) εω(i) =

R
](I(l))
l ·

(∏
i∈I(l) εi

)
implies Rl = 1.

By Lemma 3.1.1, we can write D = D1D2, where D1 = diag(ε′i)i∈I such that
ε′ω(i) = ε′i for all i ∈ I and every ε′i is a positive rational number, and where D2 is a
diagonal matrix with all the diagonal entries positive rational numbers. Let us set
D′ := D1 and B′ := D2B. By taking these new matrices D′ and B′ if necessary, we
may (and will henceforth) assume that εω(i) = εi for all i ∈ I in the decomposition
A = DB with D = diag(εi)i∈I . Then it follows that bω(i),ω(j) = bij for all i, j ∈ I
since aij = εibij . Thus we obtain the following:

Lemma 3.1.3. Let ω : I → I be a diagram automorphism. Then the bilinear form
(·|·) on g = g(A) can be defined in such a way that the following hold:

(1) (hω(i)|hω(j)) = (hi|hj) for i, j ∈ I;
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(2) (αω(i)|αω(j)) = (αi|αj) for i, j ∈ I.

As in [FSS, §3.2] the diagram automorphism ω : I → I induces an automorphism
ω of the Lie algebra g of order N such that

ω(ei) = eω(i) for i ∈ I,
ω(fi) = fω(i) for i ∈ I,
ω(hi) = hω(i) for i ∈ I,

and (ω(h)|ω(h′)) = (h|h′) for h, h′ ∈ h. This automorphism ω : g→ g is also called
a diagram automorphism by abuse of notation. The restriction of the automorphism
ω to h induces a dual map ω∗ : h∗ → h∗ defined by: ω∗(λ)(h) = λ(ω(h)) for λ ∈ h∗

and h ∈ h.

Lemma 3.1.4. The following hold for the dual map ω∗ : h∗ → h∗:
(1) ν ◦ ω = (ω∗)−1 ◦ ν. Hence we have (ω∗(λ)|ω∗(µ)) = (λ|µ) for λ, µ ∈ h∗;
(2) ω∗(αi) = αω−1(i) for i ∈ I, and hence ω∗(Q+) = Q+. Furthermore, we have

(ω∗)−1riω
∗ = rω(i) for i ∈ I;

(3) ω(gα) = g(ω∗)−1(α) for α ∈ h∗, and hence ω∗(∆) = ∆. In addition, ω∗(∆re) =
∆re and ω∗(∆+) = ∆+;

(4) for α ∈ ∆re, we have hω∗(α) = ω−1(hα) and (ω∗)−1rαω
∗ = r(ω∗)−1(α).

Proof. We will show only part (4). Recall from [Ka, Prop. 5.1 d)] that for α ∈ ∆re,
we have hα = 2ν−1(α)/(α|α). Since (ω∗(α)|ω∗(α)) = (α|α) > 0, ω∗(α) ∈ ∆ is a
real root. Hence we have by part (1) of the lemma,

hω∗(α) = 2ν−1(ω∗(α))/(ω∗(α)|ω∗(α)) = 2ω−1(ν−1(α))/(α|α) = ω−1(hα).

Recall that for λ ∈ h∗, rα(λ) = λ− (2(λ|α)/(α|α))α. Hence, for λ ∈ h∗, we have

((ω∗)−1rαω
∗)(λ) = λ− (2(ω∗(λ)|α)/(α|α)) (ω∗)−1(α).

On the other hand, we have

r(ω∗)−1(α)(λ) = λ−
(
2(λ|(ω∗)−1(α))/((ω∗)−1(α)|(ω∗)−1(α))

)
(ω∗)−1(α)

= λ− (2(ω∗(λ)|α)/(α|α)) (ω∗)−1(α).

This completes the proof.

It follows from Lemma 3.1.4 (3) that ω(n+) = n+ and ω(n−) = n−, where
n+ :=

⊕
α∈∆+

gα and n− :=
⊕
α∈∆−

gα.

3.2. Orbit Lie algebras. For each i ∈ I, set

si :=


2

/
Ni−1∑
k=0

ai,ωk(i) if
Ni−1∑
k=0

ai,ωk(i) > 0,

1 if
Ni−1∑
k=0

ai,ωk(i) ≤ 0,

and define

âij := sj

Nj−1∑
k=0

ai,ωk(j) for i, j ∈ I.
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We choose a set of representatives Î of the ω-orbits in I, and define Â := (âij)i,j∈Î ,
which does not depend on the choice of representatives of the ω-orbits. Then, by
[FRS, Lem. 2.1] (see also [N1, Props. 4.2 and 4.3]), we have the following:

Proposition 3.2.1. The matrix Â = (âij)i,j∈Î is a symmetrizable GGCM. In fact,

if we set D̂ := diag(ε̂i)i∈Î for i ∈ Î with ε̂i := εis
−1
i N−1

i , then the matrix (D̂)−1Â
is symmetric.

Let K̂ be a set of representatives of the ω̇-orbits in K. For each l ∈ K̂,
the restriction of ωMl to I(l) induces an automorphism of the Dynkin diagram
S(A(l)) as a graph, as indicated in §3.1. So, for l ∈ K̂, we choose a set of
representatives Î(l) of the ωMl-orbits in I(l). Then, as Î, we can take the set⊔
l∈K̂ Î(l). Furthermore, the matrix Â decomposes, after reordering the indices,

into the direct sum
⊕

l∈K̂ Â(l), where Â(l) := (âij)i,j∈Î(l). Since the subgraphs
S(A(l)), l ∈ K, are connected components of the Dynkin diagram S(A), we have∑Nj−1
k=0 ai,ωk(j) =

∑Nj/Ml−1
k=0 ai,(ωMl )k(j) for i, j ∈ Î(l).

Now recall from a remark in [FRS, §2] (cf. [N1, Lem. 4.3]) that if
∑Ni−1

k=0 ai,ωk(i)

> 0 for some i ∈ I, then there are only two possibilities:
Case 1.

∑Ni−1
k=0 ai,ωk(i) = 1. In this case, Ni is even, and the Dynkin diagram

corresponding to the ω-orbit of i is of type A2 × · · · ×A2 (Ni/2 times). In fact, we
have ai,ωNi/2(i) = −1, and ai,ωk(i) = 0 for other 1 ≤ k ≤ Ni − 1, k 6= Ni/2.

Case 2.
∑Ni−1
k=0 ai,ωk(i) = 2. In this case, the Dynkin diagram corresponding

to the ω-orbit of i is totally disconnected, i.e., of type A1 × · · · ×A1 (Ni times).
Also, recall from [FSS, §2.4] that if the GCM A = (aij)i,j∈I is of finite or affine

type, then the diagram automorphism ω : I → I satisfies the condition:
Ni−1∑
k=0

ai,ωk(i) > 0 for all i ∈ I,

except for the case where the Dynkin diagram S(A) is of type A(1)
n−1 with n ≥ 2 and

ω is a cyclic permutation of I of order n. In this case, we have Î = {i0}, Ni0 = n,
and âi0,i0 =

∑n−1
k=0 ai0,ωk(i0) = 0 for each i0 ∈ I. Thus Â is the 1 × 1 zero matrix.

Except for this case, the matrix Â is a GCM of finite (resp. affine) type if A is a
GCM of finite (resp. affine) type (see [FSS, §2.3] and also [N1, Cor. 4.1]).

We set

Ă := (âij)i,j∈Ĭ , where Ĭ := {i ∈ Î |
Ni−1∑
k=0

ai,ωk(i) > 0}.

Putting all the facts above together, we obtain the following:

Proposition 3.2.2. Let the notation be as above. The submatrix Ă of the GGCM
Â is a GCM, which decomposes, after reordering the indices, into a direct sum of
GCMs of finite type and those of affine type. Moreover, Â is a GGCM of at most
affine type. More precisely, for l ∈ K̂, the matrix Â(l) is the 1 × 1 zero matrix if
and only if the Dynkin diagram S(A(l)) is of type A

(1)
p−1 for some p ≥ 2 and the

restriction of ωMl to I(l) is a cyclic permutation of order p. Except for this case,
the matrix Â(l) is a GCM of finite (resp. affine) type if A(l) is a GCM of finite
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(resp. affine) type. In particular, the set Ĭ = (Î)re is the disjoint union of Î(l) for
l ∈ K̂ such that Â(l) is not the 1× 1 zero matrix.

Let ĝ := g(Â) be the GKM algebra overC associated to the GGCM Â = (âij)i,j∈Î
with ĥ the Cartan subalgebra, {êi, f̂i}i∈Î the Chevalley generators, Π̂ = {α̂i}i∈Î ⊂
ĥ∗ the set of simple roots, Π̂∨ = {ĥi}i∈Î ⊂ ĥ the set of simple coroots, and Ŵ =
〈r̂i | i ∈ Ĭ〉 ⊂ GL(ĥ∗) the Weyl group. We denote the nondegenerate, symmetric,
invariant bilinear form on ĝ by the same symbol (·|·) as for g (because of (3.2.2)
and (3.2.3) below).

We define the Lie algebra ğ to be the Lie subalgebra of ĝ generated by ĥ and
êi, f̂i with i ∈ Ĭ. This Lie algebra ğ can be thought of as a Kac-Moody algebra
associated to the GCM Ă = (âij)i,j∈Ĭ , though the Cartan subalgebra ĥ may not be
“minimal”.

Definition 3.2.3 ([FRS, Def. 2.1]). The Lie algebra ĝ is called the orbit Lie alge-
bra associated to the diagram automorphism ω of g. The Lie algebra ğ is also called
the orbit Lie algebra.

Remark 3.2.4. A table of all diagram automorphisms ω : I → I and the (Dynkin
diagrams of) corresponding orbit Lie algebras ĝ for all finite-dimensional simple Lie
algebras and affine Lie algebras can be found, for example, in [FSS, §2.4 and §2.5].

We set

h0 := {h ∈ h | ω(h) = h}, (h∗)0 := {λ ∈ h∗ | ω∗(λ) = λ}.

Then we can identify (h∗)0 with (h0)∗ := HomC(h0,C) in a natural way. We call an
element of (h∗)0 a symmetric weight. We know from [FSS, §3.3] that there exists a
linear isomorphism Pω : h0 → ĥ such that

Pω(
Ni−1∑
k=0

hωk(i)) = Niĥi for i ∈ Î ,(3.2.1)

(Pω(h)|Pω(h′)) = (h|h′) for h, h′ ∈ h0.(3.2.2)

This linear isomorphism Pω : h0 → ĥ induces a dual map P ∗ω : ĥ∗ → (h0)∗ ∼= (h∗)0

defined by: P ∗ω(λ̂)(h) = λ̂(Pω(h)) for λ̂ ∈ ĥ∗, h ∈ h0. Note that

(P ∗ω(λ̂)|P ∗ω(µ̂)) = (λ̂|µ̂) for λ̂, µ̂ ∈ ĥ
∗,(3.2.3)

P ∗ω(α̂i) = siβi for i ∈ Î , where βi :=
Ni−1∑
k=0

αωk(i) ∈ (h∗)0.(3.2.4)

We take and fix an element ρ ∈ h∗ (called a Weyl vector) such that ρ(hi) = 1
for all i ∈ I. Replacing ρ above by (1/N)

∑N−1
k=0 (ω∗)k(ρ) ∈ h∗ if necessary, we may

(and will henceforth) assume that ω∗(ρ) = ρ. We now define a shifted action (called
the dot-action) of the Weyl group W on h∗ by

w ◦ λ := w(λ + ρ)− ρ for λ ∈ h
∗.(3.2.5)
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3.3. Weyl groups. We define the following subgroup of W

W̃ := {w ∈W | ω∗w = wω∗}.

It is obvious that the group W̃ stabilizes the subspace (h∗)0 of h∗. For i ∈ I with∑Ni−1
k=0 ai,ωk(i) > 0, we set

wi :=



Ni/2−1∏
k=0

rωk(i)rωk+Ni/2(i)rωk(i) if
Ni−1∑
k=0

ai,ωk(i) = 1,

Ni−1∏
k=0

rωk(i) if
Ni−1∑
k=0

ai,ωk(i) = 2.

(3.3.1)

We know from [FSS, §5.1] that wω(i) = wi, w2
i = 1, and (ω∗)−1wiω

∗ = wi, i.e.,
wi ∈ W̃ . In addition, we know the following:

Proposition 3.3.1 ([FRS, Prop. 3.3]). The group W̃ is generated by the wi’s for
i ∈ Ĭ. Moreover, W̃ acts on (h∗)0 faithfully, and the Weyl group Ŵ = 〈r̂i | i ∈ Ĭ〉
of the orbit Lie algebra ĝ is isomorphic to the group W̃ restricted to (h∗)0, which is
denoted by W̃ |(h∗)0 . Namely, we have an isomorphism of groups Θ : Ŵ → W̃ |(h∗)0 ,

where Θ(r̂i) = wi|(h∗)0 for i ∈ Ĭ. In fact, Θ(ŵ) = P ∗ω ◦ ŵ ◦ (P ∗ω)−1 for ŵ ∈ Ŵ .

By Proposition 3.3.1, we get the following commutative diagram for each ŵ ∈ Ŵ :

ĥ∗
P∗ω−−−−→ (h∗)0

ŵ

y yΘ(ŵ)

ĥ∗ −−−−→
P∗ω

(h∗)0.

Consequently, there exists an isomorphism of groups Θ : Ŵ → W̃ such that
Θ(r̂i) = wi for i ∈ Ĭ. Since the Weyl group Ŵ is a Coxeter group with the
canonical generator system {r̂i | i ∈ Ĭ}, the group W̃ is also a Coxeter group with
the canonical generator system {wi | i ∈ Ĭ}. We denote the length function of W̃
by ̂̀ : W̃ → Z.

Remark 3.3.2. From Proposition 3.3.1, we see that W̃ = {1} if and only if Ĭ = ∅. In
particular, W̃ = {1} when the Dynkin diagram S(A) is of type A(1)

n−1 and ω : I → I
is a cyclic permutation of I of order n.

4. Twining Characters

From now on, we assume that the matrix A = (aij)i,j∈I is a GCM of affine type.
Let ω : I → I be a diagram automorphism.

We recall the definition of the twining character of a certain highest weight g-
module of a symmetric highest weight, following [FRS] and [FSS]. However, since
no comment about the “normalization” of the map τω is given in [FRS] or [FSS],
we have to give additional comments.

Let (π, V ) be a g-module, i.e., let π : g → gl(V ) be a representation on the
vector space V . We define a new g-module (πω , V ) of g by: πω(x)v = π(ω(x))v for
x ∈ g, v ∈ V . If we take a highest weight g-module (πλ, V (λ)) of highest weight
λ ∈ h∗ with vλ ∈ V (λ) the (canonical) highest weight vector, then the module
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(πωλ , V (λ)) is a highest weight g-module of highest weight ω∗(λ) ∈ h∗ with vλ a
highest weight vector since ω(n+) = n+ and ω(n−) = n−.

Throughout this paper, as a highest weight g-module V (λ) of highest weight λ,
we will consider only two kinds of modules: the Verma module M(λ) of highest
weight λ ∈ h∗ and the irreducible highest weight module L(λ) of highest weight λ.
It is known that L(λ) is the quotient module M(λ)/J(λ), where J(λ) is the unique
maximal proper submodule of M(λ).

It is easy to see that the module (πωλ ,M(λ)) is torsion free as a U(n−)-module,
and the module (πωλ , L(λ)) is an irreducible g-module. Therefore, in both cases
where V (λ) = M(λ) and L(λ), (πωλ , V (λ)) and (πω∗(λ), V (ω∗(λ))) are isomorphic
as g-modules. In other words, there exists a linear isomorphism

τω : V (λ)→ V (ω∗(λ))(4.1)

satisfying τω(πωλ (x)v) = πω∗(λ)(x)τω(v) for x ∈ g, v ∈ V (λ), or equivalently,
τω(πλ(x)v) = πω∗(λ)(ω−1(x))τω(v) for x ∈ g, v ∈ V (λ). Now we assume that λ ∈ h∗

is a symmetric weight, i.e., ω∗(λ) = λ. Then there exists a linear automorphism

τω : V (λ)→ V (λ)(4.2)

such that τω(πλ(x)v) = πλ(ω−1(x))τω(v) for x ∈ g, v ∈ V (λ). We usually write xv
to denote πλ(x)v for x ∈ g, v ∈ V (λ).

Remark 4.1. Let λ ∈ (h∗)0, and let f : V (λ) → V (λ) be a linear endomorphism
such that f(xv) = ω−1(x)f(v) for x ∈ g, v ∈ V (λ). Then we have f(V (λ)µ) ⊂
V (λ)ω∗(µ) for µ ∈ h∗, where V (λ)χ is the weight space corresponding to χ ∈ h∗.
If, in addition, the linear endomorphism f is bijective, then the equality holds, i.e.,
f(V (λ)µ) = V (λ)ω∗(µ) for µ ∈ h∗.

Since V (λ)λ = Cvλ and ω∗(λ) = λ, it follows that τω(vλ) ∈ Cvλ by Remark 4.1.
Hence we have τω(vλ) = cvλ for some c ∈ C \ {0}. We should note that c ∈ C \ {0}
is not necessarily equal to 1.

Lemma 4.2. Let λ ∈ (h∗)0. Then we have

{f ∈ EndC(V (λ)) | f(xv) = ω−1(x)f(v) for x ∈ g, v ∈ V (λ)} = Cτω.

Proof. Let f ∈ EndC(V (λ)) be such that f(xv) = ω−1(x)f(v) for x ∈ g, v ∈ V (λ).
Then, by Remark 4.1, f(vλ) = zvλ for some z ∈ C. Since V (λ) is a highest weight
g-module, we have V (λ) = U(g)vλ, where U(g) denotes the universal enveloping
algebra of g. Thus we have

f(xvλ) = ω−1(x)f(vλ) = z ω−1(x)vλ for all x ∈ U(g),

where ω above is a unique algebra automorphism ω : U(g)→ U(g) extending the
diagram automorphism ω : g→ g. Hence we obtain

f(xvλ) = (z/c) · c ω−1(x)vλ = (z/c) τω(xvλ) for all x ∈ U(g),

which implies that f = (z/c) τω.

By Remark 4.1 and Lemma 4.2, we see that there exists a unique linear auto-
morphism f : V (λ) → V (λ) such that f(xv) = ω−1(x)f(v) for x ∈ g, v ∈ V (λ)
and f(v) = v for all v ∈ V (λ)λ. Because τω in (4.2) is a nonzero scalar multiple
of this linear automorphism f , we may (and will henceforth) assume that τω = f ,
i.e., τω(v) = v for all v ∈ V (λ)λ.

We are ready to give the definition of twining characters.
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Definition 4.3 ([FRS, Def. 2.3]). Let λ ∈ (h∗)0, and let V (λ) be either the Verma
module M(λ) or the irreducible highest weight module L(λ). Then the twining
character chω(V (λ)) of V (λ) is defined to be the formal sum

chω(V (λ)) :=
∑

χ∈(h∗)0

Tr(τω |V (λ)χ) e(χ).

For the twining character chω(V (λ)) of V (λ) = M(λ), L(λ) of highest weight
λ ∈ (h∗)0, we know the following theorems.

Theorem 4.4 ([FRS, Th. 3.1]). Let λ ∈ (h∗)0. Then we have

chω(M(λ)) = e(λ) ·

∑
w∈W̃

ε̂(w) e(w(ρ) − ρ)

−1

,

where ε̂(w) := (−1)̂̀(w) = det(w|(h∗)0) for w ∈ W̃ .

Let P+ := {Λ ∈ h∗ | Λ(hi) ∈ Z≥0 for all i ∈ I} be the set of dominant integral
weights.

Theorem 4.5 ([FRS, Prop. 3.5 and Th. 3.1]). Let Λ ∈ P+ be a dominant integral
weight such that ω∗(Λ) = Λ. Then, for every w ∈ W̃ , we have

w(chω(L(Λ))) = chω(L(Λ)).

Moreover, with the same notation as Theorem 4.4, we have

chω(L(Λ)) =

∑
w∈W̃

ε̂(w)e(w(Λ + ρ))

∑
w∈W̃

ε̂(w)e(w(ρ))
.

5. Translation Functors

We show some important properties of the translation functor concerning the
twining characters for the affine Lie algebra g = g(A).

5.1. Some categories. Let us begin by recalling the definition of the category O
from [Ka, Ch. 9]. Its objects are g-modules V which satisfy the following:

(1) the module V admits a weight space decomposition V =
⊕

χ∈h∗ Vχ with
finite-dimensional weight spaces Vχ;

(2) there exist finitely many elements χ1, . . . , χs ∈ h∗ such that the set P (V ) of
all weights of V is contained in a union

⋃s
i=1 (χi −Q+).

The morphisms in O are g-module homomorphisms. For a g-module V inO and µ ∈
h∗, we denote by [V : L(µ)] the multiplicity of L(µ) in V . We note that [V : L(µ)] >
0 if and only if L(µ) is an irreducible subquotient of V . We define the character
chV of the module V in O to be the formal sum chV =

∑
χ∈h∗(dimC Vχ) e(χ).

Then we have (see [Ka, Ch. 9]) chV =
∑

µ∈h∗ [V : L(µ)] chL(µ).
For a nonempty subset S of h∗, we denote by O{S} the full subcategory of O

consisting of g-modules V such that [V : L(µ)] > 0 for µ ∈ h∗ implies µ ∈ S, i.e.,

chV =
∑
µ∈S

cµ chL(µ), cµ ∈ Z≥0.
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It is clear that submodules, quotient modules, and finite direct sums of modules in
O{S} are again in O{S}.

Here we need some notation for integral subroot systems. For λ ∈ h∗, we set

∆(λ) := {α ∈ ∆re | λ(hα) ∈ Z}.
Then the set ∆(λ) is a “subroot system” of ∆re, i.e., rα(β) ∈ ∆(λ) for α, β ∈
∆(λ) ⊂ ∆re (we refer to [MP, Ch. 5] and [KT1, §2.2] for details about subroot
systems). Moreover, we set

∆(λ)+ := ∆(λ) ∩∆+, W (λ) := 〈rα | α ∈ ∆(λ)〉 ⊂W,
and define Π(λ) to be the set of all α ∈ ∆(λ)+ which cannot be written as a sum
of two or more elements from ∆(λ)+. From [MP, Ch. 5], [KT1, §2.2], and [KT2,
Lem. 2.3], we know the following:

(1) The set Π(λ) is a (not necessarily linearly independent) finite set, which we
write as: Π(λ) = {φj}j∈J for some finite index set J .

(2) ∆(λ) = {w(α) | w ∈ W (λ), α ∈ Π(λ)}.
(3) ∆(λ)+ ⊂

∑
α∈Π(λ)

Z≥0α.

(4) The matrix A(λ) := (2(β|α)/(α|α))α,β∈Π(λ) is a GCM. In particular, we have
(α|β) ≤ 0 for α 6= β ∈ Π(λ).

(5) The group W (λ) is a Coxeter group with the canonical generator system
{rα | α ∈ Π(λ)}. Moreover, W (λ) is isomorphic to the Weyl group Wλ =
〈rλj | j ∈ J〉 ⊂ GL((hλ)∗) of the Kac-Moody algebra gλ := g(A(λ)) associated
to the GCM A(λ) with Cartan subalgebra hλ.

We denote the length function of the Coxeter group W (λ) ∼= Wλ by `λ : W (λ)→
Z≥0.

We write Π(λ) = {φj}j∈J with J a finite index set as above. Let Πλ = {βj}j∈J ⊂
(hλ)∗ be the set of simple roots, and (Πλ)∨ = {β∨j }j∈J ⊂ hλ the set of simple coroots
of gλ. We set

Qλ :=
∑
j∈J

Zβj ⊂ (hλ)∗, (Qλ)∨ :=
∑
j∈J

Zβ∨j ⊂ hλ,

Q(λ) :=
∑
j∈J

Zφj ⊂ h
∗, Q∨(λ) :=

∑
j∈J

Zhφj ⊂ h.

Then we know from [MP, Chs. 5.1 and 5.5] that there exist unique Z-linear iso-
morphisms Ψ : Qλ → Q(λ) and Ψ∨ : (Qλ)∨ → Q∨(λ) such that Ψ(βj) = φj and
Ψ∨(β∨j ) = hφj for each j ∈ J . Furthermore, we have

x(y) = Ψ(x)(Ψ∨(y)) for all x ∈ Qλ and y ∈ (Qλ)∨.(5.1.1)

Lemma 5.1.1. The GCM A(λ) = (2(φj |φi)/(φi|φi))i,j∈J decomposes, after re-
ordering the indices, into a direct sum of GCMs of finite type and those of affine
type.

Proof. Suppose that there exists a subset J ′ of J such that the submatrix A(λ)J′ :=
(2(φj |φi)/(φi|φi))i,j∈J′ of A(λ) is of indefinite type. Then, by the classification
theorem of GCMs (see [Ka, Ch. 4]), there exists an element β =

∑
j∈J′ kjβj such

that kj ∈ Z≥1 and β(β∨j ) < 0 for all j ∈ J ′. We set α := Ψ(β) ∈
∑
j∈J′ Z≥1φj ⊂

Q+. Then, by (5.1.1), we see that 0 > β(β∨j ) = α(hφj ) = 2(α|φj)/(φj |φj) for all



82 SATOSHI NAITO

j ∈ J ′. Thus we obtain (α|α) < 0 for some α ∈
∑

i∈I Rαi. This is a contradiction
since the bilinear form (·|·) restricted to

∑
i∈I Rαi is positive-semidefinite.

By Lemma 5.1.1, the GCM A(λ) = (2(φj |φi)/(φi|φi))i,j∈J satisfies the assump-
tion on the GCM A = (aij)i,j∈I in §3.

Remark 5.1.2. We set D(λ) := diag(ελj )j∈J with ελj := 2/(φj |φj) for j ∈ J , and
B(λ) := (bλij)i,j∈J with bλij := (φi|φj) for i, j ∈ J . Then we have A(λ) = D(λ)B(λ),
where the matrix B(λ) is a symmetric matrix with rational entries bλij = (φi|φj).
Lemma 5.1.3. Let λ ∈ h∗. Then we have

(1) ∆(ω∗(λ)) = ω∗(∆(λ)).
(2) Π(ω∗(λ)) = ω∗(Π(λ)).
(3) ω∗W (λ)(ω∗)−1 = W (ω∗(λ)).
(4) ω∗(W (λ) ◦ λ) = W (ω∗(λ)) ◦ ω∗(λ).

Proof. Part (1) follows from Lemma 3.1.4 (4). Part (2) then follows from the
definitions of Π(λ) and Π(ω∗(λ)). Part (3) follows from part (1) together with
Lemma 3.1.4 (4). Part (4) follows from part (3) since, for w ∈ W (λ),

ω∗(w(λ + ρ)− ρ) = ω∗w(λ + ρ)− ρ = (ω∗w(ω∗)−1)ω∗(λ+ ρ)− ρ
= (ω∗w(ω∗)−1)(ω∗(λ) + ρ)− ρ.

This proves the lemma.

Now we define

C := {λ ∈ h∗ | (λ + ρ|δ) 6= 0} = {λ ∈ h∗ | (λ + ρ)(c) 6= 0},
which does not depend on the choice of the Weyl vector ρ. Since w(δ) = δ for all
w ∈ W , the set C is stable under the dot-action (3.2.5) of the Weyl group W .

Here we recall that the null root δ =
∑

i∈I aiαi ∈ Q+ spans the radical of the
bilinear form (·|·) restricted to

∑
i∈I Rαi, and the positive integers ai for i ∈ I are

relatively prime. Therefore we deduce that ω∗(δ) = δ, and hence ω∗(C) = C.
For λ ∈ C, we set

O[λ] := O{W (λ) ◦ λ}.

Proposition 5.1.4 ([Ku1, Th. 1.7]). For each λ ∈ C, the Verma module M(λ) is
in the category O[λ].

5.2. Translation functors. We define an equivalence relation on the set C by

λ ∼ µ⇐⇒ µ ∈ W (λ) ◦ λ, λ, µ ∈ C.

Let
∼
C be the set of (representatives of) equivalence classes of C under the equiv-

alence relation ∼. Then we have the following decomposition result.

Proposition 5.2.1 ([Ku1, Cor. 2.13 (a)]). Let V be a g-module in the category
O{C}. Then the module V decomposes as a direct sum

V =
⊕
λ∈
∼
C

V [λ],

where the g-module V [λ] is in the category O[λ] for λ ∈
∼
C. Moreover, V [λ] is the

unique maximal submodule of V that lies in O[λ]. In particular, this decomposition
of V is unique.



TWINING CHARACTER FORMULA FOR AFFINE LIE ALGEBRAS 83

For λ ∈ C, we denote by Pλ the projection functor from O{C} to O[λ] defined
by

Pλ(V ) := V [λ].

It follows from Proposition 5.2.1 that the functor Pλ is exact.
To define the translation functor, we need the following:

Lemma 5.2.2 ([KT2, Lem. 3.4]). Let λ, µ ∈ C, Λ ∈ h∗, and x ∈ W be such that
µ − λ = x(Λ). Then the g-module V ⊗C L(Λ) is in the category O{C} for every
g-module V in the category O[λ].

Let P := {λ ∈ h∗ | λ(hi) ∈ Z for all i ∈ I} be the set of integral weights. Note
that for λ, µ ∈ h∗ with µ−λ ∈ P , we have ∆(λ) = ∆(µ) since hα ∈ Q∨ for α ∈ ∆re.
The elements λ, µ ∈ C are said to satisfy condition (TR) if

ω∗(λ) = λ, ω∗(µ) = µ, x−1(µ− λ) ∈ P+ for some x ∈ W̃ .(TR)

In this case, we set Λ := x−1(µ−λ) ∈ P+. Note that the W -orbit of µ−λ intersects
P+ in exactly one point by (the proof of) [Ka, Prop. 3.12 b)]. We further see that
ω∗(Λ) = Λ since

ω∗(Λ) = ω∗(x−1(µ− λ)) = ω∗x−1(µ− λ) = x−1ω∗(µ− λ)

= x−1(ω∗(µ− λ)) = x−1(µ− λ) = Λ.

Let λ, µ ∈ C be elements satisfying condition (TR) with µ−λ = x(Λ) for x ∈ W̃
and Λ ∈ P+. Then, by Lemma 5.2.2, the g-module V ⊗C L(Λ) is in O{C} for a
g-module V in O[λ], and hence the module Pµ(V ⊗C L(Λ)) is well-defined and in
O[µ] by Proposition 5.2.1. Thus we can define the translation functor following [J]
and [DGK].

Definition 5.2.3. Let λ, µ ∈ C be elements satisfying condition (TR) with µ−λ =
x(Λ) for x ∈ W̃ and Λ ∈ P+. Then the functor T λµ : O[λ]→ O[µ] is defined by

T λµ (V ) := Pµ(V ⊗C L(Λ)),

for a g-module V in the category O[λ]. This (exact) functor T λµ is called the
(Jantzen) translation functor from λ to µ.

Now let λ, µ ∈ C be elements satisfying condition (TR) with µ − λ = x(Λ) for
x ∈ W̃ and Λ ∈ P+, and let η ∈ C be a symmetric weight such that η ∼ λ. Then we
have η = w ◦ λ for some w ∈ W (λ). Since ω∗(η) = η, there exists a unique linear
automorphism

τω : M(η)→M(η),(5.2.1)

such that

τω(xv) = ω−1(x)τω(v) for x ∈ g, v ∈M(η)(5.2.2)

and τω|M(η)η = id. Let {0} ⊂ Y1 $ Y2 ⊂ M(η) be a filtration of M(η) by τω-
stable g-submodules Y1 and Y2, and let V := Y2/Y1 be a quotient g-module. Then
τω : M(η)→M(η) induces a linear automorphism τω : V → V satisfying

τω(xv) = ω−1(x)τω(v) for x ∈ g, v ∈ V.(5.2.3)
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Since the Λ above is a symmetric weight, there exists a unique linear automor-
phism

τω : L(Λ)→ L(Λ)(5.2.4)

satisfying τω(xv) = ω−1(x)τω(v) for x ∈ g, v ∈ L(Λ) with τω|L(Λ)Λ = id. (Here
we have used the same symbol τω as for M(η), but no serious confusion will arise.)
Thus, by tensoring this τω with the map τω : V → V , we obtain a linear automor-
phism τω ⊗ τω : V ⊗C L(Λ)→ V ⊗C L(Λ) satisfying

(τω ⊗ τω)(xv) = ω−1(x)(τω ⊗ τω)(v) for x ∈ g, v ∈ V ⊗C L(Λ).(5.2.5)

Since V is in O[λ], the g-module V ⊗C L(Λ) is in O{C} by Lemma 5.2.2. Hence,
by Proposition 5.2.1, we have a decomposition

V ⊗C L(Λ) =
⊕
ξ∈
∼
C

Pξ(V ⊗C L(Λ)).

Proposition 5.2.4. With the notation above, we have

(τω ⊗ τω)(Pξ(V ⊗C L(Λ))) = Pω∗(ξ)(V ⊗C L(Λ))

for each ξ ∈
∼
C.

Proof. First, we note that for ξ ∈ C, its equivalence class under ∼ is W (ξ) ◦ ξ,
and the equivalence class of ω∗(ξ) under ∼ is W (ω∗(ξ)) ◦ ω∗(ξ) = ω∗(W (ξ) ◦ ξ)
by Lemma 5.1.3 (4). In other words, for ξ, ξ′ ∈ C, we have ξ ∼ ξ′ if and only if
ω∗(ξ) ∼ ω∗(ξ′).

Let us show that the g-module (τω⊗ τω)(Pξ(V ⊗C L(Λ))) is in O[ω∗(ξ)] for each
ξ ∈ C. To simplify the notation, we write f := τω ⊗ τω and U := Pξ(V ⊗C L(Λ)).
Then the map Y 7→ f(Y ) gives a bijection from the g-submodules of U to those of
f(U). Furthermore, for g-submodules Y1 $ Y2 of U with Y2/Y1

∼= L(ϕ) for ϕ ∈ C,
we have an isomorphism of g-modules: f(Y2)/f(Y1) ∼= f(Y2/Y1) ∼= τω(L(ϕ)) =
L(ω∗(ϕ)), where τω : L(ϕ) → L(ω∗(ϕ)) is defined as the map (4.1). Thus, for
ϕ ∈ C, the module L(ϕ) is isomorphic to an irreducible subquotient of U if and
only if L(ω∗(ϕ)) is isomorphic to an irreducible subquotient of f(U). Hence the
g-module f(U) is in O[ω∗(ξ)] since U is in O[ξ].

Since the decomposition

V ⊗C L(Λ) =
⊕
ξ∈
∼
C

Pξ(V ⊗C L(Λ))

is unique by Proposition 5.2.1, we obtain that

f(Pξ(V ⊗C L(Λ))) = Pω∗(ξ)(V ⊗C L(Λ))

for ξ ∈
∼
C, as desired.

From Proposition 5.2.4, we see that for the symmetric weight µ ∈ C,
(τω ⊗ τω)(Pµ(V ⊗C L(Λ))) = Pµ(V ⊗C L(Λ)), i.e., (τω ⊗ τω)(T λµ (V )) = T λµ (V ).

Now we define the twining character chω(T λµ (V )) of the module T λµ (V ) by

chω(T λµ (V )) :=
∑

χ∈(h∗)0

Tr((τω ⊗ τω)|(Tλµ (V ))χ) e(χ).
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We set

C+ := {ξ ∈ C | (ξ + ρ)(hα) ≥ 0 for all α ∈ ∆(ξ)+},
and for ξ ∈ C we set

∆0(ξ) := {α ∈ ∆re | (ξ + ρ)(hα) = 0} ⊂ ∆(ξ), ∆0(ξ)+ := ∆0(ξ) ∩∆+.

Note that all of the above do not depend on the choice of the Weyl vector ρ. Then
we have the following proposition, which will be crucial for the proof of our main
result.

Proposition 5.2.5. Let λ, µ ∈ C be elements satisfying condition (TR) with µ −
λ = x(Λ) for x ∈ W̃ and Λ ∈ P+. Assume, in addition, that λ, µ ∈ C+ and
∆0(λ) ⊂ ∆0(µ). Then we have for each w ∈W (λ) ∩ W̃ ,

chω(T λµ (M(w ◦ λ))) = chω(M(w ◦ µ)).

Proof. Let w ∈ W (λ) ∩ W̃ , and set η := w ◦ λ ∈ C. Since x, w ∈ W̃ , we have
ω∗(Λ) = Λ and ω∗(η) = η. Hence we have a linear automorphism

τω ⊗ τω : M(η)⊗C L(Λ)→M(η)⊗C L(Λ)

satisfying (5.2.5) with V = M(η). We define for χ = Λ −
∑
i∈I kiαi ∈ P (L(Λ)),

depthΛ(χ) :=
∑

i∈I ki ∈ Z≥0. We write P (L(Λ)) = {χi}i∈Z≥1 and arrange them so
that

(1) χ1 = Λ;
(2) depthΛ(χi) > depthΛ(χj) implies i > j.

Now, for each k ∈ Z≥1, we set P (Λ)k := {χ ∈ P (L(Λ)) | depthΛ(χ) = k}. Here
we note that depthΛ(ω∗(χ)) = depthΛ(χ) for χ ∈ P (L(Λ)). Hence we can reindex
the elements in P (Λ)k so that the elements in the same ω∗-orbit are indexed by
consecutive numbers for all k ∈ Z≥1. Then we take a basis {vi}i∈Z≥1 of L(Λ)
consisting of weight vectors arranged in such a way that

(1) L(Λ)Λ = Cv1;
(2) if vi is of weight χti ∈ P (L(Λ)) with ti ∈ Z≥1 for i ≥ 1, then i > j implies

ti ≥ tj .
We set for i ≥ 1, Ri :=

∑
1≤j≤i U(g)(vη⊗vj), where vη is the highest weight vector

of M(η). Then, by [DGK, Lem. 5.8] (see also the proof of [MP, Prop. 6.8.1]), the
g-module R := M(η) ⊗C L(Λ) has a highest weight series {0} = R0 ⊂ R1 ⊂ R2 ⊂
· · · ⊂ R such that

(1) R =
⋃
i≥0Ri with chR =

∑
i≥1 ch(Ri/Ri−1);

(2) Ri/Ri−1
∼= M(η + χti) for i ≥ 1.

By applying the exact functor Pµ, we obtain the following filtration of Pµ(R) =
T λµ (M(η)): {0} = Pµ(R0) ⊂ Pµ(R1) ⊂ Pµ(R2) ⊂ · · · ⊂ Pµ(R) such that Pµ(R) =⋃
i≥0 Pµ(Ri). We have for i ≥ 1, Pµ(Ri)/Pµ(Ri−1) ∼= Pµ(Ri/Ri−1) ∼= Pµ(M(η +

χti)). Here η + χti = w ◦ λ + χti ∈ C is equivalent to µ under ∼ if and only if
w ◦ λ + χti = y ◦ µ for some y ∈ W (µ) = W (λ). In this case, we have w−1y ◦
µ − λ = w−1(χti) ∈ P (L(Λ)). Then, by [KT2, Lem. 3.5], we see that w−1y ◦
µ = µ. Hence we have χti = w(µ − λ) = wx(Λ), and w ◦ λ + χti = w ◦ µ.
We know that dimC L(Λ)χti = dimC L(Λ)wx(Λ) = dimC L(Λ)Λ = 1. Therefore,
by Proposition 5.1.4, we conclude that there exists a unique integer i0 ≥ 1 such
that Pµ(Ri0 )/Pµ(Ri0−1) 6= {0}. Furthermore, we have w ◦ λ + χti0 = w ◦ µ with



86 SATOSHI NAITO

χti0 = wx(Λ) and Pµ(Ri0)/Pµ(Ri0−1) ∼= M(w◦µ). In particular, we have Pµ(Ri) =
Pµ(Ri−1) for all i 6= i0. Hence we deduce that

{0} = Pµ(R0) = · · · = Pµ(Ri0−1) $ Pµ(Ri0) = Pµ(Ri0+1) = · · · ∼= M(w ◦ µ),

and so

T λµ (M(w ◦ λ)) = Pµ(R) =
⋃
i≥0

Pµ(Ri) = Pµ(Ri0 ) ∼= M(w ◦ µ).

Thus, by Lemma 4.2 together with Proposition 5.2.4, we have the following com-
mutative diagram for some c ∈ C \ {0}:

T λµ (M(w ◦ λ)) '−−−−→ M(w ◦ µ)

τω⊗τω
y ycτω

T λµ (M(w ◦ λ)) '−−−−→ M(w ◦ µ).

We want to prove that c = 1. For each ξ 6∼ µ ∈ C, we have by Proposition 5.1.4,

Pξ(Ri0)/Pξ(Ri0−1) ∼= Pξ(Ri0/Ri0−1) ∼= Pξ(M(w ◦ µ)) = {0},

and hence Pξ(Ri0) = Pξ(Ri0−1). On the other hand, we have by Proposition 5.2.1,

Ri0 = Pµ(Ri0)⊕ (
⊕
ξ∈
∼
C

ξ 6∼µ

Pξ(Ri0 )), Ri0−1 =
⊕
ξ∈
∼
C

ξ 6∼µ

Pξ(Ri0−1),

since Pµ(Ri0−1) = {0}. Thus we have Ri0 = Ri0−1 ⊕ Pµ(Ri0), where Pµ(Ri0) =
T λµ (M(w ◦ λ)). We know from the proof of [MP, Prop. 6.8.1] that for i ≥ 1, Ri =∑

1≤j≤i (U(n−)vη)⊗Cvj . Recall that vi0 is a weight vector of weight χti0 = wx(Λ),
where ω∗(χti0 ) = χti0 . Hence we deduce from the indexing of {vi}i∈Z≥1 that

(τω ⊗ τω)(Ri0) = Ri0 , (τω ⊗ τω)(Ri0−1) = Ri0−1,

since τω(vj) ∈ L(Λ)ω∗(χtj ) for j ≥ 1. Also, Pµ(Ri0) = T λµ (M(w◦λ)) is τω⊗τω-stable
by Proposition 5.2.4. Thus we have the following commutative diagram:

Ri0/Ri0−1
'−−−−→ Pµ(Ri0 )

τω⊗τω
y yτω⊗τω

Ri0/Ri0−1
'−−−−→ Pµ(Ri0),

where the left vertical map τω ⊗ τω is induced from the map τω ⊗ τω : Ri0 →
Ri0 . We know from the proof of [MP, Prop. 6.8.1] that the quotient g-module
Ri0/Ri0−1 is a highest weight module (in fact, a Verma module) of highest weight
η + χti0 with highest weight vector vη ⊗ vi0 + Ri0−1. Hence, in order to prove
that c = 1, it suffices to show that (τω ⊗ τω)(vη ⊗ vi0) = vη ⊗ vi0 . Since we
have (τω ⊗ τω)(vη ⊗ vi0) = τω(vη) ⊗ τω(vi0) = vη ⊗ τω(vi0 ) and χti0 = wx(Λ),
we need only show that τω |L(Λ)wx(Λ)

= id. Since wx ∈ W̃ and Λ ∈ P+, we
have by Theorem 4.5 that (wx)−1chω(L(Λ)) = chω(L(Λ)). In particular, we have
Tr(τω |L(Λ)wx(Λ)) = Tr(τω |L(Λ)Λ) = 1. Since dimC L(Λ)wx(Λ) = dimC L(Λ)Λ = 1,
we deduce that τω |L(Λ)wx(Λ)

= id.
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Corollary 5.2.6. Let λ, µ ∈ C be as in Proposition 5.2.5. Then, for w ∈W (λ)∩W̃ ,
we have

chω(T λµ (L(w ◦ λ))) =

{
chω(L(w ◦ µ)) if w(∆0(µ)+ \∆0(λ)+) ⊂ −∆(λ)+,

0 otherwise.

Proof. We set η := w◦λ. Since η is a symmetric weight, we have an exact sequence
of τω-stable g-modules: {0} → J(η) ↪→ M(η) � L(η) → {0}, where J(η) is the
unique maximal proper submodule of M(η). Note that the map τω : L(η)→ L(η)
in (4.2) is nothing but the map τω : M(η)/J(η) → M(η)/J(η) induced from the
map τω : M(η) → M(η) in (5.2.1). Since the functor (·) ⊗C L(Λ) is exact, we
obtain an exact sequence of τω ⊗ τω-stable g-modules

{0} → J(η)⊗C L(Λ) ↪→M(η)⊗C L(Λ)� L(η)⊗C L(Λ)→ {0}.(5.2.6)

Since ω∗(µ) = µ, by Proposition 5.2.4 we have an exact sequence of τω ⊗ τω-stable
g-modules

{0} → T λµ (J(η)) ↪→ T λµ (M(η))� T λµ (L(η))→ {0}.

From (5.2.6) we have the commutative diagram

(M(η) ⊗C L(Λ))/(J(η)⊗C L(Λ)) '−−−−→ (M(η)/J(η)) ⊗C L(Λ)

τω⊗τω
y yτω⊗τω

(M(η) ⊗C L(Λ))/(J(η)⊗C L(Λ)) '−−−−→ (M(η)/J(η)) ⊗C L(Λ),

where the left vertical map τω ⊗ τω is induced from the map τω ⊗ τω : M(η) ⊗C
L(Λ) → M(η) ⊗C L(Λ). Since we have the following commutative diagram from
the exactness of Pµ together with Proposition 5.2.4,

Pµ(M(η)⊗C L(Λ))/Pµ(J(η)⊗C L(Λ))
'−−−−→ Pµ((M(η)⊗C L(Λ))/(J(η)⊗C L(Λ)))

τω⊗τω

y yτω⊗τω
Pµ(M(η)⊗C L(Λ))/Pµ(J(η)⊗C L(Λ))

'−−−−→ Pµ((M(η)⊗C L(Λ))/(J(η) ⊗C L(Λ))),

we obtain the commutative diagram

T λµ (M(η))/T λµ (J(η)) '−−−−→ T λµ (M(η)/J(η))

τω⊗τω
y yτω⊗τω

T λµ (M(η))/T λµ (J(η)) '−−−−→ T λµ (M(η)/J(η)),

where the left vertical map τω ⊗ τω is induced from the map τω⊗τω : T λµ (M(η))→
T λµ (M(η)). By (the proof of) Proposition 5.2.5, we have that T λµ (M(η)) ∼= M(w◦µ).
Furthermore, by [KT2, Prop. 3.8] we know that

T λµ (J(η)) =

{
J if w(∆0(µ)+ \∆0(λ)+) ⊂ −∆(λ)+,

T λµ (M(η)) otherwise,

where J is the unique maximal proper submodule of T λµ (M(η)) ∼= M(w ◦ µ).
Now assume that w(∆0(µ)+\∆0(λ)+) ⊂ −∆(λ)+. (Otherwise, it is obvious that

chω(T λµ (L(η))) = chω(T λµ (M(η)/J(η))) = chω(T λµ (M(η))/T λµ (J(η))) = 0.) Then,
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by the proof of Proposition 5.2.5, we have the following commutative diagram:

T λµ (M(η))/T λµ (J(η)) '−−−−→ M(w ◦ µ)/J(w ◦ µ)

τω⊗τω
y yτω

T λµ (M(η))/T λµ (J(η)) '−−−−→ M(w ◦ µ)/J(w ◦ µ),

where J(w◦µ) is the unique maximal proper submodule of M(w◦µ). Consequently,
we obtain chω(T λµ (L(η))) = chω(T λµ (M(η))/T λµ (J(η))) = chω(L(w ◦ µ)), as desired.

6. Twining Character Formula of Kac-Wakimoto Type

We prove a formula of Kac-Wakimoto type for twining characters.

6.1. Suto filtration. We will use a partial ordering ≤ on h∗ defined by

χ ≤ χ′ ⇐⇒ χ′ − χ ∈ Q+, χ, χ′ ∈ h∗.

Let η ∈ (h∗)0. Then, as in §5.2, there exists a unique linear automorphism τω :
M(η) → M(η) satisfying (5.2.2) with τω|M(η)η = id. Let {0} ⊂ Y1 $ Y2 ⊂ M(η)
be a filtration of M(η) by τω-stable g-submodules Y1 and Y2, and V := Y2/Y1 a
quotient g-module. Then, again as in §5.2, τω : M(η) → M(η) induces a linear
automorphism τω : V → V satisfying (5.2.3).

I owe the proof of the next proposition to Professor Kiyokazu Suto, so the filtra-
tion given below is called a Suto filtration.

Proposition 6.1.1. We keep the notation above. Let ϕ ∈ (h∗)0 be a symmetric
weight. Then there exist a finite sequence V0, V1, . . . , Vt, t ≥ 1, of g-submodules of
V and a subset T ⊂ {1, . . . , t} with the following properties:

(1) V = Vt ⊃ Vt−1 ⊃ · · · ⊃ V1 ⊃ V0 = {0};
(2) τω(Vi) ⊂ Vi for all 0 ≤ i ≤ t;
(3) if i /∈ T , then the quotient g-module Vi/Vi−1 has no weight χ ≥ ϕ;
(4) if i ∈ T , then there exist pi ∈ Z≥1, ξi ≥ ϕ, and g-submodules Vi,0, . . . , Vi,pi−1

of Vi such that

Vi =
pi−1∑
k=0

Vi,k, Vi/Vi−1 =
pi−1⊕
k=0

πi(Vi,k),

τω(Vi,k) = Vi,k+1, πi(Vi,k) ∼= L((ω∗)k(ξi)) for 0 ≤ k ≤ pi − 1,

where πi : Vi → Vi/Vi−1 is the natural quotient map, pi is the smallest
positive integer p such that (ω∗)p(ξi) = ξi, and Vi,pi := Vi,0.

Proof. We set

a(V, ϕ) :=
∑
ξ∈h

∗

ξ≥ϕ

dimC Vξ.

We prove the proposition by induction on a(V, ϕ). If a(V, ϕ) = 0, then V = V1 ⊃
V0 = {0} is the required filtration with T = ∅. Let a(V, ϕ) > 0. Choose a maximal
element ξ ∈ P (V ) with respect to the partial ordering ≤ on h∗ such that ξ ≥ ϕ,
and take the smallest positive integer p for which (ω∗)p(ξ) = ξ. Then we have
(τω)p(Vξ) = V(ω∗)p(ξ) = Vξ. Since the ξ-weight space Vξ is a finite-dimensional
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vector space over C, there exist cξ ∈ C \ {0} and 0 6= v ∈ Vξ such that (τω)p(v) =
cξv. Note that we have n+v = 0 from the maximality of ξ ∈ P (V ). We set
vk := (τω)k(v) ∈ V(ω∗)k(ξ) for 0 ≤ k ≤ p − 1 (so v0 = v). We note that for
each 0 ≤ k ≤ p − 1, the weight (ω∗)k(ξ) is also a maximal element in P (V ) since
χ ≥ χ′ implies ω∗(χ) ≥ ω∗(χ′). Hence we have n+vk = 0 for all 0 ≤ k ≤ p − 1.
Set Uk := U(g)vk for 0 ≤ k ≤ p − 1. Then the g-module Uk is a highest weight
module of highest weight (ω∗)k(ξ) with highest weight vector vk. We also have
τω(Uk) = Uk+1 for 0 ≤ k ≤ p − 1, where Up := U0 since τω(xvk) = ω−1(x)τω(vk)
for x ∈ U(g) and 0 ≤ k ≤ p − 1, and τω(vk) = vk+1 for 0 ≤ k ≤ p − 2 with
τω(vp−1) = (τω)p(v0) = cξv0. For each 0 ≤ k ≤ p−1, let Jk be the unique maximal
proper submodule of Uk, so that we have Uk/Jk ∼= L((ω∗)k(ξ)). Note that we have
χ � (ω∗)k(ξ) for all χ ∈ P (Jk). We see that τω(Jk) = Jk+1 for 0 ≤ k ≤ p − 1,
where Jp := J0.

We set

U :=
p−1∑
k=0

Uk, J :=
p−1∑
k=0

Jk.

Obviously we have τω(U) = U and τω(J) = J . Let π : U → U/J be the natural
quotient map. Then we have for 0 ≤ k ≤ p−1, π(Uk) = (Uk+J)/J ∼= Uk/(Uk∩J).
Now let us show that Uk ∩ J = Jk. Since the inclusion Jk ⊂ Uk ∩ J is obvious, we
will show that Uk ∩ J ⊂ Jk. For this purpose, it suffices to show that Uk ∩ J is a
proper submodule of Uk. Suppose now that Uk ∩ J = Uk, i.e., Uk ⊂ J . Then the
weight vector vk of weight (ω∗)k(ξ) is an element of J =

∑p−1
k=0 Jk. Thus we have

(ω∗)k(ξ) ∈ P (J) ⊂
⋃p−1
k=0 P (Jk), and hence (ω∗)k(ξ) � (ω∗)k

′
(ξ) ∈ P (V ) for some

k′ with 0 ≤ k′ 6= k ≤ p− 1, which contradicts the maximality of (ω∗)k(ξ) ∈ P (V ).
Thus we conclude that Uk ∩ J = Jk, and hence π(Uk) ∼= Uk/Jk ∼= L((ω∗)k(ξ)) for
0 ≤ k ≤ p− 1. Therefore we obtain

U/J = π(U) =
p−1∑
k=0

π(Uk) =
p−1⊕
k=0

π(Uk)

because π(Uk) ∼= L((ω∗)k(ξ)) for 0 ≤ k ≤ p − 1 and (ω∗)k(ξ) 6= (ω∗)k
′
(ξ) for

0 ≤ k 6= k′ ≤ p − 1. Thus we have a filtration V ⊃ U ⊃ J ⊃ {0}. Since we have
a(J, ϕ) < a(V, ϕ) and a(V/U, ϕ) < a(V, ϕ), we can use the induction hypothesis to
get the required filtrations for J and for V/U . Combining them with the filtration
V ⊃ U ⊃ J ⊃ {0}, we obtain the required filtration for V .

Here we note that, for each 1 ≤ i ≤ t, ξi ∈ h∗ is a symmetric weight if and only
if pi = 1. However, even if ξi is a symmetric weight, the restriction of τω to the
highest weight space (Vi/Vi−1)ξi is not an identity operator id, but its nonzero scalar
multiple cξi id. More precisely, by Lemma 4.2 we have the following commutative
diagram:

Vi/Vi−1
'−−−−→ L(ξi)

τω

y ycξiτω
Vi/Vi−1

'−−−−→ L(ξi).

(6.1.1)

Let us take ξ ∈ (h∗)0, and fix ϕ ∈ (h∗)0 such that ξ ≥ ϕ. Then we construct a
(Suto) filtration given by Proposition 6.1.1. We define a number [V : L(ξ)]ω ∈ C
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by

[V : L(ξ)]ω :=
∑

1≤i≤t
ξi=ξ

cξi .

Now we define the twining character chω(V ) of V by

chω(V ) :=
∑

χ∈(h∗)0

Tr(τω|Vχ) e(χ),

and similarly we set

chω(Vj/Vj−1) :=
∑

χ∈(h∗)0

Tr(τω|(Vj/Vj−1)χ) e(χ).

From Proposition 6.1.1, we can easily deduce that

chω(V ) =
t∑

j=1

chω(Vj/Vj−1) ≡ϕ
∑

ξ∈(h∗)0

[V :L(ξ)] 6=0

[V : L(ξ)]ω chω(L(ξ)),(6.1.2)

where the symbol ≡ϕ means that the coefficients of e(χ) on both sides of ≡ϕ are
equal for each χ ∈ (h∗)0 with χ ≥ ϕ. From this fact, we first see that the number
[V : L(ξ)]ω is independent of the (Suto) filtration given by Proposition 6.1.1 and
the choice of ϕ ∈ (h∗)0 with ξ ≥ ϕ, since the coefficient of e(ξ) in chω(L(ξ)) equals
1. We then see

chω(V ) =
∑

ξ∈(h∗)0

[V :L(ξ)] 6=0

[V : L(ξ)]ω chω(L(ξ)).(6.1.3)

6.2. Some preliminary lemmas. Let λ ∈ h∗. Since α ∈ Π(λ) ⊂ ∆(λ)+ is a
positive real root (say, α = w(αi) for w ∈ W and i ∈ I), we can write the dual real
root hα = w(hi) = 2ν−1(α)/(α|α) ∈ Q∨ as

hα =
∑
i∈I

lαi hi with lαi ∈ Z≥0.

Denote by gα ∈ Z≥1 the greatest common divisor of the integers
∑Ni−1

k=0 lαωk(i) ∈ Z≥0

for i ∈ Î. We say that λ ∈ h∗ satisfies condition (WI) for α if

λ(hα) ∈ Z is a multiple of gα ∈ Z≥1.(WI)

Remark 6.2.1. If α is a simple root αi ∈ Π, then we have hα = hi and gα = 1, and
hence λ satisfies condition (WI) for this α. Therefore, if λ is integral, i.e., λ ∈ P ,
then λ satisfies condition (WI) for all α ∈ Π(λ) = Π.

Lemma 6.2.2. Let λ ∈ h∗ be an element satisfying condition (WI) for an arbi-
trarily fixed α ∈ Π(λ). Then there exists an element γ0 ∈ h∗ such that γ0 ∈ P ,
ω∗(γ0) = γ0, and γ0(hα) = −λ(hα).

Proof. Recall from [FSS, §3.2] the definition of the diagram automorphism ω : g→
g. Since g is an affine Lie algebra, we have h =

(⊕
i∈I Chi

)
⊕CD for some suitably
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chosen element D ∈ h (not necessarily equal to the scaling element d in [Ka, Ch.
6]). We defined ω by 

ω(ei) := eω(i) for i ∈ I,
ω(fi) := fω(i) for i ∈ I,
ω(hi) := hω(i) for i ∈ I,
ω(D) := D.

Since the integer λ(hα) is a multiple of gα ∈ Z≥1 by assumption, there exist
integers zi ∈ Z, i ∈ Î, such that∑

i∈Î

zi

(
Ni−1∑
k=0

lαωk(i)

)
= −λ(hα).

We define an element γ0 ∈ h∗ by{
γ0(hωk(i)) := zi ∈ Z for i ∈ Î and 0 ≤ k ≤ Ni − 1,
γ0(D) := 1.

Then we have γ0 ∈ P and ω∗(γ0) = γ0. Further, we have

γ0(hα) =
∑
i∈I

lαi γ0(hi) =
∑
i∈Î

zi

(
Ni−1∑
k=0

lαωk(i)

)
= −λ(hα).

This proves the lemma.

We assume that λ ∈ h∗ is a symmetric weight, i.e., ω∗(λ) = λ. Then, by Lemma
5.1.3 (2), we have ω∗(Π(λ)) = Π(λ). Write Π(λ) = {φj}j∈J as in §5.1. Then ω∗

induces a bijection ωλ : J → J by: ω∗(φj) = φ(ωλ)−1(j) for j ∈ J . We note that

2(φωλ(j)|φωλ(i))/(φωλ(i)|φωλ(i)) = 2(φj |φi)/(φi|φi) for i, j ∈ J.
In other words, the bijection ωλ : J → J is a diagram automorphism for the GCM
A(λ) = (2(φj |φi)/(φi|φi))i,j∈J . Let Nλ be the order of ωλ : J → J , and Nλ

j the
number of elements in the ωλ-orbit of j ∈ J in J . We choose a set of representatives
Ĵ of the ωλ-orbits in J , and set

J̆ := {j ∈ Ĵ |
Nλj −1∑
k=0

2(φ(ωλ)k(j)|φj)/(φj |φj) > 0}.

Set, for each j ∈ Ĵ ,

ψj :=
Nλj −1∑
k=0

φ(ωλ)k(j) ∈ (h∗)0.

Lemma 6.2.3. Let λ ∈ (h∗)0. Fix an arbitrary j0 ∈ J̆ . Then there exists an
element θ ∈ h∗ such that θ ∈ P , ω∗(θ) = θ, (θ|δ) > 0, and (θ|ψj0) = 0, (θ|ψj) > 0
for j 6= j0 ∈ Ĵ .

Proof. First, we note that if ξ ∈ h∗ is a symmetric weight, then for j ∈ Ĵ ,

(ξ|ψj) = (ξ|
Nλj −1∑
k=0

φ(ωλ)k(j)) =
Nλj −1∑
k=0

(ξ|(ω∗)−k(φj)) = Nλ
j · (ξ|φj).
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We define an element ζ ∈ h∗ by{
ζ(hi) := 2 for all i ∈ I,
ζ(D) := 1.

It follows that ζ ∈ P , ω∗(ζ) = ζ, and (ζ|δ) =
∑
i∈I ai(ζ|αi) =

∑
i∈I aiε

−1
i ζ(hi) > 0.

To simplify the notation, we write α∨ instead of hα ∈ Q∨ for the dual real root
of α ∈ ∆re. We now set

θ := ζ −
(
ζ(φ∨j0 )/ψj0(φ∨j0)

)
ψj0 ∈ h∗.

Here we note that since j0 ∈ J̆ , we have (ψj0 |φj0 ) > 0, i.e., ψj0(φ∨j0 ) > 0. It
follows that ω∗(θ) = θ, and (θ|δ) = (ζ|δ) > 0 since (δ|Q) = 0 implies (δ|φj) =
0 for all j ∈ J . Note that ζ(φ∨j0 ) ∈ 2Z since φ∨j0 ∈ Q∨, and that ψj0(φ∨j0 ) =
2(ψj0 |φj0)/(φj0 |φj0) > 0 implies ψj0(φ∨j0 ) = 1, 2 as we have indicated just above
Proposition 3.2.2. Hence we have θ ∈ P since ψj0 ∈ Q ⊂ P . It is obvious from the
definition that θ(φ∨j0 ) = 0, i.e., (θ|φj0 ) = 0, and hence (θ|ψj0 ) = 0. For j 6= j0 ∈ Ĵ ,
we have

(θ|φj) = (ζ|φj)− ((ζ|φj0 )/(ψj0 |φj0)) · (ψj0 |φj).

Here we have (ζ|φj) > 0 for all j ∈ Ĵ since φj ∈ Π(λ) ⊂ ∆+, and (ψj0 |φj) =∑Nλj0−1

k=0 (φ(ωλ)k(j0)|φj) ≤ 0 since j 6= (ωλ)k(j0) for any 0 ≤ k ≤ Nλ
j0
− 1. Thus we

conclude that (θ|φj) > 0, and hence (θ|ψj) > 0.

Let λ ∈ C be a symmetric weight satisfying condition (WI) for all α ∈ Π(λ). Fix
an arbitrary j0 ∈ J̆ . Then, by Lemma 6.2.2, there exists γ0 ∈ h∗ such that γ0 ∈ P ,
ω∗(γ0) = γ0, and (γ0|φj0) = −(λ|φj0 ). Since ω∗(γ0) = γ0 and ω∗(λ) = λ, we have

(γ0|ψj0) = Nλ
j0(γ0|φj0) = −Nλ

j0(λ|φj0 ) = −(λ|ψj0).

Take θ ∈ h∗ as in Lemma 6.2.3, and set for each positive integer L ∈ Z≥0,

µ0 := λ+ γ0 − ρ, µ := µ0 + L θ.(6.2.1)

Then we see that ω∗(µ) = µ, and µ − λ = γ0 − ρ + Lθ ∈ P since ρ ∈ P . Also,
since (θ|δ) > 0, we have (µ + ρ|δ) = (λ + γ0|δ) + L(θ|δ) 6= 0, and hence µ ∈ C
for sufficiently large L. It follows that (µ + ρ|ψj0) = (λ + γ0|ψj0) + L(θ|ψj0) = 0.
Furthermore, for each j 6= j0 ∈ Ĵ , we have (µ+ ρ|ψj) = (λ + γ0|ψj) + L(θ|ψj) > 0
for sufficiently large L (depending on j ∈ Ĵ) because φj ∈ Π(λ) ⊂ ∆(λ) implies
(λ|φj) ∈ R and hence (λ + γ0|ψj) ∈ R. Here we recall that J is a finite set from
[KT2, Lem. 2.3]. Therefore, if L is sufficiently large, then we have (µ + ρ|ψj) > 0
for all j 6= j0 ∈ Ĵ . In particular, µ is an element of C+ since µ − λ ∈ P implies
∆(µ) = ∆(λ).

Lemma 6.2.4. We keep the notation above. There exists some x ∈ W̃ such that
x−1(µ− λ) ∈ P+.

Proof. Since (γ0 − ρ|δ) ∈ R, we have (µ − λ|δ) = (γ0 − ρ|δ) + L(θ|δ) > 0 for
sufficiently large L. If the Dynkin diagram S(A) of the GCM A = (aij)i,j∈I is of
type A(1)

n−1 and the diagram automorphism ω : I → I is a cyclic permutation of I
of order n, then we have for each i0 ∈ I,

(µ− λ|δ) = (µ− λ|
∑
i∈I

aiαi) =
∑
i∈I

ai(µ− λ|αi) = nai0(µ− λ|αi0)
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since ω∗(δ) = δ and ω∗(µ− λ) = µ− λ. Thus (µ− λ|δ) > 0 implies (µ− λ|αi) > 0
for all i ∈ I, hence µ− λ ∈ P+. Therefore, by the comment just above Proposition
3.2.2, we may assume that the matrix Â = Ă = (âij)i,j∈Ĭ is a GCM of affine type,

where Î = Ĭ.
Let δ̂ =

∑
i∈Î âiα̂i ∈ ĥ∗ be the null root of the orbit Lie algebra ĝ of affine

type, where the âi, i ∈ Î, are relatively prime positive integers. Then we have
P ∗ω(δ̂) ∈ Q+ since P ∗ω(α̂i) = siβi by (3.2.4). In addition, we have for all i ∈ Î,
(P ∗ω(δ̂)|βi) = s−1

i (P ∗ω(δ̂)|P ∗ω(α̂i)) = s−1
i (δ̂|α̂i) = 0. Since P ∗ω(δ̂) is a symmetric

weight, we obtain (P ∗ω(δ̂)|αi) = N−1
i (P ∗ω(δ̂)|βi) = 0 for all i ∈ Î, and hence for all

i ∈ I. In other words, the element P ∗ω(δ̂) ∈ Q+ is in the radical of the bilinear
form (·|·) restricted to

∑
i∈I Rαi. Therefore we deduce that P ∗ω(δ̂) = kδ for some

positive integer k ∈ Z≥1.
Since µ− λ ∈ h∗ and ω∗(µ− λ) = µ− λ, there exists κ̂ ∈ ĥ∗ such that P ∗ω(κ̂) =

µ − λ. Note that (κ̂|α̂i) ∈ R for all i ∈ Î = Ĭ since (κ̂|α̂i) = (P ∗ω(κ̂)|P ∗ω(α̂i)) =
(µ − λ|siβi) = siNi(µ − λ|αi). Moreover, we have (κ̂|δ̂) = (P ∗ω(κ̂)|P ∗ω(δ̂)) = k(µ −
λ|δ) > 0. Hence, by (the proof of) [Ka, Prop. 5.8 b)], there exists x̂ ∈ Ŵ such
that (x̂(κ̂)|α̂i) ≥ 0 for all i ∈ Î. Then, by Proposition 3.3.1, we have P ∗ω(x̂(κ̂)) =
Θ(x̂)(P ∗ω(κ̂)) = Θ(x̂)(µ − λ). Set x := Θ(x̂) ∈ W̃ ⊂ W and Λ := P ∗ω(x̂(κ̂)) ∈ (h∗)0.
Then we have Λ = x(µ − λ) ∈ P since µ − λ ∈ P . Furthermore, we have for each
i ∈ Î,

0 ≤ (x̂(κ̂)|α̂i) = (P ∗ω(x̂(κ̂))|P ∗ω(α̂i)) = (Λ|siβi)

= si(Λ|
Ni−1∑
k=0

αωk(i)) = siNi(Λ|αi)

since ω∗(Λ) = Λ. Thus we obtain Λ ∈ P+.

In particular, the elements λ, µ ∈ C satisfy condition (TR) with µ − λ = x(Λ)
for x ∈ W̃ and Λ ∈ P+.

6.3. About Weyl groups. We use the notation of §5.1. Let λ ∈ (h∗)0. Then, as
in §6.2, ω∗ induces a bijection of Π(λ) = {φj}j∈J , and so a diagram automorphism
ωλ : J → J by ω∗(φj) = φ(ωλ)−1(j) for j ∈ J . By Lemma 5.1.1, the GCM A(λ) =
(2(φj |φi)/(φi|φi))i,j∈J decomposes, after reordering the indices, into a direct sum
of GCMs of finite type and those of affine type. Note that in the decomposition
A(λ) = D(λ)B(λ) given in Remark 5.1.2, we have ελωλ(j) = ελj for all j ∈ J since
(ω∗(φj)|ω∗(φj)) = (φj |φj). Hence we can apply the setting in §3 to the Kac-Moody
algebra gλ = g(A(λ)) with Cartan subalgebra hλ and simple roots Πλ = {βj}j∈J ⊂
(hλ)∗. Let (·|·)λ be the nondegenerate, symmetric, invariant bilinear form on gλ

corresponding to the decomposition A(λ) = D(λ)B(λ) above. We also denote by
ωλ : gλ → gλ the diagram automorphism of the Lie algebra gλ induced from
the bijection ωλ : J → J , and by (ωλ)∗ : (hλ)∗ → (hλ)∗ the dual map of the
restriction of ωλ to hλ. Note that we have the following commutative diagram from
the definitions:
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Qλ
Ψ−−−−→ Q(λ)

(ωλ)∗
y yω∗
Qλ −−−−→

Ψ
Q(λ),

where Ψ : Qλ → Q(λ) is the Z-linear isomorphism in §5.1. Furthermore, we know
from [MP, §5.1 and §5.5] that there exists a unique group isomorphism Ξ : Wλ →
W (λ) satisfying Ξ(rλj ) = rφj for each j ∈ J . In addition, we have the following
commutative diagram for each w ∈ Wλ:

Qλ
Ψ−−−−→ Q(λ)

w

y yΞ(w)

Qλ −−−−→
Ψ

Q(λ).

Set

W̃λ := {w ∈Wλ | (ωλ)∗w = w(ωλ)∗}.

Lemma 6.3.1. We have Ξ(W̃λ) = W (λ) ∩ W̃ .

Proof. Let us show that for each w ∈ Wλ,

Ξ(((ωλ)∗)−1 w (ωλ)∗) = (ω∗)−1 Ξ(w)ω∗,

from which the lemma immediately follows, since Ξ : Wλ → W (λ) is a group
isomorphism. To show the equality above, we may assume that w = rλj for j ∈ J .
Then, by Lemma 3.1.4 (2) and (4), we have

Ξ(((ωλ)∗)−1rλj (ωλ)∗) = Ξ(rλωλ(j)) = rφ
ωλ(j)

= r(ω∗)−1(φj)

= (ω∗)−1rφjω
∗ = (ω∗)−1Ξ(rλj )ω∗,

as desired.

Now recall from §3.3 that the group W̃λ is a Coxeter group with the canonical
generator system {wλj | j ∈ J̆}, where wλj ∈ W̃λ for j ∈ J̆ is defined by using
rλ(ωλ)k(j) with 0 ≤ k ≤ Nλ

j − 1 in exactly the same way as wi ∈ W̃ for i ∈ Ĭ is
defined by using rωk(i) with 0 ≤ k ≤ Ni − 1 in (3.3.1). Therefore, by Lemma 6.3.1,
we deduce that the group W (λ)∩W̃ is a Coxeter group with the canonical generator
system {sj := Ξ(wλj ) | j ∈ J̆}. We denote the length function of W (λ) ∩ W̃ ∼= W̃λ

by ̂̀λ : W (λ) ∩ W̃ → Z≥0.

Remark 6.3.2. From the argument above, we see that W (λ) ∩ W̃ = {1} if and only
if J̆ = ∅.

6.4. Proof of the main theorem. Let λ ∈ h∗ be a symmetric weight such that
λ ∈ C+ and ∆0(λ) = ∅. Then, by arguments similar to those in the proof of [Ka,
Prop. 3.12], we see that for each w ∈W (λ), w ◦ λ ∈ λ−

∑
α∈Π(λ) Z≥0α, and hence

w ◦ λ ≤ λ with equality if and only if w = 1.
Let w ∈ W (λ) ∩ W̃ . Then the module M(w ◦ λ) is in the category O[λ]. Hence

[M(w ◦ λ) : L(ξ)] > 0 for ξ ∈ h∗ implies ξ = y ◦ λ for a unique y ∈ W (λ). If
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ω∗(ξ) = ξ, then we have

ω∗y(λ+ ρ)− ρ = ω∗y(λ+ ρ)− ω∗(ρ) = ω∗(y ◦ λ)

= y ◦ λ = y(λ+ ρ)− ρ = yω∗(λ+ ρ)− ρ,

from which we have ((ω∗)−1yω∗) ◦ λ = y ◦ λ. Since (ω∗)−1yω∗ ∈ W (λ), we have
(ω∗)−1yω∗ = y, i.e., y ∈ W̃ . Therefore, by (6.1.3), we see that

chω(M(w ◦ λ)) =
∑

y∈W (λ)∩W̃

[M(w ◦ λ) : L(y ◦ λ)]ω chω(L(y ◦ λ)).

Since the unique maximal proper submodule J(w ◦ λ) of M(w ◦ λ) is τω-stable and
M(w ◦ λ)/J(w ◦ λ) = L(w ◦ λ), we obtain that [M(w ◦ λ) : L(w ◦ λ)]ω = 1.

Remark 6.4.1. From the argument above, we see that if W (λ) ∩ W̃ = {1}, i.e.,
J̆ = ∅, then we have chω(L(λ)) = chω(M(λ)).

Now let us take an arbitrary w ∈ W (λ) ∩ W̃ , and set η := w ◦ λ ∈ (h∗)0.
Fix ϕ ∈ (h∗)0, and take a (Suto) filtration of the Verma module M(η) given by
Proposition 6.1.1

M(η) = Vt ⊃ Vt−1 ⊃ · · · ⊃ V1 ⊃ V0 = {0}.(6.4.1)

By (6.1.2), we have

chω(M(η)) =
t∑
i=1

chω(Vi/Vi−1) ≡ϕ
∑

y∈W (λ)∩W̃

[M(η) : L(y ◦ λ)]ω chω(L(y ◦ λ)).

Assume, in addition, that there exists a symmetric weight µ ∈ C+ such that µ−λ =
x(Λ) for x ∈ W̃ and Λ ∈ P+. From (6.4.1), by tensoring with the module L(Λ), we
get a filtration of M(η)⊗C L(Λ) by τω ⊗ τω-stable g-submodules

M(η)⊗C L(Λ) = Vt ⊗C L(Λ) ⊃ Vt−1 ⊗C L(Λ) ⊃ · · ·
· · · ⊃ V1 ⊗C L(Λ) ⊃ V0 ⊗C L(Λ) = {0},(6.4.2)

where for i /∈ T , the quotient module (Vi ⊗C L(Λ))/(Vi−1 ⊗C L(Λ)) has no weight
χ ≥ ϕ+Λ. By applying the exact functor Pµ to this filtration and using Proposition
5.2.4, we obtain a filtration of T λµ (M(η)) by τ ⊗ τω-stable g-submodules

T λµ (M(η)) = T λµ (Vt) ⊃ T λµ (Vt−1) ⊃ · · · ⊃ T λµ (V1) ⊃ T λµ (V0) = {0}.

Lemma 6.4.2. With the notation above, we have

chω(T λµ (M(w ◦ λ))) ≡ϕ+Λ

∑
y∈W (λ)∩W̃

[M(η) : L(y ◦ λ)]ω chω(T λµ (L(y ◦ λ))).

Proof. As in the proof of Corollary 5.2.6, we obtain the following commutative
diagram for 1 ≤ i ≤ t from the filtration (6.4.2):

T λµ (Vi)/T λµ (Vi−1) '−−−−→ T λµ (Vi/Vi−1)

τω⊗τω
y yτω⊗τω

T λµ (Vi)/T λµ (Vi−1) '−−−−→ T λµ (Vi/Vi−1),
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where the left vertical map τω ⊗ τω is induced from the map τω⊗τω : Vi⊗CL(Λ)→
Vi ⊗C L(Λ). Thus we have

chω(T λµ (M(η))) =
t∑
i=1

chω(T λµ (Vi)/T λµ (Vi−1)) =
t∑
i=1

chω(T λµ (Vi/Vi−1)).

Now recall that for each 1 ≤ i ≤ t, the diagram (6.1.1) commutes for some
cξi ∈ C \ {0}. By tensoring with L(Λ) and then applying the exact functor Pµ
(using Proposition 5.2.4), we obtain the commutative diagram

T λµ (Vi/Vi−1) '−−−−→ T λµ (L(ξi))

τω⊗τω
y ycξiτω⊗τω

T λµ (Vi/Vi−1) '−−−−→ T λµ (L(ξi)).

Hence we have for 1 ≤ i ≤ t, chω(T λµ (Vi/Vi−1)) = cξichω(T λµ (L(ξi))). Therefore we
have

t∑
i=1

chω(T λµ (Vi/Vi−1)) ≡ϕ+Λ

∑
y∈W (λ)∩W̃

[M(η) : L(y ◦ λ)]ω chω(T λµ (L(y ◦ λ))).

This completes the proof.

Since ϕ ∈ (h∗)0 is arbitrary in Lemma 6.4.2, we obtain the following:

Proposition 6.4.3. Let λ, µ ∈ C+ be elements satisfying condition (TR) with µ−
λ = x(Λ) for x ∈ W̃ and Λ ∈ P+. Assume, in addition, that ∆0(λ) = ∅. Then, for
each w ∈W (λ) ∩ W̃ , we have

chω(M(w ◦ λ)) =
∑

y∈W (λ)∩W̃

[M(w ◦ λ) : L(y ◦ λ)]ω chω(L(y ◦ λ)),

chω(T λµ (M(w ◦ λ))) =
∑

y∈W (λ)∩W̃

[M(w ◦ λ) : L(y ◦ λ)]ω chω(T λµ (L(y ◦ λ))).

We are now in a position to state our main result.

Theorem 6.4.4. Let g = g(A) be the Kac-Moody algebra associated to a GCM
A = (aij)i,j∈I of affine type, and ω : I → I a diagram automorphism. Let λ ∈ h∗

be a symmetric weight such that λ ∈ C+ and ∆0(λ) = ∅.
(a) When W (λ) ∩ W̃ = {1} (i.e., J̆ = ∅), we have

chω(L(λ)) = chω(M(λ))

= e(λ) ·

∑
w∈W̃

(−1)̂̀(w) e(w(ρ) − ρ)

−1

,

where ̂̀ : W̃ → Z denotes the length function of the Coxeter group W̃ .
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(b) When W (λ) ∩ W̃ 6= {1} (i.e., J̆ 6= ∅), we further assume that λ satisfies
condition (WI) for all α ∈ Π(λ). In this case, we have

chω(L(λ)) =
∑

w∈W (λ)∩W̃

(−1)̂̀λ(w) chω(M(w ◦ λ))

=

∑
w∈W (λ)∩W̃

(−1)̂̀λ(w) e(w(λ + ρ))

∑
w∈W̃

(−1)̂̀(w) e(w(ρ))
,

where ̂̀λ : W (λ)∩W̃ → Z denotes the length function of the Coxeter group W (λ)∩
W̃ .

Proof. Part (a) is already proved by Remark 6.4.1 combined with Theorem 4.4. We
will prove part (b). So we assume that J̆ 6= ∅. Recall that for w ∈ W (λ) ∩ W̃ , we
have w ◦λ ≤ λ, and w ◦λ = λ implies w = 1. Hence we can write (W (λ)∩W̃ )◦λ =
{λi | i ∈ Z≥1} and reindex them in such a way that

(1) λ1 = λ;
(2) λi = yi ◦ λ for a unique yi ∈ W (λ) ∩ W̃ , i ∈ Z≥1;
(3) depthλ(λi) < depthλ(λj) implies i < j.

By Proposition 6.4.3, we have for i ≥ 1,

chω(M(λi)) =
∑
j≥i

[M(yi ◦ λ) : L(yj ◦ λ)]ω chω(L(λj)),(6.4.3)

where [M(yi ◦λ) : L(yi ◦λ)]ω = 1. We may view (6.4.3) above as a system of linear
equations whose matrix is lower triangular with all the diagonal entries equal to 1.
Thus we may invert this system to obtain for i ≥ 1,

chω(L(λi)) =
∑
j≥i

c(yi, yj) chω(M(λj)) with c(yi, yj) ∈ C,

where c(yi, yi) = 1. In particular, for λ1 = λ, we have

chω(L(λ)) =
∑
j≥1

c(1, yj) chω(M(λj)) with c(1, 1) = 1.

We set c(y) := c(1, y) for y ∈ W (λ) ∩ W̃ . Then we can write

chω(L(λ)) =
∑

y∈W (λ)∩W̃

c(y) chω(M(y ◦ λ)) with c(1) = 1.(6.4.4)

We want to determine the numbers c(y) ∈ C for y ∈ W (λ) ∩ W̃ . Let µ ∈ C+ be
a symmetric weight such that µ−λ = x(Λ) for x ∈ W̃ and Λ ∈ P+. By Proposition
6.4.3, we have for i ≥ 1,

chω(T λµ (M(λi))) =
∑
j≥i

[M(yi ◦ λ) : L(yj ◦ λ)]ω chω(T λµ (L(λj))).

Hence, in the same way as for chω(L(λ)) above, we obtain

chω(T λµ (L(λ))) =
∑

y∈W (λ)∩W̃

c(y) chω(T λµ (M(y ◦ λ))),
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where the c(y)’s for y ∈ W (λ) ∩ W̃ are exactly the same numbers as those for
chω(L(λ)) in (6.4.4). Let us fix an arbitrary j0 ∈ J̆ , and take µ ∈ (h∗)0 as in (6.2.1).
Then we have µ ∈ C+, µ − λ = x(Λ) for x ∈ W̃ , Λ ∈ P+, and (µ + ρ|ψj0) = 0,
(µ+ ρ|ψj) > 0 for all j 6= j0 ∈ Ĵ . Then, by Proposition 5.2.5 and Corollary 5.2.6,
we have

chω(T λµ (M(y ◦ λ))) = chω(M(y ◦ µ)) for each y ∈W (λ) ∩ W̃ ,

and chω(T λµ (L(λ))) = 0. Consequently, we obtain

0 =
∑

y∈W (λ)∩W̃

c(y) chω(M(y ◦ µ)).

Here we note that the twining characters chω(M(ξ)), ξ ∈ (h∗)0, are linearly inde-
pendent over C. Thus we get, for each y ∈ W (λ) ∩ W̃ ,

0 =
∑

w∈W (λ)∩W̃
w◦µ=y◦µ

c(w).

Now let w ∈ W (λ) ∩ W̃ be such that w ◦ µ = µ. Since (µ + ρ|ψj) ≥ 0 for all
j ∈ Ĵ , we have (µ+ ρ|φj) ≥ 0 for all j ∈ J since ω∗(µ+ ρ) = µ+ ρ. Hence, by [MP,
Prop. 5.6.3], we see that w(µ+ ρ) = µ+ ρ for w ∈W (λ) implies

w ∈ 〈rφ(ωλ)k(j0)
| 0 ≤ k ≤ Nλ

j0 − 1〉 ⊂W (λ).

Recall from §6.3 that there exists a group isomorphism Ξ : Wλ →W (λ) satisfying
Ξ(rλj ) = rφj for each j ∈ J . Thus we have

w′ := Ξ−1(w) ∈ 〈rλ(ωλ)k(j0) | 0 ≤ k ≤ Nλ
j0 − 1〉 ⊂Wλ.

Furthermore, by Lemma 6.3.1, we have that w′ ∈ W̃λ. Let ζ ∈ (hλ)∗ be such that
(ωλ)∗(ζ) = ζ and (ζ|βj)λ > 0 for all j ∈ J , where (·|·)λ is the (induced) bilinear
form on (hλ)∗. Set ζ′ := w′(ζ). It follows that (ζ′|βj0)λ > 0 or (ζ′|βj0)λ < 0 since
(ζ′|βj0)λ = (w′(ζ)|βj0 )λ = (ζ|(w′)−1(βj0 ))λ and

(w′)−1(βj0) ∈

 ∑
0≤k≤Nλj0−1

Z≥0 β(ωλ)k(j0)

⋃
 ∑

0≤k≤Nλj0−1

Z≤0 β(ωλ)k(j0)

 .

Hence we have either (ζ′|β(ωλ)k(j0))λ > 0 for all 0 ≤ k ≤ Nλ
j0−1, or (ζ′|β(ωλ)k(j0))λ <

0 for all 0 ≤ k ≤ Nλ
j0 − 1, since (ωλ)∗(ζ′) = ζ′. It is known from [FSS, §5.1]

that wλj0 (βj0) ∈
∑

0≤k≤Nλj0−1 Z≤0 β(ωλ)k(j0). So we have either (ζ′|βj0)λ > 0 or

(wλj0(ζ′)|βj0 )λ > 0, and hence either (ζ′|β(ωλ)k(j0))λ > 0 for all 0 ≤ k ≤ Nλ
j0
− 1,

or (wλj0(ζ′)|β(ωλ)k(j0))λ > 0 for all 0 ≤ k ≤ Nλ
j0 − 1, since wλj0 ∈ W̃λ implies

(ωλ)∗(wλj0(ζ′)) = wλj0 (ζ′). Thus, by (the proof of) [Ka, Prop. 3.12 a) and b)], we
deduce that w′(ζ) = ζ or wλj0w

′(ζ) = ζ, and hence w′ = 1 or w′ = wλj0 , since
wλj0 ∈ W̃λ is generated by rλ(ωλ)k(j0) for 0 ≤ k ≤ Nλ

j0 − 1. Therefore, we obtain that
w = 1 or w = sj0 , where sj0 = Ξ(wλj0 ).
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Summarizing the arguments above, we have c(y)+c(ysj0) = 0 for y ∈W (λ)∩W̃ .

Since j0 ∈ J̆ is arbitrary, we obtain

c(y) + c(ysj) = 0 for y ∈ W (λ) ∩ W̃ and j ∈ J̆ ,(6.4.5)

where c(1) = 1. Here we note that W (λ)∩W̃ is a Coxeter group with the canonical
generator system {sj | j ∈ J̆}. Thus, we see by induction on the length ̂̀λ(y) of
y ∈ W (λ)∩W̃ that the numbers c(y) for y ∈ W (λ)∩W̃ are determined uniquely by
the relations (6.4.5) together with c(1) = 1. Furthermore, the numbers (−1)̂̀λ(y)

satisfy the relations (6.4.5) together with (−1)̂̀λ(1) = (−1)0 = 1. Therefore we
deduce that

c(y) = (−1)̂̀λ(y) for y ∈W (λ) ∩ W̃ .(6.4.6)

Combining (6.4.6) with Theorem 4.4, we complete the proof of the theorem.

Remark 6.4.5. We have assumed an additional condition on λ in part (b) of The-
orem 6.4.4 in order to make the clever choice of the translation functor T λµ . We
expect that the same formula will still hold without this condition.

Remark 6.4.6. If the symmetric weight λ ∈ (h∗)0 is dominant integral, i.e., λ ∈ P+,
then λ satisfies the assumption of Theorem 6.4.4 (b). In this case, we have W (λ) =
W and hence W (λ) ∩ W̃ = W̃ . Then, Theorem 6.4.4 is nothing but Theorem 4.5,
which is the main result of [FSS]. Recall from the comment just above Proposition
3.2.2 that W̃ = {1} if and only if the GCM A = (aij)i,j∈I is of type A(1)

n−1 and the
diagram automorphism ω : I → I is a cyclic permutation of I of order n.

Remark 6.4.7. If the diagram automorphism ω : I → I is the identity map, then
any element λ ∈ C+ such that ∆0(λ) = ∅ satisfies the assumption of Theorem
6.4.4 (b). This is because when we write the dual real root hα of α ∈ ∆re as
hα =

∑
i∈I l

α
i hi ∈ Q∨, the integers lαi for i ∈ I are relatively prime. In this case,

we have W̃ = W , and hence W (λ) ∩ W̃ = W (λ). Then, Theorem 6.4.4 is just the
well-known character formula by Kac-Wakimoto ([KW]) for the ordinary character
chL(λ).

Remark 6.4.8. Theorem 6.4.4 holds also for a finite-dimensional simple Lie algebra
g when C is replaced by h∗ and so C+ by the set

{ξ ∈ h∗ | (ξ + ρ)(hα) ≥ 0 for all α ∈ ∆(ξ)+}.
Since the proof in the finite-dimensional case is similar to and simpler than that in
the affine case, we omit it.
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