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TWINING CHARACTER FORMULA
OF KAC-WAKIMOTO TYPE
FOR AFFINE LIE ALGEBRAS

SATOSHI NAITO

ABSTRACT. We prove a formula of Kac-Wakimoto type for the twining charac-
ters of irreducible highest weight modules of symmetric, noncritical, integrally
dominant highest weights over affine Lie algebras. This formula describes the
twining character in terms of the subgroup of the integral Weyl group consist-
ing of elements which commute with the Dynkin diagram automorphism. The
main tools in our proof are the (Jantzen) translation functor and the existence
result of a certain local composition series which is stable under the Dynkin
diagram automorphism.

1. INTRODUCTION

In [ESS] and [FRS], they introduced the notion of twining characters of cer-
tain highest weight modules over (generalized) Kac-Moody algebras, corresponding
to Dynkin diagram automorphisms. Moreover, they gave formulas for the twining
characters of Verma modules of arbitrary symmetric highest weights and irreducible
highest weight modules of symmetric, dominant integral highest weights (see The-
orems 4.4 and 4.5). The aim of this paper is to give a formula of Kac-Wakimoto
type for the twining characters of irreducible highest weight modules over affine Lie
algebras of symmetric, noncritical, integrally dominant highest weights (including
symmetric, dominant integral ones). We should note that our method of proof is
quite different from that in [FSS] and [FRS], since an irreducible highest weight
module is not integrable if its highest weight is not dominant integral.

Let us explain our formula more precisely. Let g := g(A) be an affine Lie
algebra over C with A = (a;;); jer the Cartan matrix, h the Cartan subalgebra,
IT = {; }ier C b* := Homg(h, C) the set of simple roots, IV = {h;};c; C b the set
of simple coroots, and W = (r; | i € I} C GL(h*) the Weyl group, where r; is a
simple reflection. For a real root @ = w(a;) € A™ := W Il with w € W and ¢ € I,
the dual real root h,, of a is defined to be an element h,, := w(h;) € ), Zh;. For
A€ b*, we set

AN) :={a e A" | A(ha) € Z},
W) :={ro |ae AN)) C W,
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where r,, € W is the reflection of h* corresponding to «. Furthermore, let II(\) be
the set of simple roots for the positive system A(A)y == A(X) N A4

For A € b*, we denote by M()) the Verma module of highest weight A, and
by L(X) the irreducible highest weight module of highest weight A over g. Let
w : I — I be a bijection such that

Ay (i),w(j) = Qij for i,jel

(such a bijection w is called a (Dynkin) diagram automorphism). We choose and
fix a set of representatives T of the w-orbits in I , and denote by N; the number of
elements in the w-orbit of ¢ € I. This w induces an automorphism (also called a
diagram automorphism by abuse of notation) w : g — g of the affine Lie algebra
g, which stabilizes h. We denote the dual map of the restriction of w to b by
w* : h* — bh*. In addition, we define the following subgroup of W

Wi={weW|ww=uww}

Let A € b* be a symmetric weight (i.e., w*(A) = A\). Then the diagram automor-
phism w induces on the highest weight modules V(\) = M ()), L(\) unique linear
automorphisms

Tw : V(A) = V(N)
such that
To(zv) = w H2)1,(v)  forx g, ve V(N

and the restriction of 7, to the highest weight space V(\)y is the identity. Now the
twining character ch*(V())) is defined to be the formal sum

ch(V(N) = > Tr(rulvn,) e(x),
X€Eh”
w* (x)=x

where V' ()), is the weight space corresponding to x € h*.
Our main result in this paper is the following theorem.

Theorem. Let A be an element of b* such that w*(X) = A\, (A + p)(c) # 0, and
A+ p)(ha) > 0 for all « € A(N)NAy. Here p € b* is a fized element such that
p(hi) =1 for all i € I and w*(p) = p, and ¢ € b is the canonical central element.

(a) When W(A) NW = {1}, we have

ch®(L(N)) = ch® (M(N))

=e) [ Y D) ew(p)-p) |

wEW

where 0 : W — Z denotes the length function of the Coxzeter group w.
(b) When W(A)NW # {1}, we further assume that for each a € TI(X), the integer

A hq) is a multiple of the greatest common divisor of the integers szv:61 ISk iy
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i€ IA, where ho = ) ;1 18 hi € Yo Z>ohi. In this case, we have

(L) = > (~)PO e (M(w(A + p) - p))
wEW (\)NW
Y (—D)B® ew(A + p)
_weWWNW
S D)@ e(wip)
weW

where Uy : W(A)NW — Z denotes the length function of the Cozeter group W(A)N
w.

Since the additional assumption on A in part (b) of the theorem is made for
some technical reasons, it seems very likely that this assumption can be removed.
However, for our proof of the theorem, it is essential (see §6.2).

This paper is organized as follows. In §2, we recall some basic facts about affine
Lie algebras from [Ka]. In §3, we review the notion of orbit Lie algebras from [FRS]
and [FSS]. In §4, we recall the definition of twining characters and main results
of [ESS] or [FRS]. In §5, we introduce the (Jantzen) translation functor and show
some of its important properties. In §6, we show the existence of a certain 7,,-stable
local composition series. Making essential use of this, we finally prove our main
result (Theorem) stated above.

Acknowledgments. I express my sincere thanks to Professor Kiyokazu Suto for
many valuable discussions and helpful suggestions, which lead to the existence result
of a certain 7,,-stable local composition series (which is named a Suto filtration after
him). I also profitted greatly from discussions via e-mail with Professors Seok-Jin
Kang, Jae-Hoon Kwon, and Christoph Schweigert.

2. AFFINE LIE ALGEBRAS

We recall the definition and some basic properties of affine Lie algebras from
[Kal.

2.1. Generalized Kac-Moody algebras of at most affine type. Though
our interest is focused upon the twining characters for affine Lie algebras, it is
convenient for later use to explain the notion of generalized Kac-Moody algebras
(GKM algebras) of at most affine type. Here we follow the notation of [Ka] (see
also [B]).

Let I = {1,2,...,n} be a finite index set, and let A = (a;;)ijer be an n x n
real matrix (called a GGCM) satisfying:

(C1) either a;; =2 or a;; <0 for i € I

(C2) a;; <O0fori,jelifi##j, and a;; € Z for j #1iif a;; = 2;

(C3) a;; =0 if and only if aj; = 0.
We assume that after reordering the indices, the matrix A decomposes into a direct
sum of generalized Cartan matrices (GCMs) of finite type, GCMs of affine type,
and the 1 x 1 zero matrices. We call such a matrix A a GGCM of at most affine
type. Let g = g(A) be the generalized Kac-Moody algebra (GKM algebra) over
C assiciated to a GGCM A = (a;;); jer of at most affine type, with h the Cartan
subalgebra, {e;, fi}ier the Chevalley generators, IT = {«;}icr C h* := Home(h, C)
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the set of simple roots, and IV = {h;}ic; C b the set of simple coroots. We
have a root space decomposition of g with respect to the Cartan subalgebra b:

g= (@aeA_ ga) dhd (@a6A+ ga) , where A, C Q4 = Ziel Z>oay is the set
of positive roots, A_ = — A, is the set of negative roots, and g, is the root space
corresponding to a root « € A = A_ LU A,. Note that g, = Ce;, g_o, = Cf; for
i€l Wecall Q:=3%, ;Zo; Cb* the root lattice, and Q¥ := ", Zh; C b the
coroot lattice of g.

We set I" :={i €I |ay; =2}, I'" :={i€l]|ay; =0}, and call II"® := {a; €
Il | i € I"} the set of real simple roots, II'™ := {a; € II | i € I'"™} the set of
imaginary simple roots. Then the Weyl group W of the GKM algebra g is defined
to be W = (r; | i € I"®) C GL(h*), where r; is a simple reflection. Note that W is
a Coxeter group with the canonical generator system {r; | i € I"®}. We denote by
¢ : W — Z the length function of W. We call A™ := W -II"¢ the set of real roots,
and A" := A\ A" the set of imaginary roots. For a real root o = w(a;) with
w € W and i € I", the dual real root hy of a is given by hy = w(h;) € QV.

icl

2.2. Invariant bilinear forms. A GGCM A = (a;;); jer of at most affine type is
clearly symmetrizable, i.e., there exist an invertible diagonal matrix D = diag(e;)ier
and a symmetric matrix B = (b;;); jer such that A = DB. Note that all the ¢; can
be taken to be positive rational numbers, and all the b;; to be rational numbers
since A = (aij)ijer is an integral matrix. Thus, there exists a nondegenerate,
symmetric, invariant bilinear form (-|-) on g = g(A). The restriction of this form
(-|-) to b is again nondegenerate, so that it induces (through a linear isomorphism
v : b — b* defined by v(h)(h') = (h|h') for h,h' € h) on b* a nondegenerate,
symmetric, W-invariant bilinear form, which is also denoted by (:|-). We note that

(ai|aj) = bij = aij/ei for 1,] € 1, )\(hz) = 5i()\|ai) for A € b*, 1 €1,
AMho) =2(Ma)/(ala)  for A€ h*, ae A"

Remark 2.2.1. A root « is an imaginary root if and only if (o|a) < 0, while for a
real root o = w(ey) with w € W and 7 € I"®, we have (a]a) = (a;|a;) = 2/e; > 0.

2.3. Affine Lie algebras. Let us assume in this subsection that the matrix
A = (aij)ijer is a GCM of affine type. The Kac-Moody algebra g = g(A) is called
an affine Lie algebra.

Letc =), a/h; € Q¥ (with the af, i € I, relatively prime positive integers) be
the canonical central element spanning the (one-dimensional) center. We know that
the restriction of the bilinear form (:|-) on h* to >, ; Ra; is positive-semidefinite
with one-dimensional radical. Let 6 = >, ; a;a; € Q (with the a;, i € I, relatively
prime positive integers) be the null root spanning the radical. We remark that the
set Ai_m = A"™ N Ay of positive imaginary roots is equal to Z>16, and w(8) = §
for all w € W. Note that v(c) = ¢é for some positive rational number g € Q.

3. ORBIT LIE ALGEBRAS

We review the notion of orbit Lie algebras mainly from [FRS] and [FSS]. How-
ever, since we need to deal with decomposable GCMs, there are some additional
considerations. See also [N1] for the “transposed” version of orbit Lie algebras,
which were called folding subalgebras. In this section, we assume that the matrix
A = (aij)i jer decomposes, after reordering the indices, into a direct sum of GCMs
of finite type and those of affine type.
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3.1. Diagram automorphisms. A bijection w : I — I such that
(3.1.1) Qi) w(j) = Gij fori,jel

is called a (Dynkin) diagram automorphism. This induces an automorphism of the
Dynkin diagram S(A) of the GCM A as a graph. Since the graph S(A) is not
necessarily connected, we have the following decomposition of S(A) into connected
components: S(A) = ||, S(A(l)), where for each I, 1 < [ < m, the subgraph
S(A(1)) of S(A) is a connected component corresponding to the subset I(l) of the
index set I. Note that by assumption the submatrix A(l) := (as;); jerq) is a GCM
of finite type or affine type for 1 <1 <m. Weset K := {1,... ,m}. It is easy to see
that the diagram automorphism w : I — I maps a connected component S(A(l))
to another (or the same) connected component, say S(A(w(l))), for I € K. Thus w
induces a bijection w : K — K. It is obvious that the Dynkin diagram S(A(w(1)))
is isomorphic to the Dynkin diagram S(A(l)) as a graph for [ € K.

Let N be the order of w : I — I, and N; the number of elements in the w-orbit
of i € I'in I. It is clear that the restriction of w to each w-orbit of i € I is a cyclic
permutation of order N;. Similarly, let M be the order of w : K — K, and M; the
number of elements in the w-orbit of [ € K in K. Then the restriction of w to each
w-orbit of [ € K is a cyclic permutation of order M;, and hence the restriction of
wMi to I(l) induces an automorphism of the Dynkin diagram S(A(l)) as a graph
forl € K.

Since the matrix A = (aij)ijer is symmetrizable, we have a decomposition
A = DB with D = diag(e;)ies as in §2.2. We immediately obtain the following:

Lemma 3.1.1. For each I € K, there exists a positive rational number R; such
that €, = Ry e; for all i € I(1).

Proof. Since A = DB, we have a;; = €;b;; for i, j € I. Hence, by condition (3.1.1),

we have Ew(i)bw(i),w(j) = 5ibij and Ew(j)bw(j),w(i) = Ejbji for i,j € I. So we obtain
€i€u(j)bijbu(i)w(i) = €i€uw()biibu(i).w()-

Note that if A5 = Ay (i),w(j) # 0, then bij = bji # 0 and bw(i),w(j) = bw(j),w(i) # 0.

Thus we have ei_l “Ew(i) = Ej_l - €u(y) if aij # 0. Recall that the subgraph S(A(l))

of the Dynkin diagram S(A) corresponding to the subset I(l) of I is connected.

Therefore there exists a positive rational number R; such that €, L. Ew(iy = Ry for
all i € I(1). |

Remark 3.1.2. For | € K with M; = 1, it follows that R, = 1 since [[;c ;) cw(i) =
R (Mierq) &) implies Ry = 1.

By Lemma 3.1.1, we can write D = DDy, where Dy = diag(e});er such that
e, ) = e} for all ¢+ € I and every ¢/ is a positive rational number, and where Ds is a
diagonal matrix with all the diagonal entries positive rational numbers. Let us set
D’ := Dy and B’ := Dy B. By taking these new matrices D’ and B’ if necessary, we
may (and will henceforth) assume that ,,;) = ¢; for all i € I in the decomposition
A = DB with D = diag(e;)icr. Then it follows that by ;. = bij for all 4,5 € I
since a;; = €;b;;. Thus we obtain the following:

Lemma 3.1.3. Letw : I — I be a diagram automorphism. Then the bilinear form
() on g = g(A) can be defined in such a way that the following hold:

(1) (hw(i)lhoy) = (hilhy) fori,j € I;
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(2) (awplawy) = (ailay) fori,jel.

Asin [FSS| §3.2] the diagram automorphism w : I — I induces an automorphism
w of the Lie algebra g of order NV such that

w(eq) = ew() foriel,
w(fi) = fug forie I,
w(hz) = hw(i) foriel,

and (w(h)|w(h’)) = (h|h") for h,h' € h. This automorphism w : g — g is also called
a diagram automorphism by abuse of notation. The restriction of the automorphism
w to b induces a dual map w* : h* — b* defined by: w*(N\)(h) = A(w(h)) for A € bh*
and h € b.

Lemma 3.1.4. The following hold for the dual map w* : h* — h*:
(1) vow = (w*)"! ov. Hence we have (w*(N)|w*(1)) = (A|lp) for \, u € b*;
(2) w*(ay) = ay-1(;) fori € I, and hence w*(Qy) = Q4. Furthermore, we have
(W*) " triw* =y forieI;
(3) w(ga) = Gw=)-1(a) for a € h*, and hence w*(A) = A. In addition, w*(A"¢) =
A" and w*(Ay) = Ay
(4) for a € A™, we have hy«(q) = w ' (ha) and (W*) " raw® = T -1(a)-

Proof. We will show only part (4). Recall from [Ka, Prop. 5.1 d)] that for o € A",
we have h, = 2v~!(a)/(ala). Since (w*(a)|w*(a)) = (a|a) > 0, w*(a) € Ais a
real root. Hence we have by part (1) of the lemma,

hos(a) = 207 H(w"())/(@* (@)|w* () = 2w~ (v (@) /(a]a) = W™ (ha).
Recall that for A € h*, 7 (X)) = A — (2(Ma)/(a|a)) . Hence, for A € h*, we have
(W) raw) (V) = A = 2w (V)]a)/ (@) (W)~ (a).
On the other hand, we have
w10 (N) = A = 2AIW") 7 H@) /(W) )| (") @) (W) Ha)
=X = 2 Wla)/(ala) (@) Ha).
This completes the proof. O

It follows from Lemma 3.1.4 (3) that w(ny) = ny and w(n_) = n_, where

ng = @ go and n_ := @ o

aEA acA_

3.2. Orbit Lie algebras. For each i € I, set
Ni—1 Ni—1

2 Z A wk (7) if Z A wk (3) >0,
k=0 k=0

N;—1
1 if > ag.r@ <0,
k=0

§; =

and define

N;—1
aij = 8j Z A4 ok (5) for i,j5 € I.
k=0
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We choose a set of representatives T of the w-orbits in I, and define A= (@ij), el

which does not depend on the choice of representatives of the w-orbits. Then, by
[FRS| Lem. 2.1] (see also [N Props. 4.2 and 4.3]), we have the following:

Proposition 3.2.1. The matriz A= (@), jerisa symmetrizable GGCM. In fact,

if we set D := diag(&;),c7 fori € T with & := eis; 'N; Y, then the matriz (D)~'A
18 symmetric.

Let K be a set of representatives of the w-orbits in K. For each [ € K ,
the restriction of w™t to I(l) induces an automorphism of the Dynkin diagram
S(A(l)) as a graph, as indicated in §3.1. So, for [ € K, we choose a set of
representatives 1(I) of the w™i-orbits in I(I). Then, as I, we can take the set
Llck T (I). Furthermore, the matrix A decomposes, after reordering the indices,
into the direct sum @, & g(l), where Z(l) = (aij)i,jef(l)' Since the subgraphs
S(A()), I € K, are connected components of the Dynkin diagram S(A), we have

~

Zgial Qi () = kNiéM"ﬂ @ (wMiyr(j) for 4,5 € I(1).

Now recall from a remark in [FRS| §2] (cf. [N1|, Lem. 4.3]) that if Zﬁ;gl i b (i)
> 0 for some i € I, then there are only two possibilities:

Case 1. Zgzal a; k(i) = 1. In this case, N; is even, and the Dynkin diagram
corresponding to the w-orbit of ¢ is of type As x « -+ x Ag (N;/2 times). In fact, we
have a; ,v;/2(;y = —1, and a; yr(;) = 0 for other 1 <k < N; — 1, k # N; /2.

Case 2. Zi\;gl @ k() = 2. In this case, the Dynkin diagram corresponding
to the w-orbit of 7 is totally disconnected, i.e., of type A X -+ x Ay (N; times).

Also, recall from [FSS| §2.4] that if the GCM A = (ay;)i, jer is of finite or affine
type, then the diagram automorphism w : I — I satisfies the condition:

Ni—1
> ajurp >0 foralliel,
k=0

except for the case where the Dynkin diagram S(A) is of type AS&I with n > 2 and
w is a cyclic permutation of I of order n. In this case, we have I= {io}, Ni, = n,
and @, .5, = Z;é iy wk (i) = O for each ig € I. Thus A is the 1 x 1 zero matrix.
Except for this case, the matrix A is a GCM of finite (resp. affine) type if A is a

GCM of finite (resp. affine) type (see [F'SS| §2.3] and also [N1l, Cor. 4.1]).
We set
N;—1
A= (@), jep  where Ii={i€T| Y a;rq >0}
k=0

Putting all the facts above together, we obtain the following:

Proposition 3.2.2. Let the notation be as above. The submatriz A of the GGCM
Aisa GCM, which decomposes, after reordering the indices, into a direct sum of
GCMs of finite type and those of affine type. Moreover, A is a GGCM of at most
affine type. More precisely, for | € IA(, the matrix j(l) is the 1 X 1 zero matriz if
and only if the Dynkin diagram S(A(l)) is of type AI(JI_)1 for some p > 2 and the
restriction of wMt to I(l) is a cyclic permutation of order p. Except for this case,
the matriz g(l) is a GCM of finite (resp. affine) type if A(l) is a GCM of finite
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(resp affine) type. In particular, the set I = (I) is the disjoint union of f(l) for

l € K such that A( ) is not the 1 X 1 zero matrix.

Let § := g(A) be the GKM algebra over C associated to the GGCM A= (@ij); jer
with E the Cartan subalgebra, {€;, fz}lel
b* the set of simple roots, v = {h . ier C b the set of simple coroots, and W=

the Chevalley generators, II = {O‘l}ze 7

Fliel)c GL(b ) the Weyl group. We denote the nondegenerate, symmetric,
invariant bilinear form on g by the same symbol (-|-) as for g (because of (3.2.2)
and (3.2.3) below).

We define the Lie algebra g to be the Lie subalgebra of g generated by 6 and
€, fz with ¢ € I. This Lie algebra g can be thought of as a Kac-Moody algebra
associated to the GCM A = (aw)% icf» though the Cartan subalgebra f) may not be

“minimal”.

Definition 3.2.3 ([ERS| Def. 2.1]). The Lie algebra g is called the orbit Lie alge-
bra associated to the diagram automorphism w of g. The Lie algebra g is also called
the orbit Lie algebra.

Remark 3.2.4. A table of all diagram automorphisms w : I — I and the (Dynkin
diagrams of) corresponding orbit Lie algebras g for all finite-dimensional simple Lie
algebras and affine Lie algebras can be found, for example, in [F'SS| §2.4 and §2.5].

We set
0.= {hebh|wh)=h}, (b*)o ={A e |w(A) = A}

Then we can identify (h*)° with (h°)* := Homc(h°, C) in a natural way. We call an
element of (h*)? a symmetric weight. We know from [FSS| §3.3] that there exists a
linear isomorphism P, : h% — b such that

(3.2.1) Po(" hory) = Nihi - fori €1,

(3.2.2) (Po(R)|Pu(l)) = (h|k')  for h,h' € B°.

This linear isomorphism F, : p0 — 6 induces a dual map P} : b — (h%)* = (p*)°
defined by: P*()\)(h) = )\( w(h)) for X eb*, heh?. Note that

~

(3.23) (PLOIPL@) = (@) for A€ b,
R N;—1

(3.2.4) Pj(az) =35;0; foriel, where 3; := Z Qyk () S (b*)o.
k=0

We take and fix an element p € h* (called a Weyl vector) such that p(h;) =1
for all ¢ € I. Replacing p above by (1/N) N 1(w*)k(p) € b* if necessary, we may
(and will henceforth) assume that w*(p) = p. We now define a shifted action (called
the dot-action) of the Weyl group W on h* by

(3.2.5) wol:=wA+p)—p for Aep*.
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3.3. Weyl groups. We define the following subgroup of W
Wi={weW|ww=uww}

It is obvious that the group W stabilizes the subspace (h*)? of h*. For i € I with
Do @iwk() > 0, we set

N;/2-1 N;—1
H ka(i)rwk+N,;/2(,L-)ka(i) if Z ai’wk(i) =1
(3.3.1) w; = Nkflo k=0

i N;—1
H Tw’“(i) if Z ai,wk(i) = 2.
k=0

We know from [EFSS| §5.1] that wy,;y = w;i, w

w; € W. In addition, we know the following:

2 =1, and ( " lw;w* = wy, e,
Proposition 3.3.1 ([ERS| Prop. 3.3]). The group W is generated by the w;’s for
i € I. Moreover, W acts on (h*)0 faithfully, and the Weyl group W= Filiel)
of the orbit Lie algebra g is isomorphic to the group W restricted to (b )0, which is
denoted by W| (p=)0- Namely, we have an isomorphism of groups © : W — W|(h
where O(7;) = w;|p=yo for i € I. In fact, O(@) = P* oo (P! for @ € w.

By Proposition 3.3.1, we get the following commutative diagram for each w € W

h* —— (h*)°
| e
)

Consequently, there exists an isomorphism of groups © : W — W such that
O(r;) = w; for i € I. Since the Weyl group W is a Coxeter group with the
canonical generator system {7; | i € I }, the group W is also a Coxeter group with
the canonical generator system {w; | i € I }. We denote the length function of W
by U:W—Z.

Remark 3.3.2. From Proposition 3.3.1, we see that W= {1} if and only if I = (). In

particular, W= {1} when the Dynkin diagram S(A) is of type A 1 andw : [ — 1
is a cyclic permutation of I of order n.

4. TWINING CHARACTERS

From now on, we assume that the matrix A = (a;;); jer is a GCM of affine type.
Let w : I — I be a diagram automorphism.

We recall the definition of the twining character of a certain highest weight g-
module of a symmetric highest weight, following [FRS|] and [FSS]. However, since
no comment about the “normalization” of the map 7, is given in [FRS] or [ESS],
we have to give additional comments.

Let (m,V) be a g-module, i.e., let 7 : g — gl(V) be a representation on the
vector space V. We define a new g-module (7¢, V) of g by: 7% (z)v = 7(w(x))v for
x € g, ve€V. If we take a highest weight g-module (my, V(\)) of highest weight
A € b* with vy € V()) the (canonical) highest weight vector, then the module



TWINING CHARACTER FORMULA FOR AFFINE LIE ALGEBRAS 79

(7§, V(X)) is a highest weight g-module of highest weight w*(\) € b* with vy a
highest weight vector since w(ny) =ny and w(n_) =n_.

Throughout this paper, as a highest weight g-module V() of highest weight A,
we will consider only two kinds of modules: the Verma module M (X) of highest
weight A € h* and the irreducible highest weight module L(A) of highest weight .
It is known that L(\) is the quotient module M (A)/J()), where J(A) is the unique
maximal proper submodule of M (X).

It is easy to see that the module (7§, M (X)) is torsion free as a U(n_)-module,
and the module (7§, L(\)) is an irreducible g-module. Therefore, in both cases
where V/(X) = M(X) and L()), (7%, V(X)) and (m«(x), V(w*(A))) are isomorphic
as g-modules. In other words, there exists a linear isomorphism

(4.1) Tw : V(A) = V(w* (X))

satisfying 7, (7 (z)v) = 7, (2)70w(v) for € g, v € V(A), or equivalently,
Tw(TA(@)v) = T () (W™ (@) 7w (v) for z € g, v € V(X). Now we assume that A € h*
is a symmetric weight, i.e., w*(A) = A\. Then there exists a linear automorphism
(4.2) Tw : V(A = V(N

such that 7, (7 (z)v) = mA(w™ ()70 (v) for z € g, v € V(A). We usually write xv
to denote my(x)v for z € g, v € V(A).

Remark 4.1. Let A € (h*)°, and let f : V(\) — V()) be a linear endomorphism
such that f(zv) = w™(z)f(v) for z € g, v € V(A). Then we have f(V()\),) C
V(A)w=(uy for p € b*, where V(X), is the weight space corresponding to x € bh*.
If, in addition, the linear endomorphism f is bijective, then the equality holds, i.e.,
V) = VN for € b,

Since V(A)x = Cuy and w*(A\) = A, it follows that 7, (vy) € Cvy by Remark 4.1.
Hence we have 7,,(vy) = cvy for some ¢ € C\ {0}. We should note that ¢ € C\ {0}
is not necessarily equal to 1.

Lemma 4.2. Let A € (h*)°. Then we have
{f € Bade(VOV) | fo0) = w @) f(0) forz € g, ve V(N)} = Cr.

Proof. Let f € Endc(V (M) be such that f(zv) = w1 (x)f(v) for z € g, v € V(N).
Then, by Remark 4.1, f(vy) = zvy for some z € C. Since V()) is a highest weight
g-module, we have V(\) = U(g)vyx, where U(g) denotes the universal enveloping
algebra of g. Thus we have

flzvy) =w (z)f(vy) = zw H(x)vy  for all z € U(g),

where w above is a unique algebra automorphism w : U(g) — U(g) extending the
diagram automorphism w : g — g. Hence we obtain

fzvy) = (2/c) - cw Hx)vn = (2/c) Tw(2vy)  for all z € U(g),
which implies that f = (z/c) 7. O

By Remark 4.1 and Lemma 4.2, we see that there exists a unique linear auto-
morphism f : V(A) — V()) such that f(zv) = w™l(z)f(v) for z € g, v € V())
and f(v) = v for all v € V(A)x. Because 7, in (4.2) is a nonzero scalar multiple
of this linear automorphism f, we may (and will henceforth) assume that 7, = f,
ie., 7,(v) =wv for all v € V().

We are ready to give the definition of twining characters.
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Definition 4.3 ([FRS| Def. 2.3]). Let A € (h*)°, and let V' (\) be either the Verma
module M (A) or the irreducible highest weight module L(A). Then the twining
character ch*(V(X)) of V() is defined to be the formal sum

ch?(V(N) = D Tr(rulvn,) e(x).
Xx€(h*)0

For the twining character ch®(V(\)) of V(A) = M(X), L(\) of highest weight
A € (5*)°, we know the following theorems.

Theorem 4.4 ([FRS, Th. 3.1]). Let A € (h*)°. Then we have

(M) =) | 3 dw)ewip)—p) |
weWw
where E(w) 1= (—1)2(“’) = det(w|(p+yo) for w € w.

Let Py :={A € b* | A(h;) € Z>¢ for all i € I} be the set of dominant integral
weights.

Theorem 4.5 ([ERS| Prop. 3.5 and Th. 3.1]). Let A € Py be a dominant integral
weight such that w*(A) = A. Then, for every w € W, we have

w(ch®(L(A))) = ch® (L(A)).
Moreover, with the same notation as Theorem 4.4, we have
S Ew)e(w(A + p))

h(L(A)) = “EW
> Ew)e(w(p)

weﬁ/

5. TRANSLATION FUNCTORS

We show some important properties of the translation functor concerning the
twining characters for the affine Lie algebra g = g(A).

5.1. Some categories. Let us begin by recalling the definition of the category O
from [Kal Ch. 9]. Its objects are g-modules V' which satisfy the following:

(1) the module V' admits a weight space decomposition V' = €D, cq. Vi with
finite-dimensional weight spaces V,;
(2) there exist finitely many elements x1,...,xs € b* such that the set P(V') of
all weights of V' is contained in a union [J;_; (xi — Q+)-
The morphisms in O are g-module homomorphisms. For a g-module V' in O and p €
h*, we denote by [V : L()] the multiplicity of L(x) in V. We note that [V : L(u)] >
0 if and only if L(u) is an irreducible subquotient of V. We define the character
ch V' of the module V' in O to be the formal sum chV = 37 . (dimc Vy)e(x).
Then we have (see [Kal Ch. 9]) chV =3 [V : L(n)] ch L(p).
For a nonempty subset S of h*, we denote by O{S} the full subcategory of O
consisting of g-modules V such that [V : L(u)] > 0 for p € §* implies p € S, i.e.,

chV = Zcu chL(p), cu € Z>p.
peS
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It is clear that submodules, quotient modules, and finite direct sums of modules in
O{S} are again in O{S}.

Here we need some notation for integral subroot systems. For A € h*, we set
AN :i={ae A" | ANhy) € Z}.
Then the set A(M) is a “subroot system” of AT ie., 7,(8) € A(X) for o, €

A(X) € A" (we refer to [MP| Ch. 5] and [KT1] §2.2] for details about subroot
systems). Moreover, we set

ANt :=ANNAL, W) = (rq |ae A(N) C W,
and define II(\) to be the set of all & € A(X\)4+ which cannot be written as a sum
of two or more elements from A(A);. From [MP| Ch. 5], [KT1] §2.2], and [KT2|
Lem. 2.3], we know the following:
(1) The set II(\) is a (not necessarily linearly independent) finite set, which we
write as: II(A) = {¢;}jes for some finite index set J.
(2) AN ={w(a) | we W(A),a € II(A)}.
(3) A()\)+ C Z ZZQO{.
a€ll(N)
(4) The matrix A(X) := (2(8|a)/(a|a))a,gen(n) is a GCM. In particular, we have
(a]B) <0 for o # B € TI(N).
(5) The group W()) is a Coxeter group with the canonical generator system
{ro | @ € II(\)}. Moreover, W()) is isomorphic to the Weyl group W?* =
(r} | j € J) € GL((h*)*) of the Kac-Moody algebra g* := g(A()\)) associated
to the GCM A()\) with Cartan subalgebra h*.
We denote the length function of the Coxeter group W (\) & W2 by ¢ : W()\) —
Zso.
We write IT(\) = {¢,}jes with J a finite index set as above. Let ITI* = {;},c; C
(h*)* be the set of simple roots, and (IT*)Y = {ﬂj\/ }ieq C b2 the set of simple coroots
of g*. We set

QM=) 78, C(8Y), (@M :=) 78/ Ch,

jeJ jeJ
Q) =) Zé; Ch*,  QV(N) =) Zhy Ch.
JjeJ jeJ

Then we know from [MP| Chs. 5.1 and 5.5] that there exist unique Z-linear iso-
morphisms ¥ : Q* — Q(A\) and ¥V : (Q*)V — QY () such that ¥(3;) = ¢; and
UY(BY) = hg, for each j € J. Furthermore, we have

(5.1.1) z(y) = U(x)(TV(y)) forallze @ andy e (QM)V.

Lemma 5.1.1. The GCM A(X) = (2(¢;1¢:)/(d:l¢:))ijes decomposes, after re-
ordering the indices, into a direct sum of GCMs of finite type and those of affine

type.

Proof. Suppose that there exists a subset J’ of J such that the submatrix A(X) =
(2(¢j1i)/ (@i|®i))i,jes of A(N) is of indefinite type. Then, by the classification
theorem of GCMs (see [Kal Ch. 4]), there exists an element § = ZjEJ’ k;B3; such
that k; € Z>1 and B(8)) < 0 for all j € J'. We set a:= U(0) € >, ;i Z>10; C
Q+. Then, by (5.1.1), we sce that 0 > 3(8}) = a(hg;) = 2(a|d;)/(¢;l¢;) for all
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J € J'. Thus we obtain (ala) < 0 for some o € ), ; Ra;. This is a contradiction
since the bilinear form (-|-) restricted to ), ; Ra; is positive-semidefinite. O

By Lemma 5.1.1, the GCM A(X) = (2(¢;]¢:)/(¢i|$i))i,jer satisfies the assump-
tion on the GCM A = (a;5)i jer in §3.
Remark 5.1.2. We set D(X) := diag(e )je] with 5 = 2/(¢;l¢;) for j € J, and
B(\) = (bf\j)i’je] with bf‘j = (¢i|0;) for i, € J. Then we have A(\) = D(A)B()\),
where the matrix B()) is a symmetric matrix with rational entries by; = (¢|¢;).

Lemma 5.1.3. Let A € h*. Then we have

(1) A(w(A) = w"(A(A)-

(2) Mw"(A)) = ( ()

(3) wW(A)(w *) W(w*(A))-

(4) W (W(A) o A) = W(w"(A)) 0w ().
)

Proof. Part (1) follows from Lemma 3.1.4 (4). Part (2) then follows from the
definitions of TI(A) and II(w*(\)). Part (3) follows from part (1) together with
Lemma 3.1.4 (4). Part (4) follows from part (3) since, for w € W(A),

W wA+p) = p) = wA +p) = p = (WwwW) (A +p) -

= (@ W) )W ) + p) - p.
This proves the lemma. O

Now we define
C:={Aeb" [(A+p|0) # 0} = {Aeb™ | (A +p)(c) # 0},

which does not depend on the choice of the Weyl vector p. Since w(d) = ¢ for all
w € W, the set C is stable under the dot-action (3.2.5) of the Weyl group W.

Here we recall that the null root 6 = >, ; a;o; € Q4 spans the radical of the
bilinear form (-|-) restricted to )., Ry, and the positive integers a; for i € I are
relatively prime. Therefore we deduce that w*(d) = ¢, and hence w*(C) = C.

For )\ € C, we set

O[N] := O{W(A) o A}.
Proposition 5.1.4 ([Kull Th. 1.7]). For each X € C, the Verma module M(X) is
in the category O[A].
5.2. Translation functors. We define an equivalence relation on the set C by
A~vp<s=peWA) oA, \peCl.

Let C be the set of (representatives of) equivalence classes of C under the equiv-
alence relation ~. Then we have the following decomposition result.

Proposition 5.2.1 ([Kull Cor. 2.13 (a)]). Let V be a g-module in the category
O{C}. Then the module V' decomposes as a direct sum

V=V

AeC

where the g-module V] is in the category O[N] for A € C. Moreover, V[A] is the
unique mazimal submodule of V' that lies in O[A]. In particular, this decomposition
of V' is unique.
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For A € C, we denote by Py the projection functor from O{C} to O[] defined
by

P)\(V) = V[/\]

It follows from Proposition 5.2.1 that the functor P is exact.
To define the translation functor, we need the following:

Lemma 5.2.2 ([KT2, Lem. 3.4]). Let \,u € C, A € b*, and x € W be such that
w—A=x(A). Then the g-module V ®@c L(A) is in the category O{C} for every
g-module V in the category O[A].

Let P :={X € b* | A(h;) € Z for all i € I} be the set of integral weights. Note
that for A\, u € h* with u— X € P, we have A(\) = A(p) since hy € QY for o € AT,
The elements A, i € C are said to satisfy condition (TR) if

(TR) WA =\ w(w)=p o ' (n—A) € Py for some z € W.

In this case, we set A := 27 1(u—\) € Py. Note that the W-orbit of — X intersects
P, in exactly one point by (the proof of) [Kal, Prop. 3.12 b)]. We further see that
w*(A) = A since
WA =w (@ (p=N) =wa (u=A) =27 0" (n— )
=z (W (p-N)) =27 (p-A) = A

Let A\, pu € C be elements satisfying condition (TR) with g — A = z(A) for « € w
and A € Py. Then, by Lemma 5.2.2, the g-module V ®¢ L(A) is in O{C} for a
g-module V in O[A], and hence the module P,(V ®¢ L(A)) is well-defined and in
O[u] by Proposition 5.2.1. Thus we can define the translation functor following [.I]
and [DGK].

Definition 5.2.3. Let \, 1 € C be elements satisfying condition (TR) with u— X =
z(A) for z € W and A € P;. Then the functor T : O[A] — O[u] is defined by

TNV) i= Pu(V @c L(A)),

for a g-module V in the category O[\. This (exact) functor T} is called the
(Jantzen) translation functor from A to p.

Now let A\, € C be elements satisfying condition (TR) with 4 — A = z(A) for
zeWandA € P, and let n € C be a symmetric weight such that n ~ A. Then we
have n = w o A for some w € W(A). Since w*(n) = 7, there exists a unique linear
automorphism

(5.2.1) Tw o M(n) — M(n),
such that
(5.2.2) Tw(2v) = w @)1, (v) forz €g, ve M(n)

and 7, |ar(y), = id. Let {0} C Y1 G Y2 C M(n) be a filtration of M(n) by 7,-
stable g-submodules Y7 and Ys, and let V := Y5/Y7 be a quotient g-module. Then
Tw : M(n) — M(n) induces a linear automorphism 7, : V — V satisfying

(5.2.3) Tolov) = w H(2)Tu(v) forzcg, veV.
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Since the A above is a symmetric weight, there exists a unique linear automor-
phism

(5.2.4) 7o ¢ L(A) — L(A)
satisfying 7, (zv) = w™(x)7,(v) for x € g, v € L(A) with 7|5, = id. (Here
we have used the same symbol 7,, as for M (n), but no serious confusion will arise.)
Thus, by tensoring this 7, with the map 7, : V — V, we obtain a linear automor-
phism 7, ® 7, : V ®c L(A) — V ®@c L(A) satisfying
(5.2.5) (To @ 1) (20) = w H(2)(Fo @ 70)(v)  forz € g, v €V &c L(A).
Since V is in O[)], the g-module V ®¢ L(A) is in O{C} by Lemma 5.2.2. Hence,
by Proposition 5.2.1, we have a decomposition

V @c L(A) = @ Pe(V @c L(A)).

gec

Proposition 5.2.4. With the notation above, we have

(Tw @ 1) (Pe(V @c L(A))) = Fo-(6)(V ©c L(A))

for each £ € E

Proof. First, we note that for £ € C, its equivalence class under ~ is W (&) o &,
and the equivalence class of w*(€) under ~ is W(w*(§)) o w*(§) = w*(W () 0 &)
by Lemma 5.1.3 (4). In other words, for £, ¢ € C, we have £ ~ ¢ if and only if
W () ~ " (€),

Let us show that the g-module (T, @ 7, )(Pe (V ®c L(A))) is in Ow*(€)] for each
¢ € C. To simplify the notation, we write f := 7, ® 7, and U := P¢(V ®c L(A)).
Then the map Y — f(Y) gives a bijection from the g-submodules of U to those of
f(U). Furthermore, for g-submodules Y1 & Y of U with Y3/Y; = L(y) for ¢ € C,
we have an isomorphism of g-modules: f(Y2)/f(Y1) = f(Yo/Y1) = 7,(L(p)) =
L(w*(p)), where 7, : L(¢) — L(w*(p)) is defined as the map (4.1). Thus, for
¢ € C, the module L(y) is isomorphic to an irreducible subquotient of U if and
only if L(w*(p)) is isomorphic to an irreducible subquotient of f(U). Hence the
g-module f(U) is in Ow*(£)] since U is in O[¢].

Since the decomposition

V @c L(A) = @) Pe(V @c L(A))
gec

is unique by Proposition 5.2.1, we obtain that
f(Pe(V @c L(A))) = P ) (V ©c L(A))
for € € E, as desired. O
From Proposition 5.2.4, we see that for the symmetric weight u € C,
(T ® ) (Pu(V @c L(A))) = Pu(V @c L(A)), e, (To®@7)(T(V)) = TNV).
Now we define the twining character ch® (Tlf (V)) of the module Tl;\(V) by

ch(TR(V) = D Tr((Fu @ )| (r2(v)),) €(X)-
x€(h*)°
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We set
Cct = {€eC|(E+p)(ha) >0 forall o€ A&y},
and for £ € C we set

Do(€) == {a € A™ | (6 +p)(ha) = 0} CAE),  Ap(E)+ = Ao(€) N A

Note that all of the above do not depend on the choice of the Weyl vector p. Then
we have the following proposition, which will be crucial for the proof of our main
result.

Proposition 5.2.5. Let A\, u € C be elements satisfying condition (TR) with p —
A =z(A) forx € W and A € Py. Assume, in addition, that \,u € Ct and
Ag(N) C Ao(p). Then we have for each w € W(A) NW,

b (TN(M(w o ) = b (M(w o p)).

Proof. Let w € W(A) N W, and set 7 := wo A € C. Since z, w € W, we have
w*(A) = A and w*(n) = n. Hence we have a linear automorphism

Tw ® Ty M(n) @c L(A) — M(n) @c L(A)

satisfying (5.2.5) with V' = M(n). We define for x = A — >, ; kia; € P(L(A)),
deptha (x) := D _;c; ki € Z>o. We write P(L(A)) = {xi}iez., and arrange them so
that

(1) x1 =4

(2) deptha(x;) > deptha(x;) implies i > j.
Now, for each k € Z>1, we set P(A), := {x € P(L(A)) | deptha(x) = k}. Here
we note that depthy (w*(x)) = deptha (x) for x € P(L(A)). Hence we can reindex
the elements in P(A)x so that the elements in the same w*-orbit are indexed by
consecutive numbers for all k& € Z>;. Then we take a basis {v;}iez., of L(A)
consisting of weight vectors arranged in such a way that -

(1) L(A)A = (C’Ul;

(2) if v; is of weight x;, € P(L(A)) with ¢; € Z>q for ¢ > 1, then ¢ > j implies

t > t;.

We set for i > 1, R; == 3, ;; U(g)(vy ®v;), where vy, is the highest weight vector
of M(n). Then, by [DGK], Lem. 5.8] (see also the proof of [MP} Prop. 6.8.1]), the
g-module R := M(n) ®c L(A) has a highest weight series {0} = Ry C Ry C Rz C
-++ C R such that

(1) R = UiZO Ri with ch R = ZiZI Ch(Ri/Ri_l);

(2) Ri/Ri—1 = M(n+ xy,) fori > 1.

By applying the exact functor P, we obtain the following filtration of P,(R) =
T(M(n)): {0} = Pu(Ro) C Pu(R1) C Py(Rz) C --- C P,(R) such that P,(R) =
Ui>0 PM(RZ) We have for 4 2 ]., P/,L(Ri)/P/,L(Rifl) =~ PM(Ri/Rifl) = PM(M(U"_
xt,))- Here n 4+ xs, = wo A+ i, € C is equivalent to p under ~ if and only if
woA+ xt;, = you for somey € W(p) = W(N). In this case, we have w™ly o
pw—X=w1(xy) € P(L(A)). Then, by [KT2, Lem. 3.5], we see that w™'y o
i = p. Hence we have xi, = w(p — A) = wz(A), and wo A+ x¢, = w o p.
We know that dimc L(A)y,, = dimc L(A)yza) = dime L(A)y = 1. Therefore,
by Proposition 5.1.4, we conclude that there exists a unique integer iy > 1 such
that P,(Ri,)/Pu(Ri,—1) # {0}. Furthermore, we have w o A + x4, = w o p with
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Xt;, = wr(A) and P, (Ri,)/Pu(Ri,—1) = M(wop). In particular, we have P, (R;) =
P,(R;—) for all i # ig. Hence we deduce that

{0} = Pu(Ro) = -+ = Pu(Rip-1) g Py (Riy) = Pu(Rigy1) = -+ = M(wo p),

and so
T (M(wo ) = Pu(R) = | Pu(Ri) = Pu(Ri,) = M(wo p).
i>0
Thus, by Lemma 4.2 together with Proposition 5.2.4, we have the following com-

mutative diagram for some ¢ € C\ {0}:

TMM(wo X)) —— M(wop)

Tw®Tw J{ lCTw

A >~
TA(M(wo \) —=— M(wo ).
We want to prove that ¢ = 1. For each £ # u € C, we have by Proposition 5.1.4,
Pe(Riy)/ Pe(Rig—1) = Pe(Rio /Rig—1) = Pe(M(w o ) = {0},
and hence P¢(R;,) = Pe(R;,—1). On the other hand, we have by Proposition 5.2.1,

R;, :PH(Rio)EB(@PE(RiO))v Riy—1 :@PE(Rio—l)v

gec cec
Exn Exn

since P,(R;,—1) = {0}. Thus we have R;,; = R;,—1 & P.(R;,), where P,(R;,) =
Tl;\(M(w o A)). We know from the proof of [MP) Prop. 6.8.1] that for ¢ > 1, R; =
> 1<j<i (U(n-)vy) @ Cvj. Recall that v;, is a weight vector of weight x¢, = wz(A),
where w*(xt,,) = Xt,,- Hence we deduce from the indexing of {v;}icz., that

(To ®Tw)(Riy) = Riy,  (Tw ® w)(Rig—1) = Riy-1,
since 7, (v;) € L(A)w*(th) for j > 1. Also, P, (R;,) = T (M (wo))) is T, ®@T,-stable
by Proposition 5.2.4. Thus we have the following commutative diagram:

Riy/Riy-1 —— Pu(Ry,)

Tw®Tw l J/?u RTw

}%1'0/Ri()_1 = RL (Rio)7

where the left vertical map 7, ® 7, is induced from the map 7, ® 7, : R;, —
R;,. We know from the proof of [MP| Prop. 6.8.1] that the quotient g-module
R;,/R;i,—1 is a highest weight module (in fact, a Verma module) of highest weight
n + Xxt;,, with highest weight vector v, ® v;, + Ri,—1. Hence, in order to prove

that ¢ = 1, it suffices to show that (T, ® 7u)(v, ® viy) = vy ® v4,. Since we
have (T, ® 7,)(vy ® viy) = Tuw(vy) ® 7w (viy) = vy @ Tw(viy) and xy,, = wr(A),
we need only show that Tw|L(A)W(A) = id. Since wx € W and A € Py, we

have by Theorem 4.5 that (wz)~'ch?(L(A)) = c¢h®(L(A)). In particular, we have
Tr(70|L(A)wa(a)) = Tr(rw|L(A)a) = 1. Since dime L(A)yza) = dime L(A)x = 1,

we deduce that Tw|L(A)M(A> =id. O
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Corollary 5.2.6. Let A\, u € C be as in Proposition 5.2.5. Then, forw € W()\)ﬂw,
we have

ch(L{wop) i w(Bo(u)s \ Ao(N)+) C —A(N)s,

0 otherwise.

ch? (T} (L(w o A))) = {

Proof. We set n := wo . Since 7 is a symmetric weight, we have an exact sequence
of 7-stable g-modules: {0} — J(n) — M(n) - L(n) — {0}, where J(n) is the
unique maximal proper submodule of M (n). Note that the map 7, : L(n) — L(n)
in (4.2) is nothing but the map 7, : M(n)/J(n) — M(n)/J(n) induced from the
map 7, : M(n) — M(n) in (5.2.1). Since the functor (-) ®c L(A) is exact, we
obtain an exact sequence of T, ® 7,-stable g-modules

(5.2.6) {0} — J(n) ®c L(A) = M(n) ®c L(A) - L(n) ®c L(A) — {0}.

Since w* (i) = p, by Proposition 5.2.4 we have an exact sequence of 7, ® 7,-stable
g-modules

{0} = T(JT () = TH(M(n)) — T} (L(n) — {0}
From (5.2.6) we have the commutative diagram

(M(n) ®c L(A))/(J(n) @c L(A)) —=— (M(n)/J (1)) ®c L(A)

ml l*w%
(M (1) ®c L(A)/(J(n) @c L(A)) —— (M(n)/J(n)) ®c L(A),

where the left vertical map 7, ® 7, is induced from the map 7, ® 7, : M(n) ®c
L(A) — M(n) ®c L(A). Since we have the following commutative diagram from
the exactness of P, together with Proposition 5.2.4,

P,u(M(n) ®c L(A))/Pu(J(n) ®c L(A)) —— Pu((M(n) ®c L(A)/(J(n) ®c L(A)))

ml lm
Pu(M(n) ®c L(A))/Pu(J(n) ®c L(A)) —=— Pu((M(n) @c L(A)/(J (1) ®c L(A))),

we obtain the commutative diagram
T (M) /T (T () ——— Tp(M(n)/J ()

e | |7esm
TN M () /T (I (n)) —= T (M(n)/J (1)),

where the left vertical map 7, ® 7, is induced from the map 7, ®7,, : Tlf‘(M (n) —
T,;\(M(n)) By (the proof of) Proposition 5.2.5, we have that le (M(n)) & M(wou).
Furthermore, by [KT2l Prop. 3.8] we know that

J if w(Ao ()4 \ Ao(A)+) C AN+,

T/j(‘](n)) = {Tﬁ\(M(n)) otherwise,

~

where J is the unique maximal proper submodule of T (M (1)) = M (w o p).
Now assume that w(Ag(p)+ \Ao(A)4+) C —A(N)4. (Otherwise, it is obvious that
ch® (TN (L(n)) = ch(T(M(n)/J(n))) = ch®(T(M(n))/T;}(J(n))) = 0.) Then,
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by the proof of Proposition 5.2.5, we have the following commutative diagram:

T M)/ (I (n)) —— M(wop)/J(wo p)

ml lm
T (M) /T (T () —— M(wopu)/J(wo p),

where J(wop) is the unique maximal proper submodule of M (wopu). Consequently,
we obtain c¢h” (T (L(n))) = ch? (T} (M (n))/T;(J(n))) = ch®(L(w o)), as desired.
([l

6. TWINING CHARACTER FORMULA OF KAC-WAKIMOTO TYPE
We prove a formula of Kac-Wakimoto type for twining characters.
6.1. Suto filtration. We will use a partial ordering < on h* defined by
XX =X -x€Qw, x.xX €b.

Let n € (h*)°. Then, as in §5.2, there exists a unique linear automorphism 7,, :
M (n) — M(n) satisfying (5.2.2) with 7,|rs(y), = id. Let {0} C Y1 & Yo C M(n)
be a filtration of M (n) by 7,-stable g-submodules Y7 and Ys, and V := Y5/Y7 a
quotient g-module. Then, again as in §5.2, 7, : M(n) — M(n) induces a linear
automorphism 7, : V — V satisfying (5.2.3).

I owe the proof of the next proposition to Professor Kiyokazu Suto, so the filtra-
tion given below is called a Suto filtration.

Proposition 6.1.1. We keep the notation above. Let ¢ € (h*)° be a symmetric

weight. Then there exist a finite sequence Vo, Vi,... Vi, t > 1, of g-submodules of

V and a subset T C {1,...,t} with the following properties:

Y V=VD>Vi_1D---DVi DVy ={0}

) Tw (Vi )CVforallO<z<t

) ifi ¢ T, then the quotient g-module V;/V;_1 has no weight x > v;

) if i € T, then there exist p; € Z>1, & > ¢, and g-submodules Vi g, ... ,Vip,—1
of Vi such that

(1
(
(
(

pi—1 pi—1
Vi= > Vik,  Vi/Viea = @@ m(Vin),
k=0 k=0

To(Vik) = Virer,  mi(Vik) = L((w")*(&)  for 0<k <p; -1,

where m; : V; — V;/Vi_1 is the natural quotient map, p; is the smallest
positive integer p such that (W*)P (&) =&, and V; p, == Vio.

Proof. We set

)= Y dimg Ve.

£ep”
£

We prove the proposition by induction on a(V,¢). If a(V,¢) =0, then V =V, D
Vo = {0} is the required filtration with 7" = 0. Let a(V, ¢) > 0. Choose a maximal
element ¢ € P(V) with respect to the partial ordering < on §* such that £ > ¢,
and take the smallest positive integer p for which (w*)P(§) = £. Then we have
(Tw)?(Ve) = Viw=yp(ey = Ve. Since the &-weight space V¢ is a finite-dimensional
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vector space over C, there exist ¢ € C\ {0} and 0 # v € V¢ such that (7,)?(v) =
cev. Note that we have nyv = 0 from the maximality of £ € P(V). We set
vp = (Tw)"(v) € Viguyre) for 0 < k < p—1 (so vg = v). We note that for
each 0 < k < p — 1, the weight (w*)*(¢) is also a maximal element in P(V) since
X > x' implies w*(x) > w*(x’). Hence we have nyvp, = 0 forall 0 < k < p—1.
Set Uy := U(g)vk for 0 < k < p — 1. Then the g-module Uy is a highest weight
module of highest weight (w*)*(¢) with highest weight vector vi. We also have
Tw(Ux) = Ug41 for 0 < k < p— 1, where U, := Uy since T, (zvg) = w1 (2)T, (vk)
for v € U(g) and 0 < k < p—1, and Ty (vg) = vg41 for 0 < k < p — 2 with
Tw(tp—1) = (Tw)P(v0) = cevo. Foreach 0 < k < p—1, let Ji be the unique maximal
proper submodule of Uy, so that we have Uy /Jx = L((w*)*(£)). Note that we have
X S (wh)k(€) for all x € P(Jg). We see that 7o, (Ji) = Jg1 for 0 < k < p—1,
where J,, := Jp.
We set

p—1 p—1
U= Us, J:=)Y Ji
k=0 k=0

Obviously we have 7,(U) = U and 7, (J) = J. Let # : U — U/J be the natural
quotient map. Then we have for 0 < k <p—1, 7(Uy) = (Ux+J)/J 2 Uy /(U NJ).
Now let us show that Uy N J = Jg. Since the inclusion J, C U N J is obvious, we
will show that Uy NJ C Ji. For this purpose, it suffices to show that Uy N J is a
proper submodule of U,. Suppose now that Uy N J = Uy, i.e., Uy C J. Then the
weight vector vy of weight (w*)*(¢) is an element of J = Zi;é Ji. Thus we have
(wHk(€) € P(J) C Ui;(l) P(Jy), and hence (w*)*(€) S (w*)¥ (€) € P(V) for some
k' with 0 < k' # k < p — 1, which contradicts the maximality of (w*)*(¢) € P(V).
Thus we conclude that Uy N J = Ji, and hence 7(Uy) = Uy /Jx = L((w*)*(€)) for
0 < k < p— 1. Therefore we obtain

UL = () = 3 w(U) = D r(U)
k=0 k=0

because 7(Uy) =2 L((w*)*(€)) for 0 < k < p—1 and (w*)*(€) # (w*)¥ (€) for
0 <k#Ek <p-1. Thus we have a filtration V' > U D J D {0}. Since we have
a(J, ) < a(V,¢) and a(V/U, ) < a(V,p), we can use the induction hypothesis to
get the required filtrations for J and for V/U. Combining them with the filtration
V > U D J D {0}, we obtain the required filtration for V. O

Here we note that, for each 1 <i <t, & € h* is a symmetric weight if and only
if p; = 1. However, even if §; is a symmetric weight, the restriction of 7, to the
highest weight space (V;/Vi—_1)e, is not an identity operator id, but its nonzero scalar
multiple c¢,id. More precisely, by Lemma 4.2 we have the following commutative
diagram:

Vi/Viei —— L(&)
(6.1.1) ﬂ,l lc&;m
Vi/Viei ——— L(&).

Let us take £ € (h*)°, and fix ¢ € (h*)? such that & > . Then we construct a
(Suto) filtration given by Proposition 6.1.1. We define a number [V : L(&)]¥ € C



90 SATOSHI NAITO
by
VL) = ) ce

1<i<t
&i=¢

Now we define the twining character ch* (V) of V' by

ch?(V) = Y Tr(7ulv,) e(x),

XE(h*)°

and similarly we set

ch(V;/Vica) == > Tr(Fulw,vyon)) e(X)-
XE(h*)°

From Proposition 6.1.1, we can easily deduce that

t
(6.1.2) ch?(V) =) ch(V;/Vim) =, D [V LE)]® ch®(L(§)),
j=1 ge(h”)”
[V:L(&)]#0

where the symbol =, means that the coefficients of e(x) on both sides of =, are
equal for each y € (h*)° with x > ¢. From this fact, we first see that the number
[V : L(§)]“ is independent of the (Suto) filtration given by Proposition 6.1.1 and
the choice of ¢ € (h*)? with & > ¢, since the coefficient of e(¢) in ch®(L(€)) equals
1. We then see

(6.1.3) ch?(V)= > [V:L(]ch(L(S)).
T oo

6.2. Some preliminary lemmas. Let A € h*. Since a € II(\) C A(N); is a
positive real root (say, a = w(a;) for w € W and i € I), we can write the dual real
root hy = w(h;) =2v"(a)/(ala) € QY as

ho =Y 1%h;  with I € Zo.
il
Denote by go € Z>1 the greatest common divisor of the integers Zi\;gl lgk(i) € Z>o
for i € I. We say that A € h* satisfies condition (WI) for « if
(WI) A ha) € Z is a multiple of go € Z>.

Remark 6.2.1. If « is a simple root a; € II, then we have h, = h; and g, = 1, and
hence A satisfies condition (WI) for this a. Therefore, if A is integral, i.e., A € P,
then X satisfies condition (WI) for all o € II(A) =II.

Lemma 6.2.2. Let A\ € h* be an element satisfying condition (WI) for an arbi-
trarily fized o € II(X). Then there exists an element vy € h* such that v € P,

w*(70) = 70, and Yo(ha) = —A(ha).

Proof. Recall from [ESS| §3.2] the definition of the diagram automorphism w : g —
g. Since g is an affine Lie algebra, we have h = (®i6 I (Chi) @ CD for some suitably



TWINING CHARACTER FORMULA FOR AFFINE LIE ALGEBRAS 91

chosen element D € § (not necessarily equal to the scaling element d in [Kal, Ch.
6]). We defined w by

) = ewi) foriel,
fz) = fw(z) for i € 1,

) = hw(i) foriel,

Since the integer A(hy) is a multiple of go € Z>1 by assumption, there exist
integers z; € Z, ¢ € I, such that

3 (3 1o ) = 00
iel
We define an element 7y € h* by

Yo(hor@y) = 2i € Z forz'efandOﬁkﬁNi—l,
Y (D) := 1.
Then we have v9 € P and w*(7y9) = 7o. Further, we have

-t = S (3t ) =

iel i€l
This proves the lemma. [l
We assume that A € h* is a symmetric weight, i.e., w*(\) = A. Then, by Lemma

5.1.3 (2), we have w*(II(X)) = II(X\). Write II(A) = {¢;};cs as in §5.1. Then w*
induces a bijection w* : J — J by: w*(¢;) = Bwry-1(5) for j € J. We note that

2(Pur ()P () / (Pur (1) [ D (i) = 2(951¢4)/ (Gildi)  for i, 5 € J.
In other words, the bijection w* : J — .J is a diagram automorphism for the GCM
AN) = (2(¢519:)/(¢ilp:))ijes- Let N* be the order of w? : J — J, and NjA the

number of elements in the w*-orbit of j € J in J. We choose a set of representatives
J of the w*-orbits in J, and set

N} —1

J={jelJ| Z (o)) 85)/ (B5165) > 0}

Set, for each j € J,

A
N -1

j = Z Py € (59)°
k=0

Lemma 6.2.3. Let A\ € (h*)°. Fiz an arbitrary jo € J. Then there exists an
element 0 € h* such that € P, w*(8) =6, (0|5) > 0, and (B|¢;,) =0, (8]¢;) >0
for j # jo € J.
Proof. First, we note that if £ € b* is a symmetric weight, then for j € J, ,

N}—1 N}—1

(€ly) = (€] Z b)) = 3 (ElW)F(¢) = N} (€ley)-

k=0
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We define an element ¢ € h* by

C(hy) =2 for all i € I,
¢(D) :=1.

It follows that ¢ € P, w*(¢) = ¢, and (¢[0) = >,  ai(Clag) = > c; aie; *C(h;) > 0.
To simplify the notation, we write a¥ instead of h, € QV for the dual real root
of a € A™. We now set

0:=¢— (C(ﬁ))/%o (¢;/0)) Y, € b

Here we note that since jo € J, we have (1j,|0j,) > 0, i.e., ¥ ( y) > 0. Tt
follows that w*(8) = 6, and (8|5) = ({|6) > 0 since (6|Q) = 0 implies (J|¢;) =
0 for all j € J. Note that ((¢)) € 2Z since ¢; € QY, and that v;,(¢)) =
2(1501940)/ (Pjoldj,) > 0 implies 15, (47 ) = 1,2 as we have indicated just above
Proposition 3.2.2. Hence we have § € P since ¥;, € Q C P. It is obvious from the
definition that (¢}) = 0, i.e., (0]¢;,) = 0, and hence (0]1);,) = 0. For j # jo € J,

we have

(0165) = (Cl65) = ((Clego )/ (ol dso)) - (ol &5)-

Here we have ({|¢;) > 0 for all j € J since ¢; € II(A) C Ay, and (¥j,|¢;) =
A
Z;V;% 1(¢(w>\)k(jo)|¢j) < 0 since j # (w)k(jo) for any 0 < k < Nj)g — 1. Thus we

conclude that (0|¢;) > 0, and hence (8|y;) > 0. O
Let A € C be a symmetric weight satisfying condition (WT) for all « € TI(\). Fix

an arbitrary jo € J. Then, by Lemma 6.2.2, there exists 79 € h* such that vy € P,
w*(70) = 70, and (Y0]dj,) = —(A|Pj,). Since w*(y0) = Yo and w*(A) = A, we have

(lto) = Niy (v0ljo) = =Ny (Mjo) = —(Alhjo)-

Take 6 € h* as in Lemma 6.2.3, and set for each positive integer L € Z>o,

(6.2.1) o :=A+v —p, p:=puo+ L0.

Then we see that w*(u) = p, and p— A =9 — p+ L € P since p € P. Also,
since (0|0) > 0, we have (i + p|d) = (A + Y0]0) + L(6]5) # 0, and hence p € C
for sufficiently large L. It follows that (u + plvj,) = (A + yolvj,) + L(8]j,) = 0.
Furthermore, for each j # jo € J, we have (i =+ plY;) = (A +70l¢j) + L(8]y;) > 0
for sufficiently large L (depending on j € j) because ¢; € II(A) C A(X) implies
(A¢;) € R and hence (A + 7o|¢;) € R. Here we recall that J is a finite set from
[KT2, Lem. 2.3]. Therefore, if L is sufficiently large, then we have (u + p|¢;) > 0

for all j # jo € J. In particular, p is an element of CT since u — A € P implies
Alu) = AQ).

Lemma 6.2.4. We keep the notation above. There exists some x € W such that
7 (p—)\) € Py.

Proof. Since (v — p|d) € R, we have (p — A|[0) = (yo — p|d) + L(0]6) > 0 for
sufficiently large L. If the Dynkin diagram S(A) of the GCM A = (asj)i jer is of

type Agblll and the diagram automorphism w : I — [ is a cyclic permutation of [
of order n, then we have for each ig € I,

(= A6) = (=AY @) = > as(pn = New) = nag, (1 — M)

i€l el
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since w*(6) = ¢ and w*(p — A) = g — A. Thus ( — A|6) > 0 implies (u — A|a;) > 0
for all 4 € I, hence p — A € Py. Therefore, by the comment just above Proposition
3.2.2, we may assume that the matrix A=A= (aij)mef is a GCM of affine type,
where T = I.

Let § = D il @it € 6* be the null root of the orbit Lie algebra g of affine
type, where the a;, i € f, are relatively prime positive integers. Then we have
P*(5) € Q4 since P*(@;) = s by (3.2.4). In addition, we have for all i € I,
(P2(0)|8;) = 57 (P:(0)|PX(@;)) = s;(8]a;) = 0. Since PZ(8) is a symmetric

~ ~

weight, we obtain (P*(d)|a;) = N; H(P? (8)|8;) = 0 for all i € I, and hence for all

-~

i € I. In other words, the element P*(4) € Q4 is in the radical of the bilinear
form (-|-) restricted to ) ;. ; Ra;. Therefore we deduce that P (g) = kd for some
positive integer k € Z>1.

Since g — A € b* and w*(pu — A) = p — A, there exists k € b* such that Pi(R) =
1t — A. Note that (|a;) € R for all i € I = I since (R|@;) = (PX(R)|Ps(ay)) =
(1 — Asif8i) = siN;(u — A|ey;). Moreover, we have (7%|A) = (PJ(EHPJ(;S\)) =k(p—
Al6) > 0. Hence, by (the proof of) [Kal Prop. 5.8 b)], there exists & € W such
that (Z(%)|@;) > 0 for all i € 1. Then, by Proposition 3.3.1, we have P*(Z(%)) =
O®)(P:(R)) = O(F) (1 — A). Set = := O(F) € W C W and A := P*(&(®)) € (*)°.
Then we have A = z(u — \) € P since 4 — A € P. Furthermore, we have for each
1€,

0 < (@(®)|ai) = (P5((R))|1P5(@)) = (Alsifi)
N;—1

= si(A] Y orgp) = siVi(Alew)

k=0

since w*(A) = A. Thus we obtain A € P,. O

In particular, the elements A, u € C satisfy condition (TR) with p — A = z(A)
for x € W and A € P;.

6.3. About Weyl groups. We use the notation of §5.1. Let A € (h*)°. Then, as
in §6.2, w* induces a bijection of II(A) = {¢;},cs, and so a diagram automorphism
w1 J = J by wr(¢;) = Pwry-1(j) for j € J. By Lemma 5.1.1, the GCM A()\) =
(2(¢j1¢i)/(¢i|0i))i,jes decomposes, after reordering the indices, into a direct sum
of GCMs of finite type and those of affine type. Note that in the decomposition
A(N) = D(A\)B(A) given in Remark 5.1.2, we have Ej‘ﬂ(j) = ¢} for all j € J since
(W*(¢j)|w*(@;)) = (¢4]¢;). Hence we can apply the setting in §3 to the Kac-Moody
algebra g* = g(A(\)) with Cartan subalgebra h* and simple roots IT* = {3;} ;e C
(h*)*. Let (:])* be the nondegenerate, symmetric, invariant bilinear form on g*
corresponding to the decomposition A(A) = D(A)B(A) above. We also denote by
w* 1 g — g* the diagram automorphism of the Lie algebra g* induced from
the bijection w* : J — J, and by (w*)* : (bM)* — (h*)* the dual map of the
restriction of w? to h*. Note that we have the following commutative diagram from
the definitions:
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Q* —— Q)

(wx)*l o

Q)\ - Q(A)a

N4

where ¥ : Q* — Q()) is the Z-linear isomorphism in §5.1. Furthermore, we know
from [MP} §5.1 and §5.5] that there exists a unique group isomorphism = : W* —
W () satisfying E(rg\) = ry, for each j € J. In addition, we have the following
commutative diagram for each w € W?:

qz

Q* —— Q)

g e
Q* T’ Q).
Set
W = {we W | (W) *w = ww)*}.
Lemma 6.3.1. We have Z(W>) = W(A) N W.
Proof. Let us show that for each w € W?,
(@) w (@) = ()T E(w)w',

from which the lemma immediately follows, since & : W* — W()) is a group
isomorphism. To show the equality above, we may assume that w = r])-‘ for j € J.
Then, by Lemma 3.1.4 (2) and (4), we have

—_

E((@N)) TN =B ) = Toung, = @) 1(6))
= (W) rg,w" = (W) TE()w",
as desired. O

Now recall from §3.3 that the group W is a , Coxeter group with the canonical
generator system {w} | j € J}, where w} € WA for j € J is defined by using
r()‘wk)k(j) with 0 < k£ < Nj)‘ — 1 in exactly the same way as w; € W for i € Iis
defined by using rk ;) with 0 <k < N; — 1 in (3.3.1). Therefore, by Lemma 6.3.1,
we deduce that the group W(/\)ﬁw is a Coxeter group with the canonical generator
system {s; := E(w}) | j € J}. We denote the length function of W (A) N W = W
by £y : W(A)NW — Zxp.

Remark 6.3.2. From the argument above, we sce that W(X) N W = {1} if and only
if J = 0.
6.4. Proof of the main theorem. Let A\ € h* be a symmetric weight such that
A € Ct and Ag(\) = 0. Then, by arguments similar to those in the proof of [Kal
Prop. 3.12], we see that for each w € W(A), wo A € A= 3" cpy(y) Z>0a, and hence
wo A < X\ with equality if and only if w = 1.

Let w € W(A) N W. Then the module M(w o \) is in the category O[)]. Hence
[M(woX): L(§)] > 0 for & € h* implies £ = y o A for a unique y € W(A). If
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w*(€) = &, then we have

WYA+p) —p=wy(A+p) —w (p) =w (yo )
=yoA=yA+p)—p=yw (A+p) —p,
from which we have ((w*) lyw*) o A = yo A. Since (w*) lyw* € W (), we have
(w*)lyw* =y, i.e., y € W. Therefore, by (6.1.3), we see that
e (M(wor) = S [MwoX): L{yo N ch(L(yo ).
yeW (MNNW
Since the unique maximal proper submodule J(w o A) of M (w o \) is 7,-stable and

M(woMX)/J(woA) = L(wo \), we obtain that [M(wo ) : L(wo A)]“ = 1.

Remark 6.4.1. From the argument above, we see that if W(X) N W = {1}, ie,
J =0, then we have ch®(L()\)) = ch®(M(X)).

Now let us take an arbitrary w € W(A) N W, and set n := wo A € (h*)°.
Fix ¢ € (h*)°, and take a (Suto) filtration of the Verma module M (n) given by
Proposition 6.1.1

(6.4.1) M(H)ZWDW_lD---DVlDV():{O}.
By (6.1.2), we have

t
ch(M(n)) =Y h(Vi/Viei) = D> [M(n): Ly o A)]* cb(L(y o N)).

i=1 yEW (AN)NW

Assume, in addition, that there exists a symmetric weight p € C T such that u—\ =

x(A) for z € W and A € P,. From (6.4.1), by tensoring with the module L(A), we

get a filtration of M (n) ®c L(A) by 7,, ® 7,-stable g-submodules

M(n) ®c L(A) = V; @c L(A) D Vimy @c L(A) D -
- D Vi ®c L(A) D Vo ®c L(A) = {0},

where for ¢ ¢ T, the quotient module (V; ®c L(A))/(Vi—1 ®c L(A)) has no weight

X > ¢+A. By applying the exact functor P, to this filtration and using Proposition
5.2.4, we obtain a filtration of T} (M (n)) by T @ 7,-stable g-submodules

(6.4.2)

TR (M () = T3 (Vi) D T (Vier) D -+ D TR (Va) D T (Vo) = {0}
Lemma 6.4.2. With the notation above, we have
h?(TH(M(wo X)) Zpra Y [M(n): Ly o N)]* ch (T (L(y o V).
yeW (MNNW

Proof. As in the proof of Corollary 5.2.6, we obtain the following commutative
diagram for 1 < ¢ <t¢ from the filtration (6.4.2):

TNVi)/T)(Vie1) ——— TNVi/Vie1)

To®RTw J/ J/?u ®Tw

TNVi) /T (Vier) —— TX(Vi/Vioa),
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where the left vertical map 7, ® 7,, is induced from the map 7, &7, : V;®cL(A) —
V; ®c L(A). Thus we have

t t

ch (T3 (M (n))) = Y ch (T (Vi) /T3 (Vier)) = Y cb(T3(Vi/ Viea)).

i=1 i=1

Now recall that for each 1 < ¢ < ¢, the diagram (6.1.1) commutes for some
ce;, € C\ {0}. By tensoring with L(A) and then applying the exact functor P,
(using Proposition 5.2.4), we obtain the commutative diagram

TR (Vi/Vier) —— T(L(&))
ﬂ@ml lcﬁﬂw@m
TA(Vi/Vier) —— TR(L(&))-

Hence we have for 1 <4 <, ch*(T}(Vi/Vi1)) = ce,ch® (T} (L(&;))). Therefore we
have

> ch(TH(Vi/Vicr)) Zpin Y. [M(n): L{y o N)]* ch®(Tp(L(y o A)).
=1 yEW(N)NW

This completes the proof. O

Since ¢ € (h*)? is arbitrary in Lemma 6.4.2, we obtain the following:

Proposition 6.4.3. Let \, n € CT be elements satisfying condition (TR) with pu —
A=x(A) forz € W and A € Py. Assume, in addition, that Ag(\) = 0. Then, for
each w € W(X) NW, we have

ch*(M(wol) = > [M(wolX): L(yoN)]”ch(L(yo\)),
yeW (MNNW
ch® (T (M(wo N))) = Z [M(wo X): L(y o A)]® ch® (T (L(y o A))).
yeW (MNNW

We are now in a position to state our main result.

Theorem 6.4.4. Let g = g(A) be the Kac-Moody algebra associated to a GCM
A = (aij)ijer of affine type, and w : I — I a diagram automorphism. Let A € h*
be a symmetric weight such that X € Ct and Ag(\) = 0.

(a) When W(X)N W = {1} (i-e., J= 0), we have

ch®(L(\)) = ch® (M ()
—eM)- [ S ()™ e(w(p)-p) |

wEW

where ¢ : W — Z denotes the length function of the Coxeter group w.
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(b) When W(X) N W # {1} (ice., J # 0), we further assume that \ satisfies
condition (WI) for all o € II(X). In this case, we have

L) = > ()P (M (wo X))
weEW (\)NW
Y (DR e(w(r + p))
:wGW(A)ﬂW _
3 (=DM e(w(p))
weW

where Uy : W()\)OW — Z denotes the length function of the Coxeter group W ()N
w.

Proof. Part (a) is already proved by Remark 6.4.1 combined with Theorem 4.4. We
will prove part (b). So we assume that J # (. Recall that for w € W(\) N W, we
have wo A < A, and wo A = X implies w = 1. Hence we can write (W (A)N W) oA =
{Ai | i € Z>1} and reindex them in such a way that

(1) A =X

(2) A; =yio A for a unique y; € W(A) N W, i € Z>1;

(3) depthi(A;) < depthy(A;) implies ¢ < j.
By Proposition 6.4.3, we have for i > 1,
(643) (M) = S Mo A) : Liys o N b*(L(A,),

j=i

where [M(y; 0o \) : L(y; o \)]* = 1. We may view (6.4.3) above as a system of linear
equations whose matrix is lower triangular with all the diagonal entries equal to 1.
Thus we may invert this system to obtain for i > 1,

ch®(L(A\:)) = elyi y;) ch®(M(X)))  with c(ys,y;) € C,
Jj=>i
where c(y;,y;) = 1. In particular, for A = A, we have
ch?(L(N) =Y e(1,y;) ch®(M(\;))  with ¢(1,1) = 1.
j>1
We set c(y) := c(1,y) for y € W(A\) N W. Then we can write
(6.4.4) ch?(L(A) = > cly)ch®(M(yod)) with (1) =1.
yeW (MNNW

We want to determine the numbers ¢(y) € C for y € W(A) N W. Let g€ Ct be

a symmetric weight such that y— X = z(A) for z € W and A € P,. By Proposition
6.4.3, we have for i > 1,

ch (T} (M (X)) = > [M(yi o M) = L(y; o N)]¥ b (T (L(Ny))).
Jzi
Hence, in the same way as for ch“(L())) above, we obtain

ch(THLA) = D ely) ch*(Tp(M(y o)),
yeEW (A\)NW
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where the c(y)’s for y € W(A) N W are exactly the same numbers as those for
ch®(L())) in (6.4.4). Let us fix an arbitrary jo € J, and take p € (h*)° as in (6.2.1).
Then we have p € CT, u— XA = x(A) for z € W,A € Py, and (e + plYj,) = 0,
(i + plyp;) > 0 for all j # jo € J. Then, by Proposition 5.2.5 and Corollary 5.2.6,
we have

ch®(TN(M(y o)) = ch*(M(you)) for each y € W(A)NW,

and ch* (T (L()))) = 0. Consequently, we obtain

0= Y cly)ch*(M(yop)).

yeW (MNNW

Here we note that the twining characters ch (M (€)), € € (h*)°, are linearly inde-
Nnw,

pendent over C. Thus we get, for each y € W(\)

0= Z c(w).
weW (A\)NW
WOU=YOL
Now let w € W(A) N W be such that w oy = . Since (e + pl;) > 0 for all
j € J, we have (+plp;) > 0 for all j € J since w*(u+ p) = p+ p. Hence, by [MP]
Prop. 5.6.3], we see that w(u + p) = p+ p for w € W(A) implies

w € [0<k<Njy—1)CW(N).

,
Pk (o)

Recall from §6.3 that there exists a group isomorphism Z : W* — W ()\) satisfying
E(r}) = rg, for each j € J. Thus we have

w' =7 (w) € (raygy |0 <k <Ny —1) € W,

Furthermore, by Lemma 6.3.1, we have that w’ € W*. Let ¢ € (h*)* be such that
(wM)*(¢) = ¢ and (¢|B;)* > 0 for all j € J, where (-|-)* is the (induced) bilinear
form on (h*)*. Set ¢’ := w’(¢). It follows that (¢'[3;,)* > 0 or (¢'|B;,)* < 0 since
(18jo)* = (W' (O)1Bjo)* = (CI(w')~*(8B5,))* and

(W)~ (Bj) € Y ZeoBero |UL 0 DD Z<oBunrin

A A
0<k<N) -1 0<k<N) —1

Hence we have either ({'|B( k(o)) > 0forall0 < k < N —1, or (¢ Bk (jo))* <
0 for all 0 < k < Nj — 1, since (w*)*(¢) = ¢. It is known from [FSS| §5.1]
that w) (8j,) € ZOSkSN;\071ZSOB(wA)k(jO). So we have either (¢'|3;,)* > 0 or
(w;O(g’)mjo)A > 0, and hence either ({'|B(,r)x(jo)) > 0 for all 0 < k < Nj)g -1,
or (w} (¢Bryk(jo))* > 0 for all 0 < k < Nj — 1, since w} € W> implies
(w)‘)*(w])»‘o ) = w;-‘0 (¢"). Thus, by (the proof of) [Ka, Prop. 3.12 a) and b)], we
deduceNthat w'({) = ¢ or w])»‘ow’(() = (, and hence w’' = 1 or w' = wg\o, since
w?o € W is generated by Tz\w’\)k(jo) for0 <k < Nj)[‘) — 1. Therefore, we obtain that

= =5 = =
w =1 or w = sj,, where sj, = Z(w}, ).
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Summarizing the arguments above, we have c(y)+c(ys;,) = 0 for y € W(A) nw.
Since jo € J is arbitrary, we obtain

(6.4.5) c(y) +c(ysj) =0 forye WA N W and j € J,

where ¢(1) = 1. Here we note that W(\) MW is a Coxeter group with the canonical
generator system {s; | j € J}. Thus, we see by induction on the length Zk(y) of
y e W(A) AW that the numbers c(y) fory € W(X) NW are determined uniquely by
the relations (6.4.5) together with ¢(1) = 1. Furthermore, the numbers (—1)2*(?/)

satisfy the relations (6.4.5) together with (—1)»(1) = (=1)® = 1. Therefore we
deduce that

(6.4.6) cy) = (=1)P®  for y e W) NW.
Combining (6.4.6) with Theorem 4.4, we complete the proof of the theorem. O

Remark 6.4.5. We have assumed an additional condition on A in part (b) of The-
orem 6.4.4 in order to make the clever choice of the translation functor T/i‘. We
expect that the same formula will still hold without this condition.

Remark 6.4.6. If the symmetric weight A € (h*) is dominant integral, i.e., A € Py,
then A satisfies the assumption of Theorem 6.4.4 (b). In this case, we have W(\) =
W and hence W(A) N W = W. Then, Theorem 6.4.4 is nothing but Theorem 4.5,
which is the main result of [FSS]. Recall from the comment just above Proposition
3.2.2 that W = {1} if and only if the GCM A = (a;j)i jer is of type A£1131 and the
diagram automorphism w : I — I is a cyclic permutation of I of order n.

Remark 6.4.7. If the diagram automorphism w : I — [ is the identity map, then
any element A € Ct such that Ag(\) = ( satisfies the assumption of Theorem
6.4.4 (b). This is because when we write the dual real root h, of @ € A™ as
ho = Ziel [ h; € QV, the integers (¥ for i € I are relatively prime. In this case,

we have W = W, and hence W(A) N W = W (A). Then, Theorem 6.4.4 is just the
well-known character formula by Kac-Wakimoto ([KW]) for the ordinary character
chL(\).

Remark 6.4.8. Theorem 6.4.4 holds also for a finite-dimensional simple Lie algebra
g when C is replaced by h* and so C* by the set

(€€ [ (§+p)(ha) >0 for alla € A(E)4 ).

Since the proof in the finite-dimensional case is similar to and simpler than that in
the affine case, we omit it.
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