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ISOGENIES OF HECKE ALGEBRAS AND
A LANGLANDS CORRESPONDENCE FOR

RAMIFIED PRINCIPAL SERIES REPRESENTATIONS

MARK REEDER

Abstract. This paper gives a Langlands classification of constituents of ram-
ified principal series representations for split p-adic groups with connected
center.

Introduction

Let F be a p-adic field, and let G be the group of F -rational points in a split
reductive group G over F . Let B be a Borel subgroup in G. We denote by Irr(G,B)
the set of irreducible representations of G, up to equivalence, which are subquotients
of representations induced from characters of B. The aim of this paper is to classify
the representations in Irr(G,B) in terms of the geometry of the dual group G of G,
according to predictions by Langlands and others. We must assume that p is not
too small (as specified in section 5 below), and that G has connected center. Our
result generalizes, and depends on, the classification of constituents of unramified
principal series, given by Kazhdan and Lusztig in [KL]. For inducing characters
of arbitrary ramification, but which have trivial stabilizer in the Weyl group, a
classification was previously obtained, with no restrictions on p, by Rodier [Rod1].

Let WF be the Weil group of F , and let IF ⊂ WF be the inertia subgroup. By
“Langlands parameter” we mean a continuous homomorphism

Φ :WF × SL2(C) −→ G

which is rational on SL2(C) and such that Φ(WF ) consists of semisimple elements
in G. Choose a Borel subgroup B2 in SL2(C), and let SΦ = Φ(WF ×B2), a solvable
subgroup of G. Let B denote the variety of Borel subgroups of G, and let BΦ denote
the subvariety consisting of Borel subgroups of G containing SΦ. Let GΦ be the
centralizer in G of the image of Φ. Then GΦ acts naturally on BΦ, and hence on
the singular homology H∗(BΦ,C).

Theorem 1. The representations V ∈ Irr(G,B) are in bijection with G-conjugacy
classes of pairs (Φ, ρ), where Φ is a Langlands parameter such that BΦ is non-
empty, and ρ is an irreducible representation of GΦ which appears in the natural
action of GΦ on H∗(BΦ,C).

The bijection in Theorem 1 contains the classification of consitutents of a given
principal series representation as follows. Let T , T be maximal split tori in G, G
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respectively, with T ⊂ B. Let X denote the rational co-character group of T ,
identified with the rational character group of T . Let T0 be the maximal compact
subgroup of T . A choice of uniformizer in F gives a splitting T = T0 × X, so
characters of T have the form χ⊗ τ , where χ is a character of T0, and τ ∈ T . Via
abelian class field theory, χ gives rise to a homomorphism χ̂ : IF −→ T . Let H
be the centralizer in G of the image of χ̂. Then the constituents of the induced
representation IndGB(χ ⊗ τ) correspond to H-conjugacy classes of triples (τ, u, ρ)
where τuτ−1 = uq and ρ is a representation of the mutual centralizer Hτ,u which
appears in the homology of the variety Bτ,u

H of Borel subgroups of H containing τ
and u. Such a triple (τ, u, ρ) corresponds to a pair (Φ, ρ) as in Theorem 1 such that
Φ|IF = χ̂, and the component groups of Hτ,u and GΦ are naturally isomorphic to
each other (see section 4).

Here is an outline of the proof of Theorem 1. Let H be the affine Hecke algebra
attached to H , with constant parameter q= residue cardinality of F . The central
characters of H correspond to semisimple conjugacy classes in H . In his thesis
[Ro], Roche has shown that the constituents of IndGB(χ ⊗ τ) are in bijection with
the simple H-modules of central character τ . In the case that the derived group
Hder is simply connected, the simple H-modules have been classified by Kazhdan
and Lusztig [KL]. However, in our situation, Hder is not always simply-connected.
The first main step in our proof is an extension of Kazhdan and Lusztig’s result to
the nonsimply-connected case. It is independent of p-adic groups.

Theorem 2. Let H be a connected reductive complex algebraic group. Let H be
the affine Hecke algebra whose root datum is that of H, with constant parameter q
not a root of unity. Then the simple H-modules are in bijection with H-conjugacy
classes of triples (τ, u, ρ), where τ ∈ H is semisimple, τuτ−1 = uq, and ρ is an
irreducible representation of Hτ,u appearing in the homology of Bτ,u

H .

To prove Theorem 2, we begin with a recent result of Ram and Ramagge [RR].
They have observed that H is the fixed points of a group of automorphisms C
acting on a larger Hecke algebra H̃ whose root datum is simply-connected, and
this enables them to apply a kind of Clifford theory, developed by Macdonald and
Green, to relate H̃-modules to H-modules. Thus, for each simple H̃-module V , we
have an inertia group CV ⊂ C, a cocycle ηV : CV ×CV −→ C×, and corresponding
twisted group algebra EV , such that the restriction of V to H is of the form

V |H '
⊕

ψ∈Irr(EV )

ψ ⊗ ψV ,

where Irr(EV ) denotes the irreducible representations of EV . Ram and Ramagge
show that each ψV is either zero, or a simple H-module, and that all simple H-
modules are obtained in this way. In sections 2-4 below, we calculate EV in terms
of Kazhdan and Lusztig’s parameters of the H̃-module V , we show that ψV is
always nonzero, and we show that the pairs (V, ψ) correspond to triples (τ, u, ρ) as
in Theorem 2. These are mostly calculations in equivariant K-theory, based on the
work of Kazhdan and Lusztig [KL].

Combining Theorem 2 with Roche’s Hecke algebra isomorphisms, we get, for
fixed χ, a classification of the constituents of IndGB(χ⊗ τ) as τ varies over T .

Now, if w is in the Weyl group, the same representation V of G will appear in
two induced representations IndGB(χ⊗τ) and IndGB(χw⊗τw). As Roche has pointed
out to me, it does not seem obvious that his Hecke algebra isomorphisms lead to
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G-conjugate Langlands parameters for V . In sections 5 and 6, we prove that they
do, and this completes the proof of Theorem 1.

In section 7, we determine the pair (Φ, ρ) attached by Theorem 1 to the unique
constituent of IndGB(χ ⊗ τ) admitting a Whittaker model. (Recall that G has con-
nected center.) The corresponding triple (τ, u, ρ) is given as follows. The centralizer
Hτ acts on the variety qτ = {u ∈ H : τuτ−1 = uq}, and has a unique dense orbit
q◦τ ⊂ qτ . Then (see (7.3.1)) the Whittaker constituent of IndGB(χ⊗ τ) corresponds
to the triple (τ, u, triv) where u ∈ q◦τ , and triv denotes the trivial representation of
Hτ,u.

If G is a Levi subgroup in a larger group G′, the Shahidi local L-functions
L(s, VΦ,triv, r) are defined, for every constituent r of the action of G on g′/g, since
VΦ,triv has a Whittaker model. Using [Sh, 3.5 3)], it is easy to check that

L(s, VΦ,triv, r) = det[1− q−sΦ(Frob)|rχ ]−1,

where rχ denotes the invariants of Φ(IF ) in r. Hence the Shahidi L-functions of
VΦ,triv agree with the Artin-Deligne L-functions of Φ, for these representations r of
G.

A final remark: Theorem 2 also gives the classification of constituents of unrami-
fied principal series for arbitrary split connected groups G over F [B1], without any
restriction on p. The result of [KL] gives such a classification for G with connected
center. To get a classification for ramified principal series for all split groups, one
must consider affine Hecke algebras attached to disconnected dual groups [Ro, §8].
I do not attempt this here.

This paper developed as follows. In October 1996 at the Langlands birthday
conference, Roche asked me, in connection with his work [Ro], if a Langlands clas-
sification of nonsimply connected affine Hecke modules was available. It was not,
until the spring of 1999 when Ram sent me the preprint [RR]. I was then able to
prove Theorem 2, and also, I thought, Theorem 1. I asked Roche if we could con-
sider these matters further in joint work. He declined, but instead offered valuable
comments on a rough draft of this paper, and pointed out the difficulty mentioned
three paragraphs above. I thank Arun Ram and Alan Roche for these contributions.

1. Hecke Algebras and Isogeny

To keep track of the behavior of affine Hecke algebras under isogeny, as well
as the naturality properties of the Kazhdan-Lusztig construction of simple Hecke
modules in the simply connected case, we shall view “Affine Hecke Algebra” as a
functor on the category of based root data, where the morphisms are isogenies. I
believe this pedantic foundation makes the later arguments clearer.

1.1. A based root datum Φ = (X,Y,R, Ř, S) consists of a pair X,Y of free abelian
groups, a perfect pairing 〈 , 〉 : X × Y −→ Z, root systems R ⊂ X , Ř ⊂ Y , a
bijection α 7→ α̌ : R −→ Ř, and a set of simple roots S ⊂ R.

Let R+ ⊂ R denote the roots which are nonnegative integral combinations of
those in S, and set R− = −R+. The Weyl group W of Φ is the subgroup of Aut(X)
generated by the Coxeter reflections sα(x) = x−〈x, α̌〉α, for α ∈ S. We sometimes
confound roots in S with the corresponding reflections in W . Denote by W̃ the
affine Weyl group W̃ = W nX . Let `(w) be the length of an element w ∈ W̃ , and
let S̃ be the set of simple affine roots [L1, 1.4].
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An isogeny [Sp] of based root data f : Φ′ −→ Φ is given by an injective group
homomorphism f : X ′ −→ X with finite cokernel, which restricts to a bijection
f : R′ −→ R, and whose adjoint, with respect to the pairings of Φ′ and Φ, is a
bijection Ř −→ Ř′. The isogeny f induces an injection W̃ ′ ↪→ W̃ which restricts
to an isomorphism of finite Coxeter groups (W,S) ' (W ′, S′).

1.2. Let A = C[q,q−1], where q is the identity coordinate of C×. Given a based
root datum Φ, consider the associative A-algebra H(Φ,q) with free A-basis {Tw :
w ∈ W̃} and multiplication rules

TwTw′ = Tww′ if `(w) + `(w′) = `(ww′),(1.2a)

(Tsα + 1)(Tsα − q) = 0, for all α ∈ S̃.(1.2b)

Another presentation of H(Φ,q), due to Bernstein, is given as follows [L1]. Let
A[X ] denote the group algebra of X , with A-basis {eλ : λ ∈ X}. Let

X+ = {λ ∈ X : 〈λ, α̌〉 ≥ 0 for all α ∈ S}.

Then the mapping eλ 7→ q−`(λ)/2Tλ, for λ ∈ X+, extends to an embedding of
algebras

A[X ] ↪→ H(Φ,q),

by means of which we view A[X ] as a subalgebra of H(Φ,q). Let H0(Φ,q) be the
subalgebra spanned by {Tw : w ∈ W}. The Bernstein presentation of H(Φ,q) is
the isomorphism, given by multiplication

H0(Φ,q)⊗A A[X ] '−→ H(Φ,q).

The corresponding multiplication in the tensor product is given, for α ∈ S, by

eλ(Tsα − q) = (Tsα − q)esαλ + (esαλ − eλ)
q− eα
1− eα

.(1.2c)

The center of H(Φ,q) is the subalgebra A[X ]W of W -invariants in A[X ].
If q ∈ C×, then replacing q by q results in a C-algebra, denoted H(Φ, q), or

simply H(Φ), if q is understood. We assume throughout that q is not a root of
unity.

1.3. Let G be a complex connected reductive algebraic group over C, with Lie
algebra g, and let Z be the center of G. Given a pair (T,B) consisting of a max-
imal torus T contained in a Borel subgroup B of G, we have a based root datum
Φ(T,B) = (X,Y,R, Ř, S), where X = X∗(T ), Y = X∗(T ) are the rational charac-
ter and co-character groups of T , R and Ř are the roots and co-roots of T in G,
R+ is the set of roots appearing in g/b, and S ⊂ R+ is the corresponding set of
simple roots. Note that R− is the set of roots in b.

Given two such pairs (T,B), (T ′, B′), there is an inner automorphism ι of G
such that (ι(T ), ι(B)) = (T ′, B′). The induced isomorphism Φ(ι) : Φ(T,B) −→
Φ(T ′, B′) is independent of the choice of ι. Let Φ(G) = (X,Y,R, Ř, S) denote
the inverse limit of the based root data Φ(T,B) with respect to the isomorphisms
Φ(ι). Then Φ(G) is a based root datum. Let H(G,q) = H(Φ(G),q), H0(G,q) =
H0(Φ(G),q), etc.

For any pair (T,B), we have canonical isomorphism Φ(G) −→ Φ(T,B). If λ ∈ X
and B is a Borel subgroup of G, then we have a character ΨB

λ : B −→ C∗, by means



ISOGENIES OF HECKE ALGEBRAS AND A LANGLANDS CORRESPONDENCE 105

of the canonical map X −→ X∗(T ) for any maximal torus T ⊂ B. By definition,
we have

ΨgBg−1

λ (gbg−1) = ΨB
λ (b), g ∈ G, b ∈ B.

In particular, if z ∈ Z, then ΨB
λ (z) is independent of B. We set

λ(z) = ΨB
λ (z).

Given b ∈ B, the map λ 7→ ΨB
λ (b) extends linearly to an algebra homomorphism

C[X ] −→ C, θ 7→ ΨB
θ (b).

If τ ∈ G is semisimple, and θ ∈ C[X ]W is a W -invariant element of C[X ], then the
value of ΨB

θ (τ) is the same for every B containing τ , and depends only on the G-
conjugacy class of τ . In this way, the ring C[X ]W is identified with the coordinate
ring of the affine variety of semisimple conjugacy classes in G.

1.4. Suppose f : G −→ G′ is an isogeny. If T ⊂ B in G are mapped by f to
T ′ ⊂ B′ in G′, then the induced map f∗ : X∗(T ′) −→ X∗(T ) is an isogeny of based
root data

f∗T,B : Φ(T ′, B′) −→ Φ(T,B).

Hence f induces an isogeny

Φ(f) : Φ(G′) −→ Φ(G).

For example, if G = G′ and f is an inner automorphism of G, then Φ(f) is the
identity map on Φ(G).

Now Φ(f) induces a homomorphism w′ 7→ w between the affine Weyl groups of
Φ(G′) and Φ(G), along with an A-algebra homomorphism

H(f) : H(G′,q) −→ H(G,q), Tw′ 7→ Tw.

If π : H(G,q) −→ End(V ) is an H(G,q)-module, we let f ]V be the H(G′,q)-
module with underlying space V on which T ∈ H(G′,q) acts via π(H(f)T ).

We have f ]V = V if f is an inner automorphism. More generally, if we identify
X ′ ⊂ X by means of Φ(f), then H(G′,q) ⊂ H(G,q), and f ]V is the restriction of
V to H(G′,q).

This restriction can be analyzed by means of certain automorphisms of H(G,q).
Namely, the center Z acts on H(G,q) by A-algebra automorphisms. Using the
presentation (1.2c), this action is given by

(Tw ⊗ eλ)z = λ(z)Tw ⊗ eλ, w ∈W, λ ∈ X, z ∈ Z.

The twistedH(G,q)-module (πz , V z) is defined by πz(T z) = π(T ), for T ∈ H(G,q).
The central characters of H(G,q) are in canonical bijection with semisimple

conjugacy classes in G×C×. If the class of (τ, q) ∈ G×C× is the central character
of the simple H(G,q)-module V , then the central character of V z is the class of
(zτ, q).
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1.5. Let C be a finite subgroup of Z, and let f : G −→ G/C = G′ be the quotient
map. This is an isogeny, which induces, as in (1.4), an injection of algebras

H(f) : H(G/C,q) ↪→ H(G,q)

whose image is the subalgebra

H(G,q)C ⊂ H(G,q)

of fixed points under the action of C on H (restriction of the Z-action defined in
(1.4)). We identify H(G/C,q) = H(G,q)C by means of H(f).

Now fix q ∈ C× not a root of unity, and let H(G) = H(G, q). If V is an
H(G)-module, define the inertia group of V to be

CV = {c ∈ C : V ' V c}.

ChoosingH(G)-module isomorphisms φc : V ' V c for each c ∈ CV defines a cocycle

ηV : CV × CV −→ C×,

and a twisted group algebra C[CV , ηV ], whose isomorphism class is independent of
the choice of isomorphisms φc.

If b ∈ C, then CV = CV b since C is abelian, and for each c ∈ CV , the map φc is
also an H(G)-module isomorphism V b −→ V bc. Hence

C[CV b , ηV b ] = C[CV , ηV ].

Note that the action of C[CV , ηV ] on V consists of H(G)C -module endomorphisms.
We will use the following result of Ram and Ramagge, which is based on Clif-

ford theoretic results developed by MacDonald and Green. (The final uniqueness
assertion below is not stated in [RR], but easily follows from [Mac].)

(1.5.1) Theorem [RR, App.]. If V is a simple H(G)-module, then the restriction
of V to H(G)C is of the form

V '
⊕
ψ

ψV ⊗ ψ,(1.5a)

where ψ runs over the simple C[CV , ηV ]-modules, and each ψV is either zero, or a
simple H(G)C -module. All simple H(G)C-modules are of the form ψV , and ψV '
ψ′V ′ if and only if there is c ∈ C such that V ′ = V c, and ψ′ = ψ.

2. Equivariant K-theory and Affine Hecke Modules

In this section we assume that G has simply-connected derived group. Let Z be
the center of G. Fix q ∈ C×, not a root of unity. In this case, Kazhdan and Lusztig
[KL] have shown that the simple H(G)-modules are in bijection with G-conjugacy
classes of triples (τ, u, ρ), where τ ∈ G is semisimple, u ∈ G is unipotent, such that
τuτ−1 = uq, and σ is an irreducible representation of the mutual centralizer Gτ,u
appearing in the natural action of Gτ,u in the homology of Bτ,u. Given such a
triple (τ, u, σ), the corresponding simple H(G)-module Vτ,u,σ is the unique simple
quotient of a “standard” H(G)-module Mτ,u,σ.

We analyze here the behavior of Mτ,u,σ and Vτ,u,σ under twisting by elements
z ∈ Z. The construction of Mτ,u,σ is based on equivariant K-theory, and we will
express the twisting by z as a direct image g∗, where g ∈ G satisfies τg = zτ , see
(2.7.2). Then in (2.9.1) we evaluate g∗ on the constituent of the principal series



ISOGENIES OF HECKE ALGEBRAS AND A LANGLANDS CORRESPONDENCE 107

of H(G) containing the sign character of H0(G). This is needed to determine the
Whittaker constituent of ramified principal series for the p-adic group G.

We rely on the list of properties of topological equivariant K-theory laid out in
[KL, §1], supplemented by results from [CG]. By work of Thomason, and [DLP], the
properties in [KL, §1] are now known to hold in our setting for algebraic K-theory
[L2], which is the language used here.

2.1. For any complex algebraic groupH acting rationally on a variety X, we denote
by KH(X) the Grothendieck group, tensored with C, of the category of coherent
H-equivariant sheaves on X. We write K(X) when H = 1.

If X = pt is a point, an equivariant sheaf is simply a rational representation
of H , so KH(pt) = RH is the representation ring of H . More generally, if X has
trivial H action, then KH(X) = K(X) ⊗C RH . For any H-variety X, the space
KH(X) is a finitely generated RH -module.

2.2. Let B denote the variety of Borel subgroups of G. The group G × C× acts
on B, with C× acting trivially. For λ ∈ X , let Lλ be the G×C× equivariant line
bundle (viewed as a locally free sheaf of rank one) on B, where (b, q) ∈ B × C×

acts on the fiber Lλ|B via multiplication by ΨB
λ (b).

Take a semisimple element τ ∈ G, and let D be the algebraic subgroup of G×C×

generated by (τ, q). Take also a unipotent element u ∈ G such that τuτ−1 = uq.
Then D preserves the fixed point variety Bu, so we have the RD-module KD(Bu).

Let Cτ,q be the complex line on which RD acts by evaluation of characters at
(τ, q). The main object of study is the localized K-group KD(Bu)⊗RD Cτ,q. This
finite dimensional vector space has several incarnations.

As RD-modules, we have, by the localization theorem [KL, 1.3(k)]

KD(Bu)⊗RD Cτ,q ' KD(Bτ,u)⊗RD Cτ,q.(2.2a)

The fixed points Bτ are a disjoint union

Bτ = B1 ∪ · · · ∪Bm,

where each Bi is a Gτ -orbit in B. If we choose B ∈ B1, then Bτ is a Borel subgroup
of Gτ , and Bτ has a unique fixed point Bi ∈ Bi, for each i. The map

Gτ/Bτ −→ Bi, hBτ 7→ hBih
−1

is an isomorphism of Gτ -varieties. Therefore, we have the decomposition

KD(Bτ,u) =
m⊕
i=1

KD(Bu
i ),(2.2b)

where Bu
i = Bi ∩Bu. Since D acts trivially on each Bu

i , we have

KD(Bu
i ) ' K(Bu

i )⊗C RD.(2.2c)

Unlike the Bi’s, the varieties Bu
i , for varying i, are not generally isomorphic to one

another. Some of them may be empty. However, there is always at least one Borel
subgroup containing τ, u, so not all of the Bu

i ’s are empty.
If Bu

i is nonempty, then under the isomorphism (2.2c), the class of the line bundle
Lλ in KD(Bu

i ) corresponds to the class of Lλ ⊗ (ΨBi
λ |D) in K(Bu

i )⊗C RD, where
we now forget the D-action on Lλ.
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From (2.2a-c) it follows that

KD(Bu)⊗RD Cτ,q '
m⊕
i=1

K(Bu
i )τ,q,(2.2d)

where we have abbreviated

K(Bu
i )τ,q := K(Bu

i )⊗C Cτ,q.

2.3. We have an action of A[X ] by RD-linear operators on KD(Bu), namely

eλ ◦ ξ = Lλ ⊗ ξ, λ ∈ X, ξ ∈ KD(Bu),

and q acts as multiplication by the element

D ↪→ G×C×
1×q−−→ C×

of RD.
After localizing at (τ, q) and applying the isomorphism (2.2d), eλ◦ becomes the

operator

eλ ◦ ξ = ΨBi
λ (τ)Lλ ⊗ ξ, ξ ∈ K(Bu

i )τ,q(2.2e)

On K(Bu
i ) the operator Lλ⊗ is a unipotent operator [KL, 1.3(m3)], so (2.2e) gives

the Jordan decomposition of eλ◦ on KD(Bu) ⊗RD Cτ,q. The action of q becomes
multiplication by q.

2.4. Now take an element g ∈ G such that τg = zτ , where z ∈ Z. Although g does
not centralize D, the map g : Bu −→ Bgug−1

commutes with the D action, since
Z acts trivially on B. By [KL, 1.3(b)] the direct image map g∗ is an RD-linear
isomorphism

g∗ : KD(Bu) −→ KD(Bgug−1
).

On the other hand, g permutes the components Bi of Bτ . Thus, if gBi = Bj , we
have an RD-linear map

g∗ : K(Bu
i )τ,q −→ K(Bgug−1

j )τ,q.

(2.4.1) Lemma. Suppose τg = zτ for some z ∈ Z. Then

eλ ◦ g∗ξ = λ(z)g∗(eλ ◦ ξ), λ ∈ X, ξ ∈ K(Bu
i )τ,q.

Thus, if λ(z) = 1, the operators g∗ and eλ◦ commute.

Proof. Suppose gBi = Bj . Since Lλ is the restriction of a G-equivariant line bundle
on B, we have g∗(Lλ|Bui ) = Lλ|Bgug−1

j

in K(Bgug−1

j ). Using [KL, 1.3f], we compute

g−1
∗ eλ ◦ g∗ξ = g−1

∗ ΨBj
λ (τ)Lλ|Bgug−1

j

⊗ g∗ξ

= ΨBj
λ (τ)Lλ|Bui ⊗ ξ

= ΨBi
λ (τg)Lλ|Bui ⊗ ξ

= ΨBi
λ (zτ)Lλ|Bui ⊗ ξ

= λ(z)ΨBi
λ (τ)Lλ|Bui ⊗ ξ

= λ(z)eλ ◦ ξ.
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2.5. The action of A[X ] on KD(Bu) described above extends to an action of
H(G,q), as follows. It is enough to describe the action of q− Ts, for each s ∈ S.

Let Ps be the conjugacy-class of rank-one parabolic subgroups corresponding to
s. Let πs : B −→ Ps be the natural projection. Set B̂u = π−1

s (Pu
s ). Thus we have

a diagram

Bu i−−−−→ B̂u j−−−−→ B

πus

y yπ̂us yπs
Pu
s Pu

s
j−−−−→ Ps,

where the vertical maps are the restrictions of πs, and the maps i, j are the inclu-
sions. Note that πs, and hence π̂us , are P1-bundles.

Kazhdan and Lusztig define an operator tus on KD(Bu) as the composition

tus : KD(Bu)
(πus )∗−−−→ KD(Pu

s )
(πus )∗−−−→ KD(B̂u) i∗−→ KD(Bu)

(1−qL−α)⊗−−−−−−−−→ KD(Bu).

(2.5.1) Theorem [KL, 5.11]. The assignments Ts 7→ q− tus , eλ 7→ Lλ⊗, preserve
the Bernstein relations (1.2c). Thus we have an algebra homomorphism

H(G,q) −→ EndRD (KD(Bu)).

From now on, the spaces KD(Bu) are understood to have the H(G,q)-module
structure described in (2.5.1).

2.6. The image of H(G,q) in EndRD(KD(Bu)) commutes with the natural action
of Gτ,u on KD(Bu). More generally, we have

(2.6.1) Proposition. Suppose τg = zτ for some z ∈ Z. Then the direct image
map g∗ : KD(Bu) −→ KD(Bgug−1

) induces an H(G,q)-module isomorphism

[KD(Bu)⊗RD Cτ,q]z ' KD(Bgug−1
)⊗RD Cτ,q.

Here the twisting by z is that of 1.4.

Proof. In view of (2.4.1), it suffices to show that g∗ : KD(Bu) −→ KD(Bgug−1
)

commutes with the action of H0(G,q).
It is clear that g ◦ πus = πgug

−1

s ◦ g, and likewise for π̂us . We then have g∗(πus )∗ =
(πgug

−1

s )∗g∗, by [KL, 1.3b]. Since the maps π̂us , π̂gug
−1

s are P1-bundles, hence
smooth, we also have g∗(π̂us )∗ = (π̂gug

−1

s )∗g∗, by [KL, 1.3d]. Finally, g∗ commutes
with (1 − qL−α)⊗ by (2.4.1). It follows that g∗ commutes with tus , hence with the
action of Ts.

2.7. We come now to the standard modules Mτ,u,σ and their simple quotients. Fix
q ∈ C×, not a root of unity. As always, τ ∈ G is semisimple, u ∈ G is unipotent, and
τuτ−1 = uq. As a special case of (2.6.1), the action of H(G) on KD(Bu)⊗RD Cτ,q

commutes with the natural action (via direct image) of the mutual centralizer Gτ,u.
The latter action factors through a finite quotient of Gτ,u, since the subgroup ZG◦τ,u
acts trivially on KD(Bu)⊗RD Cτ,q. Hence for any irreducible representation σ of
Gτ,u, we have an H(G)-module

Mτ,u,σ := HomGτ,u(σ,KD(Bu)⊗RD Cτ,q).

The main result in [KL] may be stated as follows.
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(2.7.1) Theorem [KL, 7.12]. The space Mτ,u,σ is nonzero if and only if σ appears
in the natural action of Gτ,u in the homology H∗(Bτ,u). In this case, the H(G)-
module Mτ,u,σ has a unique simple quotient Vτ,u,σ. Every simple H(G)-module
can be obtained this way, and two such modules are isomorphic if and only if the
corresponding triples (τ, u, σ) are conjugate in G.

If τg = zτ for some z ∈ Z, and σ is a representation of Gτ,u, let gσ = σ ◦ g−1 g
be the corresponding representation of Gτ,gug−1 . By (2.6.1), we have

(2.7.2) Proposition. The direct image map g∗ induces an H(G)-module isomor-
phisms

Mz
τ,u,σ

'−→Mτ,gug−1,gσ, V zτ,u,σ
'−→ Vτ,gug−1,gσ.

This can be generalized as follows; the proof is entirely similar to that of (2.7.2),
so we omit it. Let f : G −→ G′ be an isomorphism. Take a pair (τ, u) as above,
and let (τ ′, u′) = (f(τ), f(u)), D′ = f(D), σ′ = fσ. Let f ] be the induced map on
Hecke modules, as in 1.4. Then we have

(2.7.3) Proposition. The direct image f∗ induces H(G′)-module isomorphisms

f ]Mτ,u,σ
'−→Mτ ′,u′,σ′ , f ]Vτ,u,σ

'−→ Vτ ′,u′,σ′ .

2.8. As a special case of (2.7.2), we consider u = 1 (and omit it from the nota-
tion). The action of H(G,q) and g∗ on KD(B) and the standard module Mτ =
KD(B) ⊗RD Cτ,q can then be made more explicit. Our aim is to determine the
effect of g∗ on the H0(G,q)-eigenspaces in Mτ affording the characters

1q : Ts 7→ q, and εq : Ts 7→ −1.

Specializing q→ q, we write 1q, εq for the respective characters of H0(G).
We have a well-known isomorphism (cf. [KL, 2.15])

A[X ] ' KG×C×(B)(2.8a)

where q maps to the bundle B × C with the canonical C× action in the fibers,
and λ maps to the line bundle Lλ (see 2.2). This isomorphism commutes with the
respective actions of A[X ]W ' RG×C× .

The operators ts described in 2.4 are defined just as well on KG×C×(B), and
the assignments Ts −→ q − ts, eλ 7→ Lλ⊗ define an H(G,q) module structure on
KG×C×(B). The corresponding action on A[X ], via (2.8a), is [KL, 3.10]

Ts ◦ eλ =
esλ − eλ+α

eα − 1
+ q

eλ+α − esλ−α
eα − 1

,

eµ ◦ eλ = eµ+λ.
(2.8b)

Let

ρ =
1
2

∑
β∈R+

β.

Using (2.8b) it is easy to check that

Ts ◦ e−ρ = qe−ρ.(2.8c)

Since eρ is a unit in A[X ], this means the H(G,q)-module A[X ] is generated by a
1q-eigenvector for the subalgebra H0(G,q).
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On the other hand, consider the elements

φ± =
∏
α∈R+

(1− qe±α) ∈ A[X ].

Since the product φ+φ− is invariant under W and hence belongs to the center of
H(G,q), a simple computation using [KL, 3.10(c)] shows that

Ts ◦ φ− = −φ−.(2.8d)

This time, the εq-eigenvector φ− is not a unit in A[X ], hence it is not a generator.
Let us now localize the isomorphism (2.8a) at the conjugacy class of (τ, q) in

G×C×. We have

A[X ]⊗A[X]W Cτ,q ' KG×C×(B)⊗RG×C×
Cτ,q

' KG×C×(B)⊗RG×C×
RD ⊗RD Cτ,q

' KD(B)⊗RD Cτ,q by [CG, 6.2.3(6)]
= Mτ .

By (2.8c) Mτ is generated by a 1q-eigenvector for H0(G), and it also has cen-
tral character τ . The matrix entries of Ts are polynomial functions of (τ, q) by
(2.8b). Evaluating these entries at (1, 1), we get the natural representation of W
on C[X ] ⊗C[X]W C, which is well-known to be the regular representation of W .
Since H0(G) is semisimple, it follows that for any (τ, q), the restriction of Mτ to
H0(G) is the regular representation of H0(G).

(2.8.1) Lemma. There exists a Borel subgroup B ∈ Bτ which contains all unipo-
tent elements u satisfying τuqτ−1 = u.

Proof. Choose any maximal torus T containing τ . There is a choice of positive
roots for T in G which all have modulus ≤ 1 on τ . This defines a Borel subgroup
B ∈ Bτ whose Lie algebra contains the q−1-eigenspace of Ad(τ), and hence, by
exponentiation, B contains all the required u’s.

Choose B as in (2.8.1) and let τB : C[X ] −→ C be the homomorphism defined
by

τB(eλ) = ΨB
λ (τ).

Set

M(τB) = H(G)⊗C[X] CτB .

This is an H(G)-module, via left multiplication.

(2.8.2) Proposition. Let M be an H(G)-module which restricts to the regular
representation of H0(G), is generated by a 1q-eigenvector for H0(G), and has central
character τ . Then M 'M(τB), as H(G)-modules, and this isomorphism is unique
up to scalar. In particular, we have Mτ 'M(τB).

Proof. The choice of B in (2.8.1) ensures that if τB(eα) = q−1, then ΨB
α is a root

of T in B, so α ∈ R−. By [R1, 6.6], the H(G)-module M(τB) is generated by its
1q-eigenspace for H0(G). This implies that M(τB) has a unique simple quotient
V (τB). Hence, V (τB) is the unique simpleH(G)-module containing a 1q-eigenvector
for H0(G), and having central character τ .
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Let m(τB) ⊂ C[X ] be the kernel of τB . It follows from [R2, 4.2] that the subspace
of M(τB) consisting of vectors killed by some power of m(τB) maps isomorphically
to the corresponding subspace in V (τB). In particular, V (τB) is also the unique
simple H(G)-module containing the eigencharacter τB for C[X ].

Our given module M is generated by a 1q-eigenvector for H0(G), so we have a
surjection M −→ V (τB). Therefore M contains a τB-eigenvector for C[X ], which
induces a nonzero map f : M(τB) −→M . The image of f contains a 1q-eigenvector
for H0(G), which must be the given generator for M , since the regular represention
of H0(G) has a one-dimensional 1q-eigenspace. Therefore f is surjective. It is
injective since both sides have dimension |W |.

Finally, any isomorphism M ' H(G) ⊗C[X] CτB is determined by its effect on
the 1q-eigenspace, hence is unique up to scalar.

2.9. We consider next the submodule ofMτ containing the εq-eigenspace forH0(G).
For the eventual purpose of identifying the Langlands parameters of the Whittaker-
constituent of a ramified principal series, we want to know the effect of g∗ on this
εq-eigenspace. This will involve u 6= 1, but we still abbreviate Mτ = Mτ,1,triv as in
2.8.

Let

qτ = {u ∈ G : τuτ−1 = uq}.
For any u ∈ qτ we have an H(G,q)-module homomorphism

ju∗ : KD(Bu)⊗RD Cτ,q −→ KD(B)⊗RD Cτ,q

induced by the inclusion ju : Bu ↪→ B. Now Gτ,u ⊆ Gτ , and the latter is connected
since Gder is simply-connected. It follows that ju∗ vanishes on Mτ,u,σ unless σ is
the trivial representation. On the other hand, the map ju∗ is not identically zero,
since the fundamental class of Bu gives a nonzero homology class in B. Therefore
we have a nonzero H(G)-module map

ju∗ : Mτ,u,triv −→Mτ 'M(τB)

(with B as in (2.8.1)).
Now the group Gτ acts on qτ with finitely many orbits, and there is a unique

dense orbit q◦τ . If u ∈ q◦τ , then Mτ,u,triv is irreducible by [KL, 5.15a]; so we have an
injection

ju∗ : Mτ,u,triv ↪→Mτ 'M(τB), u ∈ q◦τ .(2.9a)

It is known [R2, 10.1] that the image of (2.9a) is the unique simpleH(G)-submodule
of M(τB), and that it contains the εq-eigenspace of H0(G).

(2.9.1) Proposition. If τg = zτ for some z ∈ Z, and moreover g centralizes
u ∈ q◦τ , then g∗ acts as the identity on the εq-eigenspace for H0(G) in Mτ,u,triv.

Proof. Since g∗ clearly commutes with ju∗ , it is enough to prove that g∗ acts trivially
on the εq-eigenspace for H0(G) in Mτ . Under the isomorphism

A[X ]⊗A[X]W Cτ,q ' KD(B)⊗RD Cτ,q,

the operator g∗ corresponds by (2.4.1) to the operator on A[X ]⊗A[X]W Cτ,q given
by eλ ⊗ 1 7→ λ(z)eλ ⊗ 1.

For θ ∈ A[X ], let θτ,q = θ ⊗ 1 ∈ A[X ] ⊗A[X]W C[τ,q]. Let B be a Borel
subgroup as in (2.8.1), and let B− be another Borel subgroup such that B ∩ B−
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is a torus containing τ . Then the Lie algebra of B− contains qτ . It follows that
φ− acts invertibly in the summand K(Bi)τ,q, where B− ∈ Bi, and in particular,
φτ,q− is not identically zero in A[X ] ⊗A[X]W Cτ,q. Hence, φτ,q− is an εq-eigenvector
in A[X ] ⊗A[X]W Cτ,q. By (2.4.1) we have g∗φ

τ,q
− = φτ,q− , since all roots are trivial

on z.

3. Inertia Groups

Recall that Gder is simply-connected, and Z is the center of G. Take a finite
subgroup C ⊆ Z, and put G′ = G/C. The natural projection f : G −→ G′ is an
isogeny. We can now calculate the inertia groups in C of simple H(G)-modules, and
thereby classify the simple H(G′)-modules as in Theorem 2 of the introduction.

3.1. The group G acts by conjugation on G′ via f . Let τ be a semisimple element
of G, and set τ ′ = f(τ). Let Gτ , G′τ ′ denote the centralizers of τ, τ ′ in G,G′,
respectively, and let G+

τ denote the centralizer of τ ′ in G. That is,

G+
τ = {g ∈ G : τg ∈ τC}.

Since Gder is simply-connected, the centralizer Gτ is the identity component of G+
τ ,

and we put

Rτ := G+
τ /Gτ .

We have an isomorphism

Rτ
'−→ Cτ ⊆ C g 7→ cg := τ−1τg(3.1a)

from Rτ onto a subgroup Cτ ⊆ C. In particular, Rτ is abelian.

3.2. Fix q ∈ C×, not a root of unity, and recall the variety

qτ = {u ∈ G : τuτ−1 = uq}.
The isogeny f : G −→ G′ restricts to an isomorphism from qτ to the analogous
variety qτ ′ ⊂ G′, and we will not distinguish between qτ and qτ ′ .

The finitely many Gτ -orbits in qτ are permuted by Rτ . For u ∈ qτ , set G+
τ,u :=

G+
τ ∩Gu and let Rτ,u be the image of G+

τ,u in Rτ . It is easy to see that Rτ,u is the
stabilizer in Rτ of the Gτ -orbit through u.

3.3. Fix τ, u with u ∈ qτ , and set

Aτ,u := π0(Gτ,u), A+
τ,u := π0(G+

τ,u).

Note that A+
τ,u is isomorphic, via the isogeny f : G −→ G′, to the component group

of G′τ ′,u′ . Moreover, we have an exact sequence

1 −→ Aτ,u → A+
τ,u −→ Rτ,u −→ 1.

In particular, the group Rτ,u permutes the irreducible representations σ of Aτ,u.
Let Rτ,u,σ be the stabilizer in Rτ,u of the isomorphism class of σ ∈ Irr(Aτ,u). For
each r ∈ Rτ,u,σ we choose an Aτ,u-isomorphism fr : σ −→ σr. These choices define
a 2-cocycle µτ,u,σ on Rτ,u,σ with values in C×, such that frfs = µτ,u,σ(r, s)frs. Let
Eτ,u,σ denote the corresponding twisted group algebra. Then by Mackey’s theorem,
we may identify

Eτ,u,σ = EndA+
τ,u

(Ind
A+
τ,u

Aτ,u
σ).
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Hence we have a decomposition as Eτ,u,σ ⊗C[A+
τ,u] modules

Ind
A+
τ,u

Aτ,u
σ '

⊕
ψ∈Irr(Eτ,u,σ)

ψ ⊗ ρψσ ,

where Irr(Eτ,u,σ) is the set of simple Eτ,u,σ-modules up to isomorphism, and each
ρψσ is an irreducible representation of A+

τ,u. The map ψ 7→ ρψσ is a bijection between
Irr(Eτ,u,σ) and the set of irreducible representations of A+

τ,u which contain σ upon
restriction to Aτ,u.

3.4. Let σ be an irreducible representation of Aτ,u occurring in H∗(Bτ,u). We can
now calculate the inertia group Cτ,u,σ of the simple H(G)-module Vτ,u,σ.

Let c ∈ C. By our remarks in 1.4, the central character of the twisted module
V cτ,u,σ is cτ . (Recall that q has been fixed.) Hence if V cτ,u,σ ' Vτ,u,σ, there is g ∈ G
such that cτ = τg. We have g ∈ G+

τ , and c = cg. It follows that Cτ,u,σ ⊂ Cτ .
By (2.7.2), we have an H(G)-module isomorphism

V cgτ,u,σ ' Vτ,gug−1,gσ.(3.4a)

Hence cg belongs to the inertia group of Vτ,u,σ if and only if there is h ∈ Gτ such
that (gug−1, gσ) = (huh−1, hσ). This proves

(3.4.1) Proposition. The inertia group Cτ,u,σ of the simple H(G)-module Vτ,u,σ
is the image of Rτ,u,σ under the embedding Rτ ↪→ C from 3.1a.

3.5. Fix τ, u, with u ∈ qτ . We now determine the twisted group algebra C[CV , ηV ],
defined in 1.5, for V = Vτ,u,σ. We set

Mτ,u := KD(Bu)⊗RD Cτ,q.

From (2.4.1) and (2.6.1), the pair H(G) and A+
τ,u act on Mτ,u, but do not commute,

while the pairs (H(G), Aτ,u) and (H(G′), A+
τ,u) do commute. Let Nτ,u be the in-

tersection of the maximal proper H(G)-submodules of Mτ,u, let Vτ,u = Mτ,u/Nτ,u,
and let p : Mτ,u −→ Vτ,u be the quotient map. From (2.4.1), it follows that A+

τ,u

preserves each H(G)-submodule of Mτ,u, so A+
τ,u acts on Vτ,u.

Now

Vτ,u,σ = HomAτ,u(σ, Vτ,u) ' HomA+
τ,u

(Ind
A+
τ,u

Aτ,u
σ, Vτ,u),

and Eτ,u,σ acts on the latter space by composition, commuting with the natural
H(G′) action. Thus we have an algebra homomorphism

Eτ,u,σ −→ EndH(G′)(Vτ,u,σ).(3.5a)

(3.5.1) Lemma. Every irreducible representation of Eτ,u,σ appears in this action
on Vτ,u,σ. In particular, the homomorphism (3.5a) is injective.

Proof. Recall from 2.2 the decomposition Bτ,u = Bu
1 ∪ · · · ∪Bu

m. Each subvariety
Bu
i is stable under Gτ,u, hence the subspace K(Bu

i )τ,q ⊂Mτ,u (see (2.2d)) is stable
under Aτ,u. If we set Vτ,u(i) := p(K(Bu

i )τ,q) ⊂ Vτ,u, then Vτ,u =
⊕

i Vτ,u(i), and
each summand is stable under Aτ,u. Therefore σ appears in Vτ,u(i) for some i.

Now the group G+
τ permutes the components Bi. I claim that the stabilizer of

any component is exactly Gτ . If we admit this, and recall that G+
τ,u = G+

τ ∩ Gu,
then the A+

τ,u-submodule of Vτ,u generated by Vτ,u(i) is a direct sum⊕
g∈Rτ,u

gVτ,u(i).
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It follows that

Ind
A+
τ,u

Aτ,u
σ ⊂ Ind

A+
τ,u

Aτ,u
Vτ,u(i) ' C[A+

τ,u] · Vτ,u(i);

so Ind
A+
τ,u

Aτ,u
σ is isomorphic to an A+

τ,u-submodule of Vτ,u, and this implies (3.5.1).
It remains to verify the claim. Suppose g ∈ G+

τ preserves Bi. Let B ∈ Bi. Then
Bτ is a Borel subgroup in Gτ , and B is the unique fixed point of Bτ in Bi. Choose
a maximal torus T ⊆ Bτ . Modifying g by an element of Gτ , we may assume that
g normalizes T and Bτ . But then gBg−1, being another fixed point of Bτ in Bi,
must equal B, so g ∈ B ∩NT = T , hence g ∈ Gτ . This proves the claim and the
lemma.

Let Cτ,u,σ be as in 3.4.1, and let ητ,u,σ be the cocycle on Cτ,u,σ defined in 1.5,
for V = Vτ,u,σ. Combining (3.5.1) with (1.5.1), we have

|Rτ,u,σ| = dim Eτ,u,σ ≤ dim EndH(G′)(Vτ,u,σ) ≤ dim C[Cτ,u,σ, ητ,u,σ] = |Rτ,u,σ|.
We have proved:

(3.5.2) Lemma. The map (3.5a) is an isomorphism

Eτ,u,σ ' EndH(G′)(Vτ,u,σ).

Hence, the restriction of Vτ,u,σ to H(G′) is given by

Vτ,u,σ|H(G′) '
⊕

ψ∈Irr(Eτ,u,σ)

ψVτ,u,σ ⊗ ψ.

Each ψVτ,u,σ is nonzero, and is a simple H(G′)-module. Every simple H(G′)-module
arises in this way, and ψVτ,u,σ ' ψ′Vτ,u,σ′ if and only if there is g ∈ G+

τ,u such that

σ′ ' σg, ψ′ = ψ.(3.5b)

From (3.5.2) we see that the simple H(G′) modules are in bijection with quadru-
ples (τ, u, σ, ψ) as in (3.5.2) modulo the equivalence

(τ1, u1, σ1, ψ1) ∼ (τ2, u2, σ2, ψ2)

iff there is g ∈ G′ such that

(τ2, u2, σ2, ψ2) = (f(τ1)g, f(u1)g, σg1 , ψ
g
1),(3.5c)

where f : G −→ G′ is the isogeny 3.1, and when writing σg1 , we are identifying
Aτ1,u1 with its image in π0(G′f(τ1),f(u1)) under f ; see 3.3.

(3.5.3) Lemma. There is a bijection between G-conjugacy classes of quadruples
(τ, u, σ, ψ) as in (3.5c), and G′ conjugacy classes of triples (τ ′, u′, ρ′), where τ ′ ∈ G′
is semisimple, u′ ∈ qτ ′ and ρ′ is a representation of G′τ ′,u′ appearing in the homology
of Bτ ′,u′ .

Proof. Given (τ, u, σ, ψ), set

τ ′ = f(τ), u′ = f(u), ρ′ = ρψ.

On the other hand, given (τ ′, u′, ρ′), choose τ, u to be lifts of τ ′, u′ in G, let σ be
an irreducible representation of Aτ,u appearing in the restriction of ρ′ to Aτ,u, and
let ψ = HomAτ,u(σ, ρ). We let the reader check that these assignments respect the
appropriate equivalence relations.

Note that Bτ ′,u′ = Bτ,u. The proof of (3.5.1) shows that ρ′ appears in H∗(Bτ,u)
if and only if ρ′ = ρψσ for some pair (σ, ψ) where σ appears in H∗(Bτ,u).
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We have proved Theorem 2 of the introduction: (We now replace G′ by G.)

(3.5.4) Theorem. Let G be a connected reductive complex algebraic group, with
affine Hecke algebra H(G), where the parameter q is not a root of unity. Then
the simple H(G)-modules are in bijection with the set Π(G) of G-conjugacy classes
of triples (τ, u, ρ), where τ ∈ G is semisimple, u ∈ qτ , and ρ is an irreducible
representation of Gτ,u appearing in H∗(Bτ,u). The bijection is given as follows.
Choose an isogeny G̃ −→ G with G̃der simply connected. Given (τ, u, ρ), let τ̃ , ũ
be lifts in G̃, and let σ ∈ Irr(Aτ̃ ,ũ), ψ ∈ Irr(Eτ̃ ,ũ,σ) be such that ρ = ρψσ . Then the
corresponding simple H(G)-module is ψVτ̃ ,ũ,σ.

4. Langlands parameters

4.1. Let G be a complex Lie group with simply-connected derived group. Suppose
we are given a prime number p, and a chain of subgroups

∆1 ⊆ ∆ ⊆ Γ ⊆ G,
such that Γ consists of semisimple elements, ∆ is finite and normal in Γ, ∆1 is a
normal p-subgroup of Γ, ∆/∆1 is cyclic of order prime to p, and Γ/∆ is cyclic,
generated by the coset of a given element s ∈ Γ.

Such a chain of subgroups arises from a continuous homomorphism WF −→ G,
where WF is the Weil group of a nonarchimedean local field F . Then Γ is the
image of WF , s is the image of a given Frobenius element in WF , and ∆,∆1 are
respectively the images of the inertia and wild inertia subgroups of WF .

Let B be the variety of Borel subgroups of G, and let BΓ denote the set of Γ-fixed
points in B.

(4.1.1) Lemma. The variety BΓ is nonempty if and only if Γ is contained in a
maximal torus of G.

Proof. See [B2, 10.6(5)].

(4.1.2) Proposition. Recall that Gder is simply-connected. Assume that p is not
a torsion prime for G. Let G∆ denote the centralizer of ∆ in G. Then the following
are equivalent:

(1) Γ is contained in G∆,
(2) Γ is contained in a maximal torus of G,
(3) Γ is abelian,
(4) BΓ is nonempty.

Proof. Implications 2 ⇒ 3 ⇒ 1 are obvious, and 1 ⇒ 3 follows from the cyclicity
of Γ/∆. 2 ⇔ 4 is (4.1.1). Finally, 3 ⇒ 2 is a special case of Steinberg’s result [St,
2.25], and requires our assumptions on G and p.

4.2. Let WF be the Weil group of F , and let IF be the inertia subgroup of WF .
Choose a Frobenius element Frob ∈ WF . We assume that the residue characteristic
p of F is not a torsion prime for G.

Given a Langlands parameter

Φ :WF × SL2(C) −→ G,

we let BΦ denote the variety of Borel subgroups of G fixed by Φ(WF ×B2), where
B2 is the upper triangular Borel subgroup of SL2(C). By (4.1.2), and Borel’s fixed
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point theorem, the variety BΦ is nonempty if and only if Φ factors through the
topological abelianization Wa

F of WF .
Let IaF be the image of IF inWa

F . Fix a continuous homomorphism χ̂ : IaF −→ G,
and let Φ : Wa

F × SL2(C) −→ G be a Langlands parameter whose restriction to
IaF is χ̂. We want to classify such Φ’s in terms of conjugacy classes in the group
H := Gχ̂.

Since Φ(Wa
F ) is abelian, we have Φ :Wa

F × SL2(C) −→ H . Set

τ = Φ
(
Frob×

(
q1/2 0

0 q−1/2

))
, u = Φ

(
1 1
0 1

)
.

Then τ ∈ H is semisimple, u ∈ H is unipotent, and τuτ−1 = uq.
On the other hand, given such a pair (τ, u) inH , we may choose a homomorphism

ϕu : SL2(C) −→ H such that ϕu

(
1 1
0 1

)
= u, and such that the element τu =

ϕu

(
q1/2 0

0 q−1/2

)
, commutes with τ (cf. [KL, 2.4g]). Then the element s := τ−1

u τ

centralizes u.
The choice of Frob determines a splitting

Wa
F = IaF × 〈Frob〉;

so we can extend χ̂ to a homomorphism χ̂s : Wa
F −→ G by setting χ̂s(Frob) = s.

By (4.3b) below, the image of χ̂s commutes with the image of ϕu. We can therefore
define

Φ :Wa
F × SL2(C) −→ G

by

Φ(w, x) = χ̂s(w)ϕu(x), w ∈ Wa
F , x ∈ SL2(C).

It is straightforward to check that the processes Φ ↔ (τ, u) are inverse to one
another, and that Φg corresponds to (τg , ug) ∈ Hg = Gχ̂g , for g ∈ G.

4.3. We compare the component groups of centralizers of Φ and (τ, u) in 4.2. Given
(τ, u) in H as above, set M = Hϕu , and let N be the unipotent subgroup of H
whose Lie algebra is the span of the eigenspaces of AdH(τu) with eigenvalues > 1.
Then Nu is the unipotent radical of Hu, and we have a semidirect product

Hu = MNu.(4.3a)

The decomposition (4.3a) is preserved under conjugation by τu, which has no non-
trivial fixed points in Nu, and acts trivially on M . It follows that

M = Hτu,u.(4.3b)

A similar argument with τ shows that

Hτ,u = MsNτ,u.(4.3c)

Finally, Nτ,u is connected, since Nu is unipotent, and this implies

M◦s = Ms ∩H◦τ,u.(4.3d)

Now, if Φ :Wa
F × SL2(C) −→ G corresponds to (τ, u) as in 4.2, then

GΦ = Ms.(4.3e)
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Set

AΦ = π0(GΦ), Aτ,u = π0(Hτ,u).

Combining (4.3c-e) proves

(4.3.1) Lemma. The inclusion GΦ ↪→ Hτ,u induces an isomorphism

AΦ
'−→ Aτ,u.

4.4. If a group A acts on a variety X, let R(A,X) denote the set of irreducible
representations of A appearing in the homology H∗(X).

(4.4.1) Lemma. The isomorphism of (4.3.1) induces a bijection

R(AΦ,BΦ) −→ R(Aτ,u,B
τ,u
H ).

Proof. From (4.3e) we have

R(AΦ,BΦ) = R(Ms,BΦ).(4.4a)

Since u, τu generate a dense subgroup of Φ(B2), we have

BΦ = B∆,τ,u,τu.

Under the H-action, B∆ is a disjoint union of copies of BH , so BΦ is a disjoint
union of copies of Bτ,u,τu

H . Therefore

R(Ms,BΦ) = R(Ms,B
τ,u,τu
H ).(4.4b)

Let D be the torus generated by τu. Note that D and M commute. In particu-
lar, the D-action on Bτ,u

H commutes with the Ms-action. Since Bτ,u
H has no odd

homology [DLP], we have

R(Ms,B
τ,u,τu
H ) = R(Ms,B

τ,u,D
H ) = R(Ms,B

τ,u
H ),(4.4c)

the last equality following from [CG, 2.5.1]. Finally,

R(Ms,B
τ,u
H ) = R(Aτ,u,B

τ,u
H ),(4.4d)

by (4.3c). Combining (4.4a-d) proves the result.

4.5. We summarize what has been proved in sections 1-4 of this paper. Recall that
we assume Gder is simply connected, that p is a nontorsion prime for G, and we
have chosen a Frobenius element Frob ∈ WF . Let χ̂ : IaF −→ G be a continuous
homomorphism, and let H be the centralizer of the image of χ̂. Let H be the affine
Hecke algebra whose root datum is that of H , and whose parameter q (a power of
p) is the residue cardinality of F . Let Πχ̂(G,B) be the set of G-conjugacy classes
of pairs (Φ, ρ), where Φ :WF × SL2(C) −→ G is a Langlands parameter such that
BΦ is nonempty, Φ|IF is G-conjugate to χ̂, and ρ ∈ R(AΦ,BΦ). Let Π(H) be the
set of H-conjugacy classes of triples (τ, u, ρ), where τ ∈ H is semisimple, u ∈ H is
unipotent, τuτ−1 = uq, and ρ ∈ R(Aτ,u,B

τ,u
H ). We have established the following.

(4.5.1) Theorem. The simple H-modules are in bijection with Πχ̂(G,B), and also
with Π(H). These bijections are given by combining (3.5.4), 4.2 and (4.4.1).
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5. p-adic groups

We now combine the previous results with those of Roche, in [Ro]. As in that
work, we impose restrictions on the residue characteristics p for each type of group
G, as follows:

An : p > n+ 1,
Bn, Cn, Dn : p 6= 2,
G2, E6 : p 6= 2, 3, 5,
E7, E8 : p 6= 2, 3, 5, 7.

In particular, the torsion primes of G are excluded.

5.1. Recall we have chosen a Frobenius element Frob ∈ WF . Let rF :Wa
F −→ F×

be the reciprocity isomorphism of abelian class-field theory, and set $ = rF (Frob),
a prime element in F .

Let G be the group of rational points in a connected, split, reductive F -group G
having connected center. Let T ⊂ B be a maximal split torus and Borel subgroup
in G, and let U be the unipotent radical of B. These choices determine a based root
datum Φ(T ,B) for G.

There exists a triple (G,B, T ) consisting of a complex connected reductive group
G, a Borel subgroup B in G, and a maximal torus T ⊂ B such that the based root
datum Φ(T,B) = (X,Y,R, Ř, S) is dual to Φ(T ,B). The group G has simply-
connected derived group.

We have T = Y ⊗C×, and X may be identified with both the character group
of T and co-character group of T . For λ ∈ X = X∗(T ), we set tλ = λ($). This is
an embedding of X in T , and gives a splitting

T = T0 ×X(5.1a)

where T0 is the maximal compact subgroup of T .
Take a continuous homomorphism

χ : T0 −→ C×.

According to the splitting (5.1a), the extensions of χ to T are uniquely of the form
χ⊗ τ , where τ ∈ T .

Let χ̂ : IaF −→ T be the unique homomorphism satisfying

λ ◦ χ̂ = χ ◦ λ ◦ rF(5.1b)

for all λ ∈ X , where λ is viewed as a character of T on the left side of (5.1b) and
as a co-character of T on the right side. Let Gχ̂ denote the centralizer of the image
of χ̂ in G. It is reductive, and connected, since Gder is simply connected, and p is
not a torsion prime for G [St].

The choice of (T,B) determines a based root datum Φ(T,Bχ̂) for Gχ̂, hence an
affine Hecke algebra H(Φ(T,Bχ̂)), with q = q. We identify H(Φ(T,Bχ̂)) = H(Gχ̂)
via the canonical isomorphism Φ(T,Bχ̂) ' Φ(Gχ̂).

5.2. Roche has constructed a compact open subgroup Jχ containing T0, and an
extension ρχ of χ to Jχ, such that H(Gχ̂) is isomorphic to the Hecke algebra

H(G, ρχ) = EndG(indGJχ ρχ),
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where ind denotes induction with compact supports. The isomorphism is not
unique; we determine it as follows. First normalize Haar measures on G and T
to give volume one to Jχ and T0, respectively.

Let H(T , χ) = EndT (indTT0
χ). This algebra has a linear basis {ελ∗ : λ ∈ X},

where ελ∗ acts on indTT0
χ as convolution by the unique function ελ : T −→ C

supported on T0tλ, such that ελ(tλ) = 1. We have an isomorphism

ψχ : C[X ] −→ H(T , χ), ψχ(eλ) = ελ ∗ .
Let φχλ : JχtλJχ −→ C be the unique function supported on JχtλJχ such that

φχλ(jtλj′) =
ρχ(jj′)

vol(JχtλJχ)1/2
.

Then the convolution operator φχλ∗ belongs to H(G, χ). There is a unique embed-
ding of algebras [Ro, eq. (5.2)]

tu : H(T , χ) ↪→ H(G, χ)

such that for λ ∈ X+, we have

tu(ελ∗) = φχλ ∗ .
It now follows from [Ro, 6.3] that there is a unique support preserving isomor-

phism of Hecke algebras

Ψχ : H(Gχ̂) −→ H(G, χ)(5.2a)

such that

Ψχ(eλ) = φχλ ∗ .

5.3. Let IndGB(χ ⊗ τ) denote the space of locally constant functions f : G −→ C
such that f(bg) = δ1/2(b)τ(b)χ(b)f(g) for all b ∈ B, g ∈ G, where δ is the modular
function of B. Then G acts on IndGB(χ⊗ τ) by right translations.

Let Irrχ(G,B) denote the set of irreducible representations of G, up to equiva-
lence, which appear in IndGB(χ⊗ τ), for some τ ∈ T . Let IrrH(G, χ) denote the set
of simple H(G, χ)-modules, up to equivalence. If V is a smooth representation of
G, then the space

V χ := HomJχ(ρχ, V )

is anH(G, χ) module, in a natural way. According to [Ro, Cor. 7.9], the assignment
V 7→ V χ is a bijection

Irrχ(G,B) −→ IrrH(G, χ),(5.3a)

Let

Ψ]
χ : IrrH(G, χ) −→ IrrH(Gχ̂)(5.3b)

be the bijection induced by the isomorphism (5.2a). Combining (5.3a,b) we have a
bijection

Irrχ(G,B) −→ IrrH(Gχ̂)(5.3c)

with the property [Ro, Thm. 9.4] that a constituent of IndGB(χ⊗ τ) corresponds to
an H(Gχ̂)-module with central character τ ∈ T/Wχ.

Combining (5.3c) with (4.5) we therefore have a bijection

iχ : Irrχ(G,B) −→ Πχ̂(G,B).(5.3d)
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5.4. In the next section we will show that bijection (5.3d) is independent of χ,
in the following sense. Suppose V is an irreducible representation of G appearing
in two induced representations IndGB(χ ⊗ τ) and IndGB(χ′ ⊗ τ ′). Then χ and χ′ are
conjugate by the common Weyl group W of G and G, as are χ̂ and χ̂′. Hence

Irrχ(G,B) = Irrχ′(G,B), and Πχ̂(G,B) = Πχ̂′(G,B).

In the next section, we will prove that iχ(V ) = iχ′(V ). It will then follow that the
bijections iχ piece together to give a bijection

Irr(G,B) '−→ Π(G,B)(5.4a)

between the set Irr(G,B) of irreducible constituents of all principal series represen-
tations of G, and the set Π(G,B) of G-conjugacy classes of all pairs (Φ, ρ), where
Φ(WF ) is contained in a Borel subgroup of G, and ρ is an irreducible representation
of the centralizer of the image of Φ appearing in the variety of Borel subgroups of
G containing Φ(WF ×B2). Thus Theorem 1 of the introduction will be proved.

6. Independence of χ

6.1. Let V, χ, χ′ be as in 5.4. We want to show that

iχ(V ) = iχ′(V ).(6.1a)

There is w ∈W such that

(χ⊗ τ)w = χ′ ⊗ τ ′.
To prove (6.1a) we may assume that w = s is a simple reflection, and that χs 6=
χ. We let ṡ denote a representative of s, taken in G or G, where appropriate.
Conjugation by ṡ in G gives an isomorphism fṡ : Gχ̂ −→ Gχ̂s . By (1.4) this
induces an isomorphism of Hecke algebras

H(fṡ) : H(Gχ̂) −→ H(Gχ̂s),

sending Tw 7→ Tsws for w ∈ W̃χ.
We will find an algebra isomorphism

H(G, χ) Θs−−→ H(G, χs)(6.1b)

such that

Θ∗sV
χs ' V χ,(6.1c)

and for which the following diagram commutes:

H(Gχ̂)
H(fṡ)−−−−→ H(Gχ̂s)

Ψχ

y Ψχs

y
H(G, χ) Θs−−−−→ H(G, χs),

(6.1d)

where Ψχ, Ψχs are as in (5.2a).
Suppose we have found such a map Θs. Let (τ, u, ρ) and (τ ′, u′, ρ′) be triples

corresponding to Ψ∗χV
χ, and Ψ∗χsV

χs , respectively, under the bijection in 4.5. Then

Vτ,u,ρ ' Ψ∗χV
χ ' Ψ∗χΘ∗sV

χs ' f ]ṡΨχsV
χs ' f ]ṡVτ ′,u′,ρ′ ' Vsτ ′s−1,ṡu′ṡ−1,ṡρ′ ,

this last by (2.7.3). It follows that (τ, u, ρ) and (τ ′, u′, ρ′) are G-conjugate, so
iχ(V ) = iχ′(V ), and (6.1a) will be proved.
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The existence of an isomorphism (6.1b) with properties (6.1c,d) will be proved
first for the tamely ramified case, then for the essentially tame case, and finally we
will reduce the general case to the essentially tame case, using the Bushnell-Kutzko
theory of covers. This pattern of argument was used already in [Ro].

6.2. Assume in this section that χ̂ is tamely ramified. Then Jχ = Jχs is the
Iwahori subgroup of G corresponding to B. We denote it by J . The group T0 is a
quotient of J , and χ, χ′ inflate to characters of J . Thus

H(G, χ) = EndG(indGJ χ).

The algebra H(G, χ) has a linear basis {T χw : w ∈ W̃χ} defined as follows. Let
N be the normalizer of T0 in G, and let Nχ be the stabilizer of χ in N . Choose an
extension χ̃ of χ to Nχ, as in [Ro, p. 385]. Choose representatives {ẇ : w ∈ W̃}
for W̃ in N .

For w ∈ W̃ , we have an intertwining map

θχẇ : indGJ χ −→ indGJ χ
w

defined by

θχẇf(x) =
1

vol(J1)

∫
J1

f(ẇ−1ux) du,

where J1 is the pro-unipotent radical of J .
If χw = χ, then the basis element T χw is given by

T χw = q`(w)χ̃(ẇ)θχẇ,

where ` is the length function on W̃χ.
For h ∈ H(G, χ), we define

Θs(h) = (θχ
s

ṡ )−1hθχ
s

ṡ .

Straightforward calculations, using the formulas in [M, 5.10, 6.6] show that

Θs(T χw) = T χ
s

sws,

so diagram (6.1d) commutes. Using the maps

V χ = HomJ (χ, V ) ' HomG(indGJ χ, V )
◦θχ

s

ṡ−−−→ HomG(indGJ χ
s, V ) ' V χ

s

,

one verifies property (6.1c) by a formal calculation. Thus, (6.1a) is proved in the
tame case.

6.3. We turn next to the essentially tame case. Let ∆(1)
F be the wild ramification

subgroup of Wa
F , and set ∆1 = χ̂(∆(1)

F ). The corresponding group for χ̂s is ∆s
1.

Suppose ∆1 ⊆ Z. Since ∆(1)
F is a direct factor of Wa

F , there is a character
χ̂1 : Wa

F −→ Z restricting to χ̂−1 on ∆(1)
F . The map χ̂χ̂1 : IaF −→ G is tamely

ramified. Clearly Gχ̂χ̂1 = Gχ̂. Since conjugation in G does not affect χ̂1, the map
χ̂sχ̂1 : IaF −→ G is also tamely ramified.

On the p-adic side, the homomorphism χ̂1 :Wa
F −→ Z corresponds to a character

χ1 : G −→ C×. Multiplication by χ1 induces an isomorphism

H(G, χ) '−→ H(G, χχ1),

likewise for χs, so the existence of a map Θs with properties (6.1c,d) follows from
the tame case considered in (6.2).
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6.4. Suppose χ, χs have arbitrary ramification. Let L = G∆1 be the centralizer of
∆1 in G. Since ∆1 is a finite abelian p-group, and p is not a torsion prime for G, the
subgroup L is a Levi subgroup of G, and L 6= G exactly when χ is not essentially
tame. Let L be the Levi subgroup of G dual to L. The corresponding groups for
χs are Ls and Ls.

It follows from [Ro, 5.1] that there is a support-preserving isomorphism of Hecke
algebras

rχ : H(G, χ) −→ H(L, χ).

Thus, we have a diagram of support-preserving algebra isomorphisms

H(Gχ̂) H(Lχ̂)
H(fṡ)−−−−→ H(Lχ̂s) H(Gχ̂s)

Ψχ

y Ψ′χ

y Ψ′χs

y Ψχs

y
H(G, χ)

rχ−−−−→ H(L, χ) ?−−−−→ H(Ls, χs) rχs←−−−− H(G, χs).

(6.4b)

It suffices to replace ? by a map Θ′s making (6.4b) commute, and for which the map

Θs := r−1
χs ◦Θ′s ◦ rχ(6.4c)

satisfies (6.1c).
If ṡ ∈ L, then we get the desired map Θ′s from the essentially tame case in (6.3).
Suppose, then, that ṡ /∈ L. We must examine more closely the subgroup Jχ,

defined in [Ro, §3], to which we refer for notation. There the convex function fχ
has the property that

fχ(sβ) = fχs(β),

as long as β 6= ±α (here α is the root for s). This is the case if β is a root in L. It
follows that

Ls ∩ Jχs = [L ∩ Jχ]ṡ,

and ρχs = (ρχ)ṡ on this subgroup. Therefore, conjugation by ṡ is a bijection

θ′s : indLL∩Jχ ρχ −→ indL
s

[L∩Jχ]ṡ(ρχ)ṡ = indL
s

Ls∩Jχs ρχs .

We let Θ′s be conjugation by θ′s. Verifying (6.1c) and the commutativity of (6.4b)
is straightforward, and left to the reader. The proof of (6.1a) is now complete.

7. Whittaker Models

Let χ be a character of T0, and let τ ∈ T . Since G has connected center, there is
a unique irreducible constituent U(χ, τ) of IndGB(χ⊗ τ) which admits a Whittaker
model [Rod2]. We determine here the parameter (Φ, ρ) attached to U(χ, τ) by
Theorem 1.

7.1. Let L, L be the Levi subgroups defined in 6.4, and let BL be a Borel subgroup
of L containing T . Denote by UL(χ, τ) the Whittaker constituent of IndLBL(χ⊗ τ).
Since im Φ ⊂ H ⊂ L, the same pair (Φ, ρ) is attached by Theorem 1 to both U(χ, τ)
and UL(χ, τ). Therefore, we may assume that χ is essentially tame. Arguing as
in 6.3, we may reduce further and assume, as we shall, that χ is in fact tamely
ramified.
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7.2. The H(Gχ̂)-module [IndGB(χ ⊗ τ)]χ restricts to the regular representation of
H0(Gχ̂). It follows that there is a unique H(Gχ̂)-subquotient E(χ, τ) of
[IndGB(χ ⊗ τ)]χ containing the character εq upon restriction to H0(Gχ̂). In this
section, we will show that

U(χ, τ)χ = E(χ, τ).(7.2a)

Let K = JWχJ , a hyperspecial maximal compact subgroup containing J . Let
K1 be the pro-unipotent radical of K. Then K1 ⊂ J ⊂ K, and K/K1 = G(q),
the reductive group of the same type as G with points in Fq. Let ẇ0 ∈ K be a
representative of the longest element of W .

Recall that U is the unipotent radical of B, and put U0 = U ∩ J , U1 = U ∩ K1.
Since G has connected center, there is a single T -orbit of generic characters Ψ of U .
We choose Ψ so that ker Ψ◦xα is the prime ideal in the ring of integers of F , for any
simple root group xα : F −→ U . Now U(q) = U0/U1, and we let ψ be the character
of U(q) obtained from the restriction of Ψ to U0. The Whittaker functional

Ω ∈ HomU (IndGB χ⊗ τ,Ψ)

is given by the principal-valued integral

Ω(f) =
∫
U
f(ẇ0u)Ψ−1(u) du.

Since Bẇ0I = Bẇ0U0, it follows that there is a nonzero function f ∈ [IndGB(χ⊗τ)]K1

supported on Bẇ0I. It is easy to check that Ω(f) 6= 0. Thus, Ω restricts to a nonzero
functional on [IndGB(χ ⊗ τ)]K1 . The latter space may be identified with IndG(q)

B(q) χ.
Therefore Ω restricts to a nonzero functional

ω ∈ HomU(q)(IndG(q)
B(q) χ, ψ).

There is a unique irreducible G(q)-constituent σ ⊂ IndG(q)
B(q) χ on which ω does not

vanish [C, 8.1.5]. The endomorphism algebra of IndG(q)
B(q) χ is isomorphic to H0(Gχ̂),

and the χ-isotypic component σχ is an irreducible representation of H0(Gχ̂), whose
generic degree d(σχ) has the same p-adic valuation as dim σ. On the other hand,
by Deligne-Lusztig theory (cf. [C, 8.4.9]), the p-part of dimσ is qν(χ), where ν(χ) is
the number of reflections in Wχ. By [A], this is the maximum power of q that can
divide a generic degree, and it is attained only for the sign character of H0(Gχ̂). It
follows that σχ affords the sign character of H0(Gχ̂).

Let V be the smallest G-submodule of IndGB(χ⊗ τ) such that σ ⊂ V K1 . Then Ω
does not vanish on V , so U(χ, τ) = V/V ∩ ker Ω by the uniqueness of U(χ, τ). It
follows that σχ appears in U(χ, τ)χ, proving (7.2a).

7.3. We can now determine the parameter of the Whittaker constituent. Recall
that pairs (Φ, ρ) correspond to triples (τ, u, ρ), as in (4.4.1).

(7.3.1) Proposition. Let (Φ, ρ) be the pair attached to U(χ, τ) by Theorem 1.
Then ρ is the trivial represenatation of GΦ, and Φ corresponds to (τ, u), where u
belongs to the dense Gχ̂,τ -orbit in qτ .

Proof. Let H = Gχ̂, and let H̃ be isogenous to H , with simply-connected derived
group. Let τ̃ be a lift of τ in H̃ . By [R2, §10], the character εq of H0(H̃) appears
in the simple H(H̃)-module Vτ̃ ,u,triv, where u belongs to the dense orbit q◦τ under
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the centralizer of τ̃ in H̃. This orbit is unique, so Rτ,u = Rτ (see 3.2). By (2.9.1),
the character εq of H0(H) appears in the simple H(H)-module [Vτ̃ ,u,triv]Rτ This
implies, by (7.2a), that

[Vτ̃ ,u,triv]Rτ ' U(χ, τ)χ.

The result follows now from 4.5.
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