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PRINCIPAL NILPOTENT ORBITS AND
REDUCIBLE PRINCIPAL SERIES

WENTANG KUO

Abstract. Let G be a split reductive p-adic group. In this paper, we establish
an explicit link between principal nilpotent orbits of G and the irreducible
constituents of principal series of G. A geometric characterization of certain
irreducible constituents is also provided.

1. Introduction

Let G be a split reductive p-adic group. That is, G = G(F ), where G is a split
reductive algebraic group defined over a p-adic local field F of characteristic zero.
Let g be its Lie algebra. Then G acts on g by the adjoint action which breaks
g up into G-orbits. The set of nilpotent elements, being G-stable, breaks up into
nilpotent orbits. Let N be the set of nilpotent orbits. Similarly, the set of all regular
nilpotent elements breaks up into G-orbits, and are called principal nilpotent orbits.

Let B be a Borel subgroup of G. B can be written as B = TN , where T
is a maximal split torus and N is a maximal nilpotent subgroup. Let λ be a
unitary character of T . We can extend λ to B by letting it act trivially on N ,
and then viewing λ as a character of B. We denote the induced representation
IndGBλ by πλ. A representation πλ arising in this way is called a unitary principal
series representation. Because the character λ is unitary, so is πλ. Since a unitary
representation is semisimple, we can decompose πλ into the sum of its irreducible
constituents: πλ =

⊕
ξ∈Σλ

mξξ, where Σλ is the set of all irreducible constituents
of πλ and mξ is the multiplicity of ξ in πλ.

Studying the irreducible constituents of unitary principal series representations
is a very interesting problem in representation theory for the following reason. The
Langlands correspondence predicts that the set of irreducible admissible represen-
tations of G breaks up into finite sets (called L-packets) indexed by the Langlands
parameters. The Langlands parameters are homomorphisms from the Weil-Deligne
group W ′F into the L-group LG of G. By the principle of functoriality (a conse-
quence of the Langlands correspondence), the irreducible constituents of a single
unitary principal representation πλ should be in a single L-packet. In other words,
the various irreducible constituents in Σλ are L-indistinguishable in the sense of
Langlands [3]. In general, understanding the structure of an L-packet is a very del-
icate question. Therefore, understanding irreducible constituents of unitary princi-
pal series representations offers some new insights into this general problem.
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The purpose of this paper is to find links between the set P of principal nilpotent
orbits and the set Σλ of irreducible constituents of πλ. At first glance, it seems
that there is no obvious relation between them. Yet there is indeed a link, not in
literature but known to experts, in the case of real groups. For a split reductive real
Lie group G, the group Runi, consisting of the central elements of G of order two,
acts on P simply transitively. Given a unitary principal series representation πλ,
Knapp [13], [14] and Knapp and Stein [15] constructed a subgroup Rλ of the Weyl
group W of G, called the R-group. For any w ∈ Rλ, we can define a normalized
intertwining operator ιλ(w) intertwining πλ with itself. The normalization is not
canonical but depends on the choice of an irreducible constituent of πλ. It is proved
that the map ιλ induces an algebra isomorphism from the group algebra C[Rλ] to
the commuting algebra C(πλ) of πλ. Furthermore, Rλ is isomorphic to a direct
product of copies of Z/2Z; in particular, it is abelian. Therefore, the set R∧λ of the
characters of irreducible representations of Rλ has an abelian group structure. By
the virtue of the isomorphism ιλ, R∧λ can be identified with Σλ, but not canonically.

Through representation theory, one can construct a surjective set map ρ from
P to Σλ. If we choose the basepoint of P and an irreducible constituent of πλ
simultaneously, we can identify P and Σλ with Runi and R∧λ respectively. By these
identifications, ρ induces a surjective set map ρ from Runi to R∧λ . Remarkably, ρ,
being only a map between a priori sets, is actually is a group homomorphism, and
is canonical; i.e., it is independent of the choices for basepoints. In other words, if
Qλ denotes the kernel of ρ, then two principal nilpotent orbits have the same image
under ρ if and only if they are in the same Qλ-orbit.

Furthermore, we have a geometric characterization of irreducible constituents
associated via ρ with the subsets of the principal nilpotent orbits for the real groups.
Barbasch and Vogan [1] showed that representations of G have the asymptotic
expansion of the distribution characters; especially the Fourier transform of the
first terms of the expansion is a linear combination of the G-invariant measures on
certain nilpotent orbits. Kostant [16] and Vogan [25] proved that a representation
admits a Whittaker model if and only if the nilpotent orbits which appear in the first
terms of the expansion are principal nilpotent orbits. In the case of principal series
representations, since they admit Whittaker models, the first terms are principal
nilpotent orbits. By theorems of Matumoto [17] and the multiplicity one theorem
in [16], all leading coefficients are 1. Given a principal nilpotent orbit O, the leading
terms of the character expansion of the irreducible constituent ρ(O) are exactly the
orbits Qλ · O in P .

The results above are proved as follows. Let G be the adjoint group of G
and p the projection map from G to G. The group G(R) has a unique principal
nilpotent orbit, and furthermore, its unitary principal series representations are
always irreducible. The group p(G(R)) is a subgroup of G(R), and it can be
viewed as a subgroup of G(C) via the inclusion from G(R) to G(C). Since the
projection map p can be defined from G(C) to G(C), we define the group G̃(R)
as the subgroup p−1

(
p(G(R))

)
of G(C), where we view p(G(R)) as a subgroup of

G(C). Then G̃(R) has also only one principal nilpotent orbit and we can extend the
principal series representation πλ of G(R) to the representation π̃λ of G̃(R), which
is also irreducible. πλ and π̃λ share the same representation space. From this, it is
easy to deduce that the R-group Rλ of πλ is G̃(R)/G(R). The group G̃(R)/G(R)
is isomorphic to G(R)/p(G(R)). One can show that the group G(R)/p(G(R)) can
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be identified with a subgroup of the dual group R∧ of Runi and is isomorphic to
Rλ. Then the injective map from Rλ to R∧, through G(R)/G(R), is the dual map
of ρ. The geometric statement can be proved by the theorems in [17].

It is Harish-Chandra’s belief that the results in the archimedean cases should
have nonarchimedean analogues. He called this phenomenon the Lefschetz Princi-
ple. Guided by this philosophy, it is natural to ask whether a similar link between
P and Σλ exists in the nonarchimedean case.

However, development on the nonarchimedean side has been rather slow. For
SL2, Gel’fand, Graev, and Pyatetskii-Shapiro (see [9]) have given a complete de-
scription of their irreducible constituents. The representation space of a unitary
principal series representation πλ can be realized on the space of functions on the
maximal nilpotent subgroup N , which is isomorphic to Ga. The dual Lie algebra
n∗ of N can be partitioned into two parts according to λ. After we take the Fourier
transform, the irreducible constituents can be characterized as functions supported
on one of two parts of n∗. Gelbart and Knapp [7] introduced a new technique to
treat SLn. They provide a description of irreducible constituents through a series
of Fourier transforms on certain vector spaces. In another paper [8], they also found
relations with the Langlands program.

The above works deal only with SLn and do not involve principal nilpotent or-
bits. In this paper, we will prove the analogous statement for split reductive p-adic
groups. More precisely, we will give an explicit relation between principal nilpotent
orbits and generic irreducible constituents of principal series representation, where
generic constituents are those which admit Whittaker models. The major difference
between the archimedean case and the nonarchimedean one is that R-groups are
not abelian in general. Hence, it is impossible for the map ρ to be surjective in gen-
eral. The adjustment needed for the nonarchimedean case is to replace irreducible
constituents with generic ones.

On the geometric side, let Γ be the Galois group Gal(F/F ), where F is the
algebraic closure of F . Let G = G(F ), the F points of G, and Z(G) be the center
of G. Then the first Galois cohomology group H1(Γ, Z(G)) acts simply transitively
on the set P of principal nilpotent orbits. On the representation side, a unitary
principal series representation is not irreducible in general, and its decomposition is
determined by its commuting algebra C(λ) = End(πλ) of intertwining operators. In
particular, there is a bijection ξ 7→ rξ between Σλ, the set of irreducible constituents
of πλ, and R∧λ , the set of irreducible characters of an explicit finite subgroup Rλ of
Weyl group W (T,G).

We introduce two more constructions into the picture:
– for each O ∈ P , we construct a generic irreducible constituent ρ(O) of πλ;
– we construct a canonical pairing 〈, 〉 : Rλ ×H1(Γ, Z(G))→ C∗.
The main result is:

Theorem. (i) The construction ρ : P → Σλ induces a bijection Qλ\P ∼−→ Σgen
λ ,

where Qλ is the right kernel of 〈, 〉, and Σgen
λ is the subset of generic repre-

sentations in Σλ.
(ii) The composite P ρ−→ Σλ

r−→ Hom(Rλ,C∗) is the same as the composite P '

H1(Γ, Z(G))
〈,−〉−1

λ−−−−→ Hom(Rλ,C∗).

The construction r : Σλ → Hom(Rλ,C∗) depends on the choice of a generic
representation, which determines an identification P ' H1(Γ, Z(G)).
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The construction O 7→ ρ(O) can also be characterized in terms of Harish-
Chandra’s local character expansion. The following theorem gives a geometric
description of generic irreducible constituents.

Theorem. The set of principal nilpotent orbits appearing in the local character
expansion of ρ(O) is precisely Qλ · O.

Our proof of the above results relies on four ingredients, namely, intertwining
operators, Whittaker functionals, R-groups and local character expansions. The
relations among these four can be described in the following way.

We start with a unitary character λ of T . For all w in W (T,G), we can define
a formal intertwining operator A(λ,w) from πλ to πwλ; A(λ,w) can be proved to
be well-defined in the sense of analytic continuation. Consider the subgroup Wλ of
W (T,G) consisting of all elements which fix λ. Then for all w in Wλ, A(λ,w) is an
endomorphism of πλ. However, the map from Wλ to the commuting algebra C(πλ)
by A(λ,w) is not a homomorphism.

Now given a generic character χ of N , one can prove that πλ has a unique
Whittaker functional δλ,χ associated with χ. Using the uniqueness of the Whittaker
functional, one can define the local coefficient C(λ, χ, w). Let a(λ, χ, w) be the
product of C(λ, χ, w) and A(λ,w). Then the new map ιλ,χ from Wλ to C(πλ) by
a(λ, χ, w) is a homomorphism. It can be proved that there is a subgroup Rλ of Wλ,
called the R-group, such that the homomorphism from C[Rλ] to C(πλ) induced by
ιλ,χ is an isomorphism. Therefore, ιλ,χ induces a bijection between Σλ and the set
of the irreducible representations of Rλ.

By a theorem of Harish-Chandra, any representation has a local character expan-
sion, which is a sum over all nilpotent orbits. In the case of πλ, the leading terms
are principal nilpotent orbits and the coefficients of leading terms are all equal to
1. Fix a principal nilpotent orbit O. We vary w in Rλ and look at the coefficient
cO(w) of O in the local character expansion of a(λ, χ, w)πλ. We can prove that the
map cO(w) is a character of Rλ; therefore cO(w) is an irreducible representation of
Rλ. Now we can define a map ρ from P to Σλ as follows: given an O in P , the
character cO(w) is an irreducible representation of Rλ, and through the bijection
described in the previous paragraph, we can associate it with the element ρ(O) of
Σλ.

To get an explicit description of ρ, the key is to get a criterion for when two
different principal nilpotent orbits map to the same character of Rλ. The answer
lies on the normalization of formal intertwining operators; i.e., the local coefficient
C(λ, χ, w). Given a principal nilpotent orbit O and an element Y in the intersection
of O and n, we can construct a generic character χY of N . Different choices of Y do
not change the associated Whittaker models; therefore, it makes sense that we use
the notation C(λ,O, w). The crucial point is that for any two principal nilpotent
orbits O and O′, ρ(O) is equal to ρ(O′) if and only if for all w in Rλ, C(λ,O, w) is
equal to C(λ,O′, w). It remains to compute the local coefficient C(λ,O′, w). We
write down concrete Whittaker vectors and use the factorization of local coefficients
to reduce to the SL2 case. After expressing local coefficients explicitly, we get our
theorem.

This paper is organized as follows. In §2, we define the intertwining operators
between unitary principal series representations and we move on to the multiplicity
one theorem, Whittaker functionals and local coefficients. Based on local coeffi-
cients, we define the normalized intertwining operators and state Keys’ reducibility
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theorem. In §3, we will summarize the results of Mœglin and Waldspurger in [18].
Their results are about the coefficients of local character expansion, which provide
the foundation of the geometric side of our theorems. In §4, we formulate theo-
rems linking principal nilpotent orbits and the irreducible constituents of unitary
principal series representations; mainly we use the Whittaker models and their re-
lation to the coefficients of local character expansion. In the final section, we prove
our theorems. The main technique is to compute the local coefficients for different
generic characters.

1.1. Preliminary Notations.

1.1.1. Let F be a nonarchimedean local field of characteristic 0; i.e., a finite ex-
tension of Qp for some prime number p. Furthermore, we require p 6= 2. Let F be
an algebraic closure of F and Γ the Galois group of F over F . Let D be the ring
of integers of F . Fix a uniformizing element $ of F . Let q be the cardinality of
D/$D, | · |F the normalized absolute value on F and vF the normalized valuation
on F ; i.e., |x|F = q−vF (x), for all x ∈ F . We write ψ for a chosen additive character
of F which is trivial on D and nontrivial on $−1D.

1.1.2. Let G be a connected split reductive group defined over F . Fix a Borel
subgroup B of G and write B = TN, where T and N represent a split maximal
torus and the unipotent radical of B respectively. Write N− as the unipotent
radical of the Borel subgroup opposite to B. Let ∆ be the set of roots and ∆∨ the
set of coroots. The Borel subgroup B determines the set ∆+ of positive roots. Let
Π (resp. Π−) be the set of simple roots contained in ∆+ (resp. ∆−). A standard
parabolic P of G is a parabolic subgroup P containing B. There is a one-to-one
correspondence between the set of standard parabolic subgroups P of G and the
set of subsets ΠP of Π. Write P = MPNP, where MP ⊃ T is a Levi factor, and
NP ⊂ N is the unipotent radical. Let AP be the split component in the center of
MP. Let W (AP) be the Weyl group of AP in G. Sometimes we use W (AP) or just
W for the Weyl group if there is no confusion. Define N−P in the same way as N−.
We will use G to denote G(F ). Similarly, for K, B, T , N , P , MP , NP , N−P , and
AP . By abuse of notation, we use G to denote G(F ) if there is no confusion. For
a subset θ of Π, we denote by Pθ the corresponding standard parabolic subgroup,
and by Mθ the Levi factor of Pθ. Similar notation holds for other subgroups.

1.1.3. For each root α, there is a homomorphism ζα from SL(2, F ) into a subgroup
of G. Define xα, yα, and hα as follows:

ζα

(
1 t
0 1

)
= xα(t), ζα

(
1 0
t 1

)
= yα(t), and ζα

(
s 0
0 s−1

)
= hα(s),

where t ∈ F and s ∈ F ∗. Assume that x−α = yα and hα is the coroot α∨ associated
with α. Let X(T ) be the set of the rational characters of T and X∗(T ) the set of
1-parameter subgroups. Then the set ∆∨ of coroots is a subset of X∗(T ). We write
Nα,n = {xα(t)|vF (t) ≥ n}.

Let W = N(T )/T be the Weyl group of G. For each root α, let sα be the
reflection of W associated to α. Then the action of sα on T is defined by t 7→
t(α∨ ◦ α(t))−1. Define s̃α to be

s̃α = xα(1)x−α(−1)xα(1) = ζα

(
0 1
−1 0

)
.
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It is a representative of sα in G. Throughout this paper, we fix the choices of ζα.
Then they determine the representatives s̃α of sα.

1.1.4. Let the German letter g denote the Lie algebra of the group G. Let κ be a
symmetric nondegenerate G-invariant bilinear form on g with values in F . G acts
on g by the adjoint representation. We know g can be decomposed as the direct
sum of one-dimensional eigenspaces nα of T with eigencharacters α ∈ ∆ and the
Lie algebra t of T . Also, there is a nondegenerate, invariant bilinear form κ on g.
For all α ∈ ∆+, let Xα be the element of nα such that xα(t) = exp(tXα). Similarly,
for all β ∈ ∆−, define Yβ ∈ nβ so that xβ(t) = exp(tYβ).

2. Intertwining Operators and Reducible

Principal Series Representations

In this section, we will describe the relations among intertwining operators, com-
muting algebras of principal series, and Whittaker functionals. These are the foun-
dations of our theorems. In §2.1, we define the intertwining operators and their
factorization and analytic continuations; mostly we follow Shahidi [22]. Next, in
§2.2, we state Rodier’s multiplicity one theorem of Whittaker functionals from Cas-
selman and Shalika [5]. Then we use the language of Whittaker functionals to define
the local coefficients and their factorization, which are also taken from Shahidi [22].
In §2.3, we state Keys’ structure theorem of the commuting algebras of principal
series representations.

2.1. Intertwining operators. In this subsection, we define a memormorphic fam-
ily of intertwining operators. These are first given by integrals, which only converge
on suitable domains. Harish-Chandra showed that they could be extended by an-
alytic continuation. Determining the pole of intertwining operators is a very hard
problem. It is equivalent to finding the zeros of Plancherel measure. To study its
properties, we have a factorization theorem of intertwining operators, which says
that the intertwining operators have a factorization into the rank one intertwining
operators. This theorem reduces the problem to the case of rank one. However,
this reduction also requires the knowledge of the the zeros of rank one operators,
in order to understand the cancellations between poles and zeros. So far the zeros
and poles for rank one operators are still unknown in general.

2.1.1. Let P be a standard parabolic subgroup of G. Let X(MP)F be the group
of F -rational characters of MP. We define

aP = Hom(X(MP)F ,R),

the real Lie algebra of AP. Then

a∗P = X(MP)F ⊗Z R = X(AP)F ⊗Z R, and (a∗P )C = a∗P ⊗R C.
Set

ρP =
1
2

∑
α∈∆+−∆+

P

α,

where ∆+
P is the subset of positive roots in the linear span of ΠP. In the case when

P is the Borel subgroup B, we will drop the subscript P for the corresponding
notation.
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Let HP be the homomorphism from MP to aP defined by

q〈η,HP (m)〉 = |η(m)|F ,
for all η ∈ X(MP)F and m ∈M .

2.1.2. Fix an irreducible unitary representation (σ, Vσ) of M . Let (Vσ)K be the
subspace of K-finite vectors. That is,

(Vσ)K = {v ∈ Vσ| dim(〈k · v〉k∈K0) <∞, some open compact subgroup K0 in G}.
For all ν ∈ (a∗P )C, let πν,σ be the unitarily induced representation

πν,σ = IndGMNσ ⊗ q〈ν,Hp( )〉 ⊗ 1.

More precisely, the representation space Vν,σ of πν,σ consists of all the smooth
functions f from G into (Vσ)K which satisfy

f(gnm) = σ(m−1)q〈−ν−ρP ,HP (m)〉f(g),

where m ∈ MP and n ∈ Np. The representation πν,σ acts by left inverse transla-
tions. For ν = 0, we write πσ for π0,σ and Vσ for V0,σ.

2.1.3. Fix a w ∈ W (A) (the Weyl group of G) such that w(ΠP) ⊂ Π. We choose
a reduced expression w = Πsαi and it determines a representative w̃ = Πs̃αi of w
in G. This representative does not depend on the choices of reduced expressions
(for Chevalley group, see Part b of Lemma 83 of [24]; for the connected reductive
p-adic group, see page 112 of [4]). Let (NP )w = NP ∩ w̃N−P w̃−1. Given a function
f ∈ Vν,σ, we define

A(ν, σ, w)f(g) =
∫

(NP )w

f(gnw̃)dn.

The integral converges absolutely if

<〈ν, α∨〉 � 0, ∀α ∈ Π−ΠP.(∗)
Moreover, it extends to a meromorphic function of ν on all of (a∗P )C (cf. [22]).

In addition, away from its poles, it defines an intertwining operator between πν,σ
and πwν,wσ , where wσ(m′) = σ(w−1m′w) with m′ ∈ M ′P = wMPw

−1. We write
A(σ,w) for A(0, σ, w).

Fix a proper subset θ of Π and α ∈ Π − θ. Let Ω = θ ∪ {α}. Define θ to be
wl,Ωwl,θθ ⊂ Ω, where wl,Ω and wl,θ denote the longest elements in the Weyl groups
of MΩ and Mθ respectively. We call θ the conjugate of θ in Ω. For two subsets θ,
θ′ of Π, let

W (θ, θ′) = {w ∈W |w(θ) = θ′}.
If W (θ, θ′) is nonempty, we say θ and θ′ are associated.

The following lemma is the basis for the factorization of intertwining operators
A(ν, σ, w).

2.1.4. Lemma (Shahidi [22], Lemma 2.1.2). Suppose θ and θ′ are associated. Let
w ∈ W (θ, θ′). There exists a family of subsets θ1, θ2, . . . , θn+1 ⊂ Π such that

(i) θ1 = θ and θn+1 = θ′;
(ii) fix 1 ≤ i ≤ n; then there is a root αi ∈ Π− θi such that θi+1 is the conjugate

of θi in Ωi = θi ∪ {αi};
(iii) set wi = wl,Ωiwl,θi ∈ W (θi, θi+1) for 1 ≤ i ≤ n, then w = wnwn−1 · · ·w1.
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2.1.5. Now we are ready to state a factorization theorem of intertwining operators
A(ν, σ, w).

Theorem (Shahidi [22], Theorem 2.1.1). Fix θ, θ′ ∈ Π and choose w ∈ W (θ, θ′).
Let θ1, θ2, . . . , θn+1 ⊂ Π, and wi ∈ W (θi, θi+1) be as in Lemma 2.1.4. Take
ν ∈ (a∗P )C which satisfies (∗). Then each νi also satisfies (∗) with respect to APθi
and

A(ν, σ, w) = A(νn, σn, wn) · · ·A(ν1, σ1, w1),(∗∗)

where νi = wi−1(νi−1), σi = wi−1(σi−1), 2 ≤ i ≤ n, ν1 = ν, and σ1 = σ. More-
over, (∗∗) holds for all ν ∈ (a∗P )C away from their poles in the sense of analytic
continuation.

Remark. In particular, if θ and θ′ are empty sets, w can be expressed as a product
of simple reflections and A(ν, σ, w) is the composition of rank one intertwining
operators.

2.2. Whittaker functionals and local coefficients I: definitions. In this sub-
section, we state the multiplicity one result for principal series representations.
Then we can define Whittaker functionals and local coefficients. We will also state
some basic properties of local coefficients. The multiplicity one result is due to
Rodier for the p-adic cases. Using the multiplicity one result and Whittaker func-
tionals, Shahidi defined local coefficients, which are closely related to intertwining
operators. Similarly, there is a factorization theorem for local coefficients. It re-
duces the computation of local coefficients to the case of rank one.

2.2.1. Let χ be a smooth complex character of N , and Cχ the corresponding
one-dimensional N -module.

Let (π, V ) be any smooth representation of N . We define V(χ) to be the Jacquet
space of the twisted representation π ⊗ χ−1; i.e., if Vχ(N) is the subspace of V
spanned by {π(n)v − χ(n)v|n ∈ N, v ∈ V }, then V(χ) = V/Vχ(N).

Proposition (Casselman and Shalika [5], Propositions 1.1 and 1.2). If V ′ is a
space on which N acts by χ, then the functor V 7→ V(χ) induces an isomorphism

HomN (V, V ′) ∼= HomC(V(χ), V
′).

Moreover, the functor V 7→ V(χ) is exact.

2.2.2. Since N/[N,N ] is generated by Nα, α ∈ Π, the character χ of N is deter-
mined uniquely by its restriction χα on each Nα. We fix a parameterization xα of
Nα (cf. §1.1.3), and identify Nα with Ga(F ) ∼= F . In this setting, χα is an additive
character of F . We say χ is generic if no χα is trivial. For the rest of this section,
we assume χ is generic.

We define IndGNCχ to be the space of all f : G→ C such that
(1) f(gn) = χ−1(n)f(g);
(2) there exists an open subgroup K ⊂ G such that f(kg) = f(g) for all g ∈

G, k ∈ K.
G acts on it by the left inverse translations. If (π, V ) is an admissible representation
of G, we call a G-embedding of V into IndGNCχ a Whittaker model for V . There
is a close relationship between the space V(χ) and Whittaker models. Combining
Frobenius reciprocity and Proposition 2.2.1, we have the following proposition.
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Proposition (Casselman and Shalika [5], Proposition 1.3). Let χ be a generic
character of N , and V a smooth representation of G. Then there is a natural
isomorphism:

HomG(V, IndGNCχ) ∼= HomC(V(χ),C).

We say a smooth admissible representation (π, V ) admits a Whittaker model or
is generic if there is a generic character χ of N such that HomG(V, IndGNCχ) is
nontrivial; in this case we call (π, V ) χ-generic if we wish to specify the generic
character χ. From Proposition 2.2.2, we know the multiplicity of (π, V ) occurring
in IndGNCχ is the dimension of V(χ). If dimV(χ) ≤ 1, we say (π, V ) satisfies the
multiplicity one.

Given a smooth admissible representation (π, V ) which is χ-generic, we call a
linear functional δ on V a Whittaker functional if for all n ∈ N, v ∈ V ,

δ(π(n)v) = χ(n)δ(v).

By definition, we can view a Whittaker functional as an element of HomC(V(χ),C).

2.2.3. Fix a subset θ of Π. Let (σ, V ) be an admissible representation of MP , and
(πσ, Vσ) the induced representation of G. Because of the Bruhat decomposition,
we have

G =
⊔

w∈W (Aθ)′

PwPθ,

where W (Aθ)′ = {w ∈ W |w−1(θ) ⊂ ∆+}. Therefore Vσ is filtered by P -stable
subspaces

Vn = {f ∈ Vσ|Supp(f) ⊂
⊔

w∈W (Aθ)′n

PwPθ},

where W (Aθ)′n = {w ∈ W (Aθ)′| dim(PwPθ/Pθ) ≥ n}. Let wl,θ and wl be the
longest elements of W (Aθ) and W respectively. It follows that wθ = wl,θwl is the
longest element of W (Aθ)′ and PwθPθ/Pθ is the unique open double coset in G/Pθ.
Let dθ be its dimension. Then we have a natural injection i : Vdθ ↪→ Vσ.

Theorem (Rodier, cf. [5], Theorem 1.4). If χ is a generic character of N , then
the inclusion i : Vdθ ↪→ Vσ induces an isomorphism of (Vdθ )(χ) with (Vσ)(χ).

If θ is the empty set, then Pθ = B, Mθ = T , and Nθ = N . Let σ be a one-
dimensional representation of T ; i.e., a quasi-character of T . We have the following
multiplicity one theorem and the construction of the Whittaker functional.

Proposition. (Casselman and Shalika [5], Corollary 1.8, and Shahidi [22], Propo-
sition 3.1) Assume Pθ is the Borel subgroup B of G, σ one-dimensional, χ a generic
character of N , and w̃l ∈ NG(T ) representing the longest element of W (cf. §2.1.3).
For all f ∈ Vdθ ⊂ Vσ, the space of the induced representation πσ, the functional

δσ,χ(f) =
∫
N

f(nw̃l)χ−1(n)dn,([)

extends uniquely to a basis element of the one-dimensional space HomN (Vσ,Cχ). As
a consequence, dim

(
(Vσ)(χ)

)
is equal to 1. Furthermore, let λ be a character of T ,

and (πν,λ, Vν,λ) the induced representation defined in §2.1.2. Then the functional
δν,λ,χ is an entire function of ν and, furthermore, for every ν and λ, δν,λ,χ is
nontrivial and is a basis element of HomN (Vν,λ,Cχ).
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2.2.4. From now on, we only consider the case P = B and λ a character of T .
By Proposition 2.2.3, for any generic character χ of N , the induced representation
(πν,σ, Vν,σ) has the multiplicity one theorem and a canonical choice of the Whittaker
functional δν,λ,χ. Recall that we define an intertwining operator A(ν, λ, w) in §2.1.3.
We have the following theorem for the change of Whittaker functionals for the
intertwined representations.

Theorem (Shahidi [22], Theorem 3.1). For all w ∈W , there is a complex number
C(ν, λ, χ, w) such that

δν,λ,χ = C(ν, λ, χ, w)δwν,wλ,χA(ν, λ, w),([[)

Furthermore, as a function of ν, it is meromorphic on a∗C.

We call the number C(ν, λ, χ, w), the local coefficient attached to ν, λ, χ, and
w. We write C(λ, χ, w) for C(0, λ, χ, w).

2.2.5. By definition of the local coefficients and the factorization of intertwining
operators (cf. Theorem 2.1.5), we obtain the factorization of local coefficients.

Proposition. Let w ∈ W , which is of length n. Denote wi to be simple reflections
as in Lemma 2.1.4. Then

C(ν, λ, χ, w) =
i=n∏
i=1

C(νi, λi, χ, wi),([[[)

where νi = wi−1(νi−1), λi = wi−1(λi−1), 2 ≤ i ≤ n, ν1 = ν, and λ1 = λ.

2.3. Normalized intertwining operators and the reducibility of princi-
pal series representations. In this subsection, we will define the normalized
intertwining operators and state the theorem of the reducibility of principal series
representations on split reductive groups. The main tool here is the normalized in-
tertwining operators. In [10] and [11], Keys proved that the normalized intertwining
operators satisfy cocycle conditions and then form a group. Furthermore, he deter-
mined the structure of commuting algebras of principal series representations. The
result is similar to Knapp and Stein in the archimedean cases.

2.3.1. Let λ be a unitary character of the maximal split torus T . Let (πν,λ, Vν,λ)
be the induced representations defined in §2.1.2. We write (πλ, Vλ) for (π0,λ, V0,λ).
The representation (πλ, Vλ) is called the unitary principal series representation.

Let (π, V ) be a representation of G. Define the commuting algebra to be the sub-
algebra {A : V → V |Aπ(g) = π(g)A, ∀g ∈ G} of EndC(V ). The algebra structure
of C(π) is defined naturally, and is defined over C.

2.3.2. In §2.1.3, for ν ∈ a∗C and w ∈ W , we define intertwining operators A(ν, λ, w)
from Vν,λ to Vwν,wλ, which intertwine (πν,λ, Vν,λ) and (πwν,wλ, Vwν,wλ). Recall that
A(ν, λ, w) is well-defined only when ν satisfies (∗) in §2.1.3, and we can extend it
to the whole a∗C by analytic continuation. In §2.2.4, we define the local coefficients
C(ν, λ, χ, w), where χ is a generic character. Define the normalized intertwining
operator a(ν, λ, χ, w) by

a(ν, λ, χ, w) = C(ν, λ, χ, w)A(ν, λ, w).

As usual, we write a(λ, χ, w) for a(0, λ, χ, w).
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2.3.3. The reason for the normalization of A(ν, λ, w) is that we need the following
property for our intertwining operators.

Proposition. (Chapter 1 and the proof of Theorem 2 of [10], and Proposition
3.1.4 of [22]) The normalized intertwining operator a(ν, λ, χ, w) satisfies the cocycle
condition; i.e, for any w′, w′′ ∈W , the equation

a(ν, λ, χ, w′w′′) = a(w′′ν, w′′λ, χ, w′)a(ν, λ, χ, w′′)

holds away from the poles. Notice that there is no condition imposed on the length
of w′, w′′. If λ is unitary and <ν = 0, a(ν, λ, χ, w) is holomorphic; therefore, the
cocycle condition always holds for λ unitary and <ν = 0,.

2.3.4. Given a character λ of T , define Wλ = {w ∈ W |wλ = λ}. Then by
Proposition 2.3.3 the map from Wλ to C(πλ), denoted by ιλ,χ, defined by w 7→
a(λ, χ, w) is a representation of Wλ.

Let λα = λ ◦ α∨, where α ∈ Π. Define ∆−λ = {α ∈ ∆−|λα ≡ 1} and W ′λ =
〈sβ〉β∈∆−λ

. Indeed, it is easy to show that W ′λ ⊂ Wλ. We only need to prove that
for all β ∈ ∆−λ , sβλ = λ. By definition, sβ(t) = t(β∨ ◦ β(t))−1. Since λβ ≡ 1,

sβλ(t) = λ(sβ(t)) = λ(t(β∨ ◦ β(t))−1) = λ(t)λ(β∨ ◦ β(t))−1 = λ(t).

Define a subgroup Rλ of Wλ, called the R-group of πλ,

Rλ = {w ∈ Wλ|α > 0 and λα ≡ 1⇒ wα ∈ ∆−}
= {w ∈ Wλ|w(∆+

λ ) = ∆+
λ }.

2.3.5. The reducibility of a representation (π, V ) is determined by its commuting
algebra C(π). In general, it is not easy to compute commuting algebras. However,
in the case of principal series representations of split reductive groups, it can be
computed explicitly. The following theorem is due to Keys.

Theorem (Keys [10], Chapter 1, Section 3, Theorem 1, and [11]). Keep the nota-
tions above. We can write Wλ as a semi-direct product

Wλ = W ′λ oRλ.
Furthermore, given a generic character χ of N , W ′λ is the group consisting of all
w in Wλ such that a(λ, χ, w) are scalars. The operators in {a(λ, χ, w)|w ∈ Rλ}
are linearly independent and they form a basis of C(πλ). It implies that the map
from the group algebra C[Rλ] to the commuting algebra C(πλ) induced by ιλ,χ is an
algebra isomorphism.

3. The Degenerate Whittaker Models for p-adic Groups

In this section, we state some results of Mœglin and Waldspurger [18] related
to our program. We also provide the sketch of the proof since part of it will be
used later. The foundation of this section is built on Harish-Chandra’s result for
the local expansions of characters. He proved the existence of the local expansions
of characters for the admissible distributions. In [18], Mœglin and Waldspurger
provided the interpretation of certain coefficients in terms of degenerate Whittaker
models. Their theorem gives us the link between Whittaker Models and the coeffi-
cients in the local expansions. We will use it in the later sections to construct the
geometric side of our theorem. Since their theorem requires that the characteristic
of the residue field of F is not equal to 2, we need this assumption for the rest of
this paper.



138 WENTANG KUO

3.1. Harish-Chandra’s theorem for the local expansions of characters. In
this subsection, we will state Harish-Chandra’s theorem for the local expansions of
characters, following Harish-Chandra’s lecture in [6]. He proved that any admissible
distribution has a local character expansion supported on the nilpotent cone.

3.1.1. Let N be the set of all nilpotent G-orbits of g. Recall from §1.1.1 that the
character ψ of F is trivial on the ring of integers D and is nontrivial on $−1D.
Fix a symmetric nondegenerate, G-invariant bilinear form κ on g with values in F .
Define the Fourier transform ˆ by

f̂(Y ) =
∫

g

ψ(κ(Y,X))f(X)dX,

where f ∈ C∞c (g), dX is a Haar measure on the additive group of g, and Y ∈ g.

Then f 7→ f̂ is a linear bijection of C∞c (g) onto itself. Furthermore, ˆ̂
f(Y ) = f(−Y )

if we normalize the Haar measure dX properly.
For any distribution T on g, we define the Fourier transform T̂ of the distribution

T by

T̂ (f) = T (f̂).

3.1.2. Fix a G-invariant distribution Θ on an open G-invariant subset U of G.
Let K0 be an open compact subgroup of G, and γ an element in U . We say Θ is
(G,K0)-admissible at γ if:

1. γK0 ⊂ U .
2. For any open subgroup K of K0 and d ∈ K∧, on γK0,

Θ ∗ χd = 0, unless G intertwines 1K0 with d.

Here K∧ is the set of all irreducible representations of K, χd is the character
of d, ∗ means the convolution, and 1K0 is the class of trivial representation of
K0.

We say that Θ is G-admissible at γ if it is (G,K0)-admissible at γ for some open
compact subgroup K0 of G. An admissible distribution on G means a distribution
which is G-admissible at every point.

Consider the following example of admissible distributions on G. Let (π, V ) be
an admissible irreducible representation of G. For f ∈ C∞c (G), define

π(f) =
∫
G

f(g)π(g)dg,

where dg is the Haar measure on G. Then π(f) is an operator of finite rank. Define
the character Θπ of π by

Θπ(f) = tr π(f), f ∈ C∞c (G),

where tr is the trace of the operator π(f) on V . Then Θπ is a G-invariant distri-
bution on G. By admissibility, we can choose an open compact subgroup K of G
which is sufficiently small such that the K-invariant subspace of V is nontrivial.
Then it is easy to check that Θπ is (G,K)-admissible at every point.

Theorem (Harish-Chandra [6], Theorems 19 and 20). Let Θ be a G-invariant dis-
tribution on an open G-invariant subset U of G. Let γ be a semisimple element in
U . Then if Θ is G-admissible at γ, it coincides with a locally summable function
around γ. Let M and m be the centralizers of γ in G and g respectively. Then for
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each O ∈ NM , the set of all nilpotent M -orbits in m, we can choose unique complex
numbers cO(Θ) such that

Θ(γ expY ) =
∑
O∈NM

cO(Θ)µ̂O(Y ), for Y sufficiently near zero in m,

where µO is the M -invariant measure on m corresponding to O and µ̂O is the
Fourier transform of µO on m.

3.1.3. We apply this theorem in the case when γ is the identity element of G and Θ
is the character Θπ of a smooth irreducible representation (π, V ) of G. In this case,
M = G, m = g, and NM = N . For any Y ∈ O,O ∈ N , we define an alternating
form κY with values in F :

(Z,X) ∈ g× g 7→ κY (Z,X) : = κ(Y, [X,Z]),

where κ is the symmetric nondegenerate G-invariant bilinear form on g which we
chose before. Therefore, we can restate Harish-Chandra’s theorem as follows:

Let (π, V ) be a smooth irreducible representation of G. There is a neighborhood
V of the identity element, isomorphic via the logarithm map to a neighborhood of
0 of g, such that we have the equality

∀f ∈ C∞c (V), Θπ(f) =
∑
O∈N

cO

∫
O
f̂ ◦ exp(X)dµOX,(?)

whereN is the set of all nilpotent orbits, cO are constants, ˆ is the Fourier transform
of the invariant measure dµO . The Haar measures can be normalized suitably in the
following way. Using the bilinear forms of ψ and κ, we can define a self-dual measure
on F and g, respectively. The unique self-dual measure κY on the tangent space of
O at Y induces a G-invariant measure on O. We also fix a Haar measure on G so
that the Jacobian of the exponential map is the identity map of the neighborhood
of 0.

3.2. The theorem of Mœglin and Waldspurger. In this subsection, we will
state Mœglin and Waldspurger’s theorem about the leading coefficients of the local
expansions of characters in Harish-Chandra’s theorem. They introduced a notation
called the degenerate Whittaker model and proved that the leading coefficients are
equal to the dimension of degenerate Whittaker models. Thus, in particular, they
are all integers.

3.2.1. The main result of [18] tells us how to compute the coefficients cO for certain
nilpotent orbits. We need some notation to formulate it. Let us fix a nilpotent orbit
O and choose an element Y of O. We also choose a one-dimensional split torus
ϕ : F ∗ → G satisfying

∀s ∈ F ∗, ϕ(s)Y ϕ(s)−1 = s−2Y.(??)

The existence of such a ϕ is ensured by the theory of the SL2-triplets ([3], §11).
We can break up g by the adjoint action of ϕ, i.e.,

g =
∑
i∈Z

gi, where gi = {X ∈ g|∀s ∈ F ∗, ϕ(s)Xϕ(s)−1 = siX}.
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Set gi =
∑
j≥i gj. Let Y ] be the centralizer of Y in g. We can choose a complement

gY of Y ] in g stabilized by ϕ(F ∗). We decompose gY :

gY =
∑
i∈Z

gY i, where gY i : = gY ∩ gi.

Set giY = gY ∩ gi.
Let U (resp. U ′) be the unipotent subgroup of G whose Lie algebra is g1 (resp.

g2) and U ′′ the subgroup of U generated by U ′ and the stabilizer in U of Y . One
can prove that the function

χ
Y

: γ 7→ ψ(κ(Y, log γ))

is a character of U ′′ (cf. [18]).
Define

VU ′′,Y = V/{(π(u)− χ
Y

(u))v}u∈U ′′,v∈V .
We say that V admits a degenerate Whittaker model relative to (Y, ϕ) if VU ′′,Y 6= 0.
If U ′′ 6= U , U/U ′′ ∩ Kerχ

Y
is a Heisenberg group with center U ′′/U ′′ ∩ Kerχ

Y
.

Denote by J the irreducible representation of this group with central character χ
Y

.
We set

Vϕ,Y =

{
VU ′′,Y if U = U ′′,

HomU (J , VU ′′,Y ) if U 6= U ′′.

We call Vϕ,Y the space of the degenerate Whittaker forms on V relative to (Y, ϕ).
In general, this space depends on the choice of ϕ (for example if Y = 0, we can take
ϕ so that either U ′′ = 1 or U ′′ is a maximal unipotent subgroup of G; in the first
case Vϕ,Y = V and in the second case Vϕ,Y is the usual Jacquet module relative to
U ′′).

There is an alternative way to describe Vϕ,Y . We choose a basis {Zi} of gY 1 and
set m1 =

∑
DZi. Define LY 1 = exp m1. Then

Vϕ,Y = (VU ′′,Y )LY 1 ,

where the exponent indicates that we take the space of invariants of LY 1.

3.2.2. We denote Ntr(π) to be the set of nilpotent orbits for which cO 6= 0 (cf. (?)).
Also, NWh(π) represents the set of nilpotent orbits containing an element Y for
which there is a 1-parameter subgroup ϕ satisfying (??) and for which Vϕ,Y 6= 0.
We define a partial ordering on N by O ≤ O′ ⇔ O ⊂ O′, where − is the closure
operator for the usual topology. We denote MaxNtr(π) (resp. MaxNWh(π)) to be
the set of maximal elements of Ntr(π) (resp. NWh(π)). Now we can state the main
theorem in [18].

Theorem (Mœglin and Waldspurger [18], Theorem I.16 and Corollary I.17). We
keep all notation in this section. Let (π, V ) be a smooth irreducible representa-
tion of G. Then the set of maximal elements of Ntr(π) coincides with the set of
maximal elements of NWh(π); i.e., MaxNtr(π) = MaxNWh(π). Furthermore, let
O be a maximal element of Ntr(π). Then the coefficient cO is equal to the dimen-
sion dim Vϕ,Y of the space of degenerate Whittaker forms related to an arbitrary Y
of O and an arbitrary 1-parameter subgroup ϕ, satisfying (??). In particular, cO is
an integer.
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Sketch of the proof. The main idea of the proof is that in certain cases, the space
of co-invariants VU ′′,Y can be expressed as the limit of an inductive system of semi-
invariants for a family of compact subgroups of G, which is relative to certain
characters of these groups.

3.2.3. We adopt all notation in this subsection. Given a nilpotent orbit O, choose
an element Y in O. We can find a free D-submodule L of g which satisfies g =
L⊗D F , [L,L] ⊂ L, and Y ∈ L. Set

g
−
Y :=

∑
i≤0

gY i and g2
Y = gY ∩ g2.

We can choose a base Y1, ..., Ys of g
−
Y , X1, ..., Xs of g2

Y , and Z1, ..., Z2r of gY 1 such
that κY (Yi, Xj) = δij and κY (Zi, Zj) = δi,2r−j+1, where δij = 1 if i = j and 0
otherwise. Set

g′Y :=
∑

1≤i≤s
(DYi + DXi) +

∑
1≤i≤r

(DZi + DZ2r−i+1),

and

L′ := g′Y +
∑
i

L ∩ Y ] ∩ gi.

Let t := ϕ($). Define

Gn := exp$nL′, G′n : = t−nGnt
n.

3.2.4. Let χ
Y ,n be a map from Gn to C∗ defined by γ ∈ Gn 7→ ψ◦κ($−2nY, log γ).

Indeed, χ
Y ,n is a character of Gn for n large enough (cf. [18], Lemma I.6). For such

n, set χ′
Y ,n to be the character of G′n which maps γ 7→ χY ,n(tnγt−n).

3.2.5. Define

Vn := {v ∈ V |∀γ ∈ Gn, π(γ)v = χY ,n(γ)v},

V ′n := {v ∈ V |∀γ ∈ G′n, π(γ)v = χ′
Y ,n(γ)v},

and the maps

In,m : Vn → Vm, v 7→
∫
Gm

χ
Y ,m(γ−1)π(γtm−n)vdγ,

I ′n,m : V ′n → V ′m, v 7→
∫
G′m

χ′
Y ,m(γ−1)π(γ)vdγ,

In : V → Vn, v 7→
∫
Gn

χ
Y ,n(γ−1)π(γ)vdγ.

3.2.6. Let U ′′ = exp g1
Y exp g2 as above. We define a function χ

Y
on U ′′ by

χ
Y

: γ ∈ U ′′ 7→ ψ ◦ κ(Y, log γ).

In fact, χY is a character of U ′′ (cf. [18], I.7).
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3.2.7. Let (π, V ) be a smooth irreducible representation of G. We denote U ′′χ
Y
V to

be the U ′′-submodule of V generated by 〈(π(u)− χ
Y

(u))v〉v∈V,u∈U ′′ . Let VU ′′,Y =
V/U ′′χ

Y
V and Vϕ,Y = (VU ′′,Y )LY 1 as we defined above. Then there is a natural map

j

j : V ′n/V
′
n,χ

Y
→ (VU ′′,Y )LY 1 = Vϕ,Y ,(? ? ?)

where V ′n,χ
Y

=
⋃
m>n KerI ′n,m (cf. [18], I.9). Furthermore, if Vϕ,Y 6= 0, then Vn

and V ′n are nontrivial for n large enough (cf. [18], Lemma I.10).
Let ϕn(γ) = χY ,n(γ−1) if γ ∈ Gm and equal to 0 otherwise. The key of the entire

proof is that we use ϕn as testing functions in (?), and, in fact that we can really
compute their Fourier transforms explicitly. Therefore we can get the information
about coefficients cO.

Remark. Later on we will need the above result. For the case that interests us,
U ′′ = N , χ

Y
is generic, and Vϕ,Y = Vχ

Y
. When n is large enough, j induces

an isomorphism from V ′n to Vχ
Y

. In particular, if V admits a Whittaker model
(cf. §2.2.2), i.e., Vχ

Y
6= {0}, then for all nontrivial Whittaker functional δ on V , δ

is nonzero on V ′n.

3.2.8. The next proposition gives us the geometric property of the degenerate
Whittaker forms.

Proposition ([18], Proposition I.11). If Vϕ,Y 6= 0, then there exists a nilpotent
orbit O of g appearing in the expression of Θπ on a neighborhood of the identity
element with a nonzero coefficient such that Y ∈ O.

3.2.9. The next lemma tells us the explicit information about the coefficients cO
for which O are maximal around all nilpotent orbits O′ with nonzero coefficients
c′O.

Lemma ([18], Lemma I.12). We denote O = G ·Y and suppose that cO is nonzero
in (?) and the Y does not belong to the closure of another orbit O′ for which c′O 6= 0,
i.e., O is a maximal element of Ntr(π). Then for all large n, dim Vn is finite and
independent of n. Also it is equal to cO.

3.2.10. It can be proved that for n,m large enough, the map j in (???) is injective
and its image is exactly Vϕ,Y (cf. [18], Corollary I.14). Also, for n large enough,
the map I ′n,m is injective (cf. [18], Lemma I.15). Combining these results, we get

cO = dimVn = dim(=j) = dimVϕ,Y ,

where O ∈ MaxNtr(π).

3.2.11. To prove MaxNWh(π) = MaxNtr(π), we first pick a maximal element O of
Ntr(π). Fix Y in O and we choose an arbitrary one-parameter subgroup satisfying
(??) relative to Y . To show that V admits a degenerate Whittaker model relative
to Y and this one-parameter subgroup, it is enough to show that V ′n,χ

Y
is trivial

for n large. This is true since I ′n,m is injective for large n,m.
Now let O be a maximal element of NWh(π); according to Proposition 3.2.8,

there exists an orbit O′ of Ntr(π) so that O′ ⊃ O. By the definition of the order
relation over the set of nilpotent orbits of g, we know that there exists a maximal
element O′′ of Ntr(π), possibly equal to O′, so that O′′ ⊃ O. The first part of the
proof shows that we have O′′ ∈ NWh(π), so O′′ = O. This finishes the proof.
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4. Principal Series Representations and Principal Nilpotent Orbits

In this section, we discuss some possible ways to link principal series represen-
tations and principal nilpotent orbits and formulate the relations between them.
Those relations will be proved in the next section. The main tools that we use are
the multiplicity one theorem of Whittaker models and the theorem of Mœglin and
Waldspurger. Furthermore, using Whittaker models, we can describe the nature of
our maps. At the same time, we can get the geometric picture of our maps by the
theorem of Mœglin and Waldspurger. More precisely, our maps can determine the
lead coefficients of the local expansions of characters.

4.1. The construction of the maps ρ, ρ, and %. In this subsection, we will
construct maps linking irreducible constituents of principal series and principal
nilpotent orbits from representation theory. At first, we give a parametrization
of principal nilpotent orbits. Then we use the multiplicity one theorem and the
theorem of Mœglin and Waldspurger to construct the maps from principal nilpotent
orbits to the generic irreducible constituents of principal series representations.

4.1.1. Define a subset of regular nilpotent elements

P = {
∑
α∈Π−

Zα|Zα ∈ n−α\{0}},

The set P has a useful structure. Define an abelian group

T̃ = {(tα)α∈Π− |tα ∈ F ∗} =
∏
α∈Π−

F ∗α.

Then T̃ acts on P simply transitively by

t̃(
∑
α∈Π−

Zα) =
∑
α∈Π−

tαZα, t̃ ∈ T̃ .

The action of a maximal split torus T on P is defined by adjoint and it can be
expressed as follows

Ad(t)(
∑
α∈Π−

Zα) =
∑
α∈Π−

Ad(t)Zα =
∑
α∈Π−

α(t)Zα.

There are two important facts.
(1) For all O ∈ P , O ∩ P is nonempty.
(2) Two elements in P are conjugated to each other by G if and only if they are

conjugated by T .
Therefore, instead of working on P , we can just work on P. The following is a well-
known result for the parametrization of principal nilpotent orbits for split groups.

Proposition. The abelian group H1(Γ, Z(G)) acts on the principal nilpotent orbits
simply transitively.

Proof. Let φ be the map from T to T̃ defined by t →
∏
α∈Π− α(t). From the

discussion above, we know T̃ /φ(T ) acts on P simply transitively. The short exact
sequence

1→ Z(G)→ T →
∏
α∈Π−

F
∗
α → 1
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gives rise to a long exact sequence

1→ Z(G)Γ → T → T̃ → H1(Γ, Z(G))→ H1(Γ, T )→ · · ·

H1(Γ, T ) is trivial by Hilbert’s Theorem 90. Therefore, H1(Γ, Z(G)) is isomorphic
to T̃ /φ(T ) as desired.

4.1.2. There is a fact about the generic character of N and P.

Lemma. Given Y ∈ P, define a map χ
Y

from N to C by

χY : n 7→ ψ(κ(Y, log γ)).

Then χ
Y

is a generic character and all generic characters can be constructed this
way.

Proof. In §3.2.6, we define the character χY on U ′′ in the same way. The difference
between U ′′ and N is the weight 1 space. However, there is no weight 1 space for a
regular nilpotent element. Therefore, U ′′ is equal to N and χ

Y
is a character and

defined on N .
Now given a generic character χ, we know χ is uniquely determined by χα, for all

α ∈ Π (cf. §2.2.2). χα is an additive character of F . There is an element bα ∈ F ∗
such that χα(f) = ψ(bαf) for all f ∈ F . We can choose Z−α ∈ n−α such that
κ(Z−α, Xα) = bα. Let Y be

∑
β∈Π Z−β. For all α ∈ Π, we have

(χ
Y

)α(f) = χ
Y
◦ xα(f) = ψ(κ(

∑
β∈Π

Z−β, fXα))

= ψ(f · κ(Z−α, Xα)) = ψ(f · bα) = χα(f).

Therefore, χ
Y

= χ.

4.1.3. Let χ be a generic character of N and (π, V ) be an admissible representation
of G. Recall that we define a functor ∗(χ) from the representations of G to vector
spaces as follows:

V(χ) = V/〈(π(n) − χ(n))v|n∈N,v∈V 〉,

and this functor ∗(χ) is exact (cf. Proposition 2.2.1).

Proposition. Given a generic character χ of N , and a character λ of T , there is
a unique irreducible constituent Vλ,χ of the principal series representation (πλ, Vλ)
such that dim(Vλ,χ)(χ) is equal to 1. Furthermore, the multiplicity of Vλ,χ in Vλ is
1.

Proof. From Proposition 2.2.3, we know that

dim(HomG(Vλ, IndGNχ)) = dim(Vλ)χ = 1.

Let Vλ =
⊕

ξ∈Σλ
mξVξ. Since the functor ∗(χ) is exact, we have

1 = dim(Vλ)χ =
∑
ξ∈Σλ

mξ dim(Vξ)χ.

The right-hand side is a sum of nonnegative integers. Hence, only one will be
nonzero and equal to one. We conclude that both dimension and multiplicity are
one. The proposition is proved.
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4.1.4. From Proposition 4.1.3, we can derive more information about the coeffi-
cients cO,O ∈ P , in equation (?) in §3.1.3.

Corollary. Let λ be a character of T and (πλ, Vλ) the principal series represen-
tation. According to Theorem 3.1.2, there is an equality which is valid for any
sufficiently small neighborhood V of the identity element:

∀f ∈ C∞c (V), Θπλ(f) =
∑
O∈N

cO

∫
O
f̂ ◦ exp(X)dµOX,

where Θπλ is the character of πλ, N is the set of all nilpotent orbits, cO are con-
stants. Let P ⊂ N be the set of principal nilpotent orbits. Then for any O ∈ P, cO
are equal to 1.

Proof. From Theorem 3.2.2, we know that

cO = dim(V/〈(πλ(u)− χY (u))v|u∈U ′′, v∈V 〉)LY 1 .

Here O is a maximal nilpotent orbit with nonzero cO; i.e., O belongs to the set
MaxNtr(πλ) of the maximal elements of Ntr(πλ), where Ntr(πλ) is the set of nilpo-
tent orbits O with nonzero cO in (?) (cf. §3.1.3).

Fix a Y in O ∩ P. Let U be the subgroup of N whose weights are greater than
1, with respect to an sl2−triple containing Y . Let U ′ be the centralizer of Y in
N . U ′′ is the subgroup of N generated by U and U ′. Let χ

Y
be a character of

U ′′ defined by γ 7→ ψ(κ(Y, log γ)). Choose the complement gY of the centralizer
of Y in g. Choose a basis {Zi} of the weight 1 subspace of gY . Then LY 1 is the
subgroup exp m1, where m1 =

∑
iDZi.

Let O be a principal nilpotent orbit and Y ∈ O ∩ P be a regular nilpotent
element. There is no weight 1 space in the sl2 decomposition. Therefore, LY 1 is
trivial and U is equal to N . Hence U ′′ is just N . Furthermore, χY is generic since
Y is regular.

Recall the definition (Vλ)U ′′,Y of the degenerate Whittaker model on Vλ:

(Vλ)U ′′,Y = (Vλ/〈(πλ(u)− χ
Y

(u))v|u∈U ′′, v∈Vλ〉),

and the definition (Vλ)ϕ,Y of the degenerate Whittaker form on Vλ

(Vλ)ϕ,Y = (Vλ/〈(πλ(u)− χ
Y

(u))v|u∈U ′′, v∈Vλ〉)LY 1 ,

where ϕ is a homomorphism from F ∗ to G satisfying (??) in §3.2.1. We have

(Vλ)ϕ,Y = (Vλ)U ′′,Y by LY 1 = 0
= (Vλ)(χ

Y
) by U ′′ = N

6= 0. by Propostion 4.1.3.

By Theorem 3.2.2, we get that cO is nonzero since the degenerate Whittaker
form is nonzero and O has the maximal dimension. We apply Theorem 3.2.2 to get

cO = dim(Vλ)ϕ,Y = dim(Vλ)(χ
Y

) = 1.

The proof is completed.
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4.1.5. Recall that in §2.3.2, for all w ∈ W , we define the normalized intertwining
operators a(λ, χ, w) between (πλ, Vλ) and (πwλ, Vwλ). Let Wλ = {w ∈ W |wλ = λ}.
Then for all w ∈Wλ, the intertwining operator a(λ, χ, w) intertwines the principal
series representation (πλ, Vλ) with itself. Given a root α, we define a character λα
of F ∗ to be λ◦α∨. We denote ∆+

λ = {α ∈ ∆+|λα ≡ 1}. Set W ′λ to be the subgroup
of Wλ generated by sα, α ∈ ∆+

λ . The R-group Rλ is the subgroup of Wλ which
preserves ∆+

λ . Theorem 2.3.5 tells us that the map ιλ,χ from Wλ to C(πλ) defined
by w ∈ Wλ 7→ a(λ, χ, w) ∈ C(πλ) is a group representation. Furthermore, the kernel
of ιλ,χ is W ′λ and the image of Rλ forms a basis of C(πλ); i.e, C[Rλ] ∼= C(πλ).

Proposition. Let R∧λ be the set of irreducible representations of Rλ and Σλ the set
of the irreducible constituents of πλ. There is a one-to-one correspondence between
Σλ and R∧λ . This correspondence depends on the choice of the generic character χ
of N .

Proof. We decompose the principal series representation (πλ, Vλ) into
∑

ξ∈Σλ
mξξ,

where mξ is the multiplicity of ξ which occurs in πλ. From the decomposition of
πλ =

∑
ξ∈Σλ

mξξ, we get C(πλ) is isomorphic to
∑

ξ∈Σλ
M(mξ,C), where M(mξ,C)

is the matrix algebra over an mξ-dimensional C vector space. On the other hand,
look at the R-group side; the group algebra C[πλ] of Rλ can be expressed as∑
τ∈R∧λ

M(dim τ,C), where dim τ is the dimension of the representation space of τ .
Therefore there is a one-to-one correspondence between Σλ and R∧λ . Notice that
this correspondence depends on the choice of ιλ,χ; i.e., the choice of the generic
character χ of N .

4.1.6. Define Σgen
λ to be a subset of Σλ consisting of all generic irreducible con-

stituents of πλ :

Σgen
λ = {ξ ∈ Σλ|ξ is generic}.

We can partition Σλ into the generic part Σgen
λ and the nongeneric part Σ′λ. Ac-

cording to Proposition 4.1.3, we know the multiplicity of a generic irreducible rep-
resentation which occurs in principal series must be equal to 1. Therefore, we
have

πλ =
∑

τ ′∈Σgen
λ

1 · τ ′ +
∑

τ ′′∈Σ′λ

mτ ′′ · τ ′′.

Notice that the multiplicity mτ ′′ of τ ′′ may or may not be equal to 1. Let Σ1
λ be

the subset of Σλ consisting of those ξ with mξ = 1. Hence Σgen is a subset of Σ1
λ.

Then the bijection in Proposition 4.1.5 induces a bijection Σ1
λ and Hom(Rλ,C∗).

Proposition. Let ρ−1 be a map from Σgen to the power set 2P of P defined by

ρ−1(ξ) = MaxNtr(ξ) ∩ P = Pξ, ξ ∈ Σgen,

where MaxNtr is defined in §3.2.2. Then:
(i)
⋃
ξ∈Σgen Pξ = P.

(ii) If ξ, ξ′ ∈ Σgen and ξ 6= ξ′, then Pξ ∩ Pξ′ = ∅.
Proof. First, we show that Pξ is nonempty for all ξ ∈ Σgen. Since (ξ,W ) is generic,
dimWχ 6= 0 for some generic χ. By Lemma 4.1.2, there is a Y ∈ P such that
χ
Y

= χ. Let OY ∈ P be the principal nilpotent orbit containing Y . Following
the same argument as Corollary 4.1.4, we know OY ∈ MaxNtr(ξ). Therefore,
OY ∈ MaxNtr(ξ) ∩ P = Pξ. It concludes that Pξ is nonempty.
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For (i), given O ∈ P , we can pick up a Y ∈ O ∩ P. By Proposition 4.1.3, we
know there is a unique irreducible constituent ξχ

Y
which is χ

Y
-generic. As the

same argument above, we know O = OY ∈ MaxNtr(ξχ
Y

). Hence, O ∈ Pξχ
Y

. This
proves (i).

For (ii), if O ∈ Pξ ∩ Pξ′ and Y ∈ O ∩ P, then by additivity of characters,
dimVλ(χ

Y
) ≥ cO(Θξ) + cO(Θξ′) ≥ 2. This contradicts Corollary 4.1.4.

4.1.7. By the proposition above, we have a map ρ from P → Σgen
λ ⊂ Σλ, which is

the inverse map of ρ−1:

ρ : [the set P of principal nilpotent orbits]

→ [the set Σλ of irreducible constituents].
(1)

By abuse of notation, we use R∧λ to denote the set of characters of irreducible
representations of Rλ. Composing ρ with the correspondence between Σ1

λ and
Hom(Rλ,C∗), we define ρ:

ρ : [the set P of principal nilpotent orbits]→ Hom(Rλ,C∗) ↪→ R∧λ .

Note that ρ depends on the choice of a generic character of N .
By Proposition 4.1.1, H1(Γ, Z(G)) parametrizes P . We can identify P with

H1(Γ, Z(G)), if we choose a principial nilpotent orbit as a basepoint of P . Using
the identification above and the correspondence between Σλ and Hom(Rλ,C∗), we
can modify (1) as

% : H1(Γ, Z(G))→ Hom(Rλ,C∗).(1′)

Our main goal is to write down precise formulas for those maps. We provide a way
to approach it from group representations by Whittaker models.

Remark. Consider the map

ρ : P → Hom(Rλ,C∗).

This map does not seem to be natural; we have a natural choice of basepoint in
Hom(Rλ,C∗), the trivial representation, but it is not clear what a natural choice of
basepoint of principal nilpotent orbits is. It can be clarified in the following way.

The correspondence between Σλ and Hom(Rλ,C∗) replies on ιλ,χ, which does
depend on the choices of the generic character χ of N . A regular nilpotent Y can
produce a generic character χ

Y
of N by §3.2.6. Hence, the principal nilpotent OY

which contains Y can be the choice of the basepoint of P .
Furthermore, after we pick up OY as the basepoint of P , the map

% : H1(Γ, Z(G))→ Hom(Rλ,C∗)

is well-defined. Although % is a map between two groups, there is no reason a
priori that it should be a group homomorphism. However, remarkably, our Main
Theorem can show it is indeed a homomorphism.

4.2. The Whittaker version of ρ. In this subsection, we use the Whittaker
models to describe the nature of our maps. The main idea is to see the change of the
leading coefficients of the local expansions under the intertwining operators. Then
we can produce a natural map from the principal nilpotent orbits to the characters
of Rλ. Finally, we are able to formulate our main theorem and geometric theorem.
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4.2.1. Let I be an intertwining operator of a representation (π, V ). Recall the
character Θπ of (π, V ) is a distribution on G defined by

Θπ(f) = trπ(f), ∀f ∈ C∞c (G),

where π(f) =
∫
G
f(g)π(g)dg is of finite rank and tr is the trace function. Note that

tr is well-defined since the rank of π(f) is finite. We define a new distribution ΘI◦π
on G by

ΘI◦π(f) = tr(I ◦ π(f)), ∀f ∈ C∞c (G).

Note that the trace tr(I ◦ π(f)) is well-defined also because π(f) is of finite rank.
ΘI◦π is G-invariant since I intertwines π with itself.

We have the following lemma:

Lemma. Let I be an intertwining operator of a unitary representation (π, V ) of
finite length. Define a distribution ΘI◦π as above. Then ΘI◦π is G-admissible (cf.
Theorem 3.1.2).

Proof. Since π is unitary and of finite length, we can reduce to the case of π = mξ,
where ξ is irreducible and m is its multiplicity. We can identify the intertwining op-
erator I as anm×m-matrixM and it is easy to see that tr(I◦π(f)) = tr(M)tr(ξ(f)).
Therefore, we have ΘI◦π = tr(M)Θξ. Θξ is admissible, so is its multiple. Therefore
ΘI◦π is admissible.

4.2.2. From the previous lemma, ΘI◦π satisfies the assumption of Theorem 3.1.2.
Therefore, ΘI◦π has a local expansion around a neighborhood V of the identity
element of G:

∀f ∈ C∞c (V), ΘI◦π(f) =
∑
O∈N

cO(I)
∫
O
f̂ ◦ exp(X)dµOX,(2)

where N is the set of all nilpotent orbits, cO(I) are constants, and ̂ is the Fourier
transform of the invariant measure dµO . Unlike Theorem 3.2.2, we cannot expect
that all cO(I) are integers. For example, if I is a scalar multiple a of the identity,
then tr(I ◦ π) = a tr(π).

We now return to principal series representations. Given a generic character χ of
N , we have defined the intertwining operators a(λ, χ, w), for all λ ∈Wλ. The map
w ∈ Rλ 7→ a(λ, χ, w) is a group isomorphism. According to the previous discussion,
for all w ∈ Rλ, we have an equality of distributions

Θa(λ,χ,w)◦πλ =
∑
O∈N

cO(a(λ, χ, w))µ̂O ,

where µ̂O is the Fourier transform of Haar measure on O. To ease the notation, we
denote cO(a(λ, χ, w)) = cO(w).

Consider the map w ∈ Rλ 7→ cO(w). By abuse of notation, we still use cO
to denote this map. It is easy to see that cO is a character. From the proof of
Lemma 4.2.1, we know the coefficients of cO(w) are the trace of the representations
ofRλ which are induced by its restriction on the irreducible constituents ρ(O). Since
the multiplicity of ρ(O) is 1, we get that the trace is the same as the representation,
which is of one-dimension. Therefore they are a character of Rλ.

Philosophically, we can not distinguish the elements in the same Pξ using the
characters of Rλ. Thus, we expect the following lemma:
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Lemma. Given any two principal nilpotent orbits O, O′, if O, O′ belong to the
same subset Pξ of P for some ξ ∈ Σgen

λ , then two characters cO, cO′ of Rλ are
equal.

Proof. Let ξ be a generic constituent of πλ and O, O′ be two principal nilpotent
orbits associated to ξ. Since the multiplicity of ξ is 1, any intertwining operator
acts as a scalar by its restriction on ξ. Note that nonzero coefficients cO and
cO′ appear in the local expansion of Θξ. Let cξ(w) be the constant such that
a(λ, χ, w)|ξ = cξ(w)id. Then Θ(a(λ,χ,w)|ξ)◦ξ = cξ(w)Θξ . Therefore cO(w) = cξ(w)
and c′O(w) = cξ(w).

4.2.3. By the previous lemma, for all ξ ∈ Σgen
λ , we can define a degree-one char-

acter cξ of Rλ so that cξ = cO for all O ∈ Pξ. Therefore, the map from P to
R∧λ defined by O 7→ cξ is exactly the map ρ. In conclusion, we have the following
proposition:

Proposition. Fix a generic character χ of N and then it determines the unique
monomorphism from Rλ into the commuting algebra of πλ. Then the map from P
to R∧λ defined by O 7→ cξ is the same as the map ρ.

4.2.4. Now we can formulate our main theorem for the maps ρ, ρ, and %. We will
prove it in a later section.

Main Theorem. Let P be the set of principal nilpotent orbits on g. The abelian
group H1(Γ, Z(G)) acts on P simply transitively. Give a character λ of T . Let
Rλ be the R-group of πλ, Σλ the set of irreducible constituents of πλ, and Σgen

λ the
set of generic irreducible constituents of πλ. Write R∧λ for the set of characters of
irreducible representations of Rλ. Fix a principal nilpotent orbit O and an element
Y ∈ O ∩ P. Using O and χ

Y
, we can uniquely determine the identifications P '

H1(Γ, Z(G)) and Σλ
∼−→ R∧λ . Then there is a canonical pairing 〈, 〉λ of Rλ ×

H1(Γ, Z(G)), which will be defined in §5.2, such that
(i) the map ρ : P → Σλ induces a bijection Qλ\P ∼−→ Σgen

λ , where Qλ is the right
kernel of 〈, 〉λ;

(ii) the composite P ρ−→ Σλ
∼−→ R∧λ is the same as the composite

P ' H1(Γ, Z(G))
〈,−〉−1

λ−−−−→ R∧λ ;

both are equal to ρ;

(iii) the map % is equal to H1(Γ, Z(G))
〈,−〉−1

λ−−−−→ Hom(Rλ,C∗) ↪→ R∧λ .

Remark. The R-groups are not abelian in general. Therefore, the map % is not onto
R∧λ . Even in the cases of abelian R-groups, % is not onto Hom(Rλ,C∗) in general,
either. Just look at the case of G2, the algebraic group of Dynkin diagram type G2.
The R-groups can be Z/2Z but there is only one principal nilpotent orbit since G2

is adjoint.

4.2.5. From the previous discussion and Main Theorem, we have the following
geometric characterization of generic irreducible constituents:

Theorem. The set of principal nilpotent orbits appearing in the local character
expansion of the generic irreducible constituent ρ(O) is precisely Qλ · O; i.e.,

Θρ(O) =
∑

S∈Qλ·O
cS(ρ(O))µ̂S + lower dimensional terms.
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Proof. Let ξ be an irreducible admissible representation of G. By the proof of
Corollary 4.1.4, for S ∈ P and Y ∈ S ∩ P, cS is equal to dim

(
HomG(ξ, IndGNχY )

)
.

It means that for any Y ∈ S ∩ P, cS appears in the local expansion if and only if
ξ is χ

Y
-generic. Given a generic irreducible constituent σ, by the construction of

ρ, ρ(S) = σ if and only if σ is χ
Y

-generic. Therefore the set of principal nilpotent
orbits appearing in the local character expansion of σ is ρ−1(σ). Applying the
argument above to O ∈ P , from the Main Theorem, we know ρ−1(ρ(O)) is Qλ · O.
This ends the proof.

5. The proof of the Main Theorem

In this section, we will give the proof of the Main Theorem. The idea of the proof
is based on an observation about local coefficients. The way to determine which
principal nilpotent orbit goes with which irreducible constituent is to look at the
change of local coefficients for different generic characters of N . We calculate the
change of local coefficients by the the method of Keys and the proof of the theorem
of Mœglin and Waldspurger. Then, we are able to prove our theorem using the
information obtained from local coefficients.

5.1. Whittaker functionals and local coefficients II: the rule of changes.
In this subsection, we study how the local coefficients behave when we vary generic
characters. There is indeed a nice formula for them. A similar result has been
obtained by Shahidi [23]. However, it might be possible to extend our method to
the nongeneric case. The idea here is inspired by Keys’ computation in [11]. We
construct the canonical vectors, called the standard functions, in the representation
spaces of principal series presentations. Using the multiplicity one theorem and the
proof of the theorem of Mœglin and Waldspurger, we can show that the standard
functions are unique up to scalars. Then we calculate their changes under the
intertwining operators. It can be proved that in our cases the ratios of the standard
functions under the intertwining operators is closely related to local coefficients.

5.1.1. Let G be the adjoint group of G, p the projection from G to G, T the
maximal split torus of G, and T the F -rational points of T. For all roots α ∈ ∆,
α = α ◦ p. Write 1 for the identity element of T . Let wl be the longest element
of the Weyl group and we choose a representative w̃l as we did in §2.1.3. Define a
T -action on P as follows:

t(
∑
α∈Π−

Zα) =
∑
α∈Π−

σ−1(α)(t)Zα,

where t ∈ T , α are the root of G associated to the root α of G, and σ is a
permutation of Π− defined by

σ(α) = −wl(α), α ∈ Π−.

Since G is adjoint, the map T to T̃ =
∏
α∈Π− F

∗
α, defined by t 7→

∏
α∈Π− σ

−1(α)(t),
is an isomorphism. Hence, by Proposition 4.1.1, the T -action on P is simply tran-
sitive.

There are two T -actions on P.

(i) In §4.1.1), we define a T -action on P by the adjoint action.
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(ii) The group p(T ) is a subgroup of T . We can define a T -action on P via the
T -action on P; i.e.,

t · (
∑
α∈Π−

Zα) =
∑
α∈Π−

σ−1(α)
(
p(t)

)
Zα =

∑
α∈Π−

σ−1α(t)Zα,

where t ∈ T and σ is defined as above.
The reason why we discuss the T -action on P is because G-orbits on P is the same
as T -orbits on it; however, the T -action here is the action in (1) above.

The two actions are different but they just differ up to an automorphism t 7→
(w̃ltw̃−1

l )−1. Hence, for our purpose, since the orbits are the same, it does not hurt
to use the latter T -action; i.e., the T -action via p(T ) and T -action. Using the latter
action can simplify our notation. Hence, we will use it for the rest of this paper.
By the proof of Proposition 4.1.1, T/p(T ) is isomorphic to H1(Γ, Z(G)) and acts
simply transitively on P .

5.1.2. Given t ∈ T , let Yt be a regular nilpotent element in P defined by

Yt =
∑
α∈Π−

cασ
−1(α)(t)Yα,

where Yα is defined in §1.1.4, and cα is the constants such that

κ(cαYα, w̃lYσ−1(α)w̃
−1
l ) = 1.

We define Y ′α = cαYα and then rewrite the definition of Yt as
∑

α∈Π σ
−1(α)(t)Y ′α

and we have

κ(Y ′α, w̃lYσ−1(α)w̃
−1
l ) = 1.

Clearly, for all t, t′ ∈ T , we have t′Yt = Yt′t. Choose a homomorphism ϕt for Yt
from F ∗ to G satisfying (??) in §3.2.1. Let tt = ϕt($).

Recall some definitions from §3.2. In §3.2.3, for all t ∈ T , we defined the groups
Gn,t, G′n,t which are only dependent on the nilpotent element Yt. Gn,t can be
written as the product B−

n,t
Nn,t, where B−

n,t
= Gn,t ∩ B− and Nn,t = Gn,t ∩ N

(cf. [18] I.3(2)). Furthermore, for all Yt, by adjusting Yi in §3.2.3, we can choose
our Xi in the definition of Gn,t to be always the same as Xα in §1.1.4. Notice that
there is no Zi for regular nilpotent elements. Therefore, we can rewrite the product
as

Gn,t = B−
n,t
Nn, where Nn =

∏
α∈∆+

Nα,n.

Let χt,n be a character of Gn,t defined by γ ∈ Gn,t 7→ ψ(κ($−2nYt, log γ)) and χ′
t,n

a character of of G′
n,t

which maps γ ∈ G′
n,t
7→ χt,n(tn

t
γt−n
t

).

Now we start to define some new notation. Let G̃n,t = w̃lGn,tw̃
−1
l . As above,

G̃n,t is a product of N−n and Bn,t, where N−n = N− ∩ G̃n,t and Bn,t = B ∩ G̃n,t.
Since ∀β ∈ ∆, w̃lxβ(t)w̃−1

l = xwlβ(±t) (cf. Part b of Lemma 20 of [24]), we have

N−n =
∏
α∈∆−

Nα,n,

where Nα,n is defined in §1.1.3. Define a character χ̃t,n of G̃n,t by

χ̃t,n(γ) = χt,n(w̃−1
l γw̃l), γ ∈ Gn,t.
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Since χt,n is trivial on B−
n,t

(cf. [18], I.9), χ̃t,n is trivial on Bn,t. For all α ∈ Π−,
define an additive character χ̃t,n,α of F by

χ̃t,n,α = χ̃t,n ◦ xα.

Lemma. For a ∈ F ∗, let ma be the endomorphism on F defined by multiplying a
and ψn the composition ψ ◦m$−2n . Then χ̃t,n,α = ψn ◦mα(t).

Proof. From the definition of χ̃t,n,α, for all s ∈ F , we have

χ̃t,n,α(s) =ψ($−2nκ(
∑
β∈Π−

σ−1(β)(t)Y ′β , sw̃lYαw̃
−1
l ))

=ψ($−2nα(t)κ(Y ′σ(α), w̃lYαw̃
−1
l )s) = ψ($−2nα(t)s).

The third equality is due to the orthogonality of the Killing form. The lemma
follows.

5.1.3. Consider a subspace of Ṽν,λ,n defined by

Ṽν,λ,n,t = {v ∈ Vν,λ|πλ(γ)v = χ̃t,n(γ)v, ∀γ ∈ G̃n,t}.

Recall that we define Vν,λ,n,t and V ′
ν,λ,n,t

in §3.2.5 as follows:

Vν,λ,n,t = {v ∈ Vν,λ|πλ(γ)v = χt,n(γ)v, ∀γ ∈ Gn,t},
V ′ν,λ,n,t = {v ∈ Vν,λ|πλ(γ)v = χ′t,n(γ)v, ∀γ ∈ G′n,t}.

We have

Ṽν,λ,n,t = πν,λ(w̃−1
l )Vν,λ,n,t, V

′
ν,λ,n,t = πν,λ(tnt )Vν,λ,n,t,

and

V ′ν,λ,n,t = πν,λ(tnt w̃l)Ṽν,λ,n,t.

Write Ṽλ,n,t to be Ṽ0,λ,n,t, the same for Vλ,n,t and V ′
λ,n,t

.

Lemma. For all t ∈ T and n large enough, any vector v in Vν,λ, which satisfies
πν,λ(γ)v = χ̃t,n(γ)v, ∀γ ∈ G̃n,t, is unique up to a scalar.

Proof. For all t ∈ T and n large enough, from §3.2.10, we know the dimension
of Vν,λ,n,t is equal to the dimension of (Vν,λ)(χt). Furthermore, the dimension of
(Vν,λ)(χt) is 1 by the multiplicity one theorem (cf. Proposition 2.2.3). According to
the equalities above, the dimension of Ṽν,λ,n,t is equal to that of Vν,λ,n,t. Therefore,
it is also equal to 1. This completes the proof.

5.1.4. Define a standard function, on N−B, which is open and dense in G, by

fν,λ,n,t(vmn) =

{
0 if v /∈ N−n ;
χ̃−1
t,n

(v)λ(m)−1q〈−ν−ρ,H(m)〉 if v ∈ N−n ,

where m ∈ T , n ∈ N , ν ∈ a∗C, ρ is the half sum of positive roots, H is a map
defined in §2.1.2, and we take n large enough such that λ−1q〈−ν−ρ,H(−)〉 is trivial
on T ∩Bn,t. From the definition, fν,λ,n,t is in Vν,λ.

Proposition. fν,λ,n,t belongs to Ṽν,λ,n,t.
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Proof. Let γ ∈ G̃n,t and γ = vmn; i.e., γ−1 = n−1m−1v−1, where v ∈ N−n ,
m ∈ T ∩Bn,t and n ∈ N . Since χ̃t,n is a character, therefore χ̃−1

t,n
(γ−1) = χ̃t,n(γ) =

χ̃t,n(v). On the other hand, πν,λ(γ) acts on fν,λ,n,t(g) as fν,λ,n,t(γ−1g). Assume
g = gn−gmgn, gn− ∈ N−n , gm ∈ T, gn ∈ N . γ−1gn− = n−1m−1v−1gn− = v′m′n′,
where v′ ∈ N−n , m′ ∈ T ∩ Bn,t and n′ ∈ N . Since χ̃t,n is a character, χ̃−1

t,n
(v′) =

χ̃t,n(v)χ̃−1
t,n

(gn−). From the assumption that λ−1q〈−ν−ρ,H(−)〉 is trivial on T ∩Bn,t,
we get

fν,λ,n,t(γ
−1g) =fν,λ,n,t(v

′m′n′gmgn) = fν,λ,n,t
(
v′m′gm(g−1

m n′gm)gn
)

= fν,λ,n,t(v
′m′gm) = χ̃−1

t,n
(v′)fν,λ,n,t(gm)

= χ̃t,n(v)χ̃−1
t,n

(gn−)fν,λ,n,t(gm) = χ̃t,n(γ)fν,λ,n,t(g).

This completes the proof.

5.1.5. For all w ∈W , consider the action of A(ν, λ, w) on fν,λ,n,t. If ν satisfies (∗)
in §2.1.3, then A(ν, λ, w)fν,λ,n,t converges and A(ν, λ, w)fν,λ,n,t ∈ Vwν,wλ. Since
A(ν, λ, w) intertwines Vν,λ and Vwν,wλ, we have that for any g ∈ G̃n,t,

πwλ(g)A(ν, λ, w)fν,λ,n,t = A(ν, λ, w)πλ(g)fν,λ,n,t = χ̃t,nA(ν, λ, w)fν,λ,n,t.

Hence, the function A(ν, λ, w)fν,λ,n,t belongs to Ṽwν,wλ,n,t; it must be a scalar
multiple of fwν,wλ,n,t. Define

A(ν, λ, w)fν,λ,n,t(g) = γ(ν, λ, n, t, w)fwν,wλ,n,t(g), ∀g ∈ G.(#)

We write γ(λ, n, t, w) to be γ(0, λ, n, t, w). We will prove later that γ(ν, λ, n, t, w)
is defined for all ν by analytic continuation. For the moment, we assume that this
is true. Then we have the following important equality.

Theorem. If w ∈ W satisfies wλ = λ, then the local coefficients C(λ, χt, w) are
equal to γ(λ, n, t, w)−1.

Proof. From the remark in §3.2.7, we know the Whittaker functional δλ,χt acts
nontrivially on V ′

λ,n,t
. Let k = tn

t
w̃l (cf. §5.1.3). Then πλ(k)fλ,n,t belongs to V ′

λ,n,t
.

Therefore δλ,χt
(
(πλ(k)fλ,n,t)

)
is nonzero. We apply δλ,χt ◦ πν,λk on the definition

of γ(λ, n, t, w). We obtain

δλ,χt
(
πλ(k)A(λ,w)fλ,n,t

)
= δλ,χt

(
πλ(k)γ(λ, n, t, w)fwλ,n,t

)
,

=⇒ δλ,χt
(
A(λ,w)πλ(k)fλ,n,t

)
= γ(λ, n, t, w)δλ,χt

(
πλ(k)fλ,n,t

)
,

=⇒ C(λ, χt, w)−1δλ,χt
(
πλ(k)fλ,n,t

)
= γ(λ, n, t, w)δλ,χt

(
πλ(k)fλ,n,t

)
,

=⇒ C(λ, χt, w)−1 = γ(λ, n, t, w).

This is what we need.

5.1.6. Now we would like to compute the γ(ν, λ, n, t, w). We prove that the result-
ing function has an analytic continuation. As a by-product, we also get the formula
when we vary t in T .

For any w ∈ W , we consider the product decomposition of A(ν, λ, w) into rank-
one operators corresponding to the reduced expression. Then γ(ν, λ, n, t, w) can be
given by a product formula in terms of rank-one operators. Therefore, we only need
to compute the cases for simple reflection w.

For all α ∈ Π−, set λν,α = λν ◦ α∨ = λν ◦ hα. As usual, λα = λ0,α. We write
γ(ν, λ, n,1, w) as γ(ν, λ, n, w). The following lemma is crucial for our computation.
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Lemma. Let w be the simple reflection sα ∈ W . Then for n large enough, we have

γ(ν, λ, n, t, w) = λν,α(α(t))−1γ(ν, λ, n, w),

and

γ(ν, λ, n, w) = λν,α($)2nΓ(λν,α),

where Γ(λν,α) is the gamma function of [20]. Obviously, λν,α($)2nΓ(λν,α) can be
defined for all ν by analytic continuation. As a consequence, γ(ν, λ, n, t, w) can be
defined for all ν ∈ a∗C by analytic continuation.

Proof. We evaluate (#) in §5.1.5 at g = 1. Then the right-hand side is exact by
γ(ν, λ, n, t, w). The left-hand side is A(ν, λ, w)fν,λ,n,t(1) . Then for suitable ν,

γ(ν, λ, n, t, w) =
∫
Nα

fν,λ,n,t(ns̃α)dn

=
∫
F

fν,λ,n,t
(
ζα(
(

1 t
0 1

)(
0 1
−1 0

)
)
)
dt

=
∫
F\0

fν,λ,n,t
(
ζα(
(

1 0
1/t 1

)(
−t 1
0 −1/t

)
)
)
dt

=
∫
F\0

fν,λ,n,t
(
x−α(1/t)α∨(−t)xα(1)

)
dt

=
∫
vF (t)≤−n

χ̃−1
t,n
◦ x−α(1/t)(λν ◦ α∨(−t))−1|t〈ρ,α∨〉|−1

F dt

=
∫
vF (t)≤−n

χ̃−1
t,n,α

(1/t)λ−1
ν,α(−t)|t|−1

F dt

=
∫
vF (t)≤−n

[(ψn ◦mα(t))
−1(1/t)]λ−1

ν,α(−t)|t|−1
F dt

=
∫
vF (s)≥n

ψ−1(−$−2nα(t)s)λν,α(s)|s|−1
F ds

=λν,α($2nα(t)−1)
∫
vF (s)≥−n+vF (α(t))

ψ(s)λν,α(s)|s|−1
F ds

=λ−1
ν,α(α(t))λν,α($2n)Γ(λν,α).

The last equality holds for n large enough (cf. Chapter 2, §2, §6, (4) of [9]). Now
the proof follows.

5.1.7. Combining Theorem 5.1.5 with Lemma 5.1.6, we have the following corol-
lary:

Corollary. Let G be a split reductive group defined over F and B be its Borel
subgroup. B can be written as TN, where T is the maximal split torus and N is
the maximal nilpotent subgroup. Let λ be a nontrivial character of T , the F -rational
points of T. Let σ be a permutation of Π− defined by σ(α) = −wl(α), where wl is
the longest element of the Weyl group W . Given an t ∈ T =

∏
α∈Π− F

∗
α, we define

a regular nilpotent element Yt =
∑

α∈Π− σ
−1(α)(t)Y ′α as in §5.1.2. Set 1 to be the

identity element of T . For any w ∈ W , we can factorize w = sαnsαn−1 · · · sα1

(cf. §2.1.4), where αi ∈ Π−. For i ≥ 2 (resp. i = 1), we define w′i = sαi−1 · · · sα1

(resp. w′1 is the identity). Let λi = w′iλ. and (λi)αi = λi ◦ α∨i . If wλ = λ, then we
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have the following equality for local coefficients:

C(λ, χt, w) =
(i=n∏
i=1

(λi)αi(αi(t))
)
C(λ, χY1

, w).

5.2. The proof of the Main Theorem. In this subsection, we prove the Main
Theorem. The job here is just to interpret the change of local coefficients into our
picture and the theorem follows.

5.2.1. We recall the product terms in Corollary 5.1.7. Define a pairing 〈, 〉λ on
Rλ × T as

〈w, t〉λ : =
i=n∏
i=1

(λi)αi(αi(t)),

where w ∈ Rλ and t ∈ T . For all w ∈ Rλ, we define

λw(t) = 〈w, t〉λ,

where t ∈ T .
Apparently λw is a character of T .

5.2.2. Lemma. Fix an element t of T . Let Yt be the regular nilpotent element
associated with t and χt the generic character of N associated with Yt. Then there
is the unique generic irreducible constituent πλ,t of πλ such that the restriction of
ιλ,χt(Rλ) on πλ,t is a trivial character of Rλ.

Proof. Let t be an element of T and χt be the generic character of N associ-
ated to the regular nilpotent element Yt. There is a unique irreducible constituent
(πλ,t, Vλ(χt)) such that

dim
(
Vλ(χt)(χt)

)
= 1.

Therefore, the Whittaker functional δλ,χt is nontrivial on this unique irreducible
constituent and is trivial on the others. Let a(λ, χt, w) be the normalized inter-
twining operators. From the definition of a(λ, χt, w), we have

δλ,χt = δλ,χta(λ, χt, w).

Since the multiplicity of πλ,t is equal to 1. The restriction of a(λ, χt, w) on Vλ(χt)
must be a scalar multiple c(w, t) of identity. Choose a vector v ∈ Vλ(χt) such that
δλ,χt(v) 6= 0. Apply this vector on the both sides of the equality above:

δλ,χt(v) = δλ,χta(λ, χt, w)(v) = c(w, t)δλ,χt(v).

Therefore, c(w, t) = 1, for all w ∈ Rλ. In other words, the generic irreducible
constituent πλ,t corresponds to the trivial character of Rλ (cf. Remark 4.1.7). Since
C[Rλ] is isomorphic to the commuting algebra C(πλ) and ιλ,χt(Rλ) forms a basis
of C(πλ), πλ,t is the unique irreducible constituent of πλ such that the restriction
of ιλ,χt(Rλ) on πλ,t is a trivial character of Rλ. The proof is completed.
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5.2.3. To simplify notation, we write Vλ(χt) (resp. πλ,t, δλ,χt , C(λ, χt, w), and
a(λ, χt, w)) as Vt (resp. πt, δt, C(λ, t, w), and a(λ, t, w)).

Now we determine which principal nilpotent orbits are associated with a given
generic irreducible constituent. Instead of dealing with principal nilpotent orbits,
we consider the subset P of regular nilpotent elements defined in §4.1.1 . We know
that that P is parametrized by T . We can define a map ρ̃, an extension of ρ in
§4.1.7, from T to Σλ defined by t 7→ (πt, Vt). Our main goal is to find a criterion
to determine when (πt, Vt) and (πt′ , Vt′) are the same. This is achieved in the next
lemma.

Lemma. Let t and t
′ be two elements of T . Then a necessary and sufficient con-

dition for (πt, Vt) = (πt′ , Vt′) is that for all w ∈ Rλ, λw(t−1
t
′) = 1. In other

words, Vt = Vt′ if and only if t and t′ are in the same orbit of Qλ, where Qλ is the
intersection of all kernels of λw.

Proof. Fix an element t of T . According to Lemma 5.2.2, (πt, Vt) can be uniquely
characterized as follows:

For all w ∈ Rλ, the restriction of a(λ, t, w) on Vt is the identity.

Let t′ be another element of T . We know that (πt′ , Vt′) is the unique irreducible con-
stituent which is characterized as above. For all w ∈ Rλ, a(λ, t, w) and a(λ, t′, w)
only differ up to a scalar. Therefore, the necessary and sufficient condition for
V ′
t

= Vt is that for all w ∈ Rλ, a(λ, t, w) = a(λ, t′, w).

Recall the definition of a(λ, t, w) and a(λ, t′, w):

a(λ, t, w) = C(λ, t, w)A(λ,w), and a(λ, t′, w) = C(λ, t′, w)A(λ,w).

Then a(λ, t, w) = a(λ, t′, w) if and only if C(λ, t, w) = C(λ, t′, w). Applying Corol-
lary 5.1.7, the equality holds if and only if λw(t) = λw(t′). Since λw is a character
of T . The conditions are equivalent to λw(t−1

t
′) = 1. This completes the proof.

5.2.4. Now we obtain the criterion for when two elements in P have the same
image of the extended map ρ̃. Without a doubt, ρ̃ must factor through ρ; i.e., if
two elements are in the same orbit, then their images are the same. We know that
any two elements are in the same orbits if and only if they differ by an element of
p(T ). Hence, ρ̃ factors through ρ if and only if for all w ∈ Rλ, λw(p(T )) = 1. The
following lemma tells us that this is true as predicted.

Lemma. For all w ∈W , we have the following equality:

λw(p(t)) = λ(t(w−1t)−1), ∀t ∈ T.
Remark. If wλ = λ, then λ(t(wt)−1) = 1, ∀t ∈ T . As a consequence, λw(p(T )) = 1.

Proof. Recall the definition of λw :

λw(t) =
i=n∏
i=1

(λi)αi(αi(t)),

where t ∈ T . If t = p(t), t ∈ T , then λw becomes

λw(p(t)) =
i=n∏
i=1

(λi)αi(αi(p(t))) =
i=n∏
i=1

(λi)αi(αi(t)).
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The last equality holds since αi ◦p = αi. Now we prove our lemma by induction on
the length l(w) of w. If l(w) = 1, then w = sα for some α ∈ Π. Compute directly:

λw(p(t)) = λα(α(t)) = λ(α∨ ◦ α(t))
= λ

(
t(t(α∨ ◦ α(t))−1)−1

)
= λ

(
tsα(t)−1

)
= λ

(
ts−1
α (t)−1

)
.

Therefore the length 1 is true.
Assume l(w) = n− 1 is true; i.e, for any t ∈ T and w′ = sαn−1sαn−2 · · · sα1 , we

have

λw′(p(t)) = λ(t(w′−1
t)−1).

Let l(w) = n andw = sαnsαn−1sαn−2 · · · sα1 = sαnw
′, where w′ = sαn−1sαn−2 · · · sα1 .

Then

λ(t(w−1t)−1) =λ(t(w′−1
sαnt)

−1)
=λ
(
t(w′−1(sαnt))

−1
)

=λ
(
t(sαnt)

−1(sαnt)(w
′−1(sαnt))

−1
)

=λ
(
t(sαnt)

−1
)
λ
(
(sαn t)(w

′−1(sαnt))
−1
)

=λ
(
t(sαnt)

−1
)
λw′
(
p(sαnt)

)
=λ
(
t(sαnt)

−1
)
λw′
(
p(t(α∨n ◦ αn(t))−1)

)
=λ
(
t(sαnt)

−1
)
λw′
(
p((α∨n ◦ αn(t))−1)

)
λw′
(
p(t)

)
=λ
(
t(sαnt)

−1
)
λ
(
(α∨n ◦ αn(t))−1(w′−1((α∨n ◦ αn(t))−1))−1

)
λw′
(
p(t)

)
=λ
(
t(sαnt)

−1
)
λ
(
(α∨n ◦ αn(t))−1

)
λ
(
w′
−1((α∨n ◦ αn(t))

)
λw′
(
p(t)

)
=λ
(
(α∨n ◦ αn(t))

)
λ
(
(α∨n ◦ αn(t))−1

)
λn(α∨n ◦ αn(t))λw′

(
p(t)

)
=(λn)αn(αn(t))

i=n−1∏
i=1

(λi)αi(αi(t))

=
i=n∏
i=1

(λi)αi(αi(t))

=λw(p(t)).

This completes the induction step.

5.2.5. Proof. Now we start to prove the Main Theorem. For part (i), according
to Lemma 5.2.4 above, for all w ∈ Rλ ⊂ Wλ, λw are trivial on p(T ). Therefore,
λw can be thought as a character of T/p(T ) ' H1(Γ, Z(G)). Define Qλ to be the
intersection of all kernels of λw . Clearly, Qλ = Qλ/p(T ), where Qλ is defined in
§5.2.3. According to Lemma 5.2.3, for any two Y, Y ′ ∈ P, ρ̃(Y ) = ρ̃(Y ′) if and only
if they are in the same orbits of Qλ. Then we can translate our arguments in terms
of principal nilpotent orbits by replacing Qλ to Qλ. Therefore part (i) holds.

For part (ii), without loss of generality, we choose the generic character χ1 of N ,
where 1 is the identity element of T . According to Proposition 4.2.3, we need to
determine the character ci of Rλ, i ∈ Σgen

λ . Recall that ci is defined by

a(λ, χ1, w)|πi = ci(w)id,

where w ∈ Rλ. Let t ∈ T and πt ∈ Σgen
λ be the unique χt- generic irreducible

constituent of πλ. We know the restriction of a(λ, χt, w) on πt is the identity
operator. By Corollary 5.1.7 and the definition of a(λ, χt, w) and a(λ, χ1, w), we
have

a(λ, χ1, w)|πt = 〈w, t〉−1
λ a(λ, χt, w)|πt = 〈w, t〉−1

λ id.
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Therefore, cπt(w) = 〈w, t〉−1
λ . This is exactly the statement of (ii).

Part (iii) is just a reformulation of part (ii). This completes the proof.
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