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ADMISSIBLE NILPOTENT ORBITS OF REAL
AND p-ADIC SPLIT EXCEPTIONAL GROUPS

MONICA NEVINS

Abstract. We determine the admissible nilpotent coadjoint orbits of real and
p-adic split exceptional groups of types G2, F4, E6 and E7. We find that all
Lusztig-Spaltenstein special orbits are admissible. Moreover, there exist non-
special admissible orbits, corresponding to “completely odd” orbits in Lusztig’s
special pieces. In addition, we determine the number of, and representatives
for, the non-even nilpotent p-adic rational orbits of G2, F4 and E6.

1. Introduction

Let k denote either R or a p-adic field (of characteristic zero), and let G be an
algebraic group defined over k. Write G = G(k) for the k-rational points of G.

The orbit method, introduced by Kirillov [Ki], Moore [M1] and Duflo [Du],
among many others, conjectures a deep relationship between irreducible unitary
representations of G and the coadjoint orbits of G acting on the dual g∗ of its Lie
algebra. One expects to attach unitary representations of G only to orbits satisfy-
ing an appropriate “integrality” condition. In light of the work of Duflo [Du], the
best candidate for this condition is “admissibility,” as defined in Section 2 below.
As a result of much work by Lion-Perrin [LP], Auslander-Kostant [AK] and Vogan
[V1, V2], the orbit method has been realized for all but: the orbits of reductive
algebraic groups over p-adic fields; and nilpotent orbits of reductive Lie groups over
R. (For reductive groups, we can and do identify the adjoint and coadjoint orbits
of G in a natural way, which allows us, in particular, to define nilpotent orbits.)

In an effort to understand these remaining cases, Schwarz [Sch], Ohta [O] and the
author [N1] determined the admissible nilpotent orbits of most groups of classical
type over the real and p-adic fields of characteristic zero. It was found that for all
split groups (and some others), the set of admissible orbits coincides exactly with
the set of special orbits [L1, Sp]. In this context, we define an orbit of the real or
p-adic group to be special if the corresponding algebraic orbit is special. (Alfred
Noël has recently addressed the real exceptional groups; see more below.)

In this paper, we consider the nilpotent orbits of k-points of split simply con-
nected algebraic groups of exceptional types G2, F4, E6 and E7. For each algebraic
non-even nilpotent orbit of these groups, we choose a k-rational representative such
that the corresponding rational orbit is “split” over k. We then determine the ad-
missibility of that rational orbit. For the groups of types G2, F4 and E6, we go on
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to compute the number of other k-rational orbits of the given algebraic orbit and
determine their admissibility as well. For p-adic groups, this determination of the
number of rational orbits is new, as is the explicit construction of representatives
of the “additional” orbits given in Appendix A. The list of algebraic non-even
nilpotent orbits admitting more than one k-rational orbit under G is given in Ta-
ble 2 in Section 6. (Even orbits were not considered here because they are all
both admissible and special; the same techniques for determining their number,
and representatives thereof, apply.)

To state our main theorem most succinctly, let us recall the definition of “special
pieces” used by Lusztig in [L2]. Let G be an algebraic group, and O a special
nilpotent adjoint orbit of G. The special piece γ(O) corresponding to O is the set
of all nilpotent orbits contained in the closure of O, but not in the closure of any
smaller special orbit. The special pieces form a partition of the set of nilpotent
orbits.

In [L2], Lusztig parametrizes the nilpotent orbits in γ(O) by the conjugacy classes
of a finite group; in particular, the unique special orbit corresponds to the trivial
conjugacy class. If X ∈ O, this group (denote it G′O) is a subquotient of the
component group A(O) of the centralizer of X in G. For classical groups G, the
groups G′O were determined by Kraft and Procesi in [KP] and are all abelian;
for exceptional groups, on the other hand, G′O is either trivial or isomorphic to a
symmetric group Sr, for some r ∈ {2, 3, 4, 5}.

Let us define an orbit O′ ∈ γ(O) to be completely odd if either O′ is special,
or, when G′O = Sr, the partition defining the conjugacy class of O′ has no even
parts. (These two characterizations coincide in the case that O = O′ is special
and G′O = Sr.) See Table 1 for a list of the non-special completely odd orbits of
exceptional groups.

The following theorem is summarized from Section 6.

Main Theorem. Let G denote the k-points of a split simply connected algebraic
group of one of the exceptional types G2, F4, E6 or E7. Then

(i) the split (see Section 5) admissible orbits arise exactly from completely odd
orbits. In particular, every special orbit gives rise to a split admissible orbit.

Now assume that k = R or is p-adic with residual characteristic different from 2.
Then for the groups of type G2, F4 and E6:

(ii) admissibility is independent of the choice of rational orbit within a given al-
gebraic orbit, except for the B2-orbit of F4. (In this case, the orbit is not
completely odd, so the split orbit is not admissible. Depending on the arith-
metic of k, either exactly one, or all, of the non-split orbits is admissible.)

Since for classical groups, the completely odd orbits are exactly the special orbits,
this parametrization of admissible orbits is consistent with previous results on split
classical groups.

This result clarifies the heretofore mysterious link between the algebraically de-
fined special orbits and the geometrically defined admissible ones. It remains to
show this link directly, without case-by-case considerations; proving perhaps a con-
jecture of Vogan that admissibility is some mod Z/2Z reduction of an intrinsic
object related to the geometry of the special pieces.

Conjecture. We expect that the admissible nilpotent orbits of E8 will be exactly
the completely odd orbits.
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Table 1. The completely odd non-special orbits of G2, F4, E6,
E7 and E8.

Group Orbit O G′O conjugacy class
G2 A1 G2(a1) S3 (3)
F4 Ã2 +A1 F4(a3) S4 (3, 1)
E6 2A2 +A1 D4(a1) S3 (3)
E7 2A2 +A1 D4(a1) S3 (3)
E7 A5 +A1 E7(a5) S3 (3)
E8 2A2 +A1 D4(a1) S3 (3)
E8 2A2 + 2A1 D4(a1) +A1 S3 (3)
E8 E6(a3) +A1 E8(a7) S5 (3, 1, 1)
E8 A4 +A3 E8(a7) S5 (5)
E8 E6 +A1 E8(b5) S3 (3)

Alfred Noël [No1, No2] has independently computed the admissible nilpotent
coadjoint orbits for all exceptional groups over R. He applied techniques of Ohta
[O] (which do not extend to p-adic fields). His results agree with ours where they
overlap, and moreover, they support the above conjecture for E8 over R. In ad-
dition, he has found a handful of orbits for which admissibility is a non-stable
criterion (like B2 of F4 here). For some non-split exceptional real Lie groups, he
has shown that there are non-admissible special orbits (just as for some non-split
classical groups over R; see [Sch, O]).

In this paper we have excluded the study of the non-split rational orbits of E7

due to their sheer number and diversity. Fields of residual characteristic equal to
2 are excluded in the discussion of non-split rational orbits because many of the
results used in Appendix B either fail directly in that case or at least would require
separate arguments.

The structure of the paper is as follows. In Section 2, we set our notation and
recall the definition of an admissible nilpotent orbit. In Section 3, we describe meth-
ods for determining the admissibility of “split” nilpotent orbits of the exceptional
groups considered here. Our discussion of the occurrence of other rational orbits
within (the k-points of) each algebraic orbit begins in Section 4. There, we deter-
mine their number using Galois cohomology, and go on to describe a method for
obtaining representatives of these additional orbits. In Section 5 we give constraints
on the structure of the groups Gφ that can arise (for φ classifying a non-split orbit
in a given algebraic one).

Sections 6 is devoted to studying the orbits individually and recording their
admissibility. We relegate our explicit computations with respect to additional
rational orbits to the appendices. In Appendix A we give explicit representatives
of each rational orbit. In Appendix B we summarize results needed to determine
the admissibility of the non-split rational orbits occurring here.

Acknowledgements. Many thanks to Eric Sommers, for pointing out the relation
between the admissible non-special orbits and completely odd special pieces, and
to Jason Levy, for many fruitful discussions. The determination of the admissible
nilpotent orbits of G2 was part of my thesis [N1], conducted under the generous
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supervision of David Vogan. Thanks also to the anonymous referee for numerous
corrections and helpful suggestions. In particular, they provided the argument for
the bijectivity (and not mere injectivity) of the map v in the proof of Proposition 4.1,
and helped correct and clarify much of Section 6.

2. Admissibility

In this section, let us set our notation for the remainder of the paper, and recall
the definition of admissibility (originally defined by Duflo in [Du] over R).

Let k be a real or p-adic field. Let G be a linear algebraic group of exceptional
type, defined and split over k. Write G = G(k). Let Φ denote the set of roots of
G, and ∆ a set of simple roots.

Identify the adjoint orbits of G with its coadjoint orbits via a nondegenerate
invariant form 〈, 〉 on g. For each nilpotent orbit G ·E in g, choose H,F ∈ g so that
φ = span{E,H, F} is a Lie subalgebra of g isomorphic to sl(2, k). Define gφ to be
the centralizer in g of φ (in other words, the span of the trivial subrepresentations
of φ acting on g), and Gφ to be the corresponding subgroup of G. Let g [−1]
denote the subspace of −1 weight vectors of g with respect to H . It is a symplectic
vector space, endowed with the canonical Kirillov-Kostant symplectic form defined
by ωE(X,Y ) = 〈E, [X,Y ]〉, for all X,Y ∈ g [−1]. Then Gφ acts, via the adjoint
action, on g [−1], and preserves ωE.

Let Mp(g [−1] , k) denote the metaplectic group, that is, the unique two-fold
nontrivial covering group of Sp(g [−1] , k). The orbit G ·E is admissible if the cover
(Gφ)mp of Gφ defined by the diagram

(Gφ)mp −−−−→ Mp(g [−1] , k)y y
Gφ

Ad−−−−→ Sp(g [−1] , k)

(2.1)

splits (i.e. admits a smooth section) over Gφe , where Gφe is the topological identity
component when k = R, and an open normal subgroup containing I otherwise (see
[N2]).

Remarks. (i) Each even orbit is automatically admissible, since in that case
g [−1] = {0}; these orbits are also all special. Therefore we need only consider
non-even orbits in this paper.

(ii) We will need to assume that the residual characteristic of k is odd to determine
the admissibility of non-split rational orbits; see Appendix B.

3. Steinberg cocycles and splitting theorems

In this Section, we describe some particular criteria for admissibility applica-
ble in our setting. Let V be a finite-dimensional symplectic k-vector space and
consider the two-fold covering group Mp(V, k) of Sp(V, k). This central exten-
sion is defined by an element of H2(Sp(V, k), µ2), where µ2 = {±1}. One cocycle
S ∈ Z2(Sp(V, k), µ2) representing this cohomology class (called the Steinberg 2-
cocycle of Sp(V, k)) is given as follows (see [R], [LV, appendix]).

Write C1 = {z ∈ C | |z| = 1}. The “usual” cocycle cl of the metaplectic cover
is obtained by restriction of the cocycle of the C1-cover of the symplectic group. It
is defined relative to a choice of lagrangian (i.e. maximally isotropic) subspace l
of V (see [LV, A.9]). For our purposes, it suffices to note that for g, g′ ∈ Sp(V, k),
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cl(g, g′) = 1 if either g or g′ preserves l. In general, cl(g, g′) takes values in the set
of eighth roots of unity µ8 ⊂ C1.

To define a normalization of cl taking values in µ2, we need some definitions. Let
(·/·)k denote the (2-)Hilbert symbol of k (see, for example, [Neu, III §5]). Then the
Weil index of k ([W, §14]) is a function γ : k∗/k∗2 → µ8 satisfying in particular the
equation γ(1)γ(ab) = (a/b)kγ(a)γ(b) for any a, b ∈ k∗. Next, let D(g, l) ∈ k∗/k∗2 be
defined as in [LV, A.13]. (Roughly, given an orientation e ∈ ∧topl of the lagrangian
l, D(g, l) is a measure of the change in orientation between (l, e) and (g · l, g · e),
where these orientations may be compared, on the complement of the intersection
of l and g · l, via the ambient symplectic form.) For our purposes, it suffices to know
that if g ∈ Sp(V, k) is represented by a matrix [A B

C D ] (with respect to a basis of l
and of a complementary lagrangian, in that order), then D(g, l) = det(A) if C = 0,
and D(g, l) = det(C) if det(C) 6= 0. Now define

t(g) = γ(1)1−dim(l)+dim(l∩g·l)γ(D(g, l))−1,

and set

S(g, h) =
cl(g, h)t(gh)
t(g)t(h)

∈ µ2.(3.1)

This is the desired Steinberg 2-cocycle of Sp(V, k).
Moore defined Steinberg cocycles for all simple simply connected Chevalley

groups in [M2, Ch.III]. Let G be such a group, defined and split over k, and set
G = G(k). Let H be a split Cartan subgroup of G. Then the Steinberg cocycles
are representatives of cohomology classes in H2(G,A) (for A an abelian group)
satisfying certain (wonderful) properties. Among these is the following [M2, III,
Lemma 8.4], which implies that the covering of G induced by a Steinberg cocycle
splits if and only if its restriction to a certain one-parameter subgroup is trivial.

Lemma 3.1 (Moore). If α is a long root, and Hα its corresponding one-parameter
subgroup in H, then any Steinberg cocycle is determined by its restriction to Hα.

In the setting of (2.1), when Gφ is a (product of) simple simply connected Cheval-
ley group(s), the composition of S and Ad defines the Steinberg cocycle of the ex-
tension (Gφ)mp of Gφ, and Lemma 3.1 may be applied. In particular, this lemma
reduces the question of splitting of a given covering group for general Gφ in this
class to the splitting over a root SL(2, k) subgroup.

Let us thus compute the Steinberg cocycle arising through the special case of
k-representations V of SL(2, k) such that SL(2, k)→ Sp(V, k).

Theorem 3.2. Suppose V is an even-dimensional representation of SL(2, k) af-
fording an invariant symplectic form. Then the metaplectic cover of SL(2, k) in-
duced by the map ϕ : SL(2, k) → Sp(V, k) is trivial exactly when the total number
of subrepresentations of V having dimension of the form 4n + 2 (for some n) is
even.

Proof. Since the symplectic form on V is SL(2, k)-invariant, the decomposition of
V into isotypic components under SL(2, k) is orthogonal, and thus the isotypic
subspaces of V are themselves nondegenerate symplectic subspaces. The Steinberg
cocycle of SL(2, k) defined by this metaplectic cover will thus be a product of the
cocycles obtained through each of these symplectic subspaces.
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Denote the unique n-dimensional irreducible representation of SL(2, k) by V n.
(Note that it admits a nondegenerate invariant symplectic form if and only if n is
even.)

Let us first consider the special case of V = V 2n. Denote by h(t) the image of
the matrix

[
t 0
0 t−1

]
in Sp(V, k); then

h(t) = diag(t2n−1, t2n−3, . . . , t1, t−2n+1, t−2n+3, . . . , t−1).

We must restrict the Steinberg cocycle to the one-parameter subgroup {h(t) | t ∈
k∗} to apply Lemma 3.1.

Since h(t) preserves the lagrangian l spanned by the weight vectors of positive
weight, cl(h(t), h(s)) = 1 for all s, t ∈ k∗. We compute D(h(t), l) = det(h(t)|l) =
tn

2
; and so (3.1) simplifies to

S(h(s), h(t)) =
γ(sn

2
)γ(tn

2
)

γ(1)γ((st)n2)
= (sn

2
/tn

2
)k.(3.2)

Hence S is trivial (for all s, t ∈ k∗) if and only if n is even.
Now suppose V is isotypic for SL(2, k) and contains an odd-dimensional irre-

ducible subrepresentation V 2n+1; then V 2n+1 occurs with even multiplicity. We
may choose the lagrangian l to be a direct sum of half of these irreducibles;
again, h(t) preserves l. Since h(t)|V 2n+1 = diag(t2n, t2n−2, . . . , t−2n), it follows
that det(h(t)|V 2n+1) = 1 for all t ∈ k∗. Consequently, the Steinberg cocycle takes
value identically 1.

Finally, consider the general case, where we have a decomposition of V into
irreducibles under SL(2, k) of the form V =

⊕N
r=1mrV

r. We deduce from the
above that the Steinberg cocycle will be S(h(s), h(t)) = (sM/tM )k, where M =∑
nm2nn

2. It is thus trivial exactly when M is even, as we were required to
show.

Of course, in what follows, Gφ need not be simply connected or split over k. Let
us recall a splitting theorem from [N2] which is sometimes applicable in such cases.

Theorem 3.3. (a) If Gφ preserves a lagrangian subspace of g [−1], then the cor-
responding metaplectic cover splits over Gφe . (b) If Gφ preserves complementary
lagrangians and there exists a Gφ-invariant intertwining operator between them,
then the cover splits over all of Gφ.

Corollary 3.4. Suppose g [−1] = W ⊕W ∗ as a representation of Gφ, with either
W �W ∗ or W a lagrangian subspace. Then the corresponding orbit is admissible.

Proof. If W and W ∗ are inequivalent, it follows that both are lagrangian subspaces
of W ⊕W ∗. Hence under either hypothesis, Theorem 3.3 applies to give admissi-
bility.

4. Occurrence of other rational orbits

For each adjoint orbit O of the algebraic group G, its set of k-rational points
O(k) is a union of one or more orbits of G. In this Section, let us give means for
determining the number of rational orbits in the k-points of each algebraic orbit.
As these numbers are well-known for real groups, we restrict attention to k p-adic
here.

The main reference for the arguments in Galois cohomology used in the following
is Serre’s book [S]. Note that in general H1(k,G) is not a group, but only a pointed
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set; thus the fibres of a given map may have different cardinalities. Moreover, it
is a delicate matter to define a “long exact sequence in cohomology” arising from
a short exact sequence of groups. (Many thanks to the referee for sharing their
expertise to refine and improve the argument here.)

Proposition 4.1. Let G be a simply connected exceptional algebraic group, E a
nilpotent k-rational element of its Lie algebra, and φ the corresponding sl(2, k)-
subalgebra of g. Then the number of k-rational orbits of G = G(k) in the k-points
of the algebraic orbit G · E is equal to the order of H1(k,Gφ).

Proof. Note first that by [S, III§4.4], the number of rational p-adic orbits in the
k-points of a given algebraic orbit O = G · E is finite. To compute this number,
we begin with the short exact sequence of sets 1 → GE → G→ G/GE → 1. Take
Galois cohomology [S, I§5.5], to obtain the long exact sequence

1 −→ GE(k) −→ G(k) −→ (G/GE)(k) −→ H1(k,GE) α−−→ H1(k,G).

The k-rational orbits are the G-orbits on (G/GE)(k). Hence their number is mea-
sured by the quotient (G/GE)(k)/G, which is in bijection with the fibre of α. In our
setting, G is a simply connected linear algebraic group, and hence by [KnI, KnII],
we have that H1(k,G) = 0. In particular, the number of rational orbits is given by
the order of H1(k,GE).

We can make a further reduction. Since E is nilpotent, GE is the semidirect
product of its reductive part Gφ and a unipotent part UE . The short exact sequence
of groups 1→ UE → GE → Gφ → 1 yields a long exact sequence in cohomology

· · · −−−−→ H1(k,UE) −−−−→ H1(k,GE) v−−−−→ H1(k,Gφ).

It remains to prove that v is a bijection. Let b ∈ Z1(k,GE) be a cocycle defining
a class β in H1(k,Gφ). Since Gφ ⊂ GE , b can be interpreted as a cocycle in
Z1(k,GE) as well. Let its associated class in H1(k,GE) be denoted β̃. On the
other hand, the map v on cocycles is given by composition with the projection onto
Gφ; hence v(β̃) = β, and v is surjective. Furthermore, the first cohomology group
of the unipotent group UE is trivial by [S, III§2.1], so the fibre of v is trivial at
every point, as required.

In practice, it is far easier to determine H1(k,Gφ) than H1(k,GE), as Gφ is a
reductive group. It may not be connected; however, its algebraic component group
is well-known (see, for example, [CMcG, Ch.8.4]). We have

Gφ/Gφ0 ' π1(G · E),

where Gφ0 is the algebraic connected component of the identity (and known to us
from the calculations of the preceding section), and π1(G ·E) is the G-equivariant
fundamental group of the orbit.

Corollary 4.2. In the setting of Proposition 4.1, suppose that Gφ0 is a semisimple
simply connected algebraic group. Then |H1(k,Gφ)| ≤ |H1(k, π1(G · E))|.
Proof. The short exact sequence 1→ Gφ0 → Gφ → π1(G · E)→ 1 gives rise to the
long exact sequence

· · · → H1(k,Gφ0 )→ H1(k,Gφ)→ H1(k, π1(G ·E))(4.1)

in cohomology. By [KnI, KnII], H1(k,Gφ0 ) is trivial, so H1(k,Gφ) injects into
H1(k, π1(G ·E)).
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For those cases for which Gφ0 is not simply connected, we note the following
lemma from [Kn, Ch. IV].

Lemma 4.3 (Kneser). If G is a semisimple connected algebraic group defined over
k, and G̃ is its simply connected covering group, with kernel F , then H1(k,G) '
H2(k, F ).

The proof of this Lemma is done explicitly, on a case-by-case basis, and in
particular it does not speak to the case of either reductive or disconnected groups.
For those, we have some isolated results from [S]:
• If k contains all nth roots of unity, then H1(k, µn) = k∗/k∗n, and H2(k, µn) =
Z/nZ.
• If Gm denotes the multiplicative group of the field, then H1(k,Gm) = 0.

Proposition 4.1 often gives an effective means of computing the number of rational
orbits in the k-points of a given algebraic orbit. Another, more direct, method
may also be used; though laborious, it yields representatives of the various rational
orbits.

By a theorem of Mal’cev [CMcG, Thm 3.4.12], we know that the stabilizer of H
in G acts transitively on the dense subset P of orbit representatives of O in g[2].
Now P(k) will decompose into one or more orbits under GH(k) = GH .

Proposition 4.4. The rational orbits of GH acting on P are in one-to-one corre-
spondence with the rational orbits of G acting on O(k) ⊂ g.

Proof. Given a rational Lie triple {E,H, F} representing the orbit O (as in Sec-
tion 2), suppose {E′, H ′, F ′} is another rational Lie triple representing an orbit in
O. Then these triples are conjugate under an element g ∈ G. In particular, their
neutral elements H and H ′ are both diagonalizable over k, and hence conjugate
under G = G(k). Without loss of generality, assume H = H ′, so that E and E′

both lie in P(k). Whence the triples are conjugate under G if and only if E and
E′ are conjugate under GH .

The Lie algebra of GH is simply g[0], the zero-weight space of g under H . It
contains Gφ as a subgroup which fixes E. This lemma thus reduces the problem
of determining the rational orbits of an exceptional group acting on its Lie alge-
bra down to determining the rational orbits of a much smaller group acting on a
vector space. This is often feasible (see Appendix A), but nonetheless somewhat
unsatisfactory—we have “reduced” from a simple group and a specific irreducible
representation to a reductive group and a (generally) non-irreducible representa-
tion.

Remark. In Sections 6.1 to 6.3, we record the fundamental group of each orbit
and the number of real rational classes (obtained from [CMcG]). We compute
the number of p-adic rational classes using Proposition 4.1 where possible, and
Proposition 4.4 otherwise. We then obtain representatives of each in Appendix A.

5. Possible forms of non-split rational orbits

Let O be a nilpotent orbit under G. We call a rational orbit in O(k) split if the
corresponding reductive group Gφ is split over k. Each orbit O of a split group
G has one or more split rational orbits. All split rational orbits of a given O
have k-isomorphic admissibility data (Gφ, g [−1]). For non-split orbits, however,
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the situation is more complex. We proceed to decide the admissibility of non-split
orbits as follows.

If E′ is a representative of such an orbit, then the sl(2, k)-subalgebra φ′ it defines
must be conjugate under G to φ. Hence, in particular, Gφ

′
must be conjugate to

Gφ under an element of G, and in fact must be a (possibly different) k-form of Gφ.
Furthermore, upon tensoring over k with an algebraic closure of k, the action of
Gφ
′

on the corresponding g [−1] will be equivalent to the split orbit case. Let us
explore this latter observation.

In the following let V be a finite-dimensional representation of a reductive alge-
braic group G, all defined over k. (In application, this G will be Gφ

′
.)

Lemma 5.1. Suppose G acts irreducibly on V. Then G = G(k) acts irreducibly on
V = V(k).

Proof. Suppose W is an invariant proper k-subspace of V . Then the subspace
W = W ⊗k k is an invariant proper subspace of the action of G on V. Since k
is infinite, G = G(k) is Zariski-dense in G. The set of all g ∈ G that preserve
the subspace W is a Zariski-closed set (since the action is algebraic) and contains
G(k), hence is all of G. Thus W is an invariant subspace, and so must be {0}, by
irreducibility. Whence the result.

The converse is not true, in general; an irreducible k-rational representation
of a non-split k-form of G may decompose, upon passage to the algebraic (or even
separable) closure, into a direct sum of irreducibles ofG. Let ks denote the separable
closure of k. More precisely, we have the following results of Tits [T2, Théorème
3.3, Théorème 7.2 and Lemme 7.4].

Theorem 5.2 (Tits). Let G be a reductive group defined over k.
(i) Let λ be a dominant integral weight of G and let kλ be the extension field of k

corresponding to the stabilizer subgroup of λ in Gal(ks/k). Then λ gives rise
to an absolutely irreducible representation ρλ of G over some central simple
division algebra Dλ over kλ.

(ii) Each k-rational irreducible k-representation of G(k) is isomorphic to some
ρkλ, where ρkλ is obtained from ρλ by restriction of scalars (from Dλ and kλ to
k).

(iii) Let dλ denote the degree of Dλ over kλ (i.e. the square root of the index), and
suppose the orbit of λ under the Galois group Gal(ks/k) is {λ1, λ2, . . . , λn}.
Then, upon passage to ks, ρkλ decomposes into a direct sum of dλ copies of
ρλ1 , dλ copies of ρλ2 , and so on.

The orbit of λ under the Galois group can be read from the Tits diagram (see
[T1]) of G. Thus, whenever the decomposition of a (finite-dimensional) vector space
V into irreducibles under G is known, we can apply (iii) of Theorem 5.2 to deduce
whether or not this arises from a decomposition of V (k) into irreducibles under
G(k). In many cases, this allows us to exclude from possibility various groups
Gφ
′
(k) as occurring in other rational orbits. Where non-split orbits may occur, we

compute their admissibility on a case-by-case basis (see Appendix B).

6. Admissibility of non-even nilpotent orbits: tables

Our method for choosing a k-rational representative E of O such that G · E is
split is as follows; see [CMcG] for an overview of the subject. Note that all these
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computations were made feasible by programming them as functions for use with
MATLABr [M].

First set up a Chevalley basis {Hα, Xβ | α ∈ ∆, β ∈ Φ} for g, where [Xβ, X−β ] =
Hβ and the other structure constants are obtained from [GS] (for example). Given
the weighted Dynkin Diagram of O, reconstruct the neutral element H ∈ g of a Lie
triple classifying O, uniquely chosen to lie in the dominant chamber of the maximal
split torus. In fact, H will be a non-negative integral linear combination of the
root Hα’s. Then identify g[2], the 2-weight space of H acting on g. A Zariski-dense
subset P of g[2] will be contained in O; an element thereof is chosen as follows.

The Bala-Carter label [Ca] for O identifies the semisimple part of a Levi sub-
algebra l of g, and g[2] contains the span of its simple roots. The orbit O is the
saturation of a distinguished orbit of l (also identified by the Bala-Carter label).
We can choose a “standard” representative of this orbit using techniques of [CMcG,
Ch.5]; this is E, the desired representative of a split orbit in O(k). Finally, one
can deduce the value of F ∈ g[−2] such that φ = span{E,H, F} forms an sl(2, k)-
subalgebra of g, which in turn classifies the rational orbit through E.

Now compute the subalgebra gφ = {Z ∈ g[0] | [E,Z] = 0}. (This subalgebra is
called C in [E]. Elkington’s tables contain some errors, however; among them: F4:
orbit Ã1; E6: orbit A2 + 2A1; E7: orbits (3A1)′, 2A2 + A1, and (A5)′.) It is split
over k, and we can easily decompose the subspace g[−1] into irreducibles under gφ.

One can often use this to deduce the structure of (the algebraic identity com-
ponent of) the corresponding group Gφ. For example, if the weights of the adjoint
action of gφ on g generate the weight lattice of gφ, then Gφ0 must be simply con-
nected. For another, when gφ is a direct sum of simple or abelian factors, we can
determine the intersection, if any, of the corresponding subgroups of Gφ as fol-
lows. Let hα(t) denote the one-parameter subgroup of G corresponding to Hα ∈ g.
Then the one-parameter subgroup corresponding to a linear combination

∑
aiHαi

is h(t) =
∏
hαi(t)ai . Any intersection of factors of Gφ occurs in the Cartan sub-

group of G, so it suffices to compare elements of the form h(t). Note, in particular,
that hα(−1)2 = 1 for any α; this is what allows group factors to intersect even
where their Lie algebras are clearly disjoint.

In each of the following subsections, we list the non-even nilpotent (algebraic)
orbits of the given split simply connected exceptional group over k. Each one is
identified by both its Bala-Carter label (see [Ca]) and its weighted Dynkin diagram
(see, for example, [CMcG]); we also indicate whether or not it is special (following
tables in [CMcG]). We then specify a Lie triple {E,H, F} representing a split
rational orbit (in the k-points of the given algebraic orbit). The span of the Lie
triple is an sl(2, k) subalgebra denoted φ; its centralizer gφ is described next, both by
an explicit spanning set, and its isomorphism class. Next we give the decomposition
into irreducibles of the action of gφ on the subspace g [−1] of (−1)-weight vectors
under H . We then deduce the structure of Gφ0 , and whether or not the orbit is
admissible, using results of Section 3.

In Sections 6.1 through 6.3, we go on to specify the fundamental group of the
orbit and the number of real rational orbits (also from [CMcG]) and compute the
number of p-adic orbits (using Section 4). (See Table 2 for a quick summary.) We
elaborate on their admissibility, with reference to relevant parts of Appendices A
and B for the case-by-case computations.
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Table 2. The non-even nilpotent algebraic orbits of G2, F4 and
E6 decomposing into more than one k-rational orbit (k real or
p-adic).

Group Algebraic Orbit # k-rational orbits

F4 Ã1 |k∗/k∗2|
F4 A1 + Ã1 2
F4 B2 |k∗/k∗2|
F4 C3(a1) |k∗/k∗2|
E6 2A2 +A1 |k∗/k∗3|
E6 A5 |k∗/k∗3|

We specify the labeling of the simple roots at the beginning of each section.
Where this is more legible, we write Xabc··· in place of Xaα1+bα2+cα3+··· for positive
root vectors (and simply X−abc··· for the corresponding negative root vector). We
may also abbreviate by H(a, b, . . . ) the cumbersome aHα1 + bHα2 + · · · .

An irreducible representation of sl(2, k) of dimension n is denoted V n. A one-
dimensional µ-eigenspace of an element of the Cartan subalgebra is denoted kµ.
Other representations are described in words or with obvious notation. Where gφ

decomposes as a sum of two (or more) isomorphic ideals, we use subscripts a, b,
. . . , to distinguish them and their actions on g [−1]. All direct sums of ideals of gφ

are commutative.

6.1. G0
2,2. α ≡≡> β

Bala-Carter Label: A1 (not special)
Weighted Dynkin Diagram: 1 ≡≡> 0
Lie Triple φ: X2α+3β ,
2Hα +Hβ , X−2α−3β

gφ = span{Xβ, X−β, Hβ} ' sl(2, k)
g [−1] ' V 4

We have Gφ0 = SL(2, k); apply Theorem 3.2. The orbit is admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: Ã1 (not special)
Weighted Dynkin Diagram: 0 ≡≡> 1
Lie Triple φ: Xα+2β ,
3Hα + 2Hβ, X−α−2β

gφ = span{Xα, X−α, Hα} ' sl(2, k)
g [−1] ' V 2

We have Gφ0 = SL(2, k); apply Theorem 3.2. The orbit is not admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

6.2. F 0
4,4. α−− β ==> γ−− δ

Bala-Carter Label: A1 (not special)
Weighted Dynkin Diagram: 1−− 0 ==> 0−− 0
Lie Triple φ: X2α+3β+4γ+2δ,
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2Hα + 3Hβ + 2Hγ +Hδ, X−2α−3β−4γ−2δ

gφ = span{C3 with simple roots β, γ, δ } ' sp(6, k)
g [−1] ' V 14 (the representation of highest weight L1 + L2 + L3, notation of
[FH, §17])
We have Gφ0 = Sp(6, k). The SL(2, k)-subgroup associated with the long root of
Sp(6, k) decomposes g [−1] into five 2-dimensional irreducibles, and four copies of
the trivial representation. Apply Lemma 3.1 and Theorem 3.2. The orbit is not
admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: Ã1 (special)
Weighted Dynkin Diagram: 0−− 0 ==> 0−− 1
Lie Triple φ: Xα+2β+3γ+2δ,
2Hα + 4Hβ + 3Hγ + 2Hδ, X−α−2β−3γ−2δ

gφ = span{Xα, Xβ, Xα+β , Xβ+2γ , Xα+β+2γ , Xα+2β+2γ , Hα , Hβ , Hγ , and the
corresponding negative root spaces} ' sl(4, k)
g [−1] ' Vstd ⊕ V ∗std
We have Gφ0 = SL(4, k). Apply Corollary 3.4. The orbit is admissible.
Fundamental Group: S2; #R-orbits: 2; #p-adic orbits: |k∗/k∗2| (see
Appendix A.1)
Note on rational classes: We see from Appendix B.3 that the only other rational
form of Gφ that could arise is of a special unitary group, and that the cover of Gφ0
would split in that case as well. All rational orbits are therefore admissible.

Bala-Carter Label: A1 + Ã1 (special)
Weighted Dynkin Diagram: 0−− 1 ==> 0−− 0
Lie Triple φ: X1222 +X1231,
3Hα + 6Hβ + 4Hγ + 2Hδ, X−1222 +X−1231

gφ = span{ Xα, X−α, Hα ; −2Xγ + 2Xδ, −X−γ +X−δ, 2Hγ + 2Hδ } ' sl(2, k)a ⊕
sl(2, k)b
g [−1] ' (V 2

a ⊗ V 5
b )⊕ (V 2

a ⊗ V 1
b )

We have that the first sl(2, k) corresponds necessarily to an SL(2, k), since it has an
even-dimensional irreducible representation. On the other hand, the second sl(2, k)
embeds into g as a 3-dimensional representation (i.e. the image lies irreducibly in
the sl(3, k) subalgebra corresponding to the roots γ and δ), and hence necessarily
lifts to PGL(2, k) as a group. Thus Gφ0 = SL(2, k)× PGL(2, k). The metaplectic
cover splits over each group individually (using Theorem 3.2 and Theorem 3.3,
respectively). The orbit is admissible.
Fundamental Group: 1; #R-orbits: 2; #p-adic orbits: 2 (see Appen-
dix A.2)
Note on rational classes: By Appendix B.1 we see that the metaplectic cover will
split over all other possible rational forms of Gφ, and hence that all rational orbits
are admissible.

Bala-Carter Label: A2 + Ã1 (not special)
Weighted Dynkin Diagram: 0−− 0 ==> 1−− 0
Lie Triple φ: X1120 +X0122 +X1221,
4Hα + 8Hβ + 6Hγ + 3Hδ, 2X−1120 + 2X−0122 +X−1221
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gφ = span{ −2Xβ −X−δ +X−α−β, Xδ + 2Xα+β −X−β , −2Hα −Hδ} ' sl(2, k)
g [−1] ' V 2 ⊕ V 4

We have Gφ0 = SL(2, k); apply Theorem 3.2. The orbit is not admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: B2 (not special)
Weighted Dynkin Diagram: 2−− 0 ==> 0−− 1
Lie Triple φ: X1110 +X0122,
6Hα + 10Hβ + 7Hγ + 4Hδ, 3X−1110 + 4X−0122

gφ = span{Xβ, X−β, Hβ , Xβ+2γ , X−β−2γ , Hβ +Hγ} ' sl(2, k)a ⊕ sl(2, k)b
g [−1] ' (V 2

a ⊗ V 1
b )⊕ (V 1

a ⊗ V 2
b )

We have that Gφ0 (k) ' SL(2, k)× SL(2, k) since g [−1] is a faithful representation.
The metaplectic cover over each SL(2, k) fails to split by Theorem 3.2. The orbit
is not admissible.
Fundamental Group: S2; #R-orbits: 2; #p-adic orbits: |k∗/k∗2| (see
Appendix A.3)
Note on rational classes: Each non-split rational orbit has a corresponding group
Gφ ' SL(2,K), for K varying over all the nontrivial quadratic extensions of k.
As shown in Appendix B.2, if −1 ∈ k∗2, then all non-split orbits are admissible;
otherwise, only the non-split orbit for which K = k(

√
−1) is admissible.

Bala-Carter Label: Ã2 +A1 (not special)
Weighted Dynkin Diagram: 0−− 1 ==> 0−− 1
Lie Triple φ: X0121 +X1111 +X1220,
5Hα + 10Hβ + 7Hγ + 4Hδ, 2X−0121 + 2X−1111 +X−1220

gφ = span{Xα +Xγ , X−α +X−γ , Hα + Hγ} ' sl(2, k)
g [−1] ' 2V 2 ⊕ V 4

We have Gφ0 = SL(2, k); apply Theorem 3.2. The orbit is admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: C3(a1) (not special)
Weighted Dynkin Diagram: 1−− 0 ==> 1−− 0
Lie Triple φ: X0120 +X1111 +X0122,
6Hα + 11Hβ + 8Hγ + 4Hδ, 4X−0120 + 3X−1111 +X−0122

gφ = span{Xβ, X−β, Hβ} ' sl(2, k)
g [−1] ' 3V 2

We have Gφ0 = SL(2, k); apply Theorem 3.2. The orbit is not admissible.
Fundamental Group: S2; #R-orbits: 2; #p-adic orbits: |k∗/k∗2| (see
Appendix A.4)
Note on rational classes: By Appendix B.1, we conclude that all rational orbits are
split, and hence none are admissible.

Bala-Carter Label: C3 (special)
Weighted Dynkin Diagram: 1−− 0 ==> 1−− 2
Lie Triple φ: Xδ +Xα+β+γ +Xβ+2γ ,
10Hα + 19Hβ + 14Hγ + 8Hδ, 8X−δ + 5X−α−β−γ + 9X−β−2γ

gφ = span{Xβ, X−β, Hβ} ' sl(2, k)
g [−1] ' 2V 2
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We have Gφ0 = SL(2, k); apply Theorem 3.2. The orbit is admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

6.3. 1E0
6,6.

α1 α3 α4 α5 α6

α2

Bala-Carter Label: A1 (special)

Weighted Dynkin Diagram:
0 0 0 0 0

1

Lie Triple φ: X122321,
H(1, 2, 2, 3, 2, 1), X−122321

gφ = span{A5 with simple roots α1, α3, α4, α5, α6 } ' sl(6, k)
g [−1] ' V 20

We have Gφ0 = SL(6, k), the subgroup of the simply connected group corresponding
to this sub-Dynkin diagram of E6. To determine admissibility, apply Lemma 3.1.
Each SL(2, k) root subgroup decomposes g [−1] into 6V 2⊕8V 1; apply Theorem 3.2.
The orbit is admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: 2A1 (special)

Weighted Dynkin Diagram:
1 0 0 0 1

0

Lie Triple φ: X112211 +X111221,
H(2, 2, 3, 4, 3, 2), X−112211 +X−111221

gφ = span{H(2, 0, 1, 0,−1,−2) and the split B3 subalgebra with simple root vectors
Xα2 , Xα4 , Xα3 −Xα5 and Cartan spanned by Hα2 , Hα4 and Hα3 + Hα5} ' k ⊕
so(7, k)
g [−1] ' W ⊕W ∗, with W = k3 ⊗ Vspin
We have the (split) so(7, k) admits a spin representation, hence lifts to the simply
connected Spin(7, k) as a group. Comparing Cartan elements, we deduce that
the two factors intersect in a 2-element central subgroup Z. Hence Gφ = (k∗ ×
Spin(7, k))/Z. Apply Corollary 3.4. The orbit is admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1 (see Appen-
dix A.5)

Bala-Carter Label: 3A1 (not special)

Weighted Dynkin Diagram:
0 0 1 0 0

0

Lie Triple φ: X111211 +X112210 +X011221,
H(2, 3, 4, 6, 4, 2), X−111211 +X−112210 +X−011221

gφ = span{Xα2, X−α2 , Hα2 ; A2 with simple root vectors −Xα1 +Xα5 , Xα3 +Xα6

and Cartan spanned by Hα1 +Hα5 and Hα3 +Hα6} ' sl(2, k)⊕ sl(3, k)
g [−1] ' V 2 ⊗ (V 1 ⊕ Vadj)
We have the image of Gφ under the adjoint representation is SL(2, k)×PGL(3, k).
For the simply connected group, note that the sl(3, k) subalgebra embeds into
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sl(3, k)(α1, α3) ⊕ sl(3, k)(α5, α6), and each of these sl(3, k)-subalgebras admit 3-
dimensional irreducible representations. Thus our sl(3, k) lifts to a copy of SL(3, k)
and Gφ = SL(2, k) × SL(3, k). The metaplectic cover does not split over the
SL(2, k) factor by Theorem 3.2. The orbit is not admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: A2 +A1 (special)

Weighted Dynkin Diagram:
1 0 0 0 1

1

Lie Triple φ: X111110 +X101111 +X011211,
H(3, 4, 5, 7, 5, 3), 2X−111110 +X−101111 + 2X−011211

gφ = span{H(1, 0, 1, 1,−1,−1), and A2 with simple root vectors Xα3 , Xα4+α5 and
Cartan spanned by Hα3 , Hα4 +Hα5} ' k ⊕ sl(3, k)
g [−1] ' W ⊕W ∗, with W = 2(k−1 ⊗ Vstd)⊕ (k3 ⊗ V 1)
We have Gφ = k∗ × SL(3, k), since the sl(3, k) admits a 3-dimensional irreducible
representation, and the two subgroups do not intersect. Apply Corollary 3.4. The
orbit is admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: A2 + 2A1 (special)

Weighted Dynkin Diagram:
0 1 0 1 0

0

Lie Triple φ: X101110 +X011111 +X011210 +X111211,
H(3, 4, 6, 8, 6, 3), 2X−011110 + 2X−011111 +X−011210 +X−111211

gφ = span{H(1, 0, 2, 0,−2,−1); Xα1 + 2Xα2+α4 −X−α4 −X−α6 , −2Xα4 −Xα6 +
X−α1 +X−α2−α4 , Hα1 + 2Hα2 −Hα6} ' k ⊕ sl(2, k)
g [−1] ' W ⊕W ∗, with W = k3 ⊗ (V 4 ⊕ V 2)
We have Gφ = (k∗×SL(2, k))/Z for some 2-element central subgroup Z contained
in the Cartan. Apply Corollary 3.4. The orbit is admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1 (see Appen-
dix A.6)

Bala-Carter Label: A3 (special)

Weighted Dynkin Diagram:
1 0 0 0 1

2

Lie Triple φ: Xα2+α4 +X011110 +X101111,
H(4, 6, 7, 10, 7, 4), 3X−α2−α4 + 3X−011110 + 4X−101111

gφ = span{H(2, 0, 1, 0,−1,−2) and B2 with positive root vectors Xα3+α4 , Xα5 +
X−α3 , −Xα4 + Xα3+α4+α5 , Xα4+α5 , and Cartan spanned by Hα3 + Hα4 , −Hα3

+Hα5} ' k ⊕ so(5, k)
g [−1] ' (k3 ⊗ V 4)⊕ (k3 ⊗ V 4)∗

We have the so(5, k) factor lifts to a copy of Sp(4, k) in the group, by the exis-
tence of a 4-dimensional irreducible representation. Comparing Cartan elements,
we deduce Gφ = (k∗ × Sp(4, k))/Z, for some 2-element central subgroup Z. Apply
Corollary 3.4. The orbit is admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1 (see Appen-
dix A.7)
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Bala-Carter Label: 2A2 +A1 (not special)

Weighted Dynkin Diagram:
1 0 1 0 1

0

Lie Triple φ: X101100 +X000111 +X111110 +X011111 +X011210,
H(4, 5, 7, 10, 7, 4), 2X−101100 + 2X−000111 + 2X−111110 + 2X−011111 +X−011210

gφ = span{−Xα3 + Xα5 + X−α2 , Xα2 − X−α3 + X−α5 , −Hα2 + Hα3 + Hα5} '
sl(2, k)
g [−1] ' 4V 2 ⊕ V 4

We have Gφ0 = SL(2, k); apply Theorem 3.2. The orbit is admissible.
Fundamental Group: Z/3Z; #R-orbits: 1; #p-adic orbits: |k∗/k∗3| (see
Appendix A.8)
Note on rational classes: the existence of a single 4-dimensional rational absolutely
irreducible representation implies that all orbits must be split, and hence admissible.

Bala-Carter Label: A3 +A1 (not special)

Weighted Dynkin Diagram:
0 1 0 1 0

1

Lie Triple φ: X011100 +X101110 +X010111 +X001111,
H(4, 6, 8, 11, 8, 4), 3X−011100 + 4X−101110 + 3X−010111 + X−001111

gφ = span{H(2, 0, 1, 0,−1, 1); Xα4 , X−α4 , Hα4} ' k ⊕ sl(2, k)
g [−1] ' (k3 ⊕ 3k0 ⊕ k−3)⊗ V 2

We have Gφ(k) = k∗×SL(2, k). Apply Theorem 3.2. The orbit is not admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: A4 +A1 (special)

Weighted Dynkin Diagram:
1 1 0 1 1

1

Lie Triple φ: Xα1+α3 +X011100 +X010110 +X001110 +X000111,
H(6, 8, 11, 15, 11, 6), 6X−α1−α3 + 4X−011100 + 4X−010110 +X−001110 + 6X−000111

gφ = span{H(−2, 0,−1,−3, 1, 2)} ' k
g [−1] ' 4k3 ⊕ 4k−3

We have Gφ = k∗; apply Corollary 3.4. The orbit is admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: A5 (not special)

Weighted Dynkin Diagram:
2 1 0 1 2

1

Lie Triple φ: Xα1 +Xα6 +X011100 +X010110 +X001110,
H(8, 10, 14, 19, 14, 8), 8X−α1 + 8X−α6 + 5X−011100 + 5X−010110 + 9X−001110

gφ = span{Xα4 ,X−α4 ,Hα4} ' sl(2, k)
g [−1] ' 3V 2

We have Gφ0 = SL(2, k); apply Theorem 3.2. The orbit is not admissible.
Fundamental Group: Z/3Z; #R-orbits: 1; #p-adic orbits: |k∗/k∗3| (see
Appendix A.9)
Note on rational classes: By Appendix B.1, all orbits are split, hence none are
admissible.
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Bala-Carter Label: D5(a1) (special)

Weighted Dynkin Diagram:
1 1 0 1 1

2

Lie Triple φ: Xα2 +Xα1+α3 +X101100 +X001110 +X000111,
H(7, 10, 13, 18, 13, 7), 10X−α2 + 2X−α1−α3 − 5X−α2−α4 + 2X−α5−α6 + 5X−101100

+ 6X−001110 + 7X−000111

gφ = span{H(−1, 0, 1, 0,−1, 1)} ' k
g [−1] ' 3k3 ⊕ 3k−3

We have Gφ = k∗; apply Corollary 3.4. The orbit is admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

6.4. E0
7,7.

α1 α3 α4 α5 α6 α7

α2

Bala-Carter Label: A1 (special)

Weighted Dynkin Diagram:
1 0 0 0 0 0

0

Lie Triple φ: X2234321,
H(2, 2, 3, 4, 3, 2, 1), X−2234321

gφ = span{D6 with simple roots α2, α3, α4, α5, α6, α7} ' so(12, k)
g [−1] ' V 32

We have Gφ = Spin(12, k), since it corresponds to the sub-Dynkin diagram of the
simply connected group. A root SL(2, k) corresponding to a long root decomposes
g [−1] into 16 copies of the trivial representation and 8 copies of the 2-dimensional
representation. Thus the cover splits over each long root by Theorem 3.2, and
consequently over Gφ by Lemma 3.1. The orbit is admissible.

Bala-Carter Label: 2A1 (special)

Weighted Dynkin Diagram:
0 0 0 0 1 0

0

Lie Triple φ: X1223221 +X1123321,
H(2, 3, 4, 6, 5, 4, 2), X−1223221 +X−1123321

gφ = span{Xα7,X−α7 , Hα7 ; B4 with simple root vectors Xα1 , Xα3 , Xα4 , Xα5−Xα2

and Cartan spanned by Hα1 , Hα3 , Hα4 , Hα2 +Hα5} ' sl(2, k)⊕ so(9, k)
g [−1] ' V 2 ⊗ V 16

We have Gφ = SL(2, k)×Spin(9, k), since each group admits representations of the
simply connected group and they admit no intersection. Applying Lemma 3.1 and
Theorem 3.2, we deduce that the cover of Gφ splits over each piece individually.
The orbit is admissible.

Bala-Carter Label: (3A1)′ (not special)

Weighted Dynkin Diagram:
0 1 0 0 0 0

0

Lie Triple φ: X1122221 +X1123211 +X1223210,
H(3, 4, 6, 8, 6, 4, 2), X−1122221 +X−1123211 +X−1223210
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gφ = span{Xα1, X−α1 , Hα1 ; C3 with simple roots Xα5 , −Xα4 +Xα6 , Xα2 +Xα7}
' sl(2, k)⊕ sp(6, k)
g [−1] ' W ⊕W ∗, with W = V 2 ⊗ (V 1 ⊕ V 14)
We have that the sl(2, k) lifts to SL(2, k). With the help of explicit calculations to
determine which copy of C3 in E7 we have, we deduce from [LS, Table 8.6] that it
admits a 6-dimensional irreducible representation, and hence lifts to Sp(6, k) at the
group level. They do not intersect, so Gφ = SL(2, k)×Sp(6, k). The cover does not
split over the SL(2, k) piece of Gφ by Theorem 3.2. The orbit is not admissible.

Bala-Carter Label: 4A1 (not special)

Weighted Dynkin Diagram:
0 0 0 0 0 1

1

Lie Triple φ: X1111111 +X0112221 +X1123211 +X1223210,
H(3, 5, 6, 9, 7, 5, 3),X−1111111 +X−0112221 +X−1123211 +X−1223210

gφ = span{Hα3 , Hα5 , Hα1 +Hα4 +Hα6 , Xα6−X1011000, X0001100−X−0011000, Xα3 ,
Xα1 −X0001110, X0011100 −X−α4 , Xα5 , X1010000 + X0011110, X0000110 + X1011100,
X1011110, and the corresponding negative root vectors} ' sp(6, k)
g [−1] ' 2V 6 ⊕ V 14

We have Gφ = Sp(6, k), by the existence of the 6-dimensional irreducible repre-
sentation. The restriction of the representation g [−1] to the SL(2, k) arising from
the long root decomposes as seven 2-dimensional representations and twelve trivial
representations. Hence the cover does not split over this SL(2, k), and therefore,
by Lemma 3.1, it doesn’t split over Gφ = Sp(6, k). The orbit is not admissible.

Bala-Carter Label: A2 +A1 (special)

Weighted Dynkin Diagram:
1 0 0 0 1 0

0

Lie Triple φ: X1011110 +X0112221 +X1223211,
H(4, 5, 7, 10, 8, 6, 3), 2X−1011110 +X−0112221 + 2X−1223211

gφ = span{H(0, 2, 1, 2, 1, 0,−2); A3 with simple roots α3, α4, α5} ' k ⊕ sl(4, k)
g [−1] ' W ⊕W ∗, with W = (2k1 ⊕ k3)⊗ V 4

We have Gφ0 = (k∗ × SL(4, k))/Z, for some 2-element central subgroup Z. Apply
Corollary 3.4. The orbit is admissible.

Bala-Carter Label: A2 + 2A1 (special)

Weighted Dynkin Diagram:
0 0 1 0 0 0

0

Lie Triple φ: X1112111 +X1122110 +X0112211 +X1112210,
H(4, 6, 8,12, 9, 6, 3),X−1112111 + 2X−1122110 + 2X−0112211 +X−1112210

gφ = span{Xα2 , X−α2 , Hα2 ; 2Xα1 + Xα3 −Xα5 + Xα7 , X−α1 + 2X−α3 −X−α5 +
X−α7 , 2Hα1 + 2Hα3 + Hα5 + Hα7 ; X0000110 − X0000011, X−0000110 − X−0000011,
Hα5 + 2Hα6 + Hα7} ' sl(2, k)a ⊕ sl(2, k)b ⊕ sl(2, k)c
g [−1] ' V 2

a ⊗ (V 2
b ⊕ V 4

b )⊗ V 2
c

We have that the groups all are SL(2, k)s. However, the second and third SL(2, k)
share a common center Z. So Gφ0 = SL(2, k) × (SL(2, k) × SL(2, k))/Z. By
Theorem 3.2, the cover splits over the first SL(2, k); by Corollary 3.4, it splits over
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the (SL(2, k) × SL(2, k))/Z factor as well. Hence the cover splits. The orbit is
admissible.

Bala-Carter Label: A3 (special)

Weighted Dynkin Diagram:
2 0 0 0 1 0

0

Lie Triple φ: X1111000 +X1011100 +X0112221,
H(6, 7, 10, 14, 11, 8, 4), 3X−1111000 + 3X−1011100 + 4X−0112221

gφ = span{Xα7, X−α7 , Hα7 ; B3 with simple root vectors Xα3 , Xα4 , Xα2 + Xα5

and Cartan spanned by Hα3 , Hα4 , Hα2 +Hα5} ' sl(2, k)⊕ so(7, k)
g [−1] ' V 2 ⊗ Vspin
We haveGφ0 = SL(2, k)×Spin(7), because the split so(7, k) admits an 8-dimensional
irreducible (spin) representation and the two subgroups do not intersect. The cover
splits over the SL(2, k) by Theorem 3.2 and over Spin(7, k) by Corollary 3.4. The
orbit is admissible.

Bala-Carter Label: 2A2 +A1 (not special)

Weighted Dynkin Diagram:
0 1 0 0 1 0

0

Lie Triple φ: X0011111 +X1111111 +X1112110 +X1122100 +X0112210,
H(5,7,10,14,11,8,4), 2X−0011111+2X−1111111+2X−1112110+X−1122100+2X−0112210

gφ = span{−Xα1+Xα5+X−α2 , Hα1−Hα2+Hα5 , −X−α1+X−α5+Xα2 ; Xα4+Xα7+
X0101100, Hα2 +2Hα4 +Hα5 +Hα7 , X−α4 +X−α7 +X−0101100} ' sl(2, k)a⊕sl(2, k)b
g [−1] ' 2(V 2

a ⊗ V 3
b )⊕ (V 4

a ⊕ 2V 2
a )⊗ V 1

b

We have that the first A1 is an SL(2, k); the second embeds inside of a copy of A5

in E7, and decomposes the standard representation of sl(6, k) into even-dimensional
irreducibles. Thus it is an SL(2, k) as well. There is no intersection between them.
Thus Gφ0 = SL(2, k)× SL(2, k). By Theorem 3.2, the cover splits over each piece
individually. The orbit is admissible.

Bala-Carter Label: (A3 +A1)′ (not special)

Weighted Dynkin Diagram:
1 0 1 0 0 0

0

Lie Triple φ: X1011000 +X1111111 +X0112111 +X0112210,
H(6, 8, 11, 16, 12, 8, 4), 3X−1011000 + 3X−1111111 +X−0112111 + 4X−0112210

gφ = span{Xα3, X−α3 , Hα3 ; Xα6 , X−α6 , Hα6 ; X0000111 +X−α2 , Xα2 +X−0000111,
−Hα2 +Hα5 +Hα6 +Hα7} ' sl(2, k)a ⊕ sl(2, k)b ⊕ sl(2, k)c
g [−1] ' V 2

a ⊗ ((V 2
b ⊗ V 2

c )⊕ (V 1
b ⊗ V 3

c )⊕ (V 1
b ⊗ V 1

c ))
We have the three sl(2, k) subalgebras lift to non-intersecting SL(2, k) subgroups,
so Gφ0 = SL(2, k)× SL(2, k)× SL(2, k). By Theorem 3.2, the cover does not split
over the first copy of SL(2, k). The orbit is not admissible.

Bala-Carter Label: A3 + 2A1 (not special)

Weighted Dynkin Diagram:
1 0 0 1 0 1

0

Lie Triple φ: X1011100 +X0101111 +X0011111 +X0112210 +X1122110,
H(6, 8, 11, 16, 13, 9, 5), 3X−1011100+4X−0101111+X−0011111+X−0112210+3X−1122110
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gφ = span{Xα4 , X−α4 , Hα4 ; X0111000 − X−α6 , −Xα6 + X−0111000, Hα2 + Hα3 +
Hα4 −Hα6 } ' sl(2, k)a ⊕ sl(2, k)b
g [−1] ' (V 2

a ⊗ V 3
b )⊕ 2(V 2

a ⊗ V 1
b )⊕ 4(V 1

a ⊗ V 2
b )

We have the sl(2, k) subalgebras lift to non-intersecting SL(2, k) subgroups, so
Gφ0 = SL(2, k)× SL(2, k). By Theorem 3.2, the cover of the first copy of SL(2, k)
does not split. The orbit is not admissible.

Bala-Carter Label: D4(a1) +A1 (special)

Weighted Dynkin Diagram:
0 1 0 0 0 1

1

Lie Triple φ: X1111000 +X0101111 +X0011111 +X1011111 +X0112210,
H(6,9,12,17,13,9,5),−2X−0111000+4X−1111000+X−0101111+2X−0011111+2X−1011111

+ 4X−0112210 − 2X−1112210

gφ = span{Xα4 , X−α4 , Hα4 ; Xα6 , X−α6 , Hα6 } ' sl(2, k)a ⊕ sl(2, k)b
g [−1] ' 4(V 1

a ⊗ V 2
b )⊕ 4(V 2

a ⊗ V 1
b )

We have Gφ0 = SL(2, k) × SL(2, k), since g [−1] is a faithful representation. By
Theorem 3.2, the cover splits over each piece of Gφ. The orbit is admissible.

Bala-Carter Label: A3 +A2 (special)

Weighted Dynkin Diagram:
0 0 1 0 1 0

0

Lie Triple φ: X0001110 +X0111110 +X0101111 +X1011111 +X1122100,
H(6, 9, 12, 18, 14, 10, 5), 3X−0001110 + 2X−0111110 + 3X−0101111 + 2X−1011111

+ 4X−1122100

gφ = span{2Hα1 +Hα2 −Hα7 ; Xα5 , X−α5 , Hα5 } ' k ⊕ sl(2, k)
g [−1] ' W ⊕W ∗, with W = (3k1 + k3)⊗ V 2

We have Gφ0 = k∗ × SL(2, k). Apply Theorem 3.2 and Corollary 3.4. The orbit is
admissible.

Bala-Carter Label: D4 +A1 (not special)

Weighted Dynkin Diagram:
2 1 0 0 0 1

1

Lie Triple φ: Xα1 +X0111000 +X0101111 +X0011111 +X0112210,
H(10, 13, 18, 25, 19, 13, 7), 10X−α1 + 6X−0111000 + X−0101111 + 6X−0011111

+ 6X−0112210

gφ = span{Hα4 ,Hα6 , X−α6 , X0001110 + X−α5 , X0001100 − X−0000110, Xα4 , Xα6 ,
X−0001110 +Xα5 , X−0001100 −X0000110, X−α4} ' so(5, k)
g [−1] ' 3V 4

We have Gφ = Sp(4, k) by the existence of a 4-dimensional irreducible representa-
tion. Thus we have Sp(4, k) mapping into three copies of itself, which corresponding
cover does not split. The orbit is not admissible.

Bala-Carter Label: A4 +A1 (special)

Weighted Dynkin Diagram:
1 0 1 0 1 0

0

Lie Triple φ: X1011000 +X0101110 +X1111100 +X0011111 +X0112100,
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H(8, 11, 15, 22, 17, 12, 6), 4X−1011000 + 6X−0101110 + 4X−1111100 + 6X−0011111

+X−0112100

gφ = span{Hα2 +Hα3 −Hα5 , Hα3 −Hα7} ' k ⊕ k
g [−1] ' V ⊕ V ∗, dim(V ) = 7
We have Gφ0 = k∗ × k∗. Apply Corollary 3.4. The orbit is admissible.

Bala-Carter Label: D5(a1) (special)

Weighted Dynkin Diagram:
2 0 1 0 1 0

0

Lie Triple φ: Xα1 +X1010000 + 3X0001110 + 2X0011110 +X0101111 +X0112100,
H(10, 13, 18, 26, 20, 14, 7), 2X−α1+8X−1010000+X−0001110+2X−0011110+7X−0101111

+ 6X−0112100 + 2X−0111111

gφ = span{Hα2 −Hα7 ; Xα5 , X−α5 , Hα5} ' k ⊕ sl(2, k)
g [−1] ' (k1 ⊗ 3V 2)⊕ (k1 ⊗ 3V 2)∗

We have Gφ0 = k∗ × SL(2, k); apply Corollary 3.4. The orbit is admissible.

Bala-Carter Label: (A5)′ (not special)

Weighted Dynkin Diagram:
1 0 1 0 2 0

0

Lie Triple φ: X0000110 +X0000011 +X1011000 +X1111100 +X0112100,
H(10, 14, 19, 28, 22, 16, 8), 8X−0000110 + 8X−0000011 + 5X−1011000 + 5X−1111100

+ 9X−0112100

gφ = span{Xα3, X−α3 , Hα3 , Xα5 + Xα7 + X−α2 , Xα2 + X−α5 + X−α7 , −Hα2 +
Hα5 +Hα7 } ' sl(2, k)a ⊕ sl(2, k)b
g [−1] ' V 2

a ⊗ (V 3
b ⊕ 2V 1

b )
We have that both subalgebras lift to SL(2, k) at the group level, since the second
embeds into a subalgebra of type A5 in E7 and decomposes its standard representa-
tion into even dimensional irreducibles. They commute and admit no intersection,
so Gφ0 = SL(2, k) × SL(2, k). By Theorem 3.2, the cover splits over the second
SL(2, k) but not the first. The orbit is not admissible.

Bala-Carter Label: A5 +A1 (not special)

Weighted Dynkin Diagram:
1 0 1 0 1 2

0

Lie Triple φ: Xα7 +X1011000 +X0101110 +X0011110 +X1111100 +X0112100,
H(10,14,19,28,22,16,9), 9X−α7 +5X−1011000+8X−0101110+8X−0011110+5X−1111100

+X−0112100

gφ = span{Xα5 +X−α2 −X−α3 , Xα2 −Xα3 +X−α5 −Hα2 −Hα3 +Hα5} ' sl(2, k)
g [−1] ' 4V 2 ⊕ V 4

We have Gφ0 = SL(2, k), and the cover splits by Theorem 3.2. The orbit is admis-
sible.

Bala-Carter Label: D6(a2) (not special)

Weighted Dynkin Diagram:
0 1 0 1 0 2

1

Lie Triple φ: Xα7 + 2X0000011 − X0111000 + X0101100 + 5X0011100 + 2X1111000

+ 4X0101110 + 3X0011110 + 4X1011110,
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H(10, 15, 20, 29, 23, 16, 9), 5X−α7+2X−0000011+X−0101100+2X−0011100+3X−1111000

+ 2X−0101110 +X−1011110

gφ = span{Xα4 , X−α4 , Hα4 } ' sl(2, k)
g [−1] ' 5V 2

We have Gφ0 = SL(2, k); apply Theorem 3.2. The orbit is not admissible.

Bala-Carter Label: D5 +A1 (special)

Weighted Dynkin Diagram:
2 1 0 1 1 0

1

Lie Triple φ: Xα1 +X0000110 +X0111000 +X0101100 +X0011100 +X0001111,
H(14, 19, 26, 37, 29, 20, 10), 14X−α1 + 10X−0000110 + 18X−0111000 + X−0101100

+ 8X−0011100 + 10X−0001111

gφ = span{Xα7 +X−α4 , Xα4 +X−α7 , −Hα4 +Hα7} ' sl(2, k)
g [−1] ' 4V 2

We have Gφ0 = SL(2, k); apply Theorem 3.2. The orbit is admissible.

Bala-Carter Label: D6(a1) (special)

Weighted Dynkin Diagram:
2 1 0 1 0 2

1

Lie Triple φ: Xα1 +Xα7 +X0000011 +X0111000 +X0101100 + 2X0011100−X0011110,
H(14,19,26,37,29,20,11), 14X−α1−9X−α7 +20X−0000011+8X−0111000+11X−0101100

+ 9X−0011100 + 20X−0101110

gφ = span{Xα4 , X−α4 ,Hα4} ' sl(2, k)
g [−1] ' 4V 2

We have Gφ0 = SL(2, k); apply Theorem 3.2. The orbit is admissible.

Bala-Carter Label: D6 (not special)

Weighted Dynkin Diagram:
2 1 0 1 2 2

1

Lie Triple φ: Xα1 +Xα6 +Xα7 +X0111000 +X0101100 +X0011100,
H(18,25,34,49,39,28,15), 18X−α1 + 28X−α6 + 15X−α7 + 10X−0111000 + 15X−0101100

+ 24X−0011100

gφ = span{Xα4 ,X−α4 , Hα4} ' sl(2, k)
g [−1] ' 3V 2

We have Gφ0 = SL(2, k); apply Theorem 3.2. The orbit is admissible.

Appendix A. Finding representatives for non-split rational orbits

A.1. The Ã1 orbit of F 0
4,4. By Corollary 4.2, the number of orbits is at most

|H1(k, S2)| = |k∗/k∗2|. Let us use Proposition 4.4 to deduce that this bound is
optimal.

Using the weighted Dynkin Diagram of this orbit, we compute that g[0] is the
direct sum of a split Lie algebra of type B3 (with simple roots α, β and γ) and kHδ

(notation of Section 6.2). The subspace g[2] has basis

B = {X0122, X1122, X1222, X1232, X1242, X1342, X2342}.

The split so(7) acts on g[2] as the standard representation, preserving a nonde-
generate quadratic form. With respect to the basis B above, this form is Q(~x) =
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x1x7 + x2x6 + x3x5 + x2
4. The subspace spanned by Hδ acts diagonally with re-

spect to B. At the group level, then, the action of GH on g[2] factors through
SO(Q)nGm.

The representative E chosen for the split orbit satisfies Q(E) 6= 0, whence P may
be identified as the subset of non-isotropic elements of g[2]. Given a representative
E′ of a rational orbit, conjugation by SO(Q) will preserve Q(E′), and (we check)
the action by the one-parameter subgroup corresponding to Hδ will modify Q(E′)
by a square. Thus under GH , P decomposes into exactly |k∗/k∗2| orbits. Explicitly,
representatives for these orbits are mX0122 +X2342, where m runs over the classes
mod squares in k∗.

A.2. A1 + Ã1 orbit of F4. Here, there are exactly two orbits by Lemma 4.3. We
have g[0] = sl(3, k)γ,δ ⊕ sl(2, k)α ⊕ kHβ. A basis for g[2] is

B = {X1220, X1221, X1222, X1231, X1232, X1242}.

The sl(2, k) acts trivially on g[2], the kHβ acts diagonally (with respect to B), and
the sl(3, k) acts on g[2] as the symmetric square of the standard representation of
sl(3, k).

We have two immediate choices of orbit representatives: E = X1222 +X1231 and
E′ = X1220 +X1222 +X1242 (obtained by considering the GH -action on g[2]). Let φ′

be the standard Lie triple corresponding to E′; then gφ
′

= sl(2, k)⊕ so(Q), where
the quadratic form Q is represented by the 3 × 3 identity matrix. When k = R
or k has residual characteristic 2 and (−1/− 1)k = −1, so(Q) is not equivalent to
sl(2, k), which shows that the two orbits are distinct.

Otherwise, the groupsGφ andGφ
′
are isomorphic; however, one can (laboriously)

prove directly that the two orbits are not rationally conjugate under GH (for any
choice of k).

A.3. B2 orbit of F4. Here, the number of orbits is bounded by |H1(k, S2)| =
|k∗/k∗2| by Corollary 4.2. We have g[0] = so(5) ⊕ kHα ⊕ kHδ, where so(5) is the
split subalgebra with simple roots β and γ. The subspace g[2] is 6-dimensional,
and decomposes under the so(5) as Vstd ⊕ k. Consider the basis of g[2] given by

B = {Xα, Xα+β, Xα+β+γ , Xα+β+2γ , Xα+2β+2γ , Xβ+2γ+2δ}.

As before, the subgroup of GH corresponding to so(5) preserves a quadratic form,
which is given by Q(~x) = x1x5 + x2x4 + x2

3 in coordinates with respect to B.
Moreover, the one-parameter subgroups corresponding to Hα and Hδ can only
change the value of Q(~x) by a square, whereas they can scale the last coordinate
by any value in k∗. Whence there must be |k∗/k∗2| orbits. Representatives of these
other orbits are mXα +Xα+2β+2γ +Xβ+2γ+2δ, where m runs over the classes mod
squares in k∗.

A more careful look at the groups Gφ arising from each of these rational orbits
shows that in fact each different value m /∈ k∗2 chosen leads to Gφ ' SL(2, k(

√
m)).

A.4. C3(a1) orbit of F4. Again, the number of orbits is bounded by |H1(k, S2)| =
|k∗/k∗2|, by Corollary 4.2. In this case, g[0] = sl(2, k)β ⊕ sl(2, k)δ ⊕ kHα ⊕ kHγ ,
and g[2] is spanned by

B = {Xα+β+γ , Xβ+2γ , Xβ+2γ+δ, Xα+β+γ+δ, Xβ+2γ+2δ}.
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Hence sl(2, k)β acts trivially, whereas sl(2, k)δ decomposes g[2] into irreducibles
Vstd ⊕ Vadj . The one-parameter subgroup of GH corresponding to Hα acts by
scalars (in k∗) on each of these subrepresentations; the subgroup corresponding to
Hγ acts diagonalizably.

The element X = Xβ+2γ+Xβ+2γ+2δ ∈ g[2] corresponds, under the identification
with the adjoint representation, to the matrix [ 0 1

1 0 ]. Its orbit under GH consists of
all nonzero hyperbolic (diagonalizable over k) matrices. Choosing representatives
X(m) = Xβ+2γ + mXβ+2γ+2δ, as m ranges over the classes mod squares of k∗,
yields representatives for the remaining rational orbits of maximal dimension. We
conclude that the elements E(m) = Xα+β+γ+δ +X(m) are a set of representatives
of distinct (hence all) rational orbits in G ·E.

A.5. 2A1 orbit of E6. In this case, Gφ = (k∗ × Spin(7, k))/Z, and there is no
simple way using exact sequences to deduce (or bound) the cardinality of H1(k,Gφ).
We must compute the number of rational orbits using Proposition 4.4.

Note that g[0] ' so(8, k) ⊕ kHα1 ⊕ kHα6 , and that g[2] is the 8-dimensional
standard representation of (split) so(8, k). With respect to the basis

B = {X122321, X112321, X112221, X111221, X101111, X111111, X111211, X112211}
of g[2], the quadratic form preserved by the so(8, k) factor is given by Q(~x) =
x1x5 +x2x6 +x3x7 +x4x8. Our representative E = (0, 0, 0, 1, 0, 0, 0, 1) with respect
to B, hence Q(E) = 1, and the orbit of E under the subgroup of GH corresponding
to so(8, k) consists of all those vectors X with Q(X) = 1. The action of the one-
parameter subgroup h6(t) on E gives (0, 0, 0, t, 0, 0, 0, 1); this scaling implies that
one obtains all vectors X with Q(X) 6= 0 as g ·E, for some g ∈ GH . It follows that
there is exactly one open orbit of GH in g[2], and hence a unique rational orbit of
G in the k-points of G · E.

A.6. A2 + 2A1 orbit of E6. Here, Gφ = (k∗×SL(2, k))/Z. We show directly that
there is only one rational orbit.

Begin by noting that

g[0] = sl(2, k)1 ⊕ sl(2, k)6 ⊕ sl(3, k)2,4 ⊕ kHα3 ⊕ kHα5

and the space g[2] is precisely the tensor product V 2 ⊗ V 2 ⊗ V 3 of the standard
representations of each of the simple subalgebras. A basis B for this space is
abstractly the set of vectors ~ei ⊗ ~ej ⊗ ~ek, (where ~ei denotes the ith standard basis
vector of V n), ordered lexicographically; here we have

B = {X111211, X111111, X101111;X111210X111110, X101110;
X011211, X011111, X001111;X011210, X011110, X001110}.

The orbit representativeE is given in coordinates with respect to B by the 12-vector
E = (~e1, ~e3, ~e2, ~e1).

The action of an element g ∈ SL(2, k) × SL(2, k) is to take E to an element
g ·E = (r, s, t,u) such that if J denotes the matrix product J = rut− stt, then the
matrix Q = J + J t is preserved. Interpret Q as the matrix of a (clearly isotropic)
quadratic form. We claim that the orbit of E under GH is the set of all (r, s, t,u)
such that the corresponding quadratic form Q is nondegenerate; note that Q is
necessarily isotropic.

An element h ∈ SL(3, k) acts on (r, s, t,u) to modify Q to hQht. The one-
parameter subgroups h3(a) and h4(b) act on (r, s, t,u) to give (r′, s′, t′,u′) such
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that the determinant of Q is scaled by the product ab. Given that all nondegenerate
isotropic quadratic forms in 3 variables (over real and p-adic fields) are related by
scaling, the claim follows. Whence GH · E is the unique open orbit in g[2], as
required.

A.7. A3 orbit of E6. Here, Gφ = (k∗ × Sp(4, k))/Z; again, we show directly that
there is only one rational orbit in this case.

Now g[0] is the subalgebra sl(4, k) with simple roots α3, α4, α5, along with the
part of the Cartan subalgebra spanned by Hα1 , Hα2 and Hα6 . As a representation
of sl(4, k), the space g[2] is isomorphic to ∧2Vstd ⊕ k.

First note the following. Writing ~ei for the standard basis vector of k4, a basis
for ∧2Vstd is given by the wedge products ~ei ∧ ~ej , in lexicographic ordering. The
orbit of GL(4, k) through ~e1 ∧ ~e3 + ~e2 ∧ ~e4 is a Zariski open set in ∧2Vstd, given
as the set of all ~u ∧ ~v + ~w ∧ ~x such that the determinant of the 4× 4 matrix with
columns given by the coordinates of ~u, ~w,~v, ~x is nonzero.

The basis of g[2] corresponding to the above abstract basis (with the trivial
representation listed last) is

B = {X011210, X011110, Xα2+α3+α4 , Xα2+α4+α5 , Xα2+α4 , Xα2 ;X101111}
Our representativeE of the orbit thus corresponds the sum ~e1∧~e3+~e2∧~e4+X101111.
The action of the one-parameter subgroups h1(r), h2(s) and h6(t) on E is

h1(r)h2(s)h6(t) ·E = s(rt)−1~e1 ∧ ~e3 + s~e2 ∧ ~e4 + s−1rtX101111.

It now follows that the orbit of E under GH is a Zariski open. Namely, let b 6= 0 and
X = ~u∧~v+ ~w ∧ ~x+ bX101111 ∈ g[2] such that the aforementioned determinant has
value a 6= 0. Choose s = ab, rt = ab2, and g ∈ SL(4, k) with columns given by the
coordinates of rts−1~u, s−1 ~w, ~v, ~x (in that order). Then gh1(r)h2(s)h6(t) ·E = X .
Hence there is a unique open orbit of GH on g[2], as required.

A.8. 2A2 + A1 orbit of E6. By Corollary 4.2, the number of orbits is at most
|H1(k,Z/3Z)| = |k∗/k∗3| (when k contains the cube roots of unity). In this case,
g[2] is a 9-dimensional space, with basis

B = {X101100, X101110, X111100, X111110,

X000111, X001111, X010111, X011111, X011211}
and

g[0] = sl(2, k)α2 ⊕ sl(2, k)α3 ⊕ sl(2, k)α5 ⊕ kHα1 ⊕ kHα4 ⊕ kHα6 .

Note that the three sl(2, k) subalgebras commute, and that the Cartan pieces will
act diagonalizably on g[2]. Let us compute the rational orbit of the chosen repre-
sentative E, which equals (1, 0, 0, 1, 1, 0, 0, 1, 1) in coordinates with respect to the
basis B.

First note that the SL(2, k)α5-action on g[2] decomposes as 2V 2 + 5V 1, with the
two copies of the standard representation lying on the first four vectors of the basis
above. Hence, for g5 =

[
a b
c d

]
∈ SL(2, k)α5 , we have g5 · E = (a, c, b, d, 1, 0, 0, 1, 1),

with ad − bc = 1. Similarly, an element g3 =
[
e f
g h

]
∈ SL(2, k)α3 acts nontrivially

only on the next four coordinates, so we have g3g5 ·E = (a, c, b, d, e, g, f, h, 1), with
ad− bc = 1 and eh− fg = 1. The action of SL(2, k)α2 does not further enlarge the
orbit.



ADMISSIBLE ORBITS OF EXCEPTIONAL GROUPS 185

Now action by the one-parameter subgroups corresponding to Hα1 , Hα4 , and
Hα6 (denoted by h1(r), h4(s) and h6(t), respectively) scales these values as follows

h1(r)h4(s)h6(t)g3g5 ·E
= (rsa, rt−1c, rb, rs−1t−1d, ste, r−1tg, tf, r−1s−1th, r−1st−1).

This gives a degree of freedom of r2t−1 in the first four coordinates, of r−1t2 in the
second four coordinates, and r−1st−1 in the last coordinate.

To solve for an arbitary element of g[2] (except possibly some in a subvariety
of lower dimension), one can choose g3 and g5 to give the correct values up to
scaling in the first four, second four, and last coordinate, respectively. However, to
solve r2t−1 = m and r−1t2 = n implies solving t3 = n2m, which is possible only if
k∗3 = k∗.

Whence representatives of the |k∗/k∗3| rational orbits in G ·E are, in coordinates
with respect to B, given by (m, 0, 0, 1, 1, 0, 0, 1, 1), with m running over the classes
mod cubes in k∗.

A.9. A5 orbit of E6. Again by Corollary 4.2, the number of orbits is at most
|H1(k,Z/3Z)| = |k∗/k∗3| (when k contains the cube roots of unity). We have that
g[2] is spanned by

B = {Xα1 , Xα6 , Xα2+α3+α4 , Xα2+α4+α5 , Xα3+α4+α5}

and that g[0] is the direct sum of sl(2, k)α4 (which acts trivially on g[2]) and the
rest of the Cartan subalgebra. Our orbit representative E is given by (1, 1, 1, 1, 1)
with respect to the above basis B for g[2]; since the action of GH is diagonal with
respect to B, any orbit representative must have all nonzero coordinates. Comput-
ing the Cartan action directly and then solving for any possible orbit representative
leads to a cubic equation in k∗. Once again, we deduce there are |k∗/k∗3| ratio-
nal orbits. One set of representatives is given in coordinates with respect to B as
{(1, 1, 1,m, 1)}, where m runs over the classes mod cubes in k∗.

Appendix B. Admissibility of non-split rational orbits

Those rational orbits for which we cannot exclude the possibility that non-split
forms of Gφ arise must be treated on a case-by-case basis. The admissibility of
these orbits is known over R by [No1, No2]. In this section, we discuss the (very
few) cases arising in G2, F4 and E6.

B.1. k-forms of SL(2). Suppose Gφ is SL(2). It admits a unique non-split k-
form, which we identify with SL(1, D), for D the quaternions over k [T1] when k
is a p-adic field, and with SU(2) when k = R. Note that both these groups are
compact, each being isomorphic to a two-fold cover of a special orthogonal group
preserving an anisotropic quadratic form.

Theorem 5.2 implies that these groups do not admit 2-dimensional k-rational
representations. Rather, their standard 4-dimensional k-rational representations
decompose into two 2-dimensional irreducibles upon passage to the algebraic clo-
sure.

Lemma B.1. The metaplectic cover of a compact k-from of SL(2) arising from its
4-dimensional irreducible k-rational representation splits.
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Proof. First let k denote a p-adic field (of residual characteristic different from
2), and D = 〈1, i, j, k | i2 = a, j2 = b, ij = k = −ji〉 (where a, b ∈ k∗ satisfy
(a/b)k = −1) the skew field of quaternions over k. Realize the given represen-
tation of SL(1, D) as left multiplication on D. This action preserves the sym-
plectic structure on D = F 4 given by ω(1, k) = ω(j, i) = 1. Whence our map
SL(1, D) → Sp(4, k). The image of SL(1, D) is a compact subgroup of Sp(4, k),
which preserves a self-dual lattice in F 4 (namely, the R-span of {1, i, j, k}, where
R denotes the integer ring of k). Hence by [MVW, Ch2.II.8], the cover splits.

Now let k = R. The standard representation of U(2) preserves a hermitian form
on C2. The imaginary part of this form defines a symplectic form on R4 preserved
by U(2), and hence gives a map U(2) → Sp(4,R). This realizes U(2) as part of a
dual reductive pair in Sp(4,R), whose full C1 metaplectic cover splits. Restriction
to SU(2) gives a splitting over that subgroup; since SU(2) is equal to its group of
commutators, the image of this splitting map must lie in Mp(4,R), as required.

B.2. k-forms of SL(2) × SL(2). Suppose Gφ is SL(2) × SL(2). Its non-split k-
forms include not only direct product groups, with one or both factors non-split
forms of SL(2), but also SL(2,K), for K a quadratic extension field of k, viewed
as a k-group. The former cases may be understood with the help of Appendix B.1.

For k = R, the group SL(2,C) is simply connected, and so any cover of it
will split, implying the orbit is admissible. For k a p-adic field, the answer is less
straightforward. We compute the metaplectic cover in the fundamental case of the
standard representation of SL(2,K) (a k-rational representation by restriction of
scalars).

Lemma B.2. Let k be a p-adic field of residual characteristic different from 2.
Let K = k(

√
α) be a quadratic extension field of k (where α ∈ k∗ is not a square).

View SL(2,K) as a k-group; then it admits a 4-dimensional irreducible k-rational
representation, coming from the standard representation of SL(2,K) on K2 ' k4.
This gives a homomorphism

ϕ : SL(2,K)→ Sp(4, k).

The metaplectic cover of SL(2,K) determined by the lift of ϕ to Mp(4, k) splits
when either −1 ∈ k∗2 or α = −1 /∈ k∗2. It does not split otherwise.

Proof. Note that Lemma 3.1 applies to SL(2,K). The calculation of the restriction
of the metaplectic cocycle of Sp(4, k) to the diagonal subgroup of SL(2,K) is as
follows. Let h = diag(z, z−1) ∈ H ⊂ SL(2,K), with z ∈ K∗. Then ϕ(h) is a block
diagonal matrix (A, tA−1), where A =

[
a αb
b a

]
and z = a+

√
αb.

The Steinberg cocycle (3.1) of Sp(4, k), which is restricted to ϕ(H), is S(h, h′) =
t(hh′)t(h)−1t(h′)−1 since ϕ(H) preserves lagrangian subspaces. Moreover, t(h) =
γ(1)γ(det(A))−1; so, as before, (cf. (3.2)), we have S(h, h′) = (det(A)/ det(A′))k.
Now det(A) = a2 − αb2 = NK/k(z), the norm of z. The image of these norms in
k∗/k∗2 has index 2. Since k has residual characteristic different from 2, this implies
that det(A) can take on only 2 different values modulo k∗2: denote these values
{1, a}.

If (a/a)k = (a/ − 1)k = 1, then the Steinberg cocycle is identically 1 on ϕ(H),
implying that the cover splits. This occurs whenever −1 ∈ k∗2, or when α = −1 /∈
k∗2.

The remaining cases have k∗/k∗2 = {1,−1, $,−$}, for $ ∈ k an element of
minimal positive valuation, and α ∈ {$,−$}. It follows that a = −α and (a/a)k =
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−1 and the Steinberg cocycle is nontrivial. (In fact, one can verify directly that
the cocycle (NK/k(z), NK/k(z′))k is equivalent to the nontrivial Steinberg cocycle
(z/z′)K .) Thus the cover does not split.

Remark. The (2-)Hilbert symbol is not as simply understood for fields of the resid-
ual characteristic equal to 2. Part of the difficulty lies in the 2N+2 classes mod
squares in k∗ (where N is the valuation of 2 in k); the triviality of the Steinberg
cocycle is far less likely. For Q2, for example, one can show that for any nontrivial
quadratic extension K, SL(2,K) inherits a nontrivial metaplectic cover from ϕ.

B.3. k-forms of SL(4). Finally, suppose Gφ is SL(4). Its non-split rational p-
adic forms are (see [T1]): SL(1, D), for D a central simple division algebra over k
such that [D : k] = 16; SL(2, D), for D the quaternions over k, i.e., [D : k] = 4;
SU(K,h) for (two kinds of) degree 4 hermitian forms h over a quadratic extension
field K of k. Over k = R, its non-split rational forms are SU(4), SU(1, 3), SU(2, 2)
and SL(2,H), where H denotes the quaternions over R.

Denote the three fundamental weights in SL(4) by λ1, λ2, and λ3.

Lemma B.3. The special unitary group forms of SL(4) admit k-rational represen-
tations which decompose into Vλ1⊕Vλ3 at the level of the algebraic closure, whereas
the non-split special linear group forms of SL(4) do not.

Proof. The special unitary forms of SL(4) all arise with Tits index 2A
(1)
3,r, with

r ∈ {0, 1, 2} [T1]; this implies that λ1 and λ3 are in the same Weyl group orbit.
By Theorem 5.2, we deduce that the 8-dimensional standard k-representations of
these groups decompose into Vλ1 ⊕ Vλ3 at the level of the algebraic closure.

In contrast, the non-split special linear group forms of SL(4) arise with Tits
index 1A

(d)
3,r , with d(r + 1) = 4 [T1]; this implies that each Weyl group orbit of a

fundamental weight is a singleton. Consequently, the irreducible k-representations
ρkλi of Theorem 5.2 decompose into isotypic subspaces at the level of the algebraic
closure. Since additionally no non-split form admits a 4-dimensional k-rational
irreducible representation, Vλ1 ⊕ Vλ3 cannot occur.

Hence, whenever g [−1] decomposes as Vstd⊕V ∗std under Gφ = SL(4, k), it follows
that the only other k-rational forms of Gφ that can occur correspond to special
unitary groups.

Lemma B.4. Let K be a quadratic extension field of k, and h a Hermitian form
on K4. The standard representation of SU(h,K) gives a map ϕ : SU(h,K) →
Sp(8, k). The metaplectic cover of SU(h,K) determined by ϕ splits.

Proof. As in the second part of the proof of Lemma B.1, the unitary group arises
as half of a dual reductive pair (for k p-adic, see [MVW, 3.I.1]), and hence admits
a splitting over the special unitary group into the metaplectic group.
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a classical Lie algebra,” Astérisque, 173–174 (1989), pp. 271–279. MR 90m:17025

[LS] Martin W. Liebeck and Gary M. Seitz, Reductive Subgroups of Exceptional Algebraic
Groups, Memoirs of the Amer. Math. Soc., vol. 580, 1996. MR 96i:20059

[LP] Gérard Lion and Patrice Perrin, “Extension des représentations de groupes unipo-
tents p-adiques. Calculs d’obstructions,” in Noncommutative Harmonic Analysis and
Lie Groups, Lecture Notes in Mathematics, 880, Springer-Verlag, Berlin, Heidelberg,
New York, 1981, 337–356. MR 83h:22032

[LV] Gérard Lion and Michele Vergne, The Weil representation, Maslov index and theta series.
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conque,” J. Reine Angew. Math. 247 (1971), 196–220. MR 43:3269

[V1] David A. Vogan, Jr., Unitary Representations of Reductive Lie Groups, Annals of Math-
ematical Studies, 118, Princeton University Press, 1987. MR 89g:22024

[V2] , “The Method of Coadjoint Orbits for Real Reductive Groups,” IAS/Park City
Mathematics Series 6 (1998). MR 2001k:22027
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