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LOCAL SYSTEMS ON NILPOTENT ORBITS AND
WEIGHTED DYNKIN DIAGRAMS

PRAMOD N. ACHAR AND ERIC N. SOMMERS

Abstract. We study the Lusztig-Vogan bijection for the case of a local sys-
tem. We compute the bijection explicitly in type A for a local system and
then show that the dominant weights obtained for different local systems on
the same orbit are related in a manner made precise in the paper. We also
give a conjecture (putatively valid for all groups) detailing how the weighted
Dynkin diagram for a nilpotent orbit in the dual Lie algebra should arise under
the bijection.

1. Introduction

Let G be a reductive algebraic group over the complex numbers, B a Borel
subgroup of G, and T a maximal torus of B. We denote by Λ = Λ(G) the weight
lattice of G with respect to T , and by Λ+ = Λ+(G) the set of dominant weights
with respect to the positive roots defined by B. Let g be the Lie algebra of G, and
let N denote the nilpotent cone in g.

Now, let e ∈ N be a nilpotent element, and let Oe be the orbit of e in g under
the adjoint action of G. We write Ge for the centralizer of e in G. Let No denote
the set of nilpotent orbits in g, and No,r the set of G-conjugacy classes of pairs

{(e, τ) | e ∈ N and τ an irreducible rational representation of Ge}.
Lusztig [10] conjectured the existence of a bijection No,r ↔ Λ+ using his work

on cells in affine Weyl groups. From the point of view of Harish-Chandra modules,
Vogan also conjectured a bijection between No,r and Λ+. Such a bijection has been
established by Bezrukavnikov in two preprints (the bijections in each preprint are
conjecturally the same) [2], [4]. Bezrukavnikov’s second bijection is closely related
to Ostrik’s conjectural description of the bijection [13] (see also [5]). In the case
of G = GL(n,C), the first author [1] described an explicit combinatorial bijection
between No,r and Λ+ from the Harish-Chandra module perspective. At present, it
is not known how all of these bijections are related (Bezrukavnikov’s two candidates;
Ostrik’s conjectural candidate; and the first author’s candidate in type A)1. In this
paper, we work in the context of [1], which we now review.

Let KG(N ) denote the Grothendieck group of G-equivariant coherent sheaves
on N . On the one hand, KG(N ) has a natural basis indexed by elements of Λ+,
denoted AJ(λ) in [13] (but unlike in [13], we are not utilizing the C∗ action on
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1Bezrukavnikov has annouced that his bijections coincide with each other and Ostrik’s [3]. We

also note that Xi has established a bijection in type A [16]
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N here). The algebraic global sections of AJ(λ) are isomorphic as a G-module to
IndGT λ. Thus, the space of global sections of any element F ∈ KG(N ) is given as
a G-module by a unique expression of the form

(1) Γ(N ,F) =
∑
λ∈Λ+

mλ IndGT λ,

where the mλ ∈ Z, and mλ 6= 0 for only finitely many λ. (This fact was communi-
cated to us by Vogan.)

Let us now fix a pair (e, τ) ∈ No,r. We want to consider all elements F ∈ KG(N )
whose support is contained in Oe, and whose restriction to Oe is the vector bundle
arising from τ . For each such F , there is at least one λ of maximal length occurring
in the expression (1) (where we have fixed a W -invariant positive-definite symmetric
bilinear form on the real span of Λ, so that we can speak of the length of a weight
of G). Define γ : No,r → Λ+ by

γ(e, τ) = the smallest such largest λ, over all possible choices of F .
The following conjecture was made in [1]; moreover, it was proved in the case of
G = GL(n,C) in op. cit.

Conjecture 1.1 ([1]). The map γ is well-defined and is a bijection. Moreover,
there is a basis {M(e, τ)} for KG(N ), indexed by No,r, such that

(1) the support of M(e, τ) is Oe,
(2) the restriction of M(e, τ) to Oe is the locally free sheaf arising from τ , and
(3) there is an upper-triangular relationship between this basis and the one in-

dexed by Λ+:

Γ(N ,M(e, τ)) = ± IndGT γ(e, τ) +
∑

‖µ‖2<‖γ(e,τ)‖2
mµ IndGT µ.

In this paper, we study the problem of computing γ when τ gives rise to a local
system on Oe (for semisimple groups, this means that τ is trivial on the identity
component of Ge). Let us denote by Λloc+ the image of γ when τ corresponds to a
local system.

Here is an outline of the paper. In section 2, we compute Λloc+ explicitly for
G = GL(n). In section 3, we state a precise conjecture, for general G, that the
Dynkin weights for the Langlands dual group of G are a subset of Λloc+ . In section 4,
we show how to associate to γ(e, τ) a sub-bundle of the cotangent bundle of G/B.
Then for GL(n), we are able to prove that when e is in a fixed nilpotent orbit,
the cohomologies of the sub-bundles (with coefficients in the structure sheaf) are
independent of the local system τ .

We thank David Vogan, Viktor Ostrik, and Roman Bezrukavnikov for helpful
conversations. The second author was supported by NSF grant DMS-0070674.

2. Computing γ for a local system in GL(n)

For a partition d of n, let Od denote the nilpotent orbit in gl(n) indexed by d. If
d = [ka1

1 , ka2
2 , . . . , kall ], then we know that π1(Od) ' Z/cZ, where c is the greatest

common divisor of the ki’s [6]. Let Gd denote the isotropy group of an element in
this orbit, and Gd

red the reductive part thereof. Following the notation of [6], we
have

Gd
red ' GL(a1)k1

∆ × · · · ×GL(al)kl∆ .
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Here, Hm
∆ denotes the diagonal copy of H in the product of m copies of itself. Now,

in the case of simply connected semisimple groups, we identify local systems on an
orbit with representations of the component group of the centralizer of an element
in the orbit. In the setting of GL(n), we will first produce a list of representations
of Gd

red, and then we will examine their restrictions to SL(n) to determine the
correspondence with local systems.

Let A1 ∈ GL(a1), A2 ∈ GL(a2), etc. The set of matrices (A1, . . . , Al) determines
an element Ã of

GL(a1)k1
∆ × · · · ×GL(al)kl∆ ;

moreover, we have

det Ã = (detA1)k1 · · · (detAl)kl .

Since every ki is divisible by c, we can write this as

det Ã =
(
(detA1)k1/c · · · (detAl)kl/c

)c
.

Let “det1/c” denote the character Gd
red → C× given by

(detA1)k1/c · · · (detAl)kl/c,

and for any p ∈ Z, let detp/c denote the pth power of this map.
In SL(n), the isotropy group SL(n)d is the subgroup of Gd consisting of ma-

trices of determinant 1. The function det1/c takes only finitely many values when
restricted to this subgroup, namely, the cth roots of unity. Indeed, the component
group of SL(n)d is just Z/cZ, and the irreducible representations of Z/cZ are just
powers of the function det1/c. We have, then, that the irreducible representations
of π1(Od) come from

det0/c, det1/c, . . . ,det(c−1)/c .

Now we need to compute γ(Od, detp/c) for 0 ≤ p ≤ c− 1. Suppose that the dual
partition of d is dt = [jb11 , . . . , j

bs
s ]. Following the notation of [1], we let Ld denote

the Levi subgroup

Ld = GL(j1)b1 × · · · ×GL(js)bs ,

and we let Pd be the standard (block-upper-triangular) parabolic subgroup whose
Levi factor is Ld. Recall that every nilpotent orbit in GL(n) is Richardson; in
particular, Od is Richardson for Pd. We fix a choice of e ∈ Od such that Gd

red ⊂ Ld

and Gd ⊂ Pd. Explicitly, the embedding of Gd in Pd is such that the factor
GL(ai)ki∆ sits diagonally across the product of the first ki factors of Ld. Let ρd

denote the half-sum of the positive roots of Ld.
We make the observation that any irreducible representation of Gd must be

trivial on its unipotent radical, hence is completely determined by its restriction
to Gd

red. Therefore, it makes sense to refer to irreducible representations of Gd by
their highest weights. We do this at various points below.

In [1], the computational device of “weight diagrams” was introduced and em-
ployed to carry out the computation of γ. For our present purposes, however, we
are only concerned with a small collection of representations for each orbit, and we
do not need to use the cumbersome weight diagrams. Instead, we make use of the
following auxiliary result.
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Proposition 2.1 ([1], Claim 2.3.1). Let (πλ, Vλ) denote the irreducible Ld-repre-
sentation of highest weight λ, regarded as a Pd-representation by letting the unipo-
tent part of Pd act trivially, and let (τ,Wτ ) be an irreducible representation of Gd.
Suppose that τ occurs as a summand in the restriction of πλ to Gd, and, moreover,
that

‖λ+ 2ρd‖2

is minimal among all irreducible Pd-representations whose restriction to Gd con-
tains τ as a summand. Then γ(Od, τ) = λ+ 2ρd, made dominant for GL(n).

The next proposition describes γ(Od, detp/c) explicitly in terms of the standard
basis. The remainder of the section will be devoted to establishing this proposition.
In Section 4, we shall use this explicit description to prove the main result.

Let ωp = γ(Od, detp/c). Writing ω0 in the standard basis, let “block Ba” refer
to the collection of coordinate positions which contain the entry a in ω0, for a ∈ Z.
Let µk be the multiplicity of k in dt. (Thus, if there is some ji such that ji = k,
then µk = bi; otherwise, µk = 0.) Note that every bi and every µk must be a
multiple of c.

Proposition 2.2. The length of block Ba is
∑
k≥0 µa+2k+1 when a ≥ 0 and the

length of Ba and B−a are the same. Moreover, if we write the length of block Ba as
mac, then ωp is obtained by replacing the first map entries in block Ba with a+ 1.

Example 2.3. Consider the orbit labeled by d = [6, 3, 3] in GL(12). Then c = 3,
dt = [3, 3, 3, 1, 1, 1], and µ3 = 3 and µ1 = 3.

We illustrate the preceding proposition by listing here all the ωp. The first
sentence of the proposition describes ω0 by giving the lengths of blocks, and the
second sentence tells us how to obtain the other ωp’s by modifying ω0.

ω0 = (

B2︷ ︸︸ ︷
2, 2, 2,

B0︷ ︸︸ ︷
0, 0, 0, 0, 0, 0,

B−2︷ ︸︸ ︷
−2,−2,−2)

ω1 = (3, 2, 2, 1, 1, 0, 0, 0, 0,−1,−2,−2)

ω2 = (3, 3, 2, 1, 1, 1, 1, 0, 0,−1,−1,−2)

Proof. Let λp be the appropriate dominant weight of Ld as described in Proposi-
tion 2.1, such that ωp is just λp + 2ρd, made dominant for GL(n). In what follows,
we shall be careless about saying “made dominant” every time; the reader should
fill in those words wherever appropriate.

Let us begin with the trivial representation of π1(Od), namely det0/c. Whatever
λ0 is, it must be dominant for Ld, so that 〈λ0, 2ρd〉 ≥ 0. Therefore,

‖λ0 + 2ρd‖2 = ‖λ0‖2 + ‖2ρd‖2 + 2〈λ0, 2ρdd〉 ≥ ‖2ρd‖2.

Now 0 is a weight of Ld with the right restriction to Gd
red, and taking λ0 = 0

obviously minimizes ‖λ0 + 2ρd‖2 (the above inequality becomes an equality). We
therefore have ω0 = 2ρd. What does 2ρd look like? For each GL(ji) factor of Ld,
we get a part of 2ρd that looks like

(ji − 1, ji − 3, . . . , 1− ji).

Thus, in the total 2ρd, a particular coordinate a with a ≥ 0 occurs once for each
factor GL(ji) with ji = a+ 2k+ 1 for some k with k ≥ 0. It follows that the length



194 PRAMOD N. ACHAR AND ERIC N. SOMMERS

of block Ba is precisely
∑

k≥0 µa+2k+1, as desired. It is also clear that the length
of block Ba and block B−a are equal.

Next, we consider the case p 6= 0. We will consider the first factor GL(a1)k1
∆

of Gd
red individually; the other factors would be treated identically. The factor

GL(a1)k1
∆ of Gd

red sits diagonally across various GL(ji)bi factors of Ld; indeed, it
sits across k1 of them. Now, given a weight λ of Ld, we obtain the coordinates of
the restriction λ|Gd

red
by summing up coordinates of λ according to the diagonal

embedding of the factors of Gd
red in Ld. (See [1] for a detailed account of how to

restrict weights from Ld to Gd
red.) In any case, we add up k1 distinct coordinates

of λ to obtain each coordinate of the GL(a1)k1
∆ part of the restriction of λ. Now,

the highest (and only) weight of Gd
red on the representation detp/c is((pk1

c
, . . . ,

pk1

c

)
︸ ︷︷ ︸

GL(a1)
k1
∆

, . . . ,
(pkl
c
, . . . ,

pkl
c

)
︸ ︷︷ ︸

GL(al)
kl
∆

)
;

in particular, every coordinate in the GL(a1)k1
∆ part of the weight is equal to pk1/c.

If we want ‖λ‖2 to be minimal, it is clear that the k1 coordinates we add up to
obtain this coordinate should consist of pk1/c 1’s and (c− p)k1/c 0’s.

Repeating this argument for every factor of Gd
red, we see that ‖λ‖2 is minimized

if, among all its coordinates, there are pn/c 1’s and (c− p)n/c 0’s. But to compute
γ, we need to minimize ‖λ+ 2ρd‖2, not ‖λ‖2. We have

‖λ+ 2ρd‖2 = ‖λ‖2 + ‖2ρd‖2 + 2〈λ, 2ρd〉.

The last term is nonnegative, so we will have minimized ‖λ+2ρd‖2 if we can choose
λ with ‖λ‖2 minimal and 〈λ, 2ρd〉 = 0. In fact, we can arrange for this to happen.

Among the factors GL(ji)bi of Ld, take the weight (1, . . . , 1) (i.e., the determi-
nant character) on pbi/c of the factors, and (0, . . . , 0) on the remaining (c− p)bi/c
of them. Concatenating these weights, we obtain a weight λp of Ld. It is easy to see
that λp has the right number of 0’s and 1’s to have the desired restriction to Gd

red

as well as to be of minimal size. Moreover, as promised, we have that 〈λp, 2ρd〉 = 0.
Therefore, ωp = λp + 2ρd. This looks very similar to ω0, except that in each

block Ba, a proportion p/c of the coordinates have been increased by 1. Thus ωp
has precisely the desired form. �

3. A conjecture about Dynkin diagrams

In this section, let G be connected, simply-connected, and simple. Let LG, LB,
LT be the data of the Langlands dual group corresponding to G, B, T , respectively.
Let Lg, Lb, Lh denote the Lie algebras of LG, LB, LT , respectively. The weights of T
can be identified with the elements h ∈ Lh such that α∨(h) is integral for all coroots
α∨ of G (which are the roots of LG). This identification allows us to associate to a
nilpotent orbit LO in Lg a dominant weight for G. Namely, we can choose e ∈ LO
and let e, h, f span an sl2-subalgebra of Lg with h ∈ Lh. Then by Dynkin-Kostant
theory, h is well-defined up to W -conjugacy, and by sl2-theory, h takes integral
values at the coroots of G. Hence, h determines an element of Λ+. We refer to the
dominant weight of G thus obtained as the Dynkin weight of LO, and we denote by
D ⊂ Λ+ the set of Dynkin weights of all nilpotent orbits in Lg.
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In the previous section, we saw that ω0 = 2ρd (made dominant for GL(n)).
This is nothing more than the Dynkin weight of the nilpotent orbit Odt (we are
identifying G with LG), since Odt intersects the Lie algebra of Ld in the regular
orbit. This result and a similar one for Richardson orbits in other groups (along with
calculations in groups of low rank) have led a number of people to conjecture that D
is a subset of Λloc+ (see [5]). We wish to state a precise conjecture about how D sits
inside of Λloc+ . To this end, we assign to each LO in Lg a finite cover of O = d(LO),
where O is the nilpotent orbit of g dual to LO under Lusztig-Spaltenstein duality.
Our conjecture essentially says that if we write our putative finite cover of O as
G/K, then for some τ which is trivial on K, γ(O, τ) equals the Dynkin weight of
LO.

Let A(O) denote the fundamental group of O and let Ā(O) denote Lusztig’s
canonical quotient of A(O) (see [9], [15]). Let No,c be the set of pairs (O, C)
consisting of a nilpotent orbit O ∈ g and a conjugacy class C ⊂ A(O). We denote
by LNo the set of nilpotent orbits in Lg. In [15] a duality map d : No,c → LNo is
defined which extends Lusztig-Spaltenstein duality. This map is surjective and the
image of an element (O, C) ∈ No,c, denoted d(O,C), depends only on the image of
the conjugacy class C in Ā(O).

Now given LO ∈ Lg, Proposition 13 of [15] exhibits an explicit element (O, C) ∈
No,c such that d(O,C) = LO. The orbit O also satisfies O = d(LO) (in particular, O
is special). Consider the image of C in Ā(O), which we will also denote by C. We
suspect that this conjugacy class coincides with one that Lusztig associates to LO
using the special piece for LO (see Remark 14 in [15]).

The canonical quotient Ā(O) ofA(O) is always of the form S3, S4, S5 or a product
of copies of S2. Hence, it is possible to describe Ā(O) as a Coxeter group of type A
and then to associate to each conjugacy class C in Ā(O) a subgroup HC of Ā(O)
which is well-defined up to conjugacy in Ā(O). Lusztig did this for the exceptional
groups in [11] and we now do it for the classical groups.

First we need to describe Ā(O) as a Coxeter group in the classical groups (where
Ā(O) is a product of copies of S2). We use the description of Ā(O) in [15]. Let λ =
[λa1

1 , λa2
2 , . . . , λakk ] be the partition corresponding to O in the appropriate classical

group of type B,C, or D. Let M be the set of integers m equal to some λi such
that

(2)

λi is odd and νi is odd in type Bn,
λi is even and νi is even in type Cn,
λi is odd and νi is even in type Dn,

where νi =
∑i

j=1 aj . Then from section 5 of [15], we know that the elements of
Ā(O) are indexed by subsets ofM in type C and by subsets ofM of even cardinality
in types B and D. We choose our set of simple reflections in Ā(O) to correspond
to subsets {a, b} of M with a > b and where no element of M is both less than
a and greater than b (in type C, we allow b to be zero). Thus given a conjugacy
class C of Ā(O) (which consists of a single element, w, since the group is abelian),
we can write w minimally as a product of simple reflections. The simple reflections
used are unique, and we define HC to be the subgroup of Ā(O) generated by those
simple reflections. Consider the surjection π : Ge → Ā(O) where e ∈ O and define
K = π−1(HC) in Ge. We can now make our conjecture.
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Given LO in Lg, we have assigned a conjugacy class C in Ā(O) where O = d(LO)
and then a subgroupK in Ge where e ∈ O. Consider the finite cover Õ = G/K ofO.
Let C[Õ] denote the global algebraic functions on Õ. It is immediate that C[Õ] =∑

Γ(O,L) where the sum is over the irreducible local systems L (counted with
multiplicity) which arise from the irreducible representations of A(O) appearing in
IndK(Ge)0 C, where (Ge)0 is the identity component of Ge. Hence (1) implies that as
a G-module C[Õ] can be written as

∑
λ∈Λ+

mλ IndGT λ. Let µ be a weight of largest
length with mµ 6= 0.

Conjecture 3.1. The weight µ is unique and is the Dynkin weight of LO.

We have verified the conjecture in a number of cases, although a general proof
is elusive at the moment.

It seems likely that when τ gives rise to a local system, denoted Lτ , that
M(e, τ) is just the direct image of Lτ from Oe to the whole nilpotent cone and
so Γ(N ,M(e, τ)) = Γ(Oe,Lτ ) (this would be consistent with Bezrukavnikov’s and
Ostrik’s work). Since C[Õ] =

∑
Γ(O,L), Conjecture 3.1 would then state that the

Dynkin weight of LO occurs as γ(O, τ) for some irreducible representation τ of Ge

which is trivial on K.

Remark 3.2. Specifying exactly what τ is seems to be more difficult. For example,
let LO be the subregular orbit in type Bn. Then O = d(LO) is the smallest nonzero
special orbit in type Cn. This orbit is Richardson, coming from the parabolic
subgroup with Levi factor of type Cn−1, and the parabolic subgroup gives rise to
a 2-fold cover of O. Thus it is clear that the Dynkin weight of LO comes from this
2-fold cover of O (which is, in fact, the one specified by our conjecture) since LO is
regular in a Levi factor of type Bn−1. However, when n is odd, the Dynkin weight
will correspond to the trivial local system on O, but when n is even, the Dynkin
weight will correspond to the nontrivial local system on O (see the calculations in
[5]).

4. Cohomologies of the associated sub-bundles

For an element h ∈ h, we can define a subspace nh of the nilradical n of b as
follows. We set

nh =
⊕

α a positive root
α(h)≥2

gα

where gα is the α-eigenspace of the root α. As in the previous section, we may
identify Λ+(LG) with a subset of h. Then for λ ∈ Λ+(LG) we get a subspace nλ of
n. Our definition is motivated by the fact that if λ ∈ h happens to be a Dynkin
weight for a nilpotent orbit O ∈ g, then by work of McGovern, C[G×B nλ] ' C[O]
[12] and moreover, by work of Hinich and Panyushev, Hi(G/B, Sj(n∗λ)) = 0 for all
j ≥ 0 and i > 0 [8], [14]. Hence, it seems reasonable, especially given Conjecture
3.1, to pick a general element λ ∈ Λloc+ (LG) and study Hi(G/B, Sj(n∗λ)). Note that∑
j≥0 H

0(G/B, Sj(n∗λ)) ' C[G×B nλ].
We begin with the definition

Definition 4.1. Two B-representations V, Ṽ are called G/B-equivalent if

Hi(G/B, Sj(V ∗)) ' Hi(G/B, Sj(Ṽ ∗))

for all i, j ≥ 0.
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Our main result is for GL(n), and we identify G with LG.

Theorem 4.2. Fix the partition d and let nd,p = nωp. For any p the B-represent-
ations nd,p are all mutually G/B-equivalent to each other. Thus, for any p we
have

Hi(G/B, Sj(n∗d,p)) ' Hi(G/B, Sj(n∗d,0))

and the latter equals 0 if i > 0 and equals Cj [Odt ] if i = 0 (the algebraic functions
on the dual orbit of degree 2j).

The last sentence is just a reformulation of the Hinich, McGovern, and Panyu-
shev results. Before proving the theorem, we prove two lemmas which rely on the
following proposition.

Proposition 4.3. Let Ṽ ⊂ V be representations of B such that V/Ṽ ' Cµ is a
one-dimensional representation of B corresponding to the character µ. Let α be
a simple root, and let Pα be the parabolic subgroup containing B and having α as
the only positive root in its reductive part. If V extends to a Pα-representation and
〈α∨, µ〉 = −1, then V, Ṽ are G/B-equivalent.

Proof. Consider the exact sequence 0 → Ṽ → V → Cµ → 0 and its dual 0 →
C−µ → V ∗ → Ṽ ∗ → 0. By Koszul, we have

0→ Sj−1(V ∗)⊗ C−µ → Sj(V ∗)→ Sj(Ṽ ∗)→ 0

is exact for all j ≥ 0. By the lemma of Demazure [7], H∗(G/B, Sj−1(V ∗)⊗C−µ) = 0
for all j ≥ 1 since V ∗ is Pα-stable and 〈α∨,−µ〉 = 1 (here our B corresponds to
the positive roots, hence the difference with Demazure’s convention). The result
follows from the long exact sequence in cohomology. �

We need to introduce notation to describe the B-stable subspaces of n. It is clear
that if gα belongs to a B-stable subspace U of n, then so does gβ for all positive
roots β with α � β (where � denotes the usual partial order on positive roots).
Hence it is enough to describe U by the positive roots α such that gα ⊂ U and α
is minimal among all positive roots with this property. In this case, we say that α
is minimal for U .

List the simple roots of G as α1, . . . , αn−1. Then any positive root of G = GL(n)
is of the form αi + αi+1 + · · ·+ αj , which we denote by [i, j]. We can express the
usual partial order on the positive roots as [i, j] � [i′, j′] if and only if i′ ≤ i and
j ≤ j′. We can then specify U by its minimal positive roots, namely a collection of
intervals [i, j] such that for any two intervals [i, j] and [i′, j′] with i ≤ i′, we have
j ≥ j′. We will say that U is partially specified by the interval [i, j] if the root [i, j]
is minimal for U (although there may be other minimal roots). Let us also say that
U is i-stable if U is stable under the action of the parabolic subgroup Pαi .

Let U be a B-stable subspace of n which is partially specified by the interval
[a, b] and which is either (a−1)-stable or (b+1)-stable. Let U ′ be the subspace of
n which is specified by the same intervals as U except that [a, b] is replaced by the
two intervals [a − 1, b] and [a, b + 1]. Then U and U ′ are G/B-equivalent. This is
simply an application of Proposition 4.3 where µ is the root [a, b] and α is either
αa−1 or αb+1. We refer to the G/B-equivalence of U and U ′ as the basic move for
a− 1 (respectively, for b + 1). We now state two lemmas which rely solely on the
basic move.
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Lemma 4.4. Let U be a subspace of n which is partially specified by an interval
[a, b] and such that U is i-stable for b < i < d for some d. Let U ′ be the subspace
of n specified by the same intervals as those defining U , but replacing [a, b] with the
collection of intervals

{[a− j + 1, d− j] | 1 ≤ j ≤ d− b}.
Then U is G/B-equivalent to U ′.

Proof. Applying the basic move for b+1 replaces [a, b] with the intervals [a−1, b]∪
[a, b + 1]. Now apply the basic move repeatedly on the right (for i in the range
b + 2 ≤ i < d) to the interval [a, b + 1] and we are left with the two intervals
[a − 1, b] ∪ [a, d − 1]. The general result follows by induction on d − b: we apply
the proposition to the interval [a − 1, b] with d replaced by d − 1. The base case
d− b = 1 is trivially true. �

Lemma 4.5. Let U be a subspace of n partially specified by the intervals

[b0, b1] ∪ [b1 + 1, b2] ∪ · · · ∪ [bl−1 + 1, bl] ∪ [bl + 1, bl+1]

and
[b1, b2 − 1] ∪ · · · ∪ [bl−1, bl − 1]

where bj ≤ bj+1 − 2 for 1 ≤ j ≤ l− 1. Assume that no interval of U is of the form
[bl, a1] but that there are intervals of U of the form [b0−1, a2] and [a3, bl+1 +1]. Let
U ′ be the subspace of n specified by the same intervals as U , except that [b0, b1]
is replaced by [b0, b1 − 1] and [bl + 1, bl+1] is replaced by [bl, bl+1]. Then U is
G/B-equivalent to U ′. A similar statement holds even if the we omit the interval
[bl + 1, bl+1] or [b0, b1] from the specification of U .

Proof. Let U1 be specified by the same intervals as U , except with the above inter-
vals replaced by the intervals

[b0, b1] ∪ [b1 + 1, b2 − 1] ∪ [b2 + 1, b3 − 1] ∪ · · · ∪ [bl−1 + 1, bl − 1] ∪ [bl + 1, bl+1].

Then U1 is seen to be G/B-equivalent to U by applying the the basic move to the
roots [b1 + 1, b2− 1], [b2 + 1, b3− 1], . . . , [bl−1 + 1, bl− 1] since U1 is stable for b2, b3,
. . . , bl. The stability for bl follows from the assumption that no interval of U is of
the form [bl, a1].

Let U2 be specified by the same intervals as U1, except we replace the interval
[b0, b1] with [b0, b1 − 1] and the interval [bl + 1, bl+1] with [bl, bl+1]. Then U2 is
G/B-equivalent to U1. This can be seen by applying the basic move to [b0, b1 − 1]
(as U2 is stable for b1) and applying the basic move (in reverse) to [bl, bl+1] (as
U1 is bl-stable). Here we are using the fact that U contains intervals of the form
[b0 − 1, a2] and [a3, bl+1 + 1].

The proof is completed by observing that U2 is stable for b1, b2, . . . , bl−1, so we
can apply the basic move to the roots [b1+1, b2−1], [b2+1, b3−1], . . . , [bl−1+1, bl−1],
arriving at U ′. �

Proof of Theorem 4.2. For an orbit corresponding to d and a local system corre-
sponding to p, we have computed ωp in Section 2. We recall that c is the g.c.d. of
the parts of d and ma was defined by the equation mac =

∑
i≥0 µa+2i+1, where µi

is the multiplicity of i as a part in dt. Write k for one less than the largest part of
dt, and set si =

∑
j≥imjc (an empty sum is by convention equal to zero).



NILPOTENT ORBITS AND WEIGHTED DYNKIN DIAGRAMS 199

By Proposition 2.2, we compute that nd,p = nωp is specified by the set of intervals

Ii = [si+1 + pmi, si + pmi−1]

where k ≥ i ≥ −k + 1. In the cases where an interval is not minimal or does not
correspond to a root (this can happen, for example, when p = 0), we disregard it
from our specification of the subspace.

The difference between the left endpoint of Ii and the right endpoint of Ii+2 will
be denoted ∆i. So

∆i = (c− p)mi+1 + pmi.

For i ≥ 1 we have ∆i ≤ ∆−i ≤ ∆i−2 since m−i = mi and mi ≤ mi−2 when i ≥ 1.

Step 1. Application of Lemma 4.4 to each of the intervals Ii shows that nd,p is
G/B-equivalent to the subspace W of n defined by the set of intervals

Ii,j = [si+1 + pmi − j + 1, si−1 + pmi−2 − j]
where 1 ≤ j ≤ ∆i if k ≥ i ≥ 1 and where 1 ≤ j ≤ ∆i−2 if 0 ≥ i ≥ −k + 1.

Step 2. Now for each r in the range k ≥ r ≥ 1, starting with r = k and working
down to r = 1, we will modify the intervals Ir+1,j and I−r+1,j for j > pmr+1 (in
the cases where those intervals are defined) to obtain a new subspace of n which is
G/B-equivalent to W .

First, we will modify I−r+1,j for ∆r+1 < j ≤ ∆−r−1. Consider the intervals

Ir−1,j ∪ Ir−3,j ∪ · · · ∪ I−r+5,j ∪ I−r+3,j

for ∆−r−1 < j ≤ ∆r−1 and the intervals

Ir−1,j ∪ Ir−3,j ∪ · · · ∪ I−r+3,j ∪ I−r+1,j

for ∆r+1 < j ≤ ∆−r−1. These yield a situation where we can apply Lemma 4.5 a
total number of ∆r−1 −∆−r−1 = p(mr−1 −m−r−1) times to each of the intervals
I−r+1,j for ∆r+1 < j ≤ ∆−r−1. This will replace I−r+1,j = [s−r+2 + pm−r+1− j +
1, s−r + pm−r−1 − j] with [s−r+2 + pm−r−1 − j + 1, s−r + pm−r−1 − j].

Second, we will modify both Ir+1,j and I−r+1,j for pmr+1 < j ≤ ∆r+1. Consider
the intervals

Ir−1,j ∪ Ir−3 ∪ · · · ∪ I−r+5,j ∪ I−r+3,j

for ∆r+1 < j ≤ (∆r−1 −∆−r−1) + ∆r+1 and the intervals

Ir+1,j ∪ Ir−1,j ∪ · · · ∪ I−r+3,j ∪ I−r+1,j

for pmr+1 < j ≤ ∆r+1. We again apply Lemma 4.5 a total number of ∆r−1−∆−r−1

times by modifying the pair of intervals Ir+1,j ∪ I−r+1,j . Then for pmr+1 < j ≤
∆r+1 we replace Ir+1,j ∪ I−r+1,j with [sr+2 + pmr+1 − j + 1, sr + pmr+1 − j] ∪
[s−r+2 + pm−r−1 − j + 1, s−r + pm−r−1 − j].

We do this for all r starting with r = k and working backward to r = 1 (note
we haven’t done anything to the intervals I1,j).

Step 3. At this point our subspace of n is specified by the following intervals:
[si − l + 1, si−2 − l] for i ≥ 2 with 1 ≤ l ≤ (c − p)mi and for 1 ≥ i with 1 ≤ l ≤
(c− p)mi−2, and those Ii,j where j ≤ pmi for i ≥ 1 and j ≤ pmi+2 for i ≤ 0.

Fix r ≥ 1. We may assume by induction on r that our subspace is G/B-
equivalent to one partially specified by the following intervals (the case r = 1 is
already true): [si−l+1, si−2−l] for 1 ≤ i ≤ r and 1 ≤ l ≤ cmi; and [si−l+1, si−2−l]
for 0 ≥ i ≥ −r + 2 and 1 ≤ l ≤ cmi−2. We want to show that our subspace is
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G/B-equivalent to one partially specified by the previous intervals together with
the cases where i = r + 1 and i = −r + 1 in the above formulas.

Let Ji,l = [si+1 − l+ 1, si−1 − l]. Consider the intervals

Ir+1,j ∪ Jr−2,j+(c−p)mr−1 ∪ · · · ∪ J−r+2,j+(c−p)mr−1 ∪ I−r+1,j

for 1 ≤ j ≤ pmr+1 and the intervals

Jr−2,l ∪ · · · ∪ J−r+2,l

for 1 ≤ l ≤ (c − p)mr−1. We apply Lemma 4.5 a total number of (c − p)(mr−1 −
mr+1) times to the pair of intervals Ir+1,j ∪ I−r+1,j for 1 ≤ j ≤ pmr+1. Thus,
we replace Ir+1,j ∪ I−r+1,j with [sr+2 + pmr+1 − j + 1, sr−1 + (p − c)mr+1 − j] ∪
[s−r+1 +(p−c)m−r−1−j+1, s−r+pm−r−1−j]. These intervals are just [sr+1− l+
1, sr−1−l]∪[s−r+1−l+1, s−r−1−l] for (c−p)mr+1 < l ≤ cmr+1. Hence, by induction
on r we see that our original subspace is G/B-equivalent to the subspace specified
by the intervals Ji,l where 1 ≤ l ≤ cmi+1 for i ≥ 1 and where 1 ≤ l ≤ cmi−1 for
i ≤ 0. This subspace is independent of p which completes the proof. �
Example 4.6. We illustrate the idea of the theorem for Example 2.3.

For p = 0, the initial intervals are [3, 3]∪[9, 9] (we disregard those intervals which
are not minimal or which do not correspond to a root).

For p = 1, the initial intervals are [1, 3] ∪ [3, 5] ∪ [5, 9] ∪ [9, 10].
For p = 2, the initial intervals are [2, 3] ∪ [3, 7] ∪ [7, 9] ∪ [9, 11].

After step 1, for p = 0, we are already done with [1, 6], [2, 7], [3, 8], [7, 9], [8, 10], [9, 11].
For p = 1, we get [1, 4], [2, 7], [3, 8], [5, 9], [8, 10], [9, 11].
For p = 2, we get [1, 5], [2, 6], [3, 8], [6, 9], [7, 10], [9, 11].

For step 2, there is no effect for this example.
For step 3, for p = 1, we replace [1, 4] ∪ [5, 9] with [1, 6] ∪ [7, 9].

For p = 2, we replace [1, 5]∪ [6, 9] with [1, 6]∪ [7, 9] and we replace [2, 6]∪ [7, 10]
with [2, 7] ∪ [8, 10].

The result is now independent of p.

Remark 4.7. An immediate consequence of the theorem is that the G-saturation
of nd,p is independent of p and coincides with the closure of Odt . In general, one
could define a map from LNo,r to No by first applying γ (for LG) to obtain an
element λ ∈ h, and then taking the G-saturation of nλ. The referee (and we believe
Ostrik too) has suggested that for GL(n) this map could be independent of the
rational representation (and hence would just map to the dual orbit). Theorem 4.2
supports this conjecture in the case of a local system. In groups of other types, it
is likely that there is something interesting to be said, but it is already clear from
Conjecture 3.1 that the answer is going to be more complicated.
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