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CLASSIFICATION OF UNIPOTENT REPRESENTATIONS
OF SIMPLE p-ADIC GROUPS, II

G. LUSZTIG

ABSTRACT. Let G(K) be the group of K-rational points of a connected adjoint
simple algebraic group over a nonarchimedean local field K. In this paper we
classify the unipotent representations of G(K) in terms of the geometry of the
Langlands dual group. This was known earlier in the special case where G(K)
is an inner form of a split group.

INTRODUCTION

0.1. Let K be a nonarchimedean local field with a residue field of cardinal ¢. Let
G(K) be the group of K-rational points of a connected, adjoint simple algebraic
group G defined over K which becomes split over an unramified extension of K. Let
U(G(K)) be the set of isomorphism classes of unipotent representations of G(K)
(see [L4, 1.21]). Let G be a simply connected almost simple algebraic group over
C of the type dual to that of G (in the sense of Langlands); let ¥ : G — G be
the “graph automorphism” of G associated to the K-rational structure of G as in
[L4] 8.1]. One of the main results of this paper is the construction of a bijection
between U(G(K)) and a set of parameters defined in terms of G and 9. (See 10.11,
10.12.) This result (or rather a close variant of it) was stated without proof in
IL4] 8.1] and was proved in [L4] assuming that ¢ = 1; it supports the Langlands
philosophy. See [L4l 0.3] for historical remarks concerning this bijection. One of
the main observations of [L4] and the present paper is that the various affine Hecke
algebras which arise in connection with unipotent representations of G(K) can be
also found in a completely different way, in terms of G, ¥ and certain cuspidal
local systems. Then the problem reduces to classifying the simple modules of these
“geometric affine Hecke algebras” with parameter equal to \/q. This last problem
makes sense in the case where ,/q is replaced by any vg € C*. This problem was
solved in |[L4] assuming that ¢ = 1 and vy € Rs¢. In the present paper we treat
more generally the case where 1 is arbitrary and vy is either 1 or is not a root of 1.
Moreover, using results of [L5], we determine which representations are tempered
or square integrable.

0.2. Notation. All algebraic groups are assumed to be affine. All algebraic va-
rieties (in particular, all algebraic groups) are assumed to be over C. If G is an
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algebraic group, G° denotes the identity component of G, G the group of com-
ponents of G, Ug the unipotent radical of G°, Zg the center of G, G the Lie
algebra of G. For xz € G let Zg(x) be the centralizer of  in G. For z,2’ € G let
Za(z,a') = Zg(x) N Za(x'). If G’ is another algebraic groups, let Hom(G, G’) be
the set of homomorphisms of algebraic groups from G to G’. If G’ is a subgroup
of G and g € G, we denote by Zg/(g) the centralizer of g in G’; let Ng(G’) be
the normalizer of G’ in G. Let Zg be the category of finite dimensional rational
representations of G. If V' € Z, then V is also a G-module.

If A is a subgroup of C*, let G be the set of all g € G such that for any V € Zg,
any eigenvalue of g : V. — V is in A. If A is a subgroup of C, let G4 be the set
of all x € G such that for any V € Zg, any eigenvalue of z : V. — V is in A; let
Gy = Gexp(A)

If X is an abelian group, we write Xq, Xc instead of X ® Q, X ® C.

Let k = 2m/—1 € C.

Let z = a + v/—1b where a,b € R. We say that z > 0 if either a > 0, or
a=0,b>0. We say that z > 0 if either a > 0, or a = 0,b > 0.

0.3. Errata to [L4]. 3.15(b): replace *Rx_s by *Ri_g.

5.17, line 8: replace Cs by p(Cg).

7.49, line 4: the first and last edge —, — should be replaced by <, =.

8.5, line 3: replace glgp by glag

As pointed out to me by Gopal Prasad, the definition of parahoric subgroups
in 1.2 is incorrect if the residual characteristic is small. In 1.2 replace the third
sentence (“Note that ... of G.”) by:

For B € B, (G,G)B = B(G, Q) is a normal subgroup of G independent of B,
of finite indez in G; we denote it by G'.
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1. PRELIMINARIES ON AFFINE HECKE ALGEBRAS
AND GRADED HECKE ALGEBRAS

1.1. (a) A root system (R, R, X,Y) consists of two finitely generated free abelian
groups X,Y, a perfect pairing (,) : X x Y — Z, finite subsets R ¢ X — {0}, R C
Y — {0} and a bijection « «» & between R and R such that for any o € R we have
(a,a) =2 and s4 : X = X,z — o — (z,&)a (resp. sq: Y = Y,y — y— (o, y)d)
leaves R (resp. R) stable.
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We sometimes write (R, X) instead of (R, R, X,Y).

(b) A Q-root system (R, R, E,E') consists of two finite dimensional Q-vector
spaces E, E’', a perfect bilinear pairing (,) : F x E/ — Q, finite subsets R C
E—{0}, R C E'—{0} and a bijection o < & between R and R such that (a, &) € Z
for any o,/ € R and for any @ € R we have (a,&) = 2 and s, : E — E,
e e—(e,d)a (resp. so: B — F', ¢ — ¢ — (a,e')a) leaves R (resp. R) stable.

We sometimes write (R, E) instead of (R, R, E, E').

We set Ec = EQ®q C,E; = E' ®g C. We denote the C-bilinear pairing
Ec x E¢ — C defined by (,) again by (,).

Unless otherwise indicated, in both cases (a) and (b) it is assumed that o €
R = 2a ¢ R.

In case (a) (resp. (b)) the Weyl group Wy is defined as the subgroup of GL(X) or
GL(Y) (resp. GL(E) or GL(E')) generated by {ss;a € R}. In both cases one has
the standard notion of “basis” (or “set of simple roots”) of R and the corresponding
notion of positive roots Rt and positive coroots RT. A basis of R always exists.
If a basis of R is given, then W} is naturally a (finite) Coxeter group with length
function [ : Wy — N.

1.2. Assume that we are given a root system (R, R, X,Y) and a basis II for it. A
parameter set consists of a function A : II — N such that A(a) = A(a’) whenever
(a, &'y = (o, &) = —1 together with a function \* : {a € II; & € 2Y'} — N. If such
(A, A*) is given, we define Hz)%/)\( to be the associative algebra over Clv,v™1] (v is
an indeterminate) defined by the generators T,,,w € Wy and 0,z € X and by the
relations
TwTyw = Ty for all w,w’ € Wy such that [(ww') = l(w) + l(w'),
(T, + 1)(Ts, —v* M) =0 for all a €11,
0p, 0z, =0z 42, forall xz1,20 € X,
0 (Ts, +1) = (Ts, +1)0,_ () = (02 — 05, (2))G(a) forallze X,acll

where, for a € II, G() equals

ga 2X (@) _ 1 ga AMa)+ A" (a) _ 1 ga Aa) =" (a) 1
00 ~ L it o ¢ 2y amd Jbav +b
0, —1 Ooe — 1

(Note that (6, — 05, (2))G(a) is a Z-linear combination of elements 0,,,2; € X.)

if @ € 2Y.

Now 6 is a unit element for H 1)%;}

Let 7 =Y ® C*. Let O be the algebra of regular functions 7 x C* — C. We
may identify O with the C[v,v~!]-submodule of HI)%/)\( spanned by {6,z € X} (a
commutative subalgebra): to v™6, corresponds the regular function (¢, a) — a™xz(t)
where z(t) = [[, aﬁfc’y") for t = 3, yn ® an,yn € Y,a, € C*. Now W acts
naturally on O and the algebra of invariants O"° is the center of HI)%} For any

Woy-orbit ¥ on 7 and vy € C* let Jy,, be the maximal ideal of OWo consisting
of the functions in OWo that vanish at all points of ¥ x {vg}. Let (O"°Y be the
Js: vp-adic completion of O™o and let H = H}’\aé‘( Raow, (O™,

1.3. For vy € C*, let Mod,, HI)%} be the category of HI)%’)\( -modules that are finite
dimensional over C and in which v acts as vg times 1. Let Irr,, HI)%’)\( be the set of

isomorphism classes of simple objects of Mod,, HI)%}
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Let Modg,vng’_))‘; be the category of H})%’i‘;—modules M € ModeHg’_))‘; that
satisfy Jyx o, M = 0. Let Irrg7UOH1’\%’7))‘; be the set of isomorphism classes of simple
objects of ModngH}/\%’g. We have

(a) IrrvOHI’;:?; = |_| Irrg,voHI)%’S;
5
where ¥ runs over the Wy-orbits in 7.

For M € Mod,, HI)%’)\( and for t € 7 let M; be the subspace of all m € M such
that for any € X, m is in the generalized eigenspace of 6, : M — M corresponding
to the eigenvalue z(t) € C*. We say that M; is a weight space of M. We have
M = @, M; where t runs over 7.

Let ¢ : C* — R be a group homomorphism such that ((vg) # 0. Let X be the
set of all z € X such that (z,&) > 0 for all a € II. We say that M (as above) is
(-tempered if the following holds: for any ¢t € 7 such that M; # 0 and any x € X
we have ((x(t))/{(vg) > 0. In the case where R generates a subgroup of finite index
of X, we say that M is (-square integrable if the following holds: for any ¢t € 7
such that M; # 0 and any z € X+ — {0} we have ((z(t))/((vo) > 0.

1.4. Assume that we are given a Q-root system (R, R, F,E’) and a basis II for
it. A parameter set is a function p : II — Z such that u(a) = p(a’) whenever
(a,&) = (o/,&) = —1. If such a p is given, we define Hp, 5 to be the associative
algebra over C[r] (r is an indeterminate) defined by the generators t,,, w € Wy and
(f), f € O (the algebra of regular functions E @& C — C) and by the relations
twtw = tww for all w,w’ € Wy;
(f1)(f2) = (frfo) forall fi, f2 € O;
(a1f1 +azfo) = ar1(fi) +az(f2) for fi, fo€ O and a1, a € Clr);

(Pt — oo (50(1)) = eyl =22l

where « is regarded as a linear form on Eg @ C (zero on the second factor) so that
JLST"(f) € O. (We regard O as a C[r]-algebra, by identifying » with the second
projection E @ C — C.) Now (0) is a unit element for HE,E-

We may identify O with the C[r]-submodule of H . consisting of all (f) with

f E_@ (a commutative subalgebra): to (f) corresponds f. Now Wy acts naturally
on O and the algebra of invariants O"0 is the center of H 1%7 - For any Wy-orbit X

for all f € O,a €1l

on Eg and rg € C let ji,ro be the maximal ideal of O consisting of functions in
OWo that vanish at all points of ¥ x {ro}.

1.5. For ry € C let Mod,«of_[gE be the category of I:II%_E—modules that are finite
dimensional over C and in which r acts as ro times 1. Let Irr,«OH E, g be the set of
isomorphism classes of simple objects of Mod,, H E, B

Let Mods, ,, H%;  be the category of Hf; p-modules M € Mod,, Hﬁ%E that satisfy
Js oM = 0. Let Ifriro fIﬁ%E be the set of isomorphism classes of simple objects of
Mods, ,,, H; - We have

(a) IrrroﬁgE = UIrri,roﬁﬁz,E
b

where ¥ runs over the Wy-orbits in Eé
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For M € Mode E and for ¢/ € Eg let M, be the subspace of all m € M
such that for any f € O, m is in the generalized eigenspace of (f)y : M — M
corresponding to the eigenvalue f(e’,79). We say that M, is a weight space of M.
We have M = @e,eEé M.

Let 7: C — R be a group homomorphism such that 7(rg) # 0. We say that M
(as above) is T-tempered if the following holds: for any ¢’ € Eg such that M. # 0
and any e € E such that (e, &) > 0 for all o € II we have 7({e,€’))/7(r9) > 0. In the
case where R generates E as a vector space, we say that M is 7-square integrable if
the following holds: for any e’ € Eg such that M., # 0 and any e € E — {0} such
that (z,&) > 0 for all a € II, we have 7({e, €'})/7(r¢) > 0.

2. A rREVIEW OF [L2] §8, §9]

2.1. Let & be a Q-subspace of C such that kQ N & = 0. Let ; be the image of #
under exp : C — C*. Then exp restricts to a group isomorphism & — 'Y

If T is a torus, we have canonically T' = £ ® C* where L is the free abelian group
Hom(C*,T). We have Ty = L&®. If t = T we have canonically t = Lc, ta = LO®#
and exp : t — T (denoted also by exp) induces an isomorphism te — Ta.

2.2. In this section we will refer to a subsection of [[2] such as [[2] 8.13] simply
as [8.13].

Now [L.2], §6, §9] gives a method which allows one to reduce a number of questions
on representations of an affine Hecke algebra to analogous questions on graded
Hecke algebras. Here we shall give a variation of this method. We will indicate
how to modify §8 and §9 of [L.2] (for example [8.13] will become [8.13]’) to obtain
this variation.

[8.1). From now on we assume that

(a) Y is generated by RU(ARNY).

Assume that a Wy-orbit ¥ in T and an element vy € # are giwven. We define
an equivalence relation on X as follows: we say that t,t' € ¥ are equivalent if
t't~1 € Ta. Let P be the set of equivalence classes. Note that Wy acts transitively
on P.

Let c € P. We choose t € ¢ and we define

R.={a € R;a(t) c & if & ¢ 2Y,a(t) € & if @ € 2Y}.

This clearly does not depend on the choice of t. We set R. = {a; € R.}. There
is a unique subset 1. of R. N R* such that (R, RC,X,Y,HC) s a root system. Let
W§ be the Weyl group of this root system (a subgroup of Wy). Using (a) and [L4
4.5] we see that W§ = {w € Wy, w(c) = c¢}. Now ¢ is a W§-orbit in T .

[8.2]" is empty.

[8.3]" is the same as [8.3] except that the last four lines of [8.3] are replaced by:

Let Ty, 0:(w € W§,x € X) be the basis elements of H. analogous to the basis
elements Ty,0,(w € Wy, z € X) of H.

[8.4]" is the same as [8.4] except that the last three lines of [8.4] are deleted.

[8.5). If A is an associative ring with 1, denote by A, the m’ng of all m x n

matrices with entries in A. We have Z, = O W5 Thus H, is a O, o -algebm The
identity map O — O extends continuously to a Ting homomorphism i 0 = O,
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(since Js vy C Jew,). This restricts to a ring isomorphism O™o = o (since
W§ € Wo ). Via this isomorphism we can regard H, also as a OWo -algebra.

[8.6]. Theorem. If c € P, there exists an isomorphism of OW°-algebras H =
(H.)n, where n = card(P).

[8.7)'=[8.7].

[8.8]" is the same as [8.8] except that the reference to [8.2](b) is deleted.

[8.9]'=[8.9].

[8.10]) remains unchanged except that (f(;rmula (a) should be replaced by:

saqp (€) Sap_q-+SagSay (€
(a) TG = T¢, Toct'” . T027 .

Sag - Lsa,

[8.11)'=[8.11], [8.12]'=[8.12].

[8.13]" is deleted except for the line (e) and the three lines following it which are
left unchanged.

[8.14)'=[8.14], [8.15)'=[8.15].

[8.16])’. Lines 2 and 3 of 8.16 are replaced by:

For any ¢’ € P let w € Wy be the unique element of minimal length such that

w(c) =c. If $a,5a, - - 5a, = W is a reduced expression in Wy, then

¢ # 5a,(C) # Sa,_15a,(C) # -+ # SaySas - - - Sa, (€) = .
The rest of [8.16] remains unchanged except that [['(c)],v,7y € T'(c),T5 are
deleted.
[8.17])" is empty.
[9.1). We preserve the setup of §3. Assume that we are given a Wy-orbit ¥ in
T and an element vy € & such that for any t € ¥ and any o € R we have

aft) € dif @ ¢ 2Y,a(t) € £& if & € 2.

[9.2]. The text of [9.2] except for the last three lines is replaced by the following:

Define 1o € # by exp(rg) = vg. Let t = 7. We show that there exists a Wy-
invariant element to € T and a Wy-orbit ¥ in te such that toexp () = X.

Choose a Q-subspace ¢ of C complementary to #, and consider the subgroup
exp(o) of C*. Then C* = exp(o) x & and we have a Wy-invariant decomposition
T =T, x Ta. For any o € R we have o(T;) € exp(o) and o(Ta) € &. Hence if
pr1: T — Ty is the first projection, we have for any t € X,

alpri(t)) =1if & ¢ 2Y, a(pri(t)) = £1if a € 2Y.

It follows that pri(t) is Wy-invariant for any t € X. Since pri(X) is a single Wo-
orbit, it follows that pri(X) = {to} for some Wy-invariant to € T,. Let ¥ be the
unique subset of ta such that expy(X) = talE, Then to, L are as required. Another
choice for to, ¥ must be of form toexps (&), X — & where & € ta is Wo-invariant.

The last three lines of [9.2] remain unchanged.

[9.3)'=9.3], [9.4]'=[9.4].

[9.5]" is the same as [9.5] except that the last three lines of [9.5] are replaced by
the following.

Assume for example that & ¢ 2Y and

(€) a(t) +2Xa)re € KZ — {0}.

Since t € ta, we have a(t) € #. Since 1o € & and N(a) € N, it follows that the
left-hand side of (c) is contained in &. But the right-hand side of (c) is not in &
and we have a contradiction. Similarly, we see that the other statements (a) and

(b) hold.
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[9.6]’ is the same as [9.6] except that the reference to [9.2](c) is deleted.
[9.7]) is empty.

3. SOME CONSEQUENCES OF THE FIRST REDUCTION THEOREM OF [[.2]

3.1. We place ourselves in the setup of 2.1 and we fix vy € #. Let
Xa Ya Rv R,H, WO; Ov>‘a A*aT

be as in 1.2. We write H instead of H;\%ég We assume that

(a) Y is generated by RU(3RNY).
Let ¥ be a Wy-orbit on 7. Let P be as in [8.1] (see 2.2). Let ¢ € P. Recall that
c is a W§-orbit on 7. Let R., R\, TI.,W§ be as in [8.1]’ (see 2.2). Let H. be the
algebra defined in the same way as H, but in terms of (XY, R,, RC,HC) instead
of (X,Y, R, R,TI); the parameter set (\., \¥) that we use to define H.. is given by
Ae(@) = M), Xi(a) = M (o), where o € I,/ € II are in the same Wy-orbit.
(This does not depend on the choice of o’.) Note that O is a subalgebra of H, in
the same way as O is a subalgebra of H.

Let J.., be the maximal ideal of OYo (the center of H,.) consisting of the
functions in O™ that vanish at all points of ¢ x {vg}. Let (OW0 ) be the J. ,,-adic
completion of OWs and let H. = H. ® oW (OWoYy.

Assume that M € Mod,,H.. In particular, in the H.-module M we have
JewoM = 0. Hence M extends naturally to an H_-module. The Clv,v~!-module
MP =M@&M®...®M (one summand for each ¢/ € P) is naturally a module over
the algebra of matrices with entries in H, indexed by P x P. The first reduction
theorem |L2| 8.6], in the variant [8.6] (see 2.2), gives an explicit isomorphism ¢ of
this algebra of matrices with the algebra H (see 1.3). Via this isomorphism, M7
becomes an H-module and, by restriction, an H-module in Modsy, ,,, /4. From the
definition we see that, if f € O (regarded as an element of ﬁ), then the (¢, ¢’)-
entry of t 71 (f) (for ¢/, ¢’ in P) is 0 if ¢ # ¢ and is w’'~1(f) if ¢ = ¢”’; here w’ € Wy
is the unique element of minimal length of Wy such that w'(c) = ¢'.

Lemma 3.2. The rule M — MF is a bijection Irre o, He = Irrs, o, H.

This is an immediate consequence of the definitions and of [L.2} 8.6], in the variant
[8.6]" (see 2.2).

Let S be the set of all w € Wy such that the length of w is minimal in wW§, or
equivalently, such that w(a) € Rt for any o € IL,.

Lemma 3.3. Let x € X be such that (x,&) > 0 for all « € II.. Let w € Wy and
7' € X be such that x = w=(2), (a/,&') >0 for all &’ € 11 and w= (&) € RT for
any o/ €11 for which (z',&') =0. Then w € S.

If w ¢ S, then there exists a € II. such that w(d) € —R™*; that is, w(d) =
Y wen Nar@ where —ngs € N. Tt follows that

0< <£L‘,d> = (x’,w(d)) = Zna/<x’,d'>.
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Since ny (2, &) < 0 for all o, it follows that ne (z’,&’) = 0 for all o’. Hence for
any o € II such that (z/,&’) 7é 0 we have no = 0. In other words,

w(d) = Z N &

o’ €Il {z’,&’)y=0

Hence & = 3_ /e (o7 ar)=0 new(&). For each o in the sum, we have w= (&) €

R* and no <0, hence & € —R™, a contradiction. The lemma is proved.

Lemma 3.4. Let M € Mod, ,,H.. Assume that ¢ : C* — R is a homomorphism
such that ((vg) # 0. The following two conditions are equivalent:

(i) the H.-module M is (-tempered;

(ii) the H-module MF is (-tempered.

Let D (resp. D’) be the set of all ¢t € 7 such that M; # 0 (resp. M # 0).
By the description of ¢~ !(f) given in 3.1, we see that D' = |J, .qw(D) where S
consists of all elements w € Wy such that the length of w is minimal in wW{, or
equivalenty, such that w(&) € Rt for any a € II.. Hence (ii) is equivalent to the
following condition:

For any t € D, any w € S and any z € X, we have ((z(w(t)))/¢(vo) > 0, or
equivalently ¢((w™'z)(t))/¢(vo) > 0.

We see that it is enough to show that the following two conditions for z € X are
equivalent:

(iii) (z,a) > 0 for all @ € HC,

(iv) there exists w € S and 2’ € X such that z = w=1(z').

Assume first that (iv) holds. Write x = w=!(2’) as in (iv). Let a € II.. Since
w € S, we have w(d@) € R*. Using (iv) we deduce that (z/,w(&)) > 0. Thus
(w=t(z"), &) > 0 so that (iii) holds.

Assume next that (iii) holds. We can write uniquely z = w=!(z') where 2’ € X
satisfies (z/,3) > 0 for all § € II and w € Wy is such that w='(3) € Rt for any
8 € 11 for which (z’, 3) = 0. By 3.3 we have w € S. Hence (iv) holds. The lemma
is proved.

Lemma 3.5. Assume that R generates a subgroup of finite index in X. Let M €
Mode, v, He. Assume that ¢ : C* — R is a homomorphism such that {(vo) # 0. The
following two conditions are equivalent:

(i) R. generates a subgroup of finite index of X and the H.-module M is (-square
integrable;

(ii) the H-module MF is (-square integrable.

Assume that (ii) holds but R, generates a subgroup of infinite index of X. Then
R, generates a subgroup of infinite index of Y, hence we can find z € X — {0} such
that (z,&) = 0 for any a € Il.. We can write uniquely z = w'~1(2’) where 2’ €
X — {0} satisfies (2/,3) > 0 for all § € II and w’ € Wy is such that w'~(f) € R+
for any @ € II for which (z/, 5) = 0. By 3.3, we have w’ € S. Thus, z = w'~!(z')
where 2/ € X — {0} satisfies (z/,3) > 0 for all 3 € Il and w’ € S. The same
argument can be applied to —z instead of 2. We see that —z = w” ~!(z") where
2" € X — {0} satisfies (z”,3) > 0 for all # € I and w” € S.

Since (ii) holds, and D’ = |J,,c g w(D) (D, D" as in the proof of 3.4), we see that,
for any t € D, any w € S and any z € X — {0}, we have ¢(z(w(t)))/¢(vo) > 0,
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that is, (((w™1z)(t))/¢(vo) > 0. In particular, for any ¢t € D we have
¢((w'™ta") (1) /¢(vo) > 0 and ¢((w" ™ a")(t)) /¢ (wo) > 0.
H

/—

We have 0 = 2z — z = w'~1(2) + w”~1(2"), hence

0 < ¢((w'="a")(8)) /¢ (vo) + C((w" = a")(£)) /¢ (v0)
= C((w' 1) () (" 2")(8)) /¢ (vo)
= (((w' 1" + w1 a")(8) /((vo) = C(0(1))/C(v0) = (1) /¢ (o) = 0.

This is a contradiction. We see that (ii) implies the first condition in (i). Now the
proof continues exactly as in 3.4; in particular, we see that the equivalence of (i)
and (ii) follows from the equivalence of 3.4(iii) and 3.4(iv). The lemma is proved.

4. SOME CONSEQUENCES OF THE SECOND REDUCTION THEOREM OF [LQ]

4.1. We place ourselves in the setup of 2.1 and we fix vy € #. Define ro € & by
exp(rg) = vp. Let

X5Y5R7R7Ha W07)‘a A*7T

be as in 1.2. We write H instead of HI’;?; Let t =7 . Assume that we are given a
Wo-orbit ¥ in 7 such that for any t € ¥ and any o € R we have

at) € difa ¢ 2Y, aft)c +dif ac2Y.
As in [9.2]' (see 2.2) we can find tg € T (Wo-invariant) and a Wo-orbit ¥ in te such
that ¥ = tgexp,(X).

Now (R, R, Xq,Yq) is a Q-root system with basis IT and with a parameter set
u: II — Z defined by

ula) =2X o) if @ ¢ 2Y and p(a) = AMa) + a(to) A" (a) if & € 2Y.

(In the last equality we have a(ty) = 41 since so(tg) = to.) Let H = ﬁ]’%,n
Let O C H be as in 1.4. We have Yo = t. Define ¥ : t® C — 7 x C* by
(¢/,2) = (to expg(€), exp(2)). _ . )

Let ((’)W)A be the Js . -adic completion of OW. Let M € Modsg, H. Since
Js.,oM =0, M extends naturally to a module over H = Haow (OW'). The second
reduction theorem [L2| 9.3], in the variant [9.3]" (see 2.2), gives an explicit algebra
isomorphism of H (as in 1.2) with H. Via this isomorphism, M becomes an IA{ -
module and, by restriction, an H-module M te Modg v, H. Note that M tand M
have the same underlymg C-vector space. Let ¢/ € Yo = t. From the definitions
we see that the e/-weight space M, of M is equal to the t-weight space MT of Mt
where ¢ € 7 is defined by
(a) x(t) = z(to) exp(z,e’)
for all x € X.

Lemma 4.2. The rule M — M is a bijection Irrs, , H < Irrs  H.

This is an immediate consequence of the definitions and of [L2} 9.3], in the variant
19.3]" (see 2.2).
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Lemma 4.3. Let M € Modgmﬁ. Assume that { : C* — R is a homomorphism
such that ((vo) # 0. Assume that to € TX*C. Define a homomorphism 7: C — R
by 7(z) = ((exp(2)). Then 7(ro) # 0. The following two conditions are equivalent:
(i) the H-module M is T-tempered;
(ii) the H-module M7 is (-tempered.

In view of 4.1(a) it is enough to show that for ¢’ € Y, the following two condi-
tions are equivalent:

(i) for any e € Xq such that (e,@) > 0 for all @ € II we have
C(exple,¢))/C(uo) > 0

(iv) for any z € X+ we have ((z(to) exp(z,€’))/((vo) > 0.

Since to € TXe, for any x € X, we have ((z(tp)) = 0 and in (iv) we have

(a) ((z(to) exp(z, ') = ((exp(z, ).
Since X C Xq it follows that, if (iii) holds, then (iv) holds.

Assume now that (iv) holds. Let e € Xq be such that (e,&) > 0 for all o € II.
We can find n € N — {0} such that ne € X*. Since (iv) holds, it follows that
C(exp(ne,e’))/C(vg) > 0. (We use (a).) Hence nl(exp(e,e’))/C(vg) > 0 so that
C(exp(e,€’))/¢(vo) > 0. Thus (iii) holds. The lemma is proved.

Lemma 4.4. Let M € Mods , H. Assume that ( : C* — R is a homomorphism
such that ((vo) # 0. Define a homomorphism 7 : C — R by 7(z) = ((exp(z)).
Then 7(rg) # 0. Assume that R generates Xq as a Q-vector space. The following
two conditions are equivalent:

(i) the H-module M is T-square integrable;

(ii) the H-module M is (-square integrable.

In view of 4.1(a) it is enough to show that for ¢’ € Y, the following two condi-
tions are equivalent:

(iii) for any e € Xq — {0} such that (e,&) > 0 for all a« € II we have
((exp(e, €'))/C(vo) > 0;

(iv) for any z € X+ — {0} we have ((z(to) exp(z,€’))/((vy) > 0.

This is shown in the same way as in the proof of 4.3. (In this case we have
automatically ((z(to)) = 0. Indeed, since ty is Wy-invariant and R generates Xq,
we see that to has finite order in 7, hence ((z(to)) has finite order in R, hence
¢(z(to)) = 0.) The lemma is proved.

5. GEOMETRIC GRADED HECKE ALGEBRAS

5.1. If G is an algebraic group, the exponential map exp : G — G restricts to a
bijection G4 — Ga.
5.2. In this section we review some results of [L1], [L5] and give some variants of
them.

Assume that G is a connected reductive algebraic group. Let g = G. Let L be
the Levi subgroup of some parabolic subgroup of G. Let C be a nilpotent L-orbit

in L and let F be an irreducible L-equivariant cuspidal local system (over C) on
C.Let T =279 Let t=T. We have g = Doce- 98¢ where

g ={zreglyz]=alyr Vyet}
Let R = {a e t*—{0};9* # 0}, R={a € R';a/2 ¢ R'}. The group W = N(T)/L,
where N(T') is the normalizer of T in G, acts naturally on t and t*. For any o € R
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there is a unique element s, € W which acts on t* as a reflection sending « to —a;
there is a unique element & € t such that s, (z) = z — z(&)a for all © € t*. Let
R = {&;a € R}. We have canonically T =Y ® C*, t = Yo where Y is the group
of all one-parameter subgroups of T'. Let

tq =Yq,tg={z € t;2(2) €Q Vzetq}

Then (R, R, tQ, tq) is a Q-root system. Let II be a basis for it. Let yo € C. For any
o € TI we denote by ¢(a) the integer > 2 such that ad(y)<(®) =2 : g®@g?* — g*Pg®
is # 0 and ad(yo)%(® =1 : g @ g% — g* @ g?>* is 0. (This is independent of the
choice yp.) Then a — ¢(«a) is a parameter set (see 1.4) for our Q-root system. The
corresponding algebra ﬁlg%,ta (see 1.4) is denoted by H(G, L,C,F).

5.3. Let rg € C. Let o be a semisimple element of g and let y be a nilpotent
element of g such that [o,y] = 2roy. Let P be a parabolic subgroup P of G with
Levi subgroup L. Let

(a) X,y ={9€G;Ad(g ")y €C+Up,Ad(g"")o € P}.

We have an obvious map X, , — C which takes g to the image of Ad(g~')y under
C+Up — C,a+b+ a. The inverse image of F under this map is denoted again by
F. On X, , we have a free P-action by right translation and F is P-equivariant,
hence it descends to a local system F on Xs,y/P. The group Zg(o,y) acts on
Xg,y/ P by left translation and F is naturally a Z (0, y)-equivariant local system.
Then Zg(o,y) acts naturally on the cohomology

(b) P Hi (Xoy/ P, F).

The set of irreducible representations (up to isomorphism) of Z¢ (o, y) which appear
in the representation (b) is denoted by IrrgZg(o,y). (This set is independent of
the choice of P since another choice of P is of the form nPn~! where nLn~—! =
L,Ad(n)C =C.)

Let 6(G,L,C,F,rg) be the set consisting of all triples (o,y,p) (modulo the
natural action of G) where o,y are as above and p € IrrgZg(0, ).

In [L5] a canonical bijection

(c) Irr, H(G,L,C,F) < &(G,L,C,F,r0)

is established using geometric methods (equivariant homology).

5.4. We fix elements €°, h0, O in L which satisfy the standard relations of sly and
e? € C. Let

Z ={g € G;Ad(g)c’ = ¢’ Ad(g)n" = h", Ad(g) f* = f°},

Z ={(g,a) € G x C*; Ad(g)e” = ae’, Ad(g)h® = h°, Ad(g) f* = a=2f°}.
We have
={z € G;[r,e"] =0,[z,h°] =0, [z, f°] = 0},
= {(x,a) € g x C;[x,e°] = 2ae’, [z, h°] = 0, [z, f°] = —2af°}.

There is a unique isomorphism of algebraic groups ¢ : Z 0% C* =5 Z9 such that the
induced Lie algebra isomorphism Z & C = Z is given by (x,a) — = + ah®.
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Lemma 5.5. The inclusion Z% — G x C* induces an injective map from the set
of semisimple Z°-orbits in Z to the set of semisimple G x C*-orbits in g ® C.

This has been stated without proof and used in [L1), 14.3(a)], [L3, 8.13]. The
proof is given in the appendix.

5.6. Let ¥ be a W-orbit on t and let M € Irrsy, H(G,L,C,F). Assume that M
corresponds to o, y, p under 5.3(c).

The center OV (as in 1.4) of H(G, L,C,F) acts on M via a character which
may be identified with the W-orbit ¥ x {ro} on t x C. By [L3, 8.13], O is
identified with the equivariant cohomology H7., . (point) which via ¢ is identified
with H7, (point); from the definitions, the natural action of H (point) on M is via
a character that may be identified with a semisimple orbit in Z which is contained
in the Ad(G x C*)-orbit of (o,7¢) in g® C.

Thus, o is related to 3 as follows: there exists (o/,79) € Z such that 0,0’ are
conjugate under G' and ¢ ~1(0”,79) = (0! — roho,70) € x {ro}.

We define a map

(a) G(G,L,C,J’—'.,To)ﬂt/w

Consider an element u of &(G, L,C, F, o) represented by (o, y, p). We can find
(b) ¢’ in the G-orbit of o such that o/ — roh® € t.

Indeed, since X, , # 0, there exists ¢ € G such that oy = Ad(g~')o € L,y =
Ad(g~ ')y € € 4+ Up. From [o1,y] = 2roy’ we deduce that [o1,€"] = 2r¢e’. Now
we can find [ € L such that Ad(l)e® € C*e® and such that o/ = Ad(l)o; satisfies
o' €L, [0, = 2roe’, [0’,h°] = 0, [0’, f'] = —2rof°. Since € is distinguished in
L, it follows that ¢’ — roh® € t, as required.

Let o’ be as in (b) and let ¥ be the W-orbit of o’ — rh® in t. Let &’ be another
element like ¢’ and let 3 be the W-orbit of &' — roh® in t. Then (o', 7¢), (6", 70)
are semisimple elements of Z and are in the same G x C*-orbit in g @ C; hence, by
5.5, there exists (¢, a) € Z° such that Ad(g')o’ = &'. Since h° is central in Z, we
have Ad(g')o’ = &'. Since (h°,1) is central in Z, we have Ad(g')h° = h°. Hence
Ad(g") (0" — roh®) = 6" — rohY. Since o’ — roh®, 5" — roh® belong to t, hence to the
Cartan subalgebra t® Ch?, they are in the same orbit of the Weyl group of Z° with
respect to that Cartan subalgebra, which may be identified with W. It follows that
¥ = 3. Thus we have a map u +— ¥ as in (a).

For any W-orbit ¥ in t let (G, L,C,F,%,r) be the inverse image of ¥ under
the map (a). The previous discussion yields the following result.

Lemma 5.7. Let ¥ be a W-orbit in t. The byection 5.3(c) restricts to a bijection
II‘I‘SJ,OH(G, La Ca ‘7:) = G(Ga La Ca fv Za TO)-

Lemma 5.8. In the setup of 2.1, assume that ro € &. The bijection 5.3(c) restricts
to a bijection

Irr® H(G, L,C, F) < G*(G,L,C, F,ro)

where Irr?OH(G,L,C,}") = brrs,, H(G,L,C, F) (union over all W-orbits ¥ in
ta) and G*(G,L,C,F,rg) consists of all (o,y,p) in &(G,L,C,F,ro) such that
0 € Pga-
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Using 5.7 we see that it is enough to show that, if (o,y,p) € 6(G, L,C, F,ro)
and ¥ € t/W correspond to each other under 5.6(a), then we have o € gq if and
only if ¥ C ta. We may assume that o — rgh? € £. Now roh® has eigenvalues in
Zro in any V € Zg (a property of slz), hence roh® € ga (since ro € #). If we have
two elements of gg that commute, then their sum is again in ga. Applying this to
the commuting elements o, —rgh? and to the commuting elements o — rqh°, roh°
we deduce that o € ga if and only if o — roh® € ga, that is, if and only if ¥ C ga.
It remains to observe that g4 Nt = ty. The lemma is proved.

The following result is closely related to [L5) 1.21].

Lemma 5.9. Assume that 7 : C — R is a group homomorphism such that 7(rg) #
0. Let M € Irr, H(G, L,C,F) and let (o,y,p) correspond to M under 5.3(c). The
following two conditions are equivalent:

(i) M is T-tempered;

(i) there exists h € g,y € g such that [y,y] = h,[h,y] = 2y,[h, 9] = —27,
[o0,h] =0, [0, 7] = —2ro7 and such that o — roh € g&e'™.

Assume that the lemma holds for (G;, L;,C;, F;), i = 1,2 (two data such as
(G,L,C,F)). Then one checks easily that it also holds also for (G; x Ga, L1 %
L, Cy x Co, F1 ® Fy). Without loss of generality, we can assume that G = C' x G’
where G’ is semisimple and C is a torus. Hence it is enough to prove the lemma
assuming that G is either semisimple or a torus.

Assume first that G is a torus. Then G = L = T'. In this case, we must verify
that for any €’ € t, the following two conditions are equivalent:

(iii) For any e € tg we have 7((e,€))/7(ro) > 0;

(iv) ¢’ € t’e™ = Y @ Kerr.

Now (iii) is equivalent to the condition that, for any e € tg, we have 7((e, €')) = 0.
One checks easily that this is equivalent to (iv).

Next, assume that G is semisimple. The condition that M is 7-tempered (as
given in 1.5) is in this case equivalent to the condition that M is 7-tempered ac-
cording to the definition in [L5l 1.20]. (This follows easily from [L5 3.6].) Using
L5l 1.21] we are therefore reduced to verifying the following statement.

If z € g and any eigenvalue v of ad(x) : g — g satisfies 7(v) = 0, then for any
V elg,

(a) any eigenvalue v of x: V — V satisfies T(v) = 0 (that is, x € g¥e'7).

Clearly, if (a) holds for V, then it also holds for V®" for any n > 0. Since (a)
holds for the adjoint representation, it also holds for tensor powers of the adjoint
representations, hence for any direct summand of such a tensor power, hence for
any irreducible V' on which Zg acts trivially, hence for any V on which Zg acts
trivially. If V € Zg,n > 1 and (a) holds for V™, then it also holds for V. (Indeed,
if v is an eigenvalue of x : V — V, then nv is an eigenvalue of z : VO — V&7,
hence 7(nv) = 0, hence nT(v) = 0, hence 7(v) = 0.) If V € Zg, then there exists
n > 1 such that Zg acts trivially on V®". As we have seen earlier, (a) holds for
V& hence it holds for V. Thus (a) holds in general. The lemma is proved.

The following result is closely related to [Lh] 1.22].

Lemma 5.10. Assume that G is semisimple. Assume that T : C — R is a group
homomorphism such that 7(ro) # 0. Let M € Trr,, H(G, L,C,F) and let (o,y, p)
correspond to M under 5.3(c). The following two conditions are equivalent:

(i) M is T-square integrable;
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(i) there exists h € g,y € g such that [y,y] = h,[h,y] = 2y,[h, 9] = —27,
o = roh; moreover, y is distinguished.

Using [L5, 3.6], we see that the condition that M is T-square integrable (as given
in 1.5) is in our case equivalent to the condition that M is 7-square integrable
according to the definition in [L5 1.20]. Hence the lemma follows from [L5] 1.22].

5.11. For any & € g let
(a) Y:={ge€G;Ad(g )¢ €C+t+Up}

We have an obvious map Y¢ — C which takes g to the image of Ad(g~!)y under
C+t+Up — C,a+b+c+— a. The inverse image of F under this map is denoted
again by F. On Y we have a free P-action by right translation and F is P-
equivariant, hence it descends to a local system F on Y¢/P. The group Zg(§) acts
on Y¢/P by left translation and F is naturally a Zg(€)-equivariant local system.
Then Zg(¢) acts naturally on the cohomology

(b) P Hx(Ye/PF).

The set of irreducible representations (up to isomorphism) of Z(€) which appear
in the representation (b) is denoted by IrrgZg(€).

5.12. Let 0,y be two elements of g such that ¢ is semisimple, y is nilpotent and
[0, y] = 2rgy. We choose (as we may) elements h,§ in g such that

(a) [ya g] =h, [ha y] = 2y, [ha ?]] = -2y, [U’ h] =0, [Ua g] = —2r0y
and we set £& = o —roh. This is a semisimple element of g (since o, h are commuting
semisimple elements) and it commutes with y, h, §. We set £ = & + y. If we make
another choice h’, 3 instead of h, 7, then, as it is known, there exists an element
g € Zg(o,y) such that Ad(g)h = ', Ad(g)y = ¢'. Let & = o — roh’. We have
Ad(g)é1 = €1 Let & =& +y. We have Ad(g)¢ = &' Thus, the G-orbit of £ is well
defined by o,y (in fact, it depends only on the G-orbit of (o,y).

Conversely, assume that £ € g is given. We can write uniquely £ = & + y where
&1 € g is semisimple, y € g is nilpotent and [£1,y] = 0. We choose (as we may)
elements A,y in g such that

(b) [ya Zj] = h” [ha y] = 2ya [ha g] = _2g7 [517 h] = 07 [gla 27] =0.
Let 0 = & + roh. Then o is a semisimple element (since &1, h are commuting
semisimple elements) and [o,y] = 2ry,[o,h] = 0,[0,9] = —2roy. If we make

another choice b/, 7’ instead of h, ¢, then, as it is known, there exists ¢’ € Zg(&1,y)
such that Ad(¢')h = h', Ad(¢’)y = §'. Let o/ = & + roh’. We have Ad(¢')o = o’.
Thus the G-orbit of (o, y) is well defined by £ (in fact, it depends only on the G-orbit
of £&.) Thus we have defined a bijection o,y < & between the set of G-orbits of pairs
(0,y) of elements of g such that o is semisimple, y is nilpotent and [o,y] = 2roy,
on the one hand, and the set of G-orbits in g, on the other hand.

Lemma 5.13. Assume that (o,y) corresponds to & as above. Then the groups
Za(o,y) and Zg(§) may be naturally identified so that Irrg Zg(o,y) = Irrg Za(§).

We may assume that o,y, £ are related as follows: there exist h, %y in g so that
5.12(a) holds and £ = & + y where & = o — roh. It is known that Z/ = {g €
G;Ad(g)y = y,Ad(g)h = h,Ad(9)y = 9,Ad(g)c = o} is a maximal reductive
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subgroup of Z¢(o,y), hence it has the same group of components as Zg(o,y). Sim-
ilarly, since Zg(&1) is connected, reductive, Z” = {g € G;Ad(g9)y = vy, Ad(g)h =
h,Ad(9)y = 7,Ad(g9)&1 = &} is a maximal reductive subgroup of {g € G; Ad(g)y =
y,Ad(9)&1 = &1} = Zg(€), hence Z” has the same group of components as Z¢g(§).
Now Z' = Z". Tt follows that Zg(o,y) and Zg(€) have the same group of compo-
nents. Note that

(a) Y:={g€G;Ad(g7")& € t+ Up,Ad(g ")y € C+ Up}.
Now in the presence of the condition Ad(g~')y € C + Up, the conditions

(b) Ad(g~1)& € t+ Up,

(c) Ad(g~1)&1 € P,
are equivalent. Indeed, it is clear that if (b) holds, then (c) holds. Conversely,
assume that (c) holds. Then Ad(g~')&; = ! mod Up where [ € L. By our as-
sumption we have Ad(g_l)y =yo mod Up where y € C. Since [£;,y] = 0, we have
[Ad(g~1)x1,Ad(g™1)y] = 0 and taking images under P — L we deduce [l,yo] = 0.

Since yo is distinguished in L, its centralizer in L is t. Thus, [ € t so that (b) holds.
We see that (a) can be rewritten as

Ye={g€G;Ad(g~" )& € P,Ad(g™ ")y € C+ Up}.

Let s € Hom(C*, G) be such that the tangent map C — g of s carries 1 to h. We
define a C*-action of Y¢ by a : g — s(a)g. This induces a C*-action on Y¢/P
whose fixed point set is

Y ={g9€G;Ad(g")¢& € P,Ad(g ")y € C+ Up,Ad(g')h € P}/P.

Similarly, we define a C*-action on X, , by a : g — s(a)g. This induces a C*-action
on X, /P whose fixed point set is

X' ={geG;Ad(g ")y € C+Up,Ad(g")o € P,Ad(g"')h € P}/P.

In the presence of the condition Ad(g~1)h € P, the conditions Ad(g~!)o € P and
Ad(g71)& € P are equivalent (since & = o — roh). It follows that Y’ = X'. Thus
the C*-actions on Y¢/P and on X, ,/P have the same fixed point set. They also
have the same action of Z' = Z".

The restriction of the local system F on Y¢/P (see 5.3) to this fixed point set is
the same as the restriction of the local system F on X, ,/P (see 5.11) to this fixed
point set; the restriction is denoted again by F. By the principle of conservation
of Euler characteristics by passage to the fixed point set of a torus action, we have

Z(— )" H.'(Xoy /P, F) =Y (-1)"HZ (X', F)
n
= S Y F) = ) HE (Y P )

n

as virtual representations of Zg(0,y) = Za(§). Hence for an irreducible represen-
tation p of Zg(o,y) = Za(§), the conditions

p appears in ., (—1)"H*(X,.,/P, F),

p appears in »_ (=1)"H(Y¢/P,F)
are equivalent. For n odd we have H*(X,,/P,F) = 0 and H?(Y¢/P,F) = 0.
(Indeed, both X, /P and Y¢/P can be regarded as fixed point sets of torus actions
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on the variety denoted by P, in [L1], and it suffices to use the odd vanishing theorem
L1l 8.6] for P, together with [L3| 4.4]). It follows that the conditions
p appears in > HMX,,/P,F),
p appears in >, H*(Y¢/P, F)
are equivalent. The lemma is proved.
5.14. Let T(G, L,C, F) be the set consisting of all pairs (£, p) (modulo the natural

action of G) where £ € g and p € IrrgZ¢(€). By 5.12 and 5.13 we have a canonical
bijection

(a) 6(G,L,C,F,ry) < %(G,L,C,F).
Composing this with the bijection 5.3(c) we obtain a bijection
(b) Irr,,H(G,L,C,F) < %(G,L,C,F).

In the setup of 2.1 and assuming that ro € #, let T®(G, L,C, F) be the set of all
(& p) in T(G, L,C, F) such that £ € ga. Then (a) restricts to a bijection

(c) G*(G,L,C,F,ry) « I*G,L,C, F).

Indeed, let £ € g and write £ = & +y where & € g is semisimple, y € g is nilpotent
and [€1,y] = 0. Let h,§ in g such that 5.12(b) holds and let o = & 4+ roh. We must
show that £ € ga if and only if o0 € g4. Clearly, £ € gq if and only if & € ga. As
in 5.8, we have roh € ga. (The eigenvalues of h in any V € Zg are integers.) As
in 5.8, if we have two elements of gg that commute, then their sum is again in ga.
Applying this to the commuting elements &;,r9h? and to the commuting elements
o, —roh® we deduce that o € ga if and only if £; € ga. This yields (c).
Composing (¢) with the bijection in 5.8 we obtain a bijection

(d) In® H(G,L,C,F) < T*G,L,C,F).
(Notation of 5.8.) We can now reformulate Lemmas 5.9 and 5.10 as follows.

Lemma 5.15. Assume that 7 : C — R is a group homomorphism such that
7(ro) #0. Let M € Trr,, H(G, L,C, F) and let (¢, p) correspond to M under 5.14(b).
The following two conditions are equivalent:

(i) M is T-tempered;

(11) g c gKer‘r.

By 5.9, condition (i) is equivalent to the condition that the semisimple part &;
of ¢ satisfies & € g7, But this is clearly equivalent to condition (ii).

Lemma 5.16. Assume that G is semisimple. Assume that T : C — R is a group
homomorphism such that T(ro) # 0. Let M € Trr,, H(G, L,C,F) and let (£, p)
correspond to M under 5.14(b). The following two conditions are equivalent:

(i) M is T-square integrable;

(ii) € is a distinguished nilpotent element.

5.17. The local system on exp(C) (a unipotent class in L) that corresponds to F
under exp : L — L is denoted again by F. For any f € G, let

(a) Y;={g9€G;97 " fg € exp(C)TUp}.

Consider the map Yf — exp(C) which takes g to the image of g~!fg under
exp(C)TUp — exp(C),abc — a. The inverse image of F under this map is de-
noted again by . On Y we have a free P-action by right translation and F is
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P-equivariant, hence it descends to a local system FonY ¢/P. The group Zg(f)
acts on Yy/P by left translation and F is naturally a Zg(f)-equivariant local
system. Then Zg(f) acts naturally on the cohomology

(b) D HI (/P F).

The set of irreducible representations (up to isomorphism) of Zg(f) which appear
in the representation (b) is denoted by IrrgZg(f).

In the setup of 2.1, let S*(G, L,C, F) be the set of all (f, p) (modulo the natural
action of G) where f € G4 and p € IrrgZg(f).

If f € G4 corresponds to & € ga under the bijection 5.1, we have Zg(f) = Zg(£),
hence Zg(f) = Za(€); we also have Y; = Y¢. (We use that exp : P — P restricts
to a bijection C+ ta +Up — exp(C)TaUp.) It follows that IrroZg (f) = Irro Zg ().
We see that (£, p) — (exp(€), p) defines a bijection

(c) TG, L,C,F) = %G, L,C, F).
Composing this with the bijection 5.14(d) we obtain a bijection
(d) In® H(G,L,C,F) < T*(G,L,C,F).

We can now state the following variant of Lemma 5.15.

Lemma 5.18. Assume that ¢ : C* — R is a group homomorphism such that
C(exp(ro)) #0. Let T =(exp: C — R. Let M € Irr?OH(G,L,C,}") and let (f,p)
correspond to M under 5.17(d). The following two conditions are equivalent:

(i) M is T-tempered;

(i) f e G¥ere.

Using 5.15 we see that it is enough to verify the following statement: for £ € g,
we have ¢ € gR'" if and only if exp(¢) € GKe*¢. This is immediate. The lemma is
proved.

6. THE SUBGROUPS G

6.1. We fix an algebraic group G such that GO is simply connected, almost simple.
We set G = G°. We assume that we are given an element ¥ € G of finite order d
such that G x Z/dZ — G, (g,7) — g is a bijection and such that the following
holds: there exists a set of Chevalley generators {e;, hy, fir;i' € I'} for g = G=aG
(with standard notation) and a bijection I’ = I’,i’ — 7’ of order d, such that

Ad(d)(er) = e, Ad(D) (ki) = hoy, Ad(9)(fir) = for

for all i’ € I'. Tt follows that G /G is a cyclic group of order d generated by the image
of 9. Let G* be the connected component of G that contains ¥. The subspace ¥’ of g
spanned by {h;;i’ € I'} is T’ for a maximal torus 7" of G. Let )’ = Hom(C*,T"),
X" = Hom(T",C*). We have canonically T/ = V' @ C*, t' = )V, t'* = X5. Hence
we may identify )’ with a subgroup of t' and X’ with a subgroup of t'*. Let
R c Y ct (resp. R' C X' C t'*) be the set of coroots (resp. roots) of G with
respect to T’. For o € R’ let h, be the corresponding coroot and let g, be the
corresponding root subspace of g. For i’ € I’ define oy € R' by go,, = Cejr. Then
(R',R', X', ') is a root system with basis {c;4’ € I'}. Now ¢ normalizes T’. For
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any j € [0,d—1] we have a bijection R’ — R/, a — ¥ o given by P (997 = aft)
fort € T, € R, that is, Ad(9¥)g, = 9o, forac R\

6.2. Let GV = Zg(9), T = Zp/(9) =T' NG, t =T = {z € t'; Ad(¥)2z = z}. From
[St] it is known that:

(a) G? is connected and T is a mazimal torus of GY. Moreover, T' = Zg(T); in
particular, Na(T) C Ng(T").

Let W' = Ng(T")/T'. Conjugation by 9 induces an isomorphism W’ = W’
whose fixed point set is denoted by W'?. Let W = Ngo(T)/T. From [Sf] it is
known that

(b) the obvious maps Ng(T)/T" «— W — W'? are isomorphisms.

Let 'Y = Hom(C*,T),’XY = Hom(7,C*). For § € 'X we set gg = {z €
g;Ad(t)z = B(t)r vVt € T}. Then g = Psepgp and go = t'. Let 'R = {3 €
'X —{0}; g5 # 0}. There is a unique subset 'R of 'Y — {0}, in bijection 'hg < f3
with 'R, such that ('R,’R,’X,’Y) is a (not necessarily reduced) root system whose
associated Weyl group is W. We have canonically T ='Y ® C*, t = 'V, t* ='Xc.
Hence we may identify ') with a subgroup of t and 'X with a subgroup of t* and
we may regard 'R C t*,'R C t.

Lemma 6.3. Definetp: R — t* by a — a+"a+-- 4+, If o, o’ € R’ satisfy
() = (o), then o/ = o for some j € [0,d — 1].

Let R} be a set of representatives for the orbits of bijection R — R’ a +— Ya. It
is enough to show that a — v («) is an injective map R}, — t'*. This can be easily
checked in every case (we may assume that d > 2).

6.4. If « € R’ C '*, then |, € 'R. We thus obtain a map R’ — 'R, & — «|; which
is constant on the orbits of & — Y. In fact, using 6.3, we see that this map induces
a bijection from the set of orbits of a — Yo on R’ onto 'R.

For 3 € 'R let dj be the cardinal of the corresponding orbit in R'; thus dj; =
dim gg. For 8 € 'R we set d% = 2 if either 23 € 'R or %6 € 'R and we set d% =1if
26 ¢ 'R, 13 ¢ 'R. We also set dg = djyd.

If « € R and 8 = alt, we have

ihﬁ:h& ifdbz.lorifdg:Q,

hg =ha + ho, 1fd2;=2and ngL

/hg =ho + hﬁa + hy2, if dg =3,

/hﬁ = 2hq + 2ho, if dg = 4.

Let I’ be the set of orbits of the bijection I’ — I',i’ + Yi’. For i € I’ let
Bi = ar|¢ where i’ is any element of the orbit i. Then {3;;i € I'} is a basis of the
root system ('R,’R,’X,'Y).

Let R be the subset of t* consisting of the vectors dg3 for various § € 'R. For
v € Rweset hy = diﬁ’hg where v = dgf3, 3 € 'R. Let R be the subset of t consisting
of the vectors h., for various v € R.

For i € I' let d, = d%i,d;' = dgi,di = did] = dg, and let v; = d;8;. Let Y be
the subgroup of t generated by {h,,;i € I'}. Let X be the set of all { € t* that
take integer values on ). Then R C X, R C Y and (R, R, X,)) is a (reduced) root
system with Weyl group W and with basis {;;i € I'}. It is also irreducible. (If
d=1wehave R ='R=R. If d =2 and R’ is of type As,_1, then 'R, R are of
type Cn, B,. If d = 2 and R’ is of type As,, then 'R, R are of type BC,,C,. If
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d =2 and R’ is of type D,,, then 'R, R are of type B,,_1,Cp,_1. If d =2 and R’ is
of type Eg, then 'R, R are of type Fy, Fy. If d = 3 and R’ is of type Dy, then 'R, R
are of type Ga,Gs.)

Let 7o € R be the negative of the highest root of R relative to {7;;i € I'}. Then
~0 = dofo for a unique By € 'R such that 20y ¢ 'R. Here dy = dg, = d. Setting

I=T1u{0},

there are unique integers n; € Zo(i € I) with ng = 1, such that
Z niy; = 0.
iel

For i € I, we set h; = h.,.

Let V be a C-vector space with basis {b;;7 € I}. Let V' be the dual vector
space with dual basis {b};7 € I'}. The canonical pairing V' x V' — C is denoted by
z, 2" — z(2’). We imbed tinto V' by y +— >, vi(y)b; we identify t with its image,
the subspace {)_, ¢;bl;¢; € C, )", njc; = 0} of V'. In particular, we may regard h;
as a vector in V' with b;(h;) = 2. We have b;(z') = ~;(2) for any 2’ € t,i € I. Let

tl = {Z Cib,,L-;Ci € C,Znici = ].}

For i € I define s; : V. — V by s;(x) = x — x(h;)b; and its contragredient s; : V' —
V' by s;(z') = &’ —b;(x')h;. Let W* be the subgroup of GL(V') or GL(V') generated
by {s;;i € I} (an affine Weyl group). Note that t,t! are W4stable subsets of V.
We obtain a homomorphism W® — GL(t) whose image coincides with W.

6.5. For any S C I, S # 0 let

Cs={2' € tha = Zcib; with ¢; € C,¢; >0 Vi e S}.
€S

C' = U Cs.

SCI;S#0

For J C I,J # I, let W; be the subgroup of W* generated by {s;;i € J} (a finite
Coxeter group). For S as above and 2’ € Cgs, we have
(a) {w e Whw(a') =2} = Wi_s.

The sets C's are disjoint. Let

Lemma 6.6. Let ' € t'. The W®-orbit Wez' meets C' in exactly one point.

Let Vi = > e  RY, tr = tN VRt =t N V.

The following R-analogue of the lemma is well known.

(a) Let xi € tg. The W-orbit Wz meets C' Nty in exactly one point.

We can write 2/ = 2 + /=1 where 7} € th, 7} € tr. Using (a) we can find
we W*and S C 1,8 # 0 such that w(z') = 24 +/—12) where 2 € Cs Ntk 7} €
tr. By a well known property of Weyl chambers applied to W;_g, we can find
w' € Wi_g such that w'(zx4)(b;) € R>o for all i € I —S. By 6.5(a) we have
w'(xh) = . Thus, w'(w(z'))(b;) is in Rsg +v/—1R if i € S and is in vV—1R>¢
if i € I —S. Hence w'(w(z’)) € Css for some S', S € S C I. We see that
wex' N C’ £ 0.

Now let z, 2’ be two points of C’ that w(z) = 2’ for some w € W*. We can write
2z =21 + /122, 2/ = 2] + /=12, where 21,2} € C' Nth, 22,2} € tr. Since 21, 2}
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are in the same W%orbit, we see using (a) that z; = 2]. We can find S C I, S # 0
such that z; = 2] € Cs Ntg. Since 2,2’ € Cg, we have 22(b;) > 0, 25(b;) > 0 for all
i € I —S. Moreover, we have w(z1) = 21 = #z1 (hence w € Wi_g, see 6.5(a)) and
w(z2) = z4. Using a well known property of Weyl chambers applied to W;_g, we
deduce that zo = z4. Thus, z = 2’. The lemma is proved.

6.7. Let N = {g € G;gT9g~ ' =TV}, N' = N NT". Clearly, Neo(T)NN" =T.
Lemma 6.8. N = Neo(T)N' = N'Ngo (T).

If g € NV, then g normalizes the subgroup generated by T4, hence it also nor-
malizes the identity component T' of that subgroup. Since T' = Zg(T), it follows
that g normalizes T". Thus, N'C Ng(T"). Tt also follows that N’ is normal in N,
hence Ngo (T)N' = N'Ngs (T).

Let g € N. We set a = g~ '9g01,a’ = ¥2g W 1g9~!. For t € T we have
Ygtdg~! = gt¥g~ 'V, hence ata’ = t. Taking ¢t = 1, we get aa’ = 1. Hence
ata=! =t for all t € T. Thus, a € Zg(T) = T'. Thus,

(a) ¥g9~t = ga for some a € T".
Let g be the image of g in W/ = Ng(T")/T". Then g € W'V (see (a) and 6.2). Since
W = W' (see 6.2(b)), there exists ¢’ € Ngo(T),t’ € T’ such that g = ¢'t'. We
have ' € T" NN, hence t' € N’. Thus, N' = Ngs(T)N’. The lemma is proved.

Lemma 6.9. We have 'Y C Y and Y /'Y may be identified with N'/T.

Let F' = [[,cp Z/d;Z. Let F' be the subgroup of (C*)T" consisting of all (a;)
such that a?i =1 for alli € I'. Define F = F’ by (I;) — (exp(sl;/d.)).

From the definitions we see that 'Y has a Z-basis {5-'hg,;i € I'} and Y has a
Z-basis {h;;i € I'}. Recall that h; = d%_hgi. It follows that 'Y C Y and we have

F = Y)Y, (l;) — 'Y-coset of Z Lih;.
el
By definition, NV = {t € T';t9t"19~t € T}. The homomorphism x : N’/ —
T,t +— t9t~ 297! with kernel T induces an isomorphism N”’/T = Im(x). Define
(CHT" = T by (a;) — [L:c7 "hp:(ai). Via this isomorphism, Im(x) corresponds to
F’. Combining the isomorphisms above yields the lemma.

6.10. Let p be the composition t! — t — T where the first map is @ — z — bj,
and the second map is x +— expp(kx)v.

Lemma 6.11. The map =’ — p(z') defines a bijection between C' and a set of
representatives for the orbits of the N -action on TY (by conjugation).

Now z +— expp(kx)d induces t/'Y — T4¥. Using 6.8, 6.9, we see that via
this isomorphism the action of N' on T corresponds to the action of the obvious
semidirect product of W and Y/'Y on t/'Y (with Y/’ normal) where the action
of W is the obvious one and the action of /'Y is by translation. It follows that
we have an induced bijection

(a) {W — orbits on t/Y} < {N — orbits on T¥}.
It is well known that one may regard ) as a normal subgroup of W in such a way
that an element y € ) acts on t' (as part of the W2-action) in the same way as y
acts on t' by 2’ — 2’ +y. Hence we have an obvious bijection
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(b) {W? — orbits on t'} < {W*/Y — orbits on t'/V}.
Now ) also acts on t by translation and z’ — 2’ — b}, induces a bijection t' /Y « t/Y
which is compatible with the action of W¢/Y on t'/Y,t/Y. (This is because for
w € W* we have w(b) — by € Y.) Thus we have an obvious bijection

(c) {W?/Y — orbits on t'/Y} < {W?/Y — orbits on t/V}.
By the last sentence in 6.4 we have

(d) {W*/Y — orbits on t/Y} = {W — orbits on t/V}.

Combining (a)-(d), we obtain a bijection
{W* — orbits on t'} «» {N — orbits on T9}.
This is induced by 2’ — p(z’). We now use 6.6. The lemma follows.

Lemma 6.12. Let Z be a semisimple G-conjugacy class in G*. Then Z N (TV) is
exactly one N -orbit in TY.

This is classical when d = 1. This is also known when d > 1. It can be deduced
for example from [Se] (this reference deals with compact groups but our case can
be treated in a similar way).

Combining 6.11, 6.12, we have the following result.

Proposition 6.13. The map =’ — p(z') defines a bijection between C' and a set
of representatives for the G-conjugacy classes of semisimple elements in G.

Lemma 6.14. Let v € R andn € Z. Let H = {y' € t';y(y' — b)) = n}. Let
SCI,S#0 andlet 2’ € Cs. If ' € H, then nikbﬁveror any k € S.

Let
Vi =Y R, tp = tN Vi, tp =t' NV,
icl
Hr =HNty, H' = {y € triy(y) = 0}.
The following R-analogue of the lemma is well known.
(a) Let x} € CsNty. If ¥} € Hg, then n%b;c € Hg for any k € S.
(This follows from the fact that Cs Nt is a facet of a configuration of reflection
hyperplanes in tg (one of which is Hr) and that n—lkb;(k € S) are the vertices of
that facet.)
We now write #’ = x| + v/ —1x} where 2] € Hr,zh € H'. We can find S’ C S

such that
) = Z c14b;, ah = Zczﬂ'b;,
i€s’ i€s

where

(b) c1,€Rspforie S co, e Rforie S, co, € RygforieS—5.
Using (a) for ) we see that

(c) n%b;c € Hg for any k € 5'.
If S = S, we are done. Assume now that S — S’ # (. From (c) we see that, for
k € S’, we have ~v(b), — nib;) = nny. Hence

7(2 ca,ib} — Z c2.iniby) = Z Cc2.4mn;.

€S’ €S’ €S’
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Since x5 € H', we have ), g can; = 0 and (3, g c2,ib;) = 0. It follows that

V(O caibl =Y eaimiby)

€S’ €S’

(d) =(- Z c2,ibf + Z co,imibly) = — Z Co,inN;.

€S-8’ €S-8’ €S-8’

Set ¢ =3, cq_g C2in. Since S — S’ # () we see using (b) that ¢ € Rso. From (d)
we deduce

( Z coic L — b)) =n

€S-8’

sothat ), g o 2,710, € HRNCs_g/. Using again (a) we deduce that éb; € Hr
for any k € S —5’. Combining this and (c¢) we see that the lemma is proved.

6.15. Let 91 be the set of all pairs (8, j) where 8 € 'R,j € [0,d — 1] and j = 0 if
=1y =1,j=1ifd,=1,d}=2.
We regard 9t as a subset of the group t* x Z/dZ by identifying [0,d — 1] and
Z/dZ in the obvious way.
For i € I define p; by p; =0 for i € I — {0}, po = 1.

Lemma 6.16. Let S C 1,5 # 0 and let 2’ € Cs. The following two conditions for
(8,7) € M are equivalent:

(i) B(z' = by) + 4 € Z;

(11) (ﬂv]) = ZiEI—S Ci(ﬂi,pi) with ¢; € Z.

Assume that (3, 7) satisfies (ii). To show that it satisfies (i), we may assume
that (3,) = (B:,p:) for some i € I —S. Then we have 3;(2' — bj) = d; *bi(z' — b))
and this is 0 if 7 # 0 and is —dal =—d1ifi=0. Ifi # 0, we have p; = 0, hence
Bi(z" —by) + B = 0. If i = 0, we have p; = 1, hence g;(2" —bp) + & = —é + % =0,
so that (i) holds.

Conversely, assume that (3, j) satisfies (i). Thus, we have S(z' —b}) + % =n for
some n € Z. We can write uniquely 8 = >, ;o frBr where fi € Z.

Let H be the affine hyperplane {y’ € t'; 8(y' — b}) + % = n} in t'. Note that
H is of the form {y’ € t';y(y' — b)) = n'} for some v € R and n’ € Z. Indeed,
if B €’R,d} =1, we can take v = dgf,n’ = dgn — j; if B € 'R,23 € 'R, we can
take v = 46,n’ = 4n — 2j; if B € 'R, 33 € 'R, we can take v = 23,1’ = 2n — j.
Since ' € H and 2’ € Cg, we have n%b;c € H for any k € S. (See 6.14.) Thus,
ﬂ(n—lkbjﬁ — b)) + % =nfor any k € S.

If k € S,k # 0, we have ﬁ(%b; —bpy) = d:’;k. Thus, d:’;k —l—% = n. Since
% € Z, it follows that fy = nggr where g € Z, gx + % = dgn.

Ifoes, Wehaveézﬁ(O)—i—% = n so that j = 0 and n = 0. In this case we
deduce that for k € S,k # 0 we have g, = 0, hence fy, = Osothat 3 =), ;s fx0&.

Moreover, (3,7) = Zke]_s Jr(Br, pr) since j = 0.
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Assume now that 0 € I — S. Then

B= Y fuBet > mkldin— &)51@

kel—S5—{0} kes d
= > fuBet D nildin-— %)Bk - Y nlden— %)ﬁk
ker—S—{0} jeI-0 ker—S—{0}
- X Ui 2%))65 — (nd — )50
B = > (fk—nk(dkn—‘%))(ﬁk,pk)—(nd—j)(ﬁo,po)
ker—s—{o}

since 7 = —(nd — j) mod dZ. The lemma is proved.
J ( J p

6.17. Let 8 € '"RU{0}. Then gg is stable under Ad(}) : g — g. For any j € [0,d—1]
we set gg,; = {z € gg; Ad(V)z = exp(rj/d)z}. Clearly, g5 = B ;c(0,4-1) 98.5-

Lemma 6.18. Let 5 € 'R and let j € [0,d—1]. We have dimgg ; =1 if (8,5) € N
and gg,; =0 if (8,j) € M.

We can assume that d > 1. Assume first that dimgg = d. Since gg is the
direct sum of d (one-dimensional) root spaces of g with respect to 7’ which are
cyclically permuted by Ad(¥), it follows that Ad(¢) : gg — gp has order d and its
nth power has trace 0 for 1 < n < d. It follows that its exp(kj/d)-eigenspace is
one-dimensional for 0 < j < d. Thus the lemma is proved in this case.

Next assume that dimgs = 1. Then § = «f¢ for a unique o € R’. We may
assume that a € ), ., Nay. We can find a unique partition I’ = I LI I3 such
that whenever i} € I1,i4 € I}, the vertices 4,45 of the Coxeter graph of G are not
joined. Let zp € g, — {0}. Let B be the canonical basis of g (as a left g-module)
such that zg € B. Then ¢y e € B for well defined ¢;; € C*. Moreover, it is not
difficult to check that there exist a;,as € C* such that ¢; = ay for all i/ € I,
¢ = ag for all ¢/ € I} and a1 + a2 = 0. Now Ad(9)(B) = uB for some u € C*.
Hence cyes; = ucoyesy for all i/. We see that ¢;; = ucs;. We consider two cases.

Case 1. Both I, I} are stable under i’ + Yi’. Then a; = ua; and v = 1. It
follows that, if x € BN gg, then Ad(¥)z = ux = z. Thus, if gg; # 0, then j = 0.

Case 2. I}, I} are interchanged by i’ — Vi’ (hence d = 2). Then ua; = az = —a;
and u = —1. It follows that, if x € BN gg, then Ad(¥)x = uz = —z. Thus, if
93, # 0, then j = 1.

The lemma follows.

6.19. Let J C I,J # I. Let
gs =10 @Em
8.3
where (3,7) € M is subject to the condition (3,7) € > ;. ; Z(B:,pi).

Lemma 6.20. There is a unique closed connected reductive subgroup Gy of G with
Lie algebra gy. If ' € Cr_;, then G; = Za(p(z')).

Recall that p(z’) = expp(k(z'=bp))9 € TY. Now Zg(p(z')) is a closed connected
reductive subgroup of G whose Lie algebrais h = {z € g; Ad(p(z'))z = x}. Clearly,
b is stable under the Ad action of 7" and that of ¥ on g. Hence § is the sum of its
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intersections with the various gg ; where 8 € "RU{0}. Clearly, hNgo; is 0if j # 0
and is t if j = 0. Using 6.18 we deduce that

h=tePos,;
B.j

where (3, j) € 9 is subject to B(expy(k(z’ —by))) exp(kj/d) =1 (with (3 regarded
as a character T'— C*) or equivalently, to §(z’ —bj) + 4 € Z (with 3 regarded as
a form t — C). Now using 6.16 we see that h = gs. The lemma is proved.

6.21. For iq,i0 € I let

d;
Qiy,ip = Yia (hil)a Iai17’i2 = 6i2 (lhﬁil) = d#ailair
12
Then (a;, ;,) is an untwisted affine Cartan matrix and ("a;, 4,) is a possibly twisted
affine Cartan matrix.
Let J C I,J # 1. Let 'Ry the set of all 3 € 'R such that 8 = wg; for some ¢ € J
and some w € W;. Let 'Ry be the set of all 'hg where 8 € 'R.

Lemma 6.22. 'Ry (resp. 'Ry) is exactly the set of roots (resp. coroots) of G
with respect to T'.

For i € J we have (5;,p;) € M, hence by 6.18 and 6.19, j; is a root of G ;. For
i € J there exists g € Ng, (T) such that Ad(g) : t — t is a reflection that takes §;
to —3;. By 6.2(b), there exists ¢’ € Ngo (T) and t' € T such that g = ¢'t’. Hence
Ad(g) : T — T coincides with Ad(¢’) : T — T. Now there is a unique element
in W that acts on t as a reflection taking 3; to —f3;, namely s;. It follows that
Ad(g) = s; : t = t. Hence if H; € t is the coroot of G; corresponding to (3;, we
have x — B;(x)H; = x — (Bi(x) hg, for all x € t; hence

(a) H; ="hg,.

By 6.19, any root of G is of the form 8 where 8 € 'R satisfies 8 € > icy L.
Thus, (8;)ies is a set of simple roots for G;. By the first part of the argument,
W coincides with the Weyl group of G; (both are subgroups of Aut(T)); it follows
that Ry is exactly the set of roots of Gy. The claim that 'R is exactly the set of
coroots of G5 follows from (a). The lemma is proved.

6.23. From 6.22 we see that the Cartan matrix of Gy is ("ai, 4y )iy ised-

6.24. Let Gy = Uje[07d_1] G ;¥ . Since ¥ normalizes G, Grisa (closed) subgroup
of G, with identity component G. Let Z (resp. Z]) be the center of G; (resp.
of G). Let 3; = Z (a subspace of t, hence a subspace of V).

Let V; be the subspace of V spanned by {b;;¢ € J}. Let K =1 — J. Let Vi
be the subspace of V' spanned by {b};7 € K}, that is, the annihilator of V; in V.
We have 3; = tN V. (a hyperplane in t). Let 3% = t' NV}, (an affine hyperplane in
Vie).

Let X; = p(3}). Note that Cx C 3%, hence p(Ck) C X .

Lemma 6.25. (a) We have Z; C Z; and Z9 = Z9.
(b) X is a connected component of Z.
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We prove (a). If ¢ € Z;, then g € T, hence ¥g = g9, hence g € Zj. Thus,
Z; C Zy. Tt follows that Z9 ¢ Z9. Now Z9 c G, hence 2% C Z;. Thus,
Z9=Gj.

We prove (b). Let 2’ € 34. We set 2° = 2’ — b, € 3. Let i € J. Since 2° € V,,
we have b;(z°) = 0. Now p(2’) acts on gg, p, by the scalar

ﬁi(expT(m:O)) exp(mdilpi) = eXp(Iiﬁi(J?O)) exp(mdilpi)
= eXp(Iidi_l’}/i(J?O) +kd ) = eXp(/@di_lbi(xO) + kd " p;)
= exp(—rd; 'b;(by) + kd ™ p;) = exp(—rd; 'S0 + kd'p;)) = exp(0) = 1.

It follows that p(x’) centralizes G ;. Since p(a’) € T, it centralizes ¥, hence also
Gj. Thus, X; C Z;. Clearly, X is connected. If z € Z9, we have z = expp(k(z}))
for some x{, € 3, hence for 2’ as above, p(z’ + x() = p(2')z. Thus, X is stable by
multiplication by ZY. The lemma is proved.

6.26. Let G; be the simply connected almost simple algebraic group corresponding
to the root system (R, R,X,)) (see 6.4). By 6.13 we have a natural bijection
between the set of Gi-conjugacy classes of semisimple elements in G; and the set
of G-conjugacy classes of semisimple elements in G9J.

Our discussion of semisimple G-conjugacy classes in G has been influenced by
K] where a connection between the elements of finite order in G¢ and (possibly
twisted) affine Lie algebras is given.

7. THE SET R(GY,G;,C,F)

7.1. We preserve the setup of §6. Let J C I,J # [ and let K = I —J. Let G be
the centralizer of ZY in G. Now G is the subgroup of G generated by 7" and by
the root subgroups of G corresponding to various o € R’ such that al¢ € ), ; Qf;.
We have Z%(J) NG = Z29.

Lemma 7.2. Let g € Z;. Then we have g = g1g29™" (in é) where go € ZgNGY,
n is an integer and gy is either the nth power of an element in Xy (if n #0) or is
an element of Z9 (if n=0).

We have g € T and f;(g) = 1 for all ¢ € J. Hence g = expp(kx) where z € t
satisfies 3;(x) € Z for all i € J; hence 2’ = ), ; c;b; with ¢; € d;Z for all i € J,
c; € Cforalli € K. Wesetn =), nrcy. Wehaven € Zsincen = — 3, n;c;.
Let

z' = Z cpb, —nby et, 2’ = Zcib; +nby € t.
keK ieJ
Then z = 2’ +a”. For any i € I — {0} we have 3;(z") = d;lbi(ZhEJ ciy b, +nbp).

If 0 € J, then B;(2") equals d; '¢; if i € J — {0} and equals 0 if i € K. If
0 € K, then 3;(z") equals di_lci if i € J and equals 0 if i € K — {0}. In any case,
Bi(z") € Z for i € I —{0}. It follows that expp(kz”) is in the kernel of §; : T — C*
for any i € I — {0}. Hence g” = expy(k2") € Zg N G".

Assume first that 0 € J. If n = 0, we have 2’ € 3, hence ¢’ = expp (k') € Z9
and g = g'g". If n # 0, we set ¢’ = expyp(k+a’)d. Then g’ € X; and g = ¢g'"g"9 ™"

Assume next that 0 € K. In this case we have 2’ € 3, hence ¢’ = expp (k') €
7Y% and g = ¢'¢g”. The lemma is proved.

Lemma 7.3. If g € X, then Zg,,(9) = Z.
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Let n =Y, o nk. We have n € Zso. If o’ =n~'Y, b}, then 2’ € t' and
z=p(a’) € X;. Since 2’ € Cy_y, we have Zg(z) = G (see 6.20). Let g € X ;. We
have g = 2t where t € ZY = Zgw. Hence Zg ,,(9) = Zc,,(2) = Za(2) NGy =
Gy NGy =Gy The lemma is proved.

7.4. We fix J, K as above, a nilpotent G j-orbit C in g; and an irreducible G ;-
equivariant cuspidal local system F (over C) on C. The local system on C = exp(C)
(a unipotent class in Gy) that corresponds to F under exp : g; — G is denoted
again by F. Let
Xy = U 91X,Ca7 ",
91€G (1)

(a locally closed subset of G, stable under conjugacy by G ).

(a) Let C be an Ad(G(y)-orbit in G that is contained in Xyy. There exists an
irreducible G j)-equivariant local system F' on C' (unique up to isomorphism) such
that the following holds: for any x € X; such that xC C C, the restriction F'l e is
the local system obtained from F via ¢ al (multiplication by x).

This is shown as follows. Let € X be such that € C C. There exists an
irreducible G y-equivariant local system F(x) on C' (unique up to isomorphism)
such that F(z)|,s is the local system obtained from F via ¢ = € (multiplication
by z). (We use the fact that, if u € C, then Zg, (xu) = Zg, (u), see 7.3). We must
only show that the isomorphism class of F(z) is independent of z. If cardK = 1,
then X; is a point and there is nothing to prove. Thus we may assume that
cardK > 2.

Let ' € X; be a second element such that 2/C ¢ C. We must show that
F(x), F(2') are isomorphic. It is enough to show that, if f € G(; is such that
fof~' =2’ (so that Ad(f)Z; = Z;, as we see from 7.3), then Ad(f) carries (C,F)
to (C,F). If d > 2, then (C,F) is uniquely determined by G for cardK > 2 (see
the tables in §11) and we are done. Assume now that d = 1. Now Z; acts on
F through a character x : Z; — C*. Since there is at most one pair consisting
of a unipotent class of G; and an irreducible G j-equivariant cuspidal local system
on it with prescribed action of Zz, it is enough to show that x(z) = x(fzf~1)
for any z € Z;. Since y is trivial on Z9 it is enough to show that fzf~! = 2
mod ZY for any z € Z;. Using 7.2, we can write z in the form z = z92}'z> where
Zp € Zf}, z1 € Xy, 22 € Zg,n € Z. (In this case the power of ¢ in 7.2 is 1.) It suffices
to show that fzozzef ™! = 20222 mod 29 or that fzozP'f~! = 292} mod Zf},
or that f20f~1 =2 mod ZY. (We use that fzo = 29f.) We have z; = za where
a € Z9, hence

[ = fama" = fat o e T = 2™ = 2 (o ) = 2] mod ZY
since 2712’ € ZY. Thus, (a) is established.
7.5. We can find a parabolic subgroup P of G' which has G () as a Levi subgroup
and satisfies 9PY9~! = P. (We can choose a general enough y € Hom(C*, Z9)

such that, setting g(n) = {z € g;Ad(y(a))x = a"x Va € C*} for n € Z, we
have g(0) = G(s). Then @, cno(n) = P for a well defined P which satisfies our

requirements.) For any f € GY we set

Uy ={ge€G;g ' fge XUp}.
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We have an obvious map 7 : Uy — X5y which takes g to the image of g~ fg under
X(J)UP — X(J),abl—> a.

The image of 7 is a disjoint union of finitely many Ad(G/j)-orbits in X ;) (since
the semisimple part of a point in this image is contained in a fixed Ad(G)-orbit,
namely that of the semisimple part of f). This image carries a G s)-equivariant
local system (on each connected component we take the local system in 7.4(a)).
Taking inverse image under Uy — w(Uy) of this local system we obtain a local
system on Uy which is P-equivariant for the free P-action on Uy given by right
translation, hence it descends to a local system on Uy/P denoted by F. Now
Za(f) acts on Uy/P by left translation and F is naturally a Zg(f)-equivariant
local system. Then Zg(f) acts naturally on the cohomology

(a) D HI (U /P, F).

The set of irreducible representations (up to isomorphism) of Zg(f) which appear
in the representation (a) is denoted by Irry Zg(f).

Let R(GY,Gs,C, F) be the set of all (f,p) (modulo the Ad-action of G) where
f€GYand p € Ity Zg(f).

Lemma 7.6. Assume that S C K,S # 0. Let P’ be a parabolic subgroup of G
which has Gy as a Levi subgroup and satisfies P9~ = P'. Then

(a) Gr—s NGy =Gy

(b) Gr—s N P’ is a parabolic subgroup of Gy_g with Levi subgroup G j;

() Gi—sNUp =Ug,_snp’-

The proof is routine. It will be omitted.

8. GEOMETRIC AFFINE HECKE ALGEBRAS

8.1. We preserve the setup of 7.4. In this and the next subsection we assume that
card(K) > 2.

As in [L4l 5.6], for any J' C I such that J C J' # I, conjugation by the
longest element wb’/ of Wy, leaves stable {s;;i € J}. Hence for any k € K we
have wy“*wiwi ¥ = wy and o}, = wi *w] = wwd"* is an involution. Now o,
preserves the subspace V; of V, hence also the subspace V/. of V.. Hence the
subgroup W* of W generated by {ox;k € K} acts on Vj.. Asin [L4] 2.11], W* is
a Coxeter group (an affine Weyl group).

Let yo € C. For k € K, ad(yp) : ¢ — g induces a nilpotent endomorphism of
gsuk/8s. Let ¢, be the largest integer > 2 such that the (¢, — 2)th power of this
nilpotent endomorphism is nonzero. (This does not depend on the choice of yo.)

The W*-action on V}; leaves stable the subset 3} of V/.. It also leaves stable the
subspace 3 of V}, where it acts through a finite quotient W C GL(35). Let £ be
the set of all z € 3; such that the translation z — 2z + z of 3} coincides with the
automorphism z — w(z) of 3 for some w € W*. Then £’ is a subgroup of 3, such
that L5 = 3. For k € K there exist nonzero vectors hy € 37 and 4, € Hom(3,, C)
such that oy (z) = = — Ax(2)hy for all z € 3¢ and Fx(hy) = 2. These vectors are
uniquely determined if we require that ,(x) = zpx(bg) for all z € 3, hy € L
and zy € Zso is maximum possible (see [L4l, 2.11]). We have z;, € {1,2,3,4}. Let
L= {x €35 z(L) e Z}. Then 3 € L. Clearly, W acts naturally on £', L. Let R
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(resp. R) be the set of vectors in 3% (resp. 3) that are of the form w(7y) (resp.
w(hg)) for some w € W and some k € K. Then

(a) (7@,7@, L, L") is an irreducible root system with Weyl group W.
See [I4, 2.11]. Moreover, {hy;k € K} generates £’ (see [L4] 2.14]). Now {; k €
K} spans Lc over C with a single relation ), ;- 79 = 0 where 7y € Zq for all

k (at least one g is 1) and ), 7ix is the Coxeter number of (a). For k € K we
have
ng
Zl = —.
ng
We define a subset K” of K as follows. If W* is a Coxeter group of type Cy,n > 1,
and k, k' correspond to the two ends of the Coxeter graph, then K* = {k,k’}. In
any other case, K* = . We set Kt = K — K”.

For k € K we define 2 by 2, = 2,/2 if k € K° and z, = z, if k € K.

We have 7z, € {%, 1,2,3}. We set

Ao = (Zi/ 20) 3k, b = (210) Z1) k.-

We have 45 € L. Let R (resp. R°) be the set of vectors in 3% (resp. 37) that are of
the form w(4;) (resp. w(hy)) for some w € W and some k € K.

In the case where K° # (), we have {k € K;iiy = 1} = K” and we choose kg € K
so that kg € K” and Cho Zhory < i Zidiy Where K" = {ko,k'}. In the case where
K® = () we choose ko € K such that fik, = 1. One can verify that

dimgr_(x,} = dimg;_gpy for any k € K.

Now {;k € K — {ko}} is a basis for (R, R L, L’) and 7, is the negative of the
highest root of (R, R, £, L) with respect to this basis. Moreover,

(d) (R,R,L, L") is a root system and II = {A; k € K — {ko}} is a basis for it.
Its Weyl group is WW.

See [I4, 2.15]. Since {hj;k € K} generates £ we see that R"U ((1/2)R"N L)
generates L.

8.2. If k€ K* and K° — {k} = {k'}, we set

(a) AAk) = (epZkdi + ¢ Zirdir ) /2, N (k) = |ep2edi — ch 2 dir | /2.
If k e K% we set

(b) AAk) = cpZrdy /2.

Restricting, we get functions A : IT — N, \* : {4, € II; iy, € 2L’} — N. (One can
check that A and A* indeed have values in N.) Then (A, \*) is a parameter set for
the root system 7.6(d) with its basis II. Hence the C[v, v~!]-algebra H%AE is well
defined as in 1.2. We denote this algebra by H(GY, G ;,C, F); we call it a geometric
affine Hecke algebra.

8.3. Assume now that card(K) = 1. Then 35 = 0. We set (R,R,L, L) =
(0,0,0,0). (A root system.) Then H%AC = Clv,v7!] is again denoted by
H(GY9,G;,C,F).
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8.4. The definition of K” given in 8.1 differs slightly from the one given in [L4]
2.13]. (There are only three cases where the definitions differ: those in [L4), 7.16,
7.47,7.56].) In the context of [L4] it does not matter which of the two definitions
we adopt. They both lead to the same H(GY,G;,C,F). However, in the more
general context of this paper, the present definition should be adopted (it diverges
from the definition in [L4]).

9. A BILJECTION

9.1. We preserve the setup of §§6, 7 and, 8. In particular, we fix J, K as in 7.1,
C,Fasin 74, Pasin 7.5, ky as in 8.1. Let vg € C* be such that either vg = 1 or
vp is not a root of 1. We choose rg € C such that exp(rg) = vg; if vg = 1, we choose
ro = 0. Let & be the Q-subspace of C spanned by 9. We have & N kQ = 0. We
can choose a Q-subspace ¢ of C such that

(a) kKQCo, 00 & =C.

We have C* = exp(¢) X exp(®).

If G’ is an algebraic group, any g € G’ can be written uniquely in the form
g = goga = Jago Where g, € G is semisimple and ga € G-

In this section we will define a bijection

(b) Irr,, H(GY, G, C, F) < R(GY, G, C, F)

in terms of rg and ¢ as above.

If card(K) = 1, then both sides of (b) consist of one element, hence there is a
unique bijection between them. In the remainder of this section we assume that
card(K) > 2.

9.2. Let V'* ={a' e V';a/ =3,  eibl,ci € K10}
For any S C I,S # 0 let Cg = Cs NV’ Let C' = |Jgcp 949 Cs = C' NV
Let D = I-lSCK;S;éQ) Cs, D® = USCK;s;s@ Cs-
(a) The map ' — p(z') defines a bijection between C'® and a set of represen-
tatives for the orbits of the N action on Ty = G, NTY (by conjugation).
This is an immediate consequence of 6.11 and its proof.
We set
T=L'®C".
(A torus.) Then L = 37 = Z, hence exps : 35 — 7T is defined. Let p’ be the
composition 3% — 3; — 7 where the first map is z — x — ﬁbko and the second
map is x — expy(kx).
(b) The map =’ — p'(z') defines a bijection between D and a set of represen-

tatives for the W-orbits in T and also a bijection between D°® and a set of
representatives for the W-orbits in 7.

Just like 6.11 was proved using 6.6, the proof of (b) is based on the following
analogue of 6.6.

Let o' € 3%. The W*-orbit W*a' meets D in exactly one point.

This is proved exactly like 6.6, by replacing W by W*.

For d € D°, let Wq be the stabilizer of p’(d) in W. Let © be the set consisting
of all pairs (d, §) where d € D® and ¢ is a Wq-orbit in 7. Using the decomposition
T = T, T4 we see that there is a bijection © —~ 7 /W which associates to (d,§) € ©
the W-orbit of p’(d)z where z € §. (This W-orbit is denoted by Xq,s.)
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9.3. The partition 1.3(a) becomes in our case
(a) IrrvOH{\z’f = |_| |_| |_| Irl"z:d,g,voH%’:X~
SCK,S#£0 deCg §€Ta/Wa
Let (d,6) € © where d € Cg. Then p/'(d)é is a Wa-orbit contained in X4 ;.
Moreover,
Ry (@)s> Ry (a)s, Hpr(@)s, Apr (a)s A (ays
are defined in terms of L£,L R, R,ILp (d)§,\,\* in the same way as

Rey Re, Ty Ao, A5 were  defined in [8.1] (see 2.2) and 3.1 in terms of
X,Y,R, R, 11, ¢, \, \*. Then, by 3.2 we have a natural bijection

AN Ap/ ()8 A p! (a)s
(b) Irrzd,éyvoHR,[: « Irrp’(d)é,UoHRp/(d)5,£

Let Wi _g be the subgroup of W generated by the image of {ox;k € K —S} in W.
Let Rx_s (resp. Rix—g) be the set of vectors of L (resp. L') of the form w(9x)
(resp. w(hy)) for some k € K —S,w € Wg_g. Let lIg_g = {Ax; k € K —S}. Then
(L, L, Ry (), Ry (ays> Lpr(ays, Wa) = (£, L, Rk s, Rk s, Mg —s, Wk _5s).
(The main assertion here is that R,/ (q)s = Rx—s. In other words, for o € R, with
corresponding & € R, the condition that o € Rx_g is equivalent to the condition
that a(d — %b;o) isin Z if & ¢ 2£" and is in $Z if & € 2£’. This is an assertion
0
of the same type as 6.16 and has a similar proof. See also [L4] 3.9, 3.10].)
Thus, the bijection (b) can be rewritten as

A0 AN
Irrzd,ayvoHR,[l A Irrp/(d)é,UoHRK,s,ﬁv

the exponents A, A* in both sides are restrictions of the function given by 8.2(a),(b).
Taking union of all d,§ and composing with (a) we obtain a bijection

AN AN
(c) o Hyy < | | | Trw@swHr or
SCK,5#0 deCS §€Ta/Wa
Let (d,d) € ©. Then (Lq, Eb, Ri-s,Rr—g) is a Q-root system with basis ITx_g.
For k € K we regard 7 as a character 7 — C* given by I’ ® a — a7 () where
I € L';a € C*. Then for z € 3, we have y;(exp7(2)) = exp(vx(2)). We show that,
if ke K — S, ke K", then
Ye(p'(d)) = =1 if k = ko and 4% (p'(d)) = 1 if k # ko.
Indeed, 4% (exps(k(d — n—iobzo))) = exp(kZrbr(d — ib;co)) = exp(—kbk ko /2).-
It follows that, if we define p : Ix_g — Z in terms of A\, \* as in 4.1 (with
to = p/(d)), then
(k) = dikZkgy,-
Define a Wy _ g-orbit ¢ in Ty by expr(6) = 0. By 4.2 we have a bijection

. AN
Irr&TOHRK—S,CQ - Irrp’(d)‘s:'”OHRK—&c'
Taking union over all d,§ and composing with (c) we obtain a bijection
A" _ OK
(d) II‘I‘UO HR,[Z — |_| |_| |_| Irré,?"o HRK—S La-
SCK,S#0 d€CE §€T o /WK -5

For k € K we set *vy, = (1/diZk)% € 3% (that is, *vx is the restriction of G to
37 where (i is regarded as an element of t*). We set *hy, = dpZrhy € 3.
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Let S C K,S # 0. Let *Rx_g (resp. *Rk_g) be the set of vectors of Lqg
(resp. Lq) of the form w(*yy) (resp. w(*hg)) for some k € K — S,w € Wk _s.
Let *Ix_g = {*vk; k € K —S}. Then (ﬁq,ﬁb,RK,s,RK,s, *Tg_s) is a Q-root
system. Define p/ : *IIx g — N by p/(*yx) = ¢;,. There is an algebra isomorphism
H’/%K_s,[,q :_) H-fRK_s,CQ

which is the identity on the generators. (We use that u(%k)/4x = &' ("v&)/*vk.)
This induces a bijection

Irrg,rOH%Kis’LQ — IrrS,meRK,s,ﬁQ
for any § € Z o/Wxk—s. Taking union over all d,$ and composing with (d) we
obtain a bijection
AN i’
(e) Irry HR'p < |_| |_| |_| Irr57TOHiRK_S7LQ.
SCK,S#@ dEC§ EEI*/WK_S

Let S C K, S # 0. If we apply the definitions of 5.2 to G;—g, G (instead of G, L),
then R, W of 5.2 become *Rg_gs,Wk_5. We see that ﬁffRK_S Lo (as above)

may be interpreted as H(Gr—g,Gs,C,F). Moreover, if d € Cg, we have Gj_g =
Zc(p(d)) (see 6.20). Hence we may rewrite (e) as

() T, Hyy — || ] | | Irrs . H(Za(p(d)), Gg,C, F)
SCK,S#D deCE 5c(35)a/ Wk —5s

(We have used that 7 = 3;. Moreover, (3.)a defined in terms of Z9 coincides with
T 4 defined in terms of 7".) By 5.17(d), for any S C K,S # 0 and d € C¢ we have
a bijection

|_| Irrg,roﬁ(ZG(p(d))ﬂGJvcv"T) - T*(Zg(p(d)),G],C,f)
5€(3) 8/ Wr—s

(To define T‘(Zg(p(d)),GJ,C,]:) we use the parabolic subgroup P N Gj_g of
Zc(p(d)) = Gr_g with Levi subgroup G, see 7.6.) Taking union over all d and
composing with (f) we obtain a bijection

(2) by, Hy'y < || | $*Ze(p(d),G,.C.F).
SCK,S#0 deCg

Lemma 9.4. Let f € GY. The following three conditions are equivalent:

(i) there exists g € G such that, for some S C K, S # ) we have g~ fog € p(C%)
and g~ fag € C(Z9)a(Up N G1-5);

(ii) there exists g € G such that for some S C K,S # () we have g~1fg €
Cp(CE)(Z9)a(Up NGi-s);

(111) gilfg S X(J)Up,

It is clear that (i) and (ii) are equivalent and that (ii) implies (iii). Now assume
that (iii) holds. We show that (ii) holds. We may assume that f € X ;Up. By
replacing f by a P-conjugate, we may assume that f € X;CUp. Let f, and f, be
the semisimple and unipotent part of f. Then f, is P-conjugate to an element of
X ;. Hence, replacing f by a P-conjugate, we may assume that f, € X, f, € CUp.
Let (35)o be the set of all 2’ € 3} such that o' = Y, _ . cxb), with ¢ € K~ o. Then
X7 =p((35)6)(Z%)a. Now the W*-action on 3} restricts to a W*-action on (3%),
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which has (g K:S£0 C¢ as a fundamental domain. Hence by replacing f by nfn~!
for some n € GV such that
(a) nGynt=Gs;nX;mt=X;nCn"t=C, nGyn~ ' =G y,nPnt =P
(P' is another parabolic subgroup normalized by ¢ which has Gy as a Levi sub-
group), we may assume that fo € p(C%), fa € (Z29)aCUpr. Since fa € Za(fs)
and f, as well as (ZB)QC are contained in the Levi subgroup Gy of P’, we have
automatically fa € (Z9)aC(Za(fs) N Up:). Since Za(fs) = Gi_s (see 6.20), we
have _

f€p(CE)(Z7)aC(Gr—s NUp»).
Now the parabolic subgroups Gy_s N P’ and Gy_s N P of Gy_g (both with Levi
subgroup G, see 7.6) are conjugate under an element z € Gj_g which normalizes
G ;. Conjugation by z carries Gr_s N Ups to Gr_s N Up, p(Cg) to p(C%), Z9 to
Z9 and C to C, hence it carries f to zfz~' € p(C$)(Z%)aC(Up N Gy_s). Thus, f
satisfies (ii). The lemma is proved.

9.5. Let f € GY. Assume that f, € p(Cg) where S C K,S # (. Then fq €
Za(fo) = Gr—s. We want to compare the varieties:

A= {g € G;gflfg € G(J)Up}/P,
A ={g €Gis;9 " fag € Z5C(UpNG1_5)}/(PNGr_s).

Let P’ be any parabolic subgroup of G such that P9~ = P’, G, is a Levi
subgroup of P’ and PPN G;_s = PNGr_s. Let A(P') = {g € G;9g7'fg €
GyUp'}/P'. Define fpr : A" — A(P') by ¢'(PNGj_s) — g'P’. This is clearly
injective. We can find n € G;_g such that 9.4(a) holds. Define F,, : A(P') = A
by gP’ +— gnP. The composition F,, fp : A’ — A(P’) is injective. Its image Ap/
depends only on P’, not on n. By the argument in the proof of 9.4 we see that A
is the disjoint union of finitely many subvarieties Ap: (for the various P’ as above)
and each Ap is isomorphic to A’. It follows easily that

(a) Irr1 ZG(f) = TrroZ 25,y (fa)-
(Note that Zg(f) = Zz(s,)(fa).) Using (a) and 9.4 we see that we have a bijection
(b) L] | *Zacp(d)),Gs.C, F) = R(GY,G,,C, F)

SCK,S#0 deCg
given by (d,(f,p)) = (p(d)f,p). Here f € (Zc(p(d)))a. Composing (b) with
9.3(g), we obtain a bijection IrrvOH%’})‘ﬁ — R(GY,G,C, F). This is, by definition,
the bijection 9.1(b).

10. THE MAIN RESULTS

10.1. In 10.2-10.7 we preserve the setup of 9.1.

Lemma 10.2. Assume that card(K) > 2. There is a canonical injective map
v T/W — (T9)/N whose image is exactly the image of Xy in (T9)/N.

By definition, ¢ sends the W-orbit of ¢ € T to the N-orbit of p(z’) where 2’ € 3}
is such that p/(2’) = t. Assume that z” is an element of 3 such that p/(z”) =
wi (t) where w1 € W. Then there exists w € W* such that p’(w(z”)) = ¢t. Since
p(w(z")—z') =1, we have w(z"”)—2' € L. Hence 2’ = w'w(z") for some w’ € W*.
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In particular, 2’ = w(x”) for some w € W¢. Hence p(z') = np(z”)n~! for some
n € M. Thus, ¢ is well defined.

We show that ¢ is injective. Now C’ is a set of representatives for the W%-orbits
on t'. Similarly, D is a set of representatives for the W*-orbits on t}. Let t1,t, € T
be such that the W-orbit of ¢; and the W-orbit of t; have the same image under
t. Let 1,22 € t} be such that p/(z1) = t1,p'(z2) = ta. We may assume that
x1 € D,z9 € D. Since D C (', we have x1 € C’,z5 € C'. By assumption we have
p(z1) = np(x2)n~! for some n € N. Hence x1 = w(xs) for some w € W?. Since
x1,x9 € C', it follows that 21 = xo. Hence t; = t5. This shows that ¢ is injective.
The fact that the image of ¢ is exactly the image of Xy in (T¥)/N is obvious. The
lemma is proved.

10.3. We show that the bijection 9.1(b) does not depend on the choice of ¢ as in
9.1(a). When vg = 1, this is obvious: we have ¢ = C. Assume now that vy # 1. It
is enough to show that one can define a map

Irr,, H(GY, Gy, C, F) — R(GY, Gy, C, F)

purely in terms of # and which coincides with the map defined in §9 in terms of
any given o. We can assume that card(K) > 2.

Let M € Irr,, H(GY,G ;,C, F). We want to attach to M a pair (f, p) (up to G-
conjugacy) where f € G and p € Irr; Zg(f). We will only indicate the definition
of the G-conjugacy class of f. (A similar definition applies to p.)

By 1.3, we have M € IrrEWOH{\z’_)‘; for a well defined W-orbit ¥ on 7. Let ¢ be
a fiber of & — T /T4 (restriction of 7 — T /Ta). Define R, W¢, H, in terms of
7,R in the same way as R., W§, H. were defined in [8.1]" and [8.3]" (see 2.2) in
terms of 7, R. By 3.2, to M corresponds an object M’ € Irr. ,, H.. As in [9.2],
we can find an element tg € 7 whose stabilizer in W equals W€ and a W¢-orbit ¢
in te such that tgexps(¢) = ¢. By 4.2 (for this tg), M’ corresponds to an object
M" e Irr?of_[ where H is attached to H. as in 4.1. Let ¢y be an element of X
such that ((Wt) is the N-orbit of #y (see 10.2). Now H may be interpreted as the
algebra H(G',G ;,C, F) where G' = Zg(ty). (Note that G is the Levi subgroup of
some parabolic subgroup of G’.) Under 5.17(d), to M" corresponds a pair (f’, p)
where f’ € G is well defined up to conjugation in G" and p’ € IrrgZar (f'). We
set f =tof' = f'to. Then the Ad(G)-orbit of f is well defined by M. Note that we
have not used ¢ in this definition. Thus we have the following result.

Theorem 10.4. Assume that v € C* is either 1 or is not a root of 1. Let rg € C
be as in 9.1. There is a bijection

(a) Irr,, H(GY,G;,C, F) < R(GI,Gy,C, F)

depending only on ro, which for any ¢ as in 9.1(a) coincides with the bijection
9.1(b).

It is likely that the bijection (a) is independent of the choice of 9. (Some
evidence is given in 10.7.)

Theorem 10.5. We preserve the setup of 10.4. Assume that vy is not a root of 1.
Let ¢ : C* — R be a group homomorphism such that ((vo) # 0. Assume that under
10.4(a), M € Trr,, H(GY,G ;,C, F) corresponds to (f,p) € R(GY,Gy,C,F). Then
(a) M is C-tempered if and only if f € GKer¢;
(b) M is {-square integrable if and only if any torus in Zg(f) is {1}.
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Assume first that card(K) = 1. Then the unique M € Irr,, H(GY,G;,C,F)
is obviously (-square integrable. The unique element of |(G¥, G ;,C,F) may be
represented in the form (f, p) where f = su with s being the unique element of
X7 and u € C. Assume that T} is a torus in Zg(f) = Ze,(u). In our case, Gy is
a semisimple group and u is a distinguished unipotent element of G;. Hence any
torus in Zg, (u) is trivial. Thus, T =1 hence (b) holds in this case. We show that
fe GKerC 1t is enough to show that s € GKerC | Since Zg (s) is semisimple, s is of
finite order. Since Ker¢ contains all roots of 1, we have s € GXe¢. Thus, (a) holds
in this case.

In the remainder of the proof we assume that card(K) > 2. Let o, # be as in
9.1.

Case 1. We assume that ((C*) C Q. In this case, ( restricts to an iso-
morphism exp(#) — Q. In particular, we have C* = Ker( @ exp(#). Let
o = {a € C;((exp(a)) = 1}. Then ¢ satisfies 9.1(a) and Ker( = exp(c). We
can use the definition of the bijection 9.1(b) in terms of this o.

We prove (a). Using Lemmas 3.4, 4.3, 5.18 and the definitions, we are reduced
to verifying that for f € G¥ the following two conditions are equivalent:

(i) fa € Za(fo) s
(ii) f e GXere,

(When applying 4.3, we can choose tg in 4.1 so that tg € 7Tg; then it is unique. The
assumption tg € TKC of 4.3 is automatically verified since 7X¢ = 7,.)

Now (i) is equivalent to the condition fa € GK®<. This is equivalent to (ii) since
we have automatically fo, € GK¢ (since Ker¢ = exp(o)).

We prove (b). Using Lemmas 3.5, 4.4, 5.16 and the definitions we are reduced
to verifying that for f € G the following two conditions are equivalent:

(ili) Za(fs) is semisimple and fq is a distinguished unipotent element of Z¢(fo);
(iv) any torus in Zg(f) is {1}.

This is immediate.

General case. As in 1.3, let £ be the set of all 2 € £ such that (z, hz) > 0 for all
4k € II. We can find z1,...,zy in LT — {0} such that LT = Zszl Nzi. There
exists a finite subset 7y of 7 such that, for ¢ € 7, the weight space M, is zero unless
t € To. Let A be the (finite) subset of C* consisting of all numbers of the form
xp(t) with k € [1,N],t € Tp. Let B be the (finite) subset of C* consisting of the
eigenvalues of f in a fixed faithful V' € Z. Then (a) and (b) can be restated as (c)
and (d) below:

(¢) we have ((a)/((vg) > 0 for all @ € A if and only if ((b) =0 for all b € B;
(d) we have ((a)/{(vg) > 0 for all @ € A if and only (iv) holds.

Assume first that ((a)/¢{(vg) > 0 for all a € A and ((b) # 0 for some b € B.
We can find a Q-linear form u : R — Q such that u(¢(vg)) # 0,u(¢(b)) # 0 and
u(¢(a))/u({(vg)) > 0 for all a € A. Applying Case 1 to u¢ : C* — Q instead of (,
we see that u(¢(b)) = 0, a contradiction.

Assume next that ¢(a)/{(vo) < 0 for some a € A and {(b) =0 for all b € B. We
can find a Q-linear form u : R — Q such that u(¢(vo)) # 0,u({(a))/u(¢(ve)) < 0.
We have u(((b)) = 0 for all b € B. Applying Case 1 to u¢ : C* — Q instead of ¢,
we see that u(¢(a))/u(¢(vg)) > 0, a contradiction. Thus, (c) holds.
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Assume now that ((a)/¢(vg) > 0 for all a € A. We can find a Q-linear form
u: R — Q such that u({(vg)) # 0 and u({(a))/u(¢(vy)) > 0 for alla € A. Applying
Case 1 to u¢ : C* — Q instead of ¢, we see that (iv) holds.

Conversely, assume that ((a)/¢(vo) < 0 for some a € A. We can find a Q-linear
form u : R — Q such that u(¢(vo)) # 0 and u(¢(a))/u({(vo)) < 0. Applying Case
1 to u¢ : C* — Q instead of ¢, we see that (iv) does not hold. Thus, (d) holds.
The theorem is proved.

Corollary 10.6. Let vg,(, M be as in 10.5.

(a) M is (-tempered if and only if the following holds: for any t € T such that
M; # 0 and any x € LT we have ((x(t))/{(vo) € Q0.

(b) M is (-square integrable if and only if the following holds: for any t € T
such that My # 0 and any x € LT — {0} we have z(t) = avl for some n € Z~q and
some a € C*, a root of 1.

Assume that M is (-tempered and there exists t € 7 and € LT such that M, #
0 and ((z(t))/C(vo) ¢ Q0. Note that ((z(t))/¢(vo) € Rsp. Since ((z(t)), ((vo)
are nonzero real numbers of the same sign and one is not a rational multiple of
the other, we can find a Q-linear form v : R — Q such that u(¢(vy)) # 0 and
w(¢(z(t)))/u(¢(vo)) € Qeo. Hence M is not u¢-tempered. Let f correspond to M
as in 10.5. By 10.5(a) we have f € GXe¢. It follows that f € GKer(u0)  Using again
10.5(a) (for u( instead of ¢) we see that M is ul-tempered, a contradiction. This
proves (a).

We prove (b). By the arguments in the proof of 3.4 and 4.4, we are reduced to
the analogous statement for the algebras considered in §5, which is proved in [L5]
1.22]. The corollary is proved.

10.7. In the setup of 9.1 (with card(K) > 2) we consider an element f € G¢ such
that (f, p) € R(GY, G, C, F) for some p. We can write uniquely f = fo fq fu (three
commuting factors) where f, € G, is semisimple, f" € Gg is semisimple, f, € G
is unipotent. Replacing (f, p) by a G-conjugate, we may assume that f, € X (see
9.5) so that G; C Zg(fs). Let t € 7, be such that «(Wt) is the N-orbit of f,. (See
10.2.) Let W; be the stabilizer of ¢ in W. Let ¢ € Hom(SL2(C), Zc(fsfa)) be
such that ¢ (§ 1) = fu. Let

F=1a0 (0 ) € Zo(Jo).

Let ¢° € Hom(SLo(C),G ) be such that ¢° (3 1) € C. Using 5.6, we see that there
exists z € Zg(fo) such that

~ —1
(a) 2f100 (0 0) € (Z9)a
and that the orbit of the element (a) under the normalizer of Z9 in Zg(f,) does
not depend on the choice of z. Since (Z9)a = 74 (both may be identified with
(37)a using expzo, expy) we may regard this orbit as a W-orbit c in Ta. Let ¥ be

the W-orbit in 7 that contains tc. Then % depends only on the G-conjugacy class
of (f,p) and (f, p) — X is a map

(b) R(GY,Gy,C,F) — T/W.
We now give a second definition of the map (b). Consider (f, p) as above. We

can write uniquely f = fsf, (two commuting factors) where f, € G is semisimple,
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fu € G is unipotent. Replacing (f,p) by a G-conjugate, we may assume that
fs € Xy (see 9.5) so that G; C Zg(fs). Let ¢ € Hom(SLy(C), Za(fs)) be such
that ¢ (§1) = fu. Let

A vg O

F=10("5 2) € Zaf).
Let ¢° € Hom(SLy(C), G ) be such that ¢ (3 1) € C. Using 5.6, we see that there
exists z € Zg(fs) such that

a=: zfz_lqbo (”%1 12)) € Xy.

Let ¥ be the W-orbit in 7 such that ¢(X) is the M-orbit of a (see 10.2). Then X
depends only on the G-conjugacy class of (f,p) and (f,p) — ¥ coincides with the
map (b). In the setup of 10.4, each M € Irry, H;%)z: belongs to Irrs; 4, H;%)z: for a
unique W-orbit ¥ in 7 (as in 1.3(a)). Then M — ¥ is a well defined map

(c) I, Hy 'y — T/W.

Composing this with the bijection 10.4(a) we obtain a map R(GY,G;,C,F) —
T /W. This coincides with the map (b) (in its first form) as one sees using the
definitions.

The fact that the map (b) (in its second form) is independent of the choice of
0, ¢ and that the same is obviously true for the map (c), suggests that the bijection
10.4(a) is also independent of 7.

10.8. We fix vg € C* which is either 1 or is not a root of 1. Let J be the set of all
triples (J,C,F) as in 7.4. (Here F is given up to isomorphism.) Putting together
the bijections 10.4(a) for various (J,C,F) € J, we obtain a bijection

(a) || T H(GY,GsC,F) || R(GY.Gy.CF).
(J,C,F)eJ (J,C,F)eJ

Let R(GY) be the set of all (f,p) (modulo the Ad-action of G) where f € GV
and p € TrrZg(f) (the set of isomorphism classes of irreducible representations of
Zc(f)). We will show below that

(b) || ®(Gw,G.c.F)=R(G).
(J,C,F)ey

Combined with (a), this gives a bijection

(c) || Ty, H(GY, Gy, C F) o R(GY).
(J,C,F)EF

We prove (b). We fix f € GY. We may assume that f, € p(Cg) where S C I, S # 0.
Then Zg(fs) = Gr_s. Let p € IrrZg(f). We must show that there is a unique
(J,C,F) € J such that p belongs to Irr; Zg(f) (defined in terms of G, G 5,C,F) or
equivalently (see 9.5(a)) to IrrgZg,_.(fa) (defined in terms of G;_g,G;,C, F; we
have necessarily J C I — S). Recall that Zg(f) = Zg,_(fa). Define € € (g71-5)a
by exp(£) = fa- We are reduced to verifying the following statement:

For any p € IrrZg,_, (&) there exists a unique (J,C,F) € J such that J C I — S
and p is in IrrgZg, 4 (€) (defined in terms of G;_g,G,C, F).

This follows from [L3] §8].
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10.9. Let ¢ : C* — R be a homomorphism such that ((vg) # 0. By 10.5, the
bijection 10.8(c) restricts to a

bijection between the set of C—temperefl representations in the left-hand side
of 10.8(c) and {(f,p) € R(GY); f € GKe¢}
and to a

bijection between the set of (-square integrable representations in the left-
hand side of 10.8(c) and the set of all (f,p) € R(GY) such that any torus
in Za(f) is {1}.

Special cases of this result can be found in [KT], [R] and, [W].

10.10. Let K, g be as in 1.1. Let K be a maximal unramified extension of K. Let
G be a connected, adjoint simple algebraic group defined over K which is split
over K. We identify G with G(f() Assume that G is of type dual in the sense of
Langlands to G. Define I as in [L4] 1.10]. This is the set of vertices of the affine
Dynkin graph of G. Let S (I) be the set of bijections I = I that preserve the graph
structure. We have a canonical (surjective) homomorphism from S(I) to the group
of automorphisms of G modulo the group of inner automorphisms of G (see [L4]
8.1]). Let S(I)y be the fiber of this map over the coset of Ad(¥) : G — G. For
u € S(I)y we can find a K-rational structure on G (compatible with the K-rational
structure) with Frobenius map F, (see [L4, 1.1]) such that the permutation of I
induced by F, (as in [L4, 1.12]) is equal to u. (The existence of such a K-rational
structure, while not stated explicitly in [I], can be extracted from the tables in
[T].) Then G(K) coincides with the fixed point set Gf«. Let U(G*“) be the set
of isomorphism classes of unipotent representations of G (see [L4] 1.21]).

Theorem 10.11. There is a natural bijection Uueé(l)ﬂ U(GT) — R(GY).

By [L4} 1.22] we have a natural bijection between [ |, 51, U(GF+) and the dis-
joint union of the sets of irreducible representations (up to isomorphism) of a finite
collection of affine Hecke algebras H'(I,J, u, E) given by a presentation of Iwahori-
Matsumoto type with explicitly known parameters and with the indeterminate v
being specialized to \/q. (Here u € S’(I)qg, J is a proper u-stable subset of I, F is a
unipotent cuspidal representation of the Fy-fixed points of the parahoric subgroup
attached to J.) The various J,u,E are listed in the tables in §11 as “arithmetic
diagrams”; the corresponding affine Hecke algebras H'(I,J, u, E) are listed in the
same tables as “H.A.” Rather surprisingly, it turns out out that these affine Hecke
algebras are exactly the same as the geometric affine Hecke algebras attached to
GY (which are also described in the tables of §11). Therefore, the theorem follows
from 10.8(c) with vy = \/q.

10.12. For any homomorphism x : Zg — C*, let R(G¥),, be the subset of R(GV)
comnsisting of all (f, p) such that via the obvious map Zg — Zg(f), Z¢ acts on p
through the character x. This gives us a partition R(GY) = ], R’(GY)y. On the
other hand, the bijection in 10.11 induces a partition of R(G¥) into subsets indexed
by the elements of S(I)y. This coincides with the previous partition of 9t(G%9).

10.13. Let K, g, K, G be as in 10.10 except that G is no longer assumed to be split
over K. We identify G with G(K). One can still define the set I which indexes the
maximal parahoric subgroups of G (see [T]), a Dynkin graph with set of vertices I
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and a bijection u : I — I (preserving the graph structure, including the orientation
of the double or triple edges) which specifies the K-rational structure on G. Then
U(G(K)) can be defined in the same way as in [L4] 1.21]. We can find another
connected adjoint simple algebraic group G’ which is split over K whose associated
Iu:I—1 (asin 10.10) is the same as the I, u associated to G and such that the
corresponding Dynkin graph (for G’) is the same as that for G, except possibly for
the orientation of the double or triple edges. Then U(G'(K)) is defined. Moreover,
we have a natural bijection

(a) U(G(K)) < U(G'(K)).

Indeed, each side of (a) is naturally in bijection with the disjoint union of the sets of
irreducible representations of a finite collection of affine Hecke algebras given by a
presentation of Iwahori-Matsumoto type at v = ,/q. But the affine Hecke algebras
associated to the two sides of (a) are the same, since the recipe that describes them
is not sensitive to the orientation of the double or triple edges. (This is analogous to
the known statement that the sets of unipotent representations of the finite groups
SO2n41(Fy) and Spa,(Fy) are in bijection.) Since 10.11 and 10.12 are applicable
to U(G'(K)), they also provide, via (a), a parametrization of U(G(K)).
We describe the various pairs (G, G’) using the names in the tables of [T].

(CBTL; Cn)7 (Bcna Bn)7 (CBCYH Cn)7 (Gga G2)7 (F4Ia F4)7 (QBCTL; QBYL)a (QCBYU QCYL)

10.14. It is likely that our results can be extended to the case where the assumption
that G is adjoint simple is weakened to the assumption that G is semisimple.
Indeed, our main technique, that of reducing to the case of graded Hecke algebras
is still available in this more general case (see [L2]).

11. TABLES

11.1. In this section we list the various possibilities for G and J as in 7.4 assuming
that d > 2. (The cases where d = 1 are listed in [[4].) In each case we describe the
affine Dynkin graph associated to the affine Cartan matrix (a;, ;,) (vesp. (‘ai,.i,))
in 6.21; we call this the (v;)-graph (resp. the (8;)-graph). Both these graphs
have vertices in bijection with I. The vertices of the (8;)-graph that are inside
a box correspond to the subset J of I. The full subgraph with vertices J is the
Dynkin graph of G5 (see 6.23). We also describe the affine Dynkin graph associated
to the affine Cartan matrix (’yk(ﬁk/))k,k/e;(. We call this the b — # diagram; its
vertices are in bijection with K and we attach to any vertex the symbol b or #
according to whether the corresponding element of K is in K’ or K*. For any
vertex correponding to k € K we specify some data of the form a x b x ¢ where
a=¢,,b= Zk,c = d;. From the b — f diagram one obtains an affine Hecke algebra
as in 8.2, 8.3. This affine Hecke algebra (in a presentation of Iwahori-Matsumoto
type) is denoted by H.A. It turns out to be the same as the affine Hecke algebra
attached to the arithmetic diagram (see 10.11) which is also given in each case.
The notation for affine Hecke algebras follows the conventions of [L4], 6.9, 6.11].

11.2. G is of type A,, n even, d = 2.
a€dZ,bel+4Z,n+1=2s—2+ala+1)/2+0b(b+1)/2, s> 1.
(7vi)-graph:

k= k—— hk —— hk—— k —— hk —— ... —— ok —— k —— % &= %
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(8i)-graph:
R
Cy By
ifa—b+# —1,|a+b+1|# 2; here 2p+1 = (a+b+1)2/4,2¢g = (a—b—1)(a—b+1)/4;
O . T
BP
ifa—b=—1,Ja+b+1|#2; here 2p+ 1= (a+b+1)?/4;
e . i e
CLI
ifa—b#—-1,la+b+1=2;here2¢g=(a—b—1)(a —b+1)/4;
k] = kg—— k3 —— ... —— kg1 = kg
ifa—b=-1,la+b+1=2.
For s > 2, the b — #-diagram is
bLa+b+1\><1><2 — ﬁ?i}XQ—ﬁgf%XQ— o _u§><1><2 - blla—b\x1><2
ifa—b#—-1]Ja+b+ 1| #2;
bLa+b+1|><1><2 P ﬂffi”—ﬁff%“— o §X1X2 N b?X%XQ
ifa—b=-1,la+b+1|#2;
ix%x4 ii}XQ—ﬁif%XQ—u'—nglXQ:>b|1a7b‘><1><2
ifa—b#—-1,la+b+1|=2;
b§X5X4 - ﬂifi“—ﬁ?f%“— R §X1X2 = b?><5><2

ifa—b=—1]a+b+1] =2

For s = 1, the b — f-diagram is ().

H.A.: C’;il[‘ga+1|2‘2b+1‘] if s >2and () if s = 1.

Arithmetic diagram: A, u2 = 1,u # 1, J of type Ap_1 x Ay_1 (both compo-
nents are u-stable), p’ = a(a+1)/2,¢ =b(b+1)/2.

11.3. G is of type A,, n odd, d = 2.
Either a € 4Z, b€ 3+ 4Z or a € 2+ 47Z,b € 1 + 4Z.
n+1=2s—2+ala+1)/2+bb+1)/2,s>1.

(7i)-graph:
*
|
k — Kk — Kk — ... — x = &
(Bi)-graph:
R I
*
Cq
DP

ifa—b#1,a+b# —1;here 2p=(a+b+1)?/4,2¢g=(a—b—1)(a—b+1)/4;

*
ok ok [ k] ——— kg —— k3 —— ... —— k] <= kg
*
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ifa—b=1,a+b# —1; here 2p = (a + b+ 1)?/4;

*1
*2 — kg — kg — g — [ e
C‘I
ifa—b#1,a+b=—-1;here2¢g=(a—b—1)(a —b+1)/4;
*1
kg —— k3 — kg — ... — kg1 < kg
ifa—b=1,a+b=-1.
For s > 2, the b — f-diagram is
+b4+1|x1x2 2x1x2 2x1x2 2x1x2 la—b|x1x2
i | = E5 T — ... —1f = by
ifa—b#1,a+b#—1;
[a+b+1[x1x2 2x1x2 2x1x2 2x1x2 2x1x1
by < 5 —14i3 — 5 = b
ifa—b=1,a+b# —1;
—b|x1x2
\Sa bx1x2 iﬁ“ o ﬁ?f%w - §><1><2 o u§><1><2
2x1x2
1
ifa—b#1,a+b=-1;
2x1x1 2X1x2 2x1x2 2X1x2 2x1x2
g7 = 55T — T — . — 8 —
u2x1x2
1

ifa—-b=1,a+b=—-1.
For s = 1, the b — f-diagram is (). )
H.A. Csil[\2a+1|2|2b+1|] if s Z 2 and a+b 7& —17 CS—1[|2a+1\2\2b+1\] if s Z 2 and
a+b=-1;0if s =1.
Arithmetic diagram: A
nents are u-stable), p’ = a

n, u? =1,u+#1,J of type Ay _1 x Ay—1 (both compo-
(a+1)/2,¢d =bb+1)/2.

11.4. G is of type Dy, d = 2.
a>1odd;b>0even;n+1=s+a’+b% s> 1.

(7i)-graph:
N k—— hk —— hk —— k —— k —— ... —— k —— k —k & %k
(B:)-graph:
K| kg —— k3 —— ... —— kg
BP B’Z

ifa+b#1,a—b|#1; here 2p+ 1= (a+b)%2¢+ 1= (a —b)?

Bp
ifa+b#1,Ja—bl=1;here 2p+ 1= (a+b)?

k] S kg—— k3 —— ... —— kg1 = kg

k] —— kg —— k3 —— ... ——*kg_] = kg
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ifa+b=1,a—0b]=1.
For s > 2, the b — #-diagram is

2(a+b)x1x1 2x1x1 2x1x1 2x1x1 2|la—b|x1x1
b7 e — g — L — = b

s—1

ifa+b#1,a—bl#1;

2(a+b)x1x1 2x1x1 2x1x1 2x1x1 2X 3 X2
b] < 5 —13 — 5 = b
ifa+b#1ja—b=1;
2 4 X2 2x1x1 2x1x1 2x1x1 2x %2
bs S — T — L —5 =b]

ifa+b=1]a—-0b=1.

For s = 1, the b — f-diagram is ().

H.A. C’;il[galgb] ifs>2and 0if s =1.

Arithmetic diagram: D,,, v : I — I has exactly n — 1 fixed points, J of type
Dy x Dy (u acts nontrivially on D), p’ = a?, ¢ = b
11.5. G is of type Dy, d = 2.

a>0,b>0,a=n+1 mod2, (b +b)/2=n mod 2;

n+1=2a?+ (b*+b)/2—1+2s, s> 1.

(7i)-graph:

k= k—— k —— Sk —— k —— ok —— ... —— ok —— xk ——k <= &

(B:)-graph:
* ——[x e —[x]— . — ] %

if 2a +b#1,]4a — 2b — 1| # 3; here
2+ 1=(2a+b)(2a+b+1)/2,2¢+1 = (2a —b)(2a — b—1)/2;
S I - I K
Bp

if2a+b#1,]4a—2b—1|=3; here 2p+1=(2a +b)(2a+ b+ 1)/2;
* =[xk — [k |]— .. —[x] = s

if2a+b=1,2a—b=—1.
For s > 2, the b — §-diagram is

4a+2b+1)x1x1 4a—2b—1|x % x2
bg a+2b+1) ¢ﬂ§x1x1 ﬁgXIXI ;li}X1:>b|5 [X 3

if 20+ b # 1, |4a — 2b — 1| # 3;

(4a+2b+1)x1x1 4x1x1 4x1x1 4x1x1 3% 3 %2
by <=1 —1i3 — S >
if2a+b#1,4a—2b—1| = 3;
3x 3 %2 4x1x1 4x1x1 4Ax1x1 3x§x2
by 27T <=1 —fs — T = b

if2a+b=1,2a—b=—1.
For s = 1, the b — f-diagram is ().
H.A.: C%[4a20p41] if s > 2 and @ if s = 1.
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Arithmetic diagram: D,,, u : I — I has < n — 1 fixed points, J of type D, x
Dy x A,_1 where p’ = a? r = (b*>+b)/2.

11.6. G is of type Eg, d = 2. (2 possible cuspidal local systems.)
(7i)-graph:
o k ——k = A——%

(Bi)-graph:

*——k [—— ] = [ k——%

H.A.: 0.
Arithmetic diagram: Fg,u?=1,u # 1, J of type Eg (with two possible unipotent
cuspidal representations, one the dual of the other).

11.7. G is of type Fg, d = 2.

(7i)-graph:
*—— k ——k = k———%
(B:)-graph:
*] ——| kA ——k <= k——%
H.A.: 0.

Arithmetic diagram: Eg, u2 = 1,u # 1, J of type Fg (with a self-dual unipotent
cuspidal representation).

11.8. G is of type Fg, d = 2.

(vi)-graph:
,—— ok —— Kk = *——%
(Bi)-graph:
F— 1 — [ < e— [
b — f-diagram:
o0
b411><1><2_bg><2><2

HA.: 129,

Arithmetic diagram: Fg, u? = 1,u # 1, J of type As.

11.9. G is of type Fg, d = 2.

(vi)-graph:
h—— k ——* = k——%
(Bi)-graph:
*]—— k9 —— %3 < kgy——*5
b — f-diagram:
ﬂ?XlXQ_ﬁSXlXQ_ﬂ%XIXQ:>ﬁ421><1><1_ﬂ§><1><1
H.A.:

2—2«<1—1—1

Arithmetic diagram: Eg, u? =1,u# 1, J = 0.
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11.10. G is of type Dy, d = 3.

(vi)-graph:
*——k => %
(Bi)-graph:
n— =3
HA.: 0.

Arithmetic diagram: Dy, u3 = 1,u # 1, J of type Dy.
11.11. G is of type Dy, d = 3.

(vi)-graph:
*——k => %
(Bi)-graph:
[} <=
H.A.: 0.

Arithmetic diagram: Dy, ud=1u # 1, J of type D4 with a unipotent cuspidal
other than that in 11.10.

11.12. G is of type Dy, d = 3.

(7i)-graph:
*—k => %
(Bi)-graph:
*1——*g <= %3
b — f-diagram:
ﬂ%x1x3_ﬁgx1x3 => ﬂ2X1X1

HA: 3<=1—1.
Arithmetic diagram: Dy, v =1,u # 1, J = 0.

APPENDIX. PROOF OF LEMMA 5.5

A.1. We may assume that g is simple. If L = g, there is nothing to prove. If L is
a Cartan subalgebra, then h® = 0 and there is nothing to prove. In the rest of the
proof we assume that L # g and L is not a Cartan subalgebra.

Since t ® ChO is a Cartan subalgebra of Z, it is enough to prove the following
statement:

(a) Let x,2' € t,z € C be such that x+ zh°, 2’ + zh® are G-conjugate in g. Then
x, 2" are in the same W -orbit.

If (a) holds for z = 1, then it also holds for any z # 0. (We replace z,2’, z by
271z, 2712’ 1.) Thus it is enough to prove (a) for z € {0, 1}.

Let & = {z +ah’ € t+ Ch%a(z) >0 Va €II}. As in 6.6 we see that & is a
fundamental domain for the action of W on t @ Ch®. Hence it is enough to prove
the following statement:

Let x,2' € t,z € {0,1} be such that x + zh°, 2" + 2h° belong to & and are
G-conjugate in g. Then v = x'.

We consider the various cases separately.

For a multiset X consisting of finitely many numbers in C we denoted by max X
the complex number z € X such that x — 2’ > 0 for any 2’ € X.
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C-vector space with basis eq, e, ..., eqp. We may assume that g = s[(V)). We may
assume that

A.2. Assume that g = sl (C), L = 5(,(C)* @ C’~!. Herea > 1,b> 1. Let V be a

T(€qit1) = Ti€aiti, T (€qit1) = Theaiys fori €[0,b—1],1€[0,a— 1]
where x;, 27 € C satisfy >, 2; = >, 2; = 0 and x; — x441 > 0,2 — 2}, > 0 for
i € [0,b— 2] and that
h%(eqiv1) = (@ — 1 —2D)eqiyy fori € [0,b—1],1€[0,a—1].
Since = + zh", 2’ + xh® are conjugate under SL(V), they must have the same
eigenvalues in V. Thus, the multisets

X ={xi+2(a—1-=20)}ic0,-1],1€[0,a—1]»
X' ={z;+2(a—1-20)}ic0,-1],1€[0,0-1)
coincide. Clearly, max X = x¢9+z(a—1) and max X’ = zj+z(a—1). Since X = X’
we have xg + z(a — 1) = z(, + z(a — 1). Hence zy = z{,. Removing
xo+z(a—1),20+2(a—3),...,20 + 2(—a+1)
(resp. zp+z2(a—1),25+2(a—3),...,25+ 2(—a+1)) from X (resp. X') we obtain
a multiset X7 (resp. X1). We have X; = X7. Clearly, max X7 = 21 + z(a — 1) and
max Xj =z} + z(a — 1). Since X; = X{ we have 1 + z(a — 1) = 2} + z(a — 1).
Hence z1 = z{. Continuing in this way we find z; = z} for ¢ € [0,b — 1]. Hence
x=ua.
A.3. Assume that g = spay42,(C), L = 8p2,(C) & CP. Here n > 1,p > 1 and
n=(m?+m)/2.
Let V be a C-vector space with basis e1,e2,...,enqp, €4y, €, €] and with
a symplectic form (,) : V' x V' — C such that (e;, e}) = dij, (ei,e5) = (ef,€;) =0
for i,j € [1,n + p]. We may assume that g = sp(V) and that
(ei) = wie, x(e;) = —wieq, ' (e;) = wjes, a'(e5) = —we;  for i € [1,p],
z(e;) = 0,z(e}) = 0,2"(e;) = 0,2'(e) =0 fori € [p+1,p+nl,

where z;, 2 € C satisfy 2; —x;41 > 0,27 —xj, > 0fori e [l,p—1], 2, > O,x; > 0.
We may also assume that h(e;) = 0,h°(e}) = 0 for i € [1,p],

hY(e;) = ciei, hO(e]) = —cie; fori € [p+1,p+n)
where ¢; € Z. Since x + zh", 2’ + xh? are conjugate under Sp(V'), they must have
the same eigenvalues in V. Thus, the multisets

Y = {xiv —{EZ(Z € [1,]7]), Ci, _C’L(Z € [p + 17p + TL])},

V! ={af, —ai(i € [L,p]),ci, —ci(i € [p+ Lp+n])}
coincide. Removing {¢;, —¢;(i € [p+ 1,p + n])} from Y (resp. Y’) we obtain a
multiset X (resp. X’). We have X = X’. Clearly, max X = z; and max X' = z].
Since X = X’ we have 1 = z]. Removing z; (resp. z}) from X (resp. X') we
obtain a multiset X7 (resp. X]). We have X; = X{. Clearly, max X; = 22 and
max X| = z4. Since X7 = X| we have zo = z,. Continuing in this way we find
x; = x for i € [1,p]. Hence z = 2.
A.4. Assume that g = §0,42,(C),L = 50,(C) ® CP. Here n > 2,p > 1 and
n = m?. This case is completely similar to that in A.3.
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A.5. Assume that g = 509,,4.4,(C), L = 502, (C) ®sl5 @ CP. Here n > 0,p > 0 and
2n = (m? +m)/2.

Let V be a C-vector space with basis e1, €g, ..., €nt2p, €9, - - -, €5, €] and with
a symmetric bilinear form (,) : V' x V' — C such that (e;,e}) = d;;, (ei,e;) =

(e}, €)= 0 fori,j € [1,n + 2p]. We may assume that g = so(V') and that

$(62i—1) = 131621—1736(621) = 131621—1715(6121;1) = —$i€21—17$(€§i) = —T;€2{—1,
' (e2i-1) = iezi—1, 2" (e2i) = wieh; 1,2’ (eh;_q) = —wjezi—1, 7 (€y;) = —Tjeai1
for i € [1,p],

z(e;) = 0,z(e}) = 0,2'(e;) = 0,2'(ef) =0 fori € [2p+1,2p+n],

where z;, 2} € C satisfy
xi— w1 > 0,05 —xp, >0 forie[l,p—1], z, >0,2), > 0.

We may also assume that

h%(e2i—1) = eai—1,h"(e2i) = —e2i, h¥(eh; 1) = —e2i—1, h0(eh;) = e
for ¢ € [1, p] and

hO(e;) = ciei, hO(e)) = —cie; fori € [2p+1,2p +n)

where ¢; € Z. Since x + zh?, 2’ + 2h® are conjugate under SO(V'), they must have
the same eigenvalues in V. Thus, the multisets

V={wi+ 23—z —xi+2z,—z —2(i € [1,p]),ci, —ci(i € 2p+ 1,2p + n)},

V' = {x; + z, x’lL -z —LE; + z, —LE; - Z(Z € [1,}7]), Ci, _Ci(i € [2]7 + ]-a 2p+ TL])}
coincide. Removing {c¢;, —c;(i € [2p+ 1,2p+ n])} from Y (resp. Y’) we obtain a
multiset X (resp. X'). We have X = X'.

Clearly, max X = x; + z and max X’ = 2} + z. Since X = X’ we have x; +
z = x4 + z, hence x; = z}. Removing 21 + z,21 — 2, —21 + 2z, —x1 — 2z (resp.
) +z,2) —z,—2) + z,—2)] — 2) from X (resp. X’) we obtain a multiset X; (resp.
X1). We have X; = Xj. Clearly, max X; = x2 + z and max X| = 24 + z. Since
X1 = X1 we have x5 + z = x4 + 2, hence 2o = 2. Continuing in this way we find
x; = x for i € [1,p]. Hence z = 2.

2n + 1 = (m? + m)/2. This case is completely similar to that in A.5.

A.6. Assume that g = §02,,4144p(C), L = 502,4+1(C)@®sb® CP. Heren > 0,p > 0,

A.7. Assume that g is of type Es and L = 5l3(C)3 @ C2. We number the vertices
of the Coxeter diagram by 1,2, ...,6 where the edges are 1 —2—-3—4—5 and 3 —6.
For i € [1,6] define u; € t by a;(u;) = &;; for all j € [1,6]. Then t is spanned by
us, ug. We may assume that h = 26y + 2ds + 26y + 26ss.

We have x = aus + bug 2’ = a’us + b'ug where a,b,a’,’ € C are > 0. Let Y be
the multiset consisting of the numbers

26+ b+ 2z,2a+b,2a+b—2z,a+ b+ 2z,

a+ba+b—2z,a+2z,a,a—22,42,22,2z,
their negatives, and of 0,0,0. Let Y’ be the multiset consisting of the numbers
2a +b0 4+ 22,2d +b,2d +b —2z,d' +V + 22,0 +V,d +V -2z,

a +2z,d' 0 —22,42,22, 2%,
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their negatives, and of 0,0,0. The eigenvalues of x + zh° (resp. 2’ + zh®) on a
minuscule g-module V' are the 27 numbers in the multiset Y (resp. Y”’). Since
x + zh%, 2’ + zh? are in the same G-orbit, they have the same eigenvalues on V.
Thus, Y =Y.

Removing 4z, 2z, 2z from Y (resp. Y’) we obtain a multiset X (resp. X’) with 24
elements. We have X = X’. Clearly, max X = 2a+b+2z and max X’ = 2a’+b'+2z.
It follows that

(a) 2a+b+2z=2d" +V + 2z
Removing from X (resp. X') the numbers 2a + b + 2z,2a + b,2a + b — 2z (resp.
2a' + b +22,2a' +V',2a’ + V' — 2z) we obtain a multiset X; (resp. X]). By (a), we
have X; = X{. Clearly, max X7 = a+ b+ 2z and max X| = a’ + b’ + 2z. It follows
that

(b) a+b+2z=da 4+ +2z.

From (a) and (b) we deduce that a = a’,b =b'. Thus z = 2’ as required.

A.8. Assume that g is of type E; and L = 5l3(C)3 @ C*. We number the vertices
of the Coxeter diagram by 1,2,...,7 where the edges are 1 —2—-3—-4—5—6 and
3—7. Fori € [1,7] define u; € t by a;(u;) = d;5 for all j € [1,7]. Then t is spanned
by w1, ug, us, us. We may assume that h® = ¢y + chag + 7.

We have z = auy + bus + cus + dus &' = a’uy + V'us + cus + d'us where
a,b,c,d,a’,b',c/,d € C are > 0. Let Y be the multiset consisting of

a+2b+3c+2d+z,a+2b+3c+2d—z,a+2b+3c+d+z,a+2b+3c+d— z,
a+2b+2c+d+z,a+2b+2c+d—z,a+b+2c+d+z,a+b+2c+d— z,
a+b+c+d+z,a+b+c+d—z,b+2c+d+z,b+2c+d— z,
b+c+d+z,b+c+d—z,a+b+c+z,a+b+c— 2z,
c+d+z,c+d—z,b+c+z,b+c—z,d+z2,d—z,c+2,c—2,32,2,2,2

and their negatives. Let Y’ be the multiset obtained from Y by replacing a, b, ¢, d, z
by o', ¥, c,d, .

The eigenvalues of 2 + zh® (resp. 2’ + 2h°) on the minuscule g-module V are the
56 numbers in the multiset Y (resp. Y’). Since z + zh®, 2’ + zh° are in the same
G-orbit, they have the same eigenvalues on V. Thus, Y = Y’. Removing 3z, 2, z, 2
from Y (resp. Y’) we obtain a multiset X (resp. X') with 52 elements. We have
X = X'. Clearly, max X = a+2b+3c+2d+ 2z and max X' = o' +2b' 4+ 3¢ +2d' + 2.
It follows that

(a) a+2b+3c+2d+z=0a"+2V +3c +2d + 2.
Removing from X (resp. X’) the numbers a4 2b+ 3c+2d+ z,a+ 2b+ 3¢+ 2d — 2
(resp. a' +2b' 4+ 3¢ 4+ 2d' + z,a’ + 2V + 3¢ + 2d' — z) we obtain a multiset X
(resp. X7). By (a), we have X; = X7. Clearly, max X; = a+ 2b+ 3c+d + z and
max X| =a’ 4+ 20 + 3¢ +d' + z. It follows that

(b) a+20+3c+d+z=a +20'+3c +d +z.
Removing from X; (resp. X]) the numbers a4+ 2b+3c+d+z,a+2b+3c+d— 2
(resp. o' + 20 +3¢ +d' + z,a’ + 2V 4+ 3¢ + d' — z) we obtain a multiset Xo (resp.
X}%). By (b), we have Xo = X). Clearly, maxXo = a + 2b+ 2c+ d + z and
max X} =a' + 2 + 2¢ + d' + z. Tt follows that

() a+2b+2c+d+z=a +20 +2 +d +=.
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Removing from X5 (resp. X3) the numbers a +2b+2c+d+z,a+2b+2c+d—z
(resp. @' + 20 +2¢ +d + z,a’ + 20 + 2¢ + d' — z) we obtain a multiset X3
(resp. X%). By (c), we have X5 = X%. Clearly, max X5 = a+ b+ 2c+d+ z and
max X4t =a' + b 4+ 2¢ +d + z. It follows that
(d) a+b+2c+d+z=d +V +2d +d + z.
From (a), (b), (¢), (d) we deduce that a =a’,b=V,c=¢,d=d'. Thus z = 2’ as
required.
Lemma 5.5 is proved.
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