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RESOLUTIONS AND HILBERT SERIES
OF THE UNITARY HIGHEST WEIGHT MODULES

OF THE EXCEPTIONAL GROUPS

THOMAS J. ENRIGHT AND MARKUS HUNZIKER

Abstract. We give a sufficient criterion on a highest weight module of a
semisimple Lie algebra to admit a resolution in terms of sums of modules
induced from a parabolic subalgebra. In particular, we show that all unitary
highest weight modules admit such a resolution. As an application of our
results we compute (minimal) resolutions and explicit formulas for the Hilbert
series of the unitary highest weight modules of the exceptional groups.

1. Introduction

1.1. Bernstein, Gelfand and Gelfand [BGG] gave a resolution of each finite dimen-
sional representation F of a semisimple Lie algebra g in terms of sums of repre-
sentations induced from one-dimensional representations of a Borel subalgebra (the
Verma modules). This result was extended by Lepowsky [L] to give resolutions of
finite dimensional representations in terms of sums of representations induced from
parabolic subalgebras (the generalized Verma modules). In this article we extend
these results by replacing the finite dimensional representation F by an irreducible
highest weight representation L. We give a sufficient criterion on L for such a reso-
lution to exist. Our criterion takes the form of a condition on the u-cohomology of
L, where u is the nilradical of the parabolic subalgebra. These resolutions we will
call generalized BGG resolutions.

1.2. As an application of our results we turn to the exceptional groups with uni-
tary highest weight representations. We prove that every unitary highest weight
representation has a generalized BGG resolution. For classical groups this result
is in [EW]. We note that in the case of unitary highest weight representations,
i.e., in the Hermitian symmetric setting, the BGG resolutions can be interpreted as
graded free resolutions in the sense of commutative algebra as follows. Let (G,K)
be an irreducible Hermitian symmetric pair and let (g, k) be the corresponding pair
of complexified Lie algebras. We have the usual decomposition g = k⊕p+⊕p− of g

as a k-module. Let S = S(p−) be the symmetric algebra of p−. Then every highest
weight module L of (g, k) is also a finitely generated graded S-module. As such, L
admits a minimal free resolution. It was proved in [EH] by the authors of this paper
that the generalized BGG resolutions of unitary highest weight representations are
minimal free resolutions.
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Furthermore, we can associate a Hilbert series hL(t) to the graded S-module L.
It is standard that hL(t) can be written as a rational function in the form

hL(t) =
P (t)

(1− t)d ,

where P (t) is polynomial with integer coefficients such that P (1) 6= 0. The number
d is equal to the Gelfand-Kirillov dimension of L and the number P (1) is equal
to the Bernstein degree of L. In this paper we also compute explicitly the Hilbert
series of the unitary highest weight representations of the exceptional groups.

1.3. Let h be a Cartan subalgebra of k and hence also g. In [DES] it was observed
that the set of all λ ∈ h∗ that arise as a highest weight of some unitary highest weight
representation of g that is not induced (from a finite dimensional representation of
the parabolic subalgebra k ⊕ p+) can be written as a disjoint union of translated
integral cones. This is called the cone decomposition. In this paper we propose
a finer decomposition by subdividing each cone into what we call unitary strata.
We show, by using Zuckerman translation, that the Gelfand-Kirillov dimension as
well as other indices associated with the generalized BGG resolution of a unitary
highest weight representation L with highest weight λ are constant for λ varying
over a single stratum.

In this paper we determine explicitly all unitary strata for the exceptional groups.
It turns out that there are 17 unitary strata for type E6 and 20 unitary strata for
type E7. Each unitary stratum has a unique minimal vertex. We explicitly com-
pute the generalized BGG resolution and the Hilbert series of the unitary highest
weight representation corresponding to these vertices. The variety of numerator
polynomials P (t) of the Hilbert series that arise is quite surprising. Of the 37 poly-
nomials only 6 have nonnegative coefficients and five of these lie in the Wallach set
and two are the trivial representations of E6 and E7.

1.4. Organization of the paper. In section 2 we recall basic definitions and
the generalized BGG resolution due to Lepowsky [L] for finite dimensional repre-
sentations. Following this we consider hypotheses under which a highest weight
representation (not necessarily finite dimensional) admits a generalized BGG res-
olution. In section 3 we summarize what is known about resolutions of unitary
highest weight representations. We then extend these results to the setting of this
article to prove that all unitary highest weight representations admit a generalized
BGG resolution. In section 4 we recall the cone decomposition from [DES] and in-
troduce the notion of unitary strata. The section ends with tables describing some
of the invariants associated with the stratified cone decomposition for E6 and E7.
In section 5 several examples are given to indicate how various parameter root sub-
spaces are calculated. In sections 6 and 7 explicit formulas for the generalized BGG
resolutions and the Hilbert series of the unitary highest weight representations are
given for vertices of the unitary strata for E6 and E7.

1.5. Remarks and acknowledgements. This article may be regarded as an
extension of the article [EH] and as such the overlap of topics with [NOTYK]
applies here as well. In particular, for the Wallach representations the Gelfand-
Kirillov dimension and the Bernstein degree are computed in [NOTYK]. However,
the full Hilbert series are not determined there. We also thank Nolan Wallach for
several helpful discussions regarding cohomology and characters.
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2. Generalized BGG resolutions

2.1. In this section we recall some basic definitions and constructions related to
highest weight modules that will be used throughout the rest of the paper. In
particular, we recall the generalized BGG resolution of a finite dimensional rep-
resentation by generalized Verma modules. Then we consider the corresponding
results resolving highest weight representations which are not finite dimensional.

2.2. Notation. We consider the general setting of a parabolic subalgebra of g. Let
h be a Cartan subalgebra of g and let ∆ be the root system of the pair (g, h). For
α ∈ ∆, let gα be the α-root subspace of g. Let S be a proper subset of the simple
roots of a positive system ∆+ of ∆. Let ∆S equal the subroot system generated
by S. Let ∆+

S = ∆S ∩ ∆+ and write ∆+ as a disjoint union ∆+ = ∆+
S ∪ ∆u.

Put u± =
∑

α∈∆u
g±α and r = h ⊕

∑
α∈∆S

gα. Then q = r ⊕ u+ is the parabolic
subalgebra associated with S and g = u− ⊕ q.

Let W be the Weyl group of the pair (g, h) and let WS be the Weyl group of the
pair (r, h) which we may identify with the subgroup of W that is generated by the
reflections sα with α ∈ ∆S . Let ρ = 1

2

∑
α∈∆+ α and define

WS = {w ∈W | wρ is ∆+
S -dominant} = {w ∈ W | w∆+ ⊃ ∆+

S }.
Then W = WS · WS and WS ∩ WS = {e}. In particular, WS is a set of coset
representatives for WS\W . Let ` denote the usual length function on W .

Fix a dominant element µ ∈ h∗ and define T as the subset of all simple roots α
for which (µ, α) = 0. Define ∆T ,∆+

T and WT as above with S replaced by T . The
involution x→ x−1 changes the Weyl group decomposition from right cosets to left
cosets giving

TW = {w ∈W | w−1ρ is ∆+
T -dominant} = {w ∈ W | w−1∆+ ⊃ ∆+

T }.
Then W = TW ·WT and WT ∩ TW = {e}. In particular, TW is a set of coset
representatives for W/WT .

2.3. Generalized Verma modules. Let λ ∈ h∗ be ∆+
S -dominant integral and

let Fλ be the irreducible finite dimensional r-module with highest weight λ. We
may consider Fλ as a q = qS = r⊕ u+-module by letting u+ act by zero. We then
define the generalized Verma module Nλ with highest weight λ as

Nλ = U(g)⊗U(q) Fλ .

Here U(g) and U(q) denote the universal enveloping algebras of g and q, respec-
tively. Let Lλ denote the unique irreducible quotient of Nλ. By the PBW theorem

Nλ ' S(u−)⊗ Fλ as an r-module .

Here as r-modules we have identified the universal enveloping algebra U(u−) with
the symmetric algebra S(u−). Sometimes we will also write Ng,λ and Fr,λ instead
of Nλ and Fλ.

2.4. The relative category OS. We denote by OS = O(g, qS) the category of
g-modules M that satisfy the following three conditions:

(i) M is finitely generated as a U(g)-module,
(ii) M is locally finite as a U(q)-module,
(iii) M is completely reducible as a U(r)-module.
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Let χλ+ρ denote the infinitesimal character of Nλ. We denote by O(g, qS)λ+ρ the
full subcategory of O(g, qS) consisting of modules with generalized infinitesimal
character χλ+ρ. The simple modules in the category O(g, qS)λ+ρ are parametrized
by a special collection of double cosets which we now define.

2.5. Double cosets and highest weights. Choose µ dominant with λ+ρ ∈Wµ
and let T be defined as in 2.2. Then W/WT parametrizes the W -orbit of µ. For
x ∈ W , the module Nxµ−ρ is nonzero if and only if xµ− ρ is ∆+

S -dominant integral
if and only if xµ is ∆+

S -regular dominant integral. Consider the double cosets
WS\W/WT . Then our category O(g, qS)µ is nonempty precisely when there exist
double cosets of maximal size, |WS ||WT |. We shall assume that this is the case.
Set D equal to the set of all such double cosets of maximal size. Each double coset
δ ∈ D contains a unique element x of minimal length and we write δ = WSxWT .
Let δx denote this double coset. These elements x lie in TW ∩WS . Let D denote
the subset of TW ∩WS which is the image of D under δx → x. Summarizing we
have:

Lemma. The highest weights of the irreducible modules in O(g, qS)λ+ρ are the
elements xµ− ρ, for x ∈ D.

2.6. The generalized BGG resolution. Define WS,i = {w ∈ WS | `(w) = i},
where ` denotes the usual length function of W .

Theorem [L]. Let λ ∈ h∗ be ∆+-dominant integral and let Eλ be the irreducible
finite dimensional g-module with highest weight λ. Then Eλ has a resolution as a
g-module of the form

0→ Np → · · · → N1 → N0 → Eλ → 0 ,

where
Ni =

⊕
w∈WS,i

Nw(λ+ρ)−ρ .

2.7. Generalized Kostant modules. The resolution given in Theorem 2.6 is our
model. We wish to generalize the result by replacing Eλ by an arbitrary unitary
irreducible highest weight representation. Note that when the infinitesimal charac-
ter is regular, the setup is more transparent than in the general case. The reader
may wish to restrict to this case for a first reading.

Fix an irreducible g-module L having infinitesimal character χµ with µ dominant.
Let D be the set that was defined in 2.5. Suppose X =

⋃
0≤i≤tX

i is a graded subset
of D. We call the grading a Kostant grading if for every 1 ≤ i ≤ t, any two distinct
elements x, y ∈ X i ⊆ D are not comparable in the Bruhat order, i.e., x 6≺ y and
y 6≺ x. For 0 ≤ i ≤ t, set Ni =

⊕
w∈Xi Nwµ−ρ. We say that L is a generalized

Kostant module for data X if the following hold:
(i) X ⊂ D has a Kostant grading X =

⋃
0≤i≤tX

i.
(ii) There exist g-module maps di : Ni → Ni−1, 1 ≤ i ≤ t, so that

0→ Nt
dt→Nt−1

dt−1→ · · · d1→N0
ε→L→ 0

is complex; i.e., di ◦ di−1 = 0.
(iii) For all i and w ∈ X i, the restriction of di to Nwµ−ρ is nonzero.
(iv) For 0 ≤ i ≤ t, Hi(u+, L) '

⊕
w∈Xi

Fwµ−ρ.
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Remarks.
(1) If L is a generalized Kostant module, then the set X and its grading are

uniquely determined by (iv).
(2) The Killing form induces a nondegenerate pairing of S(u) and S(u−). This

gives a contragradient pairing ofHi(u+, L) = Extiu(C, A) and Toru
−

i (C, A∨),
where A∨ denotes the contragradient dual toA. Note that each simple mod-
ule here is equal to its contragradient dual. Therefore, the identity 2.7(iv)
can be interpreted as the corresponding identity for Toru

−

i (C, L).
(3) In [C] the notion of a Kostant module is defined via the homology of the

“Iwasawa” Borel subalgebra b∼ and its nilradical n∼. Following this lead
we call L = Lλ a Kostant module if µ is regular integral and if the data
X =

⋃
0≤i≤tX

i is given by λ + ρ = w0µ and X i = {w ∈ WS | w ≺
w0 and `(w)− `(w0) = i}.

2.8. Theorem. Suppose L is a generalized Kostant module. Then the complex in
2.7(ii) is a resolution of L.

We will prove the theorem in 2.11. The proof is a modification of the argument
in Lepowsky [L, Theorem 4.3] which proves Theorem 2.6 above. We will prove
exactness at each term in the complex 2.7(ii) by induction on the index. Set q− =
p− ⊕ k.

2.9. Lemma [L, Lemma 4.8(ii)]. Let X be a module in the category OS and Y
any q−-module which is a weight module. Then any q−-module homomorphism
ϕ : Y → X is surjective if and only if the induced map ϕ : Y/u−Y → X/u−X is
surjective.

2.10. Lemma. Suppose B ⊂ C are g-modules in the category O(g, qS)µ.
(a) There exist xi ∈ W , 1 ≤ i ≤ t, and a g-module filtration of C of the form

C = Ct ⊃ Ct−1 ⊃ · · · ⊃ C1 ⊃ C0 = 0 such that

C/u−C '
∑

1≤i≤t
F (r, xiµ− ρ)

and Ci/Ci−1 is a quotient of N(xiµ− ρ) for all 1 ≤ i ≤ t.
(b) Suppose B ⊂ u−C and Lξ is a Jordan-Holder component of B. Then there

exist x, y ∈ D such that ξ = xµ − ρ, x 6= y, x ≺ y and Lyµ−ρ is a Jordan-
Holder component of C.

Proof. We first prove (a). Choose x1 such that x1µ−ρ is a highest weight of C with
highest weight vector c1. Set C1 (resp. F1) equal to the g-module (resp. r-module)
generated by c1. Then C1 = F1 ⊕ (C1 ∩ u−C). Let j ≥ 1 and assume that Cj and
Fj have been defined with vector cj ∈ Cj such that

Fj = U(r)cj , Cj = Cj−1 + U(u−)Fj and Cj/(Cj ∩ u−C) '
∑

1≤i≤j
Fi .

Now set cj+1 equal to any weight vector in C that projects to a highest weight
vector in C/Cj and generates an irreducible r-module. Let Fj+1 = U(r)cj+1 and
let Cj+1 equal the g-module generated by Fj+1 and Cj . Assertion (a) follows from
this.

We now prove (b). Set L = Lξ and choose a submodule B1 ⊂ B with L a
submodule of B/B1. Now apply part (a) to A = C/B1, obtaining the filtration
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Ai and the r-modules Fi. Choose j maximal with L not contained in Aj . Then
L injects into Aj+1/Aj which is a quotient of N(xj+1µ − ρ). Since L ⊂ u−A,
xj+1µ− ρ 6= ξ and so x 6= xj+1. Setting y = xj+1 completes the proof. �

2.11. Proof of Theorem 2.8. For any module A we write Tori(A) in place of the
more precise Toru

−

i (C, A). Then Tor0(A) ' A/u−A. Set A equal to the kernel of ε
and consider the short exact sequences

(*) 0→ A→ N0
ε→L→ 0 and 0→ K → N1

d1→I → 0 ,

where I equals the image of N1 and K is the kernel. Then I/u−I = Tor0(I) is the
image of Tor0(N1) '

∑
x∈X1 Fxµ−ρ. Using 2.7(iii) and K ⊂ u−N1, Tor0(K) and

Tor0(N1) have no r-modules in common. Thus we have an isomorphism

Tor0(I) ' Tor0(N1) '
∑
x∈X1

Fxµ−ρ .

The first of the short exact sequences in (*) induces an exact sequence

0→ Tor1(L)→ Tor0(A)→ Tor0(N0)→ Tor0(L)→ 0 .

Since Tor0(N0) ' Cλ, this resolution splits into two isomorphisms:

(**) Tor1(L) ' Tor0(A) and Cλ ' Tor0(N0) ' Tor0(L) .

This proves that Tor0(I) and Tor0(A) are isomorphic.
Now I ⊂ A ⊂ N0 and A ⊂ u−N0. We claim that the inclusion of I in A induces

an inclusion I/u−I → A/u−A, i.e., I ∩ u−A = u−I . Suppose not. Then by
Lemma 2.10(a) there exists x ∈ X1 with Fxµ−ρ contained in Tor0(I) and Lxµ−ρ
occurring as a Jordan-Holder component of I which is contained in u−A. Applying
Lemma 2.10(b), we obtain y 6= x, x ≺ y with Lyµ−ρ occurring as a Jordan-Holder
component of A. If Lyµ−ρ is not contained in u−A, then we have x ≺ y with both
contained in X1. If Lyµ−ρ is contained in u−A, then repeat the argument to obtain
z ∈ D with y ≺ z and Lzµ−ρ occurring as a Jordan Holder component of A. Repeat
this process until we obtain w ∈ D with x ≺ w and Lwµ−ρ is not contained in u−A.
So x ≺ w and both are contained in X1. This contradicts 2.7(i) and proves the
claim.

We now prove A = I. By the previous paragraph the induced map Tor0(I) →
Tor0(A) is injective and hence by (**) is an isomorphism. Then Lemma 2.9 implies
that the inclusion of I into A must also be an isomorphism, A = I. This proves
exactness at N0.

We now consider the general case. The argument is similar. Assume j > 0 and
the complex is exact at Ni for 0 ≤ i ≤ j − 1. Set A equal to the kernel of dj and I
equal to the image of dj+1. We now prove I = A. Consider the resolutions

0→ A→ Nj
dj→Nj−1

dj−1→ · · · d1→N0
ε→L→ 0

and
0→ K → Nj+1

dj+1→ I → 0 .

From the set of associated short exact sequences and the freeness of each Ni , we
obtain that Tor0(A) ' Torj+1(L). From the second resolution and 2.7(iii) and (iv),
the inclusion K ⊂ u−Nj+1 implies Tor0(I) ' Tor0(Nj+1) ' Torj+1(L). This proves
Tor0(A) and Tor0(I) are isomorphic.
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Next we argue as above that the induced map I/u−I → A/u−A is an injection.
Suppose this is not the case. Then by Lemma 2.10(b) we obtain x, y ∈ D with
Fxµ−ρ ⊂ u−A ∩ I and not contained in u−I , x 6= y, x ≺ y and Lyµ−ρ occurring
as a Jordan-Holder component of A. Then as above we may repeat this process to
obtain w with x 6= w, x ≺ w and Fwµ−ρ contained in Tor0(A). Then both x and
w lie in Xj+1 which contradicts 2.7(i). This proves the map Tor0(I) into Tor0(A)
is injective and since they are isomorphic r-modules, the map is an isomorphism.
Then Lemma 2.9 implies that I = A. This completes the induction step and the
proof. �

3. Resolutions of unitary highest weight modules

3.1. The reduced Hermitian symmetric pair. In [E] a formula for the p+-
cohomology of unitary highest weight modules is given for Hermitian symmetric
pairs of classical type. In [EW] these formulas are used to give a generalized BGG
resolution in the classical cases. Here we formulate these results for arbitrary Her-
mitian symmetric pairs and extend the proof to the exceptional groups. In the
language of the previous section, we prove that each unitary highest weight repre-
sentation is a generalized Kostant module with data X . We describe the sets X
and their Kostant gradings. Our answer is given in terms of the reduced Hermitian
symmetric pair which we now define.

3.2. Definition. Let λ ∈ h∗ and let Ψλ be the set of roots in ∆ that are orthogonal
to λ+ ρ. Following [E] we then define a root system ∆λ as follows. Let Wλ be the
subgoup of W that is generated by the reflections sβ with β satisfying the following
conditions:

(i) β ∈ ∆+
n and (λ+ ρ, β∨) is a positive integer;

(ii) β is orthogonal to Ψλ;
(iii) β is short if Ψλ contains a long root.

Let ∆λ be the subset of roots α ∈ ∆ with sα ∈ Wλ. Then ∆λ is an abstract
root system and Wλ is the associated Weyl group. Let ∆λ,c = ∆c ∩ ∆λ, ∆+

λ =
∆+ ∩∆λ and ∆+

λ,c = ∆+
c ∩ ∆λ. Let gλ and kλ be the complex Lie algebras with

Cartan subalgebra h and root systems ∆λ and ∆λ,c. So gλ = h ⊕
∑

α∈∆λ
gα

and kλ = h ⊕
∑

α∈∆λ,c
gα. Note that these Lie algebras are the complexified Lie

algebras of a Hermitian symmetric pair (Gλ,Kλ). Also note that in general gλ is
not a subalgebra of g. We call both (Gλ,Kλ) and (gλ, kλ) the reduced Hermitian
symmetric pair associated to λ.

3.3. Put ρλ = 1
2

∑
α∈∆+

λ
α and define W c

λ = {w ∈ Wλ | w∆+
λ ⊇ ∆+

λ,c}. Note that
Wλ,c ⊆Wc but W c

λ 6⊆W c in general. Let `λ denote the length function on Wλ. Set

W c,i
λ = {w ∈ W c

λ | `λ(w) = i} .
Comparing with 2.2, note that in general `λ does not equal the restriction of ` to
Wλ. For any λ ∈ h∗ with (λ, α∨) ∈ R for all α ∈ ∆, let λ+ denote the unique
element in the Wc-orbit of λ which is ∆+

c -dominant.

3.4. Now we make the connections with the graded subsets of D which parametrize
the BGG resolutions in section two. Recall the double cosets in 2.5. Choose µ
dominant and w0 ∈W with λ+ ρ = w0µ.
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Lemma. For x ∈ W c
λ, the double coset Wcxw0WT is of maximal size |Wc||WT |

and contains a unique element δ(x) of minimal length.

Proof. Each element of Ψλ is fixed by x. Suppose that (x(λ + ρ), α) = 0 for some
compact root α. Then x−1α ∈ Ψλ which implies α ∈ Ψλ. This is a contradiction.
Hence the double coset has maximal size. An elementary tensoring argument proves
the existence of the minimal length representative. �

3.5. Recall from 2.5 the subset D of representatives of maximal double cosets in
Wc\W/WT . Then D is a subset of TW ∩W c. Define the graded set Xλ =

⋃
X i
λ

by setting X i
λ equal to the image of W c,i

λ under the inclusion

x→ δ(x), W c
λ ↪→ TW ∩W c.

We now turn to the verification that L with data X is a generalized Kostant mod-
ule. Let ∆int denote the integral root system for λ + ρ. Then ∆c ⊂ ∆int ⊂ ∆.
Then replacing ∆ by ∆int we obtain the length function `int and the Weyl group
decomposition Wint 'Wc ·W c

int and the grading W c,i
int .

3.6. Lemma [L, Proposition 3.7]. Let µ be dominant and regular and α a simple
root. Suppose w,w′ ∈ W c satisfy conditions w = w′sα and `int(w) = `int(w′) + 1.
Then the standard map N(g, wµ− ρ)→ N(g, w′µ− ρ) is nonzero.

Proof. In [L], the proposition is stated only for integral points but the proof given
there applies to the more general case as well. �

3.7. Theorem [DES, Theorem 4.1]. Suppose that Lλ is unitary. Then for i ≥ 0,

Hi(p+, Lλ) '
⊕

w∈W c,i
λ

Fδ(w)µ.

3.8. Corollary. Suppose that Lλ is a unitary highest weight module. Then Lλ has
a resolution of the form

0→ Npλ → · · · → N1 → N0 → Lλ → 0

with
Ni =

⊕
w∈W c,i

λ

Nδ(w)µ.

The length pλ of the resolution is equal to dim p
+
λ .

Proof. Two proofs are sketched in [EW] which cover the classical cases. Here we will
complete the result by giving a proof for the exceptional cases. Since the argument
of Lepowsky even for the classical cases must be modified at several points and the
details are not available elsewhere we begin with some comments on the proofs in
the classical cases.

Suppose we are in one of the five classical cases, L = Lλ and λ+ ρ is dominant
and regular. If in addition λ + ρ is integral, then L is finite dimensional and
Corollary 3.8 reduces to Theorem 2.6. If λ + ρ is dominant and regular but not
integral, let ∆int denote integral root system. Then we are in one of two cases.
Either g ' so(2, 2n− 1) and the category O(g)λ+ρ is equivalent to the category O
for sl(2) or g ' sp(n) and L is one of the two components of the Weil representation.
In the first case one can verify Corollary 3.8 directly. So suppose we are in the second
case. Here g ' sp(n), Wλ is the Weyl group for type Dn and δ(x) = x for all W c

λ.
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Using the constants associated with this Weyl group [BGG] and the maps induced
by the standard maps we find that L satisfies 2.7(i) and (ii). Then Lemma 3.6
implies 2.7(iii) and Theorem 3.7 gives 2.7(iv) and so the corollary now follows from
Theorem 2.8. This is the first application of what we referred to as the Lepowsky
argument.

The next step is a reduction by equivalence of category following the arguments
in [E]. Suppose λ + ρ is not regular dominant. Choose a ∆+-dominant µ with
λ+ρ = w0µ. Then there is an equivalence of category Tλ defined from the category
C = OS∩∆λ

(gλ)λ+ρ to a subcategory C′ ⊂ OS(g)λ+ρ. This equivalence is defined
case by case in [E] and has the essential property, for all x ∈ W c

λ,

Tλ : N(gλ, x(λ + ρ)− ρλ) 7−→ N(g, δ(x)µ− ρ).

Since λ+ρ is dominant regular for ∆+
λ , we may apply the cases above to obtain the

resolution for L(gλ, λ). Applying the equivalence we obtain Corollary 3.8 for L.
Now we turn to the exceptional groups E6 and E7. Here all the reduction points

are integral. So first assume λ + ρ is regular integral. From [C, Figures 2 and 3],
λ+ ρ = xµ where x is one of the vertices {w0, w1, w2, w3, w4, w5, w7, w12, , w26} for
E6 and vertices {w0, w1, w2, w3, w4, w5, w6, w8, w16, w55} for E7. The last vertex
corresponds to the trivial representation in each case. There the corollary follows
from Theorem 2.6. So we assume x 6= w26 or w55. �

3.9. Lemma. Suppose g is of type E6 or E7 , Lλ is unitary and λ+ ρ is regular.
Then the map x → δ(x) is an order preserving injection from the poset W c

λ onto
its image D′ ⊂W c. Moreover, its inverse is also order preserving. The map is an
isomorphism of the Bruhat order on W c

λ onto the restriction to D′ of the Bruhat
order on W c.

Proof. This is a straightforward verification. For details see [C]. �

Combining this lemma and Lemma 3.6, we find that the data X i
λ as defined in

3.5 is a Kostant grading which satisfies 2.7(i), (ii) and (iii). Then Theorem 3.7
implies 2.7(iv) and so L is a generalized Kostant module. Theorem 2.8 now finishes
the proof of Corollary 3.8 for regular points.

Now we turn to the singular points. We begin with the E6 case. Recall BGG
reciprocity [ES1, Proposition 2.2]. Let Pν be the projective cover of the simple
module Lν . Then Pν has a generalized Verma flag and the multiplicity of Nν in a
generalized Verma flag of Pξ is equal to the Jordan-Holder multiplicity of Lξ in Nν .
Then [ES2, Proposition 2.3] gives the Verma flag multiplicities. In turn this gives
with BGG reciprocity the Jordan-Holder series of each generalized Verma module.
Identify the semi-regular highest weights plus rho with the linearly ordered set
v0, v1, v2, v3, v4, v5 and let Nvi (resp. Lvi) denote the module N(g, vi(λ + ρ) − ρ)
(resp. L(g, vi(λ+ρ)−ρ)). We find Nv0 is simple and for 1 ≤ i ≤ 5, Nvi has Jordan-
Holder components Lvi and Lvi−1 . Moreover, the latter is the socle. From this we
can directly construct the generalized BGG resolution for any of the vertices in this
case. All singular reduction points are of this form. Therefore, the corollary holds
for E6.

For E7 the singular reduction points are either semi-regular or have an A1 ×A1

singularity. By [ES2, Lemma 3.5] the category for an A1 × A1 singularity looks
like the sl(2) category with two simple modules. Both have the desired cohomology
formulas and we see directly that both have generalized BGG resolutions. For
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the semi-regular points, [ES2, Proposition 3.8] determines the generalized Verma
module flags of the projective covers. In turn with BGG reciprocity we can compute
the Jordan-Holder series for each generalized Verma module. The semi-regular
category corresponds to the following diagram:

• v5

|
• v4

|
• v3

|
• v2

|
• v1

� �
v0′ • • v0

� �
• v−1

|
• v−2

|
• v−3

|
• v−4

|
• v−5

The Jordan-Holder components and socles of generalized Verma modules in this
category are given in the following table:

generalized
Verma module Jordan-Holder components socle

N5 L5, L4, L−5 L−5

N4 L4, L3, L−4, L−5 L−4

N3 L3, L2, L−3, L−4 L−3

N2 L2, L1, L−2, L−3 L−2

N1 L1, L0, L0′ , L−1, L−2 L−1

N0 L0, L−1 L−1

N0′ L0′ , L−1 L−1

N−1 L−1, L−2 L−2

N−2 L−2, L−3 L−3

N−3 L−3, L−4 L−4

N−4 L−4, L−5 L−5

N−5 L−5 L−5

By construction (cf. [ES2]) the projective covers Pv−5 , Pv−4 , Pv−3 , Pv−2 and Pv−1

are self dual. This implies that Socle Nj= Socle P−j = L−j for 1 ≤ j ≤ 5. From
the Jordan-Holder table we obtain the other socle information. This is listed in the
far right column. Directly, as a result of these tables, if λ+ ρ corresponds to one of
the vertices {v−5, v−4, v−3, v−2, v−1, v0, v0′ , v5}, then we can define maps dj so that



UNITARY HIGHEST WEIGHT MODULES 25

2.7(i)–(iii) all hold. All semiregular λ + ρ for E7 with Lλ unitary correspond to
these vertices. Then using Theorem 2.8 and Theorem 3.7 we obtain Corollary 3.8
for E7. This completes the entire proof. �

3.10. Corollary to Proof. Suppose g is of type E6 and λ+ ρ is singular integral.
Then Lλ is a generalized Kostant module.

4. The cone decomposition and unitary strata

4.1. The classification of unitary highest weight modules. We review some
of the notation from the paper [EHW] on the classification of unitary highest weight
modules and the cone decomposition. Let β denote the unique maximal root in ∆+

and let ζ be the unique fundamental root (ζ, β∨) = 1. Let λ0 be a ∆+
c -dominant

integral element of h∗ such that (λ0 + ρ, β∨) = 0. If Lλ is unitary, then there exists
a unique λ0 as above such that λ = λ0 + zζ with z ∈ R. For fixed λ0 the set of
all z ∈ R such that the irreducible highest weight module Lλ0+zζ is unitary is as
follows:

−−−−−−−−−−−−−−−−−|−−−−−−−−−• •︸ ︷︷ ︸• • · · · •
0 a c b

The constants a and b depend on λ0, whereas the constant c depends only on the
Hermitian symmetric pair.

Since in this article we consider resolutions and Hilbert series of unitary highest
weight modules Lλ, we are interested in those highest weights λ for which Nλ
is reducible (and hence Lλ has a nontrivial resolution). We call the set of such
highest weights the set of reduction points . In the picture above, the reduction
points correspond to the equally spaced points between a and b. The highest
weight corresponding to z = a is called the first reduction point; the highest weight
corresponding to z = b is called the last reduction point.

For simplicity, in what follows we only consider Hermitian symmetric pairs with
simply laced Dynkin diagram, i.e., root systems of ADE-type. In this case the
constants a and b mentioned above have some simple interpretations in terms of a
certain root sytem, Qλ0 , attached to the line λ0 + Rζ.

4.2. The root system Qλ0. We begin with a general observation on Dynkin
diagrams of Hermitian symmetric pairs (which is also valid in the nonsimply laced
cases). Consider the extended Dynkin diagram that is obtained from the Dynkin
diagram of ∆ by adding an extra node corresponding to −β that is connected to
the other nodes using the usual rules. For example, if ∆ is the Dynkin diagram of
E6, then the extended diagram is:

α1 α3 α4 α5 α6

◦ −−− • −−− • −−− • −−− •
|
• α2

...
◦
−β

Now delete the node corresponding to the unique simple noncompact root. Then
the resulting diagram is again the Dynkin diagram of the root system of a Hermitian
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symmetric pair of the same type with−β being the node corresponding to the simple
noncompact root. For example, in the case of E6:

α3 α4 α5 α6

• −−− • −−− • −−− •
|
• α2

|
◦
−β

≈

−β α2 α4 α5 α6

◦ −−− • −−− • −−− • −−− •
|
• α3

As in [EHW], we attach to λ a root system, Qλ, as follows: the diagram of Qλ is the
maximal connected subdiagram of the diagram above containing −β and having the
property that every compact simple root is orthogonal to λ. For example, consider
the case of E6 and λ = ω5−9ω1. To find Qλ we first label the nodes corresponding
the simple compact roots by the dot products (λ, α∨i ):

−β α2 α4 α5 α6

◦ −−− 0 −−− 0 −−− 1 −−− 0
|
0
α3

Thus Qλ is of type SU(1, 4):

−β α2 α4

◦ −−− • −−− •
|
•
α3

≈
−β α2 α4 α3

◦ −−− • −−− • −−− •

Note that if λ = λ0 + zζ as in 4.1, then Qλ = Qλ0 since ζ is orthogonal to all
compact roots.

The constants a and b from 4.1 (in the simply laced cases) can be expressed in
terms of Q = Qλ0 as follows. Let r be the split rank of Q. Then

b = 2(ρQ,c, β∨) + 1 and a = b− (r − 1)c

Here ρQ,c denotes half the sum of all the positive compact roots of Q.

4.3. The cone decomposition. The set of all reduction points can be written
as a (disjoint) union of certain translated integral cones. This cone decomposition
was explicitly introduced in [DES]. Here, by a translated integral cone in h∗ with
vertex ν, we mean a subset of h∗ of the form C = {ν+

∑m
j=1 ajπj | aj ∈ Z+}, where

ν and πj are ∆c-integral.
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Let Q be a root system of the form Q = Qλ for some reduction point λ = λ0 +zζ.
Fixing the root system Q and value z we define a subset CQ,z of the set of all
reduction points by

CQ,z = {λ = λ0 + zζ | λ is a reduction point and Qλ = Q} .

It was observed in [DES] that the set CQ,z is a translated integral cone. More
precisely, CQ,z = {ν+

∑m
j=1 ajπj | aj ∈ Z+}, where the vertex ν and the generators

πj are given as follows. Let ωi denote the fundamental weight corresponding to the
simple root αi. Then ν =

∑
i ciωi is such that (ν + ρ, β∨) = z and the coefficients

ci = (ν, α∨i ) for compact αi are equal to 1 if αi does not belong to Q but the
corresponding node in the extended Dynkin diagram is connected to some node of
the diagram of Q and is equal to 0 otherwise. The generators πj are the weights of
the form ωi − (ωi, β∨)ζ, where αi is a compact root that does not belong to Q.

4.4. A finer decomposition of the cones. Let Σ denote the set of simple roots
in ∆+ and for α ∈ Σ let Hα denote the hyperplane in h∗R that is perpendicular to
α. (Here we identify h∗ with h via the Killing form.) For a subset T ⊆ Σ define

HT =
⋂
α∈T

Hα

Let C
+
T denote the interior in HT of the intersection HT ∩ C+. We then can write

h∗R as a disjoint union as follows:

h
∗
R =

⋃
T⊆Σ

⋃
w∈TW

wC
+
T .

The following lemma can be verified by a case by case analysis.

Lemma. Suppose the set {λ ∈ CQ,z | λ+ ρ ∈ wC
+
T } is nonempty. Then {λ ∈ CQ,z |

λ+ ρ ∈ wC
+
T } is itself a translated integral cone with a unique vertex.

Definition. We will call {λ ∈ CQ,z | λ + ρ ∈ wC
+
T }, provided it is nonempty, the

unitary stratum with parameters (w, T ). Its vertex is denoted νw,T . At the end of
this section we will explicitly list all the unitary strata for the exceptional groups.

4.5. Posets for E6 and E7. Many of the calculations to come later are direct
consequences of the poset structure of W c. The partially ordered set W c is given
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by the following figures for E6 and E7 respectively:

◦ v26

α1 |•v25

α2 |•v24

α3 |•v23
α2� α5�•v21 •v22

α5� α2� α6�•v19 •v20
α4� α6� α2�
•v17 •v18

α3� α6� α4�
•v15 •v16

α1� α6� α3� α5�◦ v12 •v13 •v14

α6� α1� α5� α3�
•v10 •v11

α5� α1� α4�•v8 •v9

α4� α1� α2�•v6 ◦ v7
α3� α2� α1�
◦ v4 ◦ v5

α2� α3�
◦ v3

α4 |◦ v2

α5 |◦ v1

α6 |◦ v0

◦ v55

α7 |•v54

α6 |•v53

α5 |•v52

α4 |•v51
α3� α2�•v49 •v50

α1� α2� α3�
•v47 •v48

α2� α1� α4�•v45 •v46

α4� α1� α5�•v43 •v44
α3� α5� α1� α6�•v40 •v41 •v42

α5� α3� α6� α1� α7�•v37 •v38 •v39
α4� α6� α3� α7� α1�
•v34 •v35 •v36

α2� α6� α4� α7� α3�
•v31 •v32 •v33

α6� α2� | � α4�
• 28 • 29 •v30

α5 | �� �� | α5
• 25 •26 •v27

α4� α7� | � α6�•v22 •v23 •v24
α3� α7� α4� α6� α2�
•v19 •v20 •v21

α1� α7� α3� α6� α4�
◦ v16 •v17 •v18

α7� α1� α6� α3� α5�•v13 •v14 •v15

α6� α1� α5� α3�
•v11 •v12

α5� α1� α4�•v9 •v10

α4� α1� α2�•v7 ◦ v8
α2� α3� α1�
◦ v5 ◦ v6

α2� α3�
◦ v4

α4 |◦ v3

α5 |◦ v2

α6 |◦ v1

α7 |◦ v0



UNITARY HIGHEST WEIGHT MODULES 29

4.6. Root orderings for ∆+
n of E6 and E7. The positive noncompact roots and

their Dynkin diagrams are given as follows.
Simple roots and extended Dynkin diagram for E6:

α1 α3 α4 α5 α6

◦ −−− • −−− • −−− • −−− •
|
• α2

..

.
◦
−β0

α1 = 1
2

( +1, −1, −1, −1, −1, −1, −1, +1 )

α2 = ( +1, +1, 0, 0, 0, 0, 0, 0 )
α3 = ( −1, +1, 0, 0, 0, 0, 0, 0 )
α4 = ( 0, −1, +1, 0, 0, 0, 0, 0 )
α5 = ( 0, 0, −1, +1, 0, 0, 0, 0 )
α6 = ( 0, 0, 0, −1, +1, 0, 0, 0 )

Noncompact positive roots for E6:

• β0

α2 |
• β1

α4 |
• β2

α3� α5�
• β3 • β4

α5� α3� α6�
• β5 • β6

α4� α6� α3�
• β7 • β8

α2� α6� α4�
• β9 • β10

α6� α2� α5�
• β11 • β12

α5� α2�
• β13

α4 |
• β14

α3 |
• β15

β0 = 1
2

( +1, +1, +1, +1, +1, −1, −1, +1 )

β1 = 1
2

( −1, −1, +1, +1, +1, −1, −1, +1 )

β2 = 1
2

( −1, +1, −1, +1, +1, −1, −1, +1 )

β3 = 1
2

( +1, −1, −1, +1, +1, −1, −1, +1 )

β4 = 1
2

( −1, +1, +1, −1, +1, −1, −1, +1 )

β5 = 1
2

( +1, −1, +1, −1, +1, −1, −1, +1 )

β6 = 1
2

( −1, +1, +1, +1, −1, −1, −1, +1 )

β7 = 1
2

( +1, +1, −1, −1, +1, −1, −1, +1 )

β8 = 1
2

( +1, −1, +1, +1, −1, −1, −1, +1 )

β9 = 1
2

( −1, −1, −1, −1, +1, −1, −1, +1 )

β10 = 1
2

( +1, +1, −1, +1, −1, −1, −1, +1 )

β11 = 1
2

( −1, −1, −1, +1, −1, −1, −1, +1 )

β12 = 1
2

( +1, +1, +1, −1, −1, −1, −1, +1 )

β13 = 1
2

( −1, −1, +1, −1, −1, −1, −1, +1 )

β14 = 1
2

( −1, +1, −1, −1, −1, −1, −1, +1 )

β15 = 1
2

( +1, −1, −1, −1, −1, −1, −1, +1 )

Remark. Here two roots βa above βb are connected by an edge α if βa = βb + α
with α a simple compact root.

Simple roots and extended Dynkin diagram for E7:

−β0 α1 α3 α4 α5 α6 α7

◦ · · · • −−− • −−− • −−− • −−− • −−− ◦
|
•
α2

α1 = 1
2 ( +1, −1, −1, −1, −1, −1, −1, +1 )

α2 = ( +1, +1, 0, 0, 0, 0, 0, 0 )
α3 = ( −1, +1, 0, 0, 0, 0, 0, 0 )
α4 = ( 0, −1, +1, 0, 0, 0, 0, 0 )
α5 = ( 0, 0, −1, +1, 0, 0, 0, 0 )
α6 = ( 0, 0, 0, −1, +1, 0, 0, 0 )
α7 = ( 0, 0, 0, 0, −1, +1, 0, 0 )
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Noncompact positive roots for E7:

• β0

α1 |
• β1

α3 |
• β2

α4 |
• β3

α5� α2�
• β4 • β5

α6� α2� α5�
• β6 • β7

α2� α6� α4�
• β8 • β9

α4� α6� α3�
• β10 • β11

α5� α3� α6� α1�
• β12 • β13 • β14

α3� α5� α1� α6�
• β15 • β16

α4� α1� α5�
• β17 • β18

α2� α1� α4�
• β19 • β20

α1� α2� α3�
• β21 • β22

α3� α2�
• β23

α4 |
• β24

α5 |
• β25

α6 |
• β26

β0 = ( 0, 0, 0, 0, 0, 0, −1, 1 )

β1 = 1
2

( −1, 1, 1, 1, 1, 1, −1, 1 )

β2 = 1
2

( 1, −1, 1, 1, 1, 1, −1, 1 )

β3 = 1
2

( 1, 1, −1, 1, 1, 1, −1, 1 )

β4 = 1
2

( 1, 1, 1, −1, 1, 1, −1, 1 )

β5 = 1
2

( −1, −1, −1, 1, 1, 1, −1, 1 )

β6 = 1
2

( 1, 1, 1, 1, −1, 1, −1, 1 )

β7 = 1
2

( −1, −1, 1, −1, 1, 1, −1, 1 )

β8 = 1
2

( −1, −1, 1, 1, −1, 1, −1, 1 )

β9 = 1
2

( −1, 1, −1, −1, 1, 1, −1, 1 )

β10 = 1
2

( −1, 1, −1, 1, −1, 1, −1, 1 )

β11 = 1
2

( 1, −1, −1, −1, 1, 1, −1, 1 )

β12 = 1
2

( −1, 1, 1, −1, −1, 1, −1, 1 )

β13 = 1
2

( 1, −1, −1, 1, −1, 1, −1, 1 )

β14 = ( 0, 0, 0, 0, 1, 1, 0, 0 )

β15 = 1
2

( 1, −1, 1, −1, −1, 1, −1, 1 )

β16 = ( 0, 0, 0, 1, 0, 1, 0, 0 )

β17 = 1
2

( 1, 1, −1, −1, −1, 1, −1, 1 )

β18 = ( 0, 0, 1, 0, 0, 1, 0, 0 )

β19 = 1
2

( −1, −1, −1, −1, −1, 1, −1, 1 )

β20 = ( 0, 1, 0, 0, 0, 1, 0, 0 )

β21 = ( −1, 0, 0, 0, 0, 1, 0, 0 )

β22 = ( 1, 0, 0, 0, 0, 1, 0, 0 )

β23 = ( 0, −1, 0, 0, 0, 1, 0, 0 )

β24 = ( 0, 0, −1, 0, 0, 1, 0, 0 )

β25 = ( 0, 0, 0, −1, 0, 1, 0, 0 )

β26 = ( 0, 0, 0, 0, −1, 1, 0, 0 )

4.7. Example of decomposition into strata. Consider the case of E7 when
Q = SO(2, 10) and z = 9. This is the most difficult case. In this case the points in
the cone CQ,z are given by λ = aω6 + (−2a − 8)ω7 with a ≥ 1. We now evaluate
(λ + ρ, β∨) for all β ∈ ∆+

n . We display these values in a diagram as follows.
Start with the poset diagram of ∆+

n . Then label each node of the diagram with
the corresponding number (λ + ρ, β∨). We are only interested in the nonnegative
values and so we ignore the part of the diagram for which the values (λ + ρ, β∨)
are negative. What we obtain is a diagram as follows:
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β0 9
| α1

β1 8
| α3

β2 7
| α4

β3 6
�α5 �α2

β4 5 β5 5
�α6 �α2 �α5

β6 4 −a β7 4
�α2 �α6 �α4

β8 3−a β9 3
�α4 �α6 �α4

β10 2 −a β11 2
�α5 �α3 �α6 �α1

β12 1−a β13 1−a β14 1

Our calculations will rely on the following lemma.

Lemma. The following are equivalent:

(a) λ+ ρ lies in the closed chamber wC+;
(b) (λ + ρ, wβ∨) ≥ 0 for all β ∈ ∆+

n ;
(c) w∆+

n ∩∆+
n = {β ∈ ∆+

n | (λ + ρ, β∨) ≥ 0}.

We obtain five different cases depending on the value of a, namely a = 1, 2,
3, 4 and ≥ 5. For a ≥ 5, the parameter λ + ρ is integral regular and lies in
the chamber wC+, where w is the unique element of W c with w∆+

n ∩ ∆+
n =

{β0, β1, β2, β3, β4, β5, β7, β9, β11, β14} = Θ. From the figure in 4.5 we verify that
w = v16. Thus the parameters of the stratum {aω6 + (−2a − 8)ω7 | a ≥ 5}
are (w, T ) = (v16,∅). Next consider a = 4. Then w ∈ W c is the unique
element with w∆+

n ∩ ∆+
n = Θ ∪ {β6}, which implies by the figure in 4.5 that

w = v19. One also checks that β6 = v16α1 and hence the parameters of the stra-
tum {4ω6 − 16ω7} are (w, T ) = (v19, {α1}). Similarly, for a = 3 and 2 we obtain
parameters (w, T ) = (v22, {α3}) and (v22, {α4}), respectively. Finally, for a = 1 we
have w∆+

n ∩ ∆+
n = {β1, β2, . . . , β14}. Here there are two singular roots: β12 and

β13. With w = v32 we have β12 = v32α2, β13 = v32α5. Thus the parameters of the
stratum {ω − 10ω7} are (w, T ) = (v32, {α2, α5}).

4.8. Invariance on stratum. Now we determine invariance properties on strata.
Suppose ξ and ν lie in the positive chamber, have integral difference ξ−ν and equal
stabilizers in W , i.e., {w ∈ W | wξ = ξ} = {w ∈ W | wν = ν}. Applying standard
techniques of Zuckerman translation we have an equivalence of categories Θ : Oξ ∼−→
Oν . Suppose w ∈ W c and assume both wξ and wν are ∆+

c -dominant integral and
regular. Then ΘNwξ ' Nwν and ΘLwξ ' Lwν . Applying this equivalence to our
modules and resolutions we obtain:

Lemma. The Gelfand-Kirilov dimension, the length of a minimal free resolution
and the degree of the numerator polynomial in the Hilbert series are constant on
each stratum.
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4.9. Table of strata decomposition. The following tables summarize the de-
composition of cones into strata. Each line corresponds to a strata. For each
stratum we give the vertex of the stratum, the Gelfand-Kirillov dimension of Lλ
with λ+ ρ in the stratum, the length p of the generalized BGG resolution and the
degree e of the numerator polynomial P (t).

Unitary strata for E6:

Q z w T vertex νw,T GKdim p e

SU(1, 1) 1 v1 ∅ ω2 − 12ω1 16 1 1

SU(1, 2) 2 v2 ∅ ω4 − 12ω1 16 2 2

SU(1, 3) 3 v3 ∅ ω3 + ω5 − 12ω1 16 3 3

SU(1, 4)(a) 4 v4 ∅ 2ω5 − 11ω1 16 4 4
v6 {α3} ω5 − 9ω1 16 1 1

SU(1, 4)(b) 4 v5 ∅ 2ω3 + ω6 − 12ω1 16 4 4
v6 {α2} ω3 + ω6 − 10ω1 16 1 1

SU(1, 5) 5 v7 ∅ 3ω3 − 12ω1 16 5 5
v9 {α2} 2ω3 − 10ω1 16 2 2
v11 {α4} ω3 − 8ω1 16 2 3

SO(2, 8) 4 v8 {α4} ω6 − 8ω1 16 1 2

7 v12 ∅ 4ω6 − 8ω1 16 8 8
v15 {α1} 3ω6 − 7ω1 16 4 4
v17 {α3} 2ω6 − 6ω1 16 4 5
v19 {α4} ω6 − 5ω1 16 4 6

E6 8 v24 {α4} −3ω1 11 5 3

11 v26 ∅ 0 1 16 0

The two cases with Q = SU(1, 4) correspond to the following Dynkin diagrams:

SU(1, 4)(a) :
◦ −−− • −−− • −−− •
−β α2 α4 α3

SU(1, 4)(b) :
◦ −−− • −−− • −−− •
−β α2 α4 α5
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Unitary strata for E7:

Q z w T vertex νw,T GKdim p e

SU(1, 1) 1 v1 ∅ ω1 − 18ω7 27 1 1

SU(1, 2) 2 v2 ∅ ω3 − 18ω7 27 2 2

SU(1, 3) 3 v3 ∅ ω4 − 18ω7 27 3 3

SU(1, 4) 4 v4 ∅ ω2 + ω5 − 18ω7 27 4 4

SU(1, 5)(a) 5 v5 ∅ 2ω5 − 18ω7 27 5 5
v7 {α3} ω5 − 15ω7 27 1 1

SU(1, 5)(b) 5 v6 ∅ 2ω2 + ω6 − 18ω7 27 5 5
v7 {α2} ω2 + ω6 − 16ω7 27 1 1

SU(1, 6) 6 v8 ∅ 3ω2 − 17ω7 27 6 6
v10 {α2} 2ω2 − 15ω7 27 2 2
v12 {α4} ω2 − 13ω7 27 2 3

SO(2, 10) 5 v9 {α4} ω6 − 14ω7 27 1 2

9 v16 ∅ 5ω6 − 18ω7 26 10 9
v19 {α1} 4ω6 − 16ω7 26 5 4
v22 {α3} 3ω6 − 14ω7 26 5 5
v25 {α4} 2ω6 − 12ω7 26 5 6
v32 {α2, α5} ω6 − 10ω7 26 1 0

E7 9 v37 {α4, α6} −8ω7 26 1 2

13 v52 {α4} −4ω7 17 10 5

17 v55 ∅ 0 1 27 0

The two cases with Q = SU(1, 5) correspond to the following Dynkin diagrams:

SU(1, 5)(a) :
◦ −−− • −−− • −−− • −−− •
−β α1 α3 α4 α2

SU(1, 5)(b) :
◦ −−− • −−− • −−− • −−− •
−β α1 α3 α4 α5

5. Computing reduced root systems

5.1. In sections 6 and 7 we give formulas for the generalized BGG resolutions,
the Hilbert series, Bernstein degree, etc. of the unitary highest weight modules
of the exceptional groups of E6 and E7, respectively. In order to find the explicit
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resolution of the unitary highest weight module Lλ with highest weight λ one has
to determine the reduced root system ∆λ, which was introduced in [E]. In the
following we describe an algorithm to find ∆λ.

5.2. An algorithm to find ∆λ. Begin with the set ∆+
n of positive noncompact

roots described as an ordered set in 4.6. Given the highest weight λ of the unitary
irreducible highest weight module we compute the scalar product (λ+ρ, β∨) for all
β ∈ ∆+

n . The β ∈ ∆+
n for which (λ + ρ, β∨) = 0 are the singular (positive) roots

for the parameter λ+ ρ. This gives Ψλ ∩∆+. We next determine the noncompact
positive roots orthogonal to Ψλ and with positive integral inner product with λ+ρ.
The set of all these roots is the set ∆+

n,λ. It inherits a partial ordering from the
partial ordering of ∆+

n . The simple roots of the root system ∆λ are the roots that
arise as differences of successive elements of ∆+

n .

5.3. Two examples of the ∆+
λ calculation. We again consider the case of E7

when Q = SO(2, 10) and z = 9 as in 4.7. In this case the points in the cone CQ,z
are given by λ = aω6 + (−2a − 8)ω7 with a ≥ 1. We now evaluate (λ + ρ, β∨)
for all β ∈ ∆+

n . We display these values in a diagram as follows. Start with the
poset diagram of ∆+

n . Then label each node of the diagram with the corresponding
number (λ + ρ, β∨). We are only interested in the nonnegative values and so we
ignore the part of the diagram for which the values (λ+ ρ, β∨) are negative. What
we obtain is a diagram as follows:

β0 9
| α1

β1 8
| α3

β2 7
| α4

β3 6
�α5 �α2

β4 5 β5 5
�α6 �α2 �α5

β6 4 −a β7 4
�α2 �α6 �α4

β8 3−a β9 3
�α4 �α6 �α3

β10 2−a β11 2
�α5 �α3 �α6 �α1

β12 1−a β13 1−a β14 1

Let us first consider the regular strata corresponding to a ≥ 5. Then Ψλ is empty
and ∆+

λ,n = {β0, β1, β2, β3, β4, β5, β7, β9, β11, β14}. Taking differences for adjacent
β we find that the simple roots of ∆+

λ are −β0, α1, α2, α3, α4, α5 which give the
following Dynkin diagram:

−β0 α1 α3 α4 α5

◦ · · · • −−− • −−− • −−− • −−−
|
•
α2



UNITARY HIGHEST WEIGHT MODULES 35

This is the diagram for SO(2, 10) and so ∆λ is of type SO(2, 10).
Next we consider a different stratum of the same cone, say the stratum corre-

sponding to a = 2. Then Ψλ = {±β10}. From the data given in 4.6 we find that
the noncompact roots positive at λ+ ρ and orthogonal to β10 are:

β2 •
| α4 + α5

β4 •
| α2

β7 •
| α3 + α4

β11 •
| α1

β14 •
Taking differences for adjacent β we obtain the following Dynkin diagram for ∆+

λ :

−β2 α4 + α5 α2 α3 + α4 α1

◦ −−−−− • −−−−− • −−−−− • −−−−− •

This is the diagram for SU(1, 4) and so ∆λ is of type SU(1, 4) when a = 2.

6. Resolutions and Hilbert series for E6

6.1. In this section we give explicit resolutions and Hilbert series for the unitary
highest weight representation of E6. We list the representations by cones and their
strata as in table 4.9. In each case we first give the general form of a highest weight
λ in the cone. The nonnegative root numbers, i.e., the values (λ + ρ, β∨i ) for βi
noncompact, are given in diagramatic form as in 4.7. Below this diagram we then
list the cases by strata. In each case we first give the singularity type of λ+ρ. More
precisely, we give the parameters (w, T ) for the stratum as explained in 4.4. We
also list the vertex vw,T as explained in 4.4. Next we give the reduced root system
∆λ which is from the root numbers as in section 5. We then give the minimal
resolution of L = Lλ by generalized Verma modules as in Corollary 3.8. We write
Ni for the generalized Verma module of highest weights ηi. All highest weight are
explicitly given. Furthermore, we give the degrees of the maps in the resolution.
For example,

0→ N4
+2−−→ N3

+1−−→ N2
+2−−→ N1

+1−−→ N0 → L→ 0

would mean that the map from N1 to N0 is homogenous of degree 1, the map
from N2 to N1 is homogeneous of degree 2, etc. Here we consider the modules
Ni and L as graded S = S(p−) modules. (For more details see [EH].) We then
give the Hilbert series expressed as a rational function h(t) = P (t)/(1 − t)d with
P (t) ∈ Z[t] such that P (1) 6= 0. When an explicit expression is too complicated
to write down, we express the coefficients simply in terms of the dimensions of
the finite dimensional irreducible k-modules Fηi . We write di for dim(Fηi ). The
Gelfand-Kirilov dimension of the representation L is the degree of the denominator
of the Hilbert series; the Bernstein degree is the (positive) integer P (1). We give the
explicit Hilbert series and Bernstein degree of the module L = Lλ when λ = νv,T
is the vertex of the stratum.
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6.2. Qλ ' SU(1, 1), z = 1.
Highest weight: λ =

∑6
i=2 aiωi + (−2a2 − 2a3 − 3a4 − 2a5 − a6 − 10)ω1 with

a2 ≥ 1 and ai ≥ 0 for i 6= 2.
Stratum: (v, T ) = (v1,∅) (λ+ ρ regular) Vertex: ω2 − 12ω1.
Reduced root system: ∆λ ' SU(1, 1), ∆+

λ,n = {β0}.
Resolution:

0→ N1
+1−−→ N0 → L→ 0.

η0 = λ,
η1 = λ− β0 = λ− ω2.

Hilbert series: h(t) = (d0 − d1t)/(1− t)16.
Gelfand-Kirillov dimension: 16.
Bernstein degree: d0 − d1.
Hilbert series at vertex: h(t) = (16− t)/(1− t)16.
Bernstein degree at vertex: 15.

6.3. Qλ ' SU(1, 2), z = 2.
Highest weight: λ = aω3 + bω4 + cω5 + dω6 + (−2a− 3b− 2c− d− 9)ω1 with
b ≥ 1 and a, c, d ≥ 0.

Stratum: (v, T ) = (v2,∅) (λ+ ρ regular) Vertex: ω4 − 12ω1.
Reduced root system: ∆λ ' SU(1, 2), ∆+

λ,n = {β0, β1}.
Resolution:

0→ N2
+1−−→ N1

+1−−→ N0 → L→ 0.
η0 = λ = aω3 + bω4 + cω5 + dω6 + (−2a− 3b− 2c− d− 9)ω1,
η1 = λ− β1 = ω2 + aω3 + (b− 1)ω4 + cω5 + dω6 + (−2a− 3b− 2c− d− 9)ω1,
η2 = λ− β1 − β0 = aω3 + (b− 1)ω4 + cω5 + dω6 + (−2a− 3b− 2c− d− 9)ω1.

Hilbert series: h(t) = (d0 − d1t+ d2t
2)/(1− t)16.

Gelfand-Kirillov dimension: 16.
Bernstein degree: d0 − d1 + d2.
Hilbert series at vertex: h(t) = (120− 16t+ t2)/(1− t)16.
Bernstein degree at vertex: 105.

6.4. Qλ ' SU(1, 3), z = 3.
Highest weight: λ = aω3 + bω5 + cω6 + (−2a− 2b− c− 8)ω1 with a, b ≥ 1 and
c ≥ 0.

Root numbers:
β0 3
| α2

β1 2
| α4

β2 1

Stratum: (v, T ) = (v3,∅) (λ+ ρ regular) Vertex: ω3 + ω5 − 12ω1.
Reduced root system: ∆λ ' SU(1, 3), ∆+

λ,n = {β0, β1, β2}.
Resolution:

0→ N3
+1−−→ N2

+1−−→ N1
+1−−→ N0 → L→ 0.

η0 = λ = aω3 + bω5 + cω6 + (−2a− 2b− c− 8)ω1,
η1 = λ− β2 = (a− 1)ω3 + ω4 + (b − 1)ω5 + cω6 + (−2a− 2b− c− 8)ω1,
η2 = λ− β2 − β1 = ω2 + (a− 1)ω3 + (b− 1)ω5 + cω6 + (−2a− 2b− c− 8)ω1,
η3 = λ− β2 − β1 − β0 = (a− 1)ω3 + (b − 1)ω5 + cω6 + (−2a− 2b− c− 8)ω1.
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Hilbert series: h(t) = (d0 − d1t+ d2t
2 − d3t

3)/(1− t)16.
Gelfand-Kirillov dimension: 16.
Bernstein degree: d0 − d1 + d2 − d3.
Hilbert series at vertex: h(t) = (560− 120t+ 16t2 − t3)/(1− t)16.
Bernstein degree at vertex: 455.

6.5. Qλ ' SU(1, 4)(a), z = 4.
Highest weight: λ = aω5 + bω6 + (−2a− b− 7)ω1 with a ≥ 1 and b ≥ 0.
Root numbers:

β0 4
| α2

β1 3
| α4

β2 2
�α3 �α5

β3 1 β4 1 −a

a > 1:
Stratum: (v, T ) = (v4,∅) (λ+ ρ regular) Vertex: 2ω5 − 11ω1.
Reduced root system: ∆λ ' SU(1, 4), ∆+

λ,n = {β0, β1, β2, β3}.
Resolution:

0→ N4
+1−−→ N3

+1−−→ N2
+1−−→ N1

+1−−→ N0 → L→ 0.

η0 = λ = aω5 + bω6 + (−2a− b− 7)ω1,
η1 = λ− β3 = ω3 + (a− 1)ω5 + bω6 + (−2a− b− 8)ω1,
η2 = λ− β3 − β2 = ω4 + (a− 2)ω5 + bω6 + (−2a− b− 8)ω1,
η3 = λ− β3 − β2 − β1 = ω2 + (a− 2)ω5 + bω6 + (−2a− b− 8)ω1,
η4 = λ− β2 − β1 − β1 − β0 = (a− 2)ω5 + bω6 + (−2a− b− 8)ω1.

Hilbert series: h(t) = (
∑4

i=0(−1)iditi)/(1− t)16.
Gelfand-Kirillov dimension: 16.
Bernstein degree:

∑4
i=0(−1)idi.

Hilbert series at vertex: h(t) = (770− 560 + 120t2 − 16t3 + t4)/(1− t)16.
Bernstein degree at vertex: 315.

a = 1:
Stratum: (v, T ) = (v6, {α3}) (λ+ ρ semi-regular) Vertex: ω5 − 9ω1.
Reduced root system: ∆λ ' SU(1, 1), ∆+

λ,n = {β3}.
Resolution:

0→ N1
+1−−→ N0 → L→ 0.

η0 = λ = ω5 + bω6 + (−b− 9)ω1,
η1 = λ− β3 = ω3 + bω6 + (−b− 10)ω1,

Hilbert series: h(t) = (d0 − d1t)/(1− t)27.
Gelfand-Kirillov dimension: 16.
Bernstein degree: d0−d1 = (4b+29)(b+7)(b+6)(b+5)(b+4)(b+3)(b+1)/2520.
Hilbert series at vertex: h(t) = (45− 16t)/(1− t)16.
Bernstein degree at vertex: 29.

6.6. Qλ ' SU(1, 4)(b), z = 4.
Highest weight: λ = aω3 + bω6 + (−2a− b− 7)ω1 with a, b ≥ 1.
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Root numbers:
β0 4
| α2

β1 3
| α4

β2 2
�α3 �α5

β3 1 −a β4 1

a > 1:
Stratum: (v, T ) = (v5,∅) (λ+ ρ regular) Vertex: 2ω3 + ω6 − 12ω1.
Reduced root system: ∆λ ' SU(1, 4), ∆+

λ,n = {β0, β1, β2, β4}.
Resolution:

0→ N4
+1−−→ N3

+1−−→ N2
+1−−→ N1

+1−−→ N0 → L→ 0.

η0 = λ = aω3 + bω6 + (−2a− b− 7)ω1,
η1 = λ− β4 = (a− 1)ω3 + ω5 + (b − 1)ω6 + (−2a− b− 7)ω1,
η2 = λ− β4 − β2 = (a− 2)ω3 + ω4 + (b− 1)ω6 + (−2a− b− 7)ω1,
η3 = λ− β4 − β2 − β1 = ω2 + (a− 2)ω3 + (b− 1)ω6 + (−2a− b− 7)ω1,
η4 = λ− β4 − β2 − β1 − β0 = (a− 2)ω3 + (b− 1)ω6 + (−2a− b− 7)ω1.

Hilbert series: h(t) = (
∑5

i=0(−1)iditi)/(1− t)16.
Gelfand-Kirillov dimension: 16.
Bernstein degree:

∑4
i=0(−1)idi.

Hilbert series at vertex: h(t) = (1050− 560t+ 120t2 − 16t3 + t4)/(1− t)16.
Bernstein degree at vertex: 595.

a = 1:
Stratum: (v, T ) = (v6, {α2}). (λ+ρ semi-regular) Vertex: ω3 +ω6−10ω1.
Reduced root system: ∆λ ' SU(1, 1), ∆+

λ,n = {β4}.
Resolution:

0→ N1
+1−−→ N0 → L→ 0.

η0 = λ = ω3 + bω6 + (−b− 9)ω1,
η1 = λ− β4 = ω5 + (b− 1)ω6 + (−b− 9)ω1.

Hilbert series: h(t) = (d0 − d1t)/(1− t)16.
Gelfand-Kirillov dimension: 16.
Bernstein degree: d0−d1 = (4b+7)(b+8)(b+6)(b+5)(b+4)(b+3)(b+2)/2520.
Hilbert series at vertex: h(t) = (144− 45t)/(1− t)16.
Bernstein degree at vertex: 99.

6.7. Qλ ' SU(1, 5), z = 5.
Highest weight: λ = aω3 + (−2a− 6)ω1 with a ≥ 1.
Root numbers:

β0 5
| α2

β14
| α4

β2 3
�α3 �α5

β3 2 −a β4 2
�α5 �α3 �α6

β5 1 −a β6 1
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a > 2:
Stratum: (v, T ) = (v5,∅) (λ+ ρ regular) Vertex: 3ω3 − 12ω1.
Reduced root system: ∆λ ' SU(1, 5), ∆+

λ,n = {β0, β1, β2, β4, β6}.
Resolution:

0→ N5
+1−−→ N4

+1−−→ N3
+1−−→ N2

+1−−→ N1
+1−−→ N0 → L→ 0.

η0 = λ = aω3 + (−2a− 6)ω1,
η1 = λ− β6 = (a− 1)ω3 + ω6 + (−2a− 6)ω1,
η2 = λ− β6 − β4 = (a− 2)ω3 + ω5 + (−2a− 6)ω1,
η3 = λ− β6 − β4 − β2 = (a− 3)ω3 + ω4 + (−2a− 6)ω1,
η4 = λ− β6 − β4 − β2 − β1 = ω2 + (a− 3)ω3 + (−2a− 6)ω1,
η5 = λ− β6 − β4 − β2 − β1 − β0 = (a− 3)ω3 + (−2a− 6)ω1.

Hilbert series: h(t) = (
∑5

i=0(−1)iditi)/(1− t)16.
Gelfand-Kirillov dimension: 16.
Bernstein degree:

∑6
i=0(−1)idi = (2a+ 5)(a+ 4)(a+ 3)(a+ 2)(a+ 1)/120.

Hilbert series at vertex: h(t) = (672−1050t+560t2−120t3 +16t4− t5)/(1− t)16.
Bernstein degree at vertex: 77.

a = 2:
Stratum: (v, T ) = (v9, {α2}) (λ+ ρ semi-regular) Vertex: 2ω3 − 10ω1.
Reduced root system: ∆λ ' SU(1, 2), ∆+

λ,n = {β4, β6}.
Resolution:

0→ N2
+1−−→ N1

+1−−→ N0 → L→ 0.

η0 = λ = 2ω3 − 10ω1,
η1 = λ− β6 = ω3 + ω6 − 10ω1,
η2 = λ− β6 − β4 = ω5 − 10ω1.

Hilbert series: h(t) = (126− 144t+ 45t2)/(1− t)16.
Gelfand-Kirillov dimension: 16.
Bernstein degree: 126− 144 + 45 = 27.

a = 1:
Stratum: (v, T ) = (v11, {α4}) (λ+ ρ semi-regular) Vertex: ω3 − 8ω1.
Reduced root system: ∆λ ' SU(1, 2), ∆+

λ,n = {β2, β6}.
Resolution:

0→ N2
+2−−→ N1

+1−−→ N0 → L→ 0.

η0 = λ = ω3 − 8ω1,
η1 = λ− β6 = ω6 − 8ω1,
η2 = s3s5(λ+ ρ− β6 − 2β2)− ρ = −9ω1.

Hilbert series: h(t) = (16− 10t+ t3)/(1− t)16.
Gelfand-Kirillov dimension: 16.
Bernstein degree: 16− 10 + 1 = 7.

6.8. Qλ ' SO(2, 8), z = 4 (first reduction point).
Highest weight: λ = aω6 + (−a− 7)ω1 with a ≥ 1.
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Root numbers:
β0 4
| α2

β1 3
| α4

β2 2
�α3 �α5

β3 1 β4 1
�α5 �α3

β5 0

Stratum: (v, T ) = (v8, {α4}) (λ+ ρ semi-regular) Vertex: ω6 − 8ω1.
Reduced root system: ∆+

λ,n = {β2}, ∆λ ' SU(1, 1).
Resolution:

0→ N1
+2−−→ N0 → L→ 0.

η0 = λ = aω6 + (−a− 7)ω1,
η1 = s3s5(λ+ ρ− 2β2)− ρ = (a− 1)ω6 + (−a− 8)ω1,

Hilbert series: h(t) = (d0 − d1t
2)/(1− t)16.

Gelfand-Kirillov dimension: 16.
Bernstein degree: d0−d1 = (2a+7)(a+6)(a+5)(a+4)(a+3)(a+2)(a+1)/5040.
Hilbert series at vertex: h(t) = (10− t2)/(1− t)16.
Bernstein degree at vertex: 9.

6.9. Qλ ' SO(2, 8), z = 7 (second reduction point).
Highest weight: λ = aω6 + (−a− 4)ω1 with a ≥ 1.
Root numbers:

β0 7
| α2

β1 6
| α4

β2 5
�α3 �α5

β3 4 β4 4
�α5 �α3 �α6

β5 3 β6 3 −a
�α4 �α6 �α3

β7 2 β8 2 −a
�α2 �α6 �α4

β9 1 β10 1 −a

a > 3:
Stratum: (v, T ) = (v12,∅) (λ+ ρ regular) Vertex: 4ω6 − 8ω1.
Reduced root system: ∆λ ' SU(2, 8), ∆+

λ,n = {β0, β1, β2, β3, β4, β5, β7, β9}.
Resolution:

0→ N8
+1−−→ N7

+1−−→ · · · +1−−→ N5
+1−−→

N4⊕
N ′4

+1−−→ N3
+1−−→ · · · +1−−→ N0 → L→ 0.

η0 = λ = aω6 + (−a− 4)ω1,
η1 = λ− β9 = ω2 + (a− 1)ω6 + (−a− 5)ω1,
η2 = λ− β9 − β7 = ω4 + (a− 2)ω6 + (−a− 6)ω1,
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η3 = λ− β9 − β7 − β5 = ω2 + ω5 + (a− 3)ω6 + (−a− 7)ω1,
η4 = λ− β9 − β7 − β5 − β4 = 2ω5 + (a− 4)ω6 + (−a− 7)ω1,
η′4 = λ− β9 − β7 − β5 − β3 = 2ω2 + (a− 3)ω6 + (−a− 8)ω1,
η5 = λ− β9 − β7 − β5 − β4 − β3 = ω2 + ω5 + (a− 4)ω6 + (−a− 8)ω1,
η6 = λ− β9 − β7 − β5 − β4 − β3 − β2 = ω4 + (a− 4)ω6 + (−a− 8)ω1,
η7 = λ− β9 − β7 − β5 − β4 − β3 − β2 − β1 = ω2 + (a− 4)ω6 + (−a− 8)ω1,
η8 = λ− β9 − β7 − β5 − β4 − β3 − β2 − β1 − β0 = (a− 4)ω6 + (−a− 8)ω1.

Hilbert series: h(t) = (d0 − d1t+ · · ·+ (d4 + d′4)t4 − d5t
5 + · · ·+ d8t

8)/(1− t)16.
Gelfand-Kirillov dimension: 16.
Bernstein degree: 1.
Hilbert series at vertex:

h(t) = (600− 2640t+ 4312t2 − 3696t3 + 1820t4

− 560t5 + 120t6 − 16t7 + t8)/(1− t)16.

a = 3:
Stratum: (v, T ) = (v15, {α1}) (λ+ ρ semi-regular) Vertex: 3ω6 − 7ω1.
Reduced root system: ∆λ ' SU(1, 4), ∆+

λ,n = {β3, β5, β7, β9}.
Resolution:

0→ N4
+1−−→ N3

+1−−→ N2
+1−−→ N1

+1−−→ N0 → L→ 0.

η0 = λ = 3ω6 − 7ω1,
η1 = λ− β9 = ω2 + 2ω6 − 8ω1,
η2 = λ− β9 − β7 = ω4 + ω6 − 9ω1,
η3 = λ− β9 − β7 − β5 = ω2 + ω5 − 10ω1,
η4 = λ− β9 − β7 − β5 − β3 = 2ω2 − 11ω1.

Hilbert series: h(t) = (210− 720t+ 945t2 − 560t3 + 126t4)/(1− t)16.
Gelfand-Kirillov dimension: 16.
Bernstein degree: 210− 720 + 945− 560 + 126 = 1.

a = 2:
Stratum: (v, T ) = (v17, {α3}) (λ+ ρ semi-regular) Vertex: 2ω6 − 6ω1.
Reduced root system: ∆λ ' SU(1, 4), ∆+

λ,n = {β2, β4, β7, β9}.
Resolution:

0→ N4
+1−−→ N3

+2−−→ N2
+1−−→ N1

+1−−→ N0 → L→ 0.

η0 = λ = 2ω6 − 6ω1,
η1 = λ− β9 = ω2 + ω6 − 7ω1,
η2 = λ− β9 − β7 = ω4 − 8ω1,
η3 = s3s6(λ+ ρ− β9 − β7 − 2β4)− ρ = ω5 − 9ω1,
η4 = s3s6(λ+ ρ− β9 − β7 − 2β4 − β2)− ρ = ω2 − 10ω1.

Hilbert series: h(t) = (54− 144t+ 120t2 − 45t4 + 16t5)/(1− t)16.
Gelfand-Kirillov dimension: 16.
Bernstein degree: 54− 144 + 120− 45 + 16 = 1.

a = 1:
Stratum: (v, T ) = (v19, {α4}) (λ+ ρ semi-regular) Vertex: ω6 − 5ω1.
Reduced root system: ∆λ ' SU(1, 4), ∆+

λ,n = {β1, β4, β5, β9}.
Resolution:

0→ N4
+2−−→ N3

+1−−→ N2
+2−−→ N1

+1−−→ N0 → L→ 0.

η0 = λ = ω6 − 5ω1,
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η1 = λ− β9 = ω2 − 6ω1,
η2 = s4s6(λ+ ρ− β9 − 2β5)− ρ = ω3 − 8ω1,
η3 = s4s6(λ+ ρ− β9 − 2β5 − β4)− ρ = ω6 − 8ω1,
η4 = s3s5s4s6(λ+ ρ− β9 − 2β5 − β4 − 2β1)− ρ = −9ω1.

Hilbert series: h(t) = (10− 16t+ 16t3 − 10t4 + t6)/(1− t)16.
Gelfand-Kirillov dimension: 16.
Bernstein degree: 10− 16 + 16− 10 + 1 = 1.

6.10. Qλ ' E6, z = 8.
Highest weight: λ = −3ω1.
Root numbers:

8 β0

α2 |
7 β1

α4 |
6 β2

α3� α5�
5 β3 5 β4

α5� α3� α6�
4 β5 4 β6

α4� α6� α3�
3 β7 3 β8

α2� α6� α4�
2 β9 2 β10

α6� α2� α5�
1 β11 1 β12

α5� α2�
0 β13

Stratum: (v, T ) = (v24, {α4}) (λ+ ρ semi-regular) Vertex: −3ω1.
Reduced root system: ∆λ ' SU(1, 5), ∆+

λ,n = {β0, β2, β3, β7, β10}.
Resolution:

0→ N5
+2−−→ N4

+1−−→ N3
+2−−→ N2

+1−−→ N1
+2−−→ N0 → L→ 0.

η0 = λ = −3ω1,
η1 = s5s2(λ+ ρ− 2β10)− ρ = ω6 − 5ω1,
η2 = s5s2(λ+ ρ− β6 − β4)− ρ = ω2 − 6ω1,
η3 = s6s4s5s2(λ+ ρ− β6 − β4 − β2)− ρ = ω3 − 8ω1,
η4 = s6s4s5s2(λ+ ρ− β6 − β4 − β2 − β1)− ρ = ω6 − 8ω1,
η5 = s5s3s6s4s5s2(λ + ρ− β6 − β4 − β2 − β1 − β0)− ρ = −9ω1.

Hilbert series:
h(t) = (1− 10t2 + 16t3 − 16t5 + 10t6 − t8)/(1− t)16

= (1 + 5t+ 5t2 + t3)/(1− t)11.

Gelfand-Kirillov dimension: 11.
Bernstein degree: 12.
Special feature: λ+ ρ is quasi-dominant (Wallach representation).

7. Resolutions and Hilbert series for E7

7.1. The same remarks apply as in 6.1.
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7.2. Qλ ' SU(1, 1), z = 1.
Highest weight λ =

∑6
i=1 aiωi + (−2a1 − 2a2 − 3a3 − 4a4 − 3a5 − 2a6 − 16)ω7

with a1 ≥ 1 and ai ≥ 0 for i 6= 1.
Stratum: (v, T ) = (v1,∅) (λ+ ρ regular) Vertex: ω1 − 18ω7.
Reduced root system: ∆λ ' SU(1, 1), ∆+

λ,n = {β0}.
Resolution:

0→ N1
+1−−→ N0 → L→ 0.

η0 = λ,
η1 = λ− β0 = λ− ω1.

Hilbert series: h(t) = (d0 − d1t)/(1− t)27.
Gelfand-Kirillov dimension: 27.
Bernstein degree: d0 − d1.
Hilbert series at vertex: h(t) = (27− t)/(1− t)27.
Bernstein degree at vertex: 26.

7.3. Qλ ' SU(1, 2), z = 2. .
Highest weight: λ =

∑6
i=2 aiωi + (−2a2 − 3a3 − 4a4 − 3a5 − 2a6 − 15)ω7 with

a3 ≥ 1 and ai ≥ 0 for i 6= 3.
Stratum: (v, T ) = (v2,∅) (λ+ ρ regular) Vertex: ω3 − 18ω7.
Reduced root system: ∆λ ' SU(1, 2), ∆+

λ,n = {β0, β1}.
Resolution:

0→ N2
+1−−→ N1

+1−−→ N0 → L→ 0.

η0 = λ,
η1 = λ− β1 = λ+ ω1 − ω3,
η2 = λ− β1 − β0 = λ− ω3.

Hilbert series: h(t) = (d0 − d1t+ d2t
2)/(1− t)27.

Gelfand-Kirillov dimension: 27.
Bernstein degree: d0 − d1 + d2.
Hilbert series at vertex: h(t) = (351− 27t+ t2)/(1− t)27.
Bernstein degree at vertex: 325.

7.4. Qλ ' SU(1, 3), z = 3.
Highest weight: λ = aω2 + bω4 + cω5 + dω6 + (−2a− 4b− 3c− 2d− 14)ω7 with
b ≥ 1 and a, c, d ≥ 0.

Stratum: (v, T ) = (v3,∅) (λ+ ρ regular) Vertex: ω4 − 18ω7.
Reduced root system: ∆λ ' SU(1, 3), ∆+

λ,n = {β0, β1, β2}.
Resolution :

0→ N3
+1−−→ N2

+1−−→ N1
+1−−→ N0 → L→ 0.

η0 = λ,
η1 = λ− β2 = λ+ ω3 − ω4,
η2 = λ− β2 − β1 = λ+ ω1 − ω4,
η3 = λ− β2 − β1 − β0 = λ− ω4.

Hilbert series: h(t) = (d0 − d1t+ d2t
2 + d3t

3)/(1− t)27.
Gelfand-Kirillov dimension: 27.
Bernstein degree: d0 − d1 + d2 − d3.
Hilbert series at vertex: h(t) = (2925− 351t+ 27t2 + t3)/(1− t)27.
Bernstein degree at vertex: 2600.
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7.5. Qλ ' SU(1, 4), z = 4.
Highest weight: λ = aω2 + bω5 + cω6 + (−2a− 3b− 2c− 13)ω7 with a, b ≥ 1 and
c ≥ 0.

Stratum: (v, T ) = (v4,∅) (λ+ ρ regular) Vertex: ω2 + ω5 − 18ω7.
Reduced root system: ∆λ ' SU(1, 4), ∆+

λ,n = {β0, β1, β2, β3}.
Resolution:

0→ N4
+1−−→ N3

+1−−→ N2
+1−−→ N1

+1−−→ N0 → L→ 0.

η0 = λ,
η1 = λ− β3 = λ− ω2 + ω4 − ω5,
η2 = λ− β3 − β2 = λ− ω2 + ω3 − ω5,
η3 = λ− β3 − β2 − β1 = λ+ ω1 − ω2 − ω5,
η4 = λ− β3 − β2 − β1 − β0 = λ− ω2 − ω5.

Hilbert series: h(t) = (d0 − d1t+ d2t
2 − d3t

3 + d4t
4)/(1− t)27.

Gelfand-Kirillov dimension: 27.
Bernstein degree: d0 − d1 + d2 − d3 + d4.
Hilbert series at vertex: h(t) = (17550− 2925t+ 351t2 − 27t3 + t4)/(1− t)27.
Bernstein degree at vertex: 14950.

7.6. Qλ ' SU(1, 5)(b), z = 5.
Highest weight: λ = aω2 + bω6 + (−2a− 2b− 12)ω7 with a, b ≥ 1.
Root numbers:

β0 5
| α1

β1 4
| α3

β2 3
| α4

β3 2
�α5 �α2

β4 1 β5 1 −a

a > 1:
Stratum: (v, T ) = (v6,∅) (λ+ ρ regular) Vertex: 2ω2 + ω6 − 18ω7.
Reduced root system: ∆λ ' SU(1, 5), ∆+

λ,n = {β0, β1, β2, β3, β4}.
Resolution:

0→ N5
+1−−→ N4

+1−−→ N3
+1−−→ N2

+1−−→ N1
+1−−→ N0 → L→ 0.

η0 = λ = aω2 + bω6 + (−2a− 2b− 12)ω7,
η1 = λ− β4 = (a− 1)ω2 + ω5 + (b − 1)ω6 + (−2a− 2b− 12)ω7,
η2 = λ− β4 − β3 = (a− 2)ω2 + +ω4 + (b− 1)ω6 + (−2a− 2b− 12)ω7,
η3 = λ− β4 − β3 − β2 = (a− 2)ω2 + ω3 + (b− 1)ω6 + (−2a− 2b− 12)ω7,
η4 = λ− β4 − β3 − β2 − β1 = ω1 + (a− 2)ω2 + (b− 1)ω6 + (−2a− 2b− 12)ω7,
η5 = λ− β4 − β3 − β2 − β1 − β0 = (a− 2)ω2 + (b− 1)ω6 + (−2a− 2b− 12)ω7.

Hilbert series: h(t) = (
∑5

i=0(−1)iditi)/(1− t)27.
Gelfand-Kirillov dimension: 27.
Bernstein degree:

∑5
i=0(−1)idi.

Hilbert series at vertex:

h(t) = (46332− 17550t+ 2925t3 − 351t3 + 27t4 − t5)/(1− t)27.
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Bernstein degree at vertex: 31382.
a = 1:

Stratum: (v, T ) = (v7, {α2}) (λ+ρ semi-regular ) Vertex: ω2 +ω6−16ω7.
Reduced root system: ∆λ ' SU(1, 1), ∆+

λ,n = {β4}.
Resolution:

0→ N1
+1−−→ N0 → L→ 0.

η0 = λ = ω2 + bω6 + (−2b− 14)ω7,
η1 = λ− β4 = ω5 + (b− 1)ω6 + (−2b− 14)ω7.

Hilbert series: h(t) = (d0 − d1t)/(1− t)27.
Gelfand-Kirillov dimension: 27.
Bernstein degree: d0 − d1.
Hilbert series at vertex: h(t) = (1728− 351t)/(1− t)27.
Bernstein degree at vertex: 1377.

7.7. Qλ ' SU(1, 5)(a), z = 5.
Highest weight: λ = aω5 + bω6 + (−3a− 2b− 12)ω7 with a ≥ 1 and b ≥ 0.
Root numbers:

β0 5
| α1

β1 4
| α3

β2 3
| α4

β3 2
�α5 �α2

β4 1 −a β5 1

a > 1:
Stratum: (v, T ) = (v5,∅) (λ+ ρ regular) Vertex: 2ω5 − 18ω7.
Reduced root system: ∆λ ' SU(1, 5), ∆+

λ,n = {β0, β1, β2, β3, β5}.
Resolution:

0→ N5
+1−−→ N4

+1−−→ N3
+1−−→ N2

+1−−→ N1
+1−−→ N0 → L→ 0.

η0 = λ = aω5 + bω6 + (−3a− 2b− 12)ω7,
η1 = λ− β5 = ω2 + (a− 1)ω5 + bω6 + (−3a− 2b− 12)ω7,
η2 = λ− β5 − β3 = ω4 + (a− 2)ω5 + bω6 + (−3a− 2b− 12)ω7,
η3 = λ− β5 − β3 − β2 = ω3 + (a− 2)ω5 + bω6 + (−3a− 2b− 12)ω7,
η4 = λ− β5 − β3 − β2 − β1 = ω1 + (a− 2)ω5 + bω6 + (−3a− 2b− 12)ω7,
η5 = λ− β5 − β3 − β2 − β1 − β0 = (a− 2)ω5 + bω6 + (−3a− 2b− 12)ω7.

Hilbert series: h(t) = (
∑5

i=0(−1)iditi)/(1− t)27.
Gelfand-Kirillov dimension: 27.
Bernstein degree:

∑5
i=0(−1)idi.

Hilbert series at vertex:

h(t) = (34398− 17550t+ 2925t3 − 351t3 + 27t4 − t5)/(1− t)27.

Bernstein degree at vertex: 19448.
a = 1:

Stratum: (v, T ) = (v7, {α3}) (λ+ ρ semi-regular) Vertex: ω5 − 15ω7.
Reduced root system: ∆λ ' SU(1, 1), ∆+

λ,n = {β5}.
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Resolution:
0→ N1

+1−−→ N0 → L→ 0.
η0 = λ = ω5 + bω6 + (−2b− 15)ω7,
η1 = λ− β5 = ω2 + bω6 + (−2b− 15)ω7.

Hilbert series: h(t) = (d0 − d1t)/(1− t)27.
Gelfand-Kirillov dimension: 27.
Bernstein degree:

d0 − d1 = (b+ 13)(b+ 11)9(b + 9)(b+ 7)2(b+ 5)(b+ 1)/(11)9(7)3.

Hilbert series at vertex: h(t) = (351− 78t)/(1− t)27.
Bernstein degree at vertex: 273.

7.8. Qλ ' SU(1, 6), z = 6.
Highest weight: λ = aω2 + (−2a− 11)ω7 with a ≥ 1.
Root numbers:

β0 6
| α1

β1 5
| α3

β2 4
| α4

β3 3
�α5 �α2

β4 2 β5 2 −a
�α6 �α2 �α5

β6 1 β7 1 −a

a > 2:
Stratum: (v, T ) = (v8,∅) (λ+ ρ regular) Vertex: 3ω2 − 17ω7.
Reduced root system: ∆λ ' SU(1, 6), ∆+

λ,n = {β0, β1, β2, β3, β4, β6}.
Resolution:

0→ N6
+1−−→ N5

+1−−→ · · · +1−−→ N1
+1−−→ N0 → L→ 0.

η0 = λ = aω2 + (−2a− 11)ω7,
η1 = λ− β6 = (a− 1)ω2 + ω6 + (−2a− 12)ω7,
η2 = λ− β6 − β4 = (a− 2)ω2 + ω5 + (−2a− 12)ω7,
η3 = λ− β6 − β4 − β3 = (a− 3)ω2 + ω4 + (−2a− 12)ω7,
η4 = λ− β6 − β4 − β3 − β2 = (a− 3)ω2 + ω3 + (−2a− 12)ω7,
η5 = λ− β6 − β4 − β3 − β2 − β1 = ω1 + (a− 3)ω2 + (−2a− 12)ω7,
η6 = λ− β6 − β4 − β3 − β2 − β1 − β0 = (a− 3)ω2 + (−2a− 12)ω7.

Hilbert series: h(t) = (
∑6

i=0(−1)iditi)/(1− t)27.
Gelfand-Kirillov dimension: 27
Bernstein degree:∑6

i=0(−1)idi = (2a+ 11)(2a+ 9)(2a+ 7)(2a+ 5)(a+ 7)(a+ 6)

· (a+ 5)2(a+ 4)3(a+ 3)2(a+ 2)(a+ 1)/(11!)(7)(5)(3).

Hilbert series at vertex:

h(t) = (43758− 46332t+ 17550t2 − 2925t3 + 351t4 − 27t5 + t6)/(1− t)27.

Bernstein degree at vertex: 12376.
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a = 2:
Stratum: (v, T ) = (v10, {α2}) (λ+ ρ semi-regular) Vertex: 2ω2 − 15ω7.
Reduced root system: ∆λ ' SU(1, 2), ∆+

λ,n = {β4, β6}.
Resolution:

0→ N2
+1−−→ N1

+1−−→ N0 → L→ 0.
η0 = λ = 2ω2 − 15ω7,
η1 = λ− β6 = ω2 + ω6 − 16ω7,
η2 = λ− β6 − β4 = ω5 − 16ω7.

Hilbert series: h(t) = (2430− 1728t+ 351t2)/(1− t)27.
Gelfand-Kirillov dimension: 27.
Bernstein degree: 2430− 1728 + 351 = 1053.

a = 1:
Stratum: (v, T ) = (v12, {α4}) (λ+ ρ semi-regular) Vertex: ω2 − 13ω7.
Reduced root system: ∆λ ' SU(1, 2), ∆+

λ,n = {β3, β6}.
Resolution:

0→ N2
+2−−→ N1

+1−−→ N0 → L→ 0.
η0 = λ = ω2 − 13ω7,
η1 = λ− β6 = ω6 − 14ω7,
η2 = s2s5(λ+ ρ− β6 − 2β3)− ρ = −14ω7.

Hilbert series: h(t) = (78− 27t+ t3)/(1− t)27.
Gelfand-Kirillov dimension: 27.
Bernstein degree: 78− 27 + 1 = 52.

7.9. Qλ ' SO(2, 10), z = 5 (first reduction point).
Highest weight: λ = aω6 + (−2a− 12)ω7 with a ≥ 1.
Root numbers:

β0 5
| α1

β1 4
| α3

β2 3
| α4

β3 2
�α5 �α2

β4 1 β5 1
�α2 �α5

β7 0

Stratum: (v, T ) = (v9, {α4}) (λ+ ρ semi-regular) Vertex: ω6 − 14ω7.
Reduced root system: ∆λ ' SU(1, 1), ∆+

λ,n = {β3}.
Resolution:

0→ N1
+2−−→ N0 → L→ 0.

η0 = λ = aω6 + (−2a− 12)ω7,
η1 = s2s5(λ+ ρ− 2β3)− ρ = (a− 1)ω6 + (−2a− 12)ω7.

Hilbert series: h(t) = (d0 − d1t
2)/(1− t)27.

Gelfand-Kirillov dimension: 27.
Bernstein degree: d0 − d1 = (2a+ 11)(a+ 10)10(a+ 7)4/(11)10(7)4.
Hilbert series at vertex: h(t) = (27− t2)/(1− t)27.
Bernstein degree at vertex: 26.
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7.10. Qλ ' SO(2, 10), z = 9 (second reduction point).
Highest weight: λ = aω6 + (−2a− 8)ω7 with a ≥ 1.
Root numbers:

β0 9
| α1

β1 8
| α3

β2 7
| α4

β3 6
�α5 �α2

β4 5 β5 5
�α6 �α2 �α5

β6 4 −a β7 4
�α2 �α6 �α4

β8 3 −a β9 3
�α4 �α6 �α4

β10 2 −a β11 2
�α5 �α3 �α6 �α1

β12 1 −a β13 1 −a β14 1

a > 4:
Stratum: (v, T ) = (v16,∅) (λ+ ρ regular) Vertex: 5ω6 − 18ω7.
Reduced root system: ∆λ ' SO(2, 10),

∆+
λ,n = {β0, β1, β2, β3, β4, β5, β7, β9, β11, β14}.

Resolution:

0→ N10
+1−−→ N9

+1−−→ N8
+1−−→ N7

+1−−→ N6
(+1,+1)−−−−−→ N ′5 ⊕N ′′5

(+1,+1)−−−−−→

N4
+1−−→ N3

+1−−→ N2
+1−−→ N1

+1−−→ N0 → L→ 0.

η0 = λ = aω6 + (−a− 8)ω7,
η1 = λ− β14 = ω1 + (a− 1)ω6 + (−a− 8)ω7,
η2 = λ− β14 − β11 = ω3 + (a− 2)ω6 + (−a− 8)ω7,
η3 = λ− β14 − β11 − β9 = ω4 + (a− 3)ω6 + (−a− 8)ω7,
η4 = λ− β14 − β11 − β9 − β7 = ω2 + ω5 + (a− 4)ω6 + (−a− 8)ω7,
η′5 = λ− β14 − β11 − β9 − β7 − β5 = 2ω2 + (a− 4)ω6 + (−a− 8)ω7,
η′′5 = λ− β14 − β11 − β9 − β7 − β4 = 2ω5 + (a− 5)ω6 + (−a− 8)ω7,
η6 = λ− β14 − β11 − β9 − β7 − β5 − β4 = ω2 + ω5 + (a− 5)ω6 + (−a− 8)ω7,
η7 = λ− β14 − β11 − · · · − β7 − β5 − β4 − β3 = ω4 + (a− 5)ω6 + (−a− 8)ω7,
η8 = λ− β14 − β11 − · · · − β5 − β4 − β3 − β2 = ω3 + (a− 5)ω6 + (−a− 8)ω7,
η9 = λ− β14 − β11 − · · · − β4 − β3 − β2 − β1 = ω1 + (a− 5)ω6 + (−a− 8)ω7,
η10 = λ− β14 − β11 − · · · − β3 − β2 − β1 − β0 = (a− 5)ω6 + (−a− 8)ω7.

Hilbert series:

h(t) = (
∑10

i=0(−1)iditi)/(1 − t)27 = (
∑9

i=0 eit
i)/(1− t)26,

where di = dim(Fηi) for i 6= 5 and d5 = dim(Fη′5 ) + dim(Fη′′5 ).
Gelfand-Kirillov dimension: 26.
Bernstein degree:∑9

i=0 ei = (2a2 + 9a+ 7)(a+ 6)(a+ 5)(a+ 4)(a+ 3)(a+ 2)/1680.
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Hilbert series at vertex:
h(t) = (100386− 371800t+ 579150t2 − 494208t3 + 252252t4− 80730t5

+ 17550t6 − 2925t7 + 351t8 − 27t9 + t10)/(1− t)27

= (100386− 271414t+ 307736t2 − 186472t3 + 65780t4 − 14950t5

+ 2600t6 − 325t7 + 26t8 − t9)/(1− t)26.

Bernstein degree at vertex: 3366.
a = 4:

Stratum: (v, T ) = (v19, {α1}) (λ+ ρ semi-regular) Vertex: 4ω6 − 16ω7.
Reduced root system: ∆λ ' SU(1, 5), ∆+

λ,n = {β5, β7, β9, β11, β14}.
Resolution:

0→ N5
+1−−→ N4

+1−−→ N3
+1−−→ N2

+1−−→ N1
+1−−→ N0 → L→ 0.

η0 = λ = 4ω6 − 16ω7,
η1 = λ− β14 = ω1 + 3ω6 − 16ω7,
η2 = λ− β14 − β11 = ω3 + 2ω6 − 16ω7,
η3 = λ− β14 − β11 − β9 = ω4 + ω6 − 16ω7,
η4 = λ− β14 − β11 − β9 − β7 = ω2 + ω5 − 16ω7,
η5 = λ− β14 − β11 − 2β9 − β7 − β5 = 2ω2 − 16ω7.

Hilbert series:
h(t) = (19305− 61425t+ 78975t2 − 51975t3 + 17550t4 − 2430t5)/(1− t)27

= (19305− 42120t+ 36855t2 − 15120t3 + 2430t4)/(1− t)26.

Gelfand-Kirillov dimension: 26.
Bernstein degree: 19305− 42120 + 36855− 15120 + 2430 = 1350.

a = 3:
Stratum: (v, T ) = (v22, {α3}) (λ+ ρ semi-regular) Vertex: 3ω6 − 14ω7.
Reduced root system: ∆λ ' SU(1, 5), ∆+

λ,n = {β3, β4, β9, β11, β14}.
Resolution:

0→ N5
+1−−→ N4

+2−−→ N3
+1−−→ N2

+1−−→ N1
+1−−→ N0 → L→ 0

η0 = λ = 3ω6 − 14ω7,
η1 = λ− β14 = ω1 + 2ω6 − 14ω7,
η2 = λ− β14 − β11 = ω3 + ω6 − 14ω7,
η3 = λ− β14 − β11 − β9 = ω4 − 14ω7,
η4 = s2s6(λ+ ρ− β14 − · · · − 2β4)− ρ = ω5 − 15ω7,
η5 = s2s6(λ+ ρ− β14 − · · · − β3)− ρ = ω2 − 15ω7.

Hilbert series:
h(t) = (3003− 7722t+ 7371t2 − 2925t3 + 351t5 − 78t6)/(1− t)27

= (3003− 4719t+ 2652t2 − 273t3 − 273t4 + 78t5)/(1− t)26.

Gelfand-Kirillov dimension: 26.
Bernstein degree: 3003− 4719 + 2652− 273− 273 + 78 = 468.

a = 2:
Stratum: (v, T ) = (v25, {α4}) (λ+ ρ semi-regular) Vertex: 2ω6 − 12ω7.
Reduced root system: ∆λ ' SU(1, 5). , ∆+

λ,n = {β2, β4, β7, β11, β14}.
Resolution:

0→ N5
+2−−→ N4

+1−−→ N3
+2−−→ N2

+1−−→ N1
+1−−→ N0 → L→ 0.
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η0 = λ = 2ω6 − 12ω7,
η1 = λ− β14 = ω1 + ω6 − 12ω7,
η2 = λ− β14 − β11 = ω3 − 12ω7,
η3 = s4s6(λ+ ρ− β14 − β11 − 2β7)− ρ = ω2 − 13ω7,
η4 = s4s6(λ+ ρ− β14 − β11 − 2β7 − β4)− ρ = ω6 − 14ω7,
η5 = s3s5s4s6(λ+ ρ− β14 − β11 − · · · − 2β2)− ρ = −14ω7.

Hilbert series:

h(t) = (351− 650t+ 351t2 − 78t4 + 27t5 − t7)/(1− t)27

= (351− 299t+ 52t2 + 52t3 − 26t4 + t5 + t6)/(1− t)26.

Gelfand-Kirillov dimension: 26.
Bernstein degree: 351− 299 + 52 + 52− 26 + 1 + 1 = 132.

a = 1:
Stratum: (v, T ) = (v32, {α2, α5}) (A1×A1 singularity) Vertex: ω6−10ω7.
Reduced root system: ∆λ ' SU(1, 1), ∆+

λ,n = {β14}.
Resolution:

0→ N1
+1−−→ N0 → L→ 0.

η0 = λ = ω6 − 10ω7,
η1 = λ− β3 = ω1 − 10ω7.

Hilbert series: h(t) = (27− 27t)/(1− t)27 = 27/(1− t)26.
Gelfand-Kirillov dimension: 26.
Bernstein degree: 27.
Special feature: λ+ ρ is quasi-dominant (as defined in [EHW, 4.4]).

7.11. Qλ ' E7, z = 9 (first reduction point).
Highest weight: λ = −8ω7.
Stratum: (v, T ) = (v37, {α4, α6}) (A1 ×A1 singularity) Vertex −8ω7.
Reduced root system: ∆λ ' SU(1, 1), ∆+

λ,n = {β9}.
Resolution:

N1
+3−−→ N0 → L→ 0.

Hilbert series: h(t) = (1− t3)/t27 = (1 + t+ t2)/(1− t)26.
Gelfand-Kirillov dimension: 26.
Bernstein degree: 3.
Special feature: λ+ ρ is quasi-dominant (Wallach representation).

7.12. Qλ ' E7, z = 13 (second reduction point).
Highest weight: λ = −4ω7.
λ+ ρ semi-regular with singular root β23.
Stratum: (v, T ) = (v52, {α4}) (λ+ ρ semi-regular) Vertex: −4ω7.
Reduced root system: ∆λ ' SO(2, 10),

∆+
λ,n = {β0, β1, β3, β4, β6, β9, β10, β12, β17, β20}.

Resolution:

0→ N10
+2−−→ N9

+1−−→ N8
+2−−→ N7

+1−−→ N6
(+1,+2)−−−−−→ N ′5 ⊕N ′′5

(+2,+1)−−−−−→

N4
+1−−→ N3

+2−−→ N2
+1−−→ N1

+2−−→ N0 → L→ 0.
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Hilbert series:
h(t) = (1− 27t2 + 78t3 − 351t5 + 650t6 − 351t7 − 351t8

+ 650t9 − 351t10 + 78t12 − 27t13 + t15)/(1− t)27

= (1 + 10t+ 28t2 + 28t3 + 10t4 + t5)/(1− t)17.

Gelfand-Kirillov dimension: 17.
Bernstein degree: 78.
Special feature: λ+ ρ is quasi-dominant (Wallach representation).
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