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TOTAL POSITIVITY IN THE
DE CONCINI-PROCESI COMPACTIFICATION

XUHUA HE

Abstract. We study the nonnegative part G>0 of the De Concini-Procesi
compactification of a semisimple algebraic group G, as defined by Lusztig.
Using positivity properties of the canonical basis and parametrization of flag
varieties, we will give an explicit description of G>0. This answers the question
of Lusztig in Total positivity and canonical bases, Algebraic groups and Lie
groups (ed. G.I. Lehrer), Cambridge Univ. Press, 1997, pp. 281-295. We

will also prove that G>0 has a cell decomposition which was conjectured by
Lusztig.

0. Introduction

Let G be a connected split semisimple algebraic group of adjoint type over R.
We identify G with the group of its R-points. In [DP], De Concini and Procesi
defined a compactification Ḡ of G and decomposed it into strata indexed by the
subsets of a finite set I. We will denote these strata by {ZJ | J ⊂ I}. Let G>0

be the set of strictly totally positive elements of G and G>0 be the set of totally
positive elements of G (see [L1]). We denote by G>0 the closure of G>0 in Ḡ. The
main goal of this paper is to give an explicit description of G>0 (see 3.14). This
answers the question in [L4, 9.4]. As a consequence, I will prove in 3.17 that G>0

has a cell decomposition which was conjectured by Lusztig.
To achieve our goal, it is enough to understand the intersection of G>0 with

each stratum. We set ZJ,>0 = G>0

⋂
ZJ . Note that ZI = G and ZI,>0 = G>0.

We define ZJ,>0 as a certain subset of ZJ,>0 analogous to G>0 for G>0 (see 2.6).
When G is simply-laced, we will prove in 2.7 a criterion for ZJ,>0 in terms of its
image in certain representations of G, which is analogous to the criterion for G>0 in
[L4, 5.4]. As Lusztig pointed out in [L2], although the definition of total positivity
was elementary, many of the properties were proved in a non-elementary way, using
canonical bases and their positivity properties. Our Theorem 2.7 is an example of
this phenomenon. As a consequence, we will see in 2.9 that ZJ,>0 is the closure of
ZJ,>0 in ZJ .

Note that ZJ is a fiber bundle over the product of two flag manifolds. Then
understanding ZJ,>0 is equivalent to understanding the intersection of ZJ,>0 with
each fiber. In 3.5, we will give a characterization of ZJ,>0 which is analogous to the
elementary fact that G>0 =

⋂
g∈G>0

g−1G>0. It allows us to reduce our problem to
the problem of understanding certain subsets of some unipotent groups. Using the
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parametrization of the totally positive part of the flag varieties (see [MR]), we will
give an explicit description of the subsets of G (see 3.7). Thus our main theorem
can be proved.

1. Preliminaries

1.1. We will often identify a real algebraic variety with the set of its R-rational
points. Let G be a connected semisimple adjoint algebraic group defined and split
over R, with a fixed épinglage (T,B+, B−, xi, yi; i ∈ I) (see [L1, 1.1]). Let U+, U−

be the unipotent radicals ofB+, B−. LetX (resp. Y ) be the free abelian group of all
homomorphism of algebraic groups T → R∗ (resp. R∗ → T ) and 〈, 〉 : Y ×X → Z
be the standard pairing. We write the operation in these groups as addition. For
i ∈ I, let αi ∈ X be the simple root such that txi(a)t−1 = xi(a)αi(t) for all
a ∈ R, t ∈ T and let α∨i ∈ Y be the simple coroot corresponding to αi. For any
root α, we denote by Uα the root subgroup corresponding to α.

There is a unique isomorphism ψ : G ∼−→ Gopp (the opposite group struc-
ture) such that ψ

(
xi(a)

)
= yi(a), ψ

(
yi(a)

)
= xi(a) for all i ∈ I, a ∈ R and

ψ(t) = t, for all t ∈ T .
If P is a subgroup of G and g ∈ G, we write gP instead of gPg−1.
For any algebraic group H , we denote the Lie algebra of H by Lie(H) and the

center of H by Z(H).
For any variety X and an automorphism σ of X , we denote the fixed point set

of σ on X by Xσ.
For any group, We will write 1 for the identity element of the group.
For any finite set X , we will write |X | for the cardinal of X .

1.2. Let N(T ) be the normalizer of T in G and ṡi = xi(−1)yi(1)xi(−1) ∈ N(T ) for
i ∈ I. Set W = N(T )/T and si to be the image of ṡi in W . Then W together with
(si)i∈I is a Coxeter group.

Define an expression for w ∈ W to be a sequence w = (w(0), w(1), . . . , w(n)) in
W , such that w(0) = 1, w(n) = w and for any j = 1, 2, . . . , n, w−1

(j−1)w(j) = 1 or
si for some i ∈ I. An expression w = (w(0), w(1), . . . , w(n)) is called reduced if
w(j−1) < w(j) for all j = 1, 2, . . . , n. In this case, we will set l(w) = n. It is known
that l(w) is independent of the choice of the reduced expression. Note that if w is
a reduced expression of w, then for all j = 1, 2, . . . , n, w−1

(j−1)w(j) = sij for some
ij ∈ I. Sometimes we will simply say that si1si2 · · · sin is a reduced expression of
w.

For w ∈ W , set ẇ = ˙si1 ˙si1 · · · ˙sin where si1si2 · · · sin is a reduced expression of
w. It is well known that ẇ is independent of the choice of the reduced expression
si1si2 · · · sin of w.

Assume that w = (w(0), w(1), . . . , w(n)) is a reduced expression of w and w(j) =
w(j−1)sij for all j = 1, 2, . . . , n. Suppose that v 6 w for the standard partial order
in W . Then there is a unique sequence v+ = (v(0), v(1), . . . , v(n)) such that v(0) =
1, v(n) = v, v(j) ∈ {v(j−1), v(j−1)sij} and v(j−1) < v(j−1)sij for all j = 1, 2, . . . , n
(see [MR, 3.5]). v+ is called the positive subexpression of w. We define

J+
v+

= {j ∈ {1, 2, . . . , n} | v(j−1) < v(j)},
J◦v+

= {j ∈ {1, 2, . . . , n} | v(j−1) = v(j)}.

Then by the definition of v+, we have {1, 2, . . . , n} = J+
v+
t J◦v+

.
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1.3. Let B be the variety of all Borel subgroups of G. For B,B′ in B, there is
a unique w ∈ W , such that (B,B′) is in the G-orbit on B × B (diagonal action)
that contains (B+,ẇ B+). Then we write pos(B,B′) = w. By the definition of pos,
pos(B,B′) = pos(gB,g B′) for any B,B′ ∈ B and g ∈ G.

For any subset J of I, let WJ be the subgroup of W generated by {sj | j ∈ J}
and let wJ0 be the unique element of maximal length in WJ . (We will simply
write wI0 as w0.) We denote by PJ the subgroup of G generated by B+ and by
{yj(a) | j ∈ J, a ∈ R} and denote by PJ the variety of all parabolic subgroups of
G conjugated to PJ . It is easy to see that for any parabolic subgroup P , P ∈ PJ
if and only if {pos(B1, B2) | B1, B2 are Borel subgroups of P} = WJ .

1.4. For any parabolic subgroup P of G, define UP to be the unipotent radical of P
and HP to be the inverse image of the connected center of P/UP under P → P/UP .
If B is a Borel subgroup of G, then so is

PB = (P ∩B)UP .

It is easy to see that for any g ∈ HP , we have g(PB) = PB. Moreover, PB is
the unique Borel subgroup B′ in P such that pos(B,B′) ∈ W J , where W J is the
set of minimal length coset representatives of W/WJ (see [L5, 3.2(a)]).

Let P,Q be parabolic subgroups of G. We say that P,Q are opposed if their
intersection is a common Levi of P,Q. (We then write P ./ Q.) It is easy to
see that if P ./ Q, then for any Borel subgroup B of P and B′ of Q, we have
pos(B,B′) ∈ WJw0.

For any subset J of I, define J∗ ⊂ I by {Q | Q ./ P for some P ∈ PJ} = PJ∗ .
Then we have (J∗)∗ = J . Let QJ be the subgroup of G generated by B− and by
{xj(a) | j ∈ J, a ∈ R}. We have QJ ∈ PJ

∗
and PJ ./ QJ . Moreover, for any

P ∈ PJ , we have P =g PJ for some g ∈ G. Thus ψ(P ) =ψ(g)−1
QJ ∈ PJ

∗
.

1.5. Recall the following definitions from [L1].
For any w ∈ W , assume that w = si1si2 · · · sin is a reduced expression of w.

Define φ± : Rn>0 → U± by

φ+(a1, a2, . . . , an) = xi1(a1)xi2 (a2) · · ·xin(an),

φ−(a1, a2, . . . , an) = yi1(a1)yi2(a2) · · · yin(an).

Let U±w,>0 = φ±(Rn>0) ⊂ U±, U±w,>0 = φ±(Rn>0) ⊂ U±. Then U±w,>0 and U±w,>0

are independent of the choice of the reduced expression of w. We will simply write
U±w0,>0 as U±>0 and U±w0,>0 as U±>0.
T>0 is the submonoid of T generated by the elements χ(a) for χ ∈ Y and

a ∈ R>0.
G>0 is the submonoid U+

>0T>0U
−
>0 = U−>0T>0U

+
>0 of G.

G>0 is the submonoid U+
>0T>0U

−
>0 = U−>0T>0U

+
>0 of G>0.

B>0 is the subset {uB− | u ∈ U+
>0} = {uB+ | u ∈ U−>0} of B and B>0 is the

closure of B>0 in the manifold B.
For any subset J of I, PJ>0 = {P ∈ PJ | ∃B ∈ B>0, such that B ⊂ P} and

PJ>0 = {P ∈ PJ | ∃B ∈ B>0, such that B ⊂ P} are subsets of PJ .

1.6. For any w,w′ ∈W , define

Rw,w′ = {B ∈ B | pos(B+, B) = w′, pos(B−, B) = w0w}.
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It is known that Rw,w′ is nonempty if and only if w 6 w′ for the standard partial
order in W (see [KL]). Now set

Rw,w′,>0 = B>0 ∩Rw,w′ .
Then Rw,w′,>0 is a connected component of Rw,w′ and is a semi-algebraic cell (see
[R2, 2.8]). Furthermore, B =

⊔
w6w′Rw,w′ and B>0 =

⊔
w6w′ Rw,w′,>0. Moreover,

for any u ∈ U+
w−1,>0, we have uRw,w′,>0 ⊂ R1,w′,>0 (see [R2, 2.2]).

Let J be a subset of I. Define πJ : B → PJ to be the map which sends a Borel
subgroup to the unique parabolic subgroup in PJ that contains the Borel subgroup.
For any w,w′ ∈ W such that w 6 w′ and w′ ∈ W J , set PJw,w′ = πJ (Rw,w′) and
PJw,w′,>0 = πJ (Rw,w′,>0). We have PJ>0 =

⊔
w6w′,w′∈WJ PJw,w′,>0 and πJ |Rw,w′,>0

maps Rw,w′,>0 bijectively onto PJw,w′,>0 (see [R1, Chapter 4, 3.2]). Hence, for any
u ∈ U+

w−1,>0, we have uPJw,w′,>0 = πJ(uRw,w′,>0) ⊂ πJ (PJ1,w′,>0).

1.7. Define πT : B−B+ → T by πT (utu′) = t for u ∈ U−, t ∈ T, u′ ∈ U+. Then for
b1 ∈ B−, b2 ∈ B−B+, b3 ∈ B+, we have πT (b1b2b3) = πT (b1)πT (b2)πT (b3).

Let J be a subset of I. We denote by Φ+
J the set of roots that are a linear

combination of {αj | j ∈ J} with nonnegative coefficients. We will simply write Φ+
I

as Φ+ and we will call a root α positive if α ∈ Φ+. In this case, we will simply write
α > 0. Define U+

J to be the subgroup of U+ generated by {Uα | α ∈ Φ+
J } and ′U+

J to
be the subgroup of U+ generated by {Uα | α ∈ Φ+−Φ+

J }. Then U−×T×′U+
J ×U

+
J

is isomorphic to B−B+ via (u, t, u1, u2) 7→ utu1u2. Now define πU+
J

: B−B+ → U+
J

by πU+
J

(utu1u2) = u2 for u ∈ U−, t ∈ T, u1 ∈′ U+
J and u2 ∈ U+

J . (We will simply
write πU+

I
as πU+ .) Note that U−T · U−T ′U+

J = U−T ′U+
J . Thus it is easy to see

that for any a, b ∈ G such that a, ab ∈ B−B+, we have πU+
J

(ab) = πU+
J

(πU+(a)b).
Since ′U+

J is a normal subgroup of U+, πU+
J
|U+ is a homomorphism of U+ onto

U+
J . Moreover, we have

πU+
J

(
xi(a)

)
=

{
xi(a), if i ∈ J ;
1, otherwise.

Thus πU+
J

(U+
>0) = U+

wJ0 ,>0
and πU+

J
(U+
>0) = U+

wJ0 ,>0
.

Let U−J be the subgroup of U− generated by {U−α | α ∈ Φ+
J } and ′U−J to

be the subgroup of U− generated by {U−α | α ∈ Φ+ − Φ+
J }. Then we define

πU−J
: U− → U−J by πU−J (u1u2) = u1 for u1 ∈ U−J , u2 ∈′ U−J . (We will simply write

πU−I
as πU− .) We have πU−J (U−>0) = U−

wJ0 ,>0
and πU−J

(U−>0) = U−
wJ0 ,>0

.

1.8. For any vector space V and a nonzero element v of V , we denote the image of
v in P (V ) by [v].

If (V, ρ) is a representation of G, we denote by (V ∗, ρ∗) the dual representation
of G. Then we have the standard isomorphism StV : V ⊗V ∗ '−→ End(V ) defined by
StV (v⊗ v∗)(v′) = v∗(v′)v for all v, v′ ∈ V, v∗ ∈ V ∗. Now we have the G×G action
on V ⊗ V ∗ by (g1, g2) · (v ⊗ v∗) = (g1v) ⊗ (g2v

∗) for all g1, g2 ∈ G, v ∈ V, v∗ ∈ V ∗
and the G×G action on End(V ) by

(
(g1, g2) · f

)
(v) = g1

(
f(g−1

2 v)
)

for all g1, g2 ∈
G, f ∈ End(V ), v ∈ V . The standard isomorphism between V ⊗ V ∗ and End(V )
commutes with the G × G action. We will identify End(V ) with V ⊗ V ∗ via the
standard isomorphism.
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2. The strata of the De Concini-Procesi Compactification

2.1. Let VG be the projective variety whose points are the dim(G)-dimensional Lie
subalgebras of Lie(G×G). For any subset J of I, define

ZJ = {(P,Q, γ) | P ∈ PJ , Q ∈ PJ∗ , γ = HP gUQ, P ./g Q}

with the G×G action by (g1, g2) ·(P,Q,HP gUQ) =
(
g1P,g2 Q,Hg1P (g1gg

−1
2 )Ug2Q

)
.

For (P,Q, γ) ∈ ZJ and g ∈ γ, we set

HP,Q,γ = {(l+ u1,Ad(g−1)l + u2) | l ∈ Lie(P ∩ gQ), u1 ∈ Lie(UP ), u2 ∈ Lie(UQ)}.

Then HP,Q,γ is independent of the choice of g (see [L6, 12.2]) and is an element
of VG (see [L6, 12.1]). Moreover, (P,Q, γ) → HP,Q,γ is an embedding of ZJ ⊂ VG
(see [L6, 12.2]). We will identify ZJ with the subvariety of VG defined above. Then
we have Ḡ =

⊔
J⊂I ZJ , where Ḡ is the De Concini-Procesi compactification of G

(see [L6, 12.3]). We will call {ZJ | J ⊂ I} the strata of Ḡ and ZI (resp. Z∅) the
highest (resp. lowest) stratum of Ḡ. It is easy to see that ZI is isomorphic to G
and Z∅ is isomorphic to B × B.

Set z◦J = (PJ , QJ , HPJUQJ ). Then z◦J ∈ ZJ (see 1.4) and ZJ = (G×G) · z◦J .
Since G is adjoint, we have an isomorphism χ : T '−→ (R∗)I defined by χ(t) =(

αi(t)−1
)
i∈I . We denote the closure of T in Ḡ by T̄ . We have HPJ ,QJ ,HPJUQJ

=
{(l + u1, l + u2) | l ∈ Lie(PJ ∩ QJ), u1 ∈ UPJ , u2 ∈ UQJ }. Moreover, for any
t ∈ Z(PJ ∩ QJ), Ht is the subspace of Lie(G) × Lie(G) spanned by the elements
(l, l), (u1,Ad(t−1)u1), (Ad(t)u2, u2), where l ∈ Lie(PJ ∩ QJ), u1 ∈ UPJ , u2 ∈ UQJ .
Thus it is easy to see that z◦J = lim tj=1,∀j∈J

tj→0,∀j /∈J
χ−1

(
(ti)i∈I

)
∈ T̄ .

Proposition 2.2. The automorphism ψ of the variety G (see 1.1) can be ex-
tended in a unique way to an automorphism ψ̄ of Ḡ. Moreover, ψ̄(P,Q, γ) =(
ψ(Q), ψ(P ), ψ(γ)

)
∈ ZJ for J ⊂ I and (P,Q, γ) ∈ ZJ .

Proof. The map ψ : G → G induces a bijective map ψ : Lie(G) → Lie(G). More-
over, we have ψ(Ad(g)v) = Ad

(
ψ(g)−1

)
ψ(v) and ψ(v + v′) = ψ(v) + ψ(v′) for

g ∈ G, v, v′ ∈ Lie(G). Now define δ : Lie(G) × Lie(G) → Lie(G) × Lie(G) by
δ(v, v′) =

(
ψ(v′), ψ(v)

)
for v, v′ ∈ Lie(G). Then δ induces a bijection ψ̄ : VG → VG.

Note that for any g ∈ G, we have Hg = {(v,Ad(g)v) | v ∈ LieG} and ψ̄(Hg) =
{(Ad(ψ(g)−1)ψ(v), ψ(v)) | v ∈ Lie(G)} = Hψ(g). Thus ψ̄ is an extension of the
automorphism ψ of G into VG.

Now for any (P,Q, γ) ∈ ZJ and g ∈ γ, we have ψ(P ) ∈ PJ∗ , ψ(Q) ∈ PJ and
ψ(Q) ./ψ(g) ψ(P ) (see 1.4). Thus

(
ψ(Q), ψ(P ), ψ(γ)

)
∈ ZJ . Moreover,

ψ̄(HP,Q,γ) = {(Ad(ψ(g))ψ(l) + ψ(u2), ψ(l) + ψ(u1)) | l ∈ Lie(P ∩ gQ),

u1 ∈ Lie(UP ), u2 ∈ Lie(UQ)}
= {(l + u2,Ad(ψ(g)−1)l + u1) | l ∈ Lie(ψ(Q) ∩ψ(g) ψ(P )),

u1 ∈ Lie(ψ(UP )), u2 ∈ Lie(ψ(UQ))}
= Hψ(Q),ψ(P ),ψ(γ).

Thus ψ̄ |Ḡ is an automorphism of Ḡ. Moreover, since Ḡ is the closure of G, ψ̄ |Ḡ
is the unique automorphism of Ḡ that extends the automorphism ψ of G.

The proposition is proved. �
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2.3. For any λ ∈ X , set supp(λ) = {i ∈ I | 〈α∨i , λ〉 6= 0}.
In the rest of the section, I will fix a subset J of I and λ1, λ2 ∈ X+ with

supp(λ1) = I − J, supp(λ2) = J . Let (Vλ1 , ρ1) (resp. (Vλ2 , ρ2)) be the irreducible
representation of G with the highest weight λ1 (resp. λ2). Assume that dimVλ1 =
n1, dimVλ2 = n2 and {v1, v2, . . . , vn1} (resp. {v′1, v′2, . . . , v′n2

}) is the canonical
basis of (Vλ1 , ρ1) (resp. (Vλ2 , ρ2)), where v1 and v′1 are the highest weight vectors.
Moreover, after reordering {2, 3, . . . , n2}, we could assume that there exists some
integer n0 ∈ {1, 2, . . . , n2} such that for any i ∈ {1, 2, . . . , n2}, the weight of v′i is of
the form λ2 −

∑
j∈J ajαj if and only if i 6 n0.

Define iJ : G → P
(
End(Vλ1 )

)
× P

(
End(Vλ2 )

)
by iJ(g) =

(
[ρ1(g)], [ρ2(g)]

)
.

Then since λ1 + λ2 is a dominant and regular weight, the closure of the image of
iJ in P

(
End(Vλ1)

)
× P

(
End(Vλ2 )

)
is isomorphic to the De Concini-Procesi com-

pactification of G (See [DP, 4.1]). We will use iJ as the embedding of Ḡ into
P
(
End(Vλ1 )

)
× P

(
End(Vλ2 )

)
. We will also identify Ḡ with its image under iJ .

2.4. Now with respect to the canonical basis of Vλ1 and Vλ2 , we will identify
End(Vλ1 ) with gl(n1) and End(Vλ2) with gl(n2). Thus we will regard ρ1(g), ρ∗1(g) as
n1×n1 matrices and ρ2(g), ρ∗2(g) as n2×n2 matrices. It is easy to see that (in terms
of matrices) for any g ∈ G, ρ∗1(g) =t ρ1(g−1) and ρ∗2(g) =t ρ2(g−1), where tM is
the transpose of the matrix M . Now for any g1, g2 ∈ G, M1 ∈ gl(n1), M2 ∈ gl(n2),
(g1, g2) ·M1 = ρ1(g1)M1ρ1(g−1

2 ) and (g1, g2) ·M2 = ρ2(g1)M2ρ2(g−1
2 ).

Set L = PJ ∩ QJ . Then L is a reductive algebraic group with the épinglage
(T,B+ ∩ L,B− ∩ L, xj, yj ; j ∈ J). Now let VL be the subspace of Vλ2 spanned by
{v′1, v′2, . . . , v′n0

} and IL = (aij) ∈ gl(n2), where

aij =

{
1, if i = j ∈ {1, 2, . . . , n0};
0, otherwise.

Then VL is an irreducible representation of L with the highest weight λ2 and
canonical basis {v′1, v′2, . . . , v′n0

}. Moreover, λ2 is a dominant and regular weight
for L. Now set I1 = diag(1, 0, 0, . . . , 0) ∈ gl(n1), I2 = diag(1, 0, 0, . . . , 0) ∈ gl(n2).
Then

iJ(z◦J) = lim
tj=1,∀j∈J
tj→0,∀j /∈J

iJ

(
χ−1

(
(ti)i∈I

))
=
(

[v1 ⊗ v∗1 ], [
n0∑
i=1

v′i ⊗ v′i
∗]
)

=
(

[I1], [IL]
)
,

where {v1
∗, v2

∗, . . . , vn1
∗} (resp. {v′1

∗
, v′2
∗
, . . . , v′n2

∗}) is the dual basis in (Vλ1 )∗

(resp. (Vλ2 )∗).

2.5. Recall that supp(λ1) = I − J . Thus for any P ∈ PJ , there is a unique
P -stable line Lρ1(P ) in (Vλ1 , ρ1) and P 7→ Lρ1(P ) is an embedding of PJ into
P (Vλ1). Similarly, for any Q ∈ PJ∗ , there is a unique Q-stable line Lρ∗1(Q) in
(V ∗λ1

, ρ∗1) and Q 7→ Lρ∗1(Q) is an embedding of PJ∗ into P (V ∗λ1
). It is easy to see

Lρ1(PJ ) = [v1], Lρ∗1(QJ ) = [v1
∗] and Lρ1(gP ) = ρ1(g)Lρ1(P ), Lρ∗1(gQ) = ρ∗1(g)Lρ∗1(Q)

for P ∈ PJ , Q ∈ PJ∗ , g ∈ G.
There are projections p1 : P

(
End(Vλ1)

)
× P

(
End(Vλ2)

)
→ P

(
End(Vλ1 )

)
and

p2 : P
(
End(Vλ1 )

)
× P

(
End(Vλ2)

)
→ P

(
End(Vλ2 )

)
. It is easy to see that p1 |ZJ ,

p2 |ZJ commute with the G×G action and p1(z◦J) = [v1⊗v1
∗] = [Lρ1(PJ )⊗Lρ∗1(QJ )].
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Now for any g1, g2 ∈ G, we have

p1

(
(g1, g2) · z◦J

)
= [ρ1(g1)Lρ1(PJ ) ⊗ ρ∗1(g2)Lρ∗1(QJ )] = [Lρ1(g1P ) ⊗ Lρ∗1(g2Q)].

In other words, p1(z) = [Lρ1(P ) ⊗ Lρ∗1(Q)] for z = (P,Q, γ) ∈ ZJ .

2.6. Let G>0 be the closure of G>0 in Ḡ. Then G>0 is also the closure of G>0 in
Ḡ. We have z◦J ∈ G>0 (see 2.1). Now set

ZJ,>0 = ZJ ∩G>0,

ZJ,>0 = {(g1, g
−1
2 ) · z◦J | g1, g2 ∈ G>0}.

Since ψ(G>0) = G>0, we have ψ̄(G>0) = G>0. Moreover, ψ̄(ZJ) = ZJ (see 2.2).
Therefore ψ̄(ZJ,>0) = ZJ,>0. Similarly, (g1, g

−1
2 ) · ZJ,>0 ⊂ ZJ,>0 for any g1, g2 ∈

G>0. Thus ZJ,>0 ⊂ ZJ,>0. Moreover, it is easy to see that ψ̄(ZJ,>0) = ZJ,>0.
Note that for any u1, u4 ∈ U−>0, u2, u3 ∈ U+

>0, t, t
′ ∈ T>0, we have

(u1u2t, u
−1
3 u−1

4 t′) · z◦J = (u1u2, u
−1
3 u−1

4 ) · (PJ , QJ , HPJ tt
′UQJ )

= (u1, u
−1
3 ) ·

(
PJ , QJ , HPJπU+

J
(u2)tt′πU−J (u4)UQJ

)
.

Thus

ZJ,>0 = {(u1, u
−1
2 ) · (PJ , QJ , HPJ lUQJ ) | u1 ∈ U−>0, u2 ∈ U+

>0, l ∈ L>0}

= {(u′1t, u′2
−1) · z◦J | u′1 ∈ U−>0, u

′
2 ∈ U+

>0, t ∈ T>0}.
Moreover, for any u1, u

′
1 ∈ U−, u2, u

′
2 ∈ U+ and t, t′ ∈ T , it is easy to see that

(u1t, u2) · z◦J = (u′1t
′, u′2) · z◦J if and only if (u1t)−1u′1t

′ ∈ lHPJ

⋂
B− ⊂ lZ(L) and

u−1
2 u′2 ∈ l−1HQJ

⋂
U+ ⊂ lZ(L) for some l ∈ L , that is, l ∈ Z(L), u1 = u′1, u2 = u′2

and t ∈ t′Z(L). Thus, ZJ,>0
∼= U−>0 × U+

>0 × T>0/
(
T>0

⋂
Z(L)

) ∼= R
2l(w0)+|J|
>0 .

Now I will prove a criterion for ZJ,>0.

Theorem 2.7. Assume that G is simply-laced. Let z ∈ ZJ,>0. Then z ∈ ZJ,>0 if
and only if z satisfies the condition:

(*) iJ(z) =
(

[M1], [M2]
)

and iJ
(
ψ̄(z)

)
=
(

[M3], [M4]
)

for some matrices
M1,M3 ∈ gl(n1) and M2,M4 ∈ gl(n2) with all the entries in R>0.

Proof. If z ∈ ZJ,>0, then z = (g1, g
−1
2 ) · z◦J , for some g1, g2 ∈ G>0. Assume that

g1 · v1 =
∑n1
i=1 aivi and g−1

2 · v∗1 =
∑n1

i=1 biv
∗
i . Then for any i = 1, 2, . . . , n1,

ai, bi > 0. Set aij = aibj. Then p1(z) = [ρ1(g1)I1ρ1(g2)] = [(aij)] is a matrix with
all the entries in R>0.

We have p2(z) = [ρ2(g1)ILρ2(g2)] = [ρ2(g1)I2ρ2(g2) + ρ2(g1)(IL − I2)ρ2(g2)].
Note that ρ2(g1)I2ρ2(g2) is a matrix with all the entries in R>0 and ρ2(g1), ρ2(g2),
(IL − I2) are matrices with all the entries in R>0. Thus ρ2(g1)(IL − I2)ρ2(g2) is a
matrix with all its entries in R>0. So ρ2(g1)ILρ2(g2) is a matrix with all the entries
in R>0.

Similarly, iJ
(
ψ̄(z)

)
=
(

[M3], [M4]
)

for some matrices M3,M4 with all their
entries in R>0.

On the other hand, assume that z satisfies the condition (*). Suppose that
z = (P,Q, γ) and Lρ1(P ) = [

∑n1
i=1 aivi], Lρ∗1(Q) = [

∑n1
i=1 biv

∗
i ]. We may also assume

that ai0 = bi1 = 1 for some integers i0, i1 ∈ {1, 2, . . . , n1}.
Set M = (aij) ∈ gL(n1), where aij = aibj for i, j ∈ {1, 2, . . . , n1}. Then

p1(z) = [Lρ1(P )⊗Lρ∗1(Q)] = [M ]. By the condition (*) and since ai0,i1 = ai0bi1 = 1,
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we have that M is a matrix with all its entries in R>0. In particular, for any
i ∈ {1, 2, . . . , n1}, ai,i1 = ai > 0. Therefore Lρ1(P ) = [

∑n1
i=1 aivi], where ai > 0

for all i ∈ {1, 2, . . . , n1}. By [R1, 5.1] (see also [L3, 3.4]), P ∈ PJ>0. Similarly,
ψ(Q) ∈ PJ>0. Thus there exist u1 ∈ U−>0, u2 ∈ U+

>0 and l ∈ L, such that z =
(u1, u

−1
2 ) · (PJ , QJ , HPJ lUQJ ).

We can express u1, u2 in a unique way as u1 = u′1u
′′
1 , for some u′1 ∈′ U−J , u′′1 ∈ U−J

and u2 = u′′2u
′
2, for some u′2 ∈′ U+

J , u′′2 ∈ U+
J (see 1.7).

Recall that VL is the subspace of Vλ2 spanned by {v′1, v′2, . . . , v′n0
}. Let V ′L be

the subspace of Vλ2 spanned by {v′n0+1, v
′
n0+2, . . . , v

′
n2
}. Then u · v − v ∈ V ′L and

u · V ′L ⊂ V ′L, for all v ∈ VL, α /∈ Φ+
J and u ∈ U−α. Thus u · v − v ∈ V ′L and

u · V ′L ⊂ V ′L, for all v ∈ VL and u ∈′ U−J .
Similarly, let V ∗L be the subspace of V ∗λ2

spanned by {v′1
∗
, v′2
∗
, . . . , v′n0

∗} and
V ′L
∗ be the subspace of V ∗λ2

spanned by {v′n0+1
∗
, v′n0+2

∗
, . . . , v′n2

∗}. Then for any
v∗ ∈ V ∗L and u ∈′ U+

J , we have u · v − v ∈ V ′L
∗ and uV ′L

∗ ⊂ V ′L
∗.

We define a map πL : gl(n2)→ gl(n0) by

πL
(
(aij)i,j∈{1,2,...,n2}

)
= (aij)i,j∈{1,2,...,n0}.

Then for any u ∈′ U−J , u′ ∈′ U
+
J and M ∈ gl(n2), we have πL

(
(u, u′) ·M

)
=

πL(M). Set M2 = ρ2(u1l)ILρ2(u2) and l′ = u′′1 lu
′′
2 ∈ L. Then

πL(M2) = πL

(
(u1, u

−1
2 ) ·

(
ρ2(l)IL

))
= πL

(
(u′1, u

′
2
−1) ·

(
(u′′1 , u

′′
2
−1) ·

(
ρ2(l)IL

)))
= πL

(
(u′′1 , u

′′
2
−1) ·

(
ρ2(l)IL

))
= πL

(
ρ2(l′)IL

)
= ρL(l′).

Since p2(z) = [M2], M2 is a matrix with all its entries nonzero. Therefore
ρL(l′) = πL(M2) is a matrix with all its entries nonzero. Thus l′ = l1t1l2, for some
l1 ∈ U− ∩ L, l2 ∈ U+ ∩ L, t1 ∈ T .

Set ũ1 = u′1l1 and ũ2 = u′2l2. Then ũ1PJ =u1(u′′1
−1l1) PJ =u1 PJ . Similarly, we

have ũ2
−1
QJ =u−1

2 QJ . So z = (ũ1, ũ2
−1) · (PJ , QJ , HPJ t1UQJ ).

Now for any i0, j0 ∈ {1, 2, . . . , n1}, define a map π1
i0,j0 : gl(n1)→ R by

π1
i0,j0

(
(aij)i,j∈{1,2,...,n1}

)
= ai0,j0

and for any i0, j0 ∈ {1, 2, . . . , n2}, define a map π2
i0,j0 : gl(n2)→ R by

π2
i0,j0

(
(aij)i,j∈{1,2,...,n2}

)
= ai0,j0 .

Now z = (ũ1t1, ũ2
−1) · z◦J and ψ̄(z) =

(
ψ(ũ2)t1, ψ(ũ1)−1

)
· z◦J .

Set

M̃1 = ρ1(ũ1t1)I1ρ1(ũ2), M̃3 = ρ1

(
ψ(ũ2)t1

)
I1ρ1

(
ψ(ũ1)

)
,

M̃2 = ρ2(ũ1t1)ILρ2(ũ2), M̃4 = ρ2

(
ψ(ũ2)t1

)
I1ρ2

(
ψ(ũ1)

)
.

We have ũ1 · v1 =
∑n1
i=1

π1
i,1(M̃1)

π1
1,1(M̃1)

vi and ψ(ũ2) · v1 =
∑n1

i=1

π1
i,1(M̃3)

π1
1,1(M̃3)

vi.

Moreover, let V0 be the subspace of Vλ2 spanned by {v′2, v′3, . . . , v′n2
} and V0

∗ be
the subspace of V ∗λ2

spanned by {v′2
∗
, v′3
∗
, . . . , v′n2

∗}. Then we have u · V0 ⊂ V0, for
all u ∈ U− and u′ · V ∗0 ⊂ V ∗0 , for all u′ ∈ U+.
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Thus for all i = 1, 2, . . . , n2,

π2
i,1(M2) = π2

i,1

(
ρ2(ũ1t1)I2ρ2(ũ2)

)
+ π2

i,1

(
ρ2(ũ1t1)(IL − I2)ρ2(ũ2)

)
= π2

i,1

(
ρ2(ũ1t1)I2ρ2(ũ2)

)
.

So ũ1 · v′1 =
∑n2
i=1

π2
i,1(M̃2)

π2
1,1(M̃2)

v′i and ψ(ũ2) · v′1 =
∑n2
i=1

π2
i,1(M̃4)

π2
1,1(M̃4)

v′i. By [L2, 5.4], we

have ũ1, ψ(ũ2) ∈ U−>0. Therefore to prove that z ∈ ZJ,>0, it is enough to prove that
t1 ∈ T>0Z(L), where Z(L) is the center of L.

For any g ∈ (U−, U+) · T̄ , g can be expressed in a unique way as g = (u1, u2) · t,
for some u1 ∈ U−, u2 ∈ U+, t ∈ T̄ . Now define πT̄ : (U−, U+) · T̄ → T̄ by
πT̄
(
(u1, u2) · t

)
= t for all u1 ∈ U−, u2 ∈ U+, t ∈ T̄ . Note that (U−, U+) · T̄ ∩G>0

is the closure of G>0 in (U−, U+) · T̄ . Then πT̄
(
(U−, U+) · T̄ ∩G>0

)
is contained

in the closure of T>0 in T̄ . In particular, πT̄ (z) = t1tJ is contained in the closure
of T>0 in T̄ . Therefore for any j ∈ J , αj(t1) > 0. Now let t2 be the unique element
in T such that

αj(t2) =

{
αj(t1), if j ∈ J ;
αj(t1)2, if j /∈ J.

Then t2 ∈ T>0 and t−1
2 t1 ∈ Z(L). The theorem is proved. �

Remark. Theorem 2.7 is analogous to the following statement in [L4, 5.4]: Assume
that G is simply laced and V is the irreducible representation of G with the highest
weight λ, where λ is a dominant and regular weight of G. For any g ∈ G, let M(g)
be the matrix of g : V → V with respect to the canonical basis of V . Then for any
g ∈ G, g ∈ G>0 if and only if M(g) and M

(
ψ(g)

)
are matrices with all the entries

in R>0.

2.8. Before proving Corollary 2.9, I will introduce some technical tools.
SinceG is adjoint, there exists (in an essentially unique way) G̃ with the épinglage

(T̃ , B̃+, B̃−, x̃ĩ, ỹĩ; ĩ ∈ Ĩ) and an automorphism σ : G̃ → G̃ (over R) such that the
following conditions are satisfied.

(a) G̃ is connected semisimple adjoint algebraic group defined and split over R.
(b) G̃ is simply laced.
(c) σ preserves the épinglage, that is, σ(T̃ ) = T̃ and there exists a permutation

ĩ → σ(̃i) of Ĩ, such that σ
(
x̃ĩ(a)

)
= x̃σ(̃i)(a), σ

(
ỹĩ(a)

)
= ỹσ(̃i)(a) for all ĩ ∈ Ĩ and

a ∈ R.
(d) If ĩ1 6= ĩ2 are in the same orbit of σ : Ĩ → Ĩ, then ĩ1, ĩ2 do not form an edge

of the Coxeter graph.
(e) ĩ and σ(̃i) are in the same connected component of the Coxeter graph, for

any ĩ ∈ Ĩ .
(f) There exists an isomorphism φ : G̃σ → G (as algebraic groups over R) which

is compatible with the épinglage of G and the épinglage (T̃ σ, B̃+σ, B̃−σ, x̃p, ỹp; p ∈
Ī) of G̃σ, where Ī is the set of orbit of σ : Ĩ → Ĩ and x̃p(a) =

∏
ĩ∈p x̃ĩ(a), ỹp(a) =∏

ĩ∈p ỹĩ(a) for all p ∈ Ī and a ∈ R.
Let λ be a dominant and regular weight of G̃ and (V, ρ) be the irreducible

representation of G̃ with highest weight λ. Let G̃ be the closure of {[ρ(g̃)] | g̃ ∈ G̃}
in P

(
End(V )

)
and G̃σ be the closure of {[ρ(g̃)] | g̃ ∈ G̃σ} in P

(
End(V )

)
. Then since

λ is a dominant and regular weight of G̃ and λ |T̃σ is a dominant and regular weight
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of G̃σ, we have that G̃ is the De Concini-Procesi compactification of G̃ and G̃σ is
the De Concini-Procesi compactification of G̃σ. Since G̃ is closed in P

(
End(V )

)
,

G̃σ is the closure of {[ρ(g̃)] | g̃ ∈ G̃σ} in G̃.
We have G̃ =

⊔
J̃⊂Ĩ Z̃J̃ =

⊔
J̃⊂Ĩ(G̃× G̃) · z̃◦

J̃
and G̃σ =

⊔
J̃⊂Ĩ,σJ̃=J̃(G̃σ × G̃σ) · z̃◦

J̃
.

Moreover, σ can be extended in a unique way to an automorphism σ̄ of G̃. Since

G̃
σ̄

=
⊔
J̃⊂Ĩ,σJ̃=J̃ (Z̃J̃)σ̄ is a closed subset of G̃ containing G̃σ, we have G̃σ ⊂⊔

J̃⊂Ĩ,σJ̃=J̃ (Z̃J̃)σ̄.
By the condition (f), there exists a bijection φ between Ī and I, such that

φ
(
x̃p(a)

)
= xφ(p)(a), for all p ∈ Ī , a ∈ R. Moreover, the isomorphism φ from G̃σ to

G can be extended in a unique way to an isomorphism φ̄ : G̃σ → Ḡ. It is easy to
see that for any J̃ ⊂ Ĩ with σJ̃ = J̃ , we have φ̄

(
(G̃σ × G̃σ) · z̃◦

J̃

)
= Zφ◦π(J̃), where

π : Ĩ → Ī is the map sending element of Ĩ into the σ-orbit that contains it.

Corollary 2.9. ZJ,>0 =
⋂
g1,g2∈G>0

(g−1
1 , g2) · ZJ,>0 is the closure of ZJ,>0 in ZJ .

As a consequence, ZJ,>0 and G>0 are contractible.

Proof. I will prove that ZJ,>0 ⊂
⋂
g1,g2∈G>0

(g−1
1 , g2) · ZJ,>0.

First, assume that G is simply laced.
For any g ∈ G>0, iJ(g) =

(
[ρ1(g)], [ρ2(g)]

)
, where ρ1(g) and ρ2(g) are matrices

with all the entries in R>0. Then for any z ∈ ZJ,>0, we have iJ(z) =
(

[M1], [M2]
)

for some matrices with all the entries in R>0. Similarly, iJ
(
ψ̄(z)

)
=
(

[M3], [M4]
)

for some matrices with all their entries in R>0.
Note that for any M ′1,M

′
2,M

′
3 ∈ gl(n) such that M ′1,M

′
3 are matrices with all

their entries in R>0 and M ′2 is a nonzero matrix with all the entries in R>0,
we have that M ′1M ′2M ′3 is a matrix with all the entries in R>0. Thus for any
g1, g2 ∈ G>0, we have that (g1, g

−1
2 ) · z satisfies the condition (*) in 2.7. Moreover,

(g1, g
−1
2 ) · z ∈ ZJ,>0. Therefore by 2.7, (g1, g

−1
2 ) · z ∈ ZJ,>0 for all g1, g2 ∈ G>0.

In the general case, we will keep the notation of 2.8. Since the isomorphism φ :
G̃σ → G is compatible with the épinglages, we have φ

(
(Ũ±>0)σ

)
= U±>0, φ

(
(T̃>0)σ

)
=

T>0 and φ
(
(G̃>0)σ

)
= G>0. Now for any z ∈ ZJ,>0, z is contained in the closure of

G>0 in Ḡ. Thus φ̄−1(z) is contained in the closure of (G̃>0)σ in G̃σ, hence contained
in the closure of (G̃>0)σ in G̃. Therefore, φ̄−1(z) ∈ Z̃J̃,>0, where J̃ = π−1 ◦φ−1(J).

For any g̃1, g̃2 ∈ (G̃>0)σ, we have (g̃1, g̃2
−1) · φ̄−1(z) = (ũ1t̃, ũ2

−1) · z̃◦
J̃

for some

ũ1 ∈ Ũ−>0, ũ2 ∈ Ũ+
>0, t̃ ∈ T̃>0. Since φ̄−1(z) ∈ (G̃)σ̄, we have (g̃1, g̃2

−1) · φ̄−1(z) ∈
(Z̃J̃,>0)σ̄. Then

σ̄
(
(ũ1t̃, ũ2

−1) · z̃◦
J̃

)
=
(
σ(ũ1 t̃), σ(ũ2

−1)
)
· σ̄(z̃◦

J̃
) =

(
σ(ũ1)σ(t̃), σ(ũ2

−1)
)
· z̃◦
J̃

= (ũ1t̃, ũ2
−1) · z̃◦

J̃
.

Thus σ(ũ1) = ũ1 and σ(ũ2) = ũ2. Moreover, (t̃, 1) · z̃◦
J̃

=
(
σ(t̃), 1

)
· z̃◦
J̃
, that is,

α̃j̃(t̃) = α̃j̃
(
σ((t̃)

)
= α̃σ(j̃)(t̃) for all j̃ ∈ J̃ , where {α̃ĩ | ĩ ∈ Ĩ} is the set of simple
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roots of G̃. Let t̃′ be the unique element in T̃ such that

α̃j̃(t̃
′) =

{
α̃j̃(t̃), if j̃ ∈ J̃ ;
1, otherwise .

Then t̃′ ∈ (T̃>0)σ and (t̃, 1) · z̃◦
J̃

= (t̃′, 1) · z̃◦
J̃
. Thus (g̃1, g̃2

−1) · φ̄−1(z) =
(ũ1t̃

′, ũ2
−1) · z̃◦

J̃
. We have

(
φ(g̃1), φ(g̃2)−1

)
· z = φ̄

(
(g̃1, g̃2

−1) · φ̄−1(z)
)

= φ̄
(
(ũ1t̃

′, ũ2
−1) · z̃◦

J̃

)
=
(
φ(ũ1)φ(t̃′), φ(ũ2

−1)
)
· z◦J ∈ ZJ,>0.

Since φ
(
(G̃>0)σ

)
= G>0, we have ZJ,>0 ⊂

⋂
g1,g2∈G>0

(g−1
1 , g2) · ZJ,>0.

Note that (1, 1) is contained in the closure of {(g1, g
−1
2 ) | g1, g2 ∈ G>0}. Hence,

for any z ∈
⋂
g1,g2∈G>0

(g−1
1 , g2) · ZJ,>0, z is contained in the closure of ZJ,>0. On

the other hand, ZJ,>0 is a closed subset in ZJ . ZJ,>0 contains ZJ,>0, hence contains
the closure of ZJ,>0 in ZJ . Therefore, ZJ,>0 =

⋂
g1,g2∈G>0

(g−1
1 , g2) · ZJ,>0 is the

closure of ZJ,>0 in ZJ .
Now set gr = exp

(
r
∑

i∈I(ei+ fi)
)
, where ei and fi are the Chevalley generators

related to our épinglage by xi(1) = exp(ei) and yi(1) = exp(fi). Then gr ∈ G>0 for
r ∈ R>0 (see [L1, 5.9]). Define f : R>0 × ZJ,>0 → ZJ,>0 by f(r, z) = (gr, g−1

r ) · z
for r ∈ R>0 and z ∈ ZJ,>0. Then f(0, z) = z and f(1, z) ∈ ZJ,>0 for all z ∈ ZJ,>0.
Using the fact that ZJ,>0 is a cell (see 2.6), it follows that ZJ,>0 is contractible.

Similarly, define f ′ : R>0×G>0 → G>0 by f ′(r, z) = (gr, g−1
r ) ·z for r ∈ R>0 and

z ∈ G>0. Then f ′(0, z) = z and f ′(1, z) ∈
⊔
K⊂I ZK,>0 for all z ∈ G>0. Note that⊔

K⊂I ZK,>0 =
(
U−>0, (U

+
>0)−1

)
·
⊔
K⊂I(T>0, 1) · z◦K ∼= U−>0 × U+

>0 ×
⊔
K⊂I(T>0, 1) ·

z◦K (see 2.6). Moreover, by [DP, 2.2], we have
⊔
K⊂I(T>0, 1) · z◦K ∼= RI>0. Thus⊔

K⊂I ZK,>0
∼= R

2l(w0)
>0 ×RI>0 is contractible. Therefore G>0 is contractible. �

3. The cell decomposition of ZJ,>0

3.1. For any P ∈ PJ , Q ∈ PJ∗ , B ∈ B and g1 ∈ HP , g2 ∈ UQ, g ∈ G, we have
pos
(
PB,g1gg2 (QB)

)
= pos

(
g−1
1 (PB),gg2 (QB)

)
= pos

(
PB,g (QB)

)
. If moreover,

P ./g Q, then pos
(
PB,g (QB)

)
= ww0 for some w ∈ WJ (see 1.4). Therefore,

for any v, v′ ∈ W , w,w′ ∈ W J and y, y′ ∈ WJ with v 6 w and v′ 6 w′, Lusztig
introduced the subset Zv,w,v

′,w′;y,y′

J and Zv,w,v
′,w′;y,y′

J,>0 of ZJ which are defined as
follows:

Zv,w,v
′,w′;y,y′

J = {(P,Q,HP gUQ) ∈ ZJ | P ∈ PJv,w, ψ(Q) ∈ PJv′,w′ ,

pos
(
PB

+
,g (QB

+
)
)

= yw0, pos
(
PB

−
,g (QB

−
)
)

= y′w0}

and

Zv,w,v
′,w′;y,y′

J,>0 = Zv,w,v
′,w′;y,y′

J ∩ ZJ,>0.
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Then

ZJ =
⊔

v,v′∈W,w,w′∈WJ ,y,y′∈WJ

v6w,v′6w′

Zv,w,v
′,w′;y,y′

J ,

ZJ,>0 =
⊔

v,v′∈W,w,w′∈WJ ,y,y′∈WJ

v6w,v′6w′

Zv,w,v
′,w′;y,y′

J,>0 .

Lusztig conjectured that for any v, v′ ∈ W,w,w′ ∈ W J , y, y′ ∈ WJ such that
v 6 w, v′ 6 w′, Zv,w,v

′,w′;y,y′

J,>0 is either empty or a semi-algebraic cell. If it is

nonempty, then it is also a connected component of Zv,w,v
′,w′;y,y′

J .
In this section, we will prove this conjecture. Moreover, we will show ex-

actly when Zv,w,v
′,w′;y,y′

J,>0 is nonempty and we will give an explicit description of

Zv,w,v
′,w′;y,y′

J,>0 .
First, I will prove some elementary facts about the total positivity of G.

Proposition 3.2.⋂
u∈U±>0

u−1U±>0 =
⋂

u∈U±>0

U±>0u
−1 =

⋂
u∈U±>0

u−1U±>0 =
⋂

u∈U±>0

U±>0u
−1 = U±>0,

⋂
g∈G>0

g−1G>0 =
⋂

g∈G>0

G>0g
−1 =

⋂
g∈G>0

g−1G>0 =
⋂

g∈G>0

G>0g
−1 = G>0.

Proof. I will only prove
⋂
u∈U+

>0
u−1 · U+

>0 = U+
>0. The rest of the equalities could

be proved in the same way.
Note that uu1 ∈ U+

>0 for all u1 ∈ U+
>0, u ∈ U

+
>0. Thus u1 ∈

⋂
u∈U+

>0
u−1 · U+

>0.
On the other hand, assume that u1 ∈

⋂
u∈U+

>0
u−1 · U+

>0. Then uu1 ∈ U+
>0 for all

u ∈ U+
>0. We have u1 = limu∈U+

>0
u→1

uu1 is contained in the closure of U+
>0 in U+,

that is, u1 ∈ U+
>0. So

⋂
u∈U+

>0
u−1 · U+

>0 = U+
>0. �

For any v, v′ ∈ W , w,w′ ∈ W J such that v 6 w, v′ 6 w′, set Zv,w,v
′,w′

J =⊔
y,y′∈WJ

Zv,w,v
′,w′;y,y′

J and Zv,w,v
′,w′

J,>0 =
⊔
y,y′∈WJ

Zv,w,v
′,w′;y,y′

J,>0 . We will give a

characterization of z ∈ Zv,w,v
′,w′

J,>0 in 3.5.

Lemma 3.3. For any w ∈W , u ∈ U−>0, {πU+(u1u) | u1 ∈ U+
w,>0} = U+

w,>0.

Proof. The following identities hold (see [L1, 1.3]):
(a) txi(a) = xi

(
αi(t)a

)
t, tyi(a) = yi

(
αi(t)−1a

)
t for all i ∈ I, t ∈ T, a ∈ R.

(b) yi1(a)xi2 (b) = xi2 (b)yi1(a) for all a, b ∈ R and i1 6= i2 ∈ I.
(c) xi(a)yi(b) = yi( b

1+ab )α
∨
i ( 1

1+ab )xi(
a

1+ab ) for all a, b ∈ R>0, i ∈ I.
Thus U+

w,>0U
−
>0 ⊂ U−>0T>0U

+
w,>0 for w ∈ W . So we only need to prove that

U+
w,>0 ⊂ {πU+(u1u) | u1 ∈ U+

w,>0}. Now I will prove the following statement:

{πU+

(
u1yi(a)

)
| u1 ∈ U+

w,>0} = U+
w,>0 for i ∈ I, a ∈ R>0.

We argue by induction on l(w). It is easy to see that the statement holds for w =
1. Now assume that w 6= 1. Then there exist j ∈ I and w1 ∈ W such that w = sjw1

and l(w1) = l(w)−1. For any u′1 ∈ U+
w,>0, we have u′1 = u′2u

′
3 for some u′2 ∈ U+

sj ,>0
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and u′3 ∈ U+
w1,>0. By induction hypothesis, there exists u3 ∈ U+

w1,>0, u
′ ∈ U− and

t ∈ T such that u3yi(a) = u′tu′3. Since U+
w,>0U

−
si,>0 ⊂ U−si,>0T>0U

+
w,>0, we have

u′ ∈ U−si,>0 and t ∈ T>0.
Now by (a), we have tu′2t−1 ∈ U+

sj ,>0. So by (b) and (c), there exists u2 ∈ U+
sj ,>0

such that πU+(u2u
′) = tu′2t

−1. Thus

πU+

(
u2u3yi(a)

)
= πU+

(
(u2u

′)
(
u′
−1
u3yi(a)

))
= πU+

(
πU+(u2u

′)u′−1
u3yi(a)

)
= πU+(tu′2t

−1tu′3) = πU+(tu′2u
′
3) = u′1.

So u′1 ∈ {πU+(u1yi(a)) | u1 ∈ U+
w,>0}. The statement is proved.

Now assume that u ∈ U−w′,>0. I will prove the lemma by induction on l(w′). It
is easy to see that the lemma holds for w′ = 1. Now assume that w′ 6= 1. Then
there exist i ∈ I and w′1 ∈ W such that l(w′1) = l(w′)− 1 and w′ = siw

′
1. We have

u = yi(a)u′ for some a ∈ R>0 and u′ ∈ U−w′1,>0. So

{πU+(u1u) | u1 ∈ U+
w,>0} = {πU+

(
u1yi(a)u′

)
| u1 ∈ U+

w,>0}

= {πU+

(
πU+

(
u1yi(a)

)
u
)
| u1 ∈ U+

w,>0}

= {πU+(u′1u
′) | u′1 ∈ U+

w,>0}.
By induction hypothesis, we have

{πU+(u1u) | u1 ∈ U+
w,>0} = {πU+(u′1u

′) | u′1 ∈ U+
w,>0} = U+

w,>0.

�

Lemma 3.4. Set Z1
J,>0 = {(g1, g

−1
2 ) · z◦J | g1 ∈ U−>0T>0, g2 ∈ U+

>0}. Then

ZJ,>0 =
⋂

u1∈U+
>0,u

−1
2 ∈U

−
>0

(u−1
1 , u2) · Z1

J,>0.(a)

Z1
J,>0 =

⊔
w1,w2∈WJ

{(u1PJ ,
u−1

2 QJ , u1HPJ lUQJu2) | u1 ∈ U−w1,>0,(b)

u2 ∈ U+
w2,>0, l ∈ L>0}

= {(P,Q, γ) ∈ ZJ,>0 | P =u1 PJ , ψ(Q) =u2 PJ for some u1, u2 ∈ U−>0}.

Proof. (a) By 2.9 and 3.2, we have

ZJ,>0 =
⋂

g1,g2∈G>0

(g−1
1 , g2) · ZJ,>0 =

⋂
t1,t2∈T>0

u1,u2∈U+
>0,u3,u4∈U−>0

(u−1
1 u−1

3 t−1
1 , u4u2t2) · ZJ,>0

=
⋂

u1∈U+
>0,u4∈U−>0

(u−1
1 , u4) ·

⋂
u2∈U+

>0,u3∈U−>0

(u−1
2 , u3) ·

⋂
t1,t2∈T>0

(t−1
1 , t2) · ZJ,>0

=
⋂

u1∈U+
>0,u4∈U−>0

(u−1
1 , u4) ·

⋂
u2∈U+

>0,u3∈U−>0

(u−1
2 , u3) · ZJ,>0

=
⋂

u1∈U+
>0,u4∈U−>0

(u−1
1 , u4) ·

⋂
u2∈U+

>0,u3∈U−>0

(
u−1

2 U−>0T>0, (U+
>0u

−1
3 )−1

)
· z◦J

=
⋂

u1∈U+
>0,u

−1
2 ∈U

−
>0

(u−1
1 , u2) ·

((
U−>0T>0, (U+

>0)−1
)
· z◦J
)
.
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(b) For any u ∈ U−>0, v ∈ U
+
>0, t ∈ T>0, there exist w1, w2 ∈ W J , w3, w4 ∈ WJ ,

such that u = u1u3 for some u1 ∈ U−w1,>0, u3 ∈ U−w3,>0 and v = u4u2 for some
u2 ∈ U+

w2,>0, u4 ∈ U+
w4,>0. Then (ut, v−1) · z◦J = (u1PJ ,

u−1
2 QJ , u1HPJu3tu4UQJu2).

On the other hand, assume that l ∈ L>0, then l = u3tu4 for some u3 ∈ U−>0, u4 ∈
U+
>0, t ∈ T>0. Thus for any u1 ∈ U−>0, u2 ∈ U+

>0, we have

(u1PJ ,
u−1

2 QJ , u1HPJ lUQJu2) = (u1u3t, u
−1
2 u−1

4 ) · z◦J ∈ Z1
J,>0.

Therefore,

Z1
J,>0 =

⊔
w1,w2∈WJ

{(u1PJ ,
u−1

2 QJ , u1HPJ lUQJu2) | u1 ∈ U−w1,>0,

u2 ∈ U+
w2,>0, l ∈ L>0}

⊂ {(P,Q, γ) ∈ ZJ,>0 | P =u1 PJ , ψ(Q) =u2 PJ for some u1, u2 ∈ U−>0}.

Note that {uPJ | u ∈ U−>0} =
⊔
w∈WJ{uPJ | u ∈ U−w,>0}. Now assume that

z =
(
u1PJ ,

ψ(u2)−1
QJ , u1HPJ lUQJψ(u2)

)
for some w1, w2 ∈ W J and u1 ∈ U−w1,>0,

u2 ∈ U−w2,>0, l ∈ L. To prove that z ∈ Z1
J,>0, it is enough to prove that l ∈ L>0Z(L).

By part (a), for any u3, u4 ∈ U+
>0,(

u3, ψ(u4)−1
)
· z =

(
u3u1PJ ,

ψ(u4u2)−1
QJ , u3u1HPJ lUQJψ(u4u2)

)
∈ Z1

J,>0.

Note that u3u1 = u′1t1πU+(u3u1) for some u′1 ∈ U−w1,>0, t1 ∈ T>0 and u4u2 =
u′2t2πU+(u4u2) for some u′2 ∈ U−w2,>0, t2 ∈ T>0. So we have u3u1PJ =u′1 PJ ,
ψ(u4u2)−1

QJ =ψ(u′2)−1
QJ and

u3u1HPJ lUQJψ(u4u2) = u′1t1πU+(u3u1)HPJ lUQJψ
(
πU+(u4u2)

)
t2ψ(u′2)

= u′1HPJ t1πU+
J

(u3u1)lψ
(
πU+

J
(u4u2)

)
t2UQJψ(u′2).

Then t1πU+
J

(u3u1)lψ
(
πU+

J
(u4u2)

)
t2 ∈ L>0Z(L). Since t1, t2 ∈ T>0, we have

πU+
J

(u3u1)lψ
(
πU+

J
(u4u2)

)
∈ L>0Z(L) for all u3, u4 ∈ U+

>0. By 1.8 and 3.3,

πU+
J

(U+
>0u1) = πU+

J

(
πU+(U+

>0u1)
)

= πU+
J

(U+
>0) = U+

wJ0 ,>0
.

Similarly, we have πU+
J

(U+
>0u2) = U+

wJ0 ,>0
. Thus

l ∈
⋂

u3,u4∈U+
wJ0 ,>0

u−1
3 U+

wJ0 ,>0
T>0Z(L)U−

wJ0 ,>0
ψ(u4)−1

= U+
wJ0 ,>0

T>0Z(L)U−
wJ0 ,>0

= L>0Z(L).

The lemma is proved. �

Proposition 3.5. Let z ∈ Zv,w,v
′,w′

J , then z ∈ Zv,w,v
′,w′

J,>0 if and only if for any
u1 ∈ U+

v−1,>0, u2 ∈ U+
v′−1,>0

,
(
u1, ψ(u−1

2 )
)
· z ∈ Z1

J,>0.

Proof. Assume that z ∈
⋂
u1∈U+

v−1,>0
,u2∈U+

v′−1,>0

(
u−1

1 , ψ(u2)
)
Z1
J,>0. Then we have

z = limu1,u2→1

(
u1, ψ(u2)−1

)
· z is contained in the closure of Z1

J,>0 in ZJ . Note
that ZJ,>0 ⊂ Z1

J,>0 ⊂ ZJ,>0. Thus by 2.9, ZJ,>0 is the closure of Z1
J,>0 in ZJ .

Therefore, z is contained in ZJ,>0.
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On the other hand, assume that z = (P,Q, γ) ∈ Zv,w,v
′,w′

J,>0 . By 3.4(a), for any
u1 ∈ U+

v−1,>0, u2 ∈ U+
v′−1,>0

, we have
(
u1, ψ(u−1

2 )
)
· z ∈ ZJ,>0. Moreover, we

have u1P =u′1 PJ for some u′1 ∈ U−w,>0 (see 1.6). Similarly, we have ψ(ψ(u−1
2 )Q) =

u2ψ(Q) =u′2 PJ for some u′2 ∈ U−w′,>0. By 3.4(b),
(
u1, ψ(u−1

2 )
)
· z ∈ Z1

J,>0. �

3.6. Now I will fix w ∈ W J and a reduced expression w = (w(0), w(1), . . . , w(n))
of w. Assume that w(j) = w(j−1)sij for all j = 1, 2, . . . , n. Let v 6 w and let
v+ = (v(0), v(1), . . . , v(n)) be the positive subexpression of w.

Define

Gv+,w =
{
g = g1g2 · · · gk

∣∣∣gj = yij (aj) for aj ∈ R− {0}, if v(j−1) = v(j)

gj = ˙sij , if v(j−1) < v(j)

}
,

Gv+,w,>0 =
{
g = g1g2 · · · gk

∣∣∣gj = yij (aj) for aj ∈ R>0, if v(j−1) = v(j)

gj = ˙sij , if v(j−1) < v(j)

}
.

Marsh and Rietsch have proved that the morphism g 7→g B+ maps Gv+,w into
Rv,w (see [MR, 5.2]) and Gv+,w,>0 bijectively onto Rv,w,>0 (see [MR, 11.3]).

The following proposition is a technical tool needed in the proof of the main
theorem.

Proposition 3.7. For any g ∈ Gv+,w,>0, we have⋂
u∈U+

v−1,>0

(
πU+

J
(ug)

)−1 · U+
wJ0 ,>0

=

{
U+
wJ0 ,>0

, if v ∈W J ;

∅, otherwise.

The proof will be given in 3.13.

Lemma 3.8. Suppose αi0 is a simple root such that v−1
1 αi0 > 0 for v 6 v1 6 w.

Then for all g ∈ Gv+,w,>0 and a ∈ R, we have xi0(a)g = gtg′ for some t ∈ T>0

and g′ ∈
∏
α∈R(v) Uα ·

(
v̇−1xi0 (a)v̇

)
, where R(v) = {α ∈ Φ+ | vα ∈ −Φ+}.

Proof. Marsh and Rietsch proved in [MR, 11.8] that g is of the form

g =
( ∏
j∈J◦v+

yv(j−1)αij
(tj)
)
v̇

and v(j−1)αi1 6= αi0 , for all j = 1, 2, . . . , n. Thus g = g1v̇ for some

g1 ∈
∏

α∈Φ+−{αi0}
U−α.

Set T1 = {t ∈ T | αi0(t) = 1}, then T1

∏
α∈Φ+−{αi0}

U−α is a normal subgroup
of ψ(P{i0}). Now set x = xi0(a), then xg1x

−1 ∈ B−. We may assume that
xg1x

−1 = u1t1 for some u1 ∈ U− and t1 ∈ T . Now xg = xg1v̇ = (xg1x
−1)xv̇ =

u1v̇(v̇−1t1v̇)(v̇−1xv̇). Moreover, by [MR, 11.8], xg ∈ gB+. Thus xg = g1v̇t2g2g3 =
g1(v̇t2g2t

−1
2 v̇−1)v̇t2g3, for some t2 ∈ T , g2 ∈

∏
α∈R(v) Uα and g3 ∈

∏
α∈Φ+−R(v) Uα.

Note that g1(v̇t2g2t
−1
2 v̇−1), u1∈U−, t2, v̇−1t1v̇∈T and g3, v̇

−1xv̇∈
∏
α∈Φ+−R(v) Uα.

Thus g1(v̇t2g2t
−1
2 v̇−1) = u1, t2 = v̇−1t1v̇ and g3 = v̇−1xv̇. Note that g−1xi0 (b)g ∈

B+ for b ∈ R (see [MR, 11.8]). We have that {πT (g−1xi0 (b)g) | b ∈ R} is con-
nected and contains πT

(
g−1xi0(0)g

)
= 1. Hence πT (g−1xi0(b)g) ∈ T>0 for b ∈ R.
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In particular, πT (g−1xg) = t2 ∈ T>0. Therefore xg = gt2g
′ with t2 ∈ T>0 and

g′ = g2g3 ∈
∏
α∈R(v) Uα · (v̇−1xv̇). �

Remark. In [MR, 11.9], Marsh and Rietsch pointed out that for any j ∈ J+
v+

, we
have u−1αij > 0 for all v−1

(j)v 6 u 6 w
−1
(j)w.

3.9. Suppose that J+
v+

= {j1, j2, . . . , jk}, where j1 < j2 < · · · < jk and g =
g1g2 · · · gn, where

gj =

{
yij (aj) for aj ∈ R>0, if j ∈ J◦v+

;
˙sij , if j ∈ J+

v+
.

For any m = 1, . . . , k, define vm = v−1
(jm)v, g(m) = gjm+1gjm+2 · · · gn and fm(a) =

g−1
(m)xijm (−a)g(m) ∈ B+ (see [MR, 11.8]). Now I will prove the following lemma.

Lemma 3.10. Keep the notation in 3.9. Then

(a) For any u ∈ U+
v−1,>0, ug = g′tu′ for some g′ ∈ U−w,>0, t ∈ T>0 and u′ ∈ U+.

(b) πU+(U+
v−1,>0g)={πU+

(
fk(ak)fk−1(ak−1

)
· · · f1(a1)

)
| a1, a2, . . . , ak∈R>0}.

Proof. I will prove the lemma by induction on l(v). It is easy to see that the lemma
holds when v = 1. Now assume that v 6= 1.

For any u ∈ U+
v−1,>0, since gB+ ∈ Rv,w,>0, we have ugB+ ∈ R1,w,>0. Thus

ug = g′tu′ for some g′ ∈ U−w,>0, t ∈ T and u′ ∈ U+. Set y = gi1gi2 · · · gij1−1 . Note
that y ∈ U−>0, we have uy = y′tu′ for some y′ ∈ U−, u′ ∈ U+

v−1,>0 and t ∈ T>0.
Hence πT (ug) = πT (uy ˙sij1 g(1)) = πT (y′tu′ ˙sij1 g(1)) ∈ T>0πT (u′ ˙sij1 g(1)). To prove
that πT (U+

v−1,>0g) ⊂ T>0, it is enough to prove that πT (u ˙sij1 g(1)) ∈ T>0 for all
u ∈ U+

v−1,>0.
For any u ∈ U+

v−1,>0, we have u = u1xij1 (a) for some u1 ∈ U+
v−1sij1

,>0 and

a ∈ R>0. It is easy to see that xij1 (a) ˙sij1 g(1) = α∨ij1 (a)yij1 (a)xij1 (−a−1)g(1). Note
that α∨ij1 (a) ∈ T>0 and by 3.8, g(1)

−1xij1 (−a−1)g(1) ∈ T>0U
+. Hence by 1.7, we

have

πT (u ˙sij1 g(1)) = πT

(
u1α

∨
ij1

(a)yij1 (a)g(1)

(
g(1)
−1xij1 (−a−1)g(1)

))
∈ T>0πT

(
U+
v−1sij1

,>0yij1 (a)g(1)

)
T>0.

Set

w′ = (1, w−1
(j1−1)w(j1), . . . , w

−1
(j1−1)w(n)),

v′+ = (1, sij1 v(j1), sij1 v(j1+1), . . . , sij1 v(n)).

Then w′ is a reduced expression of w−1
(j1−1)w(n) and v′+ is a positive subexpression

of w′. For any a ∈ R>0, yij1 (a)g(1) ∈ Gv′+,w′,>0. Thus by induction hypothesis,
for any a ∈ R>0, πT (U+

v−1sij1
,>0yij1 (a)g(1)) ⊂ T>0. Therefore, πT (ug) ∈ T>0. Part

(a) is proved.
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We have

πU+(U+
v−1,>0g) = πU+(U+

v−1,>0y ˙sij1 g(1)) = πU+(πU+

(
U+
v−1,>0y) ˙sij1 g(1)

)
= πU+(U+

v−1,>0 ˙sij1 g(1)) =
⋃

a∈R>0

πU+

(
U+
v−1sij1

,>0xij1 (a−1) ˙sij1 g(1)

)
=

⋃
a∈R>0

πU+

(
U+
v−1sij1

,>0α
∨
ij1

(a−1)yij1 (a−1)g(1)f1(a)
)

=
⋃

a∈R>0

πU+

(
πU+

(
U+
v−1sij1

,>0α
∨
ij1

(a−1)yij1 (a−1)
)
g(1)f1(a)

)
=

⋃
a∈R>0

πU+

(
U+
v−1sij1

,>0g(1)f1(a)
)

=
⋃

a∈R>0

πU+

(
πU+

(
U+
v−1sij1

,>0g(1)

)
f1(a)

)
.

By induction hypothesis,

πU+(U+
v−1sij1

,>0g(1)) = {πU+

(
fk(ak)fk−1(ak−1) · · · f2(a2)

)
| a2, a3, . . . , ak ∈ R>0}.

Thus

πU+(U+
v−1,>0g) =

⋃
a∈R>0

πU+

(
πU+

(
U+
v−1sij1

,>0g(1)

)
f1(a)

)
= {πU+

(
fk(ak)fk−1(ak−1) · · · f1(a1)

)
| a1, a2, . . . , ak ∈ R>0}.

�

Remark. The referee pointed out to me that the assertion t ∈ T>0 of 3.10(a) could
also be proved using generalized minors.

Lemma 3.11. Assume that α is a positive root and u ∈ Uα, u′ ∈ U+ such that
unu′ ∈ U+

>0 for all n ∈ N. Then u = xi(a) for some i ∈ I and a ∈ R>0.

Proof. There exists t ∈ T>0, such that αi(t) = 2 for all i ∈ I. Then tut−1 =
uα(t) = um for some m ∈ N. By assumption, tnut−nu′ ∈ U+

>0 for all n ∈ N.
Thus u

(
t−nu′tn

)
= t−n

(
tnut−nu′

)
tn ∈ U+

>0. Moreover, it is easy to see that
limn→∞ t

−nu′tn = 1. Since U+
>0 is a closed subset of U+, limn→∞ ut

−nu′tn =
u ∈ U+

>0. Thus u = xi(a) for some i ∈ I and a ∈ R>0. �

Lemma 3.12. Assume that w ∈W and i, j ∈ I such that w−1αi = αj. Then there
exists c ∈ R>0, such that ẇ−1xi(a)ẇ = xj(ca) for all a ∈ R.

Proof. There exist c, c′ ∈ R − {0}, such that yi(a)ẇ = ẇyj(c′a) and xi(a)ẇ =
ẇxj(ca) for a ∈ R. Since ẇB− ∈ B>0, we have yi(1)ẇB+ =ẇyj(c

′) B+ ∈ B>0. By
3.6, c′ > 0. Thus c′ > 0. Moreover, since wαj = αi > 0, we have wsjw−1 = si and
l(wsj) = l(siw) = l(w) + 1. Hence, setting w′ = wsj = siw, we have ẇ′ = ẇṡj =
ṡiẇ, that is ẇxi(−1)yi(1)xi(−1) = xj(−c)yj(c′)xi(−c)ẇ = xj(−1)yj(1)xj(−1)ẇ.
Therefore, c = c′−1 > 0. �
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3.13. Proof of Proposition 3.7. If v ∈ W J , then vα > 0 for α ∈ Φ+
J . So

πU+
J

(
∏
α∈R(v) Uα) = {1}. By 3.8, fm(a) ∈ T (

∏
α∈R(vm) Uα) · Uv−1

m αijm
for all

m ∈ {1, 2, . . . , k}. Note that vα ∈ −Φ+ for all a ∈ R(vm) and vv−1
m αijm =

v(jm)αijm ∈ −Φ+. So fm(a) ∈ T
∏
α∈R(v) Uα and fk(ak)fk−1(ak−1) · · · f1(a1) ∈

T
∏
α∈R(v) Uα. Hence by 3.10(b), πU+

J
(ug) = 1 for all u ∈ U+

v−1,>0. Therefore⋂
u∈U+

v−1,>0

(
πU+

J
(ug)

)−1 · U+
wJ0 ,>0

= U+
wJ0 ,>0

.

If v /∈W J , then there exists α ∈ Φ+
J such that vα ∈ −Φ+

J , that is, v−1
m αijm ∈ Φ+

J

for some m ∈ {1, 2, . . . , k}. Set k0 = max{m | v−1
m αijm ∈ Φ+

J }. Then since
R(vk0) = {v−1

m αijm | m > k0}, we have that vk0α > 0 for α ∈ Φ+
J . Hence by 3.8,

πU+
J

(
fk0(a)

)
= ˙vk0

−1xijk0
(−a) ˙vk0 . If u′ ∈

⋂
u∈U+

v−1,>0

(
πU+

J
(ug)

)−1 · U+
wJ0 ,>0

, then

πU+
J

(
fk(ak)fk−1(ak−1) · · · f1(a1)

)
u′ ∈ U+

wJ0 ,>0
for all a1, a2, . . . , ak ∈ R>0. Since

U+
wJ0 ,>0

is a closed subset of G, πU+
J

(
fk(ak)fk−1(ak−1) · · · f1(a1)

)
u′ ∈ U+

wJ0 ,>0
for

all a1, a2, . . . , ak ∈ R>0. Now take am = 0 for m ∈ {1, 2, . . . , k} − {k0}, then
πU+

J

(
fk0(a)

)
u′ ∈ U+

wJ0 ,>0
for all a ∈ R>0. Set u1 = ˙vk0

−1xijk0
(−1) ˙vk0 . Then

un1u
′ ∈ U+

wJ0 ,>0
for all n ∈ N . Thus by 3.11, v−1

k0
αijk0

= αj′ for some j′ ∈ J and

u1 ∈ U+
wJ0 ,>0

. By 3.12, u1 = xj′ (−c) for some c ∈ R>0. That is a contradiction.
The proposition is proved. �

Let me recall that L = PJ
⋂
QJ (see 2.4). Now I will prove the main theorem.

Theorem 3.14. For any v, w, v′, w′ ∈W J such that v 6 w, v′ 6 w′, set

Z̃v,w,v
′,w′

J,>0 =
{(g

PJ ,
ψ(g′)−1

QJ , gHPJ lUQJψ(g′)
)∣∣∣g ∈ Gv+,w,>0, g′ ∈ Gv′+,w′,>0

and l ∈ L>0

}
.

Then

Zv,w,v
′,w′

J,>0 =

{
Z̃v,w,v

′,w′

J,>0 , if v, w, v′, w′ ∈W J , v 6 w, v′ 6 w′;
∅, otherwise.

Proof. Note that {(P,Q, γ) ∈ ZJ | P ∈ PJ>0, ψ(Q) ∈ PJ>0} is a closed subset
containing ZJ,>0. Hence it contains ZJ,>0. Now fix g ∈ Gv+,w,>0, g

′ ∈ Gv′+,w′,>0

and l ∈ L. By 3.10 (a), for any u ∈ U+
v−1,>0, ug = atπU+(ug) for some a ∈ U−w,>0

and t ∈ T>0. Similarly, for any u′ ∈ U+
v′−1,>0

, u′g′ = a′t′πU+(u′g′) for some

a′ ∈ U−w′,>0 and t′ ∈ T>0. Set z =
(g
PJ ,

ψ(g′)−1
QJ , gHPJ lUQJψ(g′)

)
. We have(

u, ψ(u′)−1
)
· z =

(
aPJ ,

ψ(a′)−1
QJ , atπU+(ug)HPJ lUQJψ

(
πU+(u′g′)

)
t′ψ(a′)

)
=
(
aPJ ,

ψ(a′)−1
QJ , aHPJ tπU+

J
(ug)lψ

(
πU+

J
(u′g′)

)
t′UQJψ(a′)

)
.

Then
(
u, ψ(u′)−1

)
·z ∈ Z1

J,>0 if and only if tπU+
J

(ug)lψ
(
πU+

J
(u′g′)

)
t′ ∈ L>0Z(L),

that is,

l ∈ πU+
J

(ug)−1L>0Z(L)ψ
(
πU+

J
(u′g′)

)−1

=
(
πU+

J
(ug)−1U+

wJ0 ,>0

)
T>0Z(L)ψ

(
πU+

J
(u′g′)−1U+

wJ0 ,>0

)
.
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So by 3.5, z ∈ ZJ,>0 if and only if

l ∈
⋂

u∈U+
v−1,>0

u′∈U+
v′−1,>0

(
πU+

J
(ug)−1U+

wJ0 ,>0

)
T>0Z(L)ψ

(
πU+

J
(u′g′)−1U+

wJ0 ,>0

)

=
⋂

u∈U+
v−1,>0

(
πU+

J
(ug)−1U+

wJ0 ,>0

)
T>0Z(L)ψ

( ⋂
u′∈U+

v′−1,>0

πU+
J

(u′g′)−1U+
wJ0 ,>0

)
.

By 3.7, z ∈ ZJ,>0 if and only if v, v′ ∈ W J and l ∈ L>0Z(L). The theorem is
proved. �

3.15. It is known that G>0 =
⊔
w,w′∈W U−w,>0T>0U

+
w′,>0, where for any w,w′ ∈

W , U−w,>0T>0U
+
w′,>0 is a semi-algebraic cell (see [L1, 2.11]) and is a connected

component of B+ẇB+∩B−ẇ′B− (see [FZ]). Moreover, Rietsch proved in [R2, 2.8]
that B>0 =

⊔
v6wRv,w,>0, where for any v, w ∈ W such that v 6 w, Rv,w,>0 is a

semi-algebraic cell and is a connected component of Rv,w.
The following result generalizes these facts.

Corollary 3.16. G>0 =
⊔
J⊂I

⊔
v,w,v′,w′∈WJ

v6w,v′6w′

⊔
y,y′∈WJ

Zv,w,v
′,w′;y,y′

J,>0 . Moreover,

for any v, w, v′, w′ ∈ W J , y, y′ ∈ WJ with v 6 w, v′ 6 w′, Zv,w,v
′,w′;y,y′

J,>0 is a con-

nected component of Zv,w,v
′,w′;y,y′

J and is a semi-algebraic cell which is isomorphic
to Rd

>0, where d = l(w) + l(w′) + 2l(wJ0 )+ | J | −l(v)− l(v′)− l(y)− l(y′).

Proof. PJv,w,>0 (resp. PJv′,w′,>0) is a connected component of PJv,w (resp. PJv′,w′)
(see [L3]). Thus {(P,Q, γ) ∈ Zv,w,v

′,w′;y,y′

J | P ∈ PJv,w,>0, ψ(Q) ∈ PJv′,w′,>0} is open

and closed in Zv,w,v
′,w′;y,y′

J . To prove that Zv,w,v
′,w′;y,y′

J,>0 is a connected component

of Zv,w,v
′,w′;y,y′

J , it is enough to prove that Zv,w,v
′,w′;y,y′

J,>0 is a connected component

of {(P,Q, γ) ∈ Zv,w,v
′,w′;y,y′

J | P ∈ PJv,w,>0, ψ(Q) ∈ PJv′,w′,>0}.
Assume that g ∈ Gv+,w,>0, g

′ ∈ Gv′+,w′,>0 and l ∈ L. We have that (gPJ )B
+

is the unique element B ∈ Rv,w that is contained in gPJ(see 1.4). Therefore
(gPJ)B

+
=g B+. Similarly, (gPJ )B

−
=gẇJ0 B+, (ψ(g′−1)QJ)B

+
=ψ(g′−1)ẇJ0 B−

and (ψ(g′−1)QJ)B
−

=ψ(g′)−1
B−. Thus pos

(
(gPJ)B

+
,glψ(g′)

(
(ψ(g′−1)QJ)B

+))
=

pos(B+,lẇ
J
0 B−) and pos

(
(gPJ)B

−
,glψ(g′)

(
(ψ(g′−1)QJ)B

−))
= pos(ẇ

J
0 B+,l B−).

Therefore we have that (gPJ ,ψ(g′)−1
QJ , gHPJ lUQJψ(g′)) ∈ Zv,w,v

′,w′;y,y′

J if and
only if l ∈ B+ẏẇ0B

+ẇ0ẇ
J
0 ∩ ẇJ0B+ẏ′ẇ0B

+ẇ0 = B+ẏB−ẇJ0 ∩ ẇJ0B+ẏ′B−.
Note that L ∩ B+ ⊂ẇJ0 B−. Thus for any x ∈ WJ , (L ∩ B+)ẋ(L ∩ B+) ⊂

B+ẋẇJ0B
−ẇJ0 . Therefore,

L ∩B+ẏB−ẇJ0 =
⊔

x∈WJ

(L ∩B+)ẋ(L ∩B+) ∩B+ẏB−ẇJ0

= (L ∩B+)ẏẇJ0 (L ∩B+).

Similarly, L ∩ ẇJ0B+ẏ′B− = (L ∩B−)ẇJ0 ẏ′(L ∩B−).
Then {(P,Q, γ) ∈ Zv,w,v

′,w′;y,y′

J | P ∈ PJv,w,>0, ψ(Q) ∈ PJv′,w′,>0} is isomorphic
to Gv,w,>0×Gv′,w′,>0×

(
(L∩B+)ẏẇJ0 (L∩B+)∩(L∩B−)ẇJ0 ẏ′(L∩B−)

)
/Z(L). Note
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that
(
(L∩B+)ẏẇJ0 (L∩B+)∩(L∩B−)ẇJ0 ẏ′(L∩B−)

)
∩L>0 = U−

ywJ0 ,>0
T>0U

+
wJ0 y

′,>0
.

Therefore

Zv,w,v
′,w′;y,y′

J,>0
∼= Gv,w,>0 ×Gv′,w′,>0 × U−ywJ0 ,>0

T>0U
+
wJ0 y

′,>0
/
(
Z(L) ∩ T>0

)
∼= Rl(w)+l(w′)+2l(wJ0 )+|J|−l(v)−l(v′)−l(y)−l(y′)

>0 .

By 3.15, we have that U−
ywJ0 ,>0

T>0U
+
wJ0 y

′,>0
/
(
Z(L)∩T>0

)
is a connected compo-

nent of
(
(L ∩B+)ẏẇJ0 (L ∩B+) ∩ (L ∩B−)ẇJ0 ẏ′(L ∩ B−)

)
/Z(L). The corollary is

proved. �
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