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TOTAL POSITIVITY IN THE
DE CONCINI-PROCESI COMPACTIFICATION

XUHUA HE

ABSTRACT. We study the nonnegative part Gs¢ of the De Concini-Procesi
compactification of a semisimple algebraic group G, as defined by Lusztig.
Using positivity properties of the canonical basis and parametrization of flag
varieties, we will give an explicit description of Gg. This answers the question
of Lusztig in Total positivity and canonical bases, Algebraic groups and Lie
groups (ed. G.I. Lehrer), Cambridge Univ. Press, 1997, pp. 281-295. We
will also prove that G0 has a cell decomposition which was conjectured by
Lusztig.

0. INTRODUCTION

Let G be a connected split semisimple algebraic group of adjoint type over R.
We identify G with the group of its R-points. In [DP], De Concini and Procesi
defined a compactification G of G and decomposed it into strata indexed by the
subsets of a finite set I. We will denote these strata by {Z; | J C I}. Let Gsg
be the set of strictly totally positive elements of G and G'»o be the set of totally
positive elements of G' (see [IL1]). We denote by G~ the closure of G+¢ in G. The
main goal of this paper is to give an explicit description of G~ (see 3.14). This
answers the question in [L4] 9.4]. As a consequence, I will prove in 3.17 that G¢
has a cell decomposition which was conjectured by Lusztig.

To achieve our goal, it is enough to understand the intersection of G=q with
each stratum. We set Zj >0 = G—>0ﬂ Zj. Note that Z; = G and Z; >0 = Gxo.
We define Z;~¢ as a certain subset of Z; >o analogous to Gs¢ for Gx¢ (see 2.6).
When G is simply-laced, we will prove in 2.7 a criterion for Z ¢ in terms of its
image in certain representations of G, which is analogous to the criterion for G~ in
IL4] 5.4]. As Lusztig pointed out in [L2], although the definition of total positivity
was elementary, many of the properties were proved in a non-elementary way, using
canonical bases and their positivity properties. Our Theorem 2.7 is an example of
this phenomenon. As a consequence, we will see in 2.9 that Z ;>0 is the closure of
ZJ7>O in ZJ.

Note that Z; is a fiber bundle over the product of two flag manifolds. Then
understanding Z; > is equivalent to understanding the intersection of Z; > with
each fiber. In 3.5, we will give a characterization of Z; > which is analogous to the
elementary fact that Gxo = ﬂgeG>0 g 'G~o. It allows us to reduce our problem to
the problem of understanding certain subsets of some unipotent groups. Using the
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parametrization of the totally positive part of the flag varieties (see [MR]), we will
give an explicit description of the subsets of G (see 3.7). Thus our main theorem
can be proved.

1. PRELIMINARIES

1.1. We will often identify a real algebraic variety with the set of its R-rational
points. Let G be a connected semisimple adjoint algebraic group defined and split
over R, with a fixed épinglage (T, BT, B~,x;,y;;i € I) (see [L1} 1.1]). Let UT, U~
be the unipotent radicals of BY, B~. Let X (resp. Y') be the free abelian group of all
homomorphism of algebraic groups T'— R* (resp. R* = T)and (,): Y x X - Z
be the standard pairing. We write the operation in these groups as addition. For
i € I, let a; € X be the simple root such that tx;(a)t™" = x;(a)®® for all
a € R,t € T and let oy € Y be the simple coroot corresponding to «;. For any
root a, we denote by U, the root subgroup corresponding to a.

There is a unique isomorphism ¢ : G = G°PP (the opposite group struc-
ture) such that ¢ (z;(a)) = yi(a), ¥(yi(a)) = wi(a) for all i € I, a € R and
P(t)=t, forallt € T.

If P is a subgroup of G and g € G, we write 9P instead of gPg~".

For any algebraic group H, we denote the Lie algebra of H by Lie(H) and the
center of H by Z(H).

For any variety X and an automorphism o of X, we denote the fixed point set
of o on X by X°.

For any group, We will write 1 for the identity element of the group.

For any finite set X, we will write | X| for the cardinal of X.

1.2. Let N(T) be the normalizer of T in G and §; = ;(—1)y;(1)x;(—1) € N(T) for
i€ l. Set W= N(T)/T and s; to be the image of §; in W. Then W together with
(si)ier is a Coxeter group.

Define an expression for w € W to be a sequence w = (w(o), W(1), - -, W(y)) in
W, such that wy = 1, wp) = w and forany j = 1,2,...,n, w(_jl_l)w(j) =1or
s; for some i € I. An expression w = (w(g),w(1),..., W) is called reduced if
w(j—1)y < wgyy for all j =1,2,...,n. In this case, we will set I(w) = n. It is known
that {(w) is independent of the choice of the reduced expression. Note that if w is
a reduced expression of w, then for all j = 1,2,...,n, w(jil)w(j) = s, for some
i; € I. Sometimes we will simply say that s;, s, ---s;
w.

For w € W, set w = s;,s;, - - - i, where s;,8;, ---s;, is a reduced expression of
w. It is well known that w is independent of the choice of the reduced expression
Siy Sip + - Sq, Of w.

n

is a reduced expression of

n

Assume that w = (w(gy, w(1), ..., W()) is a reduced expression of w and w;) =
w(j—1ysi; for all j =1,2,...,n. Suppose that v < w for the standard partial order
in W. Then there is a unique sequence v = (v(g), V(1) - -, V(n)) such that v =

Livmy = v,v4) € {’U(j,l), ’U(jfl)sij} and v(ii—1) < V(j-1)Si; forall j =1,2,....n
(see [IMR] 3.5]). v is called the positive subexpression of w. We define

J‘J,FJr ={je{l,2,....,n} |vg_1) <v},
J€,+ ={je{L,2,...,n}| V(1) = ’U(j)}.
Then by the definition of v, we have {1,2,...,n} = J{,"+ UJy,.
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1.3. Let B be the variety of all Borel subgroups of G. For B, B’ in B, there is
a unique w € W, such that (B, B’) is in the G-orbit on B x B (diagonal action)
that contains (B*,” BT). Then we write pos(B, B') = w. By the definition of pos,
pos(B, B’) = pos(YB,? B') for any B,B’ € B and g € G.

For any subset J of I, let W be the subgroup of W generated by {s; | j € J}
and let wy be the unique element of maximal length in Wj. (We will simply
write w} as wp.) We denote by P; the subgroup of G' generated by Bt and by
{yj(a) | j € J,a € R} and denote by P” the variety of all parabolic subgroups of
G conjugated to Pj. It is easy to see that for any parabolic subgroup P, P € P’
if and only if {pos(B1, Bs) | B1, B2 are Borel subgroups of P} = W.

1.4. For any parabolic subgroup P of G, define Up to be the unipotent radical of P
and Hp to be the inverse image of the connected center of P/Up under P — P/Up.
If B is a Borel subgroup of G, then so is

PB = (PN B)Up.

It is easy to see that for any g € Hp, we have 9(PP) = PB. Moreover, P is
the unique Borel subgroup B’ in P such that pos(B, B’) € W/, where W is the
set of minimal length coset representatives of W/Wj (see [L3l 3.2(a)]).

Let P, @ be parabolic subgroups of G. We say that P,(Q are opposed if their
intersection is a common Levi of P,Q. (We then write P 1 Q.) It is easy to
see that if P > @, then for any Borel subgroup B of P and B’ of @), we have
pos(B, B') € Wwy.

For any subset J of I, define J* C I by {Q | Q > P for some P € P/} =P/,
Then we have (J*)* = J. Let Qs be the subgroup of G generated by B~ and by
{zj(a) | j € J,a € R}. We have Q; € P’ and P; pa Q;. Moreover, for any

P € P, we have P =9 P; for some g € G. Thus (P) =@~ Q, e P'".

1.5. Recall the following definitions from [LIJ.
For any w € W, assume that w = s;, s, ---s;, is a reduced expression of w.
Define ¢* : RYy — U* by

¢+(a1a az, ... 7an) = Ty (al)xiz (G‘Q) © Ty, (an)v
d)i (a’la ag, ... 7an) = Yi, (a’l)yiz (G’Q) Yy, (a"ﬂ)

Let Uy 5o = ¢5(RY) C UE, Uy oo = ¢*(R%) C U, Then Uy ., and Uy -
are independent of the choice of the reduced expression of w. We will simply write
Uqfo,go as U;O and U7:1i:0,>0 as Ufo.

T-o is the submonoid of T' generated by the elements x(a) for x € Y and
a € Ryop.

G>o is the submonoid U;OT>0U;O = U;OT>0U;O of G.

G~ is the submonoid U Ts0UZ, = UZ,T-oUZ, of Gso.

Bso is the subset {“B~ | u € Ud,} = {“B* | u € U5y} of B and Bxy is the
closure of B¢ in the manifold 5.

For any subset J of I, P, = {P € P/ | 3B € Bsy, such that B C P} and
’P;O ={P € P’ | 3B € Bxy, such that B C P} are subsets of P’.

1.6. For any w,w’ € W, define
Ruww = {B € B|pos(B", B) = w',pos(B~, B) = wow}.
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It is known that R, . is nonempty if and only if w < w’ for the standard partial
order in W (see [KL]). Now set

Rw,w’,>0 = B}O N Rw,’w’-
Then Ry, >0 is a connected component of R, . and is a semi-algebraic cell (see
[R2] 2.8]). Furthermore, B = |_|w<w/ R w and Bsg = |_|w<w, R w,>0. Moreover,
for any u € U;ll ~o» We have “Ry w/ >0 C Ri,uw/,>0 (see [R2, 2.2]).

Let J be a subset of I. Define 7/ : B — P” to be the map which sends a Borel
subgroup to the unique parabolic subgroup in P that contains the Borel subgroup.
For any w,w’ € W such that w < w’ and w’ € W7, set P, = 7/ (Ry,ur) and
”P{l],’w/’>0 = WJ(Rw7wl7>Q). We have ’P;O = uwgw,!w,ewJ Pqi,w’,>0 and 7/ |»
maps Ry, >0 bijectively onto PJ7w/,>O (see [R1l Chapter 4, 3.2]). Hence, for any

w

+ upJ _ —J(u J(pJ
u€ Uy o wehave Py oo =7 ("Ruw,>0) C 7 (P s0)-

w,w’ ;>0

1.7. Define 7y : B~ BT — T by mp(utw') =t foru e U™, t € T,«/ € UT. Then for
b, € Bf,bg S BiBJr,bg € BJr, we have 7TT(b1b2b3) = 7TT(b1)7TT(b2)7TT(b3).

Let J be a subset of I. We denote by ‘IJ:'} the set of roots that are a linear
combination of {a; | j € J} with nonnegative coefficients. We will simply write ®;
as ®T and we will call a root « positive if « € ®T. In this case, we will simply write
a > 0. Define Uj-' to be the subgroup of U™ generated by {U,, | a € @j} and ’Uj-' to
be the subgroup of U generated by {Uy | &« € @+ —®¥}. Then U~ xT x'Uf xU;
is isomorphic to B~ B via (u, t,u1, u2) — utujus. Now define Ty B Bt — Uj
by Tyt (utujug) = ug for u € U=t € Tyuy € U and uz € UF. (We will simply
write Ty+ as my+.) Note that U™T - U_T’Ujr = U_T’Uj. Thus it is easy to see
that for any a,b € G such that a,ab € B~ B, we have Tyt (ab) = Ty (my+(a)b).
Since 'Uj is a normal subgroup of U™, Tyt |+ is a homomorphism of U* onto

Uj. Moreover, we have

[ i(a), if i J;
Tut (a:z(a)) o {1, otherwise.
Thus ij(U;ro) = U;ro],>0 and WUj(U;O) = Jg,>o~

Let U; be the subgroup of U~ generated by {U_, | a € ®F} and 'U; to
be the subgroup of U~ generated by {U_, | « € ®F — ®%}. Then we define
Ty U~ —Uj; by Ty (wrug) = uy for uy € U ,up € U, . (We will simply write
and ;- (Usg)=U_,

Ty- as my-.) We have Ty (Usy) =U" wi ;>0

wy ,>0
1.8. For any vector space V' and a nonzero element v of V', we denote the image of
vin P(V) by [v].

If (V,p) is a representation of G, we denote by (V*, p*) the dual representation
of G. Then we have the standard isomorphism Sty : V@ V* = End(V) defined by
Sty (v@v*)(v') = v*(v')v for all v, v’ € V,v* € V*. Now we have the G x G action
on V& V* by (g1,92) - (v®v*) = (g1v) ® (gov*) for all g1,92 € G,v € V,v* € V*
and the G x G action on End(V') by ((gl,gg) . f) (v)=an (f(g;lv)) for all g1,g2 €
G,f € End(V),v € V. The standard isomorphism between V' ® V* and End(V)
commutes with the G x G action. We will identify End(V) with V ® V* via the
standard isomorphism.
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2. THE STRATA OF THE DE CONCINI-PROCESI COMPACTIFICATION

2.1. Let Vg be the projective variety whose points are the dim(G)-dimensional Lie
subalgebras of Lie(G x G). For any subset J of I, define

Z;={(P,Q,y) | PeP),Qe P/ v =HpgUg, P=‘ Q}

with the G x G action by (g1, 92) (P, Q, HpgUg) = (91P,92 Q, Hg1p(glgg;1)U92Q).
For (P,Q,~) € Z; and g € v, we set

HP,Q,’y = {(l + ’U,l,Ad(gil)l + UQ) | le Lie(Pﬁ gQ),m S Lie(Up),UQ S Lle(UQ)}

Then Hp q - is independent of the choice of g (see [L6, 12.2]) and is an element
of Vg (see [LG, 12.1]). Moreover, (P,Q,7) — Hp g~ is an embedding of Z; C Vg
(see |L6, 12.2]). We will identify Z; with the subvariety of Vg defined above. Then
we have G = Ll;c; Zs, where G is the De Concini-Procesi compactification of G
(see [L6, 12.3]). We will call {Z; | J C I} the strata of G and Z; (resp. Zg) the
highest (resp. lowest) stratum of G. It is easy to see that Z; is isomorphic to G
and Zg is isomorphic to B x B.

Set 25 = (Py,Qs,Hp,Uqg,). Then 25 € Zj (see 1.4) and Z; = (G x G) - 25

Since G is adjoint, we have an isomorphism y : T — (R*)! defined by x(t) =
(O‘i(t)_l)ier We denote the closure of T in G by T. We have Hp, .q, Hp,Uq, =
{+ui,l +uz) | I € Lie(PyNQy),u1 € Up,,us € Ug,}. Moreover, for any
t e Z(P;NQy), H; is the subspace of Lie(G) x Lie(G) spanned by the elements
(1, 1), (w1, Ad(t~Y)ur), (Ad(t)ug, u2), where I € Lie(P; N Qy),u1 € Up,,us € Ug,.
Thus it is easy to see that 2§ = lim¢, =1 vjes X_l((ti)ie]) eT.

t;—0,¥5¢J
Proposition 2.2. The automorphism 1 of the variety G (see 1. 1) can be ex-
tended in a unique way to an automorphism v of G. Moreover, (P, Q,7y) =

(V(Q),¥(P),¥(v)) € Z; for J C I and (P,Q,7) € Zy.

Proof. The map ¢ : G — G induces a bijective map ¢ : Lie(G) — Lie(G). More-
over, we have ¥(Ad(g)v) = Ad(¥(g9)"")¢(v) and (v + v') = (v) + p(v') for
g € G,v,v" € Lie(G). Now define ¢ : Lie(G) x Lie(G) — Lie(G) x Lie(G) by
§(v,v") = (¥(v'),¥(v)) for v,v" € Lie(G). Then § induces a bijection ¢ : Vg — Ve.

Note that for any g € G, we have H, = {(v,Ad(g)v) | v € LieG} and ¢(H,) =
{(Ad(¥(9) " )Y (v),¥(v)) | v € Lie(G)} = Hy(y. Thus ¢ is an extension of the
automorphism ¥ of G into Vg.

Now for any (P,Q,v) € Z; and g € v, we have ¢(P) € P’ ,4(Q) € P’ and

)

Y(Q) >x¥9) (P) (see 1.4). Thus (¥(Q),(P),¥ (7)) € Z;. Moreover,
U(Hpqq) = {(Ad((9)0(1) + ¥ (u2), (1) +(ur)) |1 € Lie(P NIQ),
u1 € Lie(Up), us € Lie(Ug)}
= {(I +u2, Ad(¢h(g) ")l + u1) | I € Lie()(Q) N9 4(P)),
uy € Lie(y(Up)),ug € Lie(vp(Ug))}
= Hy(Q).0(P) ()

Thus ¥ |5 is an automorphism of G. Moreover, since G is the closure of G, 9 |5
is the unique automorphism of G that extends the automorphism 1 of G.
The proposition is proved. O
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2.3. For any A € X, set supp(A\) = {i € I | (), \) # 0}.

In the rest of the section, I will fix a subset J of I and A, s € X1 with
supp(A1) = I — J,supp(A2) = J. Let (Vi,,p1) (resp. (Va,, p2)) be the irreducible
representation of G with the highest weight A; (resp. A2). Assume that dim V), =

ny,dimVy, = ng and {vi,vs,...,vn, } (resp. {v],v5,...,v,,}) is the canonical
basis of (Vi,, p1) (resp. (Vi,, p2)), where vy and v} are the highest weight vectors.
Moreover, after reordering {2,3,...,n2}, we could assume that there exists some

integer ng € {1,2,...,n2} such that for any ¢ € {1,2,...,n2}, the weight of v} is of
the form Ay — ZjeJ a;oy; if and only if ¢ < ng.

Define iy + G — P(End(Va,)) x P(End(Va,)) by is(9) = (Io1(9)l, [o2(9)]).
Then since A\; + Az is a dominant and regular weight, the closure of the image of
iy in P(End(Vy,)) x P(End(Vy,)) is isomorphic to the De Concini-Procesi com-
pactification of G (See [DP), 4.1]). We will use iy as the embedding of G into
P(End(Vy,)) x P(End(Vy,)). We will also identify G with its image under i,.

2.4. Now with respect to the canonical basis of V), and V,,, we will identify
End(Vy, ) with gl(n1) and End(V),) with gl(ns2). Thus we will regard p1(g), pi(g) as
n1 X ny matrices and pa(g), p5(g) as na X ng matrices. It is easy to see that (in terms
of matrices) for any g € G, pi(9) =" p1(g™!) and p3(g) =* p2(g~1), where *M is
the transpose of the matrix M. Now for any g1, g2 € G, M1 € gl(n1), M2 € gl(ns),
(91,92) - M1 = p1(g1)Mip1(g5 ') and (g1, 92) - M2 = p2(91)Map2(g5 ).

Set L = P;NQy. Then L is a reductive algebraic group with the épinglage
(I''B*NL,B~NL,xj,y;;j €J). Now let Vj, be the subspace of Vy, spanned by
{v1,v5, ..., vy, } and I, = (as;) € gl(na), where

1, ifi=j5€{1,2,...,n0};
Qi5 = .
0, otherwise.

Then Vg, is an irreducible representation of L with the highest weight Ay and

canonical basis {v],v},..., vl }. Moreover, Ay is a dominant and regular weight

’ ¥ng

for L. Now set I; = diag(1,0,0,...,0) € gl(n1), [ = diag(1,0,0,...,0) € gl(nz).
Then

is(z5) =, dim iy (XM ((tier)) = ([l @i, [Z v @v]) = (1), 1))

ty=1,¥jeJ
t;—0,VjgJ
where {v1*,v2*, ..., vn,*} (vesp. {v{", 05", ..., v}, "}) is the dual basis in (Vy,)*

(resp. (Va,)*).

2.5. Recall that supp(\;) = I — J. Thus for any P € P7, there is a unique
P-stable line L, py in (Va,,p1) and P — L, (p) is an embedding of P’ into
P(Vy,). Similarly, for any Q € P77, there is a unique Q-stable line Ly:q) in
(VY ,p7) and @ — L, (q) is an embedding of P’ into P(Vy). It is easy to see
Loy pyy = 1], Ly (@, = [v1"] and Ly, opy = p1(9)Lpy Py, Lpso@) = P1(9) L3 (@)
forPe P/, Qe P’  gedq.

There are projections p1 : P(End(Vy,)) x P(End(Vy,)) — P(End(Vy,)) and
p2 : P(End(Vy,)) x P(End(Vy,)) — P(End(Vy,)). It is easy to see that p1 |z,
p2 |z, commute with the G x G action and p;(23) = [v1®@v1*] = [L,, (p,) @ Lpr (@ ,)]-
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Now for any g1, g2 € G, we have

p1((91,92) - 25) = [p1(91) Ly, (py) @ P1(92) Lp3(@s)) = Loy ) ® Ly (a2 )-
In other words, p1(2) = [L,, (p) ® Ly ()] for 2 = (P,Q,v) € Z,.

2.6. Let G~ be the closure of G~¢ in G. Then G~¢ is also the closure of G>o in
G. We have 25 € G~ (see 2.1). Now set

Z3>0 = ZjNG>o,
Zyso=1{(91.95") 25| 91.92 € G0}

Since (Gso) = G0, we have 1)(G~o) = Go. Moreover, ¥(Z;) = Z (see 2.2).
Therefore 1)(Z>0) = Zj >0. Similarly, (91,95 ") - Zj>0 C Zj>o for any ¢1,92 €
Gso. Thus Zj~0 C Zj>0. Moreover, it is easy to see that ¥(Z; <o) = Zj >0

Note that for any ui,us € USy, ug,uz € U;ro,t,t’ € TSy, we have

(urust, uz fug ') - 25 = (uyug, uz ugt) - (Py,Qg, Hp,tt'Ug,)
= (ul,u?jl) . (PJ, QJ,HPJTrUj— (ug)ttlﬂ'UJ— (’U,4)UQJ).
Thus
Zys0={(u1,uy") - (P1,Qr, Hp,lUq,) | u1 € Uy, us € U, 1 € Lo}
= {(ut,u, ™) 25 | ul € USy,ub € ULyt € Tuol

Moreover, for any ui,u; € U™, ug,ub € UV and t,¢' € T, it is easy to see that
(urt,uz) - 25 = (ujt’,ub) - 25 if and only if (uit) 'uit’ € IHp, (B~ C l1Z(L) and
uytub, € 7Y Hg, (U™ C1Z(L) for some I € L , that is, I € Z(L), u1 = u}, us = ul

and t € 'Z(L). Thus, Z; 50 2 USy x Udy x Tso/ (Tso N Z(L)) = R2>l(()w0)+|‘]|.
Now I will prove a criterion for Z; .

Theorem 2.7. Assume that G is simply-laced. Let z € Zj>9. Then z € Zj~¢ if
and only if z satisfies the condition:

(*) is(z) = ([Ml],[Mg]) and i;(Y(z)) = ([Mg],[M4]> for some matrices
My, M3 € gl(nq) and My, My € gl(n2) with all the entries in Rg.

Proof. If z € Zj 0, then z = (g1,95 ") - 25, for some g1,g2 € G>o. Assume that
g1 v = Yt aw; and gyt - vf = SO0 bwr. Then for any i = 1,2,...,nq,
a;,b; > 0. Set a;; = a;b;. Then p1(z) = [p1(g1)I1p1(g92)] = [(@i;)] is a matrix with
all the entries in R~y.

We have pa(2) = [p2(91)1Lp2(92)] = [p2(91)12p2(g2) + p2(91)IL — I2)p2(g2)]-
Note that p2(g1)l2p2(g2) is a matrix with all the entries in R~ and p2(g1), p2(g2),
(I, — Iz) are matrices with all the entries in Rxo. Thus p2(g1)(Ir — I2)p2(g2) is a
matrix with all its entries in R>¢. So p2(g1)Irp2(g2) is a matrix with all the entries
in R>Q.

Similarly, i (@(z)) = ([Mg]7 [M4]> for some matrices M3, My with all their
entries in Rxg.

On the other hand, assume that z satisfies the condition (*). Suppose that
z=(P,Q,v) and L,,(py = D12 aivi], Lyr o) = [Doi2, bivf]. We may also assume
that a;, = b;, =1 for some integers ig,i1 € {1,2,...,n1}.

Set M = (a;;) € gL(n1), where a;; = a;b; for i, € {1,2,...,n1}. Then
p1(2) = [Lp, Py ® Ly ()] = [M]. By the condition (*) and since a;, i, = ai b, = 1,
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we have that M is a matrix with all its entries in R~(. In particular, for any
i€ {1,2,...,n1},a;5, = a; > 0. Therefore L, py = [> 1 a;vi], where a; > 0
for all ¢ € {1,2,...,n1}. By [RIl 5.1] (see also [L3 34)), P € P,. Similarly,
»(Q) € PLy. Thus there exist u1 € USy,us € UL, and | € L, such that z =
(U'17U'2_1) (P, Qy, HPJlUQJ)'

We can express w1, u2 in a unique way as u1 = ujuf, for some uy € U, uf € Uy
and us = ufub, for some uh € US, ul € US (see 1.7).

Recall that Vy, is the subspace of Vi, spanned by {vi,vs,... v, }. Let V7 be
the subspace of Vy, spanned by {v;, 1,05, 12,0y, Then u-v—wv € V] and
u-V, Cc Vi, forallve Vy, a¢ & andu € U_,. Thus u-v—v € V} and
w-Vy CcV/, forallveVy,and ue' Uj.

Slmllarly, let V' be the subspace of VY spanned by {v}* ,v2 o) *} and
V] be the subspace of VY, spanned by {v), 1", v} 10 s--- 00, }- Then for any
v* € Vi and u € US, we have u-v—v € V/" and uV}" C V™.

We define a map 7, : gl(ng) — gl(ng) by

TL ((aij)i,je{1,2,...,n2}) = (aij)i,je{l,Q,...,no}-

Then for any v € U, ,u' € Uj-' and M € gl(ns), we have WL((U,UI) . M) =
7w (M). Set My = pa(u1l)ILp2(ue) and I = ufluf € L. Then

7TL(M2) =Ty ((ul,ugl) . (PQ(I)IL)) =Ty ((u’huél) . (( /1’7u’2/*1) . (pQ(l)IL)))
=7 ((Uuu'z' Y- (pz(l)IL)> =7 (p2(I') 1) = pr(l').

Since p2(z) = [Ma], My is a matrix with all its entries nonzero. Therefore
pr(l') = wp(Ms) is a matrix with all its entries nonzero. Thus I’ = [1t1l5, for some
lheU™ ﬂL,ZQ S U+ﬂL,t1 eT.

Set u1 = wjly and uz = uhly. Then u py —ui(uy” ) P; =*1 P;. Similarly, we
have @' Q="' Q. So z = (u,uz ')~ (P7,Qs, Hp,t:Uq,).

Now for any io, jo € {1,2,...,n1}, define a map =} . :gl(n1) — R by

1
Tio jo ((aij)i7j€{1727---an1}) = Q4,50

and for any ig, jo € {1,2,...,n2}, define a map 72 . : gl(nz) — R by

i0,J0
2
%,jo((aij)z‘,je{l,z,...,nz}) = Qig,jo -

Now 2z = (@it1,uz ) - 25 and 9(2) = ((uz)tr, ¥(ur) ) - 25.
Set

My = py(uity)Lip1(uz), Ms = p1(¥(uz)ts) Tipr (¢ (ur)),
My = po(uit)Ipp2(dz), My = ps (Y(u2)t1) Lip2 (¥ (ur)).

ni 7 (Ms)
i=1 71 (M) Zi:l 77%,1(1‘;13) i

Moreover, let V be the subspace of V)\z spanned by {vg,v5,...,v;,} and V" be
the subspace of Vy spanned by {wh* vh™, *}. Then we have u - Vi C Vj, for

allu e U™ and v/ -V C V, forallu’ € UT.

—— _ ni 111(M ) —
We have uy -v; = >, v; and ¥ (uz) - vy =

7n2
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Thus for alli =1,2,...,no,
T (M) = 77y (pa(uitr) Lapa(U2)) + 77y (pa(uits) (I — Io)p2(uz))

=771 (p2(urt1)Iapa(uz))
S oy — n2 121(]\7[2) / d ng 721(~) B L2 5.4
0 Uy v1*21 171—2 (M) v; an w(U‘Q) 721 171'2 (M) U;- Y[ ]

have u1, ¥ (uz) € US,. Therefore to prove that z € Z; -, it is enough to prove that
t1 € Ts0Z(L), where Z(L) is the center of L.

For any g € (U~,U™)-T, g can be expressed in a unique way as g = (uy,uz) - t,
for some u; € U™, ug € Ut, t € T. Now define 7 : (U, UT)-T — T by
75 ((ur,ug) - t) =t for alluy € U~,ug € UT,t € T. Note that (U~,UT)-TNGxo
is the closure of G5 in (U~,UT)-T. Then 75 ((U~,U") - T NGx) is contained
in the closure of Tsq in 7. In particular, m4(z) = t1t; is contained in the closure
of Tso in T. Therefore for any j € J, a;(t1) > 0. Now let ¢ be the unique element

in T such that
a-(tl), 1fj€J,
Qi (tQ) = ! 2 p -
a;(t)?, ifjé¢d
Then ¢ty € T5o and t;ltl € Z(L). The theorem is proved. O

Remark. Theorem 2.7 is analogous to the following statement in [L4, 5.4]: Assume
that G is simply laced and V' is the irreducible representation of G with the highest
weight A, where X is a dominant and regular weight of G. For any g € G, let M(g)
be the matrix of g : V' — V with respect to the canonical basis of V. Then for any
g € G, g € Gsp if and only if M(g) and M(d)(g)) are matrices with all the entries
in R>Q.

2.8. Before proving Corollary 2.9, I will introduce some technical tools.

Since G is adJ01nt there exists (in an essentially unique way) G with the épinglage
(T,B*,B~,&, 7 € I) and an automorphism o : G — G (over R) such that the
followmg conditions are satisfied.

(a) G is connected semisimple adjoint algebraic group defined and split over R.

(b) G is simply laced.

(c) o preserves the épinglage, that is, U(T) = T and there exists a permutation
i — (i) of I, such that o(&;(a)) = ig(;)(a),a(gg(a)) = U,(3)(a) for all i € I and
a € R.

(d) It i #* 15 are in the same orbit of o : I— I~, then %1,;2 do not form an edge
of the Coxeter graph.

(e) i and (i) are in the same connected component of the Coxeter graph, for
any i € 1.

(f) There exists an isomorphism ¢ : G’ -G (as algebralc groups over R) which
is compatlble with the épinglage of G and the eplnglage (T" Bto B-° s Tp, Yps D €
I) of G, where I is the set of orbit of o : [ — I and &,(a) = Hzep Z:(a), gpla) =
[Lie, %i(a) for all p € Iand a € R.

Let A be a dominant and regular weight of G and (V,p) be the irreducible
representation of G with highest weight A. Let G be the closure of {[p(3)] | § € G}
in P(End(V)) and G be the closure of {[p(§)] | § € G} in P(End(V)). Then since

\ is a dominant and regular weight of G and A |7 is a dominant and regular weight
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of G7, we have that G is the De Concini-Procesi compactification of G and G is
the De Concini-Procesi compactification of G?. Since G is closed in P(End(V))7
G is the closure of {[p(g)] | g € G} in G. o

We have G = Lscr Zj = chj(é X é) : 53 and G7 = chf,aj:j(éa X_Gw) ' 23

Moreover, o can be extended in a unique way to an automorphism & of G. Since

G = chf,ajzj(zj)& is a closed subset of G containing G, we have G
Uicioi=i(Z5)7- _

By the condition (f), there exists a bijection ¢ between I and I, such~that
qb(i:p(a)) = Zg(p)(a), for all p € I,a € R. Moreover, the isomorphism ¢ from G to
G can be extended in a unique way to an isomorphism (j_J G — G. Tt is easy to
see that for any J C I with oJ = J, we have qb((G" x G9) - ~O) = Zyon(j)> Where

7 : I — I is the map sending element of I into the o-orbit that contains it.

Corollary 2.9. Z;>0 = ﬂgl ggEG>o(g1_17g2) - Z >0 15 the closure of Zj~q in Zj.
As a consequence, Zj>o and Gso are contractible.

Proof. I will prove that Z; > C ﬂgl,gzeG>0(9f1ag2) - Z5>0-
First, assume that G is simply laced.

For any g € G, is(g) = ([m(g)], [p2 (g)]), where pi(g) and p2(g) are matrices
with all the entries in Rso. Then for any z € Z; >0, we have i;(z) = ([Ml], [Mg])

for some matrices with all the entries in R>¢. Similarly, i; (1/_1(2)) = ([Mg], [M4])
for some matrices with all their entries in R>.

Note that for any My, M}, M} € gl(n) such that M, M} are matrices with all
their entries in R and M} is a nonzero matrix with all the entries in R,
we have that M{MjMj is a matrix with all the entries in Rsq. Thus for any
91,92 € Go, we have that (g1,95 ') - z satisfies the condition (*) in 2.7. Moreover,
(gl,ggl) -2 € Zj>0. Therefore by 2.7, (gl,ggl) -2 € Zj > for all g1, 92 € G>o.

In the general case, we will keep the notation of 2.8. Since the isomorphism ¢ :
G’ — G is compatible with the épinglages, we have (i)((UfO)") = Ufo, ¢((T>0)") =
T and ¢((é>0)”) = G>o. Now for any z € Z; >0, z is contained in the closure of

G0 in G. Thus ¢~ !(2) is contained in the closure of (G+)? in E, hence contained
in the closure of (G0)? in G. Therefore, ¢ 1(2) € Zj,>07 where J = 7~ o ¢ 1(J).

For any g1, g2 € (G=0)?, we have (§1,G2 ) - ¢~ (2) = (uit,uz ') - z5 for some
u € f];o,ﬂi € Ud,,t € Tso. Since ¢~'(2) € (5)5, we have (§1,G2 ") - ¢ 1(2) €
(Zj ~0)7- Then

& (@t i) - 25) = (o(und), o (@ ")) - 5(25) = (o(@)a(@), o) - 25
= (uit,uz ') - 25
o(t),1) - 25, that is,

Thus o(u1) = u1 and o(uz) = uz. Moreover, (£,1) 2% = (
t i € I} is the set of simple

d;(f) = a]( o((t) = &y (5 (f) for all j € J, where {a; |
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roots of G. Let ¥ be the unique element in T" such that

1, otherwise .

()= {d;(f), it e J;

Then ¢ € (Ts0)? and (%,1) - z5 = (t',1) - 5. Thus (G152 ") - o7 (2) =

(urt',uz ) - Z%. We have

(6(d1), 0(g2) ") -2 = 6((g1, 32 ) - 6 (2)) = o((url',uz ') - 29)
= (@) (@), p(uz ")) - 25 € Zj 0.

Since ¢((é>0)”) = G, we have Zj >0 C ngl,gzeG>0(9flvg2) - Z.5.50-

Note that (1,1) is contained in the closure of {(g1,95") | 91,92 € Go}. Hence,
for any z € ﬂghgzer(gfl,gg) - Zj>0, 2 is contained in the closure of Z;~¢. On
the other hand, Z; > is a closed subset in Z;. Z;>( contains Z; ¢, hence contains
the closure of Z;~0 in Z;. Therefore, Z;>o = 091792€G>0(9;1’g2) - Zj>o is the
closure of Zj~¢ in Z;.

Now set g, = exp(r Y icr(ei+ fi)), where e; and f; are the Chevalley generators
related to our épinglage by x;(1) = exp(e;) and y;(1) = exp(f;). Then g, € G for
r € Rxo (see [L, 5.9]). Define f: R0 X Zj >0 — Zj>0 by f(r,2) = (9,9, %) - 2
for r € Rxp and z € Zj>¢. Then f(0,z) =z and f(1,2) € Z; o for all z € Zj>o.
Using the fact that Z; ¢ is a cell (see 2.6), it follows that Z; > is contractible.

Similarly, define f’ : R>ox Gso — Gso by f'(r,2) = (gr, 9. %)z for r € R>¢ and
2z € G>o. Then f(0,2) = z and f'(1,2) € UxcrZr >0 forall z € G~o. Note that
UkcrZrs0 = (Us0, (U20)™Y) - Uper(Ts0,1) - 25 2 U x Uy x ey (T>0,1) -
2% (see 2.6). Moreover, by [DP} 2.2], we have | |, (T>0,1) - 2% = RI>0~ Thus

UkcrZr,>0 = Ril(()wo) x RL is contractible. Therefore G is contractible. O

3. THE CELL DECOMPOSITION OF Zj >0

3.1. Forany P € P/,Q € P/",B € Band g1 € Hp,g2 € Ug,g € G, we have
pos (P8 91992 (QP)) = pos(-"fl(PB),gg2 (QP)) = pos(PB9(QP)). If moreover,
P 9 Q, then pos(PB,g (QB)) = wwy for some w € Wy (see 1.4). Therefore,
for any v,v’ € W, w,w’ € W’ and y,y’ € Wy with v < w and v < w’, Lusztig
introduced the subset Zf}’w’v/’wl;y’y/ and Zi’;’}(’)”l’w/;y’y/ of Z; which are defined as

follows:

zywev Wy — (P .Q HpglUg) € Zy | P € Pyl ¥(Q) € P s
pos(PB+,g (QB+)) = ywo,pos(PB_ﬂ (QB_)) = 4w}
and

!’ 7 !’ 7 ’7 !’
v, W, v WYY v, w,v W Y,y
ZJ’>0 = ZJ ﬂZ‘]’go.
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Then
Zy =

’ ! ’
v,w,v WY,y
Z]’ WYY

v,v EW,w,w EWJ,y y'eW,
v<w,v’ <w’

_ vaww wiyy’
ZJ>0 | ] 2550

v, EWw,w' €W y,y €W,
v<w, v’ <w’

Lusztig conjectured that for any v,v’ € W,w,w’ € W7, y,y’ € Wy such that

4 . 4 . . . . . .
v < wv <, Zy8" MY s either empty or a semi-algebraic cell. If it is

oo, ’
nonempty, then it is also a connected component of Z%*" " *¥¥
In this section, we will prove this conjecture. Moreover, we will show ex-
4 /. 4 . . . . . . .
actly when ZU’;U(’)” WYY g nonempty and we will give an explicit description of

vav w’y,y’
J,>0

First, 1 W111 prove some elementary facts about the total positivity of G.

Proposition 3.2.

—1yr+ _ _ —1r7+ _ + -1 _ 7+
ﬂ u Uy = ﬂ Ulpu™ = ﬂ u Uz = ﬂ USou ™ =Usy,
ueUZ, ueUZ, ueUZ, ueUZ,

-1 -1 e 1
ﬂ g Gso = n G>o9™ = ﬂ g 2 n G>0g :Ggo.
9€G>0 9g€G>o0 9€G>0 9g€G>o

Proof. 1 will only prove ﬂueU;“O u"t. U;O = U;O. The rest of the equalities could
be proved in the same way.
Note that uu; € U, for all uy € U;O,u € UZ,. Thus u; € ﬂueU;“O ut U,

On the other hand, assume that u;, € ﬂu€U+ ul- U+ Then uuq, € U;'O for all

u € U>0 We have u; = hmueU+ wuy is contained in the closure of UZT, 2o in U+,

u—>l
that is, u; € U)o- So ﬂueUio u” U>O = U)o- O
’ ’
For any v,v' € W, w,w’ € WY such that v < w,v’ < ', set Z7""" =
v,w,v w'sy,y’ v,w,v’ W’ v,w,v" w'sy,y’ . :
Uy yrew, Z Y'Y and ZJ >0 = Uy yew, 2750 We will give a
characterization of z € Z}’ :0” " in 3.5.
- Ut

Lemma 3.3. For any w € W, u € U5, {my+(wiu) | w1 € Ui w0t =Usf <o

Proof. The following identities hold (see [LI, 1.3]):

(a) tzi(a) = zi(as(t)a)t, ty;(a) = yi(ai(t) ta)t foralli € I,t € T,a € R.

(b) i, (@)wiy (b) = x4, (b)ys, (@) for all a,b € R and iy # iz € 1.

(c) zi(a)y;(b) = yi(lfab) V(lﬁab)xi(lfab) for all a,b € R~g,7 € I.

Thus U, >oUs C U>0T>0U+7>O for w € W. So we only need to prove that
Ut oo C {7TU+ (uru) | uy € U -4} Now I will prove the following statement:

{mu+ (uayi(a)) lur € US oo} = U oo foriel,aeRso.

We argue by induction on I(w). It is easy to see that the statement holds for w =
1. Now assume that w # 1. Then there exist j € I and wy; € W such that w = sjwl
and I(wy) = l(w) — 1. For any u} € Uy ., we have u} = uhuf for some uf € USJ -0
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and u} € U} wr,>0- By induction hypothesis, there exists ug € le >0 uw € U™ and
t € T such that ugy;(a) = w'tuy. Since U} _ U, o C U, SoToU, o, we have
u' €Uy oo and t € Tsy.

Now by (a), we have tuht—1 € U+ ~0- So by (b) and (c), there exists uz € U:;.7>0
such that 7+ (ugu') = tubt=1. Thus

U+ (uQU3yi(a)) = T+ ((UQ'U,I) (u'_1U3yi(a))> = T+ (7TU+ (uQu')u'_luwi(a))
= my+ (tuyt ™ tufy) = Ty (tuhul) = uf.

So u} € {my+(uryi(a)) | ur € Uy o} The statement is proved.

Now assume that u € U, .. I will prove the lemma by induction on I(w’). It

is easy to see that the lemma holds for w’ = 1. Now assume that w’ # 1. Then
there exist ¢ € I and wj € W such that I(w]) = l(w’) — 1 and w’ = s;w}]. We have
u = y;(a)u’ for some a € R~ and v’ € Uy 0- S0
{mu+ (uru) [ ur € Uy oo} = {mo+ (wyi(a)u’) [ur € Uy Lo}
= {my+ <7TU+ (ulyi(a))u) luy € U oo}
= {mu+ (uyu) [ uf € U o}
By induction hypothesis, we have

{my+ (uau) [ ur € U >0} = {my+ (uu) | uh € U >0} :ur,>0-

Lemma 3.4. Set Zj ;= {(91,95") - 25 | g1 € UsoT>0,92 € U;O}. Then

(a) Zjzo0= N (ugt,uz) - 2 5o-
uw €UT,,uz €U,

0) Zjso= || {(“Ps" QuuHp,lUg,us) | ui €Uy, <o,
’LU1,U)2EWJ
Uy € U wa,>00L € Lo}
={(P,Q,7) € Zs>0 | P="" P;,4)(Q) =" Py for some uy,uz € USy}.

Proof. (a) By 2.9 and 3.2, we have
Zizo= () (91"92) Zss0= N (uy tug eyt wguata) - Zg 5o

91,92€G >0 t1,t2€T>0
u17u2€U‘>*'07u37u4€U;0

= ﬂ (ul_l’ ’LL4) : ﬂ (U'2_17U'3) : ﬂ (tl_la t2) : ZJ,>O

w1 €US,ua €U, u2€EUL uz €U, t1,t2€T>0
-1 —1
= n (ug " ua) - ﬂ (ug "5 us) - Zy>0
w1 €U, us €U, uzeUy,uz €U,
—1 —1 1\—1 o
= ﬂ (uy 5 uq) - ﬂ (U’Q U T>Oa(U>0u3 ) )'ZJ
w1 €UZ,,us€UZ, u2€UT,,us €U,

N @it (U0 (U)7Y) - 25).

u1€UZo,uz ' €U,
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(b) For any u € Usg:v € U;ro,t € T.o, there exist wi,ws € W7, ws,ws € Wy,
such that v = wjus for some u; € U, wi,>00 U3 € Uw3 S
Uy € U e, >00 Ud € U wy,>0- Then (ut,v=1)- 25 = (“1PJ,“2 QJ,u1Hp,ustuaUg ,uz).

On the other hand, assume that [ € L>q, then | = ustus for some us € U;O,m S

0 and v = uqus for some

U;O,t € Ts¢. Thus for any u; € Usgruz € U;O, we have
. o
(““ Py Qr,u1Hp,lUq,uz) = (uyust,uy 'uy ') - 25 € Zj <.
Therefore,

-1
Z},>0 = |_| {("Py,*2 Qr,urHp,lUg,uz) | u1 € Uy, wi,>0°

wi, w2 €W
Ug € U ws, >0,l c L>0}
C{(P.Q.) € Zyso | P =" Py,ih(Q) = Py for some u,uy € UZ, ).
Note that {“Py | u € U5y} = [,ews{"Ps | u € U, 5o} Now assume that
z = (“Py, w(uz) ™! QJ,u1Hp,lUq,v(uz)) for some wy,wy € W’ and uy € U, wy >0
uz € Uy, <0, € L. To prove that z € ZJ <0» it is enough to prove that | € L>oZ(L).
By part (a), for any us,us € U>O,

(U3,w(u4)_1) cz= (“3“1]{],““4“2)71 QJ,U3U1HPJZUQJw(U4uQ)) € Z} -0
Note that ugu; = ujtimy+ (usuq) for some u) € U, wi.>00 11 € Tso and uwgup =
ugtamy+ (uguz) for some uy € Uy, ~g,t2 € Tso. So we have “s*1P; = Py,
Y(wau2) ' =¥(2) ™ Q; and
ugur Hp,WUq,(uguz) = uytimy+ (U3u1)HPJlUQﬂ/)(7TU+ (U4U2))t21/)(’u/2)
— u'alJtlﬂU; (U3u1)lw(7rUJ+ (U4uQ))t2UQJ¢(u'2).
Then tl’lTUj— (ug,ul)ldj(wU;r (U4u2))t2 € L>oZ(L). Since t1,t2 € Tso, we have
Tyt (usuq)lp (ﬂ'U;- (U4uQ)) € L>oZ(L) for all us,uq € U;FO. By 1.8 and 3.3,

WU}*'(U;roul) :7TU+ (7TU+(U;FOU1)) —7TU+(U ) U+

wy ,>0°
Similarly, we have Tyt (U;_OU,Q) UJ 0" Thus
te () ug'Ufy SoT50Z(L)U,, gt(us) ™!
ug,ua €U J.>0
= U J >OT>OZ(L)U 750 = L>oZ(L).
The lemma is proved. O

Zv,w,v/,w/ ZUw, v’ w’
J

Proposition 3.5. Let z € s then z € Z7 3 if and only if for any
uy € U 1 >O,U2 S U v =150 (ulaw(ugl)) "z € ZJ,>O'

Proof. Assume that z € (ufl,w(uQ))Z}’w. Then we have

uleU:_ly>O,quU:,71)>0
z = 1imul,u2H1(u1,w(u2)*1) - z is contained in the closure of Z} <o in Z;. Note
that Zj~0 C Zj.q C Zj0. Thus by 2.9, Z; >0 is the closure of Z}_, in Zj.
Therefore, z is contained in Zj >o.
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On the other hand, assume that z = (P,Q,v) € Z;:;”(’)v/’w’. By 3.4(a), for any

uy € Uj_l Sor U2 € U;C_l _o» We have (ul,w(ugl)) -z € Zj>0. Moreover, we
have “* P =¥1 P; for some u} € Uy >0 (see 1.6). Similarly, we have w(w("EI)Q) =
u2)(Q) =42 Py for some ufy € Uy o By 3.4(b), (ul,w(ugl)) ‘z € Z},>o- O
3.6. Now I will fix w € WY and a reduced expression w = (w(oy, W(1), -+ W)
of w. Assume that w(;) = w(;—1)s;; for all j = 1,2,...,n. Let v < w and let
v = (V(0), V) - - - »VU(n)) be the positive subexpression of w.

Define

_ [ |9 =i, (ay) for a; € R—{0}, if vy = U(j)}
Gvew = {g R VI if o1y <v )
9; = yi;(a;) for a; € Rso,  if v_1) = “(j)}

Gv,. .w,>0= {9 =0192 " gk . if v_1) < V()

Marsh and Rietsch have proved that the morphism g —¢ BT maps Gv, w into
Row (see [MR 5.2]) and Gv, w, >0 bijectively onto Ry w >0 (see [MR, 11.3]).

The following proposition is a technical tool needed in the proof of the main
theorem.

Proposition 3.7. For any g € Gv, w,>0, we have

+ ; J.

(rys (ug)) " UF, _ = Upg 500 HveWw?

eu,; B w20 , otherwise.
“EY0-1,50

The proof will be given in 3.13.

Lemma 3.8. Suppose «;, is a simple root such that vl_laio >0 forv<v <w.
Then for all g € Gv, w,>0 and a € R, we have z,(a)g = gtg' for some t € Tsg
and 9" € [{ner(o) Ua - (07 @iy (a)d), where R(v) = {a € T |va € =0T},

Proof. Marsh and Rietsch proved in [MR] 11.8] that g is of the form
g = ( H Yog-1y i, (tj))i)
i€,

and v(;_1yaq, # i, for all j=1,2,...,n. Thus g = g19 for some

g1 € H U_,.

ace®t —{aig}

Set Ty = {t € T | a;,(t) = 1}, then T} Haeqﬁf{mo} U_, is a normal subgroup
of (Pyyy). Now set @ = x4 (a), then zgiz~! € B~. We may assume that
rg1x~! = uyty for some uy € U~ and t; € T. Now xg = xg10 = (vgix~V)ad =
ur©(0 " 10) (0 Lad). Moreover, by [MR] 11.8], g € gB*. Thus xg = g19t2g2g3 =
gl(z')tgggt;lfb*l)f[)tggg, for some to € T, g2 € HozER(v) U, and g3 € Haeqﬁ_R(v) U,.
Note that g1 (dtagaty 0 1), u1 €U, to, v~ 't10 €T and g3, 0 a0 €] pear  rew) Ua
Thus gl(i)tgggt;lij_l) = u1, t2 = 0" 10 and g3 = v~ tav. Note that g~ 1, (b)g €
Bt for b € R (see [MR, 11.8]). We have that {mr(¢ 'x;,(b)g) | b € R} is con-
nected and contains 77 (g™ z;,(0)g) = 1. Hence mr (g~ x;,(b)g) € T for b € R.
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In particular, WT(g_lmg) to € Tsg. Therefore xg = gtag’ with to € T~ and

9" = 9295 € [nerw) Ua - (07 20). =

Remark. In [MR], 11.9], Marsh and Rietsch pointed out that for any j € JV ,

—1 1

have u a;; >0 for all v(j) v<u< w(j)w.

3.9. Suppose that J‘z = {j1,d2y- -, Jk}, where j; < jo < -+- < j and g =
9192 - - * gn, Where

Y (aj) for a; € R>0, lf] S J€;+;
gj* . . . +
Si; s ifjelty,.

For any m = 1,...,k, define v,,, = v(_jil)v, 9m) = Gjm+19jm+2 gn and fr(a) =
g(_ri):cijm (—a)gm) € BT (see [MR] 11.8]). Now I will prove the following lemma.

Lemma 3.10. Keep the notation in 3.9. Then

(a) For anyu € UJCI ~o» ug = g'tu’ for some g’ € U, Lot € Tso andu' € UY.
(b) mu+ (U 209) = {mu+ (frlar) fr—1(ak-1) - -~f1(a1)) |a1,az,...,ar R0}

Proof. T will prove the lemma by induction on I(v). It is easy to see that the lemma
holds when v = 1. Now assume that v # 1.
For any u € U - >07 since 9Bt € Ry >0, we have “YBT € Ry ~0. Thus
ug = ¢g'tu’ for some ¢’ € U, ~ot €T and v € Ut. Set y = gi,9i, “*gi;, - Note
that y € U3, we have uy = y'tu’ for some 3y € U™, u' € Ujl oo and t € Ts,.
Hence 7r(ug) = mr(uysi; 9)) = nr(y'tu'si; ga)) € T>omr (v sz“g(l)). To prove
that 7TT(U;C1 ~09) C Tso, it is enough to prove that w7 (us;; g)) € T>o for all
u € U;r 1.>0°

+ _ A +
For any u € Uv,17>07 we have u = uim;, (a) for some u; € U and

1s, 7>O
a € Ry Tt is easy to see that z;; (a)si; gy = le( )Yi,, (@)zi; (—a~')gq). Note
that oz;/jl (a) € Tso and by 3.8, g1y 'y, (—a™)gay € TsoU™. Hence by 1.7, we
have

mr(usi; ga)) = 7r (uwéivjl (@)ys,, (@)ga) (90) " 24, (—Cfl)g(l)))
€ T>O7TT (U:__lsij ,>Oyij1 (a)g(l))T>0'

Set

-1
w = (1, w(J1 1)w(Jl),...,w(jl_l)w(n)),

Vi = (180, 0G0y, 815, VGa+1)s -+ 81y, V) ).

Then w’ is a reduced expression of w w(yn) and v/, is a positive subexpression
(—1) +

of w. For any a € Rxo, i;, (a)g(1) € Gv/, w',>0. Thus by induction hypothesis,

for any a € Ry, 7TT(U+

_1S

>0yz“( )9(1y) C T>o. Therefore, mr(ug) € To. Part
(a) is proved.
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We have

T+ (U1 209) = 1o+ (U S oysis, 1)) = o+ (o (U S o¥)sis, 901))
=1+ (U sosiom) = | o (U s, >0, (471835, 901)

a€R>o

= U o+ (U, ,>004ivj1(a71)yijl(a71)9(1)f1(a))
a€R>0 .

= U 7o (o (U1, 00, (@7, (@) g0 (@)
a€R>o

= U m (U, sosn (@)
a€R>o

= +

= aeLgﬂ) U+ (7TU+ (Uv_lsijl 7>Og(1))f1 (a))

By induction hypothesis,

7TU+(U;L715,ijl ~09) = {mu+ (frlar) fi-1(ar—1) -+~ fa(az)) | az,a,...,ar € Rxo}.
Thus
o (U so9) = U 7o (mo (U, 2o0) f2(@)
= zizio(fk(ak)fk—l(ak—l) -+ fila1)) | a1, a9, ..., ar € Rso}.

O

Remark. The referee pointed out to me that the assertion ¢t € T of 3.10(a) could
also be proved using generalized minors.

Lemma 3.11. Assume that o is a positive root and u € Uy, u' € UT such that
u™u € U;O for alln € N. Then u = z;(a) for somei €I and a € Rxp.

Proof. There exists t € Tsq, such that a;(t) = 2 for all i € I. Then tut™ =
u®® = 4™ for some m € N. By assumption, t"ut "' € U;O for all n € N.
Thus w(t~"u/t") = t7"(t"ut " )t" € U;O. Moreover, it is easy to see that
lim,, oot "u/t™ = 1. Since U;O is a closed subset of U™, lim,_ o ut "u't" =
u € U;O. Thus u = z;(a) for some i € I and a € Rxo. O

Lemma 3.12. Assume thatw € W and i, j € I such that w™'a; = aj. Then there
exists ¢ € Rso, such that v x;(a)w = z;(ca) for all a € R.

Proof. There exist ¢, € R — {0}, such that y;(a)w = wy;(c’a) and z;(a)w =
wzj(ca) for a € R. Since YB~ € Bsg, we have ¥ B+ =) B+ ¢ By, By
3.6, ¢ > 0. Thus ¢’ > 0. Moreover, since way = oz > 0, we have wsjuf1 =s; and
l(wsj) = I(s;w) = l(w) + 1. Hence, setting w’ = ws; = s;w, we have v’ = ws; =
siw, that is wai(=1)yi(1)zi(=1) = z;(—c)y;()ai(—c)i = x;(=1)y;(1)z;(—1)w.

Therefore, ¢ = ¢/~ > 0. O
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3.13. Proof of Proposition 3.7. If v € W, then va > 0 for a € (IJJJF. So
WUj(HaeR(v) Us) = {1}. By 338, fu(a) € T(Il,erw,,) Ua) - Uvrnlmjm for all
m € {1,2,...,k}. Note that v € —®T for all a € R(vy,) and vu,'ey, =
V() Vg, € —dT. So fm(a) € THaeR(U) U, and fk(ak)fk,l(ak,1)~-~f1(a1) €
TIl.er(w) Ua- Hence by 3.10(b), Ty (ug) = 1 for all u € U:,17>0. Therefore
ﬂuEU:21~>O (WUj (ug)) K U:;_g,go = UIg;o‘

Ifvé¢ 'W‘], then there exists a € <I>LJ,r such that va € —<I>}r, that is, v;llaijm € <I>LJ,r
for some m € {1,2,...,k}. Set kg = max{m | v,,'e, € ®}}. Then since
R(vy,) = {vptai,, | m > ko}, we have that vy,a > 0 for a € ®5. Hence by 3.8,

L ) 21
Tyt (fko (a)) = Uko 1xijk0 (—a)vi,. Ifu' € ﬂueU:Ll . (ﬂ'Uj- (ug)) . U;’OJ’}O, then

Tyt (fk(ak)fk—l(ak—l) - --fl(al))u’ € U:urggo for all ai,as,...,ar € Rsg. Since
U;’OJ’}O is a closed subset of G, Tyt (fk(ak)fk,l(ak,l) . ~f1(a1))u’ € UJS,%) for

all ar,az,...,ar € Rxo. Now take a, = 0 for m € {1,2,...,k} — {ko}, then
Tyt (fro (@) € U;’OJ’}O for all a € Rso. Set up = vigo_lxi,ko (=1)vi,. Then

J

u' € UT for all n € N. Thus by 3.11, vk_olozijk = a; for some j' € J and
0

w({,}O

uy € U:UFJ <o+ By 3.12, u1 = zj(—c) for some ¢ € R>o. That is a contradiction.
R

The proposition is proved. (I

Let me recall that L = P; (@ (see 2.4). Now I will prove the main theorem.

/

Theorem 3.14. For any v, w,v',w' € W such that v < w,v’ < w', set

~ o N—1 e GV W.,>0 gl S GV/ W', >0
Zuwvlw' { 9P (g’ H INYE +,W,>0, HWL> }
J,>0 ( J> Qng PJlUQJw(g )) and 1 € L>0

Then

~ ! !

v,w,v" W . / / J / /.
Zv,w,v/,w’_{ZJ,S(’) L dfo,wv w e W o < w, v <ol
J,>0 =

a, otherwise.

Proof. Note that {(P,Q,7) € Z; | P € Py, ¢(Q) € Py} is a closed subset
containing Zj ~o. Hence it contains Zj>o. Now fix g € Gv, w,>0,9" € Gv;,w1,>o
and | € L. By 3.10 (a), for any u € U:,1,>0,
and t € Tsg. Similarly, for any v’ € U:j,l s W9 = dt'my+(u'g’) for some
a’ €U, -, and t' € Tso. Set 2 = (gPJ,w(g/)_l QJ,ngJlUQJw(g’)). We have

ug = atmy+ (ug) for some a € Uy, .

(w b)) -2 = (“PrV™ Qyatmy s (ug) e, W (w9 ()
= (“R;,w(“/)_1 Qu,aHp,tmyt (ug)lw(ij (u’g’))t'UQJw(a')).
Then (u,(u')™!)-z € Z}’>O if and only if tmy+ (ug)lyp (7TUJ+ (Wg'))t' € LxoZ(L),
that is,

L€ mys (ug) T Lo Z(L) (my+ (u'g))

= (myy (ug)_lUJg7>O)T>QZ(L)¢(TFU}- (u'g')_lUJb,7>O).
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So by 3.5, z € Z; >0 if and only if

le ﬂ (7TUJ+ (uy)_lUIg7>0)T>OZ(L)¢(TrUJ* (ulg/)_lU:;g,go)

ueU:ll’>0
w'eut,_,
v ,>0
= ﬂ (WU;r (Ug)ilUJg7>0)T>OZ(L)¢( ﬂ g (U/Q/)ilUjj_g}o)'
weU™ | weut
v , >0 v ,>0

By 3.7, z € Z; >0 if and only if v,o’ € W7 and | € L>¢Z(L). The theorem is
proved. O

3.15. It is known that G0 = [, ,rew UJ!>0T>0UJ,!>O,
w, U;’>0T>0UJ,’>O is a semi-algebraic cell (see [LI, 2.11]) and is a connected
component of BtwB*TNB~w' B~ (see [FZ]). Moreover, Rietsch proved in [R2, 2.8]
that B¢ = |_|U<w Rouw,>0, where for any v,w € W such that v < w, Ryp,>0 is a
semi-algebraic cell and is a connected component of Ry 4.

The following result generalizes these facts.

where for any w,w’ €

a v,w,v w'syy’
Corollary 3.16. G~ = ||;-; |_|v7w’v/’w/eWJ |_|y’y,€WJ Z55 . Moreover,
v<w, v <w’
A ’
for any v,w,v',w' € Wy, g € Wy withv < w, v <w', Zy8" " %Y is a con-

4 . 4 . . . . . . .
nected component of Z7"" VY and is a semi-algebraic cell which is isomorphic

to R, where d = l(w) + l(w') + 2l (wd)+ | J | =l(v) = 1(v") = U(y) = 1(y).
Proof. P, <o (resp. 73;)],’10,’>0) is a connected component of P;/,, (resp. 73;)],710,)
(see [L3)). Thus {(P,Q,7) € 2y | Pe PL, -0,¥(Q) € P~} is open

’ ’, ’
Zv,w,v SW Y, Y
J

o, ’
and closed in . To prove that Z75:" " *#*¥ is a connected component
:

of Zf;’w’v/’w/;y’y’, it is enough to prove that Zf}”:(’)””w,‘y’y/ is a connected component
of {(Panly) € Zj;’w’v ey | Pe P{)],w,>0aw(Q) € P{)]’,w’,>0}'

Assume that g € Gv, w,>0,9" € Gv;,w',>0 and | € L. We have that (gPJ)B+
is the unique element B € R, that is contained in 9Pj(see 1.4). Therefore
(9P;)B" =9 B+, Similarly, (9P;)B" =99 B+ (¥¢'"HQ,)B" =v¢' ui B-
and (Y0 DQ,)B" =¥@)"" B~ Thus pos<(ng)B+7glw(g’) ((w(g’*l)QJ)BJ“)) =
pos(B*,1 B=) and pos((7P)P" 96 ((“0NQ,)E7)) = pos( BT BO).
Therefore we have that (9P;,¥) " Q;,gHp,lUq,¥(g")) € Zf}’w’””w,;y’y, if and
only if I € Bt juig Bt worwyd Mg BTy'wo B we = BTyB~ g Ny BYy'B~.

Note that L N Bt C% B~. Thus for any x € Wy, (LN BY)#(L N BY) C
B+j:u')(‘)]B_w(‘)]. Therefore,

LNB yB iy = | | (LA BY)&(LnBY) N BYyB iy
zeW;
= (LN By (LN BT).

Similarly, L Ny BTy'B~ = (L N B~ )ugy' (LN B~).

Then {(P,Q,) € Zy""" Y | P e P, -0 ¢(@Q) € 731;]/7w/’>0} is isomorphic
t0 Gy,w,>0 X Gyt w0 % ((LNBH)guind (LABY)N(LNB ™ )wdy' (LNB~))/Z(L). Note
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that ((LNB*)gud (LNBY)N(LNB~ )idy (LNB~))NLso = Ur g soT>0US Lo
Therefore
:zj)_,,;u(,)v Y o Gv,w,>0 X Gv’,’w’,>0 X Uy_wé’,>0T>OUI[{y’,>O/<Z(L) N T>O)
~ Rl(w)+l(w')+2l(w5)+\J\*l(v)*l(v')*l(y)*l(y')
~R., .

By 3.15, we have that Uy_wb, >OT>0UJ6,y, >O/(Z(L) OT>0) is a connected compo-
nent of ((L N BH)gud (LN BY)N (LN B gy (LNB~))/Z(L). The corollary is
proved. O
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