TOTAL POSITIVITY IN THE DE CONCINI-PROCESI COMPACTIFICATION

XUHUA HE

Abstract

We study the nonnegative part $\overline{G_{>0}}$ of the De Concini-Procesi compactification of a semisimple algebraic group G, as defined by Lusztig. Using positivity properties of the canonical basis and parametrization of flag varieties, we will give an explicit description of $\overline{G_{>0}}$. This answers the question of Lusztig in Total positivity and canonical bases, Algebraic groups and Lie groups (ed. G.I. Lehrer), Cambridge Univ. Press, 1997, pp. 281-295. We will also prove that $\overline{G_{>0}}$ has a cell decomposition which was conjectured by Lusztig.

0. Introduction

Let G be a connected split semisimple algebraic group of adjoint type over \mathbf{R}. We identify G with the group of its R-points. In [DP], De Concini and Procesi defined a compactification \bar{G} of G and decomposed it into strata indexed by the subsets of a finite set I. We will denote these strata by $\left\{Z_{J} \mid J \subset I\right\}$. Let $G_{>0}$ be the set of strictly totally positive elements of G and $G \geqslant 0$ be the set of totally positive elements of G (see [1]). We denote by $\overline{G_{>0}}$ the closure of $G_{>0}$ in \bar{G}. The main goal of this paper is to give an explicit description of $\overline{G_{>0}}$ (see 3.14). This answers the question in [L4, 9.4]. As a consequence, I will prove in 3.17 that $\overline{G_{>0}}$ has a cell decomposition which was conjectured by Lusztig.

To achieve our goal, it is enough to understand the intersection of $\overline{G_{>0}}$ with each stratum. We set $Z_{J, \geqslant 0}=\overline{G_{>0}} \bigcap Z_{J}$. Note that $Z_{I}=G$ and $Z_{I, \geqslant 0}=G_{\geqslant 0}$. We define $Z_{J,>0}$ as a certain subset of $Z_{J, \geqslant 0}$ analogous to $G_{>0}$ for $G_{\geqslant 0}$ (see 2.6). When G is simply-laced, we will prove in 2.7 a criterion for $Z_{J,>0}$ in terms of its image in certain representations of G, which is analogous to the criterion for $G_{>0}$ in L44 5.4]. As Lusztig pointed out in [L2], although the definition of total positivity was elementary, many of the properties were proved in a non-elementary way, using canonical bases and their positivity properties. Our Theorem 2.7 is an example of this phenomenon. As a consequence, we will see in 2.9 that $Z_{J, \geqslant 0}$ is the closure of $Z_{J,>0}$ in Z_{J}.

Note that Z_{J} is a fiber bundle over the product of two flag manifolds. Then understanding $Z_{J, \geqslant 0}$ is equivalent to understanding the intersection of $Z_{J, \geqslant 0}$ with each fiber. In 3.5, we will give a characterization of $Z_{J, \geqslant 0}$ which is analogous to the elementary fact that $G_{\geqslant 0}=\bigcap_{g \in G_{>0}} g^{-1} G_{>0}$. It allows us to reduce our problem to the problem of understanding certain subsets of some unipotent groups. Using the

[^0]parametrization of the totally positive part of the flag varieties (see MR]), we will give an explicit description of the subsets of G (see 3.7). Thus our main theorem can be proved.

1. Preliminaries

1.1. We will often identify a real algebraic variety with the set of its \mathbf{R}-rational points. Let G be a connected semisimple adjoint algebraic group defined and split over \mathbf{R}, with a fixed épinglage $\left(T, B^{+}, B^{-}, x_{i}, y_{i} ; i \in I\right.$) (see L1 1.1]). Let U^{+}, U^{-} be the unipotent radicals of B^{+}, B^{-}. Let X (resp. Y) be the free abelian group of all homomorphism of algebraic groups $T \rightarrow \mathbf{R}^{*}\left(\right.$ resp. $\left.\mathbf{R}^{*} \rightarrow T\right)$ and $\langle\rangle:, Y \times X \rightarrow \mathbf{Z}$ be the standard pairing. We write the operation in these groups as addition. For $i \in I$, let $\alpha_{i} \in X$ be the simple root such that $t x_{i}(a) t^{-1}=x_{i}(a)^{\alpha_{i}(t)}$ for all $a \in \mathbf{R}, t \in T$ and let $\alpha_{i}^{\vee} \in Y$ be the simple coroot corresponding to α_{i}. For any root α, we denote by U_{α} the root subgroup corresponding to α.

There is a unique isomorphism $\psi: G \xrightarrow{\sim} G^{\text {opp }}$ (the opposite group structure) such that $\psi\left(x_{i}(a)\right)=y_{i}(a), \psi\left(y_{i}(a)\right)=x_{i}(a)$ for all $i \in I, a \in \mathbf{R}$ and $\psi(t)=t$, for all $t \in T$.

If P is a subgroup of G and $g \in G$, we write ${ }^{g} P$ instead of $g P g^{-1}$.
For any algebraic group H, we denote the Lie algebra of H by Lie (H) and the center of H by $Z(H)$.

For any variety X and an automorphism σ of X, we denote the fixed point set of σ on X by X^{σ}.

For any group, We will write 1 for the identity element of the group.
For any finite set X, we will write $|X|$ for the cardinal of X.
1.2. Let $N(T)$ be the normalizer of T in G and $\dot{s}_{i}=x_{i}(-1) y_{i}(1) x_{i}(-1) \in N(T)$ for $i \in I$. Set $W=N(T) / T$ and s_{i} to be the image of $\dot{s_{i}}$ in W. Then W together with $\left(s_{i}\right)_{i \in I}$ is a Coxeter group.

Define an expression for $w \in W$ to be a sequence $\mathbf{w}=\left(w_{(0)}, w_{(1)}, \ldots, w_{(n)}\right)$ in W, such that $w_{(0)}=1, w_{(n)}=w$ and for any $j=1,2, \ldots, n, w_{(j-1)}^{-1} w_{(j)}=1$ or s_{i} for some $i \in I$. An expression $\mathbf{w}=\left(w_{(0)}, w_{(1)}, \ldots, w_{(n)}\right)$ is called reduced if $w_{(j-1)}<w_{(j)}$ for all $j=1,2, \ldots, n$. In this case, we will set $l(w)=n$. It is known that $l(w)$ is independent of the choice of the reduced expression. Note that if \mathbf{w} is a reduced expression of w, then for all $j=1,2, \ldots, n, w_{(j-1)}^{-1} w_{(j)}=s_{i_{j}}$ for some $i_{j} \in I$. Sometimes we will simply say that $s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}$ is a reduced expression of w.

For $w \in W$, set $\dot{w}=\dot{s_{i_{1}}} \dot{s_{i_{1}}} \cdots s_{i_{n}}$ where $s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}$ is a reduced expression of w. It is well known that \dot{w} is independent of the choice of the reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}$ of w.

Assume that $\mathbf{w}=\left(w_{(0)}, w_{(1)}, \ldots, w_{(n)}\right)$ is a reduced expression of w and $w_{(j)}=$ $w_{(j-1)} s_{i_{j}}$ for all $j=1,2, \ldots, n$. Suppose that $v \leqslant w$ for the standard partial order in W. Then there is a unique sequence $\mathbf{v}_{+}=\left(v_{(0)}, v_{(1)}, \ldots, v_{(n)}\right)$ such that $v_{(0)}=$ $1, v_{(n)}=v, v_{(j)} \in\left\{v_{(j-1)}, v_{(j-1)} s_{i_{j}}\right\}$ and $v_{(j-1)}<v_{(j-1)} s_{i_{j}}$ for all $j=1,2, \ldots, n$ (see [MR, 3.5]). \mathbf{v}_{+}is called the positive subexpression of \mathbf{w}. We define

$$
\begin{aligned}
& J_{\mathbf{v}_{+}}^{+}=\left\{j \in\{1,2, \ldots, n\} \mid v_{(j-1)}<v_{(j)}\right\}, \\
& J_{\mathbf{v}_{+}}^{\circ}=\left\{j \in\{1,2, \ldots, n\} \mid v_{(j-1)}=v_{(j)}\right\} .
\end{aligned}
$$

Then by the definition of \mathbf{v}_{+}, we have $\{1,2, \ldots, n\}=J_{\mathbf{v}_{+}}^{+} \sqcup J_{\mathbf{v}_{+}}^{\circ}$.
1.3. Let \mathcal{B} be the variety of all Borel subgroups of G. For B, B^{\prime} in \mathcal{B}, there is a unique $w \in W$, such that $\left(B, B^{\prime}\right)$ is in the G-orbit on $\mathcal{B} \times \mathcal{B}$ (diagonal action) that contains $\left(B^{+},,^{\dot{w}} B^{+}\right)$. Then we write $\operatorname{pos}\left(B, B^{\prime}\right)=w$. By the definition of pos, $\operatorname{pos}\left(B, B^{\prime}\right)=\operatorname{pos}\left({ }^{g} B,{ }^{g} B^{\prime}\right)$ for any $B, B^{\prime} \in \mathcal{B}$ and $g \in G$.

For any subset J of I, let W_{J} be the subgroup of W generated by $\left\{s_{j} \mid j \in J\right\}$ and let w_{0}^{J} be the unique element of maximal length in W_{J}. (We will simply write w_{0}^{I} as w_{0}.) We denote by P_{J} the subgroup of G generated by B^{+}and by $\left\{y_{j}(a) \mid j \in J, a \in \mathbf{R}\right\}$ and denote by \mathcal{P}^{J} the variety of all parabolic subgroups of G conjugated to P_{J}. It is easy to see that for any parabolic subgroup $P, P \in \mathcal{P}^{J}$ if and only if $\left\{\operatorname{pos}\left(B_{1}, B_{2}\right) \mid B_{1}, B_{2}\right.$ are Borel subgroups of $\left.P\right\}=W_{J}$.
1.4. For any parabolic subgroup P of G, define U_{P} to be the unipotent radical of P and H_{P} to be the inverse image of the connected center of P / U_{P} under $P \rightarrow P / U_{P}$. If B is a Borel subgroup of G, then so is

$$
P^{B}=(P \cap B) U_{P}
$$

It is easy to see that for any $g \in H_{P}$, we have ${ }^{g}\left(P^{B}\right)=P^{B}$. Moreover, P^{B} is the unique Borel subgroup B^{\prime} in P such that $\operatorname{pos}\left(B, B^{\prime}\right) \in W^{J}$, where W^{J} is the set of minimal length coset representatives of W / W_{J} (see [L5, 3.2(a)]).

Let P, Q be parabolic subgroups of G. We say that P, Q are opposed if their intersection is a common Levi of P, Q. (We then write $P \bowtie Q$.) It is easy to see that if $P \bowtie Q$, then for any Borel subgroup B of P and B^{\prime} of Q, we have $\operatorname{pos}\left(B, B^{\prime}\right) \in W_{J} w_{0}$.

For any subset J of I, define $J^{*} \subset I$ by $\left\{Q \mid Q \bowtie P\right.$ for some $\left.P \in \mathcal{P}^{J}\right\}=\mathcal{P}^{J^{*}}$. Then we have $\left(J^{*}\right)^{*}=J$. Let Q_{J} be the subgroup of G generated by B^{-}and by $\left\{x_{j}(a) \mid j \in J, a \in \mathbf{R}\right\}$. We have $Q_{J} \in \mathcal{P}^{J^{*}}$ and $P_{J} \bowtie Q_{J}$. Moreover, for any $P \in \mathcal{P}^{J}$, we have $P={ }^{g} P_{J}$ for some $g \in G$. Thus $\psi(P)={ }^{\psi(g)^{-1}} Q_{J} \in \mathcal{P}^{J^{*}}$.

1.5. Recall the following definitions from [L1].

For any $w \in W$, assume that $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}$ is a reduced expression of w. Define $\phi^{ \pm}: R_{\geqslant 0}^{n} \rightarrow U^{ \pm}$by

$$
\begin{array}{r}
\phi^{+}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=x_{i_{1}}\left(a_{1}\right) x_{i_{2}}\left(a_{2}\right) \cdots x_{i_{n}}\left(a_{n}\right), \\
\phi^{-}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=y_{i_{1}}\left(a_{1}\right) y_{i_{2}}\left(a_{2}\right) \cdots y_{i_{n}}\left(a_{n}\right) .
\end{array}
$$

Let $U_{w, \geqslant 0}^{ \pm}=\phi^{ \pm}\left(R_{\geqslant 0}^{n}\right) \subset U^{ \pm}, U_{w,>0}^{ \pm}=\phi^{ \pm}\left(R_{>0}^{n}\right) \subset U^{ \pm}$. Then $U_{w, \geqslant 0}^{ \pm}$and $U_{w,>0}^{ \pm}$ are independent of the choice of the reduced expression of w. We will simply write $U_{w_{0}, \geqslant 0}^{ \pm}$as $U_{\geqslant 0}^{ \pm}$and $U_{w_{0},>0}^{ \pm}$as $U_{>0}^{ \pm}$.
$T_{>0}$ is the submonoid of T generated by the elements $\chi(a)$ for $\chi \in Y$ and $a \in \mathbf{R}_{>0}$.
$G_{\geqslant 0}$ is the submonoid $U_{\geqslant 0}^{+} T_{>0} U_{\geqslant 0}^{-}=U_{\geqslant 0}^{-} T_{>0} U_{\geqslant 0}^{+}$of G.
$G_{>0}$ is the submonoid $U_{>0}^{+} T_{>0} U_{>0}^{-}=U_{>0}^{-} T_{>0} U_{>0}^{+}$of $G_{\geqslant 0}$.
$\mathcal{B}_{>0}$ is the subset $\left\{{ }^{u} B^{-} \mid u \in U_{>0}^{+}\right\}=\left\{{ }^{u} B^{+} \mid u \in U_{>0}^{-}\right\}$of \mathcal{B} and $\mathcal{B}_{\geqslant 0}$ is the closure of $\mathcal{B}_{>0}$ in the manifold \mathcal{B}.

For any subset J of $I, \mathcal{P}_{>0}^{J}=\left\{P \in \mathcal{P}^{J} \mid \exists B \in \mathcal{B}_{>0}\right.$, such that $\left.B \subset P\right\}$ and $\mathcal{P}_{\geqslant 0}^{J}=\left\{P \in \mathcal{P}^{J} \mid \exists B \in \mathcal{B}_{\geqslant 0}\right.$, such that $\left.B \subset P\right\}$ are subsets of \mathcal{P}^{J}.
1.6. For any $w, w^{\prime} \in W$, define

$$
\mathcal{R}_{w, w^{\prime}}=\left\{B \in \mathcal{B} \mid \operatorname{pos}\left(B^{+}, B\right)=w^{\prime}, \operatorname{pos}\left(B^{-}, B\right)=w_{0} w\right\}
$$

It is known that $\mathcal{R}_{w, w^{\prime}}$ is nonempty if and only if $w \leqslant w^{\prime}$ for the standard partial order in W (see [KL]). Now set

$$
\mathcal{R}_{w, w^{\prime},>0}=\mathcal{B}_{\geqslant 0} \cap \mathcal{R}_{w, w^{\prime}} .
$$

Then $\mathcal{R}_{w, w^{\prime},>0}$ is a connected component of $\mathcal{R}_{w, w^{\prime}}$ and is a semi-algebraic cell (see [R2, 2.8]). Furthermore, $\mathcal{B}=\bigsqcup_{w \leqslant w^{\prime}} \mathcal{R}_{w, w^{\prime}}$ and $\mathcal{B}_{\geqslant 0}=\bigsqcup_{w \leqslant w^{\prime}} \mathcal{R}_{w, w^{\prime},>0}$. Moreover, for any $u \in U_{w^{-1},>0}^{+}$, we have ${ }^{u} \mathcal{R}_{w, w^{\prime},>0} \subset \mathcal{R}_{1, w^{\prime},>0}$ (see [R2, 2.2]).

Let J be a subset of I. Define $\pi^{J}: \mathcal{B} \rightarrow \mathcal{P}^{J}$ to be the map which sends a Borel subgroup to the unique parabolic subgroup in \mathcal{P}^{J} that contains the Borel subgroup. For any $w, w^{\prime} \in W$ such that $w \leqslant w^{\prime}$ and $w^{\prime} \in W^{J}$, set $\mathcal{P}_{w, w^{\prime}}^{J}=\pi^{J}\left(\mathcal{R}_{w, w^{\prime}}\right)$ and $\mathcal{P}_{w, w^{\prime},>0}^{J}=\pi^{J}\left(\mathcal{R}_{w, w^{\prime},>0}\right)$. We have $\mathcal{P}_{\geqslant 0}^{J}=\bigsqcup_{w \leqslant w^{\prime}, w^{\prime} \in W^{J}} \mathcal{P}_{w, w^{\prime},>0}^{J}$ and $\left.\pi^{J}\right|_{\mathcal{R}_{w, w^{\prime},>0}}$ maps $\mathcal{R}_{w, w^{\prime},>0}$ bijectively onto $\mathcal{P}_{w, w^{\prime},>0}^{J}$ (see [R1, Chapter 4, 3.2]). Hence, for any $u \in U_{w^{-1},>0}^{+}$, we have ${ }^{u} \mathcal{P}_{w, w^{\prime},>0}^{J}=\pi^{J}\left({ }^{u} \mathcal{R}_{w, w^{\prime},>0}\right) \subset \pi^{J}\left(\mathcal{P}_{1, w^{\prime},>0}^{J}\right)$.
1.7. Define $\pi_{T}: B^{-} B^{+} \rightarrow T$ by $\pi_{T}\left(u t u^{\prime}\right)=t$ for $u \in U^{-}, t \in T, u^{\prime} \in U^{+}$. Then for $b_{1} \in B^{-}, b_{2} \in B^{-} B^{+}, b_{3} \in B^{+}$, we have $\pi_{T}\left(b_{1} b_{2} b_{3}\right)=\pi_{T}\left(b_{1}\right) \pi_{T}\left(b_{2}\right) \pi_{T}\left(b_{3}\right)$.

Let J be a subset of I. We denote by Φ_{J}^{+}the set of roots that are a linear combination of $\left\{\alpha_{j} \mid j \in J\right\}$ with nonnegative coefficients. We will simply write Φ_{I}^{+} as Φ^{+}and we will call a root α positive if $\alpha \in \Phi^{+}$. In this case, we will simply write $\alpha>0$. Define U_{J}^{+}to be the subgroup of U^{+}generated by $\left\{U_{\alpha} \mid \alpha \in \Phi_{J}^{+}\right\}$and ' U_{J}^{+}to be the subgroup of U^{+}generated by $\left\{U_{\alpha} \mid \alpha \in \Phi^{+}-\Phi_{J}^{+}\right\}$. Then $U^{-} \times T \times^{\prime} U_{J}^{+} \times U_{J}^{+}$ is isomorphic to $B^{-} B^{+}$via $\left(u, t, u_{1}, u_{2}\right) \mapsto u t u_{1} u_{2}$. Now define $\pi_{U_{J}^{+}}: B^{-} B^{+} \rightarrow U_{J}^{+}$ by $\pi_{U_{J}^{+}}\left(u t u_{1} u_{2}\right)=u_{2}$ for $u \in U^{-}, t \in T, u_{1} \in^{\prime} U_{J}^{+}$and $u_{2} \in U_{J}^{+}$. (We will simply write $\pi_{U_{I}^{+}}$as $\pi_{U^{+}}$.) Note that $U^{-} T \cdot U^{-} T^{\prime} U_{J}^{+}=U^{-} T^{\prime} U_{J}^{+}$. Thus it is easy to see that for any $a, b \in G$ such that $a, a b \in B^{-} B^{+}$, we have $\pi_{U_{J}^{+}}(a b)=\pi_{U_{J}^{+}}\left(\pi_{U^{+}}(a) b\right)$. Since ' U_{J}^{+}is a normal subgroup of $U^{+},\left.\pi_{U_{J}^{+}}\right|_{U^{+}}$is a homomorphism of U^{+}onto U_{J}^{+}. Moreover, we have

$$
\pi_{U_{J}^{+}}\left(x_{i}(a)\right)= \begin{cases}x_{i}(a), & \text { if } i \in J \\ 1, & \text { otherwise }\end{cases}
$$

Thus $\pi_{U_{J}^{+}}\left(U_{>0}^{+}\right)=U_{w_{0}^{J},>0}^{+}$and $\pi_{U_{J}^{+}}\left(U_{\geqslant 0}^{+}\right)=U_{w_{0}^{J}, \geqslant 0}^{+}$.
Let U_{J}^{-}be the subgroup of U^{-}generated by $\left\{U_{-\alpha} \mid \alpha \in \Phi_{J}^{+}\right\}$and ' U_{J}^{-}to be the subgroup of U^{-}generated by $\left\{U_{-\alpha} \mid \alpha \in \Phi^{+}-\Phi_{J}^{+}\right\}$. Then we define $\pi_{U_{J}^{-}}: U^{-} \rightarrow U_{J}^{-}$by $\pi_{U_{J}^{-}}\left(u_{1} u_{2}\right)=u_{1}$ for $u_{1} \in U_{J}^{-}, u_{2} \in^{\prime} U_{J}^{-}$. (We will simply write $\pi_{U_{I}^{-}}$as π_{U-}.) We have $\pi_{U_{J}^{-}}\left(U_{>0}^{-}\right)=U_{w_{0}^{J},>0}^{-}$and $\pi_{U_{J}^{-}}\left(U_{\geqslant 0}^{-}\right)=U_{w_{0}^{J}, \geqslant 0}^{-}$.
1.8. For any vector space V and a nonzero element v of V, we denote the image of v in $P(V)$ by $[v]$.

If (V, ρ) is a representation of G, we denote by $\left(V^{*}, \rho^{*}\right)$ the dual representation of G. Then we have the standard isomorphism $S t_{V}: V \otimes V^{*} \xrightarrow{\simeq} \operatorname{End}(V)$ defined by $S t_{V}\left(v \otimes v^{*}\right)\left(v^{\prime}\right)=v^{*}\left(v^{\prime}\right) v$ for all $v, v^{\prime} \in V, v^{*} \in V^{*}$. Now we have the $G \times G$ action on $V \otimes V^{*}$ by $\left(g_{1}, g_{2}\right) \cdot\left(v \otimes v^{*}\right)=\left(g_{1} v\right) \otimes\left(g_{2} v^{*}\right)$ for all $g_{1}, g_{2} \in G, v \in V, v^{*} \in V^{*}$ and the $G \times G$ action on $\operatorname{End}(V)$ by $\left(\left(g_{1}, g_{2}\right) \cdot f\right)(v)=g_{1}\left(f\left(g_{2}^{-1} v\right)\right)$ for all $g_{1}, g_{2} \in$ $G, f \in \operatorname{End}(V), v \in V$. The standard isomorphism between $V \otimes V^{*}$ and $\operatorname{End}(V)$ commutes with the $G \times G$ action. We will identify $\operatorname{End}(V)$ with $V \otimes V^{*}$ via the standard isomorphism.

2. The strata of the De Concini-Procesi Compactification

2.1. Let \mathcal{V}_{G} be the projective variety whose points are the $\operatorname{dim}(G)$-dimensional Lie subalgebras of $\operatorname{Lie}(G \times G)$. For any subset J of I, define

$$
Z_{J}=\left\{(P, Q, \gamma) \mid P \in \mathcal{P}^{J}, Q \in \mathcal{P}^{J^{*}}, \gamma=H_{P} g U_{Q}, P \bowtie^{g} Q\right\}
$$

with the $G \times G$ action by $\left(g_{1}, g_{2}\right) \cdot\left(P, Q, H_{P} g U_{Q}\right)=\left({ }^{g_{1}} P,{ }^{g_{2}} Q, H_{g_{1} P}\left(g_{1} g g_{2}^{-1}\right) U_{g_{2} Q}\right)$.
For $(P, Q, \gamma) \in Z_{J}$ and $g \in \gamma$, we set

$$
H_{P, Q, \gamma}=\left\{\left(l+u_{1}, \operatorname{Ad}\left(g^{-1}\right) l+u_{2}\right) \mid l \in \operatorname{Lie}\left(P \cap{ }^{g} Q\right), u_{1} \in \operatorname{Lie}\left(U_{P}\right), u_{2} \in \operatorname{Lie}\left(U_{Q}\right)\right\}
$$

Then $H_{P, Q, \gamma}$ is independent of the choice of g (see [L6, 12.2]) and is an element of \mathcal{V}_{G} (see [L6, 12.1]). Moreover, $(P, Q, \gamma) \rightarrow H_{P, Q, \gamma}$ is an embedding of $Z_{J} \subset \mathcal{V}_{G}$ (see [L6, 12.2]). We will identify Z_{J} with the subvariety of \mathcal{V}_{G} defined above. Then we have $\bar{G}=\bigsqcup_{J \subset I} Z_{J}$, where \bar{G} is the De Concini-Procesi compactification of G (see [L6, 12.3]). We will call $\left\{Z_{J} \mid J \subset I\right\}$ the strata of \bar{G} and Z_{I} (resp. Z_{\varnothing}) the highest (resp. lowest) stratum of \bar{G}. It is easy to see that Z_{I} is isomorphic to G and Z_{\varnothing} is isomorphic to $\mathcal{B} \times \mathcal{B}$.

Set $z_{J}^{\circ}=\left(P_{J}, Q_{J}, H_{P_{J}} U_{Q_{J}}\right)$. Then $z_{J}^{\circ} \in Z_{J}$ (see 1.4) and $Z_{J}=(G \times G) \cdot z_{J}^{\circ}$.
Since G is adjoint, we have an isomorphism $\chi: T \xrightarrow{\simeq}\left(\mathbf{R}^{*}\right)^{I}$ defined by $\chi(t)=$ $\left(\alpha_{i}(t)^{-1}\right)_{i \in I}$. We denote the closure of T in \bar{G} by \bar{T}. We have $H_{P_{J}, Q_{J}, H_{P_{J}} U_{Q_{J}}}=$ $\left\{\left(l+u_{1}, l+u_{2}\right) \mid l \in \operatorname{Lie}\left(P_{J} \cap Q_{J}\right), u_{1} \in U_{P_{J}}, u_{2} \in U_{Q_{J}}\right\}$. Moreover, for any $t \in Z\left(P_{J} \cap Q_{J}\right), H_{t}$ is the subspace of $\operatorname{Lie}(G) \times \operatorname{Lie}(G)$ spanned by the elements $(l, l),\left(u_{1}, \operatorname{Ad}\left(t^{-1}\right) u_{1}\right),\left(\operatorname{Ad}(t) u_{2}, u_{2}\right)$, where $l \in \operatorname{Lie}\left(P_{J} \cap Q_{J}\right), u_{1} \in U_{P_{J}}, u_{2} \in U_{Q_{J}}$. Thus it is easy to see that $z_{J}^{\circ}=\lim _{\substack{t_{j}=1, \forall j \in J \\ t_{j} \rightarrow 0, \forall j \notin J}} \chi^{-1}\left(\left(t_{i}\right)_{i \in I}\right) \in \bar{T}$.

Proposition 2.2. The automorphism ψ of the variety G (see 1.1) can be extended in a unique way to an automorphism $\bar{\psi}$ of \bar{G}. Moreover, $\bar{\psi}(P, Q, \gamma)=$ $(\psi(Q), \psi(P), \psi(\gamma)) \in Z_{J}$ for $J \subset I$ and $(P, Q, \gamma) \in Z_{J}$.

Proof. The map $\psi: G \rightarrow G$ induces a bijective map $\psi: \operatorname{Lie}(G) \rightarrow \operatorname{Lie}(G)$. Moreover, we have $\psi(\operatorname{Ad}(g) v)=\operatorname{Ad}\left(\psi(g)^{-1}\right) \psi(v)$ and $\psi\left(v+v^{\prime}\right)=\psi(v)+\psi\left(v^{\prime}\right)$ for $g \in G, v, v^{\prime} \in \operatorname{Lie}(G)$. Now define $\delta: \operatorname{Lie}(G) \times \operatorname{Lie}(G) \rightarrow \operatorname{Lie}(G) \times \operatorname{Lie}(G)$ by $\delta\left(v, v^{\prime}\right)=\left(\psi\left(v^{\prime}\right), \psi(v)\right)$ for $v, v^{\prime} \in \operatorname{Lie}(G)$. Then δ induces a bijection $\bar{\psi}: \mathcal{V}_{G} \rightarrow \mathcal{V}_{G}$.

Note that for any $g \in G$, we have $H_{g}=\{(v, \operatorname{Ad}(g) v) \mid v \in \operatorname{Lie} G\}$ and $\bar{\psi}\left(H_{g}\right)=$ $\left\{\left(\operatorname{Ad}\left(\psi(g)^{-1}\right) \psi(v), \psi(v)\right) \mid v \in \operatorname{Lie}(G)\right\}=H_{\psi(g)}$. Thus $\bar{\psi}$ is an extension of the automorphism ψ of G into \mathcal{V}_{G}.

Now for any $(P, Q, \gamma) \in Z_{J}$ and $g \in \gamma$, we have $\psi(P) \in \mathcal{P}^{J^{*}}, \psi(Q) \in \mathcal{P}^{J}$ and $\psi(Q) \bowtie^{\psi(g)} \psi(P)$ (see 1.4). Thus $(\psi(Q), \psi(P), \psi(\gamma)) \in Z_{J}$. Moreover,

$$
\begin{aligned}
\bar{\psi}\left(H_{P, Q, \gamma}\right)= & \left\{\left(\operatorname{Ad}(\psi(g)) \psi(l)+\psi\left(u_{2}\right), \psi(l)+\psi\left(u_{1}\right)\right) \mid l \in \operatorname{Lie}\left(P \cap{ }^{g} Q\right)\right. \\
& \left.\quad u_{1} \in \operatorname{Lie}\left(U_{P}\right), u_{2} \in \operatorname{Lie}\left(U_{Q}\right)\right\} \\
= & \left\{\left(l+u_{2}, \operatorname{Ad}\left(\psi(g)^{-1}\right) l+u_{1}\right) \mid l \in \operatorname{Lie}\left(\psi(Q) \cap^{\psi(g)} \psi(P)\right)\right. \\
= & H_{\psi(Q), \psi(P), \psi(\gamma)}
\end{aligned}
$$

Thus $\left.\bar{\psi}\right|_{\bar{G}}$ is an automorphism of \bar{G}. Moreover, since \bar{G} is the closure of $G,\left.\bar{\psi}\right|_{\bar{G}}$ is the unique automorphism of \bar{G} that extends the automorphism ψ of G.

The proposition is proved.
2.3. For any $\lambda \in X$, set $\operatorname{supp}(\lambda)=\left\{i \in I \mid\left\langle\alpha_{i}^{\vee}, \lambda\right\rangle \neq 0\right\}$.

In the rest of the section, I will fix a subset J of I and $\lambda_{1}, \lambda_{2} \in X^{+}$with $\operatorname{supp}\left(\lambda_{1}\right)=I-J, \operatorname{supp}\left(\lambda_{2}\right)=J$. Let $\left(V_{\lambda_{1}}, \rho_{1}\right)\left(\operatorname{resp} .\left(V_{\lambda_{2}}, \rho_{2}\right)\right)$ be the irreducible representation of G with the highest weight $\lambda_{1}\left(\right.$ resp. $\left.\lambda_{2}\right)$. Assume that $\operatorname{dim} V_{\lambda_{1}}=$ $n_{1}, \operatorname{dim} V_{\lambda_{2}}=n_{2}$ and $\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ (resp. $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n_{2}}^{\prime}\right\}$) is the canonical basis of $\left(V_{\lambda_{1}}, \rho_{1}\right)$ (resp. $\left.\left(V_{\lambda_{2}}, \rho_{2}\right)\right)$, where v_{1} and v_{1}^{\prime} are the highest weight vectors. Moreover, after reordering $\left\{2,3, \ldots, n_{2}\right\}$, we could assume that there exists some integer $n_{0} \in\left\{1,2, \ldots, n_{2}\right\}$ such that for any $i \in\left\{1,2, \ldots, n_{2}\right\}$, the weight of v_{i}^{\prime} is of the form $\lambda_{2}-\sum_{j \in J} a_{j} \alpha_{j}$ if and only if $i \leqslant n_{0}$.

Define $i_{J}: G \rightarrow P\left(\operatorname{End}\left(V_{\lambda_{1}}\right)\right) \times P\left(\operatorname{End}\left(V_{\lambda_{2}}\right)\right)$ by $i_{J}(g)=\left(\left[\rho_{1}(g)\right],\left[\rho_{2}(g)\right]\right)$. Then since $\lambda_{1}+\lambda_{2}$ is a dominant and regular weight, the closure of the image of i_{J} in $P\left(\operatorname{End}\left(V_{\lambda_{1}}\right)\right) \times P\left(\operatorname{End}\left(V_{\lambda_{2}}\right)\right)$ is isomorphic to the De Concini-Procesi compactification of G (See [DP, 4.1]). We will use i_{J} as the embedding of \bar{G} into $P\left(\operatorname{End}\left(V_{\lambda_{1}}\right)\right) \times P\left(\operatorname{End}\left(V_{\lambda_{2}}\right)\right)$. We will also identify \bar{G} with its image under i_{J}.
2.4. Now with respect to the canonical basis of $V_{\lambda_{1}}$ and $V_{\lambda_{2}}$, we will identify $\operatorname{End}\left(V_{\lambda_{1}}\right)$ with $g l\left(n_{1}\right)$ and $\operatorname{End}\left(V_{\lambda_{2}}\right)$ with $g l\left(n_{2}\right)$. Thus we will regard $\rho_{1}(g), \rho_{1}^{*}(g)$ as $n_{1} \times n_{1}$ matrices and $\rho_{2}(g), \rho_{2}^{*}(g)$ as $n_{2} \times n_{2}$ matrices. It is easy to see that (in terms of matrices) for any $g \in G, \rho_{1}^{*}(g)={ }^{t} \rho_{1}\left(g^{-1}\right)$ and $\rho_{2}^{*}(g)={ }^{t} \rho_{2}\left(g^{-1}\right)$, where ${ }^{t} M$ is the transpose of the matrix M. Now for any $g_{1}, g_{2} \in G, M_{1} \in g l\left(n_{1}\right), M_{2} \in g l\left(n_{2}\right)$, $\left(g_{1}, g_{2}\right) \cdot M_{1}=\rho_{1}\left(g_{1}\right) M_{1} \rho_{1}\left(g_{2}^{-1}\right)$ and $\left(g_{1}, g_{2}\right) \cdot M_{2}=\rho_{2}\left(g_{1}\right) M_{2} \rho_{2}\left(g_{2}^{-1}\right)$.

Set $L=P_{J} \cap Q_{J}$. Then L is a reductive algebraic group with the épinglage $\left(T, B^{+} \cap L, B^{-} \cap L, x_{j}, y_{j} ; j \in J\right)$. Now let V_{L} be the subspace of $V_{\lambda_{2}}$ spanned by $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n_{0}}^{\prime}\right\}$ and $I_{L}=\left(a_{i j}\right) \in g l\left(n_{2}\right)$, where

$$
a_{i j}= \begin{cases}1, & \text { if } i=j \in\left\{1,2, \ldots, n_{0}\right\} \\ 0, & \text { otherwise }\end{cases}
$$

Then V_{L} is an irreducible representation of L with the highest weight λ_{2} and canonical basis $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n_{0}}^{\prime}\right\}$. Moreover, λ_{2} is a dominant and regular weight for L. Now set $I_{1}=\operatorname{diag}(1,0,0, \ldots, 0) \in g l\left(n_{1}\right), I_{2}=\operatorname{diag}(1,0,0, \ldots, 0) \in g l\left(n_{2}\right)$. Then

$$
i_{J}\left(z_{J}^{0}\right)=\lim _{\substack{t_{j}=1, \forall j \in J \\ t_{j} \rightarrow 0, \forall j \notin J}} i_{J}\left(\chi^{-1}\left(\left(t_{i}\right)_{i \in I}\right)\right)=\left(\left[v_{1} \otimes v_{1}^{*}\right],\left[\sum_{i=1}^{n_{0}} v_{i}^{\prime} \otimes v_{i}^{\prime *}\right]\right)=\left(\left[I_{1}\right],\left[I_{L}\right]\right),
$$

where $\left\{v_{1}{ }^{*}, v_{2}{ }^{*}, \ldots, v_{n_{1}}{ }^{*}\right\}$ (resp. $\left\{v_{1}^{\prime *}, v_{2}^{\prime *}, \ldots, v_{n_{2}}^{\prime}{ }^{*}\right\}$) is the dual basis in $\left(V_{\lambda_{1}}\right)^{*}$ (resp. $\left.\left(V_{\lambda_{2}}\right)^{*}\right)$.
2.5. Recall that $\operatorname{supp}\left(\lambda_{1}\right)=I-J$. Thus for any $P \in \mathcal{P}^{J}$, there is a unique P-stable line $L_{\rho_{1}(P)}$ in $\left(V_{\lambda_{1}}, \rho_{1}\right)$ and $P \mapsto L_{\rho_{1}(P)}$ is an embedding of \mathcal{P}^{J} into $P\left(V_{\lambda_{1}}\right)$. Similarly, for any $Q \in \mathcal{P}^{J^{*}}$, there is a unique Q-stable line $L_{\rho_{1}^{*}(Q)}$ in $\left(V_{\lambda_{1}}^{*}, \rho_{1}^{*}\right)$ and $Q \mapsto L_{\rho_{1}^{*}(Q)}$ is an embedding of $\mathcal{P}^{J^{*}}$ into $P\left(V_{\lambda_{1}}^{*}\right)$. It is easy to see $L_{\rho_{1}\left(P_{J}\right)}=\left[v_{1}\right], L_{\rho_{1}^{*}\left(Q_{J}\right)}=\left[v_{1}^{*}\right]$ and $L_{\rho_{1}(g P)}=\rho_{1}(g) L_{\rho_{1}(P)}, L_{\rho_{1}^{*}(g Q)}=\rho_{1}^{*}(g) L_{\rho_{1}^{*}(Q)}$ for $P \in \mathcal{P}^{J}, Q \in \mathcal{P}^{J^{*}}, g \in G$.

There are projections $p_{1}: P\left(\operatorname{End}\left(V_{\lambda_{1}}\right)\right) \times P\left(\operatorname{End}\left(V_{\lambda_{2}}\right)\right) \rightarrow P\left(\operatorname{End}\left(V_{\lambda_{1}}\right)\right)$ and $p_{2}: P\left(\operatorname{End}\left(V_{\lambda_{1}}\right)\right) \times P\left(\operatorname{End}\left(V_{\lambda_{2}}\right)\right) \rightarrow P\left(\operatorname{End}\left(V_{\lambda_{2}}\right)\right)$. It is easy to see that $\left.p_{1}\right|_{Z_{J}}$, $p_{2} \mid Z_{J}$ commute with the $G \times G$ action and $p_{1}\left(z_{J}^{\circ}\right)=\left[v_{1} \otimes v_{1}{ }^{*}\right]=\left[L_{\rho_{1}\left(P_{J}\right)} \otimes L_{\rho_{1}^{*}\left(Q_{J}\right)}\right]$.

Now for any $g_{1}, g_{2} \in G$, we have

$$
p_{1}\left(\left(g_{1}, g_{2}\right) \cdot z_{J}^{0}\right)=\left[\rho_{1}\left(g_{1}\right) L_{\rho_{1}\left(P_{J}\right)} \otimes \rho_{1}^{*}\left(g_{2}\right) L_{\rho_{1}^{*}\left(Q_{J}\right)}\right]=\left[L_{\rho_{1}\left(g_{1} P\right)} \otimes L_{\rho_{1}^{*}\left(g_{2} Q\right)}\right] .
$$

In other words, $p_{1}(z)=\left[L_{\rho_{1}(P)} \otimes L_{\rho_{1}^{*}(Q)}\right]$ for $z=(P, Q, \gamma) \in Z_{J}$.
2.6. Let $\overline{G_{>0}}$ be the closure of $G_{>0}$ in \bar{G}. Then $\overline{G_{>0}}$ is also the closure of $G_{\geqslant 0}$ in \bar{G}. We have $z_{J}^{\circ} \in \overline{G_{>0}}$ (see 2.1). Now set

$$
\begin{gathered}
Z_{J, \geqslant 0}=Z_{J} \cap \overline{G_{>0}}, \\
Z_{J,>0}=\left\{\left(g_{1}, g_{2}^{-1}\right) \cdot z_{J}^{\circ} \mid g_{1}, g_{2} \in G_{>0}\right\} .
\end{gathered}
$$

Since $\psi\left(G_{>0}\right)=G_{>0}$, we have $\bar{\psi}\left(\overline{G_{>0}}\right)=\overline{G_{>0}}$. Moreover, $\bar{\psi}\left(Z_{J}\right)=Z_{J}$ (see 2.2). Therefore $\bar{\psi}\left(Z_{J, \geqslant 0}\right)=Z_{J, \geqslant 0}$. Similarly, $\left(g_{1}, g_{2}^{-1}\right) \cdot Z_{J, \geqslant 0} \subset Z_{J, \geqslant 0}$ for any $g_{1}, g_{2} \in$ $G_{>0}$. Thus $Z_{J,>0} \subset Z_{J, \geqslant 0}$. Moreover, it is easy to see that $\bar{\psi}\left(Z_{J,>0}\right)=Z_{J,>0}$.

Note that for any $u_{1}, u_{4} \in U_{>0}^{-}, u_{2}, u_{3} \in U_{>0}^{+}, t, t^{\prime} \in T_{>0}$, we have

$$
\begin{aligned}
\left(u_{1} u_{2} t, u_{3}^{-1} u_{4}^{-1} t^{\prime}\right) \cdot z_{J}^{\circ} & =\left(u_{1} u_{2}, u_{3}^{-1} u_{4}^{-1}\right) \cdot\left(P_{J}, Q_{J}, H_{P_{J}} t t^{\prime} U_{Q_{J}}\right) \\
& =\left(u_{1}, u_{3}^{-1}\right) \cdot\left(P_{J}, Q_{J}, H_{P_{J}} \pi_{U_{J}^{+}}\left(u_{2}\right) t t^{\prime} \pi_{U_{J}^{-}}\left(u_{4}\right) U_{Q_{J}}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
Z_{J,>0} & =\left\{\left(u_{1}, u_{2}^{-1}\right) \cdot\left(P_{J}, Q_{J}, H_{P_{J}} l U_{Q_{J}}\right) \mid u_{1} \in U_{>0}^{-}, u_{2} \in U_{>0}^{+}, l \in L_{>0}\right\} \\
& =\left\{\left(u_{1}^{\prime} t, u_{2}^{\prime-1}\right) \cdot z_{J}^{\circ} \mid u_{1}^{\prime} \in U_{>0}^{-}, u_{2}^{\prime} \in U_{>0}^{+}, t \in T_{>0}\right\} .
\end{aligned}
$$

Moreover, for any $u_{1}, u_{1}^{\prime} \in U^{-}, u_{2}, u_{2}^{\prime} \in U^{+}$and $t, t^{\prime} \in T$, it is easy to see that $\left(u_{1} t, u_{2}\right) \cdot z_{J}^{\circ}=\left(u_{1}^{\prime} t^{\prime}, u_{2}^{\prime}\right) \cdot z_{J}^{\circ}$ if and only if $\left(u_{1} t\right)^{-1} u_{1}^{\prime} t^{\prime} \in l H_{P_{J}} \cap B^{-} \subset l Z(L)$ and $u_{2}^{-1} u_{2}^{\prime} \in l^{-1} H_{Q_{J}} \bigcap U^{+} \subset l Z(L)$ for some $l \in L$, that is, $l \in Z(L), u_{1}=u_{1}^{\prime}, u_{2}=u_{2}^{\prime}$ and $t \in t^{\prime} Z(L)$. Thus, $Z_{J,>0} \cong U_{>0}^{-} \times U_{>0}^{+} \times T_{>0} /\left(T_{>0} \bigcap Z(L)\right) \cong R_{>0}^{2 l\left(w_{0}\right)+|J|}$.

Now I will prove a criterion for $Z_{J,>0}$.
Theorem 2.7. Assume that G is simply-laced. Let $z \in Z_{J, \geqslant 0}$. Then $z \in Z_{J,>0}$ if and only if z satisfies the condition:
$\left(^{*}\right) i_{J}(z)=\left(\left[M_{1}\right],\left[M_{2}\right]\right)$ and $i_{J}(\bar{\psi}(z))=\left(\left[M_{3}\right],\left[M_{4}\right]\right)$ for some matrices $M_{1}, M_{3} \in g l\left(n_{1}\right)$ and $M_{2}, M_{4} \in g l\left(n_{2}\right)$ with all the entries in $\mathbf{R}_{>0}$.

Proof. If $z \in Z_{J,>0}$, then $z=\left(g_{1}, g_{2}^{-1}\right) \cdot z_{J}^{\circ}$, for some $g_{1}, g_{2} \in G_{>0}$. Assume that $g_{1} \cdot v_{1}=\sum_{i=1}^{n_{1}} a_{i} v_{i}$ and $g_{2}^{-1} \cdot v_{1}^{*}=\sum_{i=1}^{n_{1}} b_{i} v_{i}^{*}$. Then for any $i=1,2, \ldots, n_{1}$, $a_{i}, b_{i}>0$. Set $a_{i j}=a_{i} b_{j}$. Then $p_{1}(z)=\left[\rho_{1}\left(g_{1}\right) I_{1} \rho_{1}\left(g_{2}\right)\right]=\left[\left(a_{i j}\right)\right]$ is a matrix with all the entries in $\mathbf{R}_{>0}$.

We have $p_{2}(z)=\left[\rho_{2}\left(g_{1}\right) I_{L} \rho_{2}\left(g_{2}\right)\right]=\left[\rho_{2}\left(g_{1}\right) I_{2} \rho_{2}\left(g_{2}\right)+\rho_{2}\left(g_{1}\right)\left(I_{L}-I_{2}\right) \rho_{2}\left(g_{2}\right)\right]$. Note that $\rho_{2}\left(g_{1}\right) I_{2} \rho_{2}\left(g_{2}\right)$ is a matrix with all the entries in $\mathbf{R}_{>0}$ and $\rho_{2}\left(g_{1}\right), \rho_{2}\left(g_{2}\right)$, $\left(I_{L}-I_{2}\right)$ are matrices with all the entries in $\mathbf{R}_{\geqslant 0}$. Thus $\rho_{2}\left(g_{1}\right)\left(I_{L}-I_{2}\right) \rho_{2}\left(g_{2}\right)$ is a matrix with all its entries in $\mathbf{R}_{\geqslant 0}$. So $\rho_{2}\left(g_{1}\right) I_{L} \rho_{2}\left(g_{2}\right)$ is a matrix with all the entries in $\mathbf{R}_{>0}$.

Similarly, $i_{J}(\bar{\psi}(z))=\left(\left[M_{3}\right],\left[M_{4}\right]\right)$ for some matrices M_{3}, M_{4} with all their entries in $\mathbf{R}_{>0}$.

On the other hand, assume that z satisfies the condition $\left(^{*}\right)$. Suppose that $z=(P, Q, \gamma)$ and $L_{\rho_{1}(P)}=\left[\sum_{i=1}^{n_{1}} a_{i} v_{i}\right], L_{\rho_{1}^{*}(Q)}=\left[\sum_{i=1}^{n_{1}} b_{i} v_{i}^{*}\right]$. We may also assume that $a_{i_{0}}=b_{i_{1}}=1$ for some integers $i_{0}, i_{1} \in\left\{1,2, \ldots, n_{1}\right\}$.

Set $M=\left(a_{i j}\right) \in g L\left(n_{1}\right)$, where $a_{i j}=a_{i} b_{j}$ for $i, j \in\left\{1,2, \ldots, n_{1}\right\}$. Then $p_{1}(z)=\left[L_{\rho_{1}(P)} \otimes L_{\rho_{1}^{*}(Q)}\right]=[M]$. By the condition $\left(^{*}\right)$ and since $a_{i_{0}, i_{1}}=a_{i_{0}} b_{i_{1}}=1$,
we have that M is a matrix with all its entries in $\mathbf{R}_{>0}$. In particular, for any $i \in\left\{1,2, \ldots, n_{1}\right\}, a_{i, i_{1}}=a_{i}>0$. Therefore $L_{\rho_{1}(P)}=\left[\sum_{i=1}^{n_{1}} a_{i} v_{i}\right]$, where $a_{i}>0$ for all $i \in\left\{1,2, \ldots, n_{1}\right\}$. By R1 5.1] (see also [L3, 3.4]), $P \in \mathcal{P}_{>0}^{J}$. Similarly, $\psi(Q) \in \mathcal{P}_{>0}^{J}$. Thus there exist $u_{1} \in U_{>0}^{-}, u_{2} \in U_{>0}^{+}$and $l \in L$, such that $z=$ $\left(u_{1}, u_{2}^{-1}\right) \cdot\left(P_{J}, Q_{J}, H_{P_{J}} l U_{Q_{J}}\right)$.

We can express u_{1}, u_{2} in a unique way as $u_{1}=u_{1}^{\prime} u_{1}^{\prime \prime}$, for some $u_{1}^{\prime} \in^{\prime} U_{J}^{-}, u_{1}^{\prime \prime} \in U_{J}^{-}$ and $u_{2}=u_{2}^{\prime \prime} u_{2}^{\prime}$, for some $u_{2}^{\prime} \in^{\prime} U_{J}^{+}, u_{2}^{\prime \prime} \in U_{J}^{+}$(see 1.7).

Recall that V_{L} is the subspace of $V_{\lambda_{2}}$ spanned by $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n_{0}}^{\prime}\right\}$. Let V_{L}^{\prime} be the subspace of $V_{\lambda_{2}}$ spanned by $\left\{v_{n_{0}+1}^{\prime}, v_{n_{0}+2}^{\prime}, \ldots, v_{n_{2}}^{\prime}\right\}$. Then $u \cdot v-v \in V_{L}^{\prime}$ and $u \cdot V_{L}^{\prime} \subset V_{L}^{\prime}$, for all $v \in V_{L}, \alpha \notin \Phi_{J}^{+}$and $u \in U_{-\alpha}$. Thus $u \cdot v-v \in V_{L}^{\prime}$ and $u \cdot V_{L}^{\prime} \subset V_{L}^{\prime}$, for all $v \in V_{L}$ and $u \in^{\prime} U_{J}^{-}$.

Similarly, let V_{L}^{*} be the subspace of $V_{\lambda_{2}}^{*}$ spanned by $\left\{v_{1}^{\prime *}, v_{2}^{\prime *}, \ldots, v_{n_{0}}^{\prime *}\right\}$ and $V_{L}^{\prime *}$ be the subspace of $V_{\lambda_{2}}^{*}$ spanned by $\left\{v_{n_{0}+1}^{\prime}{ }^{*}, v_{n_{0}+2}^{\prime}{ }^{*}, \ldots, v_{n_{2}}^{\prime}{ }^{*}\right\}$. Then for any $v^{*} \in V_{L}^{*}$ and $u \in^{\prime} U_{J}^{+}$, we have $u \cdot v-v \in V_{L}^{\prime *}$ and $u V_{L}^{\prime *} \subset V_{L}^{\prime *}$.

We define a map $\pi_{L}: g l\left(n_{2}\right) \rightarrow g l\left(n_{0}\right)$ by

$$
\pi_{L}\left(\left(a_{i j}\right)_{i, j \in\left\{1,2, \ldots, n_{2}\right\}}\right)=\left(a_{i j}\right)_{i, j \in\left\{1,2, \ldots, n_{0}\right\}}
$$

Then for any $u \in^{\prime} U_{J}^{-}, u^{\prime} \in^{\prime} U_{J}^{+}$and $M \in g l\left(n_{2}\right)$, we have $\pi_{L}\left(\left(u, u^{\prime}\right) \cdot M\right)=$ $\pi_{L}(M)$. Set $M_{2}=\rho_{2}\left(u_{1} l\right) I_{L} \rho_{2}\left(u_{2}\right)$ and $l^{\prime}=u_{1}^{\prime \prime} l u_{2}^{\prime \prime} \in L$. Then

$$
\begin{aligned}
\pi_{L}\left(M_{2}\right) & =\pi_{L}\left(\left(u_{1}, u_{2}^{-1}\right) \cdot\left(\rho_{2}(l) I_{L}\right)\right)=\pi_{L}\left(\left(u_{1}^{\prime}, u_{2}^{\prime-1}\right) \cdot\left(\left(u_{1}^{\prime \prime}, u_{2}^{\prime \prime-1}\right) \cdot\left(\rho_{2}(l) I_{L}\right)\right)\right) \\
& =\pi_{L}\left(\left(u_{1}^{\prime \prime}, u_{2}^{\prime \prime-1}\right) \cdot\left(\rho_{2}(l) I_{L}\right)\right)=\pi_{L}\left(\rho_{2}\left(l^{\prime}\right) I_{L}\right)=\rho_{L}\left(l^{\prime}\right)
\end{aligned}
$$

Since $p_{2}(z)=\left[M_{2}\right], M_{2}$ is a matrix with all its entries nonzero. Therefore $\rho_{L}\left(l^{\prime}\right)=\pi_{L}\left(M_{2}\right)$ is a matrix with all its entries nonzero. Thus $l^{\prime}=l_{1} t_{1} l_{2}$, for some $l_{1} \in U^{-} \cap L, l_{2} \in U^{+} \cap L, t_{1} \in T$.

Set $\widetilde{u_{1}}=u_{1}^{\prime} l_{1}$ and $\widetilde{u_{2}}=u_{2}^{\prime} l_{2}$. Then $\widetilde{u_{1}} P_{J}={ }^{u_{1}\left(u_{1}^{\prime \prime-1} l_{1}\right)} P_{J}={ }^{u_{1}} P_{J}$. Similarly, we have ${\widetilde{u_{2}}}^{-1} Q_{J}=\bar{u}_{2}^{-1} Q_{J}$. So $z=\left(\widetilde{u_{1}}, \widetilde{u_{2}}{ }^{-1}\right) \cdot\left(P_{J}, Q_{J}, H_{P_{J}} t_{1} U_{Q_{J}}\right)$.

Now for any $i_{0}, j_{0} \in\left\{1,2, \ldots, n_{1}\right\}$, define a map $\pi_{i_{0}, j_{0}}^{1}: g l\left(n_{1}\right) \rightarrow \mathbf{R}$ by

$$
\pi_{i_{0}, j_{0}}^{1}\left(\left(a_{i j}\right)_{i, j \in\left\{1,2, \ldots, n_{1}\right\}}\right)=a_{i_{0}, j_{0}}
$$

and for any $i_{0}, j_{0} \in\left\{1,2, \ldots, n_{2}\right\}$, define a map $\pi_{i_{0}, j_{0}}^{2}: g l\left(n_{2}\right) \rightarrow \mathbf{R}$ by

$$
\pi_{i_{0}, j_{0}}^{2}\left(\left(a_{i j}\right)_{i, j \in\left\{1,2, \ldots, n_{2}\right\}}\right)=a_{i_{0}, j_{0}}
$$

Now $z=\left(\widetilde{u_{1}} t_{1}, \widetilde{u_{2}}-1\right) \cdot z_{J}^{\circ}$ and $\bar{\psi}(z)=\left(\psi\left(\widetilde{u_{2}}\right) t_{1}, \psi\left(\widetilde{u_{1}}\right)^{-1}\right) \cdot z_{J}^{\circ}$.
Set

$$
\begin{array}{ll}
\tilde{M}_{1}=\rho_{1}\left(\widetilde{u_{1}} t_{1}\right) I_{1} \rho_{1}\left(\widetilde{u_{2}}\right), \quad \tilde{M}_{3}=\rho_{1}\left(\psi\left(\widetilde{u_{2}}\right) t_{1}\right) I_{1} \rho_{1}\left(\psi\left(\widetilde{u_{1}}\right)\right) \\
\tilde{M}_{2}=\rho_{2}\left(\widetilde{u_{1}} t_{1}\right) I_{L} \rho_{2}\left(\widetilde{u_{2}}\right), \quad \tilde{M}_{4}=\rho_{2}\left(\psi\left(\widetilde{u_{2}}\right) t_{1}\right) I_{1} \rho_{2}\left(\psi\left(\widetilde{u_{1}}\right)\right)
\end{array}
$$

We have $\widetilde{u_{1}} \cdot v_{1}=\sum_{i=1}^{n_{1}} \frac{\pi_{i, 1}^{1}\left(\tilde{M}_{1}\right)}{\pi_{1,1}^{1}\left(\tilde{M}_{1}\right)} v_{i}$ and $\psi\left(\widetilde{u_{2}}\right) \cdot v_{1}=\sum_{i=1}^{n_{1}} \frac{\pi_{i, 1}^{1}\left(\tilde{M}_{3}\right)}{\pi_{1,1}^{1}\left(M_{3}\right)} v_{i}$.
Moreover, let V_{0} be the subspace of $V_{\lambda_{2}}$ spanned by $\left\{v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{n_{2}}^{\prime}\right\}$ and $V_{0}{ }^{*}$ be the subspace of $V_{\lambda_{2}}^{*}$ spanned by $\left\{v_{2}^{\prime *}, v_{3}^{\prime *}, \ldots, v_{n_{2}}^{\prime}\right\}$. Then we have $u \cdot V_{0} \subset V_{0}$, for all $u \in U^{-}$and $u^{\prime} \cdot V_{0}^{*} \subset V_{0}^{*}$, for all $u^{\prime} \in U^{+}$.

Thus for all $i=1,2, \ldots, n_{2}$,

$$
\begin{aligned}
\pi_{i, 1}^{2}\left(M_{2}\right) & =\pi_{i, 1}^{2}\left(\rho_{2}\left(\widetilde{u_{1}} t_{1}\right) I_{2} \rho_{2}\left(\widetilde{u_{2}}\right)\right)+\pi_{i, 1}^{2}\left(\rho_{2}\left(\widetilde{u_{1}} t_{1}\right)\left(I_{L}-I_{2}\right) \rho_{2}\left(\widetilde{u_{2}}\right)\right) \\
& =\pi_{i, 1}^{2}\left(\rho_{2}\left(\widetilde{u_{1}} t_{1}\right) I_{2} \rho_{2}\left(\widetilde{u_{2}}\right)\right) .
\end{aligned}
$$

So $\widetilde{u_{1}} \cdot v_{1}^{\prime}=\sum_{i=1}^{n_{2}} \frac{\pi_{i, 1}^{2}\left(\tilde{M}_{2}\right)}{\pi_{1,1}^{2}\left(\tilde{M}_{2}\right)} v_{i}^{\prime}$ and $\psi\left(\widetilde{u_{2}}\right) \cdot v_{1}^{\prime}=\sum_{i=1}^{n_{2}} \frac{\pi_{i, 1}^{2}\left(\tilde{M}_{4}\right)}{\pi_{1,1}^{2}\left(\tilde{M}_{4}\right)} v_{i}^{\prime}$. By [L2, 5.4], we have $\widetilde{u_{1}}, \psi\left(\widetilde{u_{2}}\right) \in U_{>0}^{-}$. Therefore to prove that $z \in Z_{J,>0}$, it is enough to prove that $t_{1} \in T_{>0} Z(L)$, where $Z(L)$ is the center of L.

For any $g \in\left(U^{-}, U^{+}\right) \cdot \bar{T}, g$ can be expressed in a unique way as $g=\left(u_{1}, u_{2}\right) \cdot t$, for some $u_{1} \in U^{-}, u_{2} \in U^{+}, t \in \bar{T}$. Now define $\pi_{\bar{T}}:\left(U^{-}, U^{+}\right) \cdot \bar{T} \rightarrow \bar{T}$ by $\pi_{\bar{T}}\left(\left(u_{1}, u_{2}\right) \cdot t\right)=t$ for all $u_{1} \in U^{-}, u_{2} \in U^{+}, t \in \bar{T}$. Note that $\left(U^{-}, U^{+}\right) \cdot \bar{T} \cap \overline{G_{>0}}$ is the closure of $G_{>0}$ in $\left(U^{-}, U^{+}\right) \cdot \bar{T}$. Then $\pi_{\bar{T}}\left(\left(U^{-}, U^{+}\right) \cdot \bar{T} \cap \overline{G_{>0}}\right)$ is contained in the closure of $T_{>0}$ in \bar{T}. In particular, $\pi_{\bar{T}}(z)=t_{1} t_{J}$ is contained in the closure of $T_{>0}$ in \bar{T}. Therefore for any $j \in J, \alpha_{j}\left(t_{1}\right)>0$. Now let t_{2} be the unique element in T such that

$$
\alpha_{j}\left(t_{2}\right)= \begin{cases}\alpha_{j}\left(t_{1}\right), & \text { if } j \in J \\ \alpha_{j}\left(t_{1}\right)^{2}, & \text { if } j \notin J\end{cases}
$$

Then $t_{2} \in T_{>0}$ and $t_{2}^{-1} t_{1} \in Z(L)$. The theorem is proved.
Remark. Theorem 2.7 is analogous to the following statement in [L4, 5.4]: Assume that G is simply laced and V is the irreducible representation of G with the highest weight λ, where λ is a dominant and regular weight of G. For any $g \in G$, let $M(g)$ be the matrix of $g: V \rightarrow V$ with respect to the canonical basis of V. Then for any $g \in G, g \in G_{>0}$ if and only if $M(g)$ and $M(\psi(g))$ are matrices with all the entries in $\mathbf{R}_{>0}$.
2.8. Before proving Corollary 2.9, I will introduce some technical tools.

Since G is adjoint, there exists (in an essentially unique way) \tilde{G} with the épinglage $\left(\tilde{T}, \tilde{B}^{+}, \tilde{B}^{-}, \tilde{x}_{\tilde{i}}, \tilde{y}_{i} ; \tilde{i} \in \tilde{I}\right.$) and an automorphism $\sigma: \tilde{G} \rightarrow \tilde{G}$ (over \mathbf{R}) such that the following conditions are satisfied.
(a) \tilde{G} is connected semisimple adjoint algebraic group defined and split over \mathbf{R}.
(b) \tilde{G} is simply laced.
(c) σ preserves the épinglage, that is, $\sigma(\tilde{T})=\tilde{T}$ and there exists a permutation $\tilde{i} \rightarrow \sigma(\tilde{i})$ of \tilde{I}, such that $\sigma\left(\tilde{x}_{\tilde{i}}(a)\right)=\tilde{x}_{\sigma(\tilde{i})}(a), \sigma\left(\tilde{y}_{\tilde{i}}(a)\right)=\tilde{y}_{\sigma(\tilde{i})}(a)$ for all $\tilde{i} \in \tilde{I}$ and $a \in \mathbf{R}$.
(d) If $\tilde{i}_{1} \neq \tilde{i}_{2}$ are in the same orbit of $\sigma: \tilde{I} \rightarrow \tilde{I}$, then $\tilde{i}_{1}, \tilde{i}_{2}$ do not form an edge of the Coxeter graph.
(e) \tilde{i} and $\sigma(\tilde{i})$ are in the same connected component of the Coxeter graph, for any $\tilde{i} \in \tilde{I}$.
(f) There exists an isomorphism $\phi: \tilde{G}^{\sigma} \rightarrow G$ (as algebraic groups over \mathbf{R}) which is compatible with the épinglage of G and the épinglage $\left(\tilde{T}^{\sigma}, \tilde{B}^{+\sigma}, \tilde{B}^{-\sigma}, \tilde{x}_{p}, \tilde{y}_{p} ; p \in\right.$ $\bar{I})$ of \tilde{G}^{σ}, where \bar{I} is the set of orbit of $\sigma: \tilde{I} \rightarrow \tilde{I}$ and $\tilde{x}_{p}(a)=\prod_{\tilde{i} \in p} \tilde{x}_{\tilde{i}}(a), \tilde{y}_{p}(a)=$ $\prod_{\tilde{i} \in p} \tilde{y}_{\tilde{i}}(a)$ for all $p \in \bar{I}$ and $a \in \mathbf{R}$.

Let λ be a dominant and regular weight of \tilde{G} and (V, ρ) be the irreducible representation of \tilde{G} with highest weight λ. Let \bar{G} be the closure of $\{[\rho(\tilde{g})] \mid \tilde{g} \in \tilde{G}\}$ in $P(\operatorname{End}(V))$ and $\overline{\tilde{G}^{\sigma}}$ be the closure of $\left\{[\rho(\tilde{g})] \mid \tilde{g} \in \tilde{G}^{\sigma}\right\}$ in $P(\operatorname{End}(V))$. Then since λ is a dominant and regular weight of \tilde{G} and $\left.\lambda\right|_{\tilde{T}^{\sigma}}$ is a dominant and regular weight
of \tilde{G}^{σ}, we have that \bar{G} is the De Concini-Procesi compactification of \tilde{G} and $\overline{\tilde{G}^{\sigma}}$ is the De Concini-Procesi compactification of \tilde{G}^{σ}. Since $\tilde{\tilde{G}}$ is closed in $P(\operatorname{End}(V))$, $\overline{\tilde{G}^{\sigma}}$ is the closure of $\left\{[\rho(\tilde{g})] \mid \tilde{g} \in \tilde{G}^{\sigma}\right\}$ in \tilde{G}.

We have $\bar{G}=\bigsqcup_{\tilde{J} \subset \tilde{I}} \tilde{Z}_{\tilde{J}}=\bigsqcup_{\tilde{J} \subset \tilde{I}}(\tilde{G} \times \tilde{G}) \cdot \tilde{z}_{\tilde{J}}^{0}$ and $\overline{\tilde{G}^{\sigma}}=\bigsqcup_{\tilde{J} \subset \tilde{I}, \sigma \tilde{J}=\tilde{J}}\left(\tilde{G}^{\sigma} \times \tilde{G}^{\sigma}\right) \cdot \tilde{z}_{\tilde{J}}^{0}$. Moreover, σ can be extended in a unique way to an automorphism $\bar{\sigma}$ of $\overline{\tilde{G}}$. Since $\overline{\tilde{G}}^{\bar{\sigma}}=\bigsqcup_{\tilde{J} \subset \tilde{I}, \sigma \tilde{J}=\tilde{J}}\left(\tilde{Z}_{\tilde{J}}\right)^{\bar{\sigma}}$ is a closed subset of $\overline{\tilde{G}}$ containing \tilde{G}^{σ}, we have $\overline{\tilde{G}^{\sigma}} \subset$ $\bigsqcup_{\tilde{J} \subset \tilde{I}, \sigma \tilde{J}=\tilde{J}}\left(\tilde{Z}_{\tilde{J}}\right)^{\bar{\sigma}}$.

By the condition (f), there exists a bijection ϕ between \bar{I} and I, such that $\phi\left(\tilde{x}_{p}(a)\right)=x_{\phi(p)}(a)$, for all $p \in \bar{I}, a \in \mathbf{R}$. Moreover, the isomorphism ϕ from \tilde{G}^{σ} to G can be extended in a unique way to an isomorphism $\bar{\phi}: \overline{\tilde{G}^{\sigma}} \rightarrow \bar{G}$. It is easy to see that for any $\tilde{J} \subset \tilde{I}$ with $\sigma \tilde{J}=\tilde{J}$, we have $\bar{\phi}\left(\left(\tilde{G}^{\sigma} \times \tilde{G}^{\sigma}\right) \cdot \tilde{z}_{\tilde{J}}^{0}\right)=Z_{\phi \circ \pi(\tilde{J})}$, where $\pi: \tilde{I} \rightarrow \bar{I}$ is the map sending element of \tilde{I} into the σ-orbit that contains it.

Corollary 2.9. $Z_{J, \geqslant 0}=\bigcap_{g_{1}, g_{2} \in G>0}\left(g_{1}^{-1}, g_{2}\right) \cdot Z_{J,>0}$ is the closure of $Z_{J,>0}$ in Z_{J}. As a consequence, $Z_{J, \geqslant 0}$ and $\overline{G_{>0}}$ are contractible.

Proof. I will prove that $Z_{J, \geqslant 0} \subset \bigcap_{g_{1}, g_{2} \in G>0}\left(g_{1}^{-1}, g_{2}\right) \cdot Z_{J,>0}$.
First, assume that G is simply laced.
For any $g \in G_{>0}, i_{J}(g)=\left(\left[\rho_{1}(g)\right],\left[\rho_{2}(g)\right]\right)$, where $\rho_{1}(g)$ and $\rho_{2}(g)$ are matrices with all the entries in $\mathbf{R}_{>0}$. Then for any $z \in Z_{J, \geqslant 0}$, we have $i_{J}(z)=\left(\left[M_{1}\right],\left[M_{2}\right]\right)$ for some matrices with all the entries in $\mathbf{R}_{\geqslant 0}$. Similarly, $i_{J}(\bar{\psi}(z))=\left(\left[M_{3}\right],\left[M_{4}\right]\right)$ for some matrices with all their entries in $\mathbf{R}_{\geqslant 0}$.

Note that for any $M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime} \in g l(n)$ such that $M_{1}^{\prime}, M_{3}^{\prime}$ are matrices with all their entries in $\mathbf{R}_{>0}$ and M_{2}^{\prime} is a nonzero matrix with all the entries in $\mathbf{R}_{\geqslant 0}$, we have that $M_{1}^{\prime} M_{2}^{\prime} M_{3}^{\prime}$ is a matrix with all the entries in $\mathbf{R}_{>0}$. Thus for any $g_{1}, g_{2} \in G_{>0}$, we have that $\left(g_{1}, g_{2}^{-1}\right) \cdot z$ satisfies the condition $\left(^{*}\right)$ in 2.7. Moreover, $\left(g_{1}, g_{2}^{-1}\right) \cdot z \in Z_{J, \geqslant 0}$. Therefore by $2.7,\left(g_{1}, g_{2}^{-1}\right) \cdot z \in Z_{J,>0}$ for all $g_{1}, g_{2} \in G_{>0}$.

In the general case, we will keep the notation of 2.8. Since the isomorphism ϕ : $\tilde{G}^{\sigma} \rightarrow G$ is compatible with the épinglages, we have $\phi\left(\left(\tilde{U}_{>0}^{ \pm}\right)^{\sigma}\right)=U_{>0}^{ \pm}, \phi\left(\left(\tilde{T}_{>0}\right)^{\sigma}\right)=$ $T_{>0}$ and $\phi\left(\left(\tilde{G}_{>0}\right)^{\sigma}\right)=G_{>0}$. Now for any $z \in Z_{J, \geqslant 0}, z$ is contained in the closure of $G_{>0}$ in \bar{G}. Thus $\bar{\phi}^{-1}(z)$ is contained in the closure of $\left(\tilde{G}_{>0}\right)^{\sigma}$ in $\overline{\tilde{G}^{\sigma}}$, hence contained in the closure of $\left(\tilde{G}_{>0}\right)^{\sigma}$ in \tilde{G}. Therefore, $\bar{\phi}^{-1}(z) \in \tilde{Z}_{\tilde{J}, \geqslant 0}$, where $\tilde{J}=\pi^{-1} \circ \phi^{-1}(J)$.

For any $\widetilde{g_{1}}, \widetilde{g_{2}} \in\left(\tilde{G}_{>0}\right)^{\sigma}$, we have $\left(\widetilde{g_{1}},{\widetilde{g_{2}}}^{-1}\right) \cdot \bar{\phi}^{-1}(z)=\left(\widetilde{u_{1}} \tilde{t}, \widetilde{u_{2}}{ }^{-1}\right) \cdot \tilde{z}_{\tilde{J}}^{0}$ for some $\widetilde{u_{1}} \in \tilde{U}_{>0}^{-}, \widetilde{u_{2}} \in \tilde{U}_{>0}^{+}, \tilde{t} \in \tilde{T}_{>0}$. Since $\bar{\phi}^{-1}(z) \in(\overline{\tilde{G}})^{\bar{\sigma}}$, we have $\left(\widetilde{g_{1}},{\widetilde{g_{2}}}^{-1}\right) \cdot \bar{\phi}^{-1}(z) \in$ $\left(\tilde{Z}_{\tilde{J},>0}\right)^{\bar{\sigma}}$. Then

$$
\begin{aligned}
\bar{\sigma}\left(\left(\widetilde{u_{1}} \tilde{t},{\widetilde{u_{2}}}^{-1}\right) \cdot \tilde{z}_{\tilde{J}}^{0}\right) & =\left(\sigma\left(\widetilde{u_{1}} \tilde{t}\right), \sigma\left({\widetilde{u_{2}}}^{-1}\right)\right) \cdot \bar{\sigma}\left(\tilde{z}_{\tilde{J}}^{0}\right)=\left(\sigma\left(\widetilde{u_{1}}\right) \sigma(\tilde{t}), \sigma\left({\widetilde{u_{2}}}^{-1}\right)\right) \cdot \tilde{z}_{\tilde{J}}^{\bigcirc} \\
& =\left(\widetilde{u_{1}} \tilde{t},{\widetilde{u_{2}}}^{-1}\right) \cdot \tilde{z}_{\tilde{J}}^{0} .
\end{aligned}
$$

Thus $\sigma\left(\widetilde{u_{1}}\right)=\widetilde{u_{1}}$ and $\sigma\left(\widetilde{u_{2}}\right)=\widetilde{u_{2}}$. Moreover, $(\tilde{t}, 1) \cdot \tilde{z}_{\tilde{J}}^{0}=(\sigma(\tilde{t}), 1) \cdot \tilde{z}_{\tilde{J}}^{0}$, that is, $\tilde{\alpha}_{\tilde{j}}(\tilde{t})=\tilde{\alpha}_{\tilde{j}}\left(\sigma((\tilde{t}))=\tilde{\alpha}_{\sigma(\tilde{j})}(\tilde{t})\right.$ for all $\tilde{j} \in \tilde{J}$, where $\left\{\tilde{\alpha}_{\tilde{i}} \mid \tilde{i} \in \tilde{I}\right\}$ is the set of simple
roots of \tilde{G}. Let \tilde{t}^{\prime} be the unique element in \tilde{T} such that

$$
\tilde{\alpha}_{\tilde{j}}\left(\tilde{t}^{\prime}\right)= \begin{cases}\tilde{\alpha}_{\tilde{j}}(\tilde{t}), & \text { if } \tilde{j} \in \tilde{J} \\ 1, & \text { otherwise }\end{cases}
$$

Then $\tilde{t}^{\prime} \in\left(\tilde{T}_{>0}\right)^{\sigma}$ and $(\tilde{t}, 1) \cdot \tilde{z}_{\tilde{J}}^{0}=\left(\tilde{t}^{\prime}, 1\right) \cdot \tilde{z}_{\tilde{J}}^{0}$. Thus $\left(\widetilde{g}_{1}, \widetilde{g}_{2}^{-1}\right) \cdot \bar{\phi}^{-1}(z)=$ $\left(\widetilde{u_{1}} \tilde{t}^{\prime},{\widetilde{u_{2}}}^{-1}\right) \cdot \tilde{z}_{\tilde{J}}^{\circ}$. We have

$$
\begin{aligned}
\left(\phi\left(\widetilde{g_{1}}\right), \phi\left(\widetilde{g_{2}}\right)^{-1}\right) \cdot z & =\bar{\phi}\left(\left(\widetilde{g_{1}}, \widetilde{g}_{2}^{-1}\right) \cdot \bar{\phi}^{-1}(z)\right)=\bar{\phi}\left(\left(\widetilde{u_{1}} \tilde{t}^{\prime},{\widetilde{u_{2}}}^{-1}\right) \cdot \tilde{z}_{\tilde{J}}^{0}\right) \\
& =\left(\phi\left(\widetilde{u_{1}}\right) \phi\left(\tilde{t}^{\prime}\right), \phi\left({\widetilde{u_{2}}}^{-1}\right)\right) \cdot z_{J}^{\circ} \in Z_{J,>0}
\end{aligned}
$$

Since $\phi\left(\left(\tilde{G}_{>0}\right)^{\sigma}\right)=G_{>0}$, we have $Z_{J, \geqslant 0} \subset \bigcap_{g_{1}, g_{2} \in G_{>0}}\left(g_{1}^{-1}, g_{2}\right) \cdot Z_{J,>0}$.
Note that $(1,1)$ is contained in the closure of $\left\{\left(g_{1}, g_{2}^{-1}\right) \mid g_{1}, g_{2} \in G_{>0}\right\}$. Hence, for any $z \in \bigcap_{g_{1}, g_{2} \in G_{>0}}\left(g_{1}^{-1}, g_{2}\right) \cdot Z_{J,>0}, z$ is contained in the closure of $Z_{J,>0}$. On the other hand, $Z_{J, \geqslant 0}$ is a closed subset in $Z_{J} . Z_{J, \geqslant 0}$ contains $Z_{J,>0}$, hence contains the closure of $Z_{J,>0}$ in Z_{J}. Therefore, $Z_{J, \geqslant 0}=\bigcap_{g_{1}, g_{2} \in G>0}\left(g_{1}^{-1}, g_{2}\right) \cdot Z_{J,>0}$ is the closure of $Z_{J,>0}$ in Z_{J}.

Now set $g_{r}=\exp \left(r \sum_{i \in I}\left(e_{i}+f_{i}\right)\right)$, where e_{i} and f_{i} are the Chevalley generators related to our épinglage by $x_{i}(1)=\exp \left(e_{i}\right)$ and $y_{i}(1)=\exp \left(f_{i}\right)$. Then $g_{r} \in G_{>0}$ for $r \in \mathbf{R}_{>0}$ (see [11, 5.9]). Define $f: R_{\geqslant 0} \times Z_{J, \geqslant 0} \rightarrow Z_{J, \geqslant 0}$ by $f(r, z)=\left(g_{r}, g_{r}^{-1}\right) \cdot z$ for $r \in R_{\geqslant 0}$ and $z \in Z_{J, \geqslant 0}$. Then $f(0, z)=z$ and $f(1, z) \in Z_{J,>0}$ for all $z \in Z_{J, \geqslant 0}$. Using the fact that $Z_{J,>0}$ is a cell (see 2.6), it follows that $Z_{J, \geqslant 0}$ is contractible.

Similarly, define $f^{\prime}: R_{\geqslant 0} \times \overline{G_{>0}} \rightarrow \overline{G_{>0}}$ by $f^{\prime}(r, z)=\left(g_{r}, g_{r}^{-1}\right) \cdot z$ for $r \in R_{\geqslant 0}$ and $z \in \overline{G_{>0}}$. Then $f^{\prime}(0, z)=z$ and $f^{\prime}(1, z) \in \bigsqcup_{K \subset I} Z_{K,>0}$ for all $z \in \overline{G_{>0}}$. Note that $\bigsqcup_{K \subset I} Z_{K,>0}=\left(U_{>0}^{-},\left(U_{>0}^{+}\right)^{-1}\right) \cdot \bigsqcup_{K \subset I}\left(T_{>0}, 1\right) \cdot z_{K}^{\circ} \cong U_{>0}^{-} \times U_{>0}^{+} \times \bigsqcup_{K \subset I}\left(T_{>0}, 1\right)$. z_{K}° (see 2.6). Moreover, by [DP, 2.2], we have $\bigsqcup_{K \subset I}\left(T_{>0}, 1\right) \cdot z_{K}^{\circ} \cong R_{\geqslant 0}^{I}$. Thus $\bigsqcup_{K \subset I} Z_{K,>0} \cong R_{>0}^{2 l\left(w_{0}\right)} \times R_{\geqslant 0}^{I}$ is contractible. Therefore $\overline{G_{>0}}$ is contractible.

3. The cell decomposition of $Z_{J, \geqslant 0}$

3.1. For any $P \in \mathcal{P}^{J}, Q \in \mathcal{P}^{J^{*}}, B \in \mathcal{B}$ and $g_{1} \in H_{P}, g_{2} \in U_{Q}, g \in G$, we have $\operatorname{pos}\left(P^{B},,_{1} g g_{2}\left(Q^{B}\right)\right)=\operatorname{pos}\left(g_{1}^{-1}\left(P^{B}\right),{ }^{g g_{2}}\left(Q^{B}\right)\right)=\operatorname{pos}\left(P^{B},,^{g}\left(Q^{B}\right)\right)$. If moreover, $P \bowtie^{g} Q$, then $\operatorname{pos}\left(P^{B}, g^{g}\left(Q^{B}\right)\right)=w w_{0}$ for some $w \in W_{J}$ (see 1.4). Therefore, for any $v, v^{\prime} \in W, w, w^{\prime} \in W^{J}$ and $y, y^{\prime} \in W_{J}$ with $v \leqslant w$ and $v^{\prime} \leqslant w^{\prime}$, Lusztig introduced the subset $Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$ and $Z_{J,>0}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$ of Z_{J} which are defined as follows:

$$
\begin{aligned}
Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}=\left\{\left(P, Q, H_{P} g U_{Q}\right) \in Z_{J} \mid P \in \mathcal{P}_{v, w}^{J}, \psi(Q) \in \mathcal{P}_{v^{\prime}, w^{\prime}}^{J}\right. \\
\operatorname{pos}\left(P^{B^{+}},\right. \\
\left.\left.,{ }^{g}\left(Q^{B^{+}}\right)\right)=y w_{0}, \operatorname{pos}\left(P^{B^{-}},{ }^{g}\left(Q^{B^{-}}\right)\right)=y^{\prime} w_{0}\right\}
\end{aligned}
$$

and

$$
Z_{J,>0}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}=Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}} \cap Z_{J, \geqslant 0}
$$

Then

$$
Z_{J}=\bigsqcup_{\substack{v, v^{\prime} \in W, w, w^{\prime} \in W^{J}, y, y^{\prime} \in W_{J} \\ v \leqslant w, v^{\prime} \leqslant w^{\prime}}}^{Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}},} Z_{\substack{ \\v, v^{\prime} \in W, w, w^{\prime} \in W^{J}, y, y^{\prime} \in W_{J} \\ v \leqslant w, v^{\prime} \leqslant w^{\prime}}} Z_{J,>0}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}
$$

Lusztig conjectured that for any $v, v^{\prime} \in W, w, w^{\prime} \in W^{J}, y, y^{\prime} \in W_{J}$ such that $v \leqslant w, v^{\prime} \leqslant w^{\prime}, Z_{J,>0}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$ is either empty or a semi-algebraic cell. If it is nonempty, then it is also a connected component of $Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$.

In this section, we will prove this conjecture. Moreover, we will show exactly when $Z_{J,>0}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$ is nonempty and we will give an explicit description of $Z_{J,>0}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$.

First, I will prove some elementary facts about the total positivity of G.
Proposition 3.2.

$$
\begin{aligned}
& \bigcap_{u \in U_{>0}^{ \pm}} u^{-1} U_{>0}^{ \pm}=\bigcap_{u \in U_{>0}^{ \pm}} U_{>0}^{ \pm} u^{-1}=\bigcap_{u \in U_{>0}^{ \pm}} u^{-1} U_{\geqslant 0}^{ \pm}=\bigcap_{u \in U_{>0}^{ \pm}} U_{\geqslant 0}^{ \pm} u^{-1}=U_{\geqslant 0}^{ \pm} \\
& \bigcap_{g \in G_{>0}} g^{-1} G_{>0}=\bigcap_{g \in G_{>0}} G_{>0} g^{-1}=\bigcap_{g \in G_{>0}} g^{-1} G_{\geqslant 0}=\bigcap_{g \in G_{>0}} G_{\geqslant 0} g^{-1}=G_{\geqslant 0}
\end{aligned}
$$

Proof. I will only prove $\bigcap_{u \in U_{>0}^{+}} u^{-1} \cdot U_{>0}^{+}=U_{\geqslant 0}^{+}$. The rest of the equalities could be proved in the same way.

Note that $u u_{1} \in U_{>0}^{+}$for all $u_{1} \in U_{\geqslant 0}^{+}, u \in U_{>0}^{+}$. Thus $u_{1} \in \bigcap_{u \in U_{>0}^{+}} u^{-1} \cdot U_{>0}^{+}$. On the other hand, assume that $u_{1} \in \bigcap_{u \in U_{>0}^{+}} u^{-1} \cdot U_{>0}^{+}$. Then $u u_{1} \in U_{>0}^{+}$for all $u \in U_{>0}^{+}$. We have $u_{1}=\lim _{u \in U_{>0}^{+}} u u_{1}$ is contained in the closure of $U_{>0}^{+}$in U^{+}, that is, $u_{1} \in U_{\geqslant 0}^{+}$. So $\bigcap_{u \in U_{>0}^{+}} u^{u \rightarrow 1} \cdot U_{>0}^{+}=U_{\geqslant 0}^{+}$.

For any $v, v^{\prime} \in W, w, w^{\prime} \in W^{J}$ such that $v \leqslant w, v^{\prime} \leqslant w^{\prime}$, set $Z_{J}^{v, w, v^{\prime}, w^{\prime}}=$ $\bigsqcup_{y, y^{\prime} \in W_{J}} Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$ and $Z_{J,>0}^{v, w, v^{\prime}, w^{\prime}}=\bigsqcup_{y, y^{\prime} \in W_{J}} Z_{J,>0}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$. We will give a characterization of $z \in Z_{J,>0}^{v, w, v^{\prime}, w^{\prime}}$ in 3.5.

Lemma 3.3. For any $w \in W, u \in U_{\geqslant 0}^{-},\left\{\pi_{U+}\left(u_{1} u\right) \mid u_{1} \in U_{w,>0}^{+}\right\}=U_{w,>0}^{+}$.
Proof. The following identities hold (see L1, 1.3]):
(a) $t x_{i}(a)=x_{i}\left(\alpha_{i}(t) a\right) t, t y_{i}(a)=y_{i}\left(\alpha_{i}(t)^{-1} a\right) t$ for all $i \in I, t \in T, a \in \mathbf{R}$.
(b) $y_{i_{1}}(a) x_{i_{2}}(b)=x_{i_{2}}(b) y_{i_{1}}(a)$ for all $a, b \in \mathbf{R}$ and $i_{1} \neq i_{2} \in I$.
(c) $x_{i}(a) y_{i}(b)=y_{i}\left(\frac{b}{1+a b}\right) \alpha_{i}^{\vee}\left(\frac{1}{1+a b}\right) x_{i}\left(\frac{a}{1+a b}\right)$ for all $a, b \in \mathbf{R}_{>0}, i \in I$.

Thus $U_{w,>0}^{+} U_{\geqslant 0}^{-} \subset U_{\geqslant 0}^{-} T_{>0} U_{w,>0}^{+}$for $w \in W$. So we only need to prove that $U_{w,>0}^{+} \subset\left\{\pi_{U^{+}}\left(u_{1} u\right) \mid u_{1} \in U_{w,>0}^{+}\right\}$. Now I will prove the following statement:

$$
\left\{\pi_{U^{+}}\left(u_{1} y_{i}(a)\right) \mid u_{1} \in U_{w,>0}^{+}\right\}=U_{w,>0}^{+} \quad \text { for } i \in I, a \in \mathbf{R}_{>0}
$$

We argue by induction on $l(w)$. It is easy to see that the statement holds for $w=$ 1. Now assume that $w \neq 1$. Then there exist $j \in I$ and $w_{1} \in W$ such that $w=s_{j} w_{1}$ and $l\left(w_{1}\right)=l(w)-1$. For any $u_{1}^{\prime} \in U_{w,>0}^{+}$, we have $u_{1}^{\prime}=u_{2}^{\prime} u_{3}^{\prime}$ for some $u_{2}^{\prime} \in U_{s_{j},>0}^{+}$
and $u_{3}^{\prime} \in U_{w_{1},>0}^{+}$. By induction hypothesis, there exists $u_{3} \in U_{w_{1},>0}^{+}, u^{\prime} \in U^{-}$and $t \in T$ such that $u_{3} y_{i}(a)=u^{\prime} t u_{3}^{\prime}$. Since $U_{w,>0}^{+} U_{s_{i},>0}^{-} \subset U_{s_{i},>0}^{-} T_{>0} U_{w,>0}^{+}$, we have $u^{\prime} \in U_{s_{i},>0}^{-}$and $t \in T_{>0}$.

Now by (a), we have $t u_{2}^{\prime} t^{-1} \in U_{s_{j},>0}^{+}$. So by (b) and (c), there exists $u_{2} \in U_{s_{j},>0}^{+}$ such that $\pi_{U^{+}}\left(u_{2} u^{\prime}\right)=t u_{2}^{\prime} t^{-1}$. Thus

$$
\begin{aligned}
\pi_{U^{+}}\left(u_{2} u_{3} y_{i}(a)\right) & =\pi_{U^{+}}\left(\left(u_{2} u^{\prime}\right)\left(u^{\prime-1} u_{3} y_{i}(a)\right)\right)=\pi_{U^{+}}\left(\pi_{U^{+}}\left(u_{2} u^{\prime}\right) u^{\prime-1} u_{3} y_{i}(a)\right) \\
& =\pi_{U^{+}}\left(t u_{2}^{\prime} t^{-1} t u_{3}^{\prime}\right)=\pi_{U^{+}}\left(t u_{2}^{\prime} u_{3}^{\prime}\right)=u_{1}^{\prime}
\end{aligned}
$$

So $u_{1}^{\prime} \in\left\{\pi_{U^{+}}\left(u_{1} y_{i}(a)\right) \mid u_{1} \in U_{w,>0}^{+}\right\}$. The statement is proved.
Now assume that $u \in U_{w^{\prime},>0}^{-}$. I will prove the lemma by induction on $l\left(w^{\prime}\right)$. It is easy to see that the lemma holds for $w^{\prime}=1$. Now assume that $w^{\prime} \neq 1$. Then there exist $i \in I$ and $w_{1}^{\prime} \in W$ such that $l\left(w_{1}^{\prime}\right)=l\left(w^{\prime}\right)-1$ and $w^{\prime}=s_{i} w_{1}^{\prime}$. We have $u=y_{i}(a) u^{\prime}$ for some $a \in \mathbf{R}_{>0}$ and $u^{\prime} \in U_{w_{1}^{\prime},>0}^{-}$. So

$$
\begin{aligned}
\left\{\pi_{U^{+}}\left(u_{1} u\right) \mid u_{1} \in U_{w,>0}^{+}\right\} & =\left\{\pi_{U^{+}}\left(u_{1} y_{i}(a) u^{\prime}\right) \mid u_{1} \in U_{w,>0}^{+}\right\} \\
& =\left\{\pi_{U^{+}}\left(\pi_{U^{+}}\left(u_{1} y_{i}(a)\right) u\right) \mid u_{1} \in U_{w,>0}^{+}\right\} \\
& =\left\{\pi_{U^{+}}\left(u_{1}^{\prime} u^{\prime}\right) \mid u_{1}^{\prime} \in U_{w,>0}^{+}\right\}
\end{aligned}
$$

By induction hypothesis, we have

$$
\left\{\pi_{U^{+}}\left(u_{1} u\right) \mid u_{1} \in U_{w,>0}^{+}\right\}=\left\{\pi_{U^{+}}\left(u_{1}^{\prime} u^{\prime}\right) \mid u_{1}^{\prime} \in U_{w,>0}^{+}\right\}=U_{w,>0}^{+}
$$

Lemma 3.4. Set $Z_{J,>0}^{1}=\left\{\left(g_{1}, g_{2}^{-1}\right) \cdot z_{J}^{\circ} \mid g_{1} \in U_{\geqslant 0}^{-} T_{>0}, g_{2} \in U_{\geqslant 0}^{+}\right\}$. Then
(a) $Z_{J, \geqslant 0}=\bigcap_{u_{1} \in U_{>0}^{+}, u_{2}^{-1} \in U_{>0}^{-}}\left(u_{1}^{-1}, u_{2}\right) \cdot Z_{J,>0}^{1}$.
(b) $Z_{J,>0}^{1}=\bigsqcup_{w_{1}, w_{2} \in W^{J}}\left\{\left({ }^{u_{1}} P_{J},,^{u_{2}^{-1}} Q_{J}, u_{1} H_{P_{J}} l U_{Q_{J}} u_{2}\right) \mid u_{1} \in U_{w_{1},>0}^{-}\right.$,

$$
\begin{gathered}
\left.u_{2} \in U_{w_{2},>0}^{+}, l \in L \geqslant 0\right\} \\
=\left\{(P, Q, \gamma) \in Z_{J, \geqslant 0} \mid P={ }^{u_{1}} P_{J}, \psi(Q)={ }^{u_{2}} P_{J} \text { for some } u_{1}, u_{2} \in U_{\geqslant 0}^{-}\right\} .
\end{gathered}
$$

Proof. (a) By 2.9 and 3.2, we have

$$
\begin{aligned}
Z_{J, \geqslant 0} & =\bigcap_{g_{1}, g_{2} \in G_{>0}}\left(g_{1}^{-1}, g_{2}\right) \cdot Z_{J,>0}=\bigcap_{\substack{t_{1}, t_{2} \in T_{>0} \\
u_{1}, u_{2} \in U_{>0}^{+}, u_{3}, u_{4} \in U_{>0}^{-}}}\left(u_{1}^{-1} u_{3}^{-1} t_{1}^{-1}, u_{4} u_{2} t_{2}\right) \cdot Z_{J,>0} \\
& =\bigcap_{u_{1} \in U_{>0}^{+}, u_{4} \in U_{>0}^{-}}\left(u_{1}^{-1}, u_{4}\right) \cdot \bigcap_{u_{2} \in U_{>0}^{+}, u_{3} \in U_{>0}^{-}}\left(u_{2}^{-1}, u_{3}\right) \cdot \bigcap_{t_{1}, t_{2} \in T_{>0}}\left(t_{1}^{-1}, t_{2}\right) \cdot Z_{J,>0} \\
& =\bigcap_{u_{1} \in U_{>0}^{+}, u_{4} \in U_{>0}^{-}}\left(u_{1}^{-1}, u_{4}\right) \cdot \bigcap_{u_{2} \in U_{>0}^{+}, u_{3} \in U_{>0}^{-}}\left(u_{2}^{-1}, u_{3}\right) \cdot Z_{J,>0} \\
& =\bigcap_{u_{1} \in U_{>0}^{+}, u_{4} \in U_{>0}^{-}}\left(u_{1}^{-1}, u_{4}\right) \cdot \bigcap_{u_{2} \in U_{>0}^{+}, u_{3} \in U_{>0}^{-}}\left(u_{2}^{-1} U_{>0}^{-} T_{>0},\left(U_{>0}^{+} u_{3}^{-1}\right)^{-1}\right) \cdot z_{J}^{\circ} \\
& =\bigcap_{u_{1} \in U_{>0}^{+}, u_{2}^{-1} \in U_{>0}^{-}}\left(u_{1}^{-1}, u_{2}\right) \cdot\left(\left(U_{\geqslant 0}^{-} T_{>0},\left(U_{\geqslant 0}^{+}\right)^{-1}\right) \cdot z_{J}^{0}\right) .
\end{aligned}
$$

(b) For any $u \in U_{\geqslant 0}^{-}, v \in U_{\geqslant 0}^{+}, t \in T_{>0}$, there exist $w_{1}, w_{2} \in W^{J}, w_{3}, w_{4} \in W_{J}$, such that $u=u_{1} u_{3}$ for some $u_{1} \in U_{w_{1},>0}^{-}, u_{3} \in U_{w_{3},>0}^{-}$and $v=u_{4} u_{2}$ for some $u_{2} \in U_{w_{2},>0}^{+}, u_{4} \in U_{w_{4},>0}^{+}$. Then $\left(u t, v^{-1}\right) \cdot z_{J}^{\circ}=\left({ }^{u_{1}} P_{J},{ }_{2}^{u_{2}^{-1}} Q_{J}, u_{1} H_{P_{J}} u_{3} t u_{4} U_{Q_{J}} u_{2}\right)$. On the other hand, assume that $l \in L \geqslant 0$, then $l=u_{3} t u_{4}$ for some $u_{3} \in U_{\geqslant 0}^{-}, u_{4} \in$ $U_{\geqslant 0}^{+}, t \in T_{>0}$. Thus for any $u_{1} \in U_{\geqslant 0}^{-}, u_{2} \in U_{\geqslant 0}^{+}$, we have

$$
\left({ }^{u_{1}} P_{J},{ }^{u_{2}^{-1}} Q_{J}, u_{1} H_{P_{J}} l U_{Q_{J}} u_{2}\right)=\left(u_{1} u_{3} t, u_{2}^{-1} u_{4}^{-1}\right) \cdot z_{J}^{0} \in Z_{J,>0}^{1}
$$

Therefore,

$$
\begin{aligned}
& Z_{J,>0}^{1}=\bigsqcup_{w_{1}, w_{2} \in W^{J}}\left\{\left({ }^{u_{1}} P_{J},{ }^{u_{2}^{-1}} Q_{J}, u_{1} H_{P_{J}} l U_{Q_{J}} u_{2}\right) \mid u_{1} \in U_{w_{1},>0}^{-}\right. \\
& \left.\subset u_{2} \in U_{w_{2},>0}^{+} l \in L_{\geqslant 0}\right\} \\
& \subset\left\{(P, Q, \gamma) \in Z_{J, \geqslant 0} \mid P={ }^{u_{1}} P_{J}, \psi(Q)={ }^{u_{2}} P_{J} \text { for some } u_{1}, u_{2} \in U_{\geqslant 0}^{-}\right\} .
\end{aligned}
$$

Note that $\left\{{ }^{u} P_{J} \mid u \in U_{\geqslant 0}^{-}\right\}=\bigsqcup_{w \in W^{J}}\left\{{ }^{u} P_{J} \mid u \in U_{w,>0}^{-}\right\}$. Now assume that $z=\left({ }^{u_{1}} P_{J}, \psi\left(u_{2}\right)^{-1} Q_{J}, u_{1} H_{P_{J}} l U_{Q_{J}} \psi\left(u_{2}\right)\right)$ for some $w_{1}, w_{2} \in W^{J}$ and $u_{1} \in U_{w_{1},>0}^{-}$, $u_{2} \in U_{w_{2},>0}^{-}, l \in L$. To prove that $z \in Z_{J,>0}^{1}$, it is enough to prove that $l \in L_{\geqslant 0} Z(L)$. By part (a), for any $u_{3}, u_{4} \in U_{>0}^{+}$,

$$
\left(u_{3}, \psi\left(u_{4}\right)^{-1}\right) \cdot z=\left({ }^{u_{3} u_{1}} P_{J},{ }^{\psi\left(u_{4} u_{2}\right)^{-1}} Q_{J}, u_{3} u_{1} H_{P_{J}} l U_{Q_{J}} \psi\left(u_{4} u_{2}\right)\right) \in Z_{J,>0}^{1}
$$

Note that $u_{3} u_{1}=u_{1}^{\prime} t_{1} \pi_{U^{+}}\left(u_{3} u_{1}\right)$ for some $u_{1}^{\prime} \in U_{w_{1},>0}^{-}, t_{1} \in T_{>0}$ and $u_{4} u_{2}=$ $u_{2}^{\prime} t_{2} \pi_{U^{+}}\left(u_{4} u_{2}\right)$ for some $u_{2}^{\prime} \in U_{w_{2},>0}^{-}, t_{2} \in T_{>0}$. So we have ${ }^{u_{3} u_{1}} P_{J}={ }^{u_{1}^{\prime}} P_{J}$, $\psi\left(u_{4} u_{2}\right)^{-1} Q_{J}=\psi\left(u_{2}^{\prime}\right)^{-1} Q_{J}$ and

$$
\begin{aligned}
u_{3} u_{1} H_{P_{J}} l U_{Q_{J}} \psi\left(u_{4} u_{2}\right) & =u_{1}^{\prime} t_{1} \pi_{U^{+}}\left(u_{3} u_{1}\right) H_{P_{J}} l U_{Q_{J}} \psi\left(\pi_{U^{+}}\left(u_{4} u_{2}\right)\right) t_{2} \psi\left(u_{2}^{\prime}\right) \\
& =u_{1}^{\prime} H_{P_{J}} t_{1} \pi_{U_{J}^{+}}\left(u_{3} u_{1}\right) l \psi\left(\pi_{U_{J}^{+}}\left(u_{4} u_{2}\right)\right) t_{2} U_{Q_{J}} \psi\left(u_{2}^{\prime}\right)
\end{aligned}
$$

Then $t_{1} \pi_{U_{J}^{+}}\left(u_{3} u_{1}\right) l \psi\left(\pi_{U_{J}^{+}}\left(u_{4} u_{2}\right)\right) t_{2} \in L_{\geqslant 0} Z(L)$. Since $t_{1}, t_{2} \in T_{>0}$, we have $\pi_{U_{J}^{+}}\left(u_{3} u_{1}\right) l \psi\left(\pi_{U_{J}^{+}}\left(u_{4} u_{2}\right)\right) \in L_{\geqslant 0} Z(L)$ for all $u_{3}, u_{4} \in U_{>0}^{+}$. By 1.8 and 3.3,

$$
\pi_{U_{J}^{+}}\left(U_{>0}^{+} u_{1}\right)=\pi_{U_{J}^{+}}\left(\pi_{U+}\left(U_{>0}^{+} u_{1}\right)\right)=\pi_{U_{J}^{+}}\left(U_{>0}^{+}\right)=U_{w_{0}^{J},>0}^{+} .
$$

Similarly, we have $\pi_{U_{J}^{+}}\left(U_{>0}^{+} u_{2}\right)=U_{w_{0}^{J},>0}^{+}$. Thus

$$
\begin{aligned}
l & \in \bigcap_{u_{3}, u_{4} \in U_{w_{0}^{J},>0}^{+}} u_{3}^{-1} U_{w_{0}^{J}, \geqslant 0}^{+} T_{>0} Z(L) U_{w_{0}^{J}, \geqslant 0}^{-} \psi\left(u_{4}\right)^{-1} \\
& =U_{w_{0}^{J}, \geqslant 0}^{+} T_{>0} Z(L) U_{w_{0}^{J}, \geqslant 0}^{-}=L_{\geqslant 0} Z(L) .
\end{aligned}
$$

The lemma is proved.
Proposition 3.5. Let $z \in Z_{J}^{v, w, v^{\prime}, w^{\prime}}$, then $z \in Z_{J,>0}^{v, w, v^{\prime}, w^{\prime}}$ if and only if for any $u_{1} \in U_{v^{-1},>0}^{+}, u_{2} \in U_{v^{\prime-1},>0}^{+},\left(u_{1}, \psi\left(u_{2}^{-1}\right)\right) \cdot z \in Z_{J,>0}^{1}$.
Proof. Assume that $z \in \bigcap_{u_{1} \in U_{v-1,>0}^{+}, u_{2} \in U_{v^{\prime}-1,>0}^{+}}\left(u_{1}^{-1}, \psi\left(u_{2}\right)\right) Z_{J,>0}^{1}$. Then we have $z=\lim _{u_{1}, u_{2} \rightarrow 1}\left(u_{1}, \psi\left(u_{2}\right)^{-1}\right) \cdot z$ is contained in the closure of $Z_{J,>0}^{1}$ in Z_{J}. Note that $Z_{J,>0} \subset Z_{J,>0}^{1} \subset Z_{J, \geqslant 0}$. Thus by $2.9, Z_{J, \geqslant 0}$ is the closure of $Z_{J,>0}^{1}$ in Z_{J}. Therefore, z is contained in $Z_{J, \geqslant 0}$.

On the other hand, assume that $z=(P, Q, \gamma) \in Z_{J,>0}^{v, w, v^{\prime}, w^{\prime}}$. By 3.4(a), for any $u_{1} \in U_{v^{-1},>0}^{+}, u_{2} \in U_{v^{\prime-1},>0}^{+}$, we have $\left(u_{1}, \psi\left(u_{2}^{-1}\right)\right) \cdot z \in Z_{J, \geqslant 0}$. Moreover, we have ${ }^{u_{1}} P={ }_{1}^{u_{1}^{\prime}} P_{J}$ for some $u_{1}^{\prime} \in U_{w,>0}^{-}$(see 1.6). Similarly, we have $\psi\left(\psi\left(u_{2}^{-1}\right) Q\right)=$ ${ }^{u_{2}} \psi(Q)={ }^{u_{2}^{\prime}} P_{J}$ for some $u_{2}^{\prime} \in U_{w^{\prime},>0}^{-}$. By 3.4(b), $\left(u_{1}, \psi\left(u_{2}^{-1}\right)\right) \cdot z \in Z_{J,>0}^{1}$.
3.6. Now I will fix $w \in W^{J}$ and a reduced expression $\mathbf{w}=\left(w_{(0)}, w_{(1)}, \ldots, w_{(n)}\right)$ of w. Assume that $w_{(j)}=w_{(j-1)} s_{i_{j}}$ for all $j=1,2, \ldots, n$. Let $v \leqslant w$ and let $\mathbf{v}_{+}=\left(v_{(0)}, v_{(1)}, \ldots, v_{(n)}\right)$ be the positive subexpression of \mathbf{w}.

Define

$$
\begin{gathered}
G_{\mathbf{v}_{+}, \mathbf{w}}=\left\{g=g_{1} g_{2} \cdots g_{k} \left\lvert\, \begin{array}{ll}
g_{j}=y_{i_{j}}\left(a_{j}\right) \text { for } a_{j} \in \mathbf{R}-\{0\}, & \text { if } v_{(j-1)}=v_{(j)} \\
g_{j}=s_{i_{j}}, & \text { if } v_{(j-1)}<v_{(j)}
\end{array}\right.\right\}, \\
G_{\mathbf{v}_{+}, \mathbf{w},>0}=\left\{g=g_{1} g_{2} \cdots g_{k} \left\lvert\, \begin{array}{ll}
g_{j}=y_{i_{j}}\left(a_{j}\right) \text { for } a_{j} \in \mathbf{R}_{>0}, & \text { if } v_{(j-1)}=v_{(j)} \\
g_{j}=\dot{s_{i_{j}}}, & \text { if } v_{(j-1)}<v_{(j)}
\end{array}\right.\right\} .
\end{gathered}
$$

Marsh and Rietsch have proved that the morphism $g \mapsto^{g} B^{+}$maps $G_{\mathbf{v}_{+}, \mathbf{w}}$ into $\mathcal{R}_{v, w}$ (see [MR, 5.2]) and $G_{\mathbf{v}_{+}, \mathbf{w},>0}$ bijectively onto $\mathcal{R}_{v, w,>0}$ (see [MR, 11.3]).

The following proposition is a technical tool needed in the proof of the main theorem.

Proposition 3.7. For any $g \in G_{\mathbf{v}_{+}, \mathbf{w},>0}$, we have

$$
\bigcap_{u \in U_{v-1,>0}^{+}}\left(\pi_{U_{J}^{+}}(u g)\right)^{-1} \cdot U_{w_{0}^{J}, \geqslant 0}^{+}= \begin{cases}U_{w_{0}^{J}, \geqslant 0}^{+}, & \text {if } v \in W^{J} \\ \varnothing, & \text { otherwise }\end{cases}
$$

The proof will be given in 3.13 .
Lemma 3.8. Suppose $\alpha_{i_{0}}$ is a simple root such that $v_{1}^{-1} \alpha_{i_{0}}>0$ for $v \leqslant v_{1} \leqslant w$. Then for all $g \in G_{\mathbf{v}_{+}, \mathbf{w},>0}$ and $a \in \mathbf{R}$, we have $x_{i_{0}}(a) g=g t g^{\prime}$ for some $t \in T_{>0}$ and $g^{\prime} \in \prod_{\alpha \in R(v)} U_{\alpha} \cdot\left(\dot{v}^{-1} x_{i_{0}}(a) \dot{v}\right)$, where $R(v)=\left\{\alpha \in \Phi^{+} \mid v \alpha \in-\Phi^{+}\right\}$.
Proof. Marsh and Rietsch proved in MR, 11.8] that g is of the form

$$
g=\left(\prod_{j \in J_{\mathbf{V}_{+}}^{\circ}} y_{v_{(j-1)} \alpha_{i_{j}}}\left(t_{j}\right)\right) \dot{v}
$$

and $v_{(j-1)} \alpha_{i_{1}} \neq \alpha_{i_{0}}$, for all $j=1,2, \ldots, n$. Thus $g=g_{1} \dot{v}$ for some

$$
g_{1} \in \prod_{\alpha \in \Phi^{+}-\left\{\alpha_{i_{0}}\right\}} U_{-\alpha}
$$

Set $T_{1}=\left\{t \in T \mid \alpha_{i_{0}}(t)=1\right\}$, then $T_{1} \prod_{\alpha \in \Phi^{+}-\left\{\alpha_{i_{0}}\right\}} U_{-\alpha}$ is a normal subgroup of $\psi\left(P_{\left\{i_{0}\right\}}\right)$. Now set $x=x_{i_{0}}(a)$, then $x g_{1} x^{-1} \in B^{-}$. We may assume that $x g_{1} x^{-1}=u_{1} t_{1}$ for some $u_{1} \in U^{-}$and $t_{1} \in T$. Now $x g=x g_{1} \dot{v}=\left(x g_{1} x^{-1}\right) x \dot{v}=$ $u_{1} \dot{v}\left(\dot{v}^{-1} t_{1} \dot{v}\right)\left(\dot{v}^{-1} x \dot{v}\right)$. Moreover, by MR, 11.8], $x g \in g B^{+}$. Thus $x g=g_{1} \dot{v} t_{2} g_{2} g_{3}=$ $g_{1}\left(\dot{v} t_{2} g_{2} t_{2}^{-1} \dot{v}^{-1}\right) \dot{v} t_{2} g_{3}$, for some $t_{2} \in T, g_{2} \in \prod_{\alpha \in R(v)} U_{\alpha}$ and $g_{3} \in \prod_{\alpha \in \Phi^{+}-R(v)} U_{\alpha}$. Note that $g_{1}\left(\dot{v} t_{2} g_{2} t_{2}^{-1} \dot{v}^{-1}\right), u_{1} \in U^{-}, t_{2}, \dot{v}^{-1} t_{1} \dot{v} \in T$ and $g_{3}, \dot{v}^{-1} x \dot{v} \in \prod_{\alpha \in \Phi^{+-R(v)}} U_{\alpha}$. Thus $g_{1}\left(\dot{v} t_{2} g_{2} t_{2}^{-1} \dot{v}^{-1}\right)=u_{1}, t_{2}=\dot{v}^{-1} t_{1} \dot{v}$ and $g_{3}=\dot{v}^{-1} x \dot{v}$. Note that $g^{-1} x_{i_{0}}(b) g \in$ B^{+}for $b \in \mathbf{R}$ (see [MR, 11.8]). We have that $\left\{\pi_{T}\left(g^{-1} x_{i_{0}}(b) g\right) \mid b \in \mathbf{R}\right\}$ is connected and contains $\pi_{T}\left(g^{-1} x_{i_{0}}(0) g\right)=1$. Hence $\pi_{T}\left(g^{-1} x_{i_{0}}(b) g\right) \in T_{>0}$ for $b \in \mathbf{R}$.

In particular, $\pi_{T}\left(g^{-1} x g\right)=t_{2} \in T_{>0}$. Therefore $x g=g t_{2} g^{\prime}$ with $t_{2} \in T_{>0}$ and $g^{\prime}=g_{2} g_{3} \in \prod_{\alpha \in R(v)} U_{\alpha} \cdot\left(\dot{v}^{-1} x \dot{v}\right)$.

Remark. In [MR, 11.9], Marsh and Rietsch pointed out that for any $j \in J_{\mathbf{v}_{+}}^{+}$, we have $u^{-1} \alpha_{i_{j}}>0$ for all $v_{(j)}^{-1} v \leqslant u \leqslant w_{(j)}^{-1} w$.
3.9. Suppose that $J_{\mathbf{v}_{+}}^{+}=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$, where $j_{1}<j_{2}<\cdots<j_{k}$ and $g=$ $g_{1} g_{2} \cdots g_{n}$, where

$$
g_{j}= \begin{cases}y_{i_{j}}\left(a_{j}\right) \text { for } a_{j} \in \mathbf{R}_{>0}, & \text { if } j \in J_{\mathbf{V}_{+}}^{\circ} \\ s_{i_{j}}, & \text { if } j \in J_{\mathbf{v}_{+}}^{+}\end{cases}
$$

For any $m=1, \ldots, k$, define $v_{m}=v_{\left(j_{m}\right)}^{-1} v, g_{(m)}=g_{j_{m}+1} g_{j_{m}+2} \cdots g_{n}$ and $f_{m}(a)=$ $g_{(m)}^{-1} x_{i_{j_{m}}}(-a) g_{(m)} \in B^{+}($see [MR, 11.8]). Now I will prove the following lemma.

Lemma 3.10. Keep the notation in 3.9. Then
(a) For any $u \in U_{v^{-1},>0}^{+}, u g=g^{\prime}$ tu' for some $g^{\prime} \in U_{w,>0}^{-}, t \in T_{>0}$ and $u^{\prime} \in U^{+}$.
(b) $\pi_{U^{+}}\left(U_{v^{-1},>0}^{+} g\right)=\left\{\pi_{U^{+}}\left(f_{k}\left(a_{k}\right) f_{k-1}\left(a_{k-1}\right) \cdots f_{1}\left(a_{1}\right)\right) \mid a_{1}, a_{2}, \ldots, a_{k} \in \mathbf{R}_{>0}\right\}$.

Proof. I will prove the lemma by induction on $l(v)$. It is easy to see that the lemma holds when $v=1$. Now assume that $v \neq 1$.

For any $u \in U_{v^{-1},>0}^{+}$, since ${ }^{g} B^{+} \in \mathcal{R}_{v, w,>0}$, we have ${ }^{u g} B^{+} \in \mathcal{R}_{1, w,>0}$. Thus $u g=g^{\prime} t u^{\prime}$ for some $g^{\prime} \in U_{w,>0}^{-}, t \in T$ and $u^{\prime} \in U^{+}$. Set $y=g_{i_{1}} g_{i_{2}} \cdots g_{i_{j_{1}-1}}$. Note that $y \in U_{\geqslant 0}^{-}$, we have $u y=y^{\prime} t u^{\prime}$ for some $y^{\prime} \in U^{-}, u^{\prime} \in U_{v^{-1},>0}^{+}$and $t \in T_{>0}$. Hence $\pi_{T}(u g)=\pi_{T}\left(u y \dot{i}_{i_{1}} g_{(1)}\right)=\pi_{T}\left(y^{\prime} t u^{\prime} s_{i_{j_{1}}} g_{(1)}\right) \in T_{>0} \pi_{T}\left(u^{\prime} s_{i_{j_{1}}} g_{(1)}\right)$. To prove that $\pi_{T}\left(U_{v^{-1},>0}^{+} g\right) \subset T_{>0}$, it is enough to prove that $\pi_{T}\left(u \dot{i}_{i_{j_{1}}} g_{(1)}\right) \in T_{>0}$ for all $u \in U_{v^{-1},>0}^{+}$.

For any $u \in U_{v^{-1},>0}^{+}$, we have $u=u_{1} x_{i_{j_{1}}}(a)$ for some $u_{1} \in U_{v^{-1} s_{i_{j_{1}}},>0}^{+}$and $a \in \mathbf{R}_{>0}$. It is easy to see that $x_{i_{j_{1}}}(a) s_{i_{j_{1}}} g_{(1)}=\alpha_{i_{j_{1}}}^{\vee}(a) y_{i_{j_{1}}}(a) x_{i_{j_{1}}}\left(-a^{-1}\right) g_{(1)}$. Note that $\alpha_{i_{j_{1}}}^{\vee}(a) \in T_{>0}$ and by 3.8, $g_{(1)}^{-1} x_{i_{j_{1}}}\left(-a^{-1}\right) g_{(1)} \in T_{>0} U^{+}$. Hence by 1.7, we have

$$
\begin{aligned}
\pi_{T}\left(u s_{i_{j_{1}}} g_{(1)}\right) & =\pi_{T}\left(u_{1} \alpha_{i_{j_{1}}}^{\vee}(a) y_{i_{j_{1}}}(a) g_{(1)}\left(g_{(1)}^{-1} x_{i_{j_{1}}}\left(-a^{-1}\right) g_{(1)}\right)\right) \\
& \in T_{>0} \pi_{T}\left(U_{v^{-1} s_{i_{j_{1}}},>0}^{+} y_{i_{j_{1}}}(a) g_{(1)}\right) T_{>0}
\end{aligned}
$$

Set

$$
\begin{aligned}
\mathbf{w}^{\prime} & =\left(1, w_{\left(j_{1}-1\right)}^{-1} w_{\left(j_{1}\right)}, \ldots, w_{\left(j_{1}-1\right)}^{-1} w_{(n)}\right) \\
\mathbf{v}_{+}^{\prime} & =\left(1, s_{i_{j_{1}}} v_{\left(j_{1}\right)}, s_{i_{j_{1}}} v_{\left(j_{1}+1\right)}, \ldots, s_{i_{j_{1}}} v_{(n)}\right)
\end{aligned}
$$

Then \mathbf{w}^{\prime} is a reduced expression of $w_{\left(j_{1}-1\right)}^{-1} w_{(n)}$ and \mathbf{v}_{+}^{\prime} is a positive subexpression of \mathbf{w}^{\prime}. For any $a \in \mathbf{R}_{>0}, y_{i_{j_{1}}}(a) g_{(1)} \in G_{\mathbf{v}_{+}^{\prime}, \mathbf{w}^{\prime},>0}$. Thus by induction hypothesis, for any $a \in \mathbf{R}_{>0}, \pi_{T}\left(U_{v^{-1} s_{i_{j_{1}}},>0}^{+} y_{i_{j_{1}}}(a) g_{(1)}\right) \subset T_{>0}$. Therefore, $\pi_{T}(u g) \in T_{>0}$. Part (a) is proved.

We have

$$
\begin{aligned}
\pi_{U^{+}}\left(U_{v^{-1},>0}^{+} g\right) & =\pi_{U^{+}}\left(U_{v^{-1},>0}^{+} y s_{i_{j_{1}}}^{*} g_{(1)}\right)=\pi_{U^{+}}\left(\pi_{U^{+}}\left(U_{v^{-1},>0}^{+} y\right) s_{i_{j_{1}}} g_{(1)}\right) \\
& =\pi_{U^{+}}\left(U_{v^{-1},>0}^{+} s_{i_{j_{1}}} g_{(1)}\right)=\bigcup_{a \in \mathbf{R}_{>0}} \pi_{U^{+}}\left(U_{v^{-1} s_{i_{j_{1}}}>0}^{+} x_{i_{j_{1}}}\left(a^{-1}\right) s_{i_{j_{1}}} g_{(1)}\right) \\
& =\bigcup_{a \in \mathbf{R}_{>0}} \pi_{U^{+}}\left(U_{v^{-1} s_{i_{j_{1}}},>0}^{+} \alpha_{i_{i_{1}}}^{\vee}\left(a^{-1}\right) y_{i_{j_{1}}}\left(a^{-1}\right) g_{(1)} f_{1}(a)\right) \\
& =\bigcup_{a \in \mathbf{R}_{>0}} \pi_{U^{+}}\left(\pi_{U^{+}}\left(U_{v^{-1} s_{i_{j_{1}}},>0}^{+} \alpha_{i_{j_{1}}}^{\vee}\left(a^{-1}\right) y_{i_{j_{1}}}\left(a^{-1}\right)\right) g_{(1)} f_{1}(a)\right) \\
& =\bigcup_{a \in \mathbf{R}_{>0}} \pi_{U^{+}}\left(U_{v^{-1} s_{i_{i_{1}},>0}}^{+} g_{(1)} f_{1}(a)\right) \\
& =\bigcup_{a \in \mathbf{R}_{>0}} \pi_{U^{+}}\left(\pi_{U^{+}}\left(U_{v^{-1} s_{i_{j_{1}}},>0}^{+} g_{(1)}\right) f_{1}(a)\right)
\end{aligned}
$$

By induction hypothesis,

$$
\pi_{U^{+}}\left(U_{v^{-1} s_{i_{j_{1}}},>0}^{+} g_{(1)}\right)=\left\{\pi_{U^{+}}\left(f_{k}\left(a_{k}\right) f_{k-1}\left(a_{k-1}\right) \cdots f_{2}\left(a_{2}\right)\right) \mid a_{2}, a_{3}, \ldots, a_{k} \in \mathbf{R}_{>0}\right\}
$$

Thus

$$
\begin{aligned}
\pi_{U^{+}}\left(U_{v^{-1},>0}^{+} g\right) & =\bigcup_{a \in \mathbf{R}_{>0}} \pi_{U^{+}}\left(\pi_{U^{+}}\left(U_{v^{-1} s_{i_{j_{1}}},>0}^{+} g_{(1)}\right) f_{1}(a)\right) \\
& =\left\{\pi_{U^{+}}\left(f_{k}\left(a_{k}\right) f_{k-1}\left(a_{k-1}\right) \cdots f_{1}\left(a_{1}\right)\right) \mid a_{1}, a_{2}, \ldots, a_{k} \in \mathbf{R}_{>0}\right\}
\end{aligned}
$$

Remark. The referee pointed out to me that the assertion $t \in T_{>0}$ of 3.10(a) could also be proved using generalized minors.

Lemma 3.11. Assume that α is a positive root and $u \in U_{\alpha}, u^{\prime} \in U^{+}$such that $u^{n} u^{\prime} \in U_{\geqslant 0}^{+}$for all $n \in \mathbf{N}$. Then $u=x_{i}(a)$ for some $i \in I$ and $a \in \mathbf{R}_{\geqslant 0}$.

Proof. There exists $t \in T_{>0}$, such that $\alpha_{i}(t)=2$ for all $i \in I$. Then tut $t^{-1}=$ $u^{\alpha(t)}=u^{m}$ for some $m \in \mathbf{N}$. By assumption, $t^{n} u t^{-n} u^{\prime} \in U_{\geqslant 0}^{+}$for all $n \in \mathbf{N}$. Thus $u\left(t^{-n} u^{\prime} t^{n}\right)=t^{-n}\left(t^{n} u t^{-n} u^{\prime}\right) t^{n} \in U_{\geqslant 0}^{+}$. Moreover, it is easy to see that $\lim _{n \rightarrow \infty} t^{-n} u^{\prime} t^{n}=1$. Since $U_{\geqslant 0}^{+}$is a closed subset of $U^{+}, \lim _{n \rightarrow \infty} u t^{-n} u^{\prime} t^{n}=$ $u \in U_{\geqslant 0}^{+}$. Thus $u=x_{i}(a)$ for some $i \in I$ and $a \in \mathbf{R}_{\geqslant 0}$.

Lemma 3.12. Assume that $w \in W$ and $i, j \in I$ such that $w^{-1} \alpha_{i}=\alpha_{j}$. Then there exists $c \in \mathbf{R}_{>0}$, such that $\dot{w}^{-1} x_{i}(a) \dot{w}=x_{j}(c a)$ for all $a \in \mathbf{R}$.

Proof. There exist $c, c^{\prime} \in \mathbf{R}-\{0\}$, such that $y_{i}(a) \dot{w}=\dot{w} y_{j}\left(c^{\prime} a\right)$ and $x_{i}(a) \dot{w}=$ $\dot{w} x_{j}(c a)$ for $a \in \mathbf{R}$. Since ${ }^{\dot{w}} B^{-} \in \mathcal{B} \geqslant 0$, we have ${ }^{y_{i}(1) \dot{w}} B^{+}=\dot{w} y_{j}\left(c^{\prime}\right) B^{+} \in \mathcal{B} \geqslant 0$. By 3.6, $c^{\prime} \geqslant 0$. Thus $c^{\prime}>0$. Moreover, since $w \alpha_{j}=\alpha_{i}>0$, we have $w s_{j} w^{-1}=s_{i}$ and $l\left(w s_{j}\right)=l\left(s_{i} w\right)=l(w)+1$. Hence, setting $w^{\prime}=w s_{j}=s_{i} w$, we have $\dot{w}^{\prime}=\dot{w} \dot{s_{j}}=$ $\dot{s_{i}} \dot{w}$, that is $\dot{w} x_{i}(-1) y_{i}(1) x_{i}(-1)=x_{j}(-c) y_{j}\left(c^{\prime}\right) x_{i}(-c) \dot{w}=x_{j}(-1) y_{j}(1) x_{j}(-1) \dot{w}$. Therefore, $c=c^{\prime-1}>0$.
3.13. Proof of Proposition 3.7. If $v \in W^{J}$, then $v \alpha>0$ for $\alpha \in \Phi_{J}^{+}$. So $\pi_{U_{J}^{+}}\left(\prod_{\alpha \in R(v)} U_{\alpha}\right)=\{1\}$. By 3.8, $f_{m}(a) \in T\left(\prod_{\alpha \in R\left(v_{m}\right)} U_{\alpha}\right) \cdot U_{v_{m}^{-1} \alpha_{i_{j}}}$ for all $m \in\{1,2, \ldots, k\}$. Note that $v \alpha \in-\Phi^{+}$for all $a \in R\left(v_{m}\right)$ and $v v_{m}^{-1} \alpha_{i_{j_{m}}}=$ $v_{\left(j_{m}\right)} \alpha_{i_{j_{m}}} \in-\Phi^{+}$. So $f_{m}(a) \in T \prod_{\alpha \in R(v)} U_{\alpha}$ and $f_{k}\left(a_{k}\right) f_{k-1}\left(a_{k-1}\right) \cdots f_{1}\left(a_{1}\right) \in$ $T \prod_{\alpha \in R(v)} U_{\alpha}$. Hence by $3.10(\mathrm{~b}), \pi_{U_{J}^{+}}(u g)=1$ for all $u \in U_{v^{-1},>0}^{+}$. Therefore $\bigcap_{u \in U_{v^{-1,>0}}^{+}}\left(\pi_{U_{J}^{+}}(u g)\right)^{-1} \cdot U_{w_{0}^{J}, \geqslant 0}^{+}=U_{w_{0}^{J}, \geqslant 0}^{+}$.

If $v \notin W^{J}$, then there exists $\alpha \in \Phi_{J}^{+}$such that $v \alpha \in-\Phi_{J}^{+}$, that is, $v_{m}^{-1} \alpha_{i_{j_{m}}} \in \Phi_{J}^{+}$ for some $m \in\{1,2, \ldots, k\}$. Set $k_{0}=\max \left\{m \mid v_{m}^{-1} \alpha_{i_{j_{m}}} \in \Phi_{J}^{+}\right\}$. Then since $R\left(v_{k_{0}}\right)=\left\{v_{m}^{-1} \alpha_{i_{j_{m}}} \mid m>k_{0}\right\}$, we have that $v_{k_{0}} \alpha>0$ for $\alpha \in \Phi_{J}^{+}$. Hence by 3.8, $\pi_{U_{J}^{+}}\left(f_{k_{0}}(a)\right)=v_{\dot{k}_{0}}^{-1} x_{i_{j_{k_{0}}}}(-a) v_{\dot{k}_{0}}$. If $u^{\prime} \in \bigcap_{u \in U_{v-1,>0}^{+}}\left(\pi_{U_{J}^{+}}(u g)\right)^{-1} \cdot U_{w_{0}^{J}, \geqslant 0}^{+}$, then $\pi_{U_{J}^{+}}\left(f_{k}\left(a_{k}\right) f_{k-1}\left(a_{k-1}\right) \cdots f_{1}\left(a_{1}\right)\right) u^{\prime} \in U_{w_{0}^{J}, \geqslant 0}^{+}$for all $a_{1}, a_{2}, \ldots, a_{k} \in \mathbf{R}_{>0}$. Since $U_{w_{0}^{J}, \geqslant 0}^{+}$is a closed subset of $G, \pi_{U_{J}^{+}}\left(f_{k}\left(a_{k}\right) f_{k-1}\left(a_{k-1}\right) \cdots f_{1}\left(a_{1}\right)\right) u^{\prime} \in U_{w_{0}^{J}, \geqslant 0}^{+}$for all $a_{1}, a_{2}, \ldots, a_{k} \in \mathbf{R}_{\geqslant 0}$. Now take $a_{m}=0$ for $m \in\{1,2, \ldots, k\}-\left\{k_{0}\right\}$, then $\pi_{U_{J}^{+}}\left(f_{k_{0}}(a)\right) u^{\prime} \in U_{w_{0}^{J}, \geqslant 0}^{+}$for all $a \in \mathbf{R}_{>0}$. Set $u_{1}=v{\dot{k_{0}}}^{-1} x_{i_{j_{k_{0}}}}(-1) v{\dot{k_{0}}}_{0}$. Then $u_{1}^{n} u^{\prime} \in U_{w_{0}^{J}, \geqslant 0}^{+}$for all $n \in N$. Thus by 3.11, $v_{k_{0}}^{-1} \alpha_{i_{j_{k_{0}}}}=\alpha_{j^{\prime}}$ for some $j^{\prime} \in J$ and $u_{1} \in U_{w_{0}^{J}, \geqslant 0}^{+}$. By 3.12, $u_{1}=x_{j^{\prime}}(-c)$ for some $c \in \mathbf{R}_{>0}$. That is a contradiction. The proposition is proved.

Let me recall that $L=P_{J} \bigcap Q_{J}$ (see 2.4). Now I will prove the main theorem.
Theorem 3.14. For any $v, w, v^{\prime}, w^{\prime} \in W^{J}$ such that $v \leqslant w, v^{\prime} \leqslant w^{\prime}$, set

$$
\tilde{Z}_{J,>0}^{v, w, v^{\prime}, w^{\prime}}=\left\{\left({ }^{g} P_{J},{ }^{\psi\left(g^{\prime}\right)^{-1}} Q_{J}, g H_{P_{J}} l U_{Q_{J}} \psi\left(g^{\prime}\right)\right) \left\lvert\, \begin{array}{l}
g \in G_{\mathbf{v}_{+}, \mathbf{w},>0}, \quad g^{\prime} \in G_{\mathbf{v}_{+}^{\prime}, \mathbf{w}^{\prime},>0} \\
\text { and } l \in L \geqslant 0
\end{array}\right.\right\}
$$

Then

$$
Z_{J,>0}^{v, w, v^{\prime}, w^{\prime}}= \begin{cases}\tilde{Z}_{J,>0}^{v, w, v^{\prime}, w^{\prime}}, & \text { if } v, w, v^{\prime}, w^{\prime} \in W^{J}, v \leqslant w, v^{\prime} \leqslant w^{\prime} \\ \varnothing, & \text { otherwise }\end{cases}
$$

Proof. Note that $\left\{(P, Q, \gamma) \in Z_{J} \mid P \in \mathcal{P}_{\geqslant 0}^{J}, \psi(Q) \in \mathcal{P}_{\geqslant 0}^{J}\right\}$ is a closed subset containing $Z_{J,>0}$. Hence it contains $Z_{J, \geqslant 0}$. Now fix $g \in G_{\mathbf{v}_{+}, \mathbf{w},>0}, g^{\prime} \in G_{\mathbf{V}_{+}^{\prime}, \mathbf{w}^{\prime},>0}$ and $l \in L$. By 3.10 (a), for any $u \in U_{v^{-1},>0}^{+}, u g=a t \pi_{U^{+}}(u g)$ for some $a \in U_{w,>0}^{-}$ and $t \in T_{>0}$. Similarly, for any $u^{\prime} \in U_{v^{\prime-1},>0}^{+}, u^{\prime} g^{\prime}=a^{\prime} t^{\prime} \pi_{U^{+}}\left(u^{\prime} g^{\prime}\right)$ for some $a^{\prime} \in U_{w^{\prime},>0}^{-}$and $t^{\prime} \in T_{>0}$. Set $z=\left({ }^{g} P_{J},{ }^{\psi\left(g^{\prime}\right)^{-1}} Q_{J}, g H_{P_{J}} l U_{Q_{J}} \psi\left(g^{\prime}\right)\right)$. We have

$$
\begin{aligned}
\left(u, \psi\left(u^{\prime}\right)^{-1}\right) \cdot z & =\left({ }^{a} P_{J}, \psi\left(a^{\prime}\right)^{-1} Q_{J}, a t \pi_{U+}(u g) H_{P_{J}} l U_{Q_{J}} \psi\left(\pi_{U^{+}}\left(u^{\prime} g^{\prime}\right)\right) t^{\prime} \psi\left(a^{\prime}\right)\right) \\
& =\left({ }^{a} P_{J}, \psi\left(a^{\prime}\right)^{-1} Q_{J}, a H_{P_{J}} t \pi_{U_{J}^{+}}(u g) l \psi\left(\pi_{U_{J}^{+}}\left(u^{\prime} g^{\prime}\right)\right) t^{\prime} U_{Q_{J}} \psi\left(a^{\prime}\right)\right) .
\end{aligned}
$$

Then $\left(u, \psi\left(u^{\prime}\right)^{-1}\right) \cdot z \in Z_{J,>0}^{1}$ if and only if $t \pi_{U_{J}^{+}}(u g) l \psi\left(\pi_{U_{J}^{+}}\left(u^{\prime} g^{\prime}\right)\right) t^{\prime} \in L \geqslant{ }_{\geqslant 0} Z(L)$, that is,

$$
\begin{aligned}
l & \in \pi_{U_{J}^{+}}(u g)^{-1} L_{\geqslant 0} Z(L) \psi\left(\pi_{U_{J}^{+}}\left(u^{\prime} g^{\prime}\right)\right)^{-1} \\
& =\left(\pi_{U_{J}^{+}}(u g)^{-1} U_{w_{0}^{J}, \geqslant 0}^{+}\right) T_{>0} Z(L) \psi\left(\pi_{U_{J}^{+}}\left(u^{\prime} g^{\prime}\right)^{-1} U_{w_{0}^{J}, \geqslant 0}^{+}\right)
\end{aligned}
$$

So by $3.5, z \in Z_{J, \geqslant 0}$ if and only if

$$
\begin{aligned}
& l \in \bigcap_{\substack{u \in U_{v-1}^{+}-1,>0 \\
u^{\prime} \in U_{v^{\prime}-1}^{+},>0}}\left(\pi_{U_{J}^{+}}(u g)^{-1} U_{w_{0}^{J}, \geqslant 0}^{+}\right) T_{>0} Z(L) \psi\left(\pi_{U_{J}^{+}}\left(u^{\prime} g^{\prime}\right)^{-1} U_{w_{0}^{J}, \geqslant 0}^{+}\right) \\
&=\bigcap_{u \in U_{v^{-1},>0}^{+}}\left(\pi_{U_{J}^{+}}(u g)^{-1} U_{w_{0}^{J}, \geqslant 0}^{+}\right) T_{>0} Z(L) \psi\left(\bigcap_{u^{\prime} \in U_{v^{\prime}-1,>0}^{+}} \pi_{U_{J}^{+}}\left(u^{\prime} g^{\prime}\right)^{-1} U_{w_{0}^{J}, \geqslant 0}^{+}\right) .
\end{aligned}
$$

By 3.7, $z \in Z_{J, \geqslant 0}$ if and only if $v, v^{\prime} \in W^{J}$ and $l \in L_{\geqslant 0} Z(L)$. The theorem is proved.
3.15. It is known that $G_{\geqslant 0}=\bigsqcup_{w, w^{\prime} \in W} U_{w,>0}^{-} T_{>0} U_{w^{\prime},>0}^{+}$, where for any $w, w^{\prime} \in$ $W, U_{w,>0}^{-} T_{>0} U_{w^{\prime},>0}^{+}$is a semi-algebraic cell (see [L1, 2.11]) and is a connected component of $B^{+} \dot{w} B^{+} \cap B^{-} \dot{w}^{\prime} B^{-}$(see [FZ]). Moreover, Rietsch proved in [R2, 2.8] that $\mathcal{B}_{\geqslant 0}=\bigsqcup_{v \leqslant w} \mathcal{R}_{v, w,>0}$, where for any $v, w \in W$ such that $v \leqslant w, \mathcal{R}_{v, w,>0}$ is a semi-algebraic cell and is a connected component of $\mathcal{R}_{v, w}$.

The following result generalizes these facts.
Corollary 3.16. $\overline{G_{>0}}=\bigsqcup_{J \subset I} \bigsqcup_{\substack{v, w, v^{\prime}, w^{\prime} \in W^{J} \\ v \leqslant w, v^{\prime} \leqslant w^{\prime}}} \bigsqcup_{y, y^{\prime} \in W_{J}} Z_{J,>0}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$. Moreover, for any $v, w, v^{\prime}, w^{\prime} \in W^{J}, y, y^{\prime} \in W_{J}$ with $v \leqslant w, v^{\prime} \leqslant w^{\prime}, Z_{J,>0}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$ is a connected component of $Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$ and is a semi-algebraic cell which is isomorphic to $\mathbf{R}_{>0}^{d}$, where $d=l(w)+l\left(w^{\prime}\right)+2 l\left(w_{0}^{J}\right)+|J|-l(v)-l\left(v^{\prime}\right)-l(y)-l\left(y^{\prime}\right)$.
Proof. $\mathcal{P}_{v, w,>0}^{J}\left(\right.$ resp. $\left.\mathcal{P}_{v^{\prime}, w^{\prime},>0}^{J}\right)$ is a connected component of $\mathcal{P}_{v, w}^{J}$ (resp. $\mathcal{P}_{v^{\prime}, w^{\prime}}^{J}$) (see [L3]). Thus $\left\{(P, Q, \gamma) \in Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}} \mid P \in \mathcal{P}_{v, w,>0}^{J}, \psi(Q) \in \mathcal{P}_{v^{\prime}, w^{\prime},>0}^{J}\right\}$ is open and closed in $Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$. To prove that $Z_{J,>0}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$ is a connected component of $Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$, it is enough to prove that $Z_{J,>0}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$ is a connected component of $\left\{(P, Q, \gamma) \in Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}} \mid P \in \mathcal{P}_{v, w,>0}^{J}, \psi(Q) \in \mathcal{P}_{v^{\prime}, w^{\prime},>0}^{J}\right\}$.

Assume that $g \in G_{\mathbf{v}_{+}, \mathbf{w},>0}, g^{\prime} \in G_{\mathbf{V}_{+}^{\prime}, \mathbf{w}^{\prime},>0}$ and $l \in L$. We have that $\left({ }^{g} P_{J}\right)^{B^{+}}$ is the unique element $B \in \mathcal{R}_{v, w}$ that is contained in ${ }^{g} P_{J}$ (see 1.4). Therefore $\left({ }^{g} P_{J}\right)^{B^{+}}={ }^{g} B^{+}$. Similarly, $\left({ }^{g} P_{J}\right)^{B^{-}}={ }^{g \dot{w}_{0}^{J}} \quad B^{+},\left(\psi\left(g^{\prime-1}\right) Q_{J}\right)^{B^{+}}={ }^{\psi\left(g^{\prime-1}\right)} \dot{w}_{0}^{J} \quad B^{-}$ and $\left(\psi\left(g^{\prime-1}\right) Q_{J}\right)^{B^{-}}=\psi\left(g^{\prime}\right)^{-1} B^{-}$. Thus $\operatorname{pos}\left(\left({ }^{g} P_{J}\right)^{B^{+}}, g l \psi\left(g^{\prime}\right)\left(\left(\psi\left(g^{\prime-1}\right) Q_{J}\right)^{B^{+}}\right)\right)=$ $\operatorname{pos}\left(B^{+}, l \dot{w}_{0}^{J} B^{-}\right)$and $\operatorname{pos}\left(\left({ }^{g} P_{J}\right)^{B^{-}}, g l \psi\left(g^{\prime}\right)\left(\left(\psi\left(g^{\prime-1}\right) Q_{J}\right)^{B^{-}}\right)\right)=\operatorname{pos}\left(\dot{w}_{0}^{J} B^{+},{ }^{l} B^{-}\right)$. Therefore we have that $\left({ }^{g} P_{J},{ }^{\psi\left(g^{\prime}\right)^{-1}} Q_{J}, g H_{P_{J}} l U_{Q_{J}} \psi\left(g^{\prime}\right)\right) \in Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}}$ if and only if $l \in B^{+} \dot{y} \dot{w}_{0} B^{+} \dot{w}_{0} \dot{w}_{0}^{J} \cap \dot{w}_{0}^{J} B^{+} \dot{y}^{\prime} \dot{w}_{0} B^{+} \dot{w}_{0}=B^{+} \dot{y} B^{-} \dot{w}_{0}^{J} \cap \dot{w}_{0}^{J} B^{+} \dot{y}^{\prime} B^{-}$.

Note that $L \cap B^{+} \subset \dot{w}_{0}^{J} B^{-}$. Thus for any $x \in W_{J},\left(L \cap B^{+}\right) \dot{x}\left(L \cap B^{+}\right) \subset$ $B^{+} \dot{x} \dot{w}_{0}^{J} B^{-} \dot{w}_{0}^{J}$. Therefore,

$$
\begin{aligned}
L \cap B^{+} \dot{y} B^{-} \dot{w}_{0}^{J} & =\bigsqcup_{x \in W_{J}}\left(L \cap B^{+}\right) \dot{x}\left(L \cap B^{+}\right) \cap B^{+} \dot{y} B^{-} \dot{w}_{0}^{J} \\
& =\left(L \cap B^{+}\right) \dot{y} \dot{w}_{0}^{J}\left(L \cap B^{+}\right)
\end{aligned}
$$

Similarly, $L \cap \dot{w}_{0}^{J} B^{+} \dot{y}^{\prime} B^{-}=\left(L \cap B^{-}\right) \dot{w}_{0}^{J} \dot{y}^{\prime}\left(L \cap B^{-}\right)$.
Then $\left\{(P, Q, \gamma) \in Z_{J}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}} \mid P \in \mathcal{P}_{v, w,>0}^{J}, \psi(Q) \in \mathcal{P}_{v^{\prime}, w^{\prime},>0}^{J}\right\}$ is isomorphic to $G_{v, w,>0} \times G_{v^{\prime}, w^{\prime},>0} \times\left(\left(L \cap B^{+}\right) \dot{y} \dot{w}_{0}^{J}\left(L \cap B^{+}\right) \cap\left(L \cap B^{-}\right) \dot{w}_{0}^{J} \dot{y}^{\prime}\left(L \cap B^{-}\right)\right) / Z(L)$. Note
that $\left(\left(L \cap B^{+}\right) \dot{y} \dot{w}_{0}^{J}\left(L \cap B^{+}\right) \cap\left(L \cap B^{-}\right) \dot{w}_{0}^{J} \dot{y}^{\prime}\left(L \cap B^{-}\right)\right) \cap L_{\geqslant 0}=U_{y w_{0}^{J},>0}^{-} T_{>0} U_{w_{0}^{J} y^{\prime},>0}$. Therefore

$$
\begin{aligned}
Z_{J,>0}^{v, w, v^{\prime}, w^{\prime} ; y, y^{\prime}} & \cong G_{v, w,>0} \times G_{v^{\prime}, w^{\prime},>0} \times U_{y w_{0}^{J},>0}^{-} T_{>0} U_{w_{0}^{J} y^{\prime},>0}^{+} /\left(Z(L) \cap T_{>0}\right) \\
& \cong \mathbf{R}_{>0}^{l(w)+l\left(w^{\prime}\right)+2 l\left(w_{0}^{J}\right)+|J|-l(v)-l\left(v^{\prime}\right)-l(y)-l\left(y^{\prime}\right)} .
\end{aligned}
$$

By 3.15, we have that $U_{y w_{0}^{J},>0}^{-} T_{>0} U_{w_{0}^{J} y^{\prime},>0}^{+} /\left(Z(L) \cap T_{>0}\right)$ is a connected component of $\left(\left(L \cap B^{+}\right) \dot{y} \dot{w}_{0}^{J}\left(L \cap B^{+}\right) \cap\left(L \cap B^{-}\right) \dot{w}_{0}^{J} \dot{y}^{\prime}\left(L \cap B^{-}\right)\right) / Z(L)$. The corollary is proved.

Acknowledgements

I thank George Lusztig for suggesting the problem and for many helpful discussions. I also thank the referee for pointing out several mistakes in the original manuscript and for some useful comments, especially concerning 3.8, 3.10 and 3.15.

References

[DP] De Concini, C., and C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini 1982), Lect. Notes Math., vol. 996, Springer, 1983, pp. 1-44. MR 85e:14070
[FZ] Fomin, S., and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), no. 2, 335-380. MR 2001f:20097
[MR] Marsh, R., and K. Rietsch, Parametrizations of flag varieties, RT/0307017.
[KL] Kazhdan, D., and G. Lusztig, Representations of Coxeter groups and Hecke algebras,, Invent. Math. 53 (1979), 165-184. MR 81j:20066
[L1] Lusztig, G., Total positivity in reductive groups, Lie Theory and Geometry: in honor of Bertram Kostant, Progress in Math. 123 (1994), 531-568. MR 96m:20071
[L2] Lusztig, G., Total positivity and canonical bases, Algebraic groups and Lie groups (ed. G.I. Lehrer), Cambridge Univ. Press, 1997, pp. 281-295. MR 2000j:20089
[L3] Lusztig, G., Total positivity in partial flag manifolds, Represent.Theory 2 (1998), 70-78 (electronic). MR 2000b:20060
[L4] Lusztig, G., Introduction to total positivity, Positivity in Lie theory: open problems (eds. J. Hilgert, J.D. Lawson, K.H. Neeb, E.B. Vinberg), de Gruyter Berlin, 1998, pp. 133-145. MR 99h:20077
[L5] Lusztig, G., Parabolic character sheaves, I, RT/0302151.
[L6] Lusztig, G., Parabolic character sheaves, II, RT/0302317.
[R1] Rietsch, K., Total positivity and real flag varieties, MIT thesis (1998).
[R2] Rietsch, K., An algebraic cell decomposition of the nonnegative part of a flag variety, J. Algebra 213 (1999), no. 1, 144-154. MR 2000e:14086

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

E-mail address: hugo@math.mit.edu

[^0]: Received by the editors October 3, 2003 and in revised form, March 10, 2004.
 2000 Mathematics Subject Classification. Primary 20G20; Secondary 14M15.

