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ABSTRACT. In this paper we define and study generalized Green functions for
possibly disconnected groups.

INTRODUCTION

Throughout this paper, G denotes a fixed, not necessarily connected, reductive
algebraic group over an algebraically closed field k. This paper is a part of a series
[C9] which attempts to develop a theory of character sheaves on G.

Assume now that k is an algebraic closure of a finite field F, and that G has a
fixed Fg-structure with Frobenius map F. Let (L, S,&, ¢o) be a quadruple where
L is an F-stable Levi of some parabolic of G°, £ is a local system on an isolated
F-stable stratum S of Ng L with certain properties and ¢g is an isomorphism of £
with its inverse image under the Frobenius map. To (L, S, ) we have associated in
5.6 an intersection cohomology complex & = IC(Y, 77!5‘) on G. Moreover, ¢g gives
rise to an isomorphism ¢ between K and its inverse image under the Frobenius
map. There is an associated characteristic function xg 4 (see 15.12(a)) which is a
function GF' — Q, constant on (G°)F-conjugacy classes. The main result of this
paper is Theorem 16.14 which shows that the computation of this function can be
reduced to an analogous computation involving only unipotent elements in a smaller
group (the centralizer of a semisimple element). (This is a generalization of [L3|, II,
Theorem 8.5]. However, even if G is assumed to be connected, as in [L3|, IT], our
Theorem 16.14 is more general than that in [L3] II], since here we do not make the
assumption that & is cuspidal. Also, unlike the proof in [L3| II] the present proof
does not rely on the classification of cuspidal local systems.) A main ingredient in
Theorem 16.14 are the generalized Green functions (see 15.12(c)) which generalize
those in [L3] II, 8.3.1] One of the key properties of the generalized Green functions
is the invariance property 15.12(d). In the connected case, this property was stated
in [L3] II, 8.3.2], but the proof given there was incomplete (as pointed out by E.
Letellier). Most of Section 15 is devoted to establishing this invariance property.
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15. GENERALIZED GREEN FUNCTIONS

15.1. In this section we fix a pair (L, ¥) where L is a subgroup of G* and ¥ is a non-
empty subset of NgL; we assume that there exists a parabolic of G normalized by
Y, with Levi L, and that ¥ = UjEJ S; where S; are distinct isolated strata of NgL
with dim S; independent of j. Several definitions in Sections 3 and 5 which concern
the spec1a1 case where ¥ is a single stratum will now be extended to the present,
more general case. Let 3, S; be the closure of 3, S; in NgL. Then % = U]EJ

Since S; is a union of isolated strata of G, the same holds for ¥. Let &€ be a local
system on ¥ such that &; := &|s, € S(S;) for all j € J. Since ¥ is a smooth, open,
dense subvariety of pure dimension of &, IC(%, ) € D(X) is well defined. Let

*x . 0 . *
S ={g€e%Zalgs)’ c L} = | 5;
=
(87 ={g € Sj;Za(gs)° C L} as in 3.11). Then X* is an open dense subset of ¥
(this follows from the fact that S} is open dense in S; for any j; see 3.11). Let

Y ={(9,2L) € G x G°/L;z ‘gz € ¥*} = U YLSJ.
jeJ
(a disjoint union),
YL,E = U Xt = U YL,Sj-
€GO JjeJ

(a not necessarily disjoint union). Thus Y7 5 is a finite union of strata of equal
dimension (see 3.13(a)) of G. Hence Y7 5 is a locally closed smooth subvariety of
pure dimension of G' and any of its irreducible components is of the form Y7 g,
for some j (which is not necessarily unique). Let Yos;, YL s be the closure of
Yrs;, YL s in G. We define a local system € on YL; by the requirement that
b*E = a*E where a(g,r) = (g,2L),b(g, ) = 271 gz in the diagram

Yis << {(g,2) € G x Gz gx e ©*} Ly

(We use the fz}ct that a is a principal L-bundle and b*£ is L-equivariant.)
Define 7 : Y s — Y 5 by 7(g,xL) = g. Using 3.13(a), we see that 7 is a finite
unramified covering (for any irreducible component U of Yy 5, 7 : 72 (U) — U

may be identified with I—']EJ,YL,SJ YL s; — U given by m; YL’SJ — YLs;,

(9,2L) — g). Tt follows that m€ is a local system on Y7 s such that for any
irreducible component U of Y7, 5, we have

mélu= P  mé

where (‘:'j is the local system on YLSJ. defined in terms of £; as in 5.6. Then
IC’(YL;,mg) € D(YL;) is well defined and

(a) IC YL 2,7T| @IC YL’SJ.,W]‘!E]‘)
Jje€J

where IC(YLS?.,?TJ‘!(%‘) is regarded as a complex on YL; which is zero on YL; —
YL,Sj-
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Proposition 15.2. Assume that S = {g € Sj;g unip.} # 0 for any j € J. Let
W = UjeJ 5%, let p: ¥ — ¥ be the morphism p(g) = gu and let El = p*E. Then
Ells, € 8(S;) for all j € J and we can define EL in terms of E just like € is
defined in terms of €. Let Yﬁz = {g € Y. »;g unipotent}. We have a canonical
isomorphism

(a) IC(Yp e, m&)|yp, — IC(Viz,mEY)|yp
in D(Ysy,).

In other words, IC (YL, 5, mf:')|yLuZ depends only on &|s«, not on £ on the whole
of 3. The proof will be given in 15.5-15.11.

15.3. We return to the setup in 15.1. Let P be a parabolic of G° with Levi L such
that ¥ C NgP. By 3.14 we have Y7 5, = U, cqo ijpr’l hence

YL,Z = U YL,SJ. = U inpx_l.
Jj€J €GO

Let X; = {(g,2P) € G x G°/P;x~ gz € S;Up}. Let

X ={(g,2P) € G x G°/P;x ‘gz € SUp} = U X;.
jeJ

Define ¢ : X — YL 5 by ¥(g,2P) = g. This map is onto. We have the following
generalization of Lemma 5.5:

(a) (g,xL) — (g,2P) is an isomorphism Yi s = ¢y~ (Y %).
We verify this only at the level of sets. The proof of injectivity is the same as
that in Lemma 5.5. We prove surjectivity. Let (g,zP) € ¢~}(Y.x). We have
(9,2P) € X, for some j € J (hence g € Y. 5,) and g € YL,s, for some j' € J.
Since YL,s, is a stratum of G that meets YL,SJ. (which is a union of strata, see 3.15)
we see that Yis, C YL,SJ.. Since dimYy, s, = dim Yy s; (see 3.13(b)) and Y7, s,
is the only stratum in YLSJ. of its dimensibn, we see that YL,SJ,, =Yy ;. Thus,
g € Yr 5, Using the surjectivity of the map in Lemma 5.5 (for .S; instead of S) we
see that there exists (g,2'L) € YL,SJ such that (g,2’'P) = (g,zP). This proves the
surjectivity of our map.

15.4. We are still in the setup of 15.1. For any stratum S’ of Ng L that is contained
in ¥ let Xg = {(g9,2P) € G x G°/P;27 gz € S'Up} C X. We have X = |, X
(a finite union over all 5" as above). Let X5 = (J;c; Xs;. Then Xy is a smooth,
open dense subvariety of pure dimension of X (since ¥ is a smooth, open dense
subvariety of pure dimension of X).

We define a local system £ on Xs by the requirement that b'*€ = a’*£ where
a'(g,x) = (g,2P),b (g,2) = f(x71gx) (f as in 5.4) in the diagram

Xs < {(9,2) € G x G2 gz € SUp} LIS )
(We use the fact that a’ is a principal P-bundle and b"*& is P-equivariant.) Then
IC(X,€) € D(X) is well defined and we have a"*IC(X, &) = b"*IC(X,E) where
a’(g,x) = (9,2P),b"(g9,2) = f(z~'gz) in the diagram

x < {(g,7) € G x G% " 'gx € ZUp} L)

We have the following generalization of Lemma 5.7:
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(a) Y(IC(X,E)) is canonically isomorphic to IC(Yy, 5, mE).
The proof is similar to that of Lemma 5.7. Let K = IC(X,£) and let K* =
IC(X, &) where & is defined like &, replacing £ by the dual local system. Using
15.3(a), we see that 91 K|y, , = m&. As in the proof of Lemma 5.7, it is enough to
verify the following statement.

For any i > 0 we have dimsuppH(¢1K) < dim Y7, 5, and dim suppH¢ (¢ K*) <
dim ?L,E — 1.
We shall verify this only for K; the corresponding statement for K* is entirely
similar. As in the proof of Lemma 5.7, it is enough to prove:

For any i > 0 and any stratum S’ of NgL contained in ¥ we have

dim{g € YL’E;Hé(il)il(g) NXs, K)#0} < dimYL,g — 1.

Assume first that S’ is not one of the S;. As in the proof of Lemma 5.7, we see
that it is enough to prove that

_ i1 _
dim{g € Vz.x; dim(¥ "1 (g) N Xg/) > % — 5 (dimD — dim §)} < dim Yz 5 — i,

Since YLZ =U ies YL75J. this follows from the analogous inequality in the proof of
Lemma 5.7 where Y7, s is replaced by Y7 s,.

Next assume that S’ = S; for some j € J. As in the proof of Lemma 5.7, we see
that it is enough to prove that

dim{g € Yz, ; dim(¢p " (g) N Xs,) > %} < dim¥px —i.

If g € Yy 5 satisfies dim(y "' (g) N Xg,) > 3, then ¢~ (g) N X, # 0 and we have

x gz € S;Up for some z € G°. Hence g € Y(X;) = Yr,s;. Thus it is enough to
prove that

dim{g € Yzs,; dim(v"1(g) N Xs,) > %} <dimYy g, —i.
This is actually contained in the proof of Lemma 5.7. This completes the proof.

15.5. The remainder of this section (except 15.12) is concerned with the proof of
Proposition 15.2. If the analogue of the isomorphism 15.2(a) is known when ¥ is
replaced by S; then, taking direct sum over j € J and using the isomorphism 15.1(a)
and its analogue for £! instead of £, we obtain an isomorphism as in 15.2(a) for
3. Thus, to prove Proposition 15.2, we may assume that > = S is a single isolated
stratum of NgL with (L, S) € A. Then £ € S(9).

Let D be the connected component of G that contains S. Let § be the connected
component of Ng L that contains S. By the assumption of Proposition 15.2, the set
S of unipotent elements in S is a single L-conjugacy class. We have S = 5225’“.
Let S*)Y = YL75,Y = YL75,1~/ = Y/LS,T( .Y — Y be as in 15.1.

Let ttoo = oo (‘532) be as in 5.3. There is a canonical direct sum decomposition
E =@, & in S(S) where A runs over the set of homomorphisms y. — Q; that
factor through some p,, = p,(°Z?) (see 5.3). Here £* has the property that, for
any z € °Z9 h € S“, the monodromy action of o, on the stalk &, of the local
system 5)‘|5zgh (equivariant for the transitive  Z%-action z; : zh +— 2Jzh for some
n € Nj) is through A. We have canonically

1C(Y,m&) = @10V, meN), 10V, mE") = PICEY,mEM).
A A
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Hence if we can construct the isomorphism 15.2(a) for each £* instead of &, then
by taking direct sums we get the isomorphism (a) for £. Thus we may assume that
£ = &* for some .

Let £ be a local system of rank 1 on %29, equivariant for the transitive °Z9-
action z; : z +— 2z{'z for some n € Ny, whose associate homomorphism pioc — QZ‘
is A71; let v be a basis vector of the stalk £;. The pair (£,vg) is defined up to a
unique isomorphism.

Let b: S — 929 be g + g5. From the definitions, the restriction of £ ® b*L to
any fibre of S — S*, g+ g, is isomorphic to Qf where e is the rank of £. Also

(a) (E@DL)|s0 = EYsw = |50

canonically, using the identification £; = Qq, vg < 1. It follows that £ ® b*L
is isomorphic to £! and there is a unique isomorphisms between these two local
systems which induces for the restrictions to S“ the identification (a). Thus we
have a canonical isomorphism

(b) E@b* L =L
It is then enough to construct a canonical isomorphism

(c) 10V, mE)ge = ICY, mE @ 0°L) |y

where Y* = {g € Y; g unipotent}.

15.6. Let ST be the subset of S consisting of those zh, z € 532, h € 5% such that
n € Ngod ={z € G%adz™ ' =6},nz=2n = neclL

(that is, z has trivial stabilizer for the conjugation action of Ngod/L on °Z9). Now
St is open dense in S. (Since Ngod/L is finite, it is enough to show that, for any
n € Ngod — L, the closed subset {zh;z € °Z? ' h € S¥ nz = zn} of S is # S or that
the closed subset {z € °2%:nz = zn} of 920 is # °Z9. If it is equal to °Z?, then
n € Zgo(°ZY) hence using 1.10(a), n € L, a contradiction.)

Since S* is an open dense subset of S it follows that S*I = §* N ST is an open
dense subset of S. Hence

YT ={(g,2L) € G x G,z 1 gz € §*T}

is an open dense subset of ¥ (we use that S* is stable under L-conjugacy). Also,
Y1 is stable under the free action of Wg on Y (see 3.13); it follows that YT = 7(Y'T)
is open dense in Y and YT = 7= 1(y'1).

Let 0 : D — D//G° be as in 7.1. Let a = o(Y). Let u be a unipotent, quasi-
semisimple element of NgL such that w € §. As in the proof of Lemma 7.3(b) we
see that a = {o(zu); 2 € °ZV}. Let

T ={(g,2) €Y x°Z;0(g) = o(zu)}.
Define k : Y1 — Y by (g9,2L) — (g, 2) where 2~ gz = zh € S*1 2 € 0Z9 h e S«

(This definition is correct since o(zh) = o(zu) for z € °29 h € S¥; see 7.3.) Let
Y’ be the closure of x(Yt) in Y. Define ¢ : Y/ — Y by (g,2) — g.

Lemma 15.7. (a) k(Y1) is open in Y’
(b) K restricts to an isomorphism YT = x(Y').
(c) ¥ is a finite surjective morphism.
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We verify (b) at the level of sets. We must show that & : YT — T is injective.
Assume that (g, 2L), (¢’,2'L) in YT have the same image under x. Then g = ¢’ and

x 7 gr = zh, 2’ lgx’ = 20 2 €®ZY he S¥ B e S zh e S

From 3.13(a) we see that 2/ = zn~! for some n € NgoL,nS*n~! = S*. Then
zh! = nzhn=' = nzn~Y(nhn=1'). Now z,z’ are semisimple elements commuting
with the unipotent elements h’, nhn~1. It follows that z = nzn~'. Since n € Ngod
and z has trivial stabilizer in Ngod/L, we see that n € L. Thus 2L = 2’L and & is
injective, as required.

We prove (a). Let P be a parabolic of G® with Levi L such that S C NgP. Let
¥ : X — Y be as in 3.14. Define f : X — T by f(g9,2P) = (g, 2) where 2~ gz €
28°Up,z € 929, (We show that z is uniquely determined by (g,zP). It is enough
to show that, if zhv = p~'2’h'v'p with 2,2’ € 929 h h' € S¥ v,v' € Up,p € P,
then z = 2/. Writing p € IUp with | € L, we have zh = [7'2'h/l = 2/I7'h’l. By the
uniqueness of Jordan decomposition we have z = 2’ as required. To show that f
is well defined we must also show that, if g € Y, 2 € G°,2 € 2% h € S* v € Up
satisfy 7 1gz = zhv, then o(zu) = o(g). Clearly, o(g) = o(zhv) hence we must
show that o(zu) = o(zhv). This follows from the description of o given in 7.1.)
We have v = pry o f where pry : T — Y is (g,2) — 2. Since 1 is proper, it
follows that f is proper and f(X ) is closed in Y. Since YT is open in Y and
Y is open in Y we see that YT is open in Y and ¢~ 1(Y — Y1) is closed in X.
Since f is proper it follows that f(y~*(Y — Y1)) is closed in f(X). We have
fHY =Y)Nf~1(YT)) = 0. (Indeed if (g,2P), (¢',2'P) € X have the same
image under f and g € YT, then ¢’ € Y.) Thus, f(y~}(YT)) is the complement
of f(p~1(Y —YT)) in f(X) hence it is open in f(X). From Lemma 5.5 we see
that v : Y1 — =Y (YT),(g,2L) — (g,xP) is an isomorphism. Since fyyo = k,
we see that k(Y1) = f(¢=1(YT)) hence x(YT) is open in f(X). Since Y’ is the
closure of £(YT) in T and f(X) is a closed subset of T containing (Y1), we see
that Y/ C f(X). Since X,Y are irreducible of the same dimension (see the proof
of 3.14) and Y is open dense in Y, we see that f(X), x(YT), T’ are irreducible and

dimY = dim V" = dims(YT) < dim Y’ < dim f(X) < dim X = dim Y.

It follows that dim Y’ = dim f(X) = dim X hence Y = f(X). Thus, x(Y ) is open
in Y.
We prove (c). Let T) be a maximal torus of Zg(u)? that contains °Z9. As in
7.1, o induces a finite morphism u7T7 — D//G°. This restricts to a finite morphlsm
520 — a. Since pr; : ¥ — Y is obtained from this finite morphism by change of
base it follows that pry is a finite morphism. Restricting to the closed subset Y’ of
T, we deduce that ¢’ : Y/ — Y is a finite morphism. To see that it is surjective, we

note that 1 : X — Y is surjective and 1) factorizes as X Lo Y5 ¥, The lemma
is proved.

15.8. Let £ = m(5|w) a local system on x(YT). Since Y is smooth (see 3.17) and
Y1 is open in Y, we see that YT is smooth. Using Lemma 15.7(a),(b) we see that

k(Y1) is a smooth open dense subvariety of Y’. Hence IC(Y’,£) € D(Y') is well
defined.

Lemma 15.9. % IC(Y',£) is canonically isomorphic to IC(Y,mE).
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Since Y is open dense in Y, we have canonically IC(Y,m&) = IC(Y, (m&)y+).
Let K1 = IC(Y', &), K} = IC’(T’,E) where € is defined like & replacing £ by
£. Then K is the Verdier dual of K with a suitable shift. Since v is proper,
it follows that v (K7) is the Verdier dual of ¢{K; with a suitable shift. From the
definitions it is clear that (¢ K1)|y+ = (m&)|y+. By the definition of an intersection
cohomology complex we see that it is enough to verify the following statement.
For any ¢ > 0 we have

dimsuppH‘ (Y| K1) < dimY —i and dimsuppH’(y(K;)) < dimY — .

We shall only verify this for K7; the corresponding statement for K7 is entirely
analogous. For g € Y, 1'~1(g) is finite hence

MKy = Hi(W' T g), K) = € HiK:.
yeY'~1(g)

It is enough to check that dim¢’({y € Y'; H} K1 # 0}) < dimY —i. But
dim'({y € Yy H, K1 #0}) < dim{y € Y;H K1 #0} <dim Y —i=dimY —i
(since K is an intersection cohomology complex on Y’). The lemma is proved.

Lemma 15.10. Let L' = pr3L where pro : T/ — ‘522 is the second projection. The
restriction of the local system L' on Y’ to k(Y1) is denoted again by L. We have
a canomnical isomorphism

(a) IC(Y, €)@ £ = IC(T £ & L),

The restrictions of the two sides of (a) to the open dense subset x(YT) of T’
are canonically isomorphic (they can both be identified with £ ® £’). From the
properties of intersection cohomology complexes it follows that this extends to an
isomorphism as in (a) provided we can show that the left-hand side of (a) is an
intersection cohomology complex on Y’. To do this we choose a parabolic P as in
the proof of Lemma 15.7(a). Let f : X — Y’ be as in that proof. Then f is proper,
surjective. Let Xg,& be as in 5.6 and let K, K* be as in 5.7. We show that

(b) fil = IC(V",£).

It is clear that (f!K)|,€({/r) = £. As in the proof of Lemma 5.7, it is enough to
verify the following statement.

For any ¢ > 0 we have

dimsuppH‘(fiK) <dim Y’ —i and dimsuppH‘(fIK*) < dim Y’ —i.
We shall only verify thislfor K; the corresponding statement for K* is entirely
similar. Let y € Y'. If H, (i) # 0, then @, ey, (y) =y () Hyy (HE) # Olhence
vy (WAK) # 0. (We use that '~ (y'(y)) is finite.) Thus, y € suppH*(fiK)
implies ¥/ (y) € suppH* (1K) that y € ¢’ (suppH’(¢1 K)). We see that

suppH’ (fiK) C o'~ (suppH' (h K)).
Hence
dim suppH* (1K) < dim ¢~ (suppH' (Y1 K)).
Since 1 is finite, surjective, we have dim v’ ~!(suppH(¢1 K)) < dim suppH* (1 K).
It is then enough to show that dimsuppH!(fiK) < dim Y’ — 4. But this follows

from an estimate in the proof of Lemma 5.7 since dim Y/ = dim Y. This proves (b).
We show that
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(c) K® f*L =1C(X,EY)
where £ is the local system on Xg defined in terms of £! in the same way as & is
defined in terms of £ (see 5.6). With the notation in 5.6(a), it is enough to show
that o”*(K @ f*£') = a’*IC(X,E") or that b"*IC(S,€) @ b"*b*L = b"*I1C(S,E")
where b: S — °Z9is g > g,. It is enough to show that IC(S,£)@b*L = IC(S,EY).
This follows immediately from the definitions. Thus (c) is proved.

Using (b),(c), we have

10T &)L =KoL = fi(KefL)=HICX,E)) =I10(T,E"),

the last step being (b) applied to £! instead of £. (We define £' in terms of £! in
the same way as £ is defined in terms of £.) This completes the proof.

It is clear that, although P is used in the proof above, the isomorphism (a) that
we construct does not depend on the choice of P hence it is truly canonical.

15.11. Let T¥ = Y¥ x {1} C Y x 929, Then Y“ is a closed subset of T. More
precisely, we have T« C Y’. (With notation in the proof of Lemma 15.7, it is enough
to show that Y C f(X). Let g € Y*. Since ¢ : X — Y is Surjectlve we can find
xP € G°/P such that 7 'gx € 25“Up where z € ‘530 Since z~'gz is unipotent,
we must have z = 1. Hence f(g,2P) = (g,1). Thus (9,1) € f(X) as required.)
Thus we have Y* C ¢/ ~}(Y*). This is in fact an equality. (If (g,2) € Y’ and g is
unipotent, then from o(zu) = o(g) = w we see that zu is unipotent hence z = 1.)
Since 1)’ restricts to an isomorphism Y* = Y“ it also restricts to an isomorphism
wh oo THY®) 5 Y@l Via ¢ we may identify Y with Y = «'~}(Y*). By
change of base, we have
1OV, mé)|ye = (WIC(Y,E)lyw = Yo (IC(X', E)|yr—1(3))-

Thus, via ¥, we may identify IC(Y,W;5)|YW =IC(Y,E)|rw.

Similarly, we may identify IC’(Y,mE @b L)|ye = IC(Y,E R V*L)|yw. Hence,
in order to construct the isomorphism 15.5(c), it is enough to construct a canonical
isomorphism

IC(Y, E)|ye — IC(Y,E RV L)|rw.
From the definitions we have £ ® b*L£ = £ ® L. Hence it is enough to construct a
canonical isomorphism
1C(Y, E)|re — IC(Y,E£@ L1)|yw.
We have canonically £4.. = Q; (we identify £; = Q; by vg <> 1). Hence (IC(Y',€)
® L) |ye =IC(Y',E)|re. Thus it is enough to construct a canonical isomorphism
(IC(Y',E) @ L) |ye — IC(Y,ER L )|ye.

This is obtained by restricting to Y* the isomorphism 15.10(a). This completes the
proof of Proposition 15.2.

15.12. In the remainder of this section we assume that k is an algebraic closure of a
finite field F, and that G has a fixed Fg-structure with Frobenius map F': G — G.

For any algebraic variety Z defined over F, with Frobenius map F': Z — Z,
an object A € D(Z) and an isomorphism ¢ : F*A = A in D(Z) we define the
characteristic function xa,¢ : ZF - Q; by

(a) Xas(z) = Y (~1)'tr(d, HLA), (2 € ZF).

i
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(The map induced by ¢ on the stalk H¢ A is denoted again by ¢.)

Consider a quadruple (L, X%, F, ¢1) where

L is an F-stable Levi of some (not necessarily F-stable) parabolic of G;

3¢ is the set of unipotent elements in a subset ¥ of NgL as in 15.1, 15.2 such
that F(X¥) = ¥“ (or equivalently F(¥) = X); note that ¥¢,¥ determine each
other;

F is an L-equivariant local system on X¢;

¢1: F*F = F is an isomorphism of local systems on X¢.
Consider the complex & = IC(YL,E,’IT!E) € D(Yy x) where Y, 5,7 : YL,Z — Yo »
are defined as in 15.1 and & is defined as in 15.1 in terms of a local system & on
¥ (as in 15.1) such that F is the inverse image of £ under the inclusion 3% — X.
We assume that we are given an isomorphism ¢} : F*§ = & of local systems on
Y extending ¢;. (Note that we can always find &, ¢| as above: for example, we
have the “trivial choice” where £ is the inverse image of F under ¥ — >“ g —
gu and @} is induced by ¢;. However, for future applications, it is necessary to
allow other choices of £, ¢).) Now YL;, 17,;72, Y7, s have natural Fg-structures with
Frobenius maps F and ¢} induces an isomorphism F *€ =, € of local systems on
YL;, an isomorphism F *77!5‘ = 77!5‘ of local systems on Y7, »; and an isomorphism
¢: F*R& = Rin D(Yy x). We define a function

(b) Qr.c v F ¢ : {unipotent elements in GF} - Q
by
(c) QrL,G,zv 7,6, (1) = X5,6(1)

(see (a)) if u € YL;; and Qr.¢ s, 7.6, (u) =0if u ¢ YL;;. The function (c) is
called a generalized Green function. It extends (up to a sign) a definition given in
[L3| 11, 8.3.1] (in the case where G = G° and X* is a single unipotent class). From
Proposition 15.2 we see that

(d) Qr.¢,5,7.6,(u) is independent of the choice of £, ¢},
namely it is the same for a general £, ¢} as for the “trivial choice”. (The isomor-
phism in Proposition 15.2 is compatible with the Frobenius maps.)

16. THE CHARACTERISTIC FUNCTION Xg,¢

16.1. In this section we fix (L,S) € A and £ € S(S). Let ¢ be the connected
component of NgL that contains S. Recall (cf. 1.22) that
(a) Ss = {gs;g € S} is a single °Z9 x L-orbit on NgL for the action (z, ) :
Y = xzyx_l.

Lemma 16.2. (a) Let s’ € S,. Let c(yy = {v € Zg(s');v unipotent, s'v € S}.
Then c(gy = |_|j€J ¢; where J is finite and ¢; are (unipotent) Z(s")°-conjugacy
classes of dimension independent of j.

(b) For any j € J, the stratum S; of Znr(s') that contains ¢; is °Z%¢;. In
particular, dim S; is independent of j.

First we note that

(c) any G°-conjugacy class in G has finite intersection with °Z?s',
This follows from 1.14(a),(d) applied to g = s’ and to a maximal torus of Zg(g)°
that contains °ZY.
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In particular, any L- conjugacy class in NgL has finite intersection with ‘530 !
Hence the group Z = {y € L;ys'y~" € 9295’} contains Zy(s') as a subgroup of
finite index. Thus, Z° = Z1(s')°. From 16.1(a) we see that Z acts transitively (by
conjugation) on ¢(yy. Since Zr (s )% is normal in Z, it follows that Z permutes tran-
sitively the Zp (s")-orbits in c(s); hence all these orbits have the same dimension.
This proves (a).

We prove (b). We have S; = {z € Z), 21 (510 2V = vz} = T, 1(s'v)¢; where v
is any element of ¢;. Since s'v € S, s'v is isolated in NgL hence T, (s'v) = °Z9;
see 2.2. This proves (b).

16.3. We fix a semisimple element s € G and a unipotent element u € Zc(s) such
that su € Y, the closure of Y7, s in G. Let P be a parabolic of G® with Levi L such
that S C NgP. Let

M={xeG%z sz eS,},M={zxeGa " sxeS,Up}

Let T be the set of orbits for the Zg(s)? x L action (h,l) : z — hzl~* on M. We
show that

(a) T is finite.
We may assume that M # ). Let 2o € M. Using 16.1(a), we see that it is enough
to show that {x € G% o 1sz € 52’2xalsfco} is a union of finitely many orbits under
left translation by Zg(s)?, or equivalently, a union of finitely many orbits under
left translation by Z(s), which contains Zg(s)? with finite index. It is enough to
note that any G°-conjugacy class in G has finite intersection with 6223:5 Lszo; see
16.2(c).

The group {n € NgoL;nSn~! = S} acts on I' by n :  +— nn~1; this induces an
action of Wy (see 3.13) on I'.

Let T be the set of orbits for the Zg(s)? x P action (h,p) : & — hap~! on M.
Any orbit n in I' is contained in a unique orbit 7 in I.

(b) The map T — T, n— 4, is a bijection.
We show that our map is injective. Let z,2' € M be such that 2/ = hxp~! for
some (h,p) € Zg(s)? x P. We must show that z,2’ are in the same Zg(s)? x L
orbit. Replacing z by an element in the same Z¢(s)? x L orbit we may assume that
2’ = zu~! for some v € Up. Let s = z7'sz,s' = ur~'szu~'. Then s',s” belong
to S5 hence to NgL N NgP and

S u—l(slusl—l) c (NGLQ NGP) NUp = {1}

Thus, u=!s'us’~! =1 that isu € UpNZg(s ’) =UpNnZg(s')°. (We use 1.11.) Then
¢ :=zur ! = sutuur! € Zg(a:u L'uz™)0 = Z5(s)? and 2/ = vu™! = (" la.
Since ¢ € Zg(s)?, we see that z,2” are in the same Zg(s)? x L orbit, as required.

We show that our map is surjective. Let = € M. Tt is enough to show that
for some v € Up we have zv € M. Now z 'sx € NgP is semisimple. Hence,
using 1.4(a), 2~ sz normalizes vLv~! for some v € Up. Replacing x by zv we may
assume that 2 ‘sz € NgP N NgL. We have z 'sxz = ¢’¢g” where ¢’ € S,,¢" € Up.
Since Ss C NgPN NgL, we have ¢ tx~lsx € (NgPNNgL)NUp = {1}; see 1.26.
Thus, 7 'sx = ¢’ € Sy and z € M. This completes the proof of (b).

Since I is finite, it follows that I" is finite.

The orbits of Zg(s)" acting by left translation on {xP € G°/P;x~'sx € S;Up}
are complete varieties. (Indeed, such an orbit is of the form Zg(s)°/(Zg(s)? N
rPz~!) where z € G°, 27 sz € S,Up and it is enough to show that Zg(s)°Nx Pz !
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is a parabolic of Zg(s)?, or equivalently that Zg(z~1'sz)? N P is a parabolic of
Zg(x~1sx)?. This follows from 1.12(a) since 27 tsz € NgP.) Hence these orbits
are closed. Since there are only finitely many such orbits (their number is [T’ = |T'|),
these orbits are also open.

Let 67 be the connected component of Zg(s) that contains w.

Lemma 16.4. There exists an open subset U of 61 such that

(i) U contains any unipotent element in dy;
(i) gUg™r =U for all g € Zg(s)?;
(iii) for any P as in 16.3 we have h € U, x € G°, 27 shx € SUp = x 'hsx €
522Up,:c’1sx € S;Up.

Let D be a connected component of G. A subset of D is said to be stable if it is
a union of fibres of the map o : D — D//G° in 7.1. Let g € D be quasi-semisimple
and let T} be a maximal torus of Zg(g)°. From 7.1(a) we deduce:

(a) a stable subset R of D is closed in D if and only if R N g1y is closed in
ng.
Next we show that

(b) Assume that D contains some unipotent elements. Let Ry be a subset of
GO which is a union of G°-conjugacy classes such that the intersection
of Ro with some/any mazimal torus in G is closed in that torus. Then

R :={g € D;gs € Ro} is a closed and stable subset of D.

We show that R is stable. Let y € R and let y’ € D be such that o(y) = o(y’).
We must show that ¢’ € R. Let v € y,Zc(ys)? be unipotent, quasi-semisimple in
Za(ys) and let v' € yl,Zc(y%)? be unipotent, quasi-semisimple in Zg(y.). Then
ylv' = zysvz~?! for some z € GO (see 7.1). It follows that y, = zysz~!. Since
Ys € Ro we see that y. € Ry hence y' € R. We show that R is closed in D. Let
g,T1 be as above. Let T] be a maximal torus of G° that contains Tj. Since g is
unipotent, we have

RNgT ={gt;t € T1 NRo} = g(T] NRo) N gTh.
This is closed in ¢T3 since 7] N Ry is closed in G. This proves (b).

(c) Let s’ € G be semisimple and let g’ € Zg(s') be such that g, € Zg(s')° and
Zc(s'gl) C Zg(s'). If s'g’ is isolated in G, then s'g), = g.,s' is isolated in
G.
Let T7 be a maximal torus of Zg(s')? such that ¢’ € Ty. Then Tj is also a maximal
torus of Zg(s'g.)?. With the notation of 1.5 we have

Lie Zg(s'gl) =t® @ go, Lie Zg(s') =to® @ Oa
aER/ aER

where R’ C R are subsets of R and t = Lie Ty. The centre of Zg(s'g.)? is
{t € T1;a(t) = 1Va € R’} and the centre of Zg(s')? is {t € T1;a(t) = 1Va € R"}.
Since R’ C R, the centre of Zg(s'g%)? contains the centre of Zg(s')". Hence

Z%G(S/)o C ch(s’g;)o and ch(s’)o N Zg(gu) C ch(s’gg)o N Zg(g,;).

It follows that T'(s'g.,) C T(s'glg.,) (see 2.1). Since s'¢Lg., is isolated in G, we have
T(s'glgl,) C Zgo. It follows that T'(s'gl,) C Zgo, hence s'g], is isolated in G. This
proves (c).
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(d) Let s" € G be semisimple and let g € Zg(s') be such that g € Za(s')°,
s'g € SUp (P asin 16.3), s'gs € Sy and Zg(s'gs) C Za(s'). Then there
exists a € NgL such that a is unipotent, as’ = s'a € § and s'a is isolated
in NagL.

We have °Z? C Zg(s'gs) hence °Z9 C Zg(s'). Thus, s € Zg(°ZY). Since
Zgo(129) = L (see 1.10) and Zgo(°ZY) is normal in Zg(°2Y), we have s’ € NgL.
From s'gs € S we see that g; € NgL. Since g € Zg(s'), we have g, € Zg(s).
Now Zg(s")? contains g, and 52’2; moreover, gs commutes with any element of
329 (since s'gs and s’ do). Hence we can find a maximal torus Ty of Zg(s")° such
that g; € T1, ‘522 C Ti. Since L = ZGo(‘Szg) we have T C L. Thus, T7 is a
torus in Z7(s")°. Since g, € Ty, we have g, € Zp(s')?. Since s'g € SUp C NgP
we have g, = (s'¢g)y € NgP. Hence g, = ab where a € NgL N NgP,b € Up
are uniquely determined and a is unipotent. Now s’g, commutes with g, hence
(s'gsag;ts'~1)(s'gsbgsts'™1) = ab. Since s'gs € Ss C NgL N NgP, we have
a1(s'gsag;ts'7t) = b(s'gsbgs s’ 1)l € NoLNUp = {1}. Hence a € Zg(s'gs).
Since Zg(s'gs) C Zg(s') we have a € Zg(s') and a € Zg(gs). We have s'g € SUp
hence s’gsab € SUp. Since s'gsa € NoL N NgP,b € Up, it follows that s’g.a € S.
Let ¢’ = gsa. Then ¢’ € NgL, s'g’ € S. We have ¢’ € Zy.1(s"). Since a is unipo-
tent we have ¢’ = g5 € Z1(s')°. Also, Zn.1(8'g.) C Zng1(s'). Since s'g’ € S, we
see that s'¢g’ is isolated in NgL. Applying (c) to NgL instead of G we see that
s'a = as’ is isolated in NgL. Since s’gsa € S we have s'g,a € §. Since g, € L we
have s’a € 6. This proves (d).

(e) Let F be the image of {y € 0;y isolated in NoL} under y — ys. Let E
be the set of all g € &1 such that there exists x € GV with x~'sg,x €
Sy, v lsx € Fyolgew ¢ ‘522. Then E is a closed stable subset of 7.

Let &’ be the connected component of NgL such that h € § = h, € §'. From
2.7 and 1.22 we see that there exist finitely many semisimple L-conjugacy classes
Co,C1, ..., Cy in 8 such that F — S, = J-, 3290; and Ss = °Z%Cy. Applying
an argument in 16.3(a) to °ZYC;, (j € [0,m]) instead of Sy we see that there
are only finitely many orbits for the action (h,l) : @ — hal™! of Zg(s)? x L on
{r € G%ax 'sz € °290;}. Hence for j € [0,m] we can find elements z;; € G°,
i € [1,p;],pj < oo such that :c;jlsxij €929%C; and E = Ujejo,m,ie(1,p;) Eij Where
E;; = U {g€d1;27 sgs2 € xij‘sngox;jl,z_lgsz ¢ xiﬁzgx;jl}.
2€Z¢(8)0

It is then enough to show that, for any j,i as above, Ej;; is a closed stable subset
of §1. We set a = ;5. We have a~'sa € ¢’ hence a~'sa € NgL. Applying 1.27(a)
with NgL, Zn.r(a"tsa), Cy instead of H', H,c we see that Co N Zn.(a tsa) =
U, CL. where m’ < oo and C are semisimple Z(a™'sa)’-conjugacy classes in
Zner(a"1sa). In the definition of E;; we have automatically

27 Ysgez € a(®22)(co N Zner(a” tsa))a™?
(we use that °Z9 C Zg(a~'sa) since a~1sa € §'). Hence E;; = U;nzll E;jr where

E;jr = U {g€ b2 sgsz € TaCla™t, 27 gez ¢ T}
2€Z¢(s)"
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and 7 := a(°Z?)a"!. Tt is then enough to show that, for any = € [1,m/] as above,
E;;r is a closed stable subset of d;. Let f € Cl. Since aZp(a"'sa)’a™ C Zg(s)°,
we have
Eijr = U {g€d1;2 15952 € rafa=t, 2 gz ¢ T}
2€Z¢(s)0

We may assume that E,j, is non-empty. Then afa™' = sfy where fj is a semisimple
element of Zg(s)?. Now fo centralizes 7, a torus in Zg(s)?. Hence there exists a
maximal torus Ty of Zg(s)? such that Ty contains 7 and fy. Applying (b) to
Z(s),01, E;jr instead of G, D, R, we see that it is enough to show that

{h € Ty;2 shz € sfor, 2" *hz ¢ T for some z € Zg(s)°}
is closed in T}. Since this is non-empty, we have fo ¢ 7 and the last variety becomes
{h € Ty;2" hz € for for some z € Zg(s)°},

that is, UweW1 wT fow™! where Wy = NZG(S)oTl/Tl. This is closed in T} since W;
is finite and 7 fo is closed in T3y. This proves (e).

(f) there exists an open stable subset Uy of 61 such that Uy contains any unipo-
tent element in 01 and such that g € Uy = Zg(sgs) C Za(s).

We imbed G into G = GL, (k) as a closed subgroup. Let U = {g € G; Za(gs) C
Zs(s)}. Let Uy = s~ N dy. Clearly, Uy has the required properties.

We can now prove the lemma. Let U = {g € U1;9 ¢ E} with U as in (f), E
as in (e). From (e),(f) we see that U is an open stable subset of ;. If g € &3
is unipotent, then g € U; by (f) and g ¢ E (if we had g € E, then there would
exist € G such that 1 = 2711z ¢ 522, absurd). Thus U contains any unipotent
element in 6;. Assume now that g € U, r € G°, v sgx € SUp (with P as in 16.3).
We must show that x~'sz € S,Up and 2 'g,x € 5ZgUP. Now any element in
SUp is Up-conjugate to an element whose semisimple part is in Ss. (See the proof
of 3.15 and 1.22(b).) Hence, replacing by zv for some v € Up we may assume
that we have, in addition, 27 'sgsz € Ss. Since g € Uy, we have Zg(sgs) C Za(s)
hence Zg(wsgsz™t) C Zg(xsz™!). We apply (d) with zsz~! xgz~! instead of
s',g. (We have g € Z(s)? since g € §; and §; contains unipotent elements. Hence
rgr~! € Zg(zsx™1)0.) We see that there exists a € NgL such that a is unipotent,
azsz~! = wsr~la € § and xsz~'a is isolated in NgL. We then have xsz~! € F (F
as in (e)). Since v~ 'sgsx € Ss, v ‘sz € F and g ¢ E we must have v~ g,z € 929,
by the definition of E. We have 2 'sz = (v~ !sgex)(z 7 gsz) ™ € S92 = S,.
This completes the proof of the lemma.

16.5. Let U be as in Lemma 16.4. Let P be as in 16.3. Let ¢ : X — Y be as in
3.14. We show that
(a) the sets Xy = {(g,2P) € X;9 € s,z € 7} (n € T') form a finite partition
of Xy ={(g,2P) € X;g € s} into open and closed subsets.
From Lemma 16.4(iii) we see that the second projection defines a morphism pro :
Xy — {zP € G°/P;a~ sz € S;Up}. We have Xy, = pry '(7/P) and it remains
to use the fact that the subsets 7/ P form a finite partition of {zP € G°/P;z sz €
SsUp} into open and closed subsets.
For any x € M, P, := xPxz~ ' N Zg(s)? is a parabolic of Zg(s)"; see 16.3.
Moreover, L, := xLz~' N Zg(s)o is a Levi of P, since 7 'sz € NgL N NgP; see
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1.12(a). Let

¢, = {v € Zg(s);v unipotent, 2~ svx € S},

¥, =2(°ZN)z e,
Let &, be the local system on ¥, obtained as the inverse image of £ under ¥, —
S, g — x~1sgx. The results of 15.1, 15.3, 15.4 are applicable to Zg(s), Py, Ly, Ya, Ex
instead of G, P, L, %, € (see 16.2). Let

Te Y = Y Epthe: X = Y K,
be obtained from 7 : Y/L7g - YLy, E:X — Yy s, K in 15.1, 15.3, 15.4, replacing
G,P,L,%,E by ZG(S)anvL:c; Yo, Ea
For any n € I" we choose a base point x, € n. We set

Pn :waLn = L:c,,acn = C:cnaZn = anagn :gxnaﬂ'n = Tz

Yy =Y, Yy =Y 8y = Ea by =y, Xy = X0 Y =Y Ky = Ky,
X{yp={(h,z2P)) €U x Zg(s)° /Py 2~ ha € £,Up, } C X,
Lemma 16.6. We have an isomorphism Xlil,n = Xy, (hy2Py) — (sh, zz, P).

We prove this only at the level of sets. First we show that our map is well defined.
Assume that (h, 2P;) € X, . Then 27 1hz = afy with a € xndzgxgl,ﬂ €Cy, X €
Up, and

-1 _ =l -1 _ -1
(zz)” shzay = x, s2” hzz, = x, safxT,

= (x;lafcn)(x;lsﬂxn)(xglecn) €22Y8Up = SUp,
sh € sU,zx, € n, hence (sh,zx,P) € Xy,. (We use that x;lsénmn c S,
x;lUann C Up.)

We show that our map is injective. Assume that (h,zP,),(h',2'P,) € U X
Za(s)°/ P, satisfy (sh,zx,P) = (sh/,z’z,P). Then clearly h = b/ and 2712’ €
xn Pz, ' N Za(s)° = P, hence 2P, = 2'P,.

We show that our map is surjective. Let (g,2P) € Xy,,. We have g = sh,
P = zx, P where

hel,z € Za(s)?, ,

1z_1shzxn e SUp.
We have z~'hz = d'c where o/ € s~ a, Sz, c € U,, py:t- Since z7thz € Zg(s),

we must have o’ € Zg(s),c € Zg(s). Now
cel —1ﬁZG(S)=UnpxglﬁZG(S)OZUpn,

@y Py x
by 1.11. Thus z~'hz € alanP:C-;l where o’ € s7'2, Szt C No(zyLa,'). Hence
(z7'hz)s € alUp, with a}, € Na(x,La, ).
Using 16.4(iii) we have m;lz_lhszxn € 5ZgUP. Thus, (27 thz)s = z7thsz €
a(z,Upx, ') with a € 2,°Z)z !, Since
a”'a, € Ng(zyLz, ') N U, pe;t = {1}

we have a/, = a € z,°Z0x,'. Let b = a/,. It remains to show that b € €,. Since

a' € Za(s), we have b € Zg(s). From sa’ € xSz, ! we deduce

/ g, —1 1—1 G.—1,.3820 —1_  &,.1
sa, € vySw, a," " CxySx, " Zrx, =x,ST, .
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It follows that a;, € ¢,, as required. The lemma is proved.

16.7. Let Y = ?L,s,Y = Y. s and let 7 : Y — Y be as in 3.13. Let Yy =
{(g9,2L) € Y;g € sU}. For any n € " we set

}7“777 = {(Q,LCL) € Yag € Su,x c 77}, le{,n = W(Yum)’
ylxl{,n = {(haZL'r]) S 5},;, h e [/{}

Lemma 16.8. (a) The map (g,2L) — (g, zP) is an isomorphism of Yy onto the
open subset (Y NsU) of Xy.

(b) The subsets ffu,n, (n € T) form a finite partition of Yy into open and closed
subsets.

(¢) The map ¢ : Xy — Y N sU is proper, surjective, and Y N sU is open in
Y Nnsu.

(d) The map (h, zLy) — (h, zP,) is an isomorphism off/}/’m7 onto the open subset
w;l(Y,; NU) of Xy, ,,- The map by restricts to a proper map of X, onto Y,; NnU
and Y, NU is open, dense in Y, NU.

We prove (a). By 5.5, the same formula gives an isomorphism ¥ = ¢~1(Y).
Hence the map in (a) is an isomorphism onto ¥ ~1(Y N sf). It remains to show
that ¥ ~1(Y N sU) is open in Xy Since =Y NsU) = 1Y) N Xy it is enough
to show that ¢~ 1(Y) is open in X. This follows from the fact that Y is open in
Y = ¢(X). . )

We prove (b). The map in (a) identifies Yz, with an open subset of X, and Yy,
with Yy N Xy.,). This together with 16.5(a) yields (b).

We prove (c). We have Xy, = 1~ 1(Y Nsl) hence the first assertion of (b) follows
by change of base from the fact that ¢ is proper. Since Y is open in Y, we see that
Y N (Y Nsl) is open in Y N si. Hence Y N sid is open in Y N sl.

We prove (d). From 15.3(a) we see that (h, zL,) — (h, 2P,) gives an isomorphism
of }7,]’ onto the open subset 1, 1(Y,;) of X;. Hence the same formula gives an
isomorphism of )71/’,777 onto the open subset w;l(Yé NU) of Xj;,. The map v, :
X, — YT; is proper, surjective. Since 1, : XZ’“, — 17,]’ N U is obtained from the
previous map by change of base, it is also proper, surjective. Since Y,; is open in
Y, Y, NU is open in Y, NU. We show it is dense. We have Y, = Up(F NU) where
F runs over the irreducible components of YT;. It is enough to show that F'N YT; nU
is dense in F'NY for any F. We may assume that F NU # @. Since F'NU is open,
non-empty in the irreducible variety F, it is also dense in F'. Since YY; is open dense
in }7}; (see 15.1), we see that F'NY] is open dense in F'. Since F'NU, FNY, are
open dense in F, their intersection F'N Y,; NU is open dense in F'NU. The lemma
is proved.

Lemma 16.9. (a) The map ¥ : Xy, — Y N sU is proper, with image equal to
S(Y,; nY).

(b) Let us identify Yiq,, with a subset of X wvia the imbedding Y C X in 5.5.
Then Yoy = ¢~ (Yu,y) N Xy

(¢) Yy, is open in s(Y, NU).

(d) Yu,, is open and closed in 'Y N sUU. We have |, cr Yuny = Y N sU. For
n,n €T, Yy, Y,y coincide if n,n' are in the same Wg-orbit inT' and are disjoint,
otherwise.
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(e) For any n €T, Yy, is a dense subset of Xy, (see (b)).
(f) For anyn €', Yy, is an open dense subset of s(Y, NU).

We prove (a). The fact that ¢ : Xy, — Y N sU is proper follows from
Lemma 16.8(c) since Xy, is closed in Xz (see 16.5(a)). The statement about
its image can be reduced using the isomorphism in Lemma 16.6 to a statement in
Lemma 16.8(d).

We prove (b). We must show that Y;,, is a union of fibres of ¢ : Xy, —
s(Y, NU). This is clear from the definitions.

We prove (c). From the proof of (b) we see that X;;,, — Yy, is also a union of
fibres of ¥ : Xy, — 5(17,; NU). Hence its image under the proper surjective map
¥ Xy — (Y, NU) is a closed subset of s(Y,; NU) complementary to the image
Yi .,y of f/u,n- This proves (c).

We prove (d). The map 7 : Y, — Y NsU is proper, surjective, since it is obtained
by change of base from the proper surjective map 7 :Y — Y. Since Yy, . is closed
in Yy (see Lemma 16.8(b)), it follows that Yz, = m(Yy.,) is closed in Y Nst. Since
U, Yy, = Yy (see Lemma 16.8(b)), it follows that U, Yun =Y Nsl.

Assume that Y., Yy, are not disjoint; let g € Yy4,, N Yy . Then there exist
x € n,2 € n such that (g,2L) € Y,(g,2’L) € Y. Using 3.13(a), we see that
there exists n € NgoL such that nSn~! = S and 2’ = 2n~!. Then (g1,71L) —
(91,210 'L) is a bijection Yy, — Yi1,y hence Yy, = Y. The same argument
shows that, if n,n are in the same Wg-orbit, then Yy, = Yi,,. We see that the
complement of Yz, in Y N si/ is the union of the closed subsets Yy, (with 1’ not
in the Wg-orbit of n); hence Yy, is open in ¥ N sif. This proves (d).

We prove (e). We have ¢, = [ |;c;7; where J is finite and v; are (unipotent)
XJ'-,Y,]’ = |—|jeJ Yj’ where

Ly-conjugacy classes in Nz (s Ly. We have X; =,

X]'» ={(h,2P,)) € Zg(s) x Zg(s)’; 2 hz € xn‘SZ%x;lfijpn},

Y] ={(h,2Ly) € Za(s) x Za(s)";
27 hz =ab,a € xnézgmgl, b€, Zz4s) (@)’ C L,}.

Let Xp; ;= {(h,2P) € XJ; hel/{} Yujf{(h zL )EY’ heU}.

We have X7, , = U;c; Xi ;- Y’ UJEJYU’

Since X7 is irreducible and L{ 1S open in Zg(s) we see that X;, ; is open in
X}, so that XZI/{,j is either empty or irreducible. If XZI/{,j # (), then we can find
a € xn‘sng;l,b € 9j,¢ € Up, with abc € U. Since a and c are contained in
Zg(s)?, we see that b is contained in d;, the connected component of Zg(s) that
contains U. Hence 7y; C ;. Let us identify Xzit with a subset X/ ; of Xy, via the
isomorphism X}, = Xu,y in Lemma 16.6. Slnce Xuny = UJeJ;vjcél Xu,;, we see
that it is enough to show that, if v; C 61, then

(g) YunﬂYuj is dense in YUJ,

(h) YZ//{,j is dense in XM,] =Xy ;.

(We regard YL’,J as a subspace of X7, ; via the imbedding }71/’,,, — X}, in 16.8(d)
hence as a subspace of Xy ;.)



CHARACTER SHEAVES ON DISCONNECTED GROUPS, III 141

We prove (g). This is equivalent to the following statement:
{(h,zL,);h €U,z € Zg(s)°, 27 hz = ab,a € 1:776223:;1,
be v, (Z(s)NZ(a)) C Ly, Za(sa)’ C x,,L:c;l}
is dense in
{(h,2Ly)sh €U,z € Zg(s)°, 2 hz = ab,a € xn‘Sng;l,
ben;, (Z(s)nZ(a))® C L,}.

Since the condition Zg(sa)® C 2, L, implies that (Z(s) N Z(a))® C Ly, we see
that it is enough to show that for any b € ~;,

{a € xn‘Sng;l; Za(sa)’ C anx;I, ab € U} is dense in xn‘Sng;l
or that

{a € :cn‘sng;l; Za(sa)’ C x,,L:c;l} N (xn‘sng;,l NUb™') is dense in xn‘Sng;l.

Since b € U, xn‘szgm,f NUDL™! is an open subset of the torus J;nézgx;l containing
the unit element; hence it is an open dense subset of xn‘Sng; 1. On the other
hand, {a € 2,° 2z, " Za(sa)® C x,La, '} is an open dense subset of z,° 20z, !
by 3.10(a). Since the intersection of two open dense subsets of a torus is dense in
that torus, (g) is proved.

We prove (h). Since }71/’,] is open in ffj’ which is open in X7, we see that }71/’,7j is
open in X}. Since X7 is irreducible, to prove (h) it suffices to show that ?L’,!j £ (.
But this is contained in the proof of (g). This proves (h) hence (e).

We prove (f). The openness follows from (c). From (e) we see that 9(Yy.,) is
a dense subset of ¢)(Xy,,) hence Yy, is a dense subset of s(Y, NU) (see 16.9(a)).
The lemma is proved.

16.10. For a Wg-orbit Z in I' we set Yy, z = Y, YZ”U = Y,; NU where n € T.
This is well defined, by 16.9(d),(f). For n € T,

(a) s(Y, NU) N Yy, is open in Yy .
(Since Yy, C s(Y, NU), it suffices to show that s(Y, NU) is open in s(Y, NU).
This follows from Lemma 16.8(d).) Hence, for any Ws-orbit Z in n,

Vg = ﬂ (S(Yn/ NU)NYy z)
nez
is an open subset of Y4 z. It also follows that Vz is open in Y Nsif. Let V = UZ Vz
where Z runs over the Wg-orbits in I'. We show that
(b) V is an open smooth subset of Y N sU of pure dimension dim Zg(s)? —
dim L +dim S and the Vz form a finite partition of V into open and closed
subsets.
Since Vz is open in Y Nsif, the union V = (J, V7 is open in Y Nsif and Vyz is open
in V for all Z. For Z # Z', the sets Vz,Vz are disjoint since they are contained
in Yy, z, Yu,z which are disjoint (see Lemma 16.9(d)). Hence the sets V; are also
closed in V. For any Z and any n € Z, Vz is open in s(Y, NU). (It is enough to show
that Y.,z N, ¢z (Y, NU) is open in s(Y, NU). This follows from the fact that
Yy, is open in s(Y, NU) (see Lemma 16.9(c)), and that Yz, z N Nyezs(Yy NU) is
open in Yy, z; see (a).) Since s(Y, NU) is isomorphic to an open set in Y}, it follows
that V7 is isomorphic to an open set in Y,; . Since Y,; is smooth of pure dimension
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dim Zg(s)? — dim L, + dim°Z) + dim c,, (see 15.1 and 3.13(b)), it follows that V
is smooth of pure dimension dim Z¢(s)? — dim L,, + dim ° 29 + dim ¢,, where n € Z.
Now L, is isomorphic to the connected centralizer in L of an element in S, hence
dim L,) = dim L — (dim S5 — dim °Z?); moreover, dim ¢,, = dim S — dim S5. Hence
Vz is smooth of pure dimension dim Zg(s)? — dim L + dim S which is independent
of Z. The same is then true for V. This proves (b).

We show that

(c) V is open dense in Y N sU.
By (b), V is open in Y N si{ and by Lemma 16.8(c), Y N s is open in Y N sU.
Hence V is open in Y N sU{. We prove that it is also dense. We have

Y s = (Xy) = J(Xum) = 5 Uy (X)) = s Uy (V) 0U) = USYZU
n

where Z runs over the Wg-orbits in " and Y}, is as in 16.10. (We have used 16.8(c),
16.5(a), 16.6, 16.8(d).) Since V =J, Vz, it is enough to show that, for any Z, Vz
is dense in sY7 ;. By Lemmas 16.8(d) and 16.9(f), for any n € Z, s(Y,/ NU) is open
dense in sY;, and Yy, is open dense in sYy,,. Hence s(Y; NU) N Yy, is open
dense in sYy,,. Hence Vz = Nyez(s(Y, NU) N Yy,y) is open dense in Y}, This
proves (c).

Lemma 16.11. Let °Y = {(g,zL) € Y;g € V}. ForneT let
0] = {(h,2Ly,) € Y;;h € s 'Vz}

where n € Z. We have a well defined isomorphism o : |—|n61" T; =0y, (h,zLy) —
(sg, zz,L).

For n € T let OY,, = {(g,zL) € Y;g € V,z € n}. Since V C s, the subsets
0y, form a partition of %Y into open and closed subsets (see Lemma 16.8(b)). Tt
is enough to show that for any 7, we have a well-defined isomorphism OY,; —
Y, (h,zLy,) + (sg,za,L). The imbedding f/z{ — Xy (see 16.8(a)) identifies 0
with an open subset of X ,; the imbedding V), , — Xj,, identifies °Y; with an
open subset of Xzi,’n. It is enough to show that the isomorphism XZ’“, = Xy, in

Lemma 16.6 carries the subspace Y/L’,m onto the subspace 01777. Thus, it is enough
to show that, for (h,zP,) € X,’]7 the following two conditions are equivalent:

(i) hes Wz, heYy;

(ii) sh € V,sh € Yy .
Both (i) and (ii) are equivalent to the condition sh € Vz. The lemma is proved.

16.12. By Lemma 16.11 we have a commutative diagram
Lyer ¥y —— %Y
sty —~ -y

where €¢(h) = sh and the vertical maps are given by the first projection. Hence we
have a canonical isomorphism

D néls-1v = (mé)lv)

nel
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of local systems on s~ 'V. (Here (m,1&,)|s-1y is by definition the restriction of &,
to s71Vz where n € Z and is zero on s~ 'Vy for Z’ # Z.) This can be also regarded
as an isomorphism

(a) @IO 7Tn|g N1y — 6*(10(57777!5”1))'
nerl

Assume that we can show that the isomorphism (a) is the restriction to s~V of an
isomorphism

(b) P 1e,) mpéy)lyyru = € ICY,mE)lyna)-
nel’

(Here € is regarded as an isomorphism s~'Y NU — Y N s, g — sg; moreover,
Ic(yy, Wn!é’,,)h-fmu is regarded as a complex on s~'Y N, zero outside Y, NU). An
isomorphism (b) extending (a) is unique, if it exists. (This follows from the fact
that the left-hand side of (b) is the intersection cohomology complex of s~1Y N
with coefficients in a local system on the open dense smooth subvariety s~V of
pure dimension, namely P, cr(m€y)|s-1v.) The isomorphism (b) gives rise for
any ¢ to an isomorphism of stalks

(c) P HICE,, ) = HLICY , mE).
nel
We have v € s~'Y NU. Indeed, su € Y and u € U since u € §; and U contains any
unipotent element in d;.
We now show the existence of the isomorphism (b). To do this we will use P in
16.3. (However, the isomorphism we construct will be independent of the choice of
P in view of its uniqueness.) Using Lemma 5.7 and 15.4(a) we find isomorphisms

(d) 1OV, mE)ly s = (K| x,) in DY 1),

(e) IC(Yr;vﬂn!gn)|}7,;mu = Yy (Kn|X{/,,,,) in D(Y'r; nu),

(K asin 5.7.) From 16.5(a) and Lemma 16.6 we get an isomorphism

(f) D vn(Kalxy,,) = € (Wi(K]x,)) in D(s~Y nU).
ner

(We regard 1y (Ky|x;, ) as a complex on s~'Y N equal to 0 outside ¥ NU.)
Combining the 1somorphlsms (d),(e),(f) we obtain an isomorphism as in (b)

16.13. In the remainder of this section we assume that k is an algebraic closure of a
finite field F, and that G has a fixed Fg-structure with Frobenius map F': G — G.
Assume that F'(L) = L, F(S) = S,& € §(5) and that we are given an isomorphism
¢o : F*E = & of local systems on S. Then F(Y) = Y and ¢ induces an iso-
morphism ¢ : F*& =5 & where & = IC(Y,m&). Assume that s,u in 16.3 satisfy
F(s) = s,F(u) = u. For any z € (G°)¥ such that 27 'sz € S; let Ly, ¢y, X, Ex be
asin 16.5. Let F,, = &;|c,, a local system on c,. Now Zg(s), Ly, ¢z, 2y are defined
over F, and ¢ : F*€ = £ induces an isomorphism ¢/, : F*&, — &, and an isomor-
phism ¢, : F*F, = F,. Then L., Zg(s), s, Xz, Fr, ¢ are like L, G, X%, %, F, ¢
in 15.12 hence the generalized Green function

QL. Z(s).c0, Furte * {unipotent elements in Zg(s)F'} — Q
is defined as in 15.12(c). We have the following result.
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Theorem 16.14.

F
Xs,0(su) = > %Qm,%@muﬂm (u).
z€(GO)Fz—1szesS, G
We can choose the base points z,, in 1) (see 16.5) in such a way that F'(z,,) = zp(,)
for any n € I'. (We use the fact that, if n is F"-stable, then nf" # (. This follows
from the fact that n is a homogeneous space under a connected group.) Now the
sum over x in the theorem can be broken into sums over x € nf" for various n € T
with F(n) = 7. The sum over z € n*" is equal to Q, z(s).c, .76, (1) (notation of
16.5) since all terms of the sum are equal and the number of terms in the sum is

0 F F
Int| = 1z (|SL)FI|L |, Thus the right-hand side of the equality in the theorem is
E

Z QL”I!ZG(S)vc'IJ:-Fv]:(bn ('U,)

n€lF(n)=n

Z Xﬁ,,,q”s(u)

n€r;F(n)=n
where £, is IC(YY;,W,,!(‘:'U) (notation of 16.5) extended by 0 on Y — Y, and b :
F*&, = R, is induced by ¢}, : F*&, = &,. (At this point, it is important that
QL,,Zc(s),cy, Frybn (u) can be computed in terms of a not necessarily “trivial choice”;
see 15.12(d).) We see that it is enough to prove that
(2) Xs,6(5U) = 2oy er;r(m=n Xa,,5(W)-

We shall now make the choice of & in Lemma 16.4 more precise. Namely we will
choose it so that, in addition, it satisfies F'(U/) = U. (In the proof of 16.4(f) we
choose the imbedding G C GL, (k) so that it is defined over F,. Then U; defined
in that proof is automatically F-stable hence U = {g € Uy; g ¢ E} (see the proof of
Lemma 16.4) is again F-stable.) With this choice of U, the isomorphism 16.12(c)
commutes with the natural Frobenius maps on its two sides. This gives rise to the
equality of (alternating sums of) traces (a). The theorem is proved.

or equivalently,
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